xref: /linux/drivers/usb/host/ehci-q.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 		  size_t len, int token, int maxpacket)
48 {
49 	int	i, count;
50 	u64	addr = buf;
51 
52 	/* one buffer entry per 4K ... first might be short or unaligned */
53 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
56 	if (likely (len < count))		/* ... iff needed */
57 		count = len;
58 	else {
59 		buf +=  0x1000;
60 		buf &= ~0x0fff;
61 
62 		/* per-qtd limit: from 16K to 20K (best alignment) */
63 		for (i = 1; count < len && i < 5; i++) {
64 			addr = buf;
65 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 					(u32)(addr >> 32));
68 			buf += 0x1000;
69 			if ((count + 0x1000) < len)
70 				count += 0x1000;
71 			else
72 				count = len;
73 		}
74 
75 		/* short packets may only terminate transfers */
76 		if (count != len)
77 			count -= (count % maxpacket);
78 	}
79 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 	qtd->length = count;
81 
82 	return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 	/* writes to an active overlay are unsafe */
91 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
92 
93 	qh->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
94 	qh->hw_alt_next = EHCI_LIST_END(ehci);
95 
96 	/* Except for control endpoints, we make hardware maintain data
97 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
98 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
99 	 * ever clear it.
100 	 */
101 	if (!(qh->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
102 		unsigned	is_out, epnum;
103 
104 		is_out = !(qtd->hw_token & cpu_to_hc32(ehci, 1 << 8));
105 		epnum = (hc32_to_cpup(ehci, &qh->hw_info1) >> 8) & 0x0f;
106 		if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
107 			qh->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
108 			usb_settoggle (qh->dev, epnum, is_out, 1);
109 		}
110 	}
111 
112 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
113 	wmb ();
114 	qh->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 	struct ehci_qtd *qtd;
125 
126 	if (list_empty (&qh->qtd_list))
127 		qtd = qh->dummy;
128 	else {
129 		qtd = list_entry (qh->qtd_list.next,
130 				struct ehci_qtd, qtd_list);
131 		/* first qtd may already be partially processed */
132 		if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw_current)
133 			qtd = NULL;
134 	}
135 
136 	if (qtd)
137 		qh_update (ehci, qh, qtd);
138 }
139 
140 /*-------------------------------------------------------------------------*/
141 
142 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
143 
144 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
145 		struct usb_host_endpoint *ep)
146 {
147 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
148 	struct ehci_qh		*qh = ep->hcpriv;
149 	unsigned long		flags;
150 
151 	spin_lock_irqsave(&ehci->lock, flags);
152 	qh->clearing_tt = 0;
153 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
154 			&& HC_IS_RUNNING(hcd->state))
155 		qh_link_async(ehci, qh);
156 	spin_unlock_irqrestore(&ehci->lock, flags);
157 }
158 
159 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
160 		struct urb *urb, u32 token)
161 {
162 
163 	/* If an async split transaction gets an error or is unlinked,
164 	 * the TT buffer may be left in an indeterminate state.  We
165 	 * have to clear the TT buffer.
166 	 *
167 	 * Note: this routine is never called for Isochronous transfers.
168 	 */
169 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
170 #ifdef DEBUG
171 		struct usb_device *tt = urb->dev->tt->hub;
172 		dev_dbg(&tt->dev,
173 			"clear tt buffer port %d, a%d ep%d t%08x\n",
174 			urb->dev->ttport, urb->dev->devnum,
175 			usb_pipeendpoint(urb->pipe), token);
176 #endif /* DEBUG */
177 		if (!ehci_is_TDI(ehci)
178 				|| urb->dev->tt->hub !=
179 				   ehci_to_hcd(ehci)->self.root_hub) {
180 			if (usb_hub_clear_tt_buffer(urb) == 0)
181 				qh->clearing_tt = 1;
182 		} else {
183 
184 			/* REVISIT ARC-derived cores don't clear the root
185 			 * hub TT buffer in this way...
186 			 */
187 		}
188 	}
189 }
190 
191 static int qtd_copy_status (
192 	struct ehci_hcd *ehci,
193 	struct urb *urb,
194 	size_t length,
195 	u32 token
196 )
197 {
198 	int	status = -EINPROGRESS;
199 
200 	/* count IN/OUT bytes, not SETUP (even short packets) */
201 	if (likely (QTD_PID (token) != 2))
202 		urb->actual_length += length - QTD_LENGTH (token);
203 
204 	/* don't modify error codes */
205 	if (unlikely(urb->unlinked))
206 		return status;
207 
208 	/* force cleanup after short read; not always an error */
209 	if (unlikely (IS_SHORT_READ (token)))
210 		status = -EREMOTEIO;
211 
212 	/* serious "can't proceed" faults reported by the hardware */
213 	if (token & QTD_STS_HALT) {
214 		if (token & QTD_STS_BABBLE) {
215 			/* FIXME "must" disable babbling device's port too */
216 			status = -EOVERFLOW;
217 		/* CERR nonzero + halt --> stall */
218 		} else if (QTD_CERR(token)) {
219 			status = -EPIPE;
220 
221 		/* In theory, more than one of the following bits can be set
222 		 * since they are sticky and the transaction is retried.
223 		 * Which to test first is rather arbitrary.
224 		 */
225 		} else if (token & QTD_STS_MMF) {
226 			/* fs/ls interrupt xfer missed the complete-split */
227 			status = -EPROTO;
228 		} else if (token & QTD_STS_DBE) {
229 			status = (QTD_PID (token) == 1) /* IN ? */
230 				? -ENOSR  /* hc couldn't read data */
231 				: -ECOMM; /* hc couldn't write data */
232 		} else if (token & QTD_STS_XACT) {
233 			/* timeout, bad CRC, wrong PID, etc */
234 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
235 				urb->dev->devpath,
236 				usb_pipeendpoint(urb->pipe),
237 				usb_pipein(urb->pipe) ? "in" : "out");
238 			status = -EPROTO;
239 		} else {	/* unknown */
240 			status = -EPROTO;
241 		}
242 
243 		ehci_vdbg (ehci,
244 			"dev%d ep%d%s qtd token %08x --> status %d\n",
245 			usb_pipedevice (urb->pipe),
246 			usb_pipeendpoint (urb->pipe),
247 			usb_pipein (urb->pipe) ? "in" : "out",
248 			token, status);
249 	}
250 
251 	return status;
252 }
253 
254 static void
255 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
256 __releases(ehci->lock)
257 __acquires(ehci->lock)
258 {
259 	if (likely (urb->hcpriv != NULL)) {
260 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
261 
262 		/* S-mask in a QH means it's an interrupt urb */
263 		if ((qh->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
264 
265 			/* ... update hc-wide periodic stats (for usbfs) */
266 			ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
267 		}
268 		qh_put (qh);
269 	}
270 
271 	if (unlikely(urb->unlinked)) {
272 		COUNT(ehci->stats.unlink);
273 	} else {
274 		/* report non-error and short read status as zero */
275 		if (status == -EINPROGRESS || status == -EREMOTEIO)
276 			status = 0;
277 		COUNT(ehci->stats.complete);
278 	}
279 
280 #ifdef EHCI_URB_TRACE
281 	ehci_dbg (ehci,
282 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
283 		__func__, urb->dev->devpath, urb,
284 		usb_pipeendpoint (urb->pipe),
285 		usb_pipein (urb->pipe) ? "in" : "out",
286 		status,
287 		urb->actual_length, urb->transfer_buffer_length);
288 #endif
289 
290 	/* complete() can reenter this HCD */
291 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
292 	spin_unlock (&ehci->lock);
293 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
294 	spin_lock (&ehci->lock);
295 }
296 
297 static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
298 static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
299 
300 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
301 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
302 
303 /*
304  * Process and free completed qtds for a qh, returning URBs to drivers.
305  * Chases up to qh->hw_current.  Returns number of completions called,
306  * indicating how much "real" work we did.
307  */
308 static unsigned
309 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
310 {
311 	struct ehci_qtd		*last = NULL, *end = qh->dummy;
312 	struct list_head	*entry, *tmp;
313 	int			last_status = -EINPROGRESS;
314 	int			stopped;
315 	unsigned		count = 0;
316 	u8			state;
317 	__le32			halt = HALT_BIT(ehci);
318 
319 	if (unlikely (list_empty (&qh->qtd_list)))
320 		return count;
321 
322 	/* completions (or tasks on other cpus) must never clobber HALT
323 	 * till we've gone through and cleaned everything up, even when
324 	 * they add urbs to this qh's queue or mark them for unlinking.
325 	 *
326 	 * NOTE:  unlinking expects to be done in queue order.
327 	 */
328 	state = qh->qh_state;
329 	qh->qh_state = QH_STATE_COMPLETING;
330 	stopped = (state == QH_STATE_IDLE);
331 
332 	/* remove de-activated QTDs from front of queue.
333 	 * after faults (including short reads), cleanup this urb
334 	 * then let the queue advance.
335 	 * if queue is stopped, handles unlinks.
336 	 */
337 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
338 		struct ehci_qtd	*qtd;
339 		struct urb	*urb;
340 		u32		token = 0;
341 
342 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
343 		urb = qtd->urb;
344 
345 		/* clean up any state from previous QTD ...*/
346 		if (last) {
347 			if (likely (last->urb != urb)) {
348 				ehci_urb_done(ehci, last->urb, last_status);
349 				count++;
350 				last_status = -EINPROGRESS;
351 			}
352 			ehci_qtd_free (ehci, last);
353 			last = NULL;
354 		}
355 
356 		/* ignore urbs submitted during completions we reported */
357 		if (qtd == end)
358 			break;
359 
360 		/* hardware copies qtd out of qh overlay */
361 		rmb ();
362 		token = hc32_to_cpu(ehci, qtd->hw_token);
363 
364 		/* always clean up qtds the hc de-activated */
365  retry_xacterr:
366 		if ((token & QTD_STS_ACTIVE) == 0) {
367 
368 			/* on STALL, error, and short reads this urb must
369 			 * complete and all its qtds must be recycled.
370 			 */
371 			if ((token & QTD_STS_HALT) != 0) {
372 
373 				/* retry transaction errors until we
374 				 * reach the software xacterr limit
375 				 */
376 				if ((token & QTD_STS_XACT) &&
377 						QTD_CERR(token) == 0 &&
378 						++qh->xacterrs < QH_XACTERR_MAX &&
379 						!urb->unlinked) {
380 					ehci_dbg(ehci,
381 	"detected XactErr len %zu/%zu retry %d\n",
382 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
383 
384 					/* reset the token in the qtd and the
385 					 * qh overlay (which still contains
386 					 * the qtd) so that we pick up from
387 					 * where we left off
388 					 */
389 					token &= ~QTD_STS_HALT;
390 					token |= QTD_STS_ACTIVE |
391 							(EHCI_TUNE_CERR << 10);
392 					qtd->hw_token = cpu_to_hc32(ehci,
393 							token);
394 					wmb();
395 					qh->hw_token = cpu_to_hc32(ehci, token);
396 					goto retry_xacterr;
397 				}
398 				stopped = 1;
399 
400 			/* magic dummy for some short reads; qh won't advance.
401 			 * that silicon quirk can kick in with this dummy too.
402 			 *
403 			 * other short reads won't stop the queue, including
404 			 * control transfers (status stage handles that) or
405 			 * most other single-qtd reads ... the queue stops if
406 			 * URB_SHORT_NOT_OK was set so the driver submitting
407 			 * the urbs could clean it up.
408 			 */
409 			} else if (IS_SHORT_READ (token)
410 					&& !(qtd->hw_alt_next
411 						& EHCI_LIST_END(ehci))) {
412 				stopped = 1;
413 				goto halt;
414 			}
415 
416 		/* stop scanning when we reach qtds the hc is using */
417 		} else if (likely (!stopped
418 				&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
419 			break;
420 
421 		/* scan the whole queue for unlinks whenever it stops */
422 		} else {
423 			stopped = 1;
424 
425 			/* cancel everything if we halt, suspend, etc */
426 			if (!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))
427 				last_status = -ESHUTDOWN;
428 
429 			/* this qtd is active; skip it unless a previous qtd
430 			 * for its urb faulted, or its urb was canceled.
431 			 */
432 			else if (last_status == -EINPROGRESS && !urb->unlinked)
433 				continue;
434 
435 			/* qh unlinked; token in overlay may be most current */
436 			if (state == QH_STATE_IDLE
437 					&& cpu_to_hc32(ehci, qtd->qtd_dma)
438 						== qh->hw_current) {
439 				token = hc32_to_cpu(ehci, qh->hw_token);
440 
441 				/* An unlink may leave an incomplete
442 				 * async transaction in the TT buffer.
443 				 * We have to clear it.
444 				 */
445 				ehci_clear_tt_buffer(ehci, qh, urb, token);
446 			}
447 
448 			/* force halt for unlinked or blocked qh, so we'll
449 			 * patch the qh later and so that completions can't
450 			 * activate it while we "know" it's stopped.
451 			 */
452 			if ((halt & qh->hw_token) == 0) {
453 halt:
454 				qh->hw_token |= halt;
455 				wmb ();
456 			}
457 		}
458 
459 		/* unless we already know the urb's status, collect qtd status
460 		 * and update count of bytes transferred.  in common short read
461 		 * cases with only one data qtd (including control transfers),
462 		 * queue processing won't halt.  but with two or more qtds (for
463 		 * example, with a 32 KB transfer), when the first qtd gets a
464 		 * short read the second must be removed by hand.
465 		 */
466 		if (last_status == -EINPROGRESS) {
467 			last_status = qtd_copy_status(ehci, urb,
468 					qtd->length, token);
469 			if (last_status == -EREMOTEIO
470 					&& (qtd->hw_alt_next
471 						& EHCI_LIST_END(ehci)))
472 				last_status = -EINPROGRESS;
473 
474 			/* As part of low/full-speed endpoint-halt processing
475 			 * we must clear the TT buffer (11.17.5).
476 			 */
477 			if (unlikely(last_status != -EINPROGRESS &&
478 					last_status != -EREMOTEIO))
479 				ehci_clear_tt_buffer(ehci, qh, urb, token);
480 		}
481 
482 		/* if we're removing something not at the queue head,
483 		 * patch the hardware queue pointer.
484 		 */
485 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
486 			last = list_entry (qtd->qtd_list.prev,
487 					struct ehci_qtd, qtd_list);
488 			last->hw_next = qtd->hw_next;
489 		}
490 
491 		/* remove qtd; it's recycled after possible urb completion */
492 		list_del (&qtd->qtd_list);
493 		last = qtd;
494 
495 		/* reinit the xacterr counter for the next qtd */
496 		qh->xacterrs = 0;
497 	}
498 
499 	/* last urb's completion might still need calling */
500 	if (likely (last != NULL)) {
501 		ehci_urb_done(ehci, last->urb, last_status);
502 		count++;
503 		ehci_qtd_free (ehci, last);
504 	}
505 
506 	/* restore original state; caller must unlink or relink */
507 	qh->qh_state = state;
508 
509 	/* be sure the hardware's done with the qh before refreshing
510 	 * it after fault cleanup, or recovering from silicon wrongly
511 	 * overlaying the dummy qtd (which reduces DMA chatter).
512 	 */
513 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END(ehci)) {
514 		switch (state) {
515 		case QH_STATE_IDLE:
516 			qh_refresh(ehci, qh);
517 			break;
518 		case QH_STATE_LINKED:
519 			/* We won't refresh a QH that's linked (after the HC
520 			 * stopped the queue).  That avoids a race:
521 			 *  - HC reads first part of QH;
522 			 *  - CPU updates that first part and the token;
523 			 *  - HC reads rest of that QH, including token
524 			 * Result:  HC gets an inconsistent image, and then
525 			 * DMAs to/from the wrong memory (corrupting it).
526 			 *
527 			 * That should be rare for interrupt transfers,
528 			 * except maybe high bandwidth ...
529 			 */
530 			if ((cpu_to_hc32(ehci, QH_SMASK)
531 					& qh->hw_info2) != 0) {
532 				intr_deschedule (ehci, qh);
533 				(void) qh_schedule (ehci, qh);
534 			} else
535 				unlink_async (ehci, qh);
536 			break;
537 		/* otherwise, unlink already started */
538 		}
539 	}
540 
541 	return count;
542 }
543 
544 /*-------------------------------------------------------------------------*/
545 
546 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
547 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
548 // ... and packet size, for any kind of endpoint descriptor
549 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
550 
551 /*
552  * reverse of qh_urb_transaction:  free a list of TDs.
553  * used for cleanup after errors, before HC sees an URB's TDs.
554  */
555 static void qtd_list_free (
556 	struct ehci_hcd		*ehci,
557 	struct urb		*urb,
558 	struct list_head	*qtd_list
559 ) {
560 	struct list_head	*entry, *temp;
561 
562 	list_for_each_safe (entry, temp, qtd_list) {
563 		struct ehci_qtd	*qtd;
564 
565 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
566 		list_del (&qtd->qtd_list);
567 		ehci_qtd_free (ehci, qtd);
568 	}
569 }
570 
571 /*
572  * create a list of filled qtds for this URB; won't link into qh.
573  */
574 static struct list_head *
575 qh_urb_transaction (
576 	struct ehci_hcd		*ehci,
577 	struct urb		*urb,
578 	struct list_head	*head,
579 	gfp_t			flags
580 ) {
581 	struct ehci_qtd		*qtd, *qtd_prev;
582 	dma_addr_t		buf;
583 	int			len, maxpacket;
584 	int			is_input;
585 	u32			token;
586 
587 	/*
588 	 * URBs map to sequences of QTDs:  one logical transaction
589 	 */
590 	qtd = ehci_qtd_alloc (ehci, flags);
591 	if (unlikely (!qtd))
592 		return NULL;
593 	list_add_tail (&qtd->qtd_list, head);
594 	qtd->urb = urb;
595 
596 	token = QTD_STS_ACTIVE;
597 	token |= (EHCI_TUNE_CERR << 10);
598 	/* for split transactions, SplitXState initialized to zero */
599 
600 	len = urb->transfer_buffer_length;
601 	is_input = usb_pipein (urb->pipe);
602 	if (usb_pipecontrol (urb->pipe)) {
603 		/* SETUP pid */
604 		qtd_fill(ehci, qtd, urb->setup_dma,
605 				sizeof (struct usb_ctrlrequest),
606 				token | (2 /* "setup" */ << 8), 8);
607 
608 		/* ... and always at least one more pid */
609 		token ^= QTD_TOGGLE;
610 		qtd_prev = qtd;
611 		qtd = ehci_qtd_alloc (ehci, flags);
612 		if (unlikely (!qtd))
613 			goto cleanup;
614 		qtd->urb = urb;
615 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
616 		list_add_tail (&qtd->qtd_list, head);
617 
618 		/* for zero length DATA stages, STATUS is always IN */
619 		if (len == 0)
620 			token |= (1 /* "in" */ << 8);
621 	}
622 
623 	/*
624 	 * data transfer stage:  buffer setup
625 	 */
626 	buf = urb->transfer_dma;
627 
628 	if (is_input)
629 		token |= (1 /* "in" */ << 8);
630 	/* else it's already initted to "out" pid (0 << 8) */
631 
632 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
633 
634 	/*
635 	 * buffer gets wrapped in one or more qtds;
636 	 * last one may be "short" (including zero len)
637 	 * and may serve as a control status ack
638 	 */
639 	for (;;) {
640 		int this_qtd_len;
641 
642 		this_qtd_len = qtd_fill(ehci, qtd, buf, len, token, maxpacket);
643 		len -= this_qtd_len;
644 		buf += this_qtd_len;
645 
646 		/*
647 		 * short reads advance to a "magic" dummy instead of the next
648 		 * qtd ... that forces the queue to stop, for manual cleanup.
649 		 * (this will usually be overridden later.)
650 		 */
651 		if (is_input)
652 			qtd->hw_alt_next = ehci->async->hw_alt_next;
653 
654 		/* qh makes control packets use qtd toggle; maybe switch it */
655 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
656 			token ^= QTD_TOGGLE;
657 
658 		if (likely (len <= 0))
659 			break;
660 
661 		qtd_prev = qtd;
662 		qtd = ehci_qtd_alloc (ehci, flags);
663 		if (unlikely (!qtd))
664 			goto cleanup;
665 		qtd->urb = urb;
666 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
667 		list_add_tail (&qtd->qtd_list, head);
668 	}
669 
670 	/*
671 	 * unless the caller requires manual cleanup after short reads,
672 	 * have the alt_next mechanism keep the queue running after the
673 	 * last data qtd (the only one, for control and most other cases).
674 	 */
675 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
676 				|| usb_pipecontrol (urb->pipe)))
677 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
678 
679 	/*
680 	 * control requests may need a terminating data "status" ack;
681 	 * bulk ones may need a terminating short packet (zero length).
682 	 */
683 	if (likely (urb->transfer_buffer_length != 0)) {
684 		int	one_more = 0;
685 
686 		if (usb_pipecontrol (urb->pipe)) {
687 			one_more = 1;
688 			token ^= 0x0100;	/* "in" <--> "out"  */
689 			token |= QTD_TOGGLE;	/* force DATA1 */
690 		} else if (usb_pipebulk (urb->pipe)
691 				&& (urb->transfer_flags & URB_ZERO_PACKET)
692 				&& !(urb->transfer_buffer_length % maxpacket)) {
693 			one_more = 1;
694 		}
695 		if (one_more) {
696 			qtd_prev = qtd;
697 			qtd = ehci_qtd_alloc (ehci, flags);
698 			if (unlikely (!qtd))
699 				goto cleanup;
700 			qtd->urb = urb;
701 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
702 			list_add_tail (&qtd->qtd_list, head);
703 
704 			/* never any data in such packets */
705 			qtd_fill(ehci, qtd, 0, 0, token, 0);
706 		}
707 	}
708 
709 	/* by default, enable interrupt on urb completion */
710 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
711 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
712 	return head;
713 
714 cleanup:
715 	qtd_list_free (ehci, urb, head);
716 	return NULL;
717 }
718 
719 /*-------------------------------------------------------------------------*/
720 
721 // Would be best to create all qh's from config descriptors,
722 // when each interface/altsetting is established.  Unlink
723 // any previous qh and cancel its urbs first; endpoints are
724 // implicitly reset then (data toggle too).
725 // That'd mean updating how usbcore talks to HCDs. (2.7?)
726 
727 
728 /*
729  * Each QH holds a qtd list; a QH is used for everything except iso.
730  *
731  * For interrupt urbs, the scheduler must set the microframe scheduling
732  * mask(s) each time the QH gets scheduled.  For highspeed, that's
733  * just one microframe in the s-mask.  For split interrupt transactions
734  * there are additional complications: c-mask, maybe FSTNs.
735  */
736 static struct ehci_qh *
737 qh_make (
738 	struct ehci_hcd		*ehci,
739 	struct urb		*urb,
740 	gfp_t			flags
741 ) {
742 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
743 	u32			info1 = 0, info2 = 0;
744 	int			is_input, type;
745 	int			maxp = 0;
746 	struct usb_tt		*tt = urb->dev->tt;
747 
748 	if (!qh)
749 		return qh;
750 
751 	/*
752 	 * init endpoint/device data for this QH
753 	 */
754 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
755 	info1 |= usb_pipedevice (urb->pipe) << 0;
756 
757 	is_input = usb_pipein (urb->pipe);
758 	type = usb_pipetype (urb->pipe);
759 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
760 
761 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
762 	 * acts like up to 3KB, but is built from smaller packets.
763 	 */
764 	if (max_packet(maxp) > 1024) {
765 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
766 		goto done;
767 	}
768 
769 	/* Compute interrupt scheduling parameters just once, and save.
770 	 * - allowing for high bandwidth, how many nsec/uframe are used?
771 	 * - split transactions need a second CSPLIT uframe; same question
772 	 * - splits also need a schedule gap (for full/low speed I/O)
773 	 * - qh has a polling interval
774 	 *
775 	 * For control/bulk requests, the HC or TT handles these.
776 	 */
777 	if (type == PIPE_INTERRUPT) {
778 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
779 				is_input, 0,
780 				hb_mult(maxp) * max_packet(maxp)));
781 		qh->start = NO_FRAME;
782 
783 		if (urb->dev->speed == USB_SPEED_HIGH) {
784 			qh->c_usecs = 0;
785 			qh->gap_uf = 0;
786 
787 			qh->period = urb->interval >> 3;
788 			if (qh->period == 0 && urb->interval != 1) {
789 				/* NOTE interval 2 or 4 uframes could work.
790 				 * But interval 1 scheduling is simpler, and
791 				 * includes high bandwidth.
792 				 */
793 				dbg ("intr period %d uframes, NYET!",
794 						urb->interval);
795 				goto done;
796 			}
797 		} else {
798 			int		think_time;
799 
800 			/* gap is f(FS/LS transfer times) */
801 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
802 					is_input, 0, maxp) / (125 * 1000);
803 
804 			/* FIXME this just approximates SPLIT/CSPLIT times */
805 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
806 				qh->c_usecs = qh->usecs + HS_USECS (0);
807 				qh->usecs = HS_USECS (1);
808 			} else {		// SPLIT+DATA, gap, CSPLIT
809 				qh->usecs += HS_USECS (1);
810 				qh->c_usecs = HS_USECS (0);
811 			}
812 
813 			think_time = tt ? tt->think_time : 0;
814 			qh->tt_usecs = NS_TO_US (think_time +
815 					usb_calc_bus_time (urb->dev->speed,
816 					is_input, 0, max_packet (maxp)));
817 			qh->period = urb->interval;
818 		}
819 	}
820 
821 	/* support for tt scheduling, and access to toggles */
822 	qh->dev = urb->dev;
823 
824 	/* using TT? */
825 	switch (urb->dev->speed) {
826 	case USB_SPEED_LOW:
827 		info1 |= (1 << 12);	/* EPS "low" */
828 		/* FALL THROUGH */
829 
830 	case USB_SPEED_FULL:
831 		/* EPS 0 means "full" */
832 		if (type != PIPE_INTERRUPT)
833 			info1 |= (EHCI_TUNE_RL_TT << 28);
834 		if (type == PIPE_CONTROL) {
835 			info1 |= (1 << 27);	/* for TT */
836 			info1 |= 1 << 14;	/* toggle from qtd */
837 		}
838 		info1 |= maxp << 16;
839 
840 		info2 |= (EHCI_TUNE_MULT_TT << 30);
841 
842 		/* Some Freescale processors have an erratum in which the
843 		 * port number in the queue head was 0..N-1 instead of 1..N.
844 		 */
845 		if (ehci_has_fsl_portno_bug(ehci))
846 			info2 |= (urb->dev->ttport-1) << 23;
847 		else
848 			info2 |= urb->dev->ttport << 23;
849 
850 		/* set the address of the TT; for TDI's integrated
851 		 * root hub tt, leave it zeroed.
852 		 */
853 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
854 			info2 |= tt->hub->devnum << 16;
855 
856 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
857 
858 		break;
859 
860 	case USB_SPEED_HIGH:		/* no TT involved */
861 		info1 |= (2 << 12);	/* EPS "high" */
862 		if (type == PIPE_CONTROL) {
863 			info1 |= (EHCI_TUNE_RL_HS << 28);
864 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
865 			info1 |= 1 << 14;	/* toggle from qtd */
866 			info2 |= (EHCI_TUNE_MULT_HS << 30);
867 		} else if (type == PIPE_BULK) {
868 			info1 |= (EHCI_TUNE_RL_HS << 28);
869 			/* The USB spec says that high speed bulk endpoints
870 			 * always use 512 byte maxpacket.  But some device
871 			 * vendors decided to ignore that, and MSFT is happy
872 			 * to help them do so.  So now people expect to use
873 			 * such nonconformant devices with Linux too; sigh.
874 			 */
875 			info1 |= max_packet(maxp) << 16;
876 			info2 |= (EHCI_TUNE_MULT_HS << 30);
877 		} else {		/* PIPE_INTERRUPT */
878 			info1 |= max_packet (maxp) << 16;
879 			info2 |= hb_mult (maxp) << 30;
880 		}
881 		break;
882 	default:
883 		dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
884 done:
885 		qh_put (qh);
886 		return NULL;
887 	}
888 
889 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
890 
891 	/* init as live, toggle clear, advance to dummy */
892 	qh->qh_state = QH_STATE_IDLE;
893 	qh->hw_info1 = cpu_to_hc32(ehci, info1);
894 	qh->hw_info2 = cpu_to_hc32(ehci, info2);
895 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
896 	qh_refresh (ehci, qh);
897 	return qh;
898 }
899 
900 /*-------------------------------------------------------------------------*/
901 
902 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
903 
904 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
905 {
906 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
907 	struct ehci_qh	*head;
908 
909 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
910 	if (unlikely(qh->clearing_tt))
911 		return;
912 
913 	/* (re)start the async schedule? */
914 	head = ehci->async;
915 	timer_action_done (ehci, TIMER_ASYNC_OFF);
916 	if (!head->qh_next.qh) {
917 		u32	cmd = ehci_readl(ehci, &ehci->regs->command);
918 
919 		if (!(cmd & CMD_ASE)) {
920 			/* in case a clear of CMD_ASE didn't take yet */
921 			(void)handshake(ehci, &ehci->regs->status,
922 					STS_ASS, 0, 150);
923 			cmd |= CMD_ASE | CMD_RUN;
924 			ehci_writel(ehci, cmd, &ehci->regs->command);
925 			ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
926 			/* posted write need not be known to HC yet ... */
927 		}
928 	}
929 
930 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
931 	if (qh->qh_state == QH_STATE_IDLE)
932 		qh_refresh (ehci, qh);
933 
934 	/* splice right after start */
935 	qh->qh_next = head->qh_next;
936 	qh->hw_next = head->hw_next;
937 	wmb ();
938 
939 	head->qh_next.qh = qh;
940 	head->hw_next = dma;
941 
942 	qh_get(qh);
943 	qh->xacterrs = 0;
944 	qh->qh_state = QH_STATE_LINKED;
945 	/* qtd completions reported later by interrupt */
946 }
947 
948 /*-------------------------------------------------------------------------*/
949 
950 /*
951  * For control/bulk/interrupt, return QH with these TDs appended.
952  * Allocates and initializes the QH if necessary.
953  * Returns null if it can't allocate a QH it needs to.
954  * If the QH has TDs (urbs) already, that's great.
955  */
956 static struct ehci_qh *qh_append_tds (
957 	struct ehci_hcd		*ehci,
958 	struct urb		*urb,
959 	struct list_head	*qtd_list,
960 	int			epnum,
961 	void			**ptr
962 )
963 {
964 	struct ehci_qh		*qh = NULL;
965 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
966 
967 	qh = (struct ehci_qh *) *ptr;
968 	if (unlikely (qh == NULL)) {
969 		/* can't sleep here, we have ehci->lock... */
970 		qh = qh_make (ehci, urb, GFP_ATOMIC);
971 		*ptr = qh;
972 	}
973 	if (likely (qh != NULL)) {
974 		struct ehci_qtd	*qtd;
975 
976 		if (unlikely (list_empty (qtd_list)))
977 			qtd = NULL;
978 		else
979 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
980 					qtd_list);
981 
982 		/* control qh may need patching ... */
983 		if (unlikely (epnum == 0)) {
984 
985                         /* usb_reset_device() briefly reverts to address 0 */
986                         if (usb_pipedevice (urb->pipe) == 0)
987                                 qh->hw_info1 &= ~qh_addr_mask;
988 		}
989 
990 		/* just one way to queue requests: swap with the dummy qtd.
991 		 * only hc or qh_refresh() ever modify the overlay.
992 		 */
993 		if (likely (qtd != NULL)) {
994 			struct ehci_qtd		*dummy;
995 			dma_addr_t		dma;
996 			__hc32			token;
997 
998 			/* to avoid racing the HC, use the dummy td instead of
999 			 * the first td of our list (becomes new dummy).  both
1000 			 * tds stay deactivated until we're done, when the
1001 			 * HC is allowed to fetch the old dummy (4.10.2).
1002 			 */
1003 			token = qtd->hw_token;
1004 			qtd->hw_token = HALT_BIT(ehci);
1005 			wmb ();
1006 			dummy = qh->dummy;
1007 
1008 			dma = dummy->qtd_dma;
1009 			*dummy = *qtd;
1010 			dummy->qtd_dma = dma;
1011 
1012 			list_del (&qtd->qtd_list);
1013 			list_add (&dummy->qtd_list, qtd_list);
1014 			list_splice_tail(qtd_list, &qh->qtd_list);
1015 
1016 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1017 			qh->dummy = qtd;
1018 
1019 			/* hc must see the new dummy at list end */
1020 			dma = qtd->qtd_dma;
1021 			qtd = list_entry (qh->qtd_list.prev,
1022 					struct ehci_qtd, qtd_list);
1023 			qtd->hw_next = QTD_NEXT(ehci, dma);
1024 
1025 			/* let the hc process these next qtds */
1026 			wmb ();
1027 			dummy->hw_token = token;
1028 
1029 			urb->hcpriv = qh_get (qh);
1030 		}
1031 	}
1032 	return qh;
1033 }
1034 
1035 /*-------------------------------------------------------------------------*/
1036 
1037 static int
1038 submit_async (
1039 	struct ehci_hcd		*ehci,
1040 	struct urb		*urb,
1041 	struct list_head	*qtd_list,
1042 	gfp_t			mem_flags
1043 ) {
1044 	struct ehci_qtd		*qtd;
1045 	int			epnum;
1046 	unsigned long		flags;
1047 	struct ehci_qh		*qh = NULL;
1048 	int			rc;
1049 
1050 	qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
1051 	epnum = urb->ep->desc.bEndpointAddress;
1052 
1053 #ifdef EHCI_URB_TRACE
1054 	ehci_dbg (ehci,
1055 		"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1056 		__func__, urb->dev->devpath, urb,
1057 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1058 		urb->transfer_buffer_length,
1059 		qtd, urb->ep->hcpriv);
1060 #endif
1061 
1062 	spin_lock_irqsave (&ehci->lock, flags);
1063 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1064 			       &ehci_to_hcd(ehci)->flags))) {
1065 		rc = -ESHUTDOWN;
1066 		goto done;
1067 	}
1068 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1069 	if (unlikely(rc))
1070 		goto done;
1071 
1072 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1073 	if (unlikely(qh == NULL)) {
1074 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1075 		rc = -ENOMEM;
1076 		goto done;
1077 	}
1078 
1079 	/* Control/bulk operations through TTs don't need scheduling,
1080 	 * the HC and TT handle it when the TT has a buffer ready.
1081 	 */
1082 	if (likely (qh->qh_state == QH_STATE_IDLE))
1083 		qh_link_async(ehci, qh);
1084  done:
1085 	spin_unlock_irqrestore (&ehci->lock, flags);
1086 	if (unlikely (qh == NULL))
1087 		qtd_list_free (ehci, urb, qtd_list);
1088 	return rc;
1089 }
1090 
1091 /*-------------------------------------------------------------------------*/
1092 
1093 /* the async qh for the qtds being reclaimed are now unlinked from the HC */
1094 
1095 static void end_unlink_async (struct ehci_hcd *ehci)
1096 {
1097 	struct ehci_qh		*qh = ehci->reclaim;
1098 	struct ehci_qh		*next;
1099 
1100 	iaa_watchdog_done(ehci);
1101 
1102 	// qh->hw_next = cpu_to_hc32(qh->qh_dma);
1103 	qh->qh_state = QH_STATE_IDLE;
1104 	qh->qh_next.qh = NULL;
1105 	qh_put (qh);			// refcount from reclaim
1106 
1107 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1108 	next = qh->reclaim;
1109 	ehci->reclaim = next;
1110 	qh->reclaim = NULL;
1111 
1112 	qh_completions (ehci, qh);
1113 
1114 	if (!list_empty (&qh->qtd_list)
1115 			&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
1116 		qh_link_async (ehci, qh);
1117 	else {
1118 		/* it's not free to turn the async schedule on/off; leave it
1119 		 * active but idle for a while once it empties.
1120 		 */
1121 		if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
1122 				&& ehci->async->qh_next.qh == NULL)
1123 			timer_action (ehci, TIMER_ASYNC_OFF);
1124 	}
1125 	qh_put(qh);			/* refcount from async list */
1126 
1127 	if (next) {
1128 		ehci->reclaim = NULL;
1129 		start_unlink_async (ehci, next);
1130 	}
1131 }
1132 
1133 /* makes sure the async qh will become idle */
1134 /* caller must own ehci->lock */
1135 
1136 static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
1137 {
1138 	int		cmd = ehci_readl(ehci, &ehci->regs->command);
1139 	struct ehci_qh	*prev;
1140 
1141 #ifdef DEBUG
1142 	assert_spin_locked(&ehci->lock);
1143 	if (ehci->reclaim
1144 			|| (qh->qh_state != QH_STATE_LINKED
1145 				&& qh->qh_state != QH_STATE_UNLINK_WAIT)
1146 			)
1147 		BUG ();
1148 #endif
1149 
1150 	/* stop async schedule right now? */
1151 	if (unlikely (qh == ehci->async)) {
1152 		/* can't get here without STS_ASS set */
1153 		if (ehci_to_hcd(ehci)->state != HC_STATE_HALT
1154 				&& !ehci->reclaim) {
1155 			/* ... and CMD_IAAD clear */
1156 			ehci_writel(ehci, cmd & ~CMD_ASE,
1157 				    &ehci->regs->command);
1158 			wmb ();
1159 			// handshake later, if we need to
1160 			timer_action_done (ehci, TIMER_ASYNC_OFF);
1161 		}
1162 		return;
1163 	}
1164 
1165 	qh->qh_state = QH_STATE_UNLINK;
1166 	ehci->reclaim = qh = qh_get (qh);
1167 
1168 	prev = ehci->async;
1169 	while (prev->qh_next.qh != qh)
1170 		prev = prev->qh_next.qh;
1171 
1172 	prev->hw_next = qh->hw_next;
1173 	prev->qh_next = qh->qh_next;
1174 	wmb ();
1175 
1176 	/* If the controller isn't running, we don't have to wait for it */
1177 	if (unlikely(!HC_IS_RUNNING(ehci_to_hcd(ehci)->state))) {
1178 		/* if (unlikely (qh->reclaim != 0))
1179 		 *	this will recurse, probably not much
1180 		 */
1181 		end_unlink_async (ehci);
1182 		return;
1183 	}
1184 
1185 	cmd |= CMD_IAAD;
1186 	ehci_writel(ehci, cmd, &ehci->regs->command);
1187 	(void)ehci_readl(ehci, &ehci->regs->command);
1188 	iaa_watchdog_start(ehci);
1189 }
1190 
1191 /*-------------------------------------------------------------------------*/
1192 
1193 static void scan_async (struct ehci_hcd *ehci)
1194 {
1195 	struct ehci_qh		*qh;
1196 	enum ehci_timer_action	action = TIMER_IO_WATCHDOG;
1197 
1198 	ehci->stamp = ehci_readl(ehci, &ehci->regs->frame_index);
1199 	timer_action_done (ehci, TIMER_ASYNC_SHRINK);
1200 rescan:
1201 	qh = ehci->async->qh_next.qh;
1202 	if (likely (qh != NULL)) {
1203 		do {
1204 			/* clean any finished work for this qh */
1205 			if (!list_empty (&qh->qtd_list)
1206 					&& qh->stamp != ehci->stamp) {
1207 				int temp;
1208 
1209 				/* unlinks could happen here; completion
1210 				 * reporting drops the lock.  rescan using
1211 				 * the latest schedule, but don't rescan
1212 				 * qhs we already finished (no looping).
1213 				 */
1214 				qh = qh_get (qh);
1215 				qh->stamp = ehci->stamp;
1216 				temp = qh_completions (ehci, qh);
1217 				qh_put (qh);
1218 				if (temp != 0) {
1219 					goto rescan;
1220 				}
1221 			}
1222 
1223 			/* unlink idle entries, reducing DMA usage as well
1224 			 * as HCD schedule-scanning costs.  delay for any qh
1225 			 * we just scanned, there's a not-unusual case that it
1226 			 * doesn't stay idle for long.
1227 			 * (plus, avoids some kind of re-activation race.)
1228 			 */
1229 			if (list_empty(&qh->qtd_list)
1230 					&& qh->qh_state == QH_STATE_LINKED) {
1231 				if (!ehci->reclaim
1232 					&& ((ehci->stamp - qh->stamp) & 0x1fff)
1233 						>= (EHCI_SHRINK_FRAMES * 8))
1234 					start_unlink_async(ehci, qh);
1235 				else
1236 					action = TIMER_ASYNC_SHRINK;
1237 			}
1238 
1239 			qh = qh->qh_next.qh;
1240 		} while (qh);
1241 	}
1242 	if (action == TIMER_ASYNC_SHRINK)
1243 		timer_action (ehci, TIMER_ASYNC_SHRINK);
1244 }
1245