xref: /linux/drivers/usb/host/ehci-q.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 		  size_t len, int token, int maxpacket)
48 {
49 	int	i, count;
50 	u64	addr = buf;
51 
52 	/* one buffer entry per 4K ... first might be short or unaligned */
53 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
56 	if (likely (len < count))		/* ... iff needed */
57 		count = len;
58 	else {
59 		buf +=  0x1000;
60 		buf &= ~0x0fff;
61 
62 		/* per-qtd limit: from 16K to 20K (best alignment) */
63 		for (i = 1; count < len && i < 5; i++) {
64 			addr = buf;
65 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 					(u32)(addr >> 32));
68 			buf += 0x1000;
69 			if ((count + 0x1000) < len)
70 				count += 0x1000;
71 			else
72 				count = len;
73 		}
74 
75 		/* short packets may only terminate transfers */
76 		if (count != len)
77 			count -= (count % maxpacket);
78 	}
79 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 	qtd->length = count;
81 
82 	return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 	struct ehci_qh_hw *hw = qh->hw;
91 
92 	/* writes to an active overlay are unsafe */
93 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
94 
95 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 	hw->hw_alt_next = EHCI_LIST_END(ehci);
97 
98 	/* Except for control endpoints, we make hardware maintain data
99 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 	 * ever clear it.
102 	 */
103 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 		unsigned	is_out, epnum;
105 
106 		is_out = qh->is_out;
107 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
109 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
111 		}
112 	}
113 
114 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 	struct ehci_qtd *qtd;
125 
126 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
127 
128 	/*
129 	 * first qtd may already be partially processed.
130 	 * If we come here during unlink, the QH overlay region
131 	 * might have reference to the just unlinked qtd. The
132 	 * qtd is updated in qh_completions(). Update the QH
133 	 * overlay here.
134 	 */
135 	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
136 		qh->hw->hw_qtd_next = qtd->hw_next;
137 		if (qh->should_be_inactive)
138 			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
139 	} else {
140 		qh_update(ehci, qh, qtd);
141 	}
142 	qh->should_be_inactive = 0;
143 }
144 
145 /*-------------------------------------------------------------------------*/
146 
147 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
148 
149 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
150 		struct usb_host_endpoint *ep)
151 {
152 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
153 	struct ehci_qh		*qh = ep->hcpriv;
154 	unsigned long		flags;
155 
156 	spin_lock_irqsave(&ehci->lock, flags);
157 	qh->clearing_tt = 0;
158 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
159 			&& ehci->rh_state == EHCI_RH_RUNNING)
160 		qh_link_async(ehci, qh);
161 	spin_unlock_irqrestore(&ehci->lock, flags);
162 }
163 
164 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
165 		struct urb *urb, u32 token)
166 {
167 
168 	/* If an async split transaction gets an error or is unlinked,
169 	 * the TT buffer may be left in an indeterminate state.  We
170 	 * have to clear the TT buffer.
171 	 *
172 	 * Note: this routine is never called for Isochronous transfers.
173 	 */
174 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
175 #ifdef CONFIG_DYNAMIC_DEBUG
176 		struct usb_device *tt = urb->dev->tt->hub;
177 		dev_dbg(&tt->dev,
178 			"clear tt buffer port %d, a%d ep%d t%08x\n",
179 			urb->dev->ttport, urb->dev->devnum,
180 			usb_pipeendpoint(urb->pipe), token);
181 #endif /* CONFIG_DYNAMIC_DEBUG */
182 		if (!ehci_is_TDI(ehci)
183 				|| urb->dev->tt->hub !=
184 				   ehci_to_hcd(ehci)->self.root_hub) {
185 			if (usb_hub_clear_tt_buffer(urb) == 0)
186 				qh->clearing_tt = 1;
187 		} else {
188 
189 			/* REVISIT ARC-derived cores don't clear the root
190 			 * hub TT buffer in this way...
191 			 */
192 		}
193 	}
194 }
195 
196 static int qtd_copy_status (
197 	struct ehci_hcd *ehci,
198 	struct urb *urb,
199 	size_t length,
200 	u32 token
201 )
202 {
203 	int	status = -EINPROGRESS;
204 
205 	/* count IN/OUT bytes, not SETUP (even short packets) */
206 	if (likely (QTD_PID (token) != 2))
207 		urb->actual_length += length - QTD_LENGTH (token);
208 
209 	/* don't modify error codes */
210 	if (unlikely(urb->unlinked))
211 		return status;
212 
213 	/* force cleanup after short read; not always an error */
214 	if (unlikely (IS_SHORT_READ (token)))
215 		status = -EREMOTEIO;
216 
217 	/* serious "can't proceed" faults reported by the hardware */
218 	if (token & QTD_STS_HALT) {
219 		if (token & QTD_STS_BABBLE) {
220 			/* FIXME "must" disable babbling device's port too */
221 			status = -EOVERFLOW;
222 		/* CERR nonzero + halt --> stall */
223 		} else if (QTD_CERR(token)) {
224 			status = -EPIPE;
225 
226 		/* In theory, more than one of the following bits can be set
227 		 * since they are sticky and the transaction is retried.
228 		 * Which to test first is rather arbitrary.
229 		 */
230 		} else if (token & QTD_STS_MMF) {
231 			/* fs/ls interrupt xfer missed the complete-split */
232 			status = -EPROTO;
233 		} else if (token & QTD_STS_DBE) {
234 			status = (QTD_PID (token) == 1) /* IN ? */
235 				? -ENOSR  /* hc couldn't read data */
236 				: -ECOMM; /* hc couldn't write data */
237 		} else if (token & QTD_STS_XACT) {
238 			/* timeout, bad CRC, wrong PID, etc */
239 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
240 				urb->dev->devpath,
241 				usb_pipeendpoint(urb->pipe),
242 				usb_pipein(urb->pipe) ? "in" : "out");
243 			status = -EPROTO;
244 		} else {	/* unknown */
245 			status = -EPROTO;
246 		}
247 	}
248 
249 	return status;
250 }
251 
252 static void
253 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
254 {
255 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
256 		/* ... update hc-wide periodic stats */
257 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
258 	}
259 
260 	if (unlikely(urb->unlinked)) {
261 		COUNT(ehci->stats.unlink);
262 	} else {
263 		/* report non-error and short read status as zero */
264 		if (status == -EINPROGRESS || status == -EREMOTEIO)
265 			status = 0;
266 		COUNT(ehci->stats.complete);
267 	}
268 
269 #ifdef EHCI_URB_TRACE
270 	ehci_dbg (ehci,
271 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
272 		__func__, urb->dev->devpath, urb,
273 		usb_pipeendpoint (urb->pipe),
274 		usb_pipein (urb->pipe) ? "in" : "out",
275 		status,
276 		urb->actual_length, urb->transfer_buffer_length);
277 #endif
278 
279 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
280 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
281 }
282 
283 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
284 
285 /*
286  * Process and free completed qtds for a qh, returning URBs to drivers.
287  * Chases up to qh->hw_current.  Returns nonzero if the caller should
288  * unlink qh.
289  */
290 static unsigned
291 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
292 {
293 	struct ehci_qtd		*last, *end = qh->dummy;
294 	struct list_head	*entry, *tmp;
295 	int			last_status;
296 	int			stopped;
297 	u8			state;
298 	struct ehci_qh_hw	*hw = qh->hw;
299 
300 	/* completions (or tasks on other cpus) must never clobber HALT
301 	 * till we've gone through and cleaned everything up, even when
302 	 * they add urbs to this qh's queue or mark them for unlinking.
303 	 *
304 	 * NOTE:  unlinking expects to be done in queue order.
305 	 *
306 	 * It's a bug for qh->qh_state to be anything other than
307 	 * QH_STATE_IDLE, unless our caller is scan_async() or
308 	 * scan_intr().
309 	 */
310 	state = qh->qh_state;
311 	qh->qh_state = QH_STATE_COMPLETING;
312 	stopped = (state == QH_STATE_IDLE);
313 
314  rescan:
315 	last = NULL;
316 	last_status = -EINPROGRESS;
317 	qh->dequeue_during_giveback = 0;
318 
319 	/* remove de-activated QTDs from front of queue.
320 	 * after faults (including short reads), cleanup this urb
321 	 * then let the queue advance.
322 	 * if queue is stopped, handles unlinks.
323 	 */
324 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
325 		struct ehci_qtd	*qtd;
326 		struct urb	*urb;
327 		u32		token = 0;
328 
329 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
330 		urb = qtd->urb;
331 
332 		/* clean up any state from previous QTD ...*/
333 		if (last) {
334 			if (likely (last->urb != urb)) {
335 				ehci_urb_done(ehci, last->urb, last_status);
336 				last_status = -EINPROGRESS;
337 			}
338 			ehci_qtd_free (ehci, last);
339 			last = NULL;
340 		}
341 
342 		/* ignore urbs submitted during completions we reported */
343 		if (qtd == end)
344 			break;
345 
346 		/* hardware copies qtd out of qh overlay */
347 		rmb ();
348 		token = hc32_to_cpu(ehci, qtd->hw_token);
349 
350 		/* always clean up qtds the hc de-activated */
351  retry_xacterr:
352 		if ((token & QTD_STS_ACTIVE) == 0) {
353 
354 			/* Report Data Buffer Error: non-fatal but useful */
355 			if (token & QTD_STS_DBE)
356 				ehci_dbg(ehci,
357 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
358 					urb,
359 					usb_endpoint_num(&urb->ep->desc),
360 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
361 					urb->transfer_buffer_length,
362 					qtd,
363 					qh);
364 
365 			/* on STALL, error, and short reads this urb must
366 			 * complete and all its qtds must be recycled.
367 			 */
368 			if ((token & QTD_STS_HALT) != 0) {
369 
370 				/* retry transaction errors until we
371 				 * reach the software xacterr limit
372 				 */
373 				if ((token & QTD_STS_XACT) &&
374 						QTD_CERR(token) == 0 &&
375 						++qh->xacterrs < QH_XACTERR_MAX &&
376 						!urb->unlinked) {
377 					ehci_dbg(ehci,
378 	"detected XactErr len %zu/%zu retry %d\n",
379 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
380 
381 					/* reset the token in the qtd and the
382 					 * qh overlay (which still contains
383 					 * the qtd) so that we pick up from
384 					 * where we left off
385 					 */
386 					token &= ~QTD_STS_HALT;
387 					token |= QTD_STS_ACTIVE |
388 							(EHCI_TUNE_CERR << 10);
389 					qtd->hw_token = cpu_to_hc32(ehci,
390 							token);
391 					wmb();
392 					hw->hw_token = cpu_to_hc32(ehci,
393 							token);
394 					goto retry_xacterr;
395 				}
396 				stopped = 1;
397 				qh->unlink_reason |= QH_UNLINK_HALTED;
398 
399 			/* magic dummy for some short reads; qh won't advance.
400 			 * that silicon quirk can kick in with this dummy too.
401 			 *
402 			 * other short reads won't stop the queue, including
403 			 * control transfers (status stage handles that) or
404 			 * most other single-qtd reads ... the queue stops if
405 			 * URB_SHORT_NOT_OK was set so the driver submitting
406 			 * the urbs could clean it up.
407 			 */
408 			} else if (IS_SHORT_READ (token)
409 					&& !(qtd->hw_alt_next
410 						& EHCI_LIST_END(ehci))) {
411 				stopped = 1;
412 				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
413 			}
414 
415 		/* stop scanning when we reach qtds the hc is using */
416 		} else if (likely (!stopped
417 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
418 			break;
419 
420 		/* scan the whole queue for unlinks whenever it stops */
421 		} else {
422 			stopped = 1;
423 
424 			/* cancel everything if we halt, suspend, etc */
425 			if (ehci->rh_state < EHCI_RH_RUNNING) {
426 				last_status = -ESHUTDOWN;
427 				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
428 			}
429 
430 			/* this qtd is active; skip it unless a previous qtd
431 			 * for its urb faulted, or its urb was canceled.
432 			 */
433 			else if (last_status == -EINPROGRESS && !urb->unlinked)
434 				continue;
435 
436 			/*
437 			 * If this was the active qtd when the qh was unlinked
438 			 * and the overlay's token is active, then the overlay
439 			 * hasn't been written back to the qtd yet so use its
440 			 * token instead of the qtd's.  After the qtd is
441 			 * processed and removed, the overlay won't be valid
442 			 * any more.
443 			 */
444 			if (state == QH_STATE_IDLE &&
445 					qh->qtd_list.next == &qtd->qtd_list &&
446 					(hw->hw_token & ACTIVE_BIT(ehci))) {
447 				token = hc32_to_cpu(ehci, hw->hw_token);
448 				hw->hw_token &= ~ACTIVE_BIT(ehci);
449 				qh->should_be_inactive = 1;
450 
451 				/* An unlink may leave an incomplete
452 				 * async transaction in the TT buffer.
453 				 * We have to clear it.
454 				 */
455 				ehci_clear_tt_buffer(ehci, qh, urb, token);
456 			}
457 		}
458 
459 		/* unless we already know the urb's status, collect qtd status
460 		 * and update count of bytes transferred.  in common short read
461 		 * cases with only one data qtd (including control transfers),
462 		 * queue processing won't halt.  but with two or more qtds (for
463 		 * example, with a 32 KB transfer), when the first qtd gets a
464 		 * short read the second must be removed by hand.
465 		 */
466 		if (last_status == -EINPROGRESS) {
467 			last_status = qtd_copy_status(ehci, urb,
468 					qtd->length, token);
469 			if (last_status == -EREMOTEIO
470 					&& (qtd->hw_alt_next
471 						& EHCI_LIST_END(ehci)))
472 				last_status = -EINPROGRESS;
473 
474 			/* As part of low/full-speed endpoint-halt processing
475 			 * we must clear the TT buffer (11.17.5).
476 			 */
477 			if (unlikely(last_status != -EINPROGRESS &&
478 					last_status != -EREMOTEIO)) {
479 				/* The TT's in some hubs malfunction when they
480 				 * receive this request following a STALL (they
481 				 * stop sending isochronous packets).  Since a
482 				 * STALL can't leave the TT buffer in a busy
483 				 * state (if you believe Figures 11-48 - 11-51
484 				 * in the USB 2.0 spec), we won't clear the TT
485 				 * buffer in this case.  Strictly speaking this
486 				 * is a violation of the spec.
487 				 */
488 				if (last_status != -EPIPE)
489 					ehci_clear_tt_buffer(ehci, qh, urb,
490 							token);
491 			}
492 		}
493 
494 		/* if we're removing something not at the queue head,
495 		 * patch the hardware queue pointer.
496 		 */
497 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
498 			last = list_entry (qtd->qtd_list.prev,
499 					struct ehci_qtd, qtd_list);
500 			last->hw_next = qtd->hw_next;
501 		}
502 
503 		/* remove qtd; it's recycled after possible urb completion */
504 		list_del (&qtd->qtd_list);
505 		last = qtd;
506 
507 		/* reinit the xacterr counter for the next qtd */
508 		qh->xacterrs = 0;
509 	}
510 
511 	/* last urb's completion might still need calling */
512 	if (likely (last != NULL)) {
513 		ehci_urb_done(ehci, last->urb, last_status);
514 		ehci_qtd_free (ehci, last);
515 	}
516 
517 	/* Do we need to rescan for URBs dequeued during a giveback? */
518 	if (unlikely(qh->dequeue_during_giveback)) {
519 		/* If the QH is already unlinked, do the rescan now. */
520 		if (state == QH_STATE_IDLE)
521 			goto rescan;
522 
523 		/* Otherwise the caller must unlink the QH. */
524 	}
525 
526 	/* restore original state; caller must unlink or relink */
527 	qh->qh_state = state;
528 
529 	/* be sure the hardware's done with the qh before refreshing
530 	 * it after fault cleanup, or recovering from silicon wrongly
531 	 * overlaying the dummy qtd (which reduces DMA chatter).
532 	 *
533 	 * We won't refresh a QH that's linked (after the HC
534 	 * stopped the queue).  That avoids a race:
535 	 *  - HC reads first part of QH;
536 	 *  - CPU updates that first part and the token;
537 	 *  - HC reads rest of that QH, including token
538 	 * Result:  HC gets an inconsistent image, and then
539 	 * DMAs to/from the wrong memory (corrupting it).
540 	 *
541 	 * That should be rare for interrupt transfers,
542 	 * except maybe high bandwidth ...
543 	 */
544 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
545 		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
546 
547 	/* Let the caller know if the QH needs to be unlinked. */
548 	return qh->unlink_reason;
549 }
550 
551 /*-------------------------------------------------------------------------*/
552 
553 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
554 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
555 // ... and packet size, for any kind of endpoint descriptor
556 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
557 
558 /*
559  * reverse of qh_urb_transaction:  free a list of TDs.
560  * used for cleanup after errors, before HC sees an URB's TDs.
561  */
562 static void qtd_list_free (
563 	struct ehci_hcd		*ehci,
564 	struct urb		*urb,
565 	struct list_head	*qtd_list
566 ) {
567 	struct list_head	*entry, *temp;
568 
569 	list_for_each_safe (entry, temp, qtd_list) {
570 		struct ehci_qtd	*qtd;
571 
572 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
573 		list_del (&qtd->qtd_list);
574 		ehci_qtd_free (ehci, qtd);
575 	}
576 }
577 
578 /*
579  * create a list of filled qtds for this URB; won't link into qh.
580  */
581 static struct list_head *
582 qh_urb_transaction (
583 	struct ehci_hcd		*ehci,
584 	struct urb		*urb,
585 	struct list_head	*head,
586 	gfp_t			flags
587 ) {
588 	struct ehci_qtd		*qtd, *qtd_prev;
589 	dma_addr_t		buf;
590 	int			len, this_sg_len, maxpacket;
591 	int			is_input;
592 	u32			token;
593 	int			i;
594 	struct scatterlist	*sg;
595 
596 	/*
597 	 * URBs map to sequences of QTDs:  one logical transaction
598 	 */
599 	qtd = ehci_qtd_alloc (ehci, flags);
600 	if (unlikely (!qtd))
601 		return NULL;
602 	list_add_tail (&qtd->qtd_list, head);
603 	qtd->urb = urb;
604 
605 	token = QTD_STS_ACTIVE;
606 	token |= (EHCI_TUNE_CERR << 10);
607 	/* for split transactions, SplitXState initialized to zero */
608 
609 	len = urb->transfer_buffer_length;
610 	is_input = usb_pipein (urb->pipe);
611 	if (usb_pipecontrol (urb->pipe)) {
612 		/* SETUP pid */
613 		qtd_fill(ehci, qtd, urb->setup_dma,
614 				sizeof (struct usb_ctrlrequest),
615 				token | (2 /* "setup" */ << 8), 8);
616 
617 		/* ... and always at least one more pid */
618 		token ^= QTD_TOGGLE;
619 		qtd_prev = qtd;
620 		qtd = ehci_qtd_alloc (ehci, flags);
621 		if (unlikely (!qtd))
622 			goto cleanup;
623 		qtd->urb = urb;
624 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
625 		list_add_tail (&qtd->qtd_list, head);
626 
627 		/* for zero length DATA stages, STATUS is always IN */
628 		if (len == 0)
629 			token |= (1 /* "in" */ << 8);
630 	}
631 
632 	/*
633 	 * data transfer stage:  buffer setup
634 	 */
635 	i = urb->num_mapped_sgs;
636 	if (len > 0 && i > 0) {
637 		sg = urb->sg;
638 		buf = sg_dma_address(sg);
639 
640 		/* urb->transfer_buffer_length may be smaller than the
641 		 * size of the scatterlist (or vice versa)
642 		 */
643 		this_sg_len = min_t(int, sg_dma_len(sg), len);
644 	} else {
645 		sg = NULL;
646 		buf = urb->transfer_dma;
647 		this_sg_len = len;
648 	}
649 
650 	if (is_input)
651 		token |= (1 /* "in" */ << 8);
652 	/* else it's already initted to "out" pid (0 << 8) */
653 
654 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
655 
656 	/*
657 	 * buffer gets wrapped in one or more qtds;
658 	 * last one may be "short" (including zero len)
659 	 * and may serve as a control status ack
660 	 */
661 	for (;;) {
662 		int this_qtd_len;
663 
664 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
665 				maxpacket);
666 		this_sg_len -= this_qtd_len;
667 		len -= this_qtd_len;
668 		buf += this_qtd_len;
669 
670 		/*
671 		 * short reads advance to a "magic" dummy instead of the next
672 		 * qtd ... that forces the queue to stop, for manual cleanup.
673 		 * (this will usually be overridden later.)
674 		 */
675 		if (is_input)
676 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
677 
678 		/* qh makes control packets use qtd toggle; maybe switch it */
679 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
680 			token ^= QTD_TOGGLE;
681 
682 		if (likely(this_sg_len <= 0)) {
683 			if (--i <= 0 || len <= 0)
684 				break;
685 			sg = sg_next(sg);
686 			buf = sg_dma_address(sg);
687 			this_sg_len = min_t(int, sg_dma_len(sg), len);
688 		}
689 
690 		qtd_prev = qtd;
691 		qtd = ehci_qtd_alloc (ehci, flags);
692 		if (unlikely (!qtd))
693 			goto cleanup;
694 		qtd->urb = urb;
695 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
696 		list_add_tail (&qtd->qtd_list, head);
697 	}
698 
699 	/*
700 	 * unless the caller requires manual cleanup after short reads,
701 	 * have the alt_next mechanism keep the queue running after the
702 	 * last data qtd (the only one, for control and most other cases).
703 	 */
704 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
705 				|| usb_pipecontrol (urb->pipe)))
706 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
707 
708 	/*
709 	 * control requests may need a terminating data "status" ack;
710 	 * other OUT ones may need a terminating short packet
711 	 * (zero length).
712 	 */
713 	if (likely (urb->transfer_buffer_length != 0)) {
714 		int	one_more = 0;
715 
716 		if (usb_pipecontrol (urb->pipe)) {
717 			one_more = 1;
718 			token ^= 0x0100;	/* "in" <--> "out"  */
719 			token |= QTD_TOGGLE;	/* force DATA1 */
720 		} else if (usb_pipeout(urb->pipe)
721 				&& (urb->transfer_flags & URB_ZERO_PACKET)
722 				&& !(urb->transfer_buffer_length % maxpacket)) {
723 			one_more = 1;
724 		}
725 		if (one_more) {
726 			qtd_prev = qtd;
727 			qtd = ehci_qtd_alloc (ehci, flags);
728 			if (unlikely (!qtd))
729 				goto cleanup;
730 			qtd->urb = urb;
731 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
732 			list_add_tail (&qtd->qtd_list, head);
733 
734 			/* never any data in such packets */
735 			qtd_fill(ehci, qtd, 0, 0, token, 0);
736 		}
737 	}
738 
739 	/* by default, enable interrupt on urb completion */
740 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
741 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
742 	return head;
743 
744 cleanup:
745 	qtd_list_free (ehci, urb, head);
746 	return NULL;
747 }
748 
749 /*-------------------------------------------------------------------------*/
750 
751 // Would be best to create all qh's from config descriptors,
752 // when each interface/altsetting is established.  Unlink
753 // any previous qh and cancel its urbs first; endpoints are
754 // implicitly reset then (data toggle too).
755 // That'd mean updating how usbcore talks to HCDs. (2.7?)
756 
757 
758 /*
759  * Each QH holds a qtd list; a QH is used for everything except iso.
760  *
761  * For interrupt urbs, the scheduler must set the microframe scheduling
762  * mask(s) each time the QH gets scheduled.  For highspeed, that's
763  * just one microframe in the s-mask.  For split interrupt transactions
764  * there are additional complications: c-mask, maybe FSTNs.
765  */
766 static struct ehci_qh *
767 qh_make (
768 	struct ehci_hcd		*ehci,
769 	struct urb		*urb,
770 	gfp_t			flags
771 ) {
772 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
773 	u32			info1 = 0, info2 = 0;
774 	int			is_input, type;
775 	int			maxp = 0;
776 	struct usb_tt		*tt = urb->dev->tt;
777 	struct ehci_qh_hw	*hw;
778 
779 	if (!qh)
780 		return qh;
781 
782 	/*
783 	 * init endpoint/device data for this QH
784 	 */
785 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
786 	info1 |= usb_pipedevice (urb->pipe) << 0;
787 
788 	is_input = usb_pipein (urb->pipe);
789 	type = usb_pipetype (urb->pipe);
790 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
791 
792 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
793 	 * acts like up to 3KB, but is built from smaller packets.
794 	 */
795 	if (max_packet(maxp) > 1024) {
796 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
797 		goto done;
798 	}
799 
800 	/* Compute interrupt scheduling parameters just once, and save.
801 	 * - allowing for high bandwidth, how many nsec/uframe are used?
802 	 * - split transactions need a second CSPLIT uframe; same question
803 	 * - splits also need a schedule gap (for full/low speed I/O)
804 	 * - qh has a polling interval
805 	 *
806 	 * For control/bulk requests, the HC or TT handles these.
807 	 */
808 	if (type == PIPE_INTERRUPT) {
809 		unsigned	tmp;
810 
811 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
812 				is_input, 0,
813 				hb_mult(maxp) * max_packet(maxp)));
814 		qh->ps.phase = NO_FRAME;
815 
816 		if (urb->dev->speed == USB_SPEED_HIGH) {
817 			qh->ps.c_usecs = 0;
818 			qh->gap_uf = 0;
819 
820 			if (urb->interval > 1 && urb->interval < 8) {
821 				/* NOTE interval 2 or 4 uframes could work.
822 				 * But interval 1 scheduling is simpler, and
823 				 * includes high bandwidth.
824 				 */
825 				urb->interval = 1;
826 			} else if (urb->interval > ehci->periodic_size << 3) {
827 				urb->interval = ehci->periodic_size << 3;
828 			}
829 			qh->ps.period = urb->interval >> 3;
830 
831 			/* period for bandwidth allocation */
832 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
833 					1 << (urb->ep->desc.bInterval - 1));
834 
835 			/* Allow urb->interval to override */
836 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
837 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
838 		} else {
839 			int		think_time;
840 
841 			/* gap is f(FS/LS transfer times) */
842 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
843 					is_input, 0, maxp) / (125 * 1000);
844 
845 			/* FIXME this just approximates SPLIT/CSPLIT times */
846 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
847 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
848 				qh->ps.usecs = HS_USECS(1);
849 			} else {		// SPLIT+DATA, gap, CSPLIT
850 				qh->ps.usecs += HS_USECS(1);
851 				qh->ps.c_usecs = HS_USECS(0);
852 			}
853 
854 			think_time = tt ? tt->think_time : 0;
855 			qh->ps.tt_usecs = NS_TO_US(think_time +
856 					usb_calc_bus_time (urb->dev->speed,
857 					is_input, 0, max_packet (maxp)));
858 			if (urb->interval > ehci->periodic_size)
859 				urb->interval = ehci->periodic_size;
860 			qh->ps.period = urb->interval;
861 
862 			/* period for bandwidth allocation */
863 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
864 					urb->ep->desc.bInterval);
865 			tmp = rounddown_pow_of_two(tmp);
866 
867 			/* Allow urb->interval to override */
868 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
869 			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
870 		}
871 	}
872 
873 	/* support for tt scheduling, and access to toggles */
874 	qh->ps.udev = urb->dev;
875 	qh->ps.ep = urb->ep;
876 
877 	/* using TT? */
878 	switch (urb->dev->speed) {
879 	case USB_SPEED_LOW:
880 		info1 |= QH_LOW_SPEED;
881 		/* FALL THROUGH */
882 
883 	case USB_SPEED_FULL:
884 		/* EPS 0 means "full" */
885 		if (type != PIPE_INTERRUPT)
886 			info1 |= (EHCI_TUNE_RL_TT << 28);
887 		if (type == PIPE_CONTROL) {
888 			info1 |= QH_CONTROL_EP;		/* for TT */
889 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
890 		}
891 		info1 |= maxp << 16;
892 
893 		info2 |= (EHCI_TUNE_MULT_TT << 30);
894 
895 		/* Some Freescale processors have an erratum in which the
896 		 * port number in the queue head was 0..N-1 instead of 1..N.
897 		 */
898 		if (ehci_has_fsl_portno_bug(ehci))
899 			info2 |= (urb->dev->ttport-1) << 23;
900 		else
901 			info2 |= urb->dev->ttport << 23;
902 
903 		/* set the address of the TT; for TDI's integrated
904 		 * root hub tt, leave it zeroed.
905 		 */
906 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
907 			info2 |= tt->hub->devnum << 16;
908 
909 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
910 
911 		break;
912 
913 	case USB_SPEED_HIGH:		/* no TT involved */
914 		info1 |= QH_HIGH_SPEED;
915 		if (type == PIPE_CONTROL) {
916 			info1 |= (EHCI_TUNE_RL_HS << 28);
917 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
918 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
919 			info2 |= (EHCI_TUNE_MULT_HS << 30);
920 		} else if (type == PIPE_BULK) {
921 			info1 |= (EHCI_TUNE_RL_HS << 28);
922 			/* The USB spec says that high speed bulk endpoints
923 			 * always use 512 byte maxpacket.  But some device
924 			 * vendors decided to ignore that, and MSFT is happy
925 			 * to help them do so.  So now people expect to use
926 			 * such nonconformant devices with Linux too; sigh.
927 			 */
928 			info1 |= max_packet(maxp) << 16;
929 			info2 |= (EHCI_TUNE_MULT_HS << 30);
930 		} else {		/* PIPE_INTERRUPT */
931 			info1 |= max_packet (maxp) << 16;
932 			info2 |= hb_mult (maxp) << 30;
933 		}
934 		break;
935 	default:
936 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
937 			urb->dev->speed);
938 done:
939 		qh_destroy(ehci, qh);
940 		return NULL;
941 	}
942 
943 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
944 
945 	/* init as live, toggle clear */
946 	qh->qh_state = QH_STATE_IDLE;
947 	hw = qh->hw;
948 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
949 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
950 	qh->is_out = !is_input;
951 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
952 	return qh;
953 }
954 
955 /*-------------------------------------------------------------------------*/
956 
957 static void enable_async(struct ehci_hcd *ehci)
958 {
959 	if (ehci->async_count++)
960 		return;
961 
962 	/* Stop waiting to turn off the async schedule */
963 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
964 
965 	/* Don't start the schedule until ASS is 0 */
966 	ehci_poll_ASS(ehci);
967 	turn_on_io_watchdog(ehci);
968 }
969 
970 static void disable_async(struct ehci_hcd *ehci)
971 {
972 	if (--ehci->async_count)
973 		return;
974 
975 	/* The async schedule and unlink lists are supposed to be empty */
976 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
977 			!list_empty(&ehci->async_idle));
978 
979 	/* Don't turn off the schedule until ASS is 1 */
980 	ehci_poll_ASS(ehci);
981 }
982 
983 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
984 
985 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
986 {
987 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
988 	struct ehci_qh	*head;
989 
990 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
991 	if (unlikely(qh->clearing_tt))
992 		return;
993 
994 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
995 
996 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
997 	qh_refresh(ehci, qh);
998 
999 	/* splice right after start */
1000 	head = ehci->async;
1001 	qh->qh_next = head->qh_next;
1002 	qh->hw->hw_next = head->hw->hw_next;
1003 	wmb ();
1004 
1005 	head->qh_next.qh = qh;
1006 	head->hw->hw_next = dma;
1007 
1008 	qh->qh_state = QH_STATE_LINKED;
1009 	qh->xacterrs = 0;
1010 	qh->unlink_reason = 0;
1011 	/* qtd completions reported later by interrupt */
1012 
1013 	enable_async(ehci);
1014 }
1015 
1016 /*-------------------------------------------------------------------------*/
1017 
1018 /*
1019  * For control/bulk/interrupt, return QH with these TDs appended.
1020  * Allocates and initializes the QH if necessary.
1021  * Returns null if it can't allocate a QH it needs to.
1022  * If the QH has TDs (urbs) already, that's great.
1023  */
1024 static struct ehci_qh *qh_append_tds (
1025 	struct ehci_hcd		*ehci,
1026 	struct urb		*urb,
1027 	struct list_head	*qtd_list,
1028 	int			epnum,
1029 	void			**ptr
1030 )
1031 {
1032 	struct ehci_qh		*qh = NULL;
1033 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1034 
1035 	qh = (struct ehci_qh *) *ptr;
1036 	if (unlikely (qh == NULL)) {
1037 		/* can't sleep here, we have ehci->lock... */
1038 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1039 		*ptr = qh;
1040 	}
1041 	if (likely (qh != NULL)) {
1042 		struct ehci_qtd	*qtd;
1043 
1044 		if (unlikely (list_empty (qtd_list)))
1045 			qtd = NULL;
1046 		else
1047 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1048 					qtd_list);
1049 
1050 		/* control qh may need patching ... */
1051 		if (unlikely (epnum == 0)) {
1052 
1053                         /* usb_reset_device() briefly reverts to address 0 */
1054                         if (usb_pipedevice (urb->pipe) == 0)
1055 				qh->hw->hw_info1 &= ~qh_addr_mask;
1056 		}
1057 
1058 		/* just one way to queue requests: swap with the dummy qtd.
1059 		 * only hc or qh_refresh() ever modify the overlay.
1060 		 */
1061 		if (likely (qtd != NULL)) {
1062 			struct ehci_qtd		*dummy;
1063 			dma_addr_t		dma;
1064 			__hc32			token;
1065 
1066 			/* to avoid racing the HC, use the dummy td instead of
1067 			 * the first td of our list (becomes new dummy).  both
1068 			 * tds stay deactivated until we're done, when the
1069 			 * HC is allowed to fetch the old dummy (4.10.2).
1070 			 */
1071 			token = qtd->hw_token;
1072 			qtd->hw_token = HALT_BIT(ehci);
1073 
1074 			dummy = qh->dummy;
1075 
1076 			dma = dummy->qtd_dma;
1077 			*dummy = *qtd;
1078 			dummy->qtd_dma = dma;
1079 
1080 			list_del (&qtd->qtd_list);
1081 			list_add (&dummy->qtd_list, qtd_list);
1082 			list_splice_tail(qtd_list, &qh->qtd_list);
1083 
1084 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1085 			qh->dummy = qtd;
1086 
1087 			/* hc must see the new dummy at list end */
1088 			dma = qtd->qtd_dma;
1089 			qtd = list_entry (qh->qtd_list.prev,
1090 					struct ehci_qtd, qtd_list);
1091 			qtd->hw_next = QTD_NEXT(ehci, dma);
1092 
1093 			/* let the hc process these next qtds */
1094 			wmb ();
1095 			dummy->hw_token = token;
1096 
1097 			urb->hcpriv = qh;
1098 		}
1099 	}
1100 	return qh;
1101 }
1102 
1103 /*-------------------------------------------------------------------------*/
1104 
1105 static int
1106 submit_async (
1107 	struct ehci_hcd		*ehci,
1108 	struct urb		*urb,
1109 	struct list_head	*qtd_list,
1110 	gfp_t			mem_flags
1111 ) {
1112 	int			epnum;
1113 	unsigned long		flags;
1114 	struct ehci_qh		*qh = NULL;
1115 	int			rc;
1116 
1117 	epnum = urb->ep->desc.bEndpointAddress;
1118 
1119 #ifdef EHCI_URB_TRACE
1120 	{
1121 		struct ehci_qtd *qtd;
1122 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1123 		ehci_dbg(ehci,
1124 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1125 			 __func__, urb->dev->devpath, urb,
1126 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1127 			 urb->transfer_buffer_length,
1128 			 qtd, urb->ep->hcpriv);
1129 	}
1130 #endif
1131 
1132 	spin_lock_irqsave (&ehci->lock, flags);
1133 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1134 		rc = -ESHUTDOWN;
1135 		goto done;
1136 	}
1137 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1138 	if (unlikely(rc))
1139 		goto done;
1140 
1141 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1142 	if (unlikely(qh == NULL)) {
1143 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1144 		rc = -ENOMEM;
1145 		goto done;
1146 	}
1147 
1148 	/* Control/bulk operations through TTs don't need scheduling,
1149 	 * the HC and TT handle it when the TT has a buffer ready.
1150 	 */
1151 	if (likely (qh->qh_state == QH_STATE_IDLE))
1152 		qh_link_async(ehci, qh);
1153  done:
1154 	spin_unlock_irqrestore (&ehci->lock, flags);
1155 	if (unlikely (qh == NULL))
1156 		qtd_list_free (ehci, urb, qtd_list);
1157 	return rc;
1158 }
1159 
1160 /*-------------------------------------------------------------------------*/
1161 #ifdef CONFIG_USB_HCD_TEST_MODE
1162 /*
1163  * This function creates the qtds and submits them for the
1164  * SINGLE_STEP_SET_FEATURE Test.
1165  * This is done in two parts: first SETUP req for GetDesc is sent then
1166  * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1167  *
1168  * is_setup : i/p arguement decides which of the two stage needs to be
1169  * performed; TRUE - SETUP and FALSE - IN+STATUS
1170  * Returns 0 if success
1171  */
1172 static int submit_single_step_set_feature(
1173 	struct usb_hcd  *hcd,
1174 	struct urb      *urb,
1175 	int             is_setup
1176 ) {
1177 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1178 	struct list_head	qtd_list;
1179 	struct list_head	*head;
1180 
1181 	struct ehci_qtd		*qtd, *qtd_prev;
1182 	dma_addr_t		buf;
1183 	int			len, maxpacket;
1184 	u32			token;
1185 
1186 	INIT_LIST_HEAD(&qtd_list);
1187 	head = &qtd_list;
1188 
1189 	/* URBs map to sequences of QTDs:  one logical transaction */
1190 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1191 	if (unlikely(!qtd))
1192 		return -1;
1193 	list_add_tail(&qtd->qtd_list, head);
1194 	qtd->urb = urb;
1195 
1196 	token = QTD_STS_ACTIVE;
1197 	token |= (EHCI_TUNE_CERR << 10);
1198 
1199 	len = urb->transfer_buffer_length;
1200 	/*
1201 	 * Check if the request is to perform just the SETUP stage (getDesc)
1202 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1203 	 * 15 secs after the setup
1204 	 */
1205 	if (is_setup) {
1206 		/* SETUP pid */
1207 		qtd_fill(ehci, qtd, urb->setup_dma,
1208 				sizeof(struct usb_ctrlrequest),
1209 				token | (2 /* "setup" */ << 8), 8);
1210 
1211 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1212 		return 0; /*Return now; we shall come back after 15 seconds*/
1213 	}
1214 
1215 	/*
1216 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1217 	 * the get_Desc SETUP which was sent 15seconds back
1218 	 */
1219 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1220 	buf = urb->transfer_dma;
1221 
1222 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1223 
1224 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0));
1225 
1226 	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1227 
1228 	/*
1229 	 * Our IN phase shall always be a short read; so keep the queue running
1230 	 * and let it advance to the next qtd which zero length OUT status
1231 	 */
1232 	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1233 
1234 	/* STATUS stage for GetDesc control request */
1235 	token ^= 0x0100;        /* "in" <--> "out"  */
1236 	token |= QTD_TOGGLE;    /* force DATA1 */
1237 
1238 	qtd_prev = qtd;
1239 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1240 	if (unlikely(!qtd))
1241 		goto cleanup;
1242 	qtd->urb = urb;
1243 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1244 	list_add_tail(&qtd->qtd_list, head);
1245 
1246 	/* dont fill any data in such packets */
1247 	qtd_fill(ehci, qtd, 0, 0, token, 0);
1248 
1249 	/* by default, enable interrupt on urb completion */
1250 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1251 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1252 
1253 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1254 
1255 	return 0;
1256 
1257 cleanup:
1258 	qtd_list_free(ehci, urb, head);
1259 	return -1;
1260 }
1261 #endif /* CONFIG_USB_HCD_TEST_MODE */
1262 
1263 /*-------------------------------------------------------------------------*/
1264 
1265 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1266 {
1267 	struct ehci_qh		*prev;
1268 
1269 	/* Add to the end of the list of QHs waiting for the next IAAD */
1270 	qh->qh_state = QH_STATE_UNLINK_WAIT;
1271 	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1272 
1273 	/* Unlink it from the schedule */
1274 	prev = ehci->async;
1275 	while (prev->qh_next.qh != qh)
1276 		prev = prev->qh_next.qh;
1277 
1278 	prev->hw->hw_next = qh->hw->hw_next;
1279 	prev->qh_next = qh->qh_next;
1280 	if (ehci->qh_scan_next == qh)
1281 		ehci->qh_scan_next = qh->qh_next.qh;
1282 }
1283 
1284 static void start_iaa_cycle(struct ehci_hcd *ehci)
1285 {
1286 	/* If the controller isn't running, we don't have to wait for it */
1287 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1288 		end_unlink_async(ehci);
1289 
1290 	/* Otherwise start a new IAA cycle if one isn't already running */
1291 	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
1292 			!ehci->iaa_in_progress) {
1293 
1294 		/* Make sure the unlinks are all visible to the hardware */
1295 		wmb();
1296 
1297 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1298 				&ehci->regs->command);
1299 		ehci_readl(ehci, &ehci->regs->command);
1300 		ehci->iaa_in_progress = true;
1301 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1302 	}
1303 }
1304 
1305 static void end_iaa_cycle(struct ehci_hcd *ehci)
1306 {
1307 	if (ehci->has_synopsys_hc_bug)
1308 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1309 			    &ehci->regs->async_next);
1310 
1311 	/* The current IAA cycle has ended */
1312 	ehci->iaa_in_progress = false;
1313 
1314 	end_unlink_async(ehci);
1315 }
1316 
1317 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1318 
1319 static void end_unlink_async(struct ehci_hcd *ehci)
1320 {
1321 	struct ehci_qh		*qh;
1322 	bool			early_exit;
1323 
1324 	if (list_empty(&ehci->async_unlink))
1325 		return;
1326 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1327 			unlink_node);	/* QH whose IAA cycle just ended */
1328 
1329 	/*
1330 	 * If async_unlinking is set then this routine is already running,
1331 	 * either on the stack or on another CPU.
1332 	 */
1333 	early_exit = ehci->async_unlinking;
1334 
1335 	/* If the controller isn't running, process all the waiting QHs */
1336 	if (ehci->rh_state < EHCI_RH_RUNNING)
1337 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1338 
1339 	/*
1340 	 * Intel (?) bug: The HC can write back the overlay region even
1341 	 * after the IAA interrupt occurs.  In self-defense, always go
1342 	 * through two IAA cycles for each QH.
1343 	 */
1344 	else if (qh->qh_state == QH_STATE_UNLINK) {
1345 		/*
1346 		 * Second IAA cycle has finished.  Process only the first
1347 		 * waiting QH (NVIDIA (?) bug).
1348 		 */
1349 		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1350 	}
1351 
1352 	/*
1353 	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1354 	 * after the IAA interrupt occurs.  To prevent problems, QHs that
1355 	 * may still be active will wait until 2 ms have passed with no
1356 	 * change to the hw_current and hw_token fields (this delay occurs
1357 	 * between the two IAA cycles).
1358 	 *
1359 	 * The EHCI spec (4.8.2) says that active QHs must not be removed
1360 	 * from the async schedule and recommends waiting until the QH
1361 	 * goes inactive.  This is ridiculous because the QH will _never_
1362 	 * become inactive if the endpoint NAKs indefinitely.
1363 	 */
1364 
1365 	/* Some reasons for unlinking guarantee the QH can't be active */
1366 	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1367 			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1368 		goto DelayDone;
1369 
1370 	/* The QH can't be active if the queue was and still is empty... */
1371 	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1372 			list_empty(&qh->qtd_list))
1373 		goto DelayDone;
1374 
1375 	/* ... or if the QH has halted */
1376 	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1377 		goto DelayDone;
1378 
1379 	/* Otherwise we have to wait until the QH stops changing */
1380 	else {
1381 		__hc32		qh_current, qh_token;
1382 
1383 		qh_current = qh->hw->hw_current;
1384 		qh_token = qh->hw->hw_token;
1385 		if (qh_current != ehci->old_current ||
1386 				qh_token != ehci->old_token) {
1387 			ehci->old_current = qh_current;
1388 			ehci->old_token = qh_token;
1389 			ehci_enable_event(ehci,
1390 					EHCI_HRTIMER_ACTIVE_UNLINK, true);
1391 			return;
1392 		}
1393  DelayDone:
1394 		qh->qh_state = QH_STATE_UNLINK;
1395 		early_exit = true;
1396 	}
1397 	ehci->old_current = ~0;		/* Prepare for next QH */
1398 
1399 	/* Start a new IAA cycle if any QHs are waiting for it */
1400 	if (!list_empty(&ehci->async_unlink))
1401 		start_iaa_cycle(ehci);
1402 
1403 	/*
1404 	 * Don't allow nesting or concurrent calls,
1405 	 * or wait for the second IAA cycle for the next QH.
1406 	 */
1407 	if (early_exit)
1408 		return;
1409 
1410 	/* Process the idle QHs */
1411 	ehci->async_unlinking = true;
1412 	while (!list_empty(&ehci->async_idle)) {
1413 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1414 				unlink_node);
1415 		list_del(&qh->unlink_node);
1416 
1417 		qh->qh_state = QH_STATE_IDLE;
1418 		qh->qh_next.qh = NULL;
1419 
1420 		if (!list_empty(&qh->qtd_list))
1421 			qh_completions(ehci, qh);
1422 		if (!list_empty(&qh->qtd_list) &&
1423 				ehci->rh_state == EHCI_RH_RUNNING)
1424 			qh_link_async(ehci, qh);
1425 		disable_async(ehci);
1426 	}
1427 	ehci->async_unlinking = false;
1428 }
1429 
1430 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1431 
1432 static void unlink_empty_async(struct ehci_hcd *ehci)
1433 {
1434 	struct ehci_qh		*qh;
1435 	struct ehci_qh		*qh_to_unlink = NULL;
1436 	int			count = 0;
1437 
1438 	/* Find the last async QH which has been empty for a timer cycle */
1439 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1440 		if (list_empty(&qh->qtd_list) &&
1441 				qh->qh_state == QH_STATE_LINKED) {
1442 			++count;
1443 			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1444 				qh_to_unlink = qh;
1445 		}
1446 	}
1447 
1448 	/* If nothing else is being unlinked, unlink the last empty QH */
1449 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1450 		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1451 		start_unlink_async(ehci, qh_to_unlink);
1452 		--count;
1453 	}
1454 
1455 	/* Other QHs will be handled later */
1456 	if (count > 0) {
1457 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1458 		++ehci->async_unlink_cycle;
1459 	}
1460 }
1461 
1462 #ifdef	CONFIG_PM
1463 
1464 /* The root hub is suspended; unlink all the async QHs */
1465 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1466 {
1467 	struct ehci_qh		*qh;
1468 
1469 	while (ehci->async->qh_next.qh) {
1470 		qh = ehci->async->qh_next.qh;
1471 		WARN_ON(!list_empty(&qh->qtd_list));
1472 		single_unlink_async(ehci, qh);
1473 	}
1474 }
1475 
1476 #endif
1477 
1478 /* makes sure the async qh will become idle */
1479 /* caller must own ehci->lock */
1480 
1481 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1482 {
1483 	/* If the QH isn't linked then there's nothing we can do. */
1484 	if (qh->qh_state != QH_STATE_LINKED)
1485 		return;
1486 
1487 	single_unlink_async(ehci, qh);
1488 	start_iaa_cycle(ehci);
1489 }
1490 
1491 /*-------------------------------------------------------------------------*/
1492 
1493 static void scan_async (struct ehci_hcd *ehci)
1494 {
1495 	struct ehci_qh		*qh;
1496 	bool			check_unlinks_later = false;
1497 
1498 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1499 	while (ehci->qh_scan_next) {
1500 		qh = ehci->qh_scan_next;
1501 		ehci->qh_scan_next = qh->qh_next.qh;
1502 
1503 		/* clean any finished work for this qh */
1504 		if (!list_empty(&qh->qtd_list)) {
1505 			int temp;
1506 
1507 			/*
1508 			 * Unlinks could happen here; completion reporting
1509 			 * drops the lock.  That's why ehci->qh_scan_next
1510 			 * always holds the next qh to scan; if the next qh
1511 			 * gets unlinked then ehci->qh_scan_next is adjusted
1512 			 * in single_unlink_async().
1513 			 */
1514 			temp = qh_completions(ehci, qh);
1515 			if (unlikely(temp)) {
1516 				start_unlink_async(ehci, qh);
1517 			} else if (list_empty(&qh->qtd_list)
1518 					&& qh->qh_state == QH_STATE_LINKED) {
1519 				qh->unlink_cycle = ehci->async_unlink_cycle;
1520 				check_unlinks_later = true;
1521 			}
1522 		}
1523 	}
1524 
1525 	/*
1526 	 * Unlink empty entries, reducing DMA usage as well
1527 	 * as HCD schedule-scanning costs.  Delay for any qh
1528 	 * we just scanned, there's a not-unusual case that it
1529 	 * doesn't stay idle for long.
1530 	 */
1531 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1532 			!(ehci->enabled_hrtimer_events &
1533 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1534 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1535 		++ehci->async_unlink_cycle;
1536 	}
1537 }
1538