1 /* 2 * Xilinx USB peripheral controller driver 3 * 4 * Copyright (C) 2004 by Thomas Rathbone 5 * Copyright (C) 2005 by HP Labs 6 * Copyright (C) 2005 by David Brownell 7 * Copyright (C) 2010 - 2014 Xilinx, Inc. 8 * 9 * Some parts of this driver code is based on the driver for at91-series 10 * USB peripheral controller (at91_udc.c). 11 * 12 * This program is free software; you can redistribute it 13 * and/or modify it under the terms of the GNU General Public 14 * License as published by the Free Software Foundation; 15 * either version 2 of the License, or (at your option) any 16 * later version. 17 */ 18 19 #include <linux/delay.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/module.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_platform.h> 28 #include <linux/of_irq.h> 29 #include <linux/prefetch.h> 30 #include <linux/usb/ch9.h> 31 #include <linux/usb/gadget.h> 32 33 /* Register offsets for the USB device.*/ 34 #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */ 35 #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */ 36 #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */ 37 #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */ 38 #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */ 39 #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */ 40 #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */ 41 #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */ 42 #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */ 43 #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */ 44 #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */ 45 #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */ 46 #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */ 47 #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */ 48 #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */ 49 50 /* Endpoint Configuration Space offsets */ 51 #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */ 52 #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */ 53 #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */ 54 55 #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */ 56 #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */ 57 58 /* Interrupt register related masks.*/ 59 #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */ 60 #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */ 61 #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */ 62 #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */ 63 #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */ 64 #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */ 65 #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */ 66 #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */ 67 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */ 68 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */ 69 #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */ 70 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */ 71 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */ 72 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */ 73 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */ 74 #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */ 75 /* Suspend,Reset,Suspend and Disconnect Mask */ 76 #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000 77 /* Buffers completion Mask */ 78 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF 79 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */ 80 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101 81 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */ 82 83 /* Endpoint Configuration Status Register */ 84 #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */ 85 #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */ 86 #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */ 87 88 /* USB device specific global configuration constants.*/ 89 #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */ 90 #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */ 91 /* DPRAM is the source address for DMA transfer */ 92 #define XUSB_DMA_READ_FROM_DPRAM 0x80000000 93 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */ 94 #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */ 95 /* 96 * When this bit is set, the DMA buffer ready bit is set by hardware upon 97 * DMA transfer completion. 98 */ 99 #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */ 100 /* Phase States */ 101 #define SETUP_PHASE 0x0000 /* Setup Phase */ 102 #define DATA_PHASE 0x0001 /* Data Phase */ 103 #define STATUS_PHASE 0x0002 /* Status Phase */ 104 105 #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */ 106 #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */ 107 #define EPNAME_SIZE 4 /* Buffer size for endpoint name */ 108 109 /* container_of helper macros */ 110 #define to_udc(g) container_of((g), struct xusb_udc, gadget) 111 #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb) 112 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req) 113 114 /** 115 * struct xusb_req - Xilinx USB device request structure 116 * @usb_req: Linux usb request structure 117 * @queue: usb device request queue 118 * @ep: pointer to xusb_endpoint structure 119 */ 120 struct xusb_req { 121 struct usb_request usb_req; 122 struct list_head queue; 123 struct xusb_ep *ep; 124 }; 125 126 /** 127 * struct xusb_ep - USB end point structure. 128 * @ep_usb: usb endpoint instance 129 * @queue: endpoint message queue 130 * @udc: xilinx usb peripheral driver instance pointer 131 * @desc: pointer to the usb endpoint descriptor 132 * @rambase: the endpoint buffer address 133 * @offset: the endpoint register offset value 134 * @name: name of the endpoint 135 * @epnumber: endpoint number 136 * @maxpacket: maximum packet size the endpoint can store 137 * @buffer0count: the size of the packet recieved in the first buffer 138 * @buffer1count: the size of the packet received in the second buffer 139 * @curbufnum: current buffer of endpoint that will be processed next 140 * @buffer0ready: the busy state of first buffer 141 * @buffer1ready: the busy state of second buffer 142 * @is_in: endpoint direction (IN or OUT) 143 * @is_iso: endpoint type(isochronous or non isochronous) 144 */ 145 struct xusb_ep { 146 struct usb_ep ep_usb; 147 struct list_head queue; 148 struct xusb_udc *udc; 149 const struct usb_endpoint_descriptor *desc; 150 u32 rambase; 151 u32 offset; 152 char name[4]; 153 u16 epnumber; 154 u16 maxpacket; 155 u16 buffer0count; 156 u16 buffer1count; 157 u8 curbufnum; 158 bool buffer0ready; 159 bool buffer1ready; 160 bool is_in; 161 bool is_iso; 162 }; 163 164 /** 165 * struct xusb_udc - USB peripheral driver structure 166 * @gadget: USB gadget driver instance 167 * @ep: an array of endpoint structures 168 * @driver: pointer to the usb gadget driver instance 169 * @setup: usb_ctrlrequest structure for control requests 170 * @req: pointer to dummy request for get status command 171 * @dev: pointer to device structure in gadget 172 * @usb_state: device in suspended state or not 173 * @remote_wkp: remote wakeup enabled by host 174 * @setupseqtx: tx status 175 * @setupseqrx: rx status 176 * @addr: the usb device base address 177 * @lock: instance of spinlock 178 * @dma_enabled: flag indicating whether the dma is included in the system 179 * @read_fn: function pointer to read device registers 180 * @write_fn: function pointer to write to device registers 181 */ 182 struct xusb_udc { 183 struct usb_gadget gadget; 184 struct xusb_ep ep[8]; 185 struct usb_gadget_driver *driver; 186 struct usb_ctrlrequest setup; 187 struct xusb_req *req; 188 struct device *dev; 189 u32 usb_state; 190 u32 remote_wkp; 191 u32 setupseqtx; 192 u32 setupseqrx; 193 void __iomem *addr; 194 spinlock_t lock; 195 bool dma_enabled; 196 197 unsigned int (*read_fn)(void __iomem *); 198 void (*write_fn)(void __iomem *, u32, u32); 199 }; 200 201 /* Endpoint buffer start addresses in the core */ 202 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500, 203 0x1600 }; 204 205 static const char driver_name[] = "xilinx-udc"; 206 static const char ep0name[] = "ep0"; 207 208 /* Control endpoint configuration.*/ 209 static const struct usb_endpoint_descriptor config_bulk_out_desc = { 210 .bLength = USB_DT_ENDPOINT_SIZE, 211 .bDescriptorType = USB_DT_ENDPOINT, 212 .bEndpointAddress = USB_DIR_OUT, 213 .bmAttributes = USB_ENDPOINT_XFER_BULK, 214 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET), 215 }; 216 217 /** 218 * xudc_write32 - little endian write to device registers 219 * @addr: base addr of device registers 220 * @offset: register offset 221 * @val: data to be written 222 */ 223 static void xudc_write32(void __iomem *addr, u32 offset, u32 val) 224 { 225 iowrite32(val, addr + offset); 226 } 227 228 /** 229 * xudc_read32 - little endian read from device registers 230 * @addr: addr of device register 231 * Return: value at addr 232 */ 233 static unsigned int xudc_read32(void __iomem *addr) 234 { 235 return ioread32(addr); 236 } 237 238 /** 239 * xudc_write32_be - big endian write to device registers 240 * @addr: base addr of device registers 241 * @offset: register offset 242 * @val: data to be written 243 */ 244 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val) 245 { 246 iowrite32be(val, addr + offset); 247 } 248 249 /** 250 * xudc_read32_be - big endian read from device registers 251 * @addr: addr of device register 252 * Return: value at addr 253 */ 254 static unsigned int xudc_read32_be(void __iomem *addr) 255 { 256 return ioread32be(addr); 257 } 258 259 /** 260 * xudc_wrstatus - Sets up the usb device status stages. 261 * @udc: pointer to the usb device controller structure. 262 */ 263 static void xudc_wrstatus(struct xusb_udc *udc) 264 { 265 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 266 u32 epcfgreg; 267 268 epcfgreg = udc->read_fn(udc->addr + ep0->offset)| 269 XUSB_EP_CFG_DATA_TOGGLE_MASK; 270 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 271 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0); 272 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 273 } 274 275 /** 276 * xudc_epconfig - Configures the given endpoint. 277 * @ep: pointer to the usb device endpoint structure. 278 * @udc: pointer to the usb peripheral controller structure. 279 * 280 * This function configures a specific endpoint with the given configuration 281 * data. 282 */ 283 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc) 284 { 285 u32 epcfgreg; 286 287 /* 288 * Configure the end point direction, type, Max Packet Size and the 289 * EP buffer location. 290 */ 291 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) | 292 (ep->ep_usb.maxpacket << 15) | (ep->rambase)); 293 udc->write_fn(udc->addr, ep->offset, epcfgreg); 294 295 /* Set the Buffer count and the Buffer ready bits.*/ 296 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, 297 ep->buffer0count); 298 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, 299 ep->buffer1count); 300 if (ep->buffer0ready) 301 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 302 1 << ep->epnumber); 303 if (ep->buffer1ready) 304 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 305 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 306 } 307 308 /** 309 * xudc_start_dma - Starts DMA transfer. 310 * @ep: pointer to the usb device endpoint structure. 311 * @src: DMA source address. 312 * @dst: DMA destination address. 313 * @length: number of bytes to transfer. 314 * 315 * Return: 0 on success, error code on failure 316 * 317 * This function starts DMA transfer by writing to DMA source, 318 * destination and lenth registers. 319 */ 320 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src, 321 dma_addr_t dst, u32 length) 322 { 323 struct xusb_udc *udc = ep->udc; 324 int rc = 0; 325 u32 timeout = 500; 326 u32 reg; 327 328 /* 329 * Set the addresses in the DMA source and 330 * destination registers and then set the length 331 * into the DMA length register. 332 */ 333 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src); 334 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst); 335 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length); 336 337 /* 338 * Wait till DMA transaction is complete and 339 * check whether the DMA transaction was 340 * successful. 341 */ 342 do { 343 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET); 344 if (!(reg & XUSB_DMA_DMASR_BUSY)) 345 break; 346 347 /* 348 * We can't sleep here, because it's also called from 349 * interrupt context. 350 */ 351 timeout--; 352 if (!timeout) { 353 dev_err(udc->dev, "DMA timeout\n"); 354 return -ETIMEDOUT; 355 } 356 udelay(1); 357 } while (1); 358 359 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) & 360 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){ 361 dev_err(udc->dev, "DMA Error\n"); 362 rc = -EINVAL; 363 } 364 365 return rc; 366 } 367 368 /** 369 * xudc_dma_send - Sends IN data using DMA. 370 * @ep: pointer to the usb device endpoint structure. 371 * @req: pointer to the usb request structure. 372 * @buffer: pointer to data to be sent. 373 * @length: number of bytes to send. 374 * 375 * Return: 0 on success, -EAGAIN if no buffer is free and error 376 * code on failure. 377 * 378 * This function sends data using DMA. 379 */ 380 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req, 381 u8 *buffer, u32 length) 382 { 383 u32 *eprambase; 384 dma_addr_t src; 385 dma_addr_t dst; 386 struct xusb_udc *udc = ep->udc; 387 388 src = req->usb_req.dma + req->usb_req.actual; 389 if (req->usb_req.length) 390 dma_sync_single_for_device(udc->dev, src, 391 length, DMA_TO_DEVICE); 392 if (!ep->curbufnum && !ep->buffer0ready) { 393 /* Get the Buffer address and copy the transmit data.*/ 394 eprambase = (u32 __force *)(udc->addr + ep->rambase); 395 dst = virt_to_phys(eprambase); 396 udc->write_fn(udc->addr, ep->offset + 397 XUSB_EP_BUF0COUNT_OFFSET, length); 398 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 399 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber)); 400 ep->buffer0ready = 1; 401 ep->curbufnum = 1; 402 } else if (ep->curbufnum && !ep->buffer1ready) { 403 /* Get the Buffer address and copy the transmit data.*/ 404 eprambase = (u32 __force *)(udc->addr + ep->rambase + 405 ep->ep_usb.maxpacket); 406 dst = virt_to_phys(eprambase); 407 udc->write_fn(udc->addr, ep->offset + 408 XUSB_EP_BUF1COUNT_OFFSET, length); 409 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 410 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber + 411 XUSB_STATUS_EP_BUFF2_SHIFT))); 412 ep->buffer1ready = 1; 413 ep->curbufnum = 0; 414 } else { 415 /* None of ping pong buffers are ready currently .*/ 416 return -EAGAIN; 417 } 418 419 return xudc_start_dma(ep, src, dst, length); 420 } 421 422 /** 423 * xudc_dma_receive - Receives OUT data using DMA. 424 * @ep: pointer to the usb device endpoint structure. 425 * @req: pointer to the usb request structure. 426 * @buffer: pointer to storage buffer of received data. 427 * @length: number of bytes to receive. 428 * 429 * Return: 0 on success, -EAGAIN if no buffer is free and error 430 * code on failure. 431 * 432 * This function receives data using DMA. 433 */ 434 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req, 435 u8 *buffer, u32 length) 436 { 437 u32 *eprambase; 438 dma_addr_t src; 439 dma_addr_t dst; 440 struct xusb_udc *udc = ep->udc; 441 442 dst = req->usb_req.dma + req->usb_req.actual; 443 if (!ep->curbufnum && !ep->buffer0ready) { 444 /* Get the Buffer address and copy the transmit data */ 445 eprambase = (u32 __force *)(udc->addr + ep->rambase); 446 src = virt_to_phys(eprambase); 447 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 448 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 449 (1 << ep->epnumber)); 450 ep->buffer0ready = 1; 451 ep->curbufnum = 1; 452 } else if (ep->curbufnum && !ep->buffer1ready) { 453 /* Get the Buffer address and copy the transmit data */ 454 eprambase = (u32 __force *)(udc->addr + 455 ep->rambase + ep->ep_usb.maxpacket); 456 src = virt_to_phys(eprambase); 457 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 458 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 459 (1 << (ep->epnumber + 460 XUSB_STATUS_EP_BUFF2_SHIFT))); 461 ep->buffer1ready = 1; 462 ep->curbufnum = 0; 463 } else { 464 /* None of the ping-pong buffers are ready currently */ 465 return -EAGAIN; 466 } 467 468 return xudc_start_dma(ep, src, dst, length); 469 } 470 471 /** 472 * xudc_eptxrx - Transmits or receives data to or from an endpoint. 473 * @ep: pointer to the usb endpoint configuration structure. 474 * @req: pointer to the usb request structure. 475 * @bufferptr: pointer to buffer containing the data to be sent. 476 * @bufferlen: The number of data bytes to be sent. 477 * 478 * Return: 0 on success, -EAGAIN if no buffer is free. 479 * 480 * This function copies the transmit/receive data to/from the end point buffer 481 * and enables the buffer for transmission/reception. 482 */ 483 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req, 484 u8 *bufferptr, u32 bufferlen) 485 { 486 u32 *eprambase; 487 u32 bytestosend; 488 int rc = 0; 489 struct xusb_udc *udc = ep->udc; 490 491 bytestosend = bufferlen; 492 if (udc->dma_enabled) { 493 if (ep->is_in) 494 rc = xudc_dma_send(ep, req, bufferptr, bufferlen); 495 else 496 rc = xudc_dma_receive(ep, req, bufferptr, bufferlen); 497 return rc; 498 } 499 /* Put the transmit buffer into the correct ping-pong buffer.*/ 500 if (!ep->curbufnum && !ep->buffer0ready) { 501 /* Get the Buffer address and copy the transmit data.*/ 502 eprambase = (u32 __force *)(udc->addr + ep->rambase); 503 if (ep->is_in) { 504 memcpy(eprambase, bufferptr, bytestosend); 505 udc->write_fn(udc->addr, ep->offset + 506 XUSB_EP_BUF0COUNT_OFFSET, bufferlen); 507 } else { 508 memcpy(bufferptr, eprambase, bytestosend); 509 } 510 /* 511 * Enable the buffer for transmission. 512 */ 513 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 514 1 << ep->epnumber); 515 ep->buffer0ready = 1; 516 ep->curbufnum = 1; 517 } else if (ep->curbufnum && !ep->buffer1ready) { 518 /* Get the Buffer address and copy the transmit data.*/ 519 eprambase = (u32 __force *)(udc->addr + ep->rambase + 520 ep->ep_usb.maxpacket); 521 if (ep->is_in) { 522 memcpy(eprambase, bufferptr, bytestosend); 523 udc->write_fn(udc->addr, ep->offset + 524 XUSB_EP_BUF1COUNT_OFFSET, bufferlen); 525 } else { 526 memcpy(bufferptr, eprambase, bytestosend); 527 } 528 /* 529 * Enable the buffer for transmission. 530 */ 531 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 532 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 533 ep->buffer1ready = 1; 534 ep->curbufnum = 0; 535 } else { 536 /* None of the ping-pong buffers are ready currently */ 537 return -EAGAIN; 538 } 539 return rc; 540 } 541 542 /** 543 * xudc_done - Exeutes the endpoint data transfer completion tasks. 544 * @ep: pointer to the usb device endpoint structure. 545 * @req: pointer to the usb request structure. 546 * @status: Status of the data transfer. 547 * 548 * Deletes the message from the queue and updates data transfer completion 549 * status. 550 */ 551 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status) 552 { 553 struct xusb_udc *udc = ep->udc; 554 555 list_del_init(&req->queue); 556 557 if (req->usb_req.status == -EINPROGRESS) 558 req->usb_req.status = status; 559 else 560 status = req->usb_req.status; 561 562 if (status && status != -ESHUTDOWN) 563 dev_dbg(udc->dev, "%s done %p, status %d\n", 564 ep->ep_usb.name, req, status); 565 /* unmap request if DMA is present*/ 566 if (udc->dma_enabled && ep->epnumber && req->usb_req.length) 567 usb_gadget_unmap_request(&udc->gadget, &req->usb_req, 568 ep->is_in); 569 570 if (req->usb_req.complete) { 571 spin_unlock(&udc->lock); 572 req->usb_req.complete(&ep->ep_usb, &req->usb_req); 573 spin_lock(&udc->lock); 574 } 575 } 576 577 /** 578 * xudc_read_fifo - Reads the data from the given endpoint buffer. 579 * @ep: pointer to the usb device endpoint structure. 580 * @req: pointer to the usb request structure. 581 * 582 * Return: 0 if request is completed and -EAGAIN if not completed. 583 * 584 * Pulls OUT packet data from the endpoint buffer. 585 */ 586 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req) 587 { 588 u8 *buf; 589 u32 is_short, count, bufferspace; 590 u8 bufoffset; 591 u8 two_pkts = 0; 592 int ret; 593 int retval = -EAGAIN; 594 struct xusb_udc *udc = ep->udc; 595 596 if (ep->buffer0ready && ep->buffer1ready) { 597 dev_dbg(udc->dev, "Packet NOT ready!\n"); 598 return retval; 599 } 600 top: 601 if (ep->curbufnum) 602 bufoffset = XUSB_EP_BUF1COUNT_OFFSET; 603 else 604 bufoffset = XUSB_EP_BUF0COUNT_OFFSET; 605 606 count = udc->read_fn(udc->addr + ep->offset + bufoffset); 607 608 if (!ep->buffer0ready && !ep->buffer1ready) 609 two_pkts = 1; 610 611 buf = req->usb_req.buf + req->usb_req.actual; 612 prefetchw(buf); 613 bufferspace = req->usb_req.length - req->usb_req.actual; 614 is_short = count < ep->ep_usb.maxpacket; 615 616 if (unlikely(!bufferspace)) { 617 /* 618 * This happens when the driver's buffer 619 * is smaller than what the host sent. 620 * discard the extra data. 621 */ 622 if (req->usb_req.status != -EOVERFLOW) 623 dev_dbg(udc->dev, "%s overflow %d\n", 624 ep->ep_usb.name, count); 625 req->usb_req.status = -EOVERFLOW; 626 xudc_done(ep, req, -EOVERFLOW); 627 return 0; 628 } 629 630 ret = xudc_eptxrx(ep, req, buf, count); 631 switch (ret) { 632 case 0: 633 req->usb_req.actual += min(count, bufferspace); 634 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n", 635 ep->ep_usb.name, count, is_short ? "/S" : "", req, 636 req->usb_req.actual, req->usb_req.length); 637 bufferspace -= count; 638 /* Completion */ 639 if ((req->usb_req.actual == req->usb_req.length) || is_short) { 640 if (udc->dma_enabled && req->usb_req.length) 641 dma_sync_single_for_cpu(udc->dev, 642 req->usb_req.dma, 643 req->usb_req.actual, 644 DMA_FROM_DEVICE); 645 xudc_done(ep, req, 0); 646 return 0; 647 } 648 if (two_pkts) { 649 two_pkts = 0; 650 goto top; 651 } 652 break; 653 case -EAGAIN: 654 dev_dbg(udc->dev, "receive busy\n"); 655 break; 656 case -EINVAL: 657 case -ETIMEDOUT: 658 /* DMA error, dequeue the request */ 659 xudc_done(ep, req, -ECONNRESET); 660 retval = 0; 661 break; 662 } 663 664 return retval; 665 } 666 667 /** 668 * xudc_write_fifo - Writes data into the given endpoint buffer. 669 * @ep: pointer to the usb device endpoint structure. 670 * @req: pointer to the usb request structure. 671 * 672 * Return: 0 if request is completed and -EAGAIN if not completed. 673 * 674 * Loads endpoint buffer for an IN packet. 675 */ 676 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req) 677 { 678 u32 max; 679 u32 length; 680 int ret; 681 int retval = -EAGAIN; 682 struct xusb_udc *udc = ep->udc; 683 int is_last, is_short = 0; 684 u8 *buf; 685 686 max = le16_to_cpu(ep->desc->wMaxPacketSize); 687 buf = req->usb_req.buf + req->usb_req.actual; 688 prefetch(buf); 689 length = req->usb_req.length - req->usb_req.actual; 690 length = min(length, max); 691 692 ret = xudc_eptxrx(ep, req, buf, length); 693 switch (ret) { 694 case 0: 695 req->usb_req.actual += length; 696 if (unlikely(length != max)) { 697 is_last = is_short = 1; 698 } else { 699 if (likely(req->usb_req.length != 700 req->usb_req.actual) || req->usb_req.zero) 701 is_last = 0; 702 else 703 is_last = 1; 704 } 705 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n", 706 __func__, ep->ep_usb.name, length, is_last ? "/L" : "", 707 is_short ? "/S" : "", 708 req->usb_req.length - req->usb_req.actual, req); 709 /* completion */ 710 if (is_last) { 711 xudc_done(ep, req, 0); 712 retval = 0; 713 } 714 break; 715 case -EAGAIN: 716 dev_dbg(udc->dev, "Send busy\n"); 717 break; 718 case -EINVAL: 719 case -ETIMEDOUT: 720 /* DMA error, dequeue the request */ 721 xudc_done(ep, req, -ECONNRESET); 722 retval = 0; 723 break; 724 } 725 726 return retval; 727 } 728 729 /** 730 * xudc_nuke - Cleans up the data transfer message list. 731 * @ep: pointer to the usb device endpoint structure. 732 * @status: Status of the data transfer. 733 */ 734 static void xudc_nuke(struct xusb_ep *ep, int status) 735 { 736 struct xusb_req *req; 737 738 while (!list_empty(&ep->queue)) { 739 req = list_first_entry(&ep->queue, struct xusb_req, queue); 740 xudc_done(ep, req, status); 741 } 742 } 743 744 /** 745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint. 746 * @_ep: pointer to the usb device endpoint structure. 747 * @value: value to indicate stall/unstall. 748 * 749 * Return: 0 for success and error value on failure 750 */ 751 static int xudc_ep_set_halt(struct usb_ep *_ep, int value) 752 { 753 struct xusb_ep *ep = to_xusb_ep(_ep); 754 struct xusb_udc *udc; 755 unsigned long flags; 756 u32 epcfgreg; 757 758 if (!_ep || (!ep->desc && ep->epnumber)) { 759 pr_debug("%s: bad ep or descriptor\n", __func__); 760 return -EINVAL; 761 } 762 udc = ep->udc; 763 764 if (ep->is_in && (!list_empty(&ep->queue)) && value) { 765 dev_dbg(udc->dev, "requests pending can't halt\n"); 766 return -EAGAIN; 767 } 768 769 if (ep->buffer0ready || ep->buffer1ready) { 770 dev_dbg(udc->dev, "HW buffers busy can't halt\n"); 771 return -EAGAIN; 772 } 773 774 spin_lock_irqsave(&udc->lock, flags); 775 776 if (value) { 777 /* Stall the device.*/ 778 epcfgreg = udc->read_fn(udc->addr + ep->offset); 779 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 780 udc->write_fn(udc->addr, ep->offset, epcfgreg); 781 } else { 782 /* Unstall the device.*/ 783 epcfgreg = udc->read_fn(udc->addr + ep->offset); 784 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 785 udc->write_fn(udc->addr, ep->offset, epcfgreg); 786 if (ep->epnumber) { 787 /* Reset the toggle bit.*/ 788 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset); 789 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 790 udc->write_fn(udc->addr, ep->offset, epcfgreg); 791 } 792 } 793 794 spin_unlock_irqrestore(&udc->lock, flags); 795 return 0; 796 } 797 798 /** 799 * xudc_ep_enable - Enables the given endpoint. 800 * @ep: pointer to the xusb endpoint structure. 801 * @desc: pointer to usb endpoint descriptor. 802 * 803 * Return: 0 for success and error value on failure 804 */ 805 static int __xudc_ep_enable(struct xusb_ep *ep, 806 const struct usb_endpoint_descriptor *desc) 807 { 808 struct xusb_udc *udc = ep->udc; 809 u32 tmp; 810 u32 epcfg; 811 u32 ier; 812 u16 maxpacket; 813 814 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0); 815 /* Bit 3...0:endpoint number */ 816 ep->epnumber = (desc->bEndpointAddress & 0x0f); 817 ep->desc = desc; 818 ep->ep_usb.desc = desc; 819 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 820 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize); 821 822 switch (tmp) { 823 case USB_ENDPOINT_XFER_CONTROL: 824 dev_dbg(udc->dev, "only one control endpoint\n"); 825 /* NON- ISO */ 826 ep->is_iso = 0; 827 return -EINVAL; 828 case USB_ENDPOINT_XFER_INT: 829 /* NON- ISO */ 830 ep->is_iso = 0; 831 if (maxpacket > 64) { 832 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 833 return -EINVAL; 834 } 835 break; 836 case USB_ENDPOINT_XFER_BULK: 837 /* NON- ISO */ 838 ep->is_iso = 0; 839 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 && 840 maxpacket <= 512)) { 841 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 842 return -EINVAL; 843 } 844 break; 845 case USB_ENDPOINT_XFER_ISOC: 846 /* ISO */ 847 ep->is_iso = 1; 848 break; 849 } 850 851 ep->buffer0ready = 0; 852 ep->buffer1ready = 0; 853 ep->curbufnum = 0; 854 ep->rambase = rambase[ep->epnumber]; 855 xudc_epconfig(ep, udc); 856 857 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n", 858 ep->epnumber, maxpacket); 859 860 /* Enable the End point.*/ 861 epcfg = udc->read_fn(udc->addr + ep->offset); 862 epcfg |= XUSB_EP_CFG_VALID_MASK; 863 udc->write_fn(udc->addr, ep->offset, epcfg); 864 if (ep->epnumber) 865 ep->rambase <<= 2; 866 867 /* Enable buffer completion interrupts for endpoint */ 868 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 869 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber); 870 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 871 872 /* for OUT endpoint set buffers ready to receive */ 873 if (ep->epnumber && !ep->is_in) { 874 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 875 1 << ep->epnumber); 876 ep->buffer0ready = 1; 877 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 878 (1 << (ep->epnumber + 879 XUSB_STATUS_EP_BUFF2_SHIFT))); 880 ep->buffer1ready = 1; 881 } 882 883 return 0; 884 } 885 886 /** 887 * xudc_ep_enable - Enables the given endpoint. 888 * @_ep: pointer to the usb endpoint structure. 889 * @desc: pointer to usb endpoint descriptor. 890 * 891 * Return: 0 for success and error value on failure 892 */ 893 static int xudc_ep_enable(struct usb_ep *_ep, 894 const struct usb_endpoint_descriptor *desc) 895 { 896 struct xusb_ep *ep; 897 struct xusb_udc *udc; 898 unsigned long flags; 899 int ret; 900 901 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) { 902 pr_debug("%s: bad ep or descriptor\n", __func__); 903 return -EINVAL; 904 } 905 906 ep = to_xusb_ep(_ep); 907 udc = ep->udc; 908 909 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 910 dev_dbg(udc->dev, "bogus device state\n"); 911 return -ESHUTDOWN; 912 } 913 914 spin_lock_irqsave(&udc->lock, flags); 915 ret = __xudc_ep_enable(ep, desc); 916 spin_unlock_irqrestore(&udc->lock, flags); 917 918 return ret; 919 } 920 921 /** 922 * xudc_ep_disable - Disables the given endpoint. 923 * @_ep: pointer to the usb endpoint structure. 924 * 925 * Return: 0 for success and error value on failure 926 */ 927 static int xudc_ep_disable(struct usb_ep *_ep) 928 { 929 struct xusb_ep *ep; 930 unsigned long flags; 931 u32 epcfg; 932 struct xusb_udc *udc; 933 934 if (!_ep) { 935 pr_debug("%s: invalid ep\n", __func__); 936 return -EINVAL; 937 } 938 939 ep = to_xusb_ep(_ep); 940 udc = ep->udc; 941 942 spin_lock_irqsave(&udc->lock, flags); 943 944 xudc_nuke(ep, -ESHUTDOWN); 945 946 /* Restore the endpoint's pristine config */ 947 ep->desc = NULL; 948 ep->ep_usb.desc = NULL; 949 950 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber); 951 /* Disable the endpoint.*/ 952 epcfg = udc->read_fn(udc->addr + ep->offset); 953 epcfg &= ~XUSB_EP_CFG_VALID_MASK; 954 udc->write_fn(udc->addr, ep->offset, epcfg); 955 956 spin_unlock_irqrestore(&udc->lock, flags); 957 return 0; 958 } 959 960 /** 961 * xudc_ep_alloc_request - Initializes the request queue. 962 * @_ep: pointer to the usb endpoint structure. 963 * @gfp_flags: Flags related to the request call. 964 * 965 * Return: pointer to request structure on success and a NULL on failure. 966 */ 967 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep, 968 gfp_t gfp_flags) 969 { 970 struct xusb_ep *ep = to_xusb_ep(_ep); 971 struct xusb_udc *udc; 972 struct xusb_req *req; 973 974 udc = ep->udc; 975 req = kzalloc(sizeof(*req), gfp_flags); 976 if (!req) 977 return NULL; 978 979 req->ep = ep; 980 INIT_LIST_HEAD(&req->queue); 981 return &req->usb_req; 982 } 983 984 /** 985 * xudc_free_request - Releases the request from queue. 986 * @_ep: pointer to the usb device endpoint structure. 987 * @_req: pointer to the usb request structure. 988 */ 989 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req) 990 { 991 struct xusb_req *req = to_xusb_req(_req); 992 993 kfree(req); 994 } 995 996 /** 997 * xudc_ep0_queue - Adds the request to endpoint 0 queue. 998 * @ep0: pointer to the xusb endpoint 0 structure. 999 * @req: pointer to the xusb request structure. 1000 * 1001 * Return: 0 for success and error value on failure 1002 */ 1003 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req) 1004 { 1005 struct xusb_udc *udc = ep0->udc; 1006 u32 length; 1007 u8 *corebuf; 1008 1009 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1010 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1011 return -EINVAL; 1012 } 1013 if (!list_empty(&ep0->queue)) { 1014 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__); 1015 return -EBUSY; 1016 } 1017 1018 req->usb_req.status = -EINPROGRESS; 1019 req->usb_req.actual = 0; 1020 1021 list_add_tail(&req->queue, &ep0->queue); 1022 1023 if (udc->setup.bRequestType & USB_DIR_IN) { 1024 prefetch(req->usb_req.buf); 1025 length = req->usb_req.length; 1026 corebuf = (void __force *) ((ep0->rambase << 2) + 1027 udc->addr); 1028 length = req->usb_req.actual = min_t(u32, length, 1029 EP0_MAX_PACKET); 1030 memcpy(corebuf, req->usb_req.buf, length); 1031 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length); 1032 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1033 } else { 1034 if (udc->setup.wLength) { 1035 /* Enable EP0 buffer to receive data */ 1036 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1037 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1038 } else { 1039 xudc_wrstatus(udc); 1040 } 1041 } 1042 1043 return 0; 1044 } 1045 1046 /** 1047 * xudc_ep0_queue - Adds the request to endpoint 0 queue. 1048 * @_ep: pointer to the usb endpoint 0 structure. 1049 * @_req: pointer to the usb request structure. 1050 * @gfp_flags: Flags related to the request call. 1051 * 1052 * Return: 0 for success and error value on failure 1053 */ 1054 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req, 1055 gfp_t gfp_flags) 1056 { 1057 struct xusb_req *req = to_xusb_req(_req); 1058 struct xusb_ep *ep0 = to_xusb_ep(_ep); 1059 struct xusb_udc *udc = ep0->udc; 1060 unsigned long flags; 1061 int ret; 1062 1063 spin_lock_irqsave(&udc->lock, flags); 1064 ret = __xudc_ep0_queue(ep0, req); 1065 spin_unlock_irqrestore(&udc->lock, flags); 1066 1067 return ret; 1068 } 1069 1070 /** 1071 * xudc_ep_queue - Adds the request to endpoint queue. 1072 * @_ep: pointer to the usb endpoint structure. 1073 * @_req: pointer to the usb request structure. 1074 * @gfp_flags: Flags related to the request call. 1075 * 1076 * Return: 0 for success and error value on failure 1077 */ 1078 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1079 gfp_t gfp_flags) 1080 { 1081 struct xusb_req *req = to_xusb_req(_req); 1082 struct xusb_ep *ep = to_xusb_ep(_ep); 1083 struct xusb_udc *udc = ep->udc; 1084 int ret; 1085 unsigned long flags; 1086 1087 if (!ep->desc) { 1088 dev_dbg(udc->dev, "%s:queing request to disabled %s\n", 1089 __func__, ep->name); 1090 return -ESHUTDOWN; 1091 } 1092 1093 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1094 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1095 return -EINVAL; 1096 } 1097 1098 spin_lock_irqsave(&udc->lock, flags); 1099 1100 _req->status = -EINPROGRESS; 1101 _req->actual = 0; 1102 1103 if (udc->dma_enabled) { 1104 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req, 1105 ep->is_in); 1106 if (ret) { 1107 dev_dbg(udc->dev, "gadget_map failed ep%d\n", 1108 ep->epnumber); 1109 spin_unlock_irqrestore(&udc->lock, flags); 1110 return -EAGAIN; 1111 } 1112 } 1113 1114 if (list_empty(&ep->queue)) { 1115 if (ep->is_in) { 1116 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n"); 1117 if (!xudc_write_fifo(ep, req)) 1118 req = NULL; 1119 } else { 1120 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n"); 1121 if (!xudc_read_fifo(ep, req)) 1122 req = NULL; 1123 } 1124 } 1125 1126 if (req != NULL) 1127 list_add_tail(&req->queue, &ep->queue); 1128 1129 spin_unlock_irqrestore(&udc->lock, flags); 1130 return 0; 1131 } 1132 1133 /** 1134 * xudc_ep_dequeue - Removes the request from the queue. 1135 * @_ep: pointer to the usb device endpoint structure. 1136 * @_req: pointer to the usb request structure. 1137 * 1138 * Return: 0 for success and error value on failure 1139 */ 1140 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1141 { 1142 struct xusb_ep *ep = to_xusb_ep(_ep); 1143 struct xusb_req *req = to_xusb_req(_req); 1144 struct xusb_udc *udc = ep->udc; 1145 unsigned long flags; 1146 1147 spin_lock_irqsave(&udc->lock, flags); 1148 /* Make sure it's actually queued on this endpoint */ 1149 list_for_each_entry(req, &ep->queue, queue) { 1150 if (&req->usb_req == _req) 1151 break; 1152 } 1153 if (&req->usb_req != _req) { 1154 spin_unlock_irqrestore(&ep->udc->lock, flags); 1155 return -EINVAL; 1156 } 1157 xudc_done(ep, req, -ECONNRESET); 1158 spin_unlock_irqrestore(&udc->lock, flags); 1159 1160 return 0; 1161 } 1162 1163 /** 1164 * xudc_ep0_enable - Enables the given endpoint. 1165 * @ep: pointer to the usb endpoint structure. 1166 * @desc: pointer to usb endpoint descriptor. 1167 * 1168 * Return: error always. 1169 * 1170 * endpoint 0 enable should not be called by gadget layer. 1171 */ 1172 static int xudc_ep0_enable(struct usb_ep *ep, 1173 const struct usb_endpoint_descriptor *desc) 1174 { 1175 return -EINVAL; 1176 } 1177 1178 /** 1179 * xudc_ep0_disable - Disables the given endpoint. 1180 * @ep: pointer to the usb endpoint structure. 1181 * 1182 * Return: error always. 1183 * 1184 * endpoint 0 disable should not be called by gadget layer. 1185 */ 1186 static int xudc_ep0_disable(struct usb_ep *ep) 1187 { 1188 return -EINVAL; 1189 } 1190 1191 static const struct usb_ep_ops xusb_ep0_ops = { 1192 .enable = xudc_ep0_enable, 1193 .disable = xudc_ep0_disable, 1194 .alloc_request = xudc_ep_alloc_request, 1195 .free_request = xudc_free_request, 1196 .queue = xudc_ep0_queue, 1197 .dequeue = xudc_ep_dequeue, 1198 .set_halt = xudc_ep_set_halt, 1199 }; 1200 1201 static const struct usb_ep_ops xusb_ep_ops = { 1202 .enable = xudc_ep_enable, 1203 .disable = xudc_ep_disable, 1204 .alloc_request = xudc_ep_alloc_request, 1205 .free_request = xudc_free_request, 1206 .queue = xudc_ep_queue, 1207 .dequeue = xudc_ep_dequeue, 1208 .set_halt = xudc_ep_set_halt, 1209 }; 1210 1211 /** 1212 * xudc_get_frame - Reads the current usb frame number. 1213 * @gadget: pointer to the usb gadget structure. 1214 * 1215 * Return: current frame number for success and error value on failure. 1216 */ 1217 static int xudc_get_frame(struct usb_gadget *gadget) 1218 { 1219 struct xusb_udc *udc; 1220 int frame; 1221 1222 if (!gadget) 1223 return -ENODEV; 1224 1225 udc = to_udc(gadget); 1226 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET); 1227 return frame; 1228 } 1229 1230 /** 1231 * xudc_wakeup - Send remote wakeup signal to host 1232 * @gadget: pointer to the usb gadget structure. 1233 * 1234 * Return: 0 on success and error on failure 1235 */ 1236 static int xudc_wakeup(struct usb_gadget *gadget) 1237 { 1238 struct xusb_udc *udc = to_udc(gadget); 1239 u32 crtlreg; 1240 int status = -EINVAL; 1241 unsigned long flags; 1242 1243 spin_lock_irqsave(&udc->lock, flags); 1244 1245 /* Remote wake up not enabled by host */ 1246 if (!udc->remote_wkp) 1247 goto done; 1248 1249 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1250 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK; 1251 /* set remote wake up bit */ 1252 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1253 /* 1254 * wait for a while and reset remote wake up bit since this bit 1255 * is not cleared by HW after sending remote wakeup to host. 1256 */ 1257 mdelay(2); 1258 1259 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK; 1260 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1261 status = 0; 1262 done: 1263 spin_unlock_irqrestore(&udc->lock, flags); 1264 return status; 1265 } 1266 1267 /** 1268 * xudc_pullup - start/stop USB traffic 1269 * @gadget: pointer to the usb gadget structure. 1270 * @is_on: flag to start or stop 1271 * 1272 * Return: 0 always 1273 * 1274 * This function starts/stops SIE engine of IP based on is_on. 1275 */ 1276 static int xudc_pullup(struct usb_gadget *gadget, int is_on) 1277 { 1278 struct xusb_udc *udc = to_udc(gadget); 1279 unsigned long flags; 1280 u32 crtlreg; 1281 1282 spin_lock_irqsave(&udc->lock, flags); 1283 1284 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1285 if (is_on) 1286 crtlreg |= XUSB_CONTROL_USB_READY_MASK; 1287 else 1288 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; 1289 1290 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1291 1292 spin_unlock_irqrestore(&udc->lock, flags); 1293 1294 return 0; 1295 } 1296 1297 /** 1298 * xudc_eps_init - initialize endpoints. 1299 * @udc: pointer to the usb device controller structure. 1300 */ 1301 static void xudc_eps_init(struct xusb_udc *udc) 1302 { 1303 u32 ep_number; 1304 1305 INIT_LIST_HEAD(&udc->gadget.ep_list); 1306 1307 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) { 1308 struct xusb_ep *ep = &udc->ep[ep_number]; 1309 1310 if (ep_number) { 1311 list_add_tail(&ep->ep_usb.ep_list, 1312 &udc->gadget.ep_list); 1313 usb_ep_set_maxpacket_limit(&ep->ep_usb, 1314 (unsigned short) ~0); 1315 snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number); 1316 ep->ep_usb.name = ep->name; 1317 ep->ep_usb.ops = &xusb_ep_ops; 1318 1319 ep->ep_usb.caps.type_iso = true; 1320 ep->ep_usb.caps.type_bulk = true; 1321 ep->ep_usb.caps.type_int = true; 1322 } else { 1323 ep->ep_usb.name = ep0name; 1324 usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET); 1325 ep->ep_usb.ops = &xusb_ep0_ops; 1326 1327 ep->ep_usb.caps.type_control = true; 1328 } 1329 1330 ep->ep_usb.caps.dir_in = true; 1331 ep->ep_usb.caps.dir_out = true; 1332 1333 ep->udc = udc; 1334 ep->epnumber = ep_number; 1335 ep->desc = NULL; 1336 /* 1337 * The configuration register address offset between 1338 * each endpoint is 0x10. 1339 */ 1340 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10); 1341 ep->is_in = 0; 1342 ep->is_iso = 0; 1343 ep->maxpacket = 0; 1344 xudc_epconfig(ep, udc); 1345 1346 /* Initialize one queue per endpoint */ 1347 INIT_LIST_HEAD(&ep->queue); 1348 } 1349 } 1350 1351 /** 1352 * xudc_stop_activity - Stops any further activity on the device. 1353 * @udc: pointer to the usb device controller structure. 1354 */ 1355 static void xudc_stop_activity(struct xusb_udc *udc) 1356 { 1357 int i; 1358 struct xusb_ep *ep; 1359 1360 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1361 ep = &udc->ep[i]; 1362 xudc_nuke(ep, -ESHUTDOWN); 1363 } 1364 } 1365 1366 /** 1367 * xudc_start - Starts the device. 1368 * @gadget: pointer to the usb gadget structure 1369 * @driver: pointer to gadget driver structure 1370 * 1371 * Return: zero on success and error on failure 1372 */ 1373 static int xudc_start(struct usb_gadget *gadget, 1374 struct usb_gadget_driver *driver) 1375 { 1376 struct xusb_udc *udc = to_udc(gadget); 1377 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1378 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc; 1379 unsigned long flags; 1380 int ret = 0; 1381 1382 spin_lock_irqsave(&udc->lock, flags); 1383 1384 if (udc->driver) { 1385 dev_err(udc->dev, "%s is already bound to %s\n", 1386 udc->gadget.name, udc->driver->driver.name); 1387 ret = -EBUSY; 1388 goto err; 1389 } 1390 1391 /* hook up the driver */ 1392 udc->driver = driver; 1393 udc->gadget.speed = driver->max_speed; 1394 1395 /* Enable the control endpoint. */ 1396 ret = __xudc_ep_enable(ep0, desc); 1397 1398 /* Set device address and remote wakeup to 0 */ 1399 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1400 udc->remote_wkp = 0; 1401 err: 1402 spin_unlock_irqrestore(&udc->lock, flags); 1403 return ret; 1404 } 1405 1406 /** 1407 * xudc_stop - stops the device. 1408 * @gadget: pointer to the usb gadget structure 1409 * @driver: pointer to usb gadget driver structure 1410 * 1411 * Return: zero always 1412 */ 1413 static int xudc_stop(struct usb_gadget *gadget) 1414 { 1415 struct xusb_udc *udc = to_udc(gadget); 1416 unsigned long flags; 1417 1418 spin_lock_irqsave(&udc->lock, flags); 1419 1420 udc->gadget.speed = USB_SPEED_UNKNOWN; 1421 udc->driver = NULL; 1422 1423 /* Set device address and remote wakeup to 0 */ 1424 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1425 udc->remote_wkp = 0; 1426 1427 xudc_stop_activity(udc); 1428 1429 spin_unlock_irqrestore(&udc->lock, flags); 1430 1431 return 0; 1432 } 1433 1434 static const struct usb_gadget_ops xusb_udc_ops = { 1435 .get_frame = xudc_get_frame, 1436 .wakeup = xudc_wakeup, 1437 .pullup = xudc_pullup, 1438 .udc_start = xudc_start, 1439 .udc_stop = xudc_stop, 1440 }; 1441 1442 /** 1443 * xudc_clear_stall_all_ep - clears stall of every endpoint. 1444 * @udc: pointer to the udc structure. 1445 */ 1446 static void xudc_clear_stall_all_ep(struct xusb_udc *udc) 1447 { 1448 struct xusb_ep *ep; 1449 u32 epcfgreg; 1450 int i; 1451 1452 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1453 ep = &udc->ep[i]; 1454 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1455 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1456 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1457 if (ep->epnumber) { 1458 /* Reset the toggle bit.*/ 1459 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1460 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 1461 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1462 } 1463 } 1464 } 1465 1466 /** 1467 * xudc_startup_handler - The usb device controller interrupt handler. 1468 * @udc: pointer to the udc structure. 1469 * @intrstatus: The mask value containing the interrupt sources. 1470 * 1471 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts. 1472 */ 1473 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus) 1474 { 1475 u32 intrreg; 1476 1477 if (intrstatus & XUSB_STATUS_RESET_MASK) { 1478 1479 dev_dbg(udc->dev, "Reset\n"); 1480 1481 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK) 1482 udc->gadget.speed = USB_SPEED_HIGH; 1483 else 1484 udc->gadget.speed = USB_SPEED_FULL; 1485 1486 xudc_stop_activity(udc); 1487 xudc_clear_stall_all_ep(udc); 1488 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 1489 1490 /* Set device address and remote wakeup to 0 */ 1491 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1492 udc->remote_wkp = 0; 1493 1494 /* Enable the suspend, resume and disconnect */ 1495 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1496 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK | 1497 XUSB_STATUS_DISCONNECT_MASK; 1498 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1499 } 1500 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) { 1501 1502 dev_dbg(udc->dev, "Suspend\n"); 1503 1504 /* Enable the reset, resume and disconnect */ 1505 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1506 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1507 XUSB_STATUS_DISCONNECT_MASK; 1508 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1509 1510 udc->usb_state = USB_STATE_SUSPENDED; 1511 1512 if (udc->driver->suspend) { 1513 spin_unlock(&udc->lock); 1514 udc->driver->suspend(&udc->gadget); 1515 spin_lock(&udc->lock); 1516 } 1517 } 1518 if (intrstatus & XUSB_STATUS_RESUME_MASK) { 1519 bool condition = (udc->usb_state != USB_STATE_SUSPENDED); 1520 1521 dev_WARN_ONCE(udc->dev, condition, 1522 "Resume IRQ while not suspended\n"); 1523 1524 dev_dbg(udc->dev, "Resume\n"); 1525 1526 /* Enable the reset, suspend and disconnect */ 1527 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1528 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK | 1529 XUSB_STATUS_DISCONNECT_MASK; 1530 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1531 1532 udc->usb_state = 0; 1533 1534 if (udc->driver->resume) { 1535 spin_unlock(&udc->lock); 1536 udc->driver->resume(&udc->gadget); 1537 spin_lock(&udc->lock); 1538 } 1539 } 1540 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) { 1541 1542 dev_dbg(udc->dev, "Disconnect\n"); 1543 1544 /* Enable the reset, resume and suspend */ 1545 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1546 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1547 XUSB_STATUS_SUSPEND_MASK; 1548 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1549 1550 if (udc->driver && udc->driver->disconnect) { 1551 spin_unlock(&udc->lock); 1552 udc->driver->disconnect(&udc->gadget); 1553 spin_lock(&udc->lock); 1554 } 1555 } 1556 } 1557 1558 /** 1559 * xudc_ep0_stall - Stall endpoint zero. 1560 * @udc: pointer to the udc structure. 1561 * 1562 * This function stalls endpoint zero. 1563 */ 1564 static void xudc_ep0_stall(struct xusb_udc *udc) 1565 { 1566 u32 epcfgreg; 1567 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1568 1569 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1570 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1571 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1572 } 1573 1574 /** 1575 * xudc_setaddress - executes SET_ADDRESS command 1576 * @udc: pointer to the udc structure. 1577 * 1578 * This function executes USB SET_ADDRESS command 1579 */ 1580 static void xudc_setaddress(struct xusb_udc *udc) 1581 { 1582 struct xusb_ep *ep0 = &udc->ep[0]; 1583 struct xusb_req *req = udc->req; 1584 int ret; 1585 1586 req->usb_req.length = 0; 1587 ret = __xudc_ep0_queue(ep0, req); 1588 if (ret == 0) 1589 return; 1590 1591 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n"); 1592 xudc_ep0_stall(udc); 1593 } 1594 1595 /** 1596 * xudc_getstatus - executes GET_STATUS command 1597 * @udc: pointer to the udc structure. 1598 * 1599 * This function executes USB GET_STATUS command 1600 */ 1601 static void xudc_getstatus(struct xusb_udc *udc) 1602 { 1603 struct xusb_ep *ep0 = &udc->ep[0]; 1604 struct xusb_req *req = udc->req; 1605 struct xusb_ep *target_ep; 1606 u16 status = 0; 1607 u32 epcfgreg; 1608 int epnum; 1609 u32 halt; 1610 int ret; 1611 1612 switch (udc->setup.bRequestType & USB_RECIP_MASK) { 1613 case USB_RECIP_DEVICE: 1614 /* Get device status */ 1615 status = 1 << USB_DEVICE_SELF_POWERED; 1616 if (udc->remote_wkp) 1617 status |= (1 << USB_DEVICE_REMOTE_WAKEUP); 1618 break; 1619 case USB_RECIP_INTERFACE: 1620 break; 1621 case USB_RECIP_ENDPOINT: 1622 epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1623 target_ep = &udc->ep[epnum]; 1624 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1625 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK; 1626 if (udc->setup.wIndex & USB_DIR_IN) { 1627 if (!target_ep->is_in) 1628 goto stall; 1629 } else { 1630 if (target_ep->is_in) 1631 goto stall; 1632 } 1633 if (halt) 1634 status = 1 << USB_ENDPOINT_HALT; 1635 break; 1636 default: 1637 goto stall; 1638 } 1639 1640 req->usb_req.length = 2; 1641 *(u16 *)req->usb_req.buf = cpu_to_le16(status); 1642 ret = __xudc_ep0_queue(ep0, req); 1643 if (ret == 0) 1644 return; 1645 stall: 1646 dev_err(udc->dev, "Can't respond to getstatus request\n"); 1647 xudc_ep0_stall(udc); 1648 } 1649 1650 /** 1651 * xudc_set_clear_feature - Executes the set feature and clear feature commands. 1652 * @udc: pointer to the usb device controller structure. 1653 * 1654 * Processes the SET_FEATURE and CLEAR_FEATURE commands. 1655 */ 1656 static void xudc_set_clear_feature(struct xusb_udc *udc) 1657 { 1658 struct xusb_ep *ep0 = &udc->ep[0]; 1659 struct xusb_req *req = udc->req; 1660 struct xusb_ep *target_ep; 1661 u8 endpoint; 1662 u8 outinbit; 1663 u32 epcfgreg; 1664 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0); 1665 int ret; 1666 1667 switch (udc->setup.bRequestType) { 1668 case USB_RECIP_DEVICE: 1669 switch (udc->setup.wValue) { 1670 case USB_DEVICE_TEST_MODE: 1671 /* 1672 * The Test Mode will be executed 1673 * after the status phase. 1674 */ 1675 break; 1676 case USB_DEVICE_REMOTE_WAKEUP: 1677 if (flag) 1678 udc->remote_wkp = 1; 1679 else 1680 udc->remote_wkp = 0; 1681 break; 1682 default: 1683 xudc_ep0_stall(udc); 1684 break; 1685 } 1686 break; 1687 case USB_RECIP_ENDPOINT: 1688 if (!udc->setup.wValue) { 1689 endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1690 target_ep = &udc->ep[endpoint]; 1691 outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK; 1692 outinbit = outinbit >> 7; 1693 1694 /* Make sure direction matches.*/ 1695 if (outinbit != target_ep->is_in) { 1696 xudc_ep0_stall(udc); 1697 return; 1698 } 1699 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1700 if (!endpoint) { 1701 /* Clear the stall.*/ 1702 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1703 udc->write_fn(udc->addr, 1704 target_ep->offset, epcfgreg); 1705 } else { 1706 if (flag) { 1707 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1708 udc->write_fn(udc->addr, 1709 target_ep->offset, 1710 epcfgreg); 1711 } else { 1712 /* Unstall the endpoint.*/ 1713 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK | 1714 XUSB_EP_CFG_DATA_TOGGLE_MASK); 1715 udc->write_fn(udc->addr, 1716 target_ep->offset, 1717 epcfgreg); 1718 } 1719 } 1720 } 1721 break; 1722 default: 1723 xudc_ep0_stall(udc); 1724 return; 1725 } 1726 1727 req->usb_req.length = 0; 1728 ret = __xudc_ep0_queue(ep0, req); 1729 if (ret == 0) 1730 return; 1731 1732 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n"); 1733 xudc_ep0_stall(udc); 1734 } 1735 1736 /** 1737 * xudc_handle_setup - Processes the setup packet. 1738 * @udc: pointer to the usb device controller structure. 1739 * 1740 * Process setup packet and delegate to gadget layer. 1741 */ 1742 static void xudc_handle_setup(struct xusb_udc *udc) 1743 { 1744 struct xusb_ep *ep0 = &udc->ep[0]; 1745 struct usb_ctrlrequest setup; 1746 u32 *ep0rambase; 1747 1748 /* Load up the chapter 9 command buffer.*/ 1749 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET); 1750 memcpy(&setup, ep0rambase, 8); 1751 1752 udc->setup = setup; 1753 udc->setup.wValue = cpu_to_le16(setup.wValue); 1754 udc->setup.wIndex = cpu_to_le16(setup.wIndex); 1755 udc->setup.wLength = cpu_to_le16(setup.wLength); 1756 1757 /* Clear previous requests */ 1758 xudc_nuke(ep0, -ECONNRESET); 1759 1760 if (udc->setup.bRequestType & USB_DIR_IN) { 1761 /* Execute the get command.*/ 1762 udc->setupseqrx = STATUS_PHASE; 1763 udc->setupseqtx = DATA_PHASE; 1764 } else { 1765 /* Execute the put command.*/ 1766 udc->setupseqrx = DATA_PHASE; 1767 udc->setupseqtx = STATUS_PHASE; 1768 } 1769 1770 switch (udc->setup.bRequest) { 1771 case USB_REQ_GET_STATUS: 1772 /* Data+Status phase form udc */ 1773 if ((udc->setup.bRequestType & 1774 (USB_DIR_IN | USB_TYPE_MASK)) != 1775 (USB_DIR_IN | USB_TYPE_STANDARD)) 1776 break; 1777 xudc_getstatus(udc); 1778 return; 1779 case USB_REQ_SET_ADDRESS: 1780 /* Status phase from udc */ 1781 if (udc->setup.bRequestType != (USB_DIR_OUT | 1782 USB_TYPE_STANDARD | USB_RECIP_DEVICE)) 1783 break; 1784 xudc_setaddress(udc); 1785 return; 1786 case USB_REQ_CLEAR_FEATURE: 1787 case USB_REQ_SET_FEATURE: 1788 /* Requests with no data phase, status phase from udc */ 1789 if ((udc->setup.bRequestType & USB_TYPE_MASK) 1790 != USB_TYPE_STANDARD) 1791 break; 1792 xudc_set_clear_feature(udc); 1793 return; 1794 default: 1795 break; 1796 } 1797 1798 spin_unlock(&udc->lock); 1799 if (udc->driver->setup(&udc->gadget, &setup) < 0) 1800 xudc_ep0_stall(udc); 1801 spin_lock(&udc->lock); 1802 } 1803 1804 /** 1805 * xudc_ep0_out - Processes the endpoint 0 OUT token. 1806 * @udc: pointer to the usb device controller structure. 1807 */ 1808 static void xudc_ep0_out(struct xusb_udc *udc) 1809 { 1810 struct xusb_ep *ep0 = &udc->ep[0]; 1811 struct xusb_req *req; 1812 u8 *ep0rambase; 1813 unsigned int bytes_to_rx; 1814 void *buffer; 1815 1816 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1817 1818 switch (udc->setupseqrx) { 1819 case STATUS_PHASE: 1820 /* 1821 * This resets both state machines for the next 1822 * Setup packet. 1823 */ 1824 udc->setupseqrx = SETUP_PHASE; 1825 udc->setupseqtx = SETUP_PHASE; 1826 req->usb_req.actual = req->usb_req.length; 1827 xudc_done(ep0, req, 0); 1828 break; 1829 case DATA_PHASE: 1830 bytes_to_rx = udc->read_fn(udc->addr + 1831 XUSB_EP_BUF0COUNT_OFFSET); 1832 /* Copy the data to be received from the DPRAM. */ 1833 ep0rambase = (u8 __force *) (udc->addr + 1834 (ep0->rambase << 2)); 1835 buffer = req->usb_req.buf + req->usb_req.actual; 1836 req->usb_req.actual = req->usb_req.actual + bytes_to_rx; 1837 memcpy(buffer, ep0rambase, bytes_to_rx); 1838 1839 if (req->usb_req.length == req->usb_req.actual) { 1840 /* Data transfer completed get ready for Status stage */ 1841 xudc_wrstatus(udc); 1842 } else { 1843 /* Enable EP0 buffer to receive data */ 1844 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1845 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1846 } 1847 break; 1848 default: 1849 break; 1850 } 1851 } 1852 1853 /** 1854 * xudc_ep0_in - Processes the endpoint 0 IN token. 1855 * @udc: pointer to the usb device controller structure. 1856 */ 1857 static void xudc_ep0_in(struct xusb_udc *udc) 1858 { 1859 struct xusb_ep *ep0 = &udc->ep[0]; 1860 struct xusb_req *req; 1861 unsigned int bytes_to_tx; 1862 void *buffer; 1863 u32 epcfgreg; 1864 u16 count = 0; 1865 u16 length; 1866 u8 *ep0rambase; 1867 u8 test_mode = udc->setup.wIndex >> 8; 1868 1869 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1870 bytes_to_tx = req->usb_req.length - req->usb_req.actual; 1871 1872 switch (udc->setupseqtx) { 1873 case STATUS_PHASE: 1874 switch (udc->setup.bRequest) { 1875 case USB_REQ_SET_ADDRESS: 1876 /* Set the address of the device.*/ 1877 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 1878 udc->setup.wValue); 1879 break; 1880 case USB_REQ_SET_FEATURE: 1881 if (udc->setup.bRequestType == 1882 USB_RECIP_DEVICE) { 1883 if (udc->setup.wValue == 1884 USB_DEVICE_TEST_MODE) 1885 udc->write_fn(udc->addr, 1886 XUSB_TESTMODE_OFFSET, 1887 test_mode); 1888 } 1889 break; 1890 } 1891 req->usb_req.actual = req->usb_req.length; 1892 xudc_done(ep0, req, 0); 1893 break; 1894 case DATA_PHASE: 1895 if (!bytes_to_tx) { 1896 /* 1897 * We're done with data transfer, next 1898 * will be zero length OUT with data toggle of 1899 * 1. Setup data_toggle. 1900 */ 1901 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1902 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK; 1903 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1904 udc->setupseqtx = STATUS_PHASE; 1905 } else { 1906 length = count = min_t(u32, bytes_to_tx, 1907 EP0_MAX_PACKET); 1908 /* Copy the data to be transmitted into the DPRAM. */ 1909 ep0rambase = (u8 __force *) (udc->addr + 1910 (ep0->rambase << 2)); 1911 buffer = req->usb_req.buf + req->usb_req.actual; 1912 req->usb_req.actual = req->usb_req.actual + length; 1913 memcpy(ep0rambase, buffer, length); 1914 } 1915 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count); 1916 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1917 break; 1918 default: 1919 break; 1920 } 1921 } 1922 1923 /** 1924 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler. 1925 * @udc: pointer to the udc structure. 1926 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0. 1927 * 1928 * Processes the commands received during enumeration phase. 1929 */ 1930 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus) 1931 { 1932 1933 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) { 1934 xudc_handle_setup(udc); 1935 } else { 1936 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK) 1937 xudc_ep0_out(udc); 1938 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK) 1939 xudc_ep0_in(udc); 1940 } 1941 } 1942 1943 /** 1944 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler. 1945 * @udc: pointer to the udc structure. 1946 * @epnum: End point number for which the interrupt is to be processed 1947 * @intrstatus: mask value for interrupt sources of endpoints other 1948 * than endpoint 0. 1949 * 1950 * Processes the buffer completion interrupts. 1951 */ 1952 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum, 1953 u32 intrstatus) 1954 { 1955 1956 struct xusb_req *req; 1957 struct xusb_ep *ep; 1958 1959 ep = &udc->ep[epnum]; 1960 /* Process the End point interrupts.*/ 1961 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum)) 1962 ep->buffer0ready = 0; 1963 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum)) 1964 ep->buffer1ready = 0; 1965 1966 if (list_empty(&ep->queue)) 1967 return; 1968 1969 req = list_first_entry(&ep->queue, struct xusb_req, queue); 1970 1971 if (ep->is_in) 1972 xudc_write_fifo(ep, req); 1973 else 1974 xudc_read_fifo(ep, req); 1975 } 1976 1977 /** 1978 * xudc_irq - The main interrupt handler. 1979 * @irq: The interrupt number. 1980 * @_udc: pointer to the usb device controller structure. 1981 * 1982 * Return: IRQ_HANDLED after the interrupt is handled. 1983 */ 1984 static irqreturn_t xudc_irq(int irq, void *_udc) 1985 { 1986 struct xusb_udc *udc = _udc; 1987 u32 intrstatus; 1988 u32 ier; 1989 u8 index; 1990 u32 bufintr; 1991 unsigned long flags; 1992 1993 spin_lock_irqsave(&udc->lock, flags); 1994 1995 /* 1996 * Event interrupts are level sensitive hence first disable 1997 * IER, read ISR and figure out active interrupts. 1998 */ 1999 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2000 ier &= ~XUSB_STATUS_INTR_EVENT_MASK; 2001 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2002 2003 /* Read the Interrupt Status Register.*/ 2004 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET); 2005 2006 /* Call the handler for the event interrupt.*/ 2007 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) { 2008 /* 2009 * Check if there is any action to be done for : 2010 * - USB Reset received {XUSB_STATUS_RESET_MASK} 2011 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK} 2012 * - USB Resume received {XUSB_STATUS_RESUME_MASK} 2013 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK} 2014 */ 2015 xudc_startup_handler(udc, intrstatus); 2016 } 2017 2018 /* Check the buffer completion interrupts */ 2019 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) { 2020 /* Enable Reset, Suspend, Resume and Disconnect */ 2021 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2022 ier |= XUSB_STATUS_INTR_EVENT_MASK; 2023 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2024 2025 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK) 2026 xudc_ctrl_ep_handler(udc, intrstatus); 2027 2028 for (index = 1; index < 8; index++) { 2029 bufintr = ((intrstatus & 2030 (XUSB_STATUS_EP1_BUFF1_COMP_MASK << 2031 (index - 1))) || (intrstatus & 2032 (XUSB_STATUS_EP1_BUFF2_COMP_MASK << 2033 (index - 1)))); 2034 if (bufintr) { 2035 xudc_nonctrl_ep_handler(udc, index, 2036 intrstatus); 2037 } 2038 } 2039 } 2040 2041 spin_unlock_irqrestore(&udc->lock, flags); 2042 return IRQ_HANDLED; 2043 } 2044 2045 /** 2046 * xudc_probe - The device probe function for driver initialization. 2047 * @pdev: pointer to the platform device structure. 2048 * 2049 * Return: 0 for success and error value on failure 2050 */ 2051 static int xudc_probe(struct platform_device *pdev) 2052 { 2053 struct device_node *np = pdev->dev.of_node; 2054 struct resource *res; 2055 struct xusb_udc *udc; 2056 int irq; 2057 int ret; 2058 u32 ier; 2059 u8 *buff; 2060 2061 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL); 2062 if (!udc) 2063 return -ENOMEM; 2064 2065 /* Create a dummy request for GET_STATUS, SET_ADDRESS */ 2066 udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req), 2067 GFP_KERNEL); 2068 if (!udc->req) 2069 return -ENOMEM; 2070 2071 buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL); 2072 if (!buff) 2073 return -ENOMEM; 2074 2075 udc->req->usb_req.buf = buff; 2076 2077 /* Map the registers */ 2078 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2079 udc->addr = devm_ioremap_resource(&pdev->dev, res); 2080 if (IS_ERR(udc->addr)) 2081 return PTR_ERR(udc->addr); 2082 2083 irq = platform_get_irq(pdev, 0); 2084 if (irq < 0) { 2085 dev_err(&pdev->dev, "unable to get irq\n"); 2086 return irq; 2087 } 2088 ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0, 2089 dev_name(&pdev->dev), udc); 2090 if (ret < 0) { 2091 dev_dbg(&pdev->dev, "unable to request irq %d", irq); 2092 goto fail; 2093 } 2094 2095 udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma"); 2096 2097 /* Setup gadget structure */ 2098 udc->gadget.ops = &xusb_udc_ops; 2099 udc->gadget.max_speed = USB_SPEED_HIGH; 2100 udc->gadget.speed = USB_SPEED_UNKNOWN; 2101 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb; 2102 udc->gadget.name = driver_name; 2103 2104 spin_lock_init(&udc->lock); 2105 2106 /* Check for IP endianness */ 2107 udc->write_fn = xudc_write32_be; 2108 udc->read_fn = xudc_read32_be; 2109 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J); 2110 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET)) 2111 != TEST_J) { 2112 udc->write_fn = xudc_write32; 2113 udc->read_fn = xudc_read32; 2114 } 2115 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 2116 2117 xudc_eps_init(udc); 2118 2119 /* Set device address to 0.*/ 2120 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 2121 2122 ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2123 if (ret) 2124 goto fail; 2125 2126 udc->dev = &udc->gadget.dev; 2127 2128 /* Enable the interrupts.*/ 2129 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK | 2130 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK | 2131 XUSB_STATUS_SETUP_PACKET_MASK | 2132 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK; 2133 2134 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2135 2136 platform_set_drvdata(pdev, udc); 2137 2138 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n", 2139 driver_name, (u32)res->start, udc->addr, 2140 udc->dma_enabled ? "with DMA" : "without DMA"); 2141 2142 return 0; 2143 fail: 2144 dev_err(&pdev->dev, "probe failed, %d\n", ret); 2145 return ret; 2146 } 2147 2148 /** 2149 * xudc_remove - Releases the resources allocated during the initialization. 2150 * @pdev: pointer to the platform device structure. 2151 * 2152 * Return: 0 always 2153 */ 2154 static int xudc_remove(struct platform_device *pdev) 2155 { 2156 struct xusb_udc *udc = platform_get_drvdata(pdev); 2157 2158 usb_del_gadget_udc(&udc->gadget); 2159 2160 return 0; 2161 } 2162 2163 /* Match table for of_platform binding */ 2164 static const struct of_device_id usb_of_match[] = { 2165 { .compatible = "xlnx,usb2-device-4.00.a", }, 2166 { /* end of list */ }, 2167 }; 2168 MODULE_DEVICE_TABLE(of, usb_of_match); 2169 2170 static struct platform_driver xudc_driver = { 2171 .driver = { 2172 .name = driver_name, 2173 .of_match_table = usb_of_match, 2174 }, 2175 .probe = xudc_probe, 2176 .remove = xudc_remove, 2177 }; 2178 2179 module_platform_driver(xudc_driver); 2180 2181 MODULE_DESCRIPTION("Xilinx udc driver"); 2182 MODULE_AUTHOR("Xilinx, Inc"); 2183 MODULE_LICENSE("GPL"); 2184