1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Xilinx USB peripheral controller driver 4 * 5 * Copyright (C) 2004 by Thomas Rathbone 6 * Copyright (C) 2005 by HP Labs 7 * Copyright (C) 2005 by David Brownell 8 * Copyright (C) 2010 - 2014 Xilinx, Inc. 9 * 10 * Some parts of this driver code is based on the driver for at91-series 11 * USB peripheral controller (at91_udc.c). 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/platform_device.h> 23 #include <linux/prefetch.h> 24 #include <linux/usb/ch9.h> 25 #include <linux/usb/gadget.h> 26 27 /* Register offsets for the USB device.*/ 28 #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */ 29 #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */ 30 #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */ 31 #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */ 32 #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */ 33 #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */ 34 #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */ 35 #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */ 36 #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */ 37 #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */ 38 #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */ 39 #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */ 40 #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */ 41 #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */ 42 #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */ 43 44 /* Endpoint Configuration Space offsets */ 45 #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */ 46 #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */ 47 #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */ 48 49 #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */ 50 #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */ 51 52 /* Interrupt register related masks.*/ 53 #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */ 54 #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */ 55 #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */ 56 #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */ 57 #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */ 58 #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */ 59 #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */ 60 #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */ 61 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */ 62 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */ 63 #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */ 64 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */ 65 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */ 66 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */ 67 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */ 68 #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */ 69 /* Suspend,Reset,Suspend and Disconnect Mask */ 70 #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000 71 /* Buffers completion Mask */ 72 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF 73 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */ 74 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101 75 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */ 76 77 /* Endpoint Configuration Status Register */ 78 #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */ 79 #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */ 80 #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */ 81 82 /* USB device specific global configuration constants.*/ 83 #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */ 84 #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */ 85 /* DPRAM is the source address for DMA transfer */ 86 #define XUSB_DMA_READ_FROM_DPRAM 0x80000000 87 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */ 88 #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */ 89 /* 90 * When this bit is set, the DMA buffer ready bit is set by hardware upon 91 * DMA transfer completion. 92 */ 93 #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */ 94 /* Phase States */ 95 #define SETUP_PHASE 0x0000 /* Setup Phase */ 96 #define DATA_PHASE 0x0001 /* Data Phase */ 97 #define STATUS_PHASE 0x0002 /* Status Phase */ 98 99 #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */ 100 #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */ 101 #define EPNAME_SIZE 4 /* Buffer size for endpoint name */ 102 103 /* container_of helper macros */ 104 #define to_udc(g) container_of((g), struct xusb_udc, gadget) 105 #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb) 106 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req) 107 108 /** 109 * struct xusb_req - Xilinx USB device request structure 110 * @usb_req: Linux usb request structure 111 * @queue: usb device request queue 112 * @ep: pointer to xusb_endpoint structure 113 */ 114 struct xusb_req { 115 struct usb_request usb_req; 116 struct list_head queue; 117 struct xusb_ep *ep; 118 }; 119 120 /** 121 * struct xusb_ep - USB end point structure. 122 * @ep_usb: usb endpoint instance 123 * @queue: endpoint message queue 124 * @udc: xilinx usb peripheral driver instance pointer 125 * @desc: pointer to the usb endpoint descriptor 126 * @rambase: the endpoint buffer address 127 * @offset: the endpoint register offset value 128 * @name: name of the endpoint 129 * @epnumber: endpoint number 130 * @maxpacket: maximum packet size the endpoint can store 131 * @buffer0count: the size of the packet recieved in the first buffer 132 * @buffer1count: the size of the packet received in the second buffer 133 * @curbufnum: current buffer of endpoint that will be processed next 134 * @buffer0ready: the busy state of first buffer 135 * @buffer1ready: the busy state of second buffer 136 * @is_in: endpoint direction (IN or OUT) 137 * @is_iso: endpoint type(isochronous or non isochronous) 138 */ 139 struct xusb_ep { 140 struct usb_ep ep_usb; 141 struct list_head queue; 142 struct xusb_udc *udc; 143 const struct usb_endpoint_descriptor *desc; 144 u32 rambase; 145 u32 offset; 146 char name[4]; 147 u16 epnumber; 148 u16 maxpacket; 149 u16 buffer0count; 150 u16 buffer1count; 151 u8 curbufnum; 152 bool buffer0ready; 153 bool buffer1ready; 154 bool is_in; 155 bool is_iso; 156 }; 157 158 /** 159 * struct xusb_udc - USB peripheral driver structure 160 * @gadget: USB gadget driver instance 161 * @ep: an array of endpoint structures 162 * @driver: pointer to the usb gadget driver instance 163 * @setup: usb_ctrlrequest structure for control requests 164 * @req: pointer to dummy request for get status command 165 * @dev: pointer to device structure in gadget 166 * @usb_state: device in suspended state or not 167 * @remote_wkp: remote wakeup enabled by host 168 * @setupseqtx: tx status 169 * @setupseqrx: rx status 170 * @addr: the usb device base address 171 * @lock: instance of spinlock 172 * @dma_enabled: flag indicating whether the dma is included in the system 173 * @clk: pointer to struct clk 174 * @read_fn: function pointer to read device registers 175 * @write_fn: function pointer to write to device registers 176 */ 177 struct xusb_udc { 178 struct usb_gadget gadget; 179 struct xusb_ep ep[8]; 180 struct usb_gadget_driver *driver; 181 struct usb_ctrlrequest setup; 182 struct xusb_req *req; 183 struct device *dev; 184 u32 usb_state; 185 u32 remote_wkp; 186 u32 setupseqtx; 187 u32 setupseqrx; 188 void __iomem *addr; 189 spinlock_t lock; 190 bool dma_enabled; 191 struct clk *clk; 192 193 unsigned int (*read_fn)(void __iomem *reg); 194 void (*write_fn)(void __iomem *, u32, u32); 195 }; 196 197 /* Endpoint buffer start addresses in the core */ 198 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500, 199 0x1600 }; 200 201 static const char driver_name[] = "xilinx-udc"; 202 static const char ep0name[] = "ep0"; 203 204 /* Control endpoint configuration.*/ 205 static const struct usb_endpoint_descriptor config_bulk_out_desc = { 206 .bLength = USB_DT_ENDPOINT_SIZE, 207 .bDescriptorType = USB_DT_ENDPOINT, 208 .bEndpointAddress = USB_DIR_OUT, 209 .bmAttributes = USB_ENDPOINT_XFER_BULK, 210 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET), 211 }; 212 213 /** 214 * xudc_write32 - little endian write to device registers 215 * @addr: base addr of device registers 216 * @offset: register offset 217 * @val: data to be written 218 */ 219 static void xudc_write32(void __iomem *addr, u32 offset, u32 val) 220 { 221 iowrite32(val, addr + offset); 222 } 223 224 /** 225 * xudc_read32 - little endian read from device registers 226 * @addr: addr of device register 227 * Return: value at addr 228 */ 229 static unsigned int xudc_read32(void __iomem *addr) 230 { 231 return ioread32(addr); 232 } 233 234 /** 235 * xudc_write32_be - big endian write to device registers 236 * @addr: base addr of device registers 237 * @offset: register offset 238 * @val: data to be written 239 */ 240 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val) 241 { 242 iowrite32be(val, addr + offset); 243 } 244 245 /** 246 * xudc_read32_be - big endian read from device registers 247 * @addr: addr of device register 248 * Return: value at addr 249 */ 250 static unsigned int xudc_read32_be(void __iomem *addr) 251 { 252 return ioread32be(addr); 253 } 254 255 /** 256 * xudc_wrstatus - Sets up the usb device status stages. 257 * @udc: pointer to the usb device controller structure. 258 */ 259 static void xudc_wrstatus(struct xusb_udc *udc) 260 { 261 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 262 u32 epcfgreg; 263 264 epcfgreg = udc->read_fn(udc->addr + ep0->offset)| 265 XUSB_EP_CFG_DATA_TOGGLE_MASK; 266 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 267 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0); 268 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 269 } 270 271 /** 272 * xudc_epconfig - Configures the given endpoint. 273 * @ep: pointer to the usb device endpoint structure. 274 * @udc: pointer to the usb peripheral controller structure. 275 * 276 * This function configures a specific endpoint with the given configuration 277 * data. 278 */ 279 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc) 280 { 281 u32 epcfgreg; 282 283 /* 284 * Configure the end point direction, type, Max Packet Size and the 285 * EP buffer location. 286 */ 287 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) | 288 (ep->ep_usb.maxpacket << 15) | (ep->rambase)); 289 udc->write_fn(udc->addr, ep->offset, epcfgreg); 290 291 /* Set the Buffer count and the Buffer ready bits.*/ 292 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, 293 ep->buffer0count); 294 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, 295 ep->buffer1count); 296 if (ep->buffer0ready) 297 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 298 1 << ep->epnumber); 299 if (ep->buffer1ready) 300 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 301 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 302 } 303 304 /** 305 * xudc_start_dma - Starts DMA transfer. 306 * @ep: pointer to the usb device endpoint structure. 307 * @src: DMA source address. 308 * @dst: DMA destination address. 309 * @length: number of bytes to transfer. 310 * 311 * Return: 0 on success, error code on failure 312 * 313 * This function starts DMA transfer by writing to DMA source, 314 * destination and lenth registers. 315 */ 316 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src, 317 dma_addr_t dst, u32 length) 318 { 319 struct xusb_udc *udc = ep->udc; 320 int rc = 0; 321 u32 timeout = 500; 322 u32 reg; 323 324 /* 325 * Set the addresses in the DMA source and 326 * destination registers and then set the length 327 * into the DMA length register. 328 */ 329 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src); 330 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst); 331 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length); 332 333 /* 334 * Wait till DMA transaction is complete and 335 * check whether the DMA transaction was 336 * successful. 337 */ 338 do { 339 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET); 340 if (!(reg & XUSB_DMA_DMASR_BUSY)) 341 break; 342 343 /* 344 * We can't sleep here, because it's also called from 345 * interrupt context. 346 */ 347 timeout--; 348 if (!timeout) { 349 dev_err(udc->dev, "DMA timeout\n"); 350 return -ETIMEDOUT; 351 } 352 udelay(1); 353 } while (1); 354 355 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) & 356 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){ 357 dev_err(udc->dev, "DMA Error\n"); 358 rc = -EINVAL; 359 } 360 361 return rc; 362 } 363 364 /** 365 * xudc_dma_send - Sends IN data using DMA. 366 * @ep: pointer to the usb device endpoint structure. 367 * @req: pointer to the usb request structure. 368 * @buffer: pointer to data to be sent. 369 * @length: number of bytes to send. 370 * 371 * Return: 0 on success, -EAGAIN if no buffer is free and error 372 * code on failure. 373 * 374 * This function sends data using DMA. 375 */ 376 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req, 377 u8 *buffer, u32 length) 378 { 379 u32 *eprambase; 380 dma_addr_t src; 381 dma_addr_t dst; 382 struct xusb_udc *udc = ep->udc; 383 384 src = req->usb_req.dma + req->usb_req.actual; 385 if (req->usb_req.length) 386 dma_sync_single_for_device(udc->dev, src, 387 length, DMA_TO_DEVICE); 388 if (!ep->curbufnum && !ep->buffer0ready) { 389 /* Get the Buffer address and copy the transmit data.*/ 390 eprambase = (u32 __force *)(udc->addr + ep->rambase); 391 dst = virt_to_phys(eprambase); 392 udc->write_fn(udc->addr, ep->offset + 393 XUSB_EP_BUF0COUNT_OFFSET, length); 394 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 395 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber)); 396 ep->buffer0ready = 1; 397 ep->curbufnum = 1; 398 } else if (ep->curbufnum && !ep->buffer1ready) { 399 /* Get the Buffer address and copy the transmit data.*/ 400 eprambase = (u32 __force *)(udc->addr + ep->rambase + 401 ep->ep_usb.maxpacket); 402 dst = virt_to_phys(eprambase); 403 udc->write_fn(udc->addr, ep->offset + 404 XUSB_EP_BUF1COUNT_OFFSET, length); 405 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 406 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber + 407 XUSB_STATUS_EP_BUFF2_SHIFT))); 408 ep->buffer1ready = 1; 409 ep->curbufnum = 0; 410 } else { 411 /* None of ping pong buffers are ready currently .*/ 412 return -EAGAIN; 413 } 414 415 return xudc_start_dma(ep, src, dst, length); 416 } 417 418 /** 419 * xudc_dma_receive - Receives OUT data using DMA. 420 * @ep: pointer to the usb device endpoint structure. 421 * @req: pointer to the usb request structure. 422 * @buffer: pointer to storage buffer of received data. 423 * @length: number of bytes to receive. 424 * 425 * Return: 0 on success, -EAGAIN if no buffer is free and error 426 * code on failure. 427 * 428 * This function receives data using DMA. 429 */ 430 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req, 431 u8 *buffer, u32 length) 432 { 433 u32 *eprambase; 434 dma_addr_t src; 435 dma_addr_t dst; 436 struct xusb_udc *udc = ep->udc; 437 438 dst = req->usb_req.dma + req->usb_req.actual; 439 if (!ep->curbufnum && !ep->buffer0ready) { 440 /* Get the Buffer address and copy the transmit data */ 441 eprambase = (u32 __force *)(udc->addr + ep->rambase); 442 src = virt_to_phys(eprambase); 443 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 444 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 445 (1 << ep->epnumber)); 446 ep->buffer0ready = 1; 447 ep->curbufnum = 1; 448 } else if (ep->curbufnum && !ep->buffer1ready) { 449 /* Get the Buffer address and copy the transmit data */ 450 eprambase = (u32 __force *)(udc->addr + 451 ep->rambase + ep->ep_usb.maxpacket); 452 src = virt_to_phys(eprambase); 453 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 454 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 455 (1 << (ep->epnumber + 456 XUSB_STATUS_EP_BUFF2_SHIFT))); 457 ep->buffer1ready = 1; 458 ep->curbufnum = 0; 459 } else { 460 /* None of the ping-pong buffers are ready currently */ 461 return -EAGAIN; 462 } 463 464 return xudc_start_dma(ep, src, dst, length); 465 } 466 467 /** 468 * xudc_eptxrx - Transmits or receives data to or from an endpoint. 469 * @ep: pointer to the usb endpoint configuration structure. 470 * @req: pointer to the usb request structure. 471 * @bufferptr: pointer to buffer containing the data to be sent. 472 * @bufferlen: The number of data bytes to be sent. 473 * 474 * Return: 0 on success, -EAGAIN if no buffer is free. 475 * 476 * This function copies the transmit/receive data to/from the end point buffer 477 * and enables the buffer for transmission/reception. 478 */ 479 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req, 480 u8 *bufferptr, u32 bufferlen) 481 { 482 u32 *eprambase; 483 u32 bytestosend; 484 int rc = 0; 485 struct xusb_udc *udc = ep->udc; 486 487 bytestosend = bufferlen; 488 if (udc->dma_enabled) { 489 if (ep->is_in) 490 rc = xudc_dma_send(ep, req, bufferptr, bufferlen); 491 else 492 rc = xudc_dma_receive(ep, req, bufferptr, bufferlen); 493 return rc; 494 } 495 /* Put the transmit buffer into the correct ping-pong buffer.*/ 496 if (!ep->curbufnum && !ep->buffer0ready) { 497 /* Get the Buffer address and copy the transmit data.*/ 498 eprambase = (u32 __force *)(udc->addr + ep->rambase); 499 if (ep->is_in) { 500 memcpy_toio((void __iomem *)eprambase, bufferptr, 501 bytestosend); 502 udc->write_fn(udc->addr, ep->offset + 503 XUSB_EP_BUF0COUNT_OFFSET, bufferlen); 504 } else { 505 memcpy_toio((void __iomem *)bufferptr, eprambase, 506 bytestosend); 507 } 508 /* 509 * Enable the buffer for transmission. 510 */ 511 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 512 1 << ep->epnumber); 513 ep->buffer0ready = 1; 514 ep->curbufnum = 1; 515 } else if (ep->curbufnum && !ep->buffer1ready) { 516 /* Get the Buffer address and copy the transmit data.*/ 517 eprambase = (u32 __force *)(udc->addr + ep->rambase + 518 ep->ep_usb.maxpacket); 519 if (ep->is_in) { 520 memcpy_toio((void __iomem *)eprambase, bufferptr, 521 bytestosend); 522 udc->write_fn(udc->addr, ep->offset + 523 XUSB_EP_BUF1COUNT_OFFSET, bufferlen); 524 } else { 525 memcpy_toio((void __iomem *)bufferptr, eprambase, 526 bytestosend); 527 } 528 /* 529 * Enable the buffer for transmission. 530 */ 531 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 532 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 533 ep->buffer1ready = 1; 534 ep->curbufnum = 0; 535 } else { 536 /* None of the ping-pong buffers are ready currently */ 537 return -EAGAIN; 538 } 539 return rc; 540 } 541 542 /** 543 * xudc_done - Exeutes the endpoint data transfer completion tasks. 544 * @ep: pointer to the usb device endpoint structure. 545 * @req: pointer to the usb request structure. 546 * @status: Status of the data transfer. 547 * 548 * Deletes the message from the queue and updates data transfer completion 549 * status. 550 */ 551 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status) 552 { 553 struct xusb_udc *udc = ep->udc; 554 555 list_del_init(&req->queue); 556 557 if (req->usb_req.status == -EINPROGRESS) 558 req->usb_req.status = status; 559 else 560 status = req->usb_req.status; 561 562 if (status && status != -ESHUTDOWN) 563 dev_dbg(udc->dev, "%s done %p, status %d\n", 564 ep->ep_usb.name, req, status); 565 /* unmap request if DMA is present*/ 566 if (udc->dma_enabled && ep->epnumber && req->usb_req.length) 567 usb_gadget_unmap_request(&udc->gadget, &req->usb_req, 568 ep->is_in); 569 570 if (req->usb_req.complete) { 571 spin_unlock(&udc->lock); 572 req->usb_req.complete(&ep->ep_usb, &req->usb_req); 573 spin_lock(&udc->lock); 574 } 575 } 576 577 /** 578 * xudc_read_fifo - Reads the data from the given endpoint buffer. 579 * @ep: pointer to the usb device endpoint structure. 580 * @req: pointer to the usb request structure. 581 * 582 * Return: 0 if request is completed and -EAGAIN if not completed. 583 * 584 * Pulls OUT packet data from the endpoint buffer. 585 */ 586 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req) 587 { 588 u8 *buf; 589 u32 is_short, count, bufferspace; 590 u8 bufoffset; 591 u8 two_pkts = 0; 592 int ret; 593 int retval = -EAGAIN; 594 struct xusb_udc *udc = ep->udc; 595 596 if (ep->buffer0ready && ep->buffer1ready) { 597 dev_dbg(udc->dev, "Packet NOT ready!\n"); 598 return retval; 599 } 600 top: 601 if (ep->curbufnum) 602 bufoffset = XUSB_EP_BUF1COUNT_OFFSET; 603 else 604 bufoffset = XUSB_EP_BUF0COUNT_OFFSET; 605 606 count = udc->read_fn(udc->addr + ep->offset + bufoffset); 607 608 if (!ep->buffer0ready && !ep->buffer1ready) 609 two_pkts = 1; 610 611 buf = req->usb_req.buf + req->usb_req.actual; 612 prefetchw(buf); 613 bufferspace = req->usb_req.length - req->usb_req.actual; 614 is_short = count < ep->ep_usb.maxpacket; 615 616 if (unlikely(!bufferspace)) { 617 /* 618 * This happens when the driver's buffer 619 * is smaller than what the host sent. 620 * discard the extra data. 621 */ 622 if (req->usb_req.status != -EOVERFLOW) 623 dev_dbg(udc->dev, "%s overflow %d\n", 624 ep->ep_usb.name, count); 625 req->usb_req.status = -EOVERFLOW; 626 xudc_done(ep, req, -EOVERFLOW); 627 return 0; 628 } 629 630 ret = xudc_eptxrx(ep, req, buf, count); 631 switch (ret) { 632 case 0: 633 req->usb_req.actual += min(count, bufferspace); 634 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n", 635 ep->ep_usb.name, count, is_short ? "/S" : "", req, 636 req->usb_req.actual, req->usb_req.length); 637 638 /* Completion */ 639 if ((req->usb_req.actual == req->usb_req.length) || is_short) { 640 if (udc->dma_enabled && req->usb_req.length) 641 dma_sync_single_for_cpu(udc->dev, 642 req->usb_req.dma, 643 req->usb_req.actual, 644 DMA_FROM_DEVICE); 645 xudc_done(ep, req, 0); 646 return 0; 647 } 648 if (two_pkts) { 649 two_pkts = 0; 650 goto top; 651 } 652 break; 653 case -EAGAIN: 654 dev_dbg(udc->dev, "receive busy\n"); 655 break; 656 case -EINVAL: 657 case -ETIMEDOUT: 658 /* DMA error, dequeue the request */ 659 xudc_done(ep, req, -ECONNRESET); 660 retval = 0; 661 break; 662 } 663 664 return retval; 665 } 666 667 /** 668 * xudc_write_fifo - Writes data into the given endpoint buffer. 669 * @ep: pointer to the usb device endpoint structure. 670 * @req: pointer to the usb request structure. 671 * 672 * Return: 0 if request is completed and -EAGAIN if not completed. 673 * 674 * Loads endpoint buffer for an IN packet. 675 */ 676 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req) 677 { 678 u32 max; 679 u32 length; 680 int ret; 681 int retval = -EAGAIN; 682 struct xusb_udc *udc = ep->udc; 683 int is_last, is_short = 0; 684 u8 *buf; 685 686 max = le16_to_cpu(ep->desc->wMaxPacketSize); 687 buf = req->usb_req.buf + req->usb_req.actual; 688 prefetch(buf); 689 length = req->usb_req.length - req->usb_req.actual; 690 length = min(length, max); 691 692 ret = xudc_eptxrx(ep, req, buf, length); 693 switch (ret) { 694 case 0: 695 req->usb_req.actual += length; 696 if (unlikely(length != max)) { 697 is_last = is_short = 1; 698 } else { 699 if (likely(req->usb_req.length != 700 req->usb_req.actual) || req->usb_req.zero) 701 is_last = 0; 702 else 703 is_last = 1; 704 } 705 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n", 706 __func__, ep->ep_usb.name, length, is_last ? "/L" : "", 707 is_short ? "/S" : "", 708 req->usb_req.length - req->usb_req.actual, req); 709 /* completion */ 710 if (is_last) { 711 xudc_done(ep, req, 0); 712 retval = 0; 713 } 714 break; 715 case -EAGAIN: 716 dev_dbg(udc->dev, "Send busy\n"); 717 break; 718 case -EINVAL: 719 case -ETIMEDOUT: 720 /* DMA error, dequeue the request */ 721 xudc_done(ep, req, -ECONNRESET); 722 retval = 0; 723 break; 724 } 725 726 return retval; 727 } 728 729 /** 730 * xudc_nuke - Cleans up the data transfer message list. 731 * @ep: pointer to the usb device endpoint structure. 732 * @status: Status of the data transfer. 733 */ 734 static void xudc_nuke(struct xusb_ep *ep, int status) 735 { 736 struct xusb_req *req; 737 738 while (!list_empty(&ep->queue)) { 739 req = list_first_entry(&ep->queue, struct xusb_req, queue); 740 xudc_done(ep, req, status); 741 } 742 } 743 744 /** 745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint. 746 * @_ep: pointer to the usb device endpoint structure. 747 * @value: value to indicate stall/unstall. 748 * 749 * Return: 0 for success and error value on failure 750 */ 751 static int xudc_ep_set_halt(struct usb_ep *_ep, int value) 752 { 753 struct xusb_ep *ep = to_xusb_ep(_ep); 754 struct xusb_udc *udc; 755 unsigned long flags; 756 u32 epcfgreg; 757 758 if (!_ep || (!ep->desc && ep->epnumber)) { 759 pr_debug("%s: bad ep or descriptor\n", __func__); 760 return -EINVAL; 761 } 762 udc = ep->udc; 763 764 if (ep->is_in && (!list_empty(&ep->queue)) && value) { 765 dev_dbg(udc->dev, "requests pending can't halt\n"); 766 return -EAGAIN; 767 } 768 769 if (ep->buffer0ready || ep->buffer1ready) { 770 dev_dbg(udc->dev, "HW buffers busy can't halt\n"); 771 return -EAGAIN; 772 } 773 774 spin_lock_irqsave(&udc->lock, flags); 775 776 if (value) { 777 /* Stall the device.*/ 778 epcfgreg = udc->read_fn(udc->addr + ep->offset); 779 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 780 udc->write_fn(udc->addr, ep->offset, epcfgreg); 781 } else { 782 /* Unstall the device.*/ 783 epcfgreg = udc->read_fn(udc->addr + ep->offset); 784 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 785 udc->write_fn(udc->addr, ep->offset, epcfgreg); 786 if (ep->epnumber) { 787 /* Reset the toggle bit.*/ 788 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset); 789 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 790 udc->write_fn(udc->addr, ep->offset, epcfgreg); 791 } 792 } 793 794 spin_unlock_irqrestore(&udc->lock, flags); 795 return 0; 796 } 797 798 /** 799 * __xudc_ep_enable - Enables the given endpoint. 800 * @ep: pointer to the xusb endpoint structure. 801 * @desc: pointer to usb endpoint descriptor. 802 * 803 * Return: 0 for success and error value on failure 804 */ 805 static int __xudc_ep_enable(struct xusb_ep *ep, 806 const struct usb_endpoint_descriptor *desc) 807 { 808 struct xusb_udc *udc = ep->udc; 809 u32 tmp; 810 u32 epcfg; 811 u32 ier; 812 u16 maxpacket; 813 814 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0); 815 /* Bit 3...0:endpoint number */ 816 ep->epnumber = (desc->bEndpointAddress & 0x0f); 817 ep->desc = desc; 818 ep->ep_usb.desc = desc; 819 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 820 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize); 821 822 switch (tmp) { 823 case USB_ENDPOINT_XFER_CONTROL: 824 dev_dbg(udc->dev, "only one control endpoint\n"); 825 /* NON- ISO */ 826 ep->is_iso = 0; 827 return -EINVAL; 828 case USB_ENDPOINT_XFER_INT: 829 /* NON- ISO */ 830 ep->is_iso = 0; 831 if (maxpacket > 64) { 832 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 833 return -EINVAL; 834 } 835 break; 836 case USB_ENDPOINT_XFER_BULK: 837 /* NON- ISO */ 838 ep->is_iso = 0; 839 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 && 840 maxpacket <= 512)) { 841 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 842 return -EINVAL; 843 } 844 break; 845 case USB_ENDPOINT_XFER_ISOC: 846 /* ISO */ 847 ep->is_iso = 1; 848 break; 849 } 850 851 ep->buffer0ready = false; 852 ep->buffer1ready = false; 853 ep->curbufnum = 0; 854 ep->rambase = rambase[ep->epnumber]; 855 xudc_epconfig(ep, udc); 856 857 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n", 858 ep->epnumber, maxpacket); 859 860 /* Enable the End point.*/ 861 epcfg = udc->read_fn(udc->addr + ep->offset); 862 epcfg |= XUSB_EP_CFG_VALID_MASK; 863 udc->write_fn(udc->addr, ep->offset, epcfg); 864 if (ep->epnumber) 865 ep->rambase <<= 2; 866 867 /* Enable buffer completion interrupts for endpoint */ 868 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 869 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber); 870 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 871 872 /* for OUT endpoint set buffers ready to receive */ 873 if (ep->epnumber && !ep->is_in) { 874 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 875 1 << ep->epnumber); 876 ep->buffer0ready = true; 877 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 878 (1 << (ep->epnumber + 879 XUSB_STATUS_EP_BUFF2_SHIFT))); 880 ep->buffer1ready = true; 881 } 882 883 return 0; 884 } 885 886 /** 887 * xudc_ep_enable - Enables the given endpoint. 888 * @_ep: pointer to the usb endpoint structure. 889 * @desc: pointer to usb endpoint descriptor. 890 * 891 * Return: 0 for success and error value on failure 892 */ 893 static int xudc_ep_enable(struct usb_ep *_ep, 894 const struct usb_endpoint_descriptor *desc) 895 { 896 struct xusb_ep *ep; 897 struct xusb_udc *udc; 898 unsigned long flags; 899 int ret; 900 901 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) { 902 pr_debug("%s: bad ep or descriptor\n", __func__); 903 return -EINVAL; 904 } 905 906 ep = to_xusb_ep(_ep); 907 udc = ep->udc; 908 909 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 910 dev_dbg(udc->dev, "bogus device state\n"); 911 return -ESHUTDOWN; 912 } 913 914 spin_lock_irqsave(&udc->lock, flags); 915 ret = __xudc_ep_enable(ep, desc); 916 spin_unlock_irqrestore(&udc->lock, flags); 917 918 return ret; 919 } 920 921 /** 922 * xudc_ep_disable - Disables the given endpoint. 923 * @_ep: pointer to the usb endpoint structure. 924 * 925 * Return: 0 for success and error value on failure 926 */ 927 static int xudc_ep_disable(struct usb_ep *_ep) 928 { 929 struct xusb_ep *ep; 930 unsigned long flags; 931 u32 epcfg; 932 struct xusb_udc *udc; 933 934 if (!_ep) { 935 pr_debug("%s: invalid ep\n", __func__); 936 return -EINVAL; 937 } 938 939 ep = to_xusb_ep(_ep); 940 udc = ep->udc; 941 942 spin_lock_irqsave(&udc->lock, flags); 943 944 xudc_nuke(ep, -ESHUTDOWN); 945 946 /* Restore the endpoint's pristine config */ 947 ep->desc = NULL; 948 ep->ep_usb.desc = NULL; 949 950 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber); 951 /* Disable the endpoint.*/ 952 epcfg = udc->read_fn(udc->addr + ep->offset); 953 epcfg &= ~XUSB_EP_CFG_VALID_MASK; 954 udc->write_fn(udc->addr, ep->offset, epcfg); 955 956 spin_unlock_irqrestore(&udc->lock, flags); 957 return 0; 958 } 959 960 /** 961 * xudc_ep_alloc_request - Initializes the request queue. 962 * @_ep: pointer to the usb endpoint structure. 963 * @gfp_flags: Flags related to the request call. 964 * 965 * Return: pointer to request structure on success and a NULL on failure. 966 */ 967 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep, 968 gfp_t gfp_flags) 969 { 970 struct xusb_ep *ep = to_xusb_ep(_ep); 971 struct xusb_req *req; 972 973 req = kzalloc(sizeof(*req), gfp_flags); 974 if (!req) 975 return NULL; 976 977 req->ep = ep; 978 INIT_LIST_HEAD(&req->queue); 979 return &req->usb_req; 980 } 981 982 /** 983 * xudc_free_request - Releases the request from queue. 984 * @_ep: pointer to the usb device endpoint structure. 985 * @_req: pointer to the usb request structure. 986 */ 987 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req) 988 { 989 struct xusb_req *req = to_xusb_req(_req); 990 991 kfree(req); 992 } 993 994 /** 995 * __xudc_ep0_queue - Adds the request to endpoint 0 queue. 996 * @ep0: pointer to the xusb endpoint 0 structure. 997 * @req: pointer to the xusb request structure. 998 * 999 * Return: 0 for success and error value on failure 1000 */ 1001 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req) 1002 { 1003 struct xusb_udc *udc = ep0->udc; 1004 u32 length; 1005 u8 *corebuf; 1006 1007 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1008 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1009 return -EINVAL; 1010 } 1011 if (!list_empty(&ep0->queue)) { 1012 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__); 1013 return -EBUSY; 1014 } 1015 1016 req->usb_req.status = -EINPROGRESS; 1017 req->usb_req.actual = 0; 1018 1019 list_add_tail(&req->queue, &ep0->queue); 1020 1021 if (udc->setup.bRequestType & USB_DIR_IN) { 1022 prefetch(req->usb_req.buf); 1023 length = req->usb_req.length; 1024 corebuf = (void __force *) ((ep0->rambase << 2) + 1025 udc->addr); 1026 length = req->usb_req.actual = min_t(u32, length, 1027 EP0_MAX_PACKET); 1028 memcpy_toio((void __iomem *)corebuf, req->usb_req.buf, length); 1029 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length); 1030 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1031 } else { 1032 if (udc->setup.wLength) { 1033 /* Enable EP0 buffer to receive data */ 1034 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1035 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1036 } else { 1037 xudc_wrstatus(udc); 1038 } 1039 } 1040 1041 return 0; 1042 } 1043 1044 /** 1045 * xudc_ep0_queue - Adds the request to endpoint 0 queue. 1046 * @_ep: pointer to the usb endpoint 0 structure. 1047 * @_req: pointer to the usb request structure. 1048 * @gfp_flags: Flags related to the request call. 1049 * 1050 * Return: 0 for success and error value on failure 1051 */ 1052 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req, 1053 gfp_t gfp_flags) 1054 { 1055 struct xusb_req *req = to_xusb_req(_req); 1056 struct xusb_ep *ep0 = to_xusb_ep(_ep); 1057 struct xusb_udc *udc = ep0->udc; 1058 unsigned long flags; 1059 int ret; 1060 1061 spin_lock_irqsave(&udc->lock, flags); 1062 ret = __xudc_ep0_queue(ep0, req); 1063 spin_unlock_irqrestore(&udc->lock, flags); 1064 1065 return ret; 1066 } 1067 1068 /** 1069 * xudc_ep_queue - Adds the request to endpoint queue. 1070 * @_ep: pointer to the usb endpoint structure. 1071 * @_req: pointer to the usb request structure. 1072 * @gfp_flags: Flags related to the request call. 1073 * 1074 * Return: 0 for success and error value on failure 1075 */ 1076 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1077 gfp_t gfp_flags) 1078 { 1079 struct xusb_req *req = to_xusb_req(_req); 1080 struct xusb_ep *ep = to_xusb_ep(_ep); 1081 struct xusb_udc *udc = ep->udc; 1082 int ret; 1083 unsigned long flags; 1084 1085 if (!ep->desc) { 1086 dev_dbg(udc->dev, "%s: queuing request to disabled %s\n", 1087 __func__, ep->name); 1088 return -ESHUTDOWN; 1089 } 1090 1091 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1092 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1093 return -EINVAL; 1094 } 1095 1096 spin_lock_irqsave(&udc->lock, flags); 1097 1098 _req->status = -EINPROGRESS; 1099 _req->actual = 0; 1100 1101 if (udc->dma_enabled) { 1102 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req, 1103 ep->is_in); 1104 if (ret) { 1105 dev_dbg(udc->dev, "gadget_map failed ep%d\n", 1106 ep->epnumber); 1107 spin_unlock_irqrestore(&udc->lock, flags); 1108 return -EAGAIN; 1109 } 1110 } 1111 1112 if (list_empty(&ep->queue)) { 1113 if (ep->is_in) { 1114 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n"); 1115 if (!xudc_write_fifo(ep, req)) 1116 req = NULL; 1117 } else { 1118 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n"); 1119 if (!xudc_read_fifo(ep, req)) 1120 req = NULL; 1121 } 1122 } 1123 1124 if (req != NULL) 1125 list_add_tail(&req->queue, &ep->queue); 1126 1127 spin_unlock_irqrestore(&udc->lock, flags); 1128 return 0; 1129 } 1130 1131 /** 1132 * xudc_ep_dequeue - Removes the request from the queue. 1133 * @_ep: pointer to the usb device endpoint structure. 1134 * @_req: pointer to the usb request structure. 1135 * 1136 * Return: 0 for success and error value on failure 1137 */ 1138 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1139 { 1140 struct xusb_ep *ep = to_xusb_ep(_ep); 1141 struct xusb_req *req = NULL; 1142 struct xusb_req *iter; 1143 struct xusb_udc *udc = ep->udc; 1144 unsigned long flags; 1145 1146 spin_lock_irqsave(&udc->lock, flags); 1147 /* Make sure it's actually queued on this endpoint */ 1148 list_for_each_entry(iter, &ep->queue, queue) { 1149 if (&iter->usb_req != _req) 1150 continue; 1151 req = iter; 1152 break; 1153 } 1154 if (!req) { 1155 spin_unlock_irqrestore(&udc->lock, flags); 1156 return -EINVAL; 1157 } 1158 xudc_done(ep, req, -ECONNRESET); 1159 spin_unlock_irqrestore(&udc->lock, flags); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * xudc_ep0_enable - Enables the given endpoint. 1166 * @ep: pointer to the usb endpoint structure. 1167 * @desc: pointer to usb endpoint descriptor. 1168 * 1169 * Return: error always. 1170 * 1171 * endpoint 0 enable should not be called by gadget layer. 1172 */ 1173 static int xudc_ep0_enable(struct usb_ep *ep, 1174 const struct usb_endpoint_descriptor *desc) 1175 { 1176 return -EINVAL; 1177 } 1178 1179 /** 1180 * xudc_ep0_disable - Disables the given endpoint. 1181 * @ep: pointer to the usb endpoint structure. 1182 * 1183 * Return: error always. 1184 * 1185 * endpoint 0 disable should not be called by gadget layer. 1186 */ 1187 static int xudc_ep0_disable(struct usb_ep *ep) 1188 { 1189 return -EINVAL; 1190 } 1191 1192 static const struct usb_ep_ops xusb_ep0_ops = { 1193 .enable = xudc_ep0_enable, 1194 .disable = xudc_ep0_disable, 1195 .alloc_request = xudc_ep_alloc_request, 1196 .free_request = xudc_free_request, 1197 .queue = xudc_ep0_queue, 1198 .dequeue = xudc_ep_dequeue, 1199 .set_halt = xudc_ep_set_halt, 1200 }; 1201 1202 static const struct usb_ep_ops xusb_ep_ops = { 1203 .enable = xudc_ep_enable, 1204 .disable = xudc_ep_disable, 1205 .alloc_request = xudc_ep_alloc_request, 1206 .free_request = xudc_free_request, 1207 .queue = xudc_ep_queue, 1208 .dequeue = xudc_ep_dequeue, 1209 .set_halt = xudc_ep_set_halt, 1210 }; 1211 1212 /** 1213 * xudc_get_frame - Reads the current usb frame number. 1214 * @gadget: pointer to the usb gadget structure. 1215 * 1216 * Return: current frame number for success and error value on failure. 1217 */ 1218 static int xudc_get_frame(struct usb_gadget *gadget) 1219 { 1220 struct xusb_udc *udc; 1221 int frame; 1222 1223 if (!gadget) 1224 return -ENODEV; 1225 1226 udc = to_udc(gadget); 1227 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET); 1228 return frame; 1229 } 1230 1231 /** 1232 * xudc_wakeup - Send remote wakeup signal to host 1233 * @gadget: pointer to the usb gadget structure. 1234 * 1235 * Return: 0 on success and error on failure 1236 */ 1237 static int xudc_wakeup(struct usb_gadget *gadget) 1238 { 1239 struct xusb_udc *udc = to_udc(gadget); 1240 u32 crtlreg; 1241 int status = -EINVAL; 1242 unsigned long flags; 1243 1244 spin_lock_irqsave(&udc->lock, flags); 1245 1246 /* Remote wake up not enabled by host */ 1247 if (!udc->remote_wkp) 1248 goto done; 1249 1250 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1251 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK; 1252 /* set remote wake up bit */ 1253 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1254 /* 1255 * wait for a while and reset remote wake up bit since this bit 1256 * is not cleared by HW after sending remote wakeup to host. 1257 */ 1258 mdelay(2); 1259 1260 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK; 1261 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1262 status = 0; 1263 done: 1264 spin_unlock_irqrestore(&udc->lock, flags); 1265 return status; 1266 } 1267 1268 /** 1269 * xudc_pullup - start/stop USB traffic 1270 * @gadget: pointer to the usb gadget structure. 1271 * @is_on: flag to start or stop 1272 * 1273 * Return: 0 always 1274 * 1275 * This function starts/stops SIE engine of IP based on is_on. 1276 */ 1277 static int xudc_pullup(struct usb_gadget *gadget, int is_on) 1278 { 1279 struct xusb_udc *udc = to_udc(gadget); 1280 unsigned long flags; 1281 u32 crtlreg; 1282 1283 spin_lock_irqsave(&udc->lock, flags); 1284 1285 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1286 if (is_on) 1287 crtlreg |= XUSB_CONTROL_USB_READY_MASK; 1288 else 1289 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; 1290 1291 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1292 1293 spin_unlock_irqrestore(&udc->lock, flags); 1294 1295 return 0; 1296 } 1297 1298 /** 1299 * xudc_eps_init - initialize endpoints. 1300 * @udc: pointer to the usb device controller structure. 1301 */ 1302 static void xudc_eps_init(struct xusb_udc *udc) 1303 { 1304 u32 ep_number; 1305 1306 INIT_LIST_HEAD(&udc->gadget.ep_list); 1307 1308 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) { 1309 struct xusb_ep *ep = &udc->ep[ep_number]; 1310 1311 if (ep_number) { 1312 list_add_tail(&ep->ep_usb.ep_list, 1313 &udc->gadget.ep_list); 1314 usb_ep_set_maxpacket_limit(&ep->ep_usb, 1315 (unsigned short) ~0); 1316 snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number); 1317 ep->ep_usb.name = ep->name; 1318 ep->ep_usb.ops = &xusb_ep_ops; 1319 1320 ep->ep_usb.caps.type_iso = true; 1321 ep->ep_usb.caps.type_bulk = true; 1322 ep->ep_usb.caps.type_int = true; 1323 } else { 1324 ep->ep_usb.name = ep0name; 1325 usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET); 1326 ep->ep_usb.ops = &xusb_ep0_ops; 1327 1328 ep->ep_usb.caps.type_control = true; 1329 } 1330 1331 ep->ep_usb.caps.dir_in = true; 1332 ep->ep_usb.caps.dir_out = true; 1333 1334 ep->udc = udc; 1335 ep->epnumber = ep_number; 1336 ep->desc = NULL; 1337 /* 1338 * The configuration register address offset between 1339 * each endpoint is 0x10. 1340 */ 1341 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10); 1342 ep->is_in = 0; 1343 ep->is_iso = 0; 1344 ep->maxpacket = 0; 1345 xudc_epconfig(ep, udc); 1346 1347 /* Initialize one queue per endpoint */ 1348 INIT_LIST_HEAD(&ep->queue); 1349 } 1350 } 1351 1352 /** 1353 * xudc_stop_activity - Stops any further activity on the device. 1354 * @udc: pointer to the usb device controller structure. 1355 */ 1356 static void xudc_stop_activity(struct xusb_udc *udc) 1357 { 1358 int i; 1359 struct xusb_ep *ep; 1360 1361 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1362 ep = &udc->ep[i]; 1363 xudc_nuke(ep, -ESHUTDOWN); 1364 } 1365 } 1366 1367 /** 1368 * xudc_start - Starts the device. 1369 * @gadget: pointer to the usb gadget structure 1370 * @driver: pointer to gadget driver structure 1371 * 1372 * Return: zero on success and error on failure 1373 */ 1374 static int xudc_start(struct usb_gadget *gadget, 1375 struct usb_gadget_driver *driver) 1376 { 1377 struct xusb_udc *udc = to_udc(gadget); 1378 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1379 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc; 1380 unsigned long flags; 1381 int ret = 0; 1382 1383 spin_lock_irqsave(&udc->lock, flags); 1384 1385 if (udc->driver) { 1386 dev_err(udc->dev, "%s is already bound to %s\n", 1387 udc->gadget.name, udc->driver->driver.name); 1388 ret = -EBUSY; 1389 goto err; 1390 } 1391 1392 /* hook up the driver */ 1393 udc->driver = driver; 1394 udc->gadget.speed = driver->max_speed; 1395 1396 /* Enable the control endpoint. */ 1397 ret = __xudc_ep_enable(ep0, desc); 1398 1399 /* Set device address and remote wakeup to 0 */ 1400 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1401 udc->remote_wkp = 0; 1402 err: 1403 spin_unlock_irqrestore(&udc->lock, flags); 1404 return ret; 1405 } 1406 1407 /** 1408 * xudc_stop - stops the device. 1409 * @gadget: pointer to the usb gadget structure 1410 * 1411 * Return: zero always 1412 */ 1413 static int xudc_stop(struct usb_gadget *gadget) 1414 { 1415 struct xusb_udc *udc = to_udc(gadget); 1416 unsigned long flags; 1417 1418 spin_lock_irqsave(&udc->lock, flags); 1419 1420 udc->gadget.speed = USB_SPEED_UNKNOWN; 1421 udc->driver = NULL; 1422 1423 /* Set device address and remote wakeup to 0 */ 1424 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1425 udc->remote_wkp = 0; 1426 1427 xudc_stop_activity(udc); 1428 1429 spin_unlock_irqrestore(&udc->lock, flags); 1430 1431 return 0; 1432 } 1433 1434 static const struct usb_gadget_ops xusb_udc_ops = { 1435 .get_frame = xudc_get_frame, 1436 .wakeup = xudc_wakeup, 1437 .pullup = xudc_pullup, 1438 .udc_start = xudc_start, 1439 .udc_stop = xudc_stop, 1440 }; 1441 1442 /** 1443 * xudc_clear_stall_all_ep - clears stall of every endpoint. 1444 * @udc: pointer to the udc structure. 1445 */ 1446 static void xudc_clear_stall_all_ep(struct xusb_udc *udc) 1447 { 1448 struct xusb_ep *ep; 1449 u32 epcfgreg; 1450 int i; 1451 1452 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1453 ep = &udc->ep[i]; 1454 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1455 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1456 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1457 if (ep->epnumber) { 1458 /* Reset the toggle bit.*/ 1459 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1460 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 1461 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1462 } 1463 } 1464 } 1465 1466 /** 1467 * xudc_startup_handler - The usb device controller interrupt handler. 1468 * @udc: pointer to the udc structure. 1469 * @intrstatus: The mask value containing the interrupt sources. 1470 * 1471 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts. 1472 */ 1473 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus) 1474 { 1475 u32 intrreg; 1476 1477 if (intrstatus & XUSB_STATUS_RESET_MASK) { 1478 1479 dev_dbg(udc->dev, "Reset\n"); 1480 1481 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK) 1482 udc->gadget.speed = USB_SPEED_HIGH; 1483 else 1484 udc->gadget.speed = USB_SPEED_FULL; 1485 1486 xudc_stop_activity(udc); 1487 xudc_clear_stall_all_ep(udc); 1488 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 1489 1490 /* Set device address and remote wakeup to 0 */ 1491 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1492 udc->remote_wkp = 0; 1493 1494 /* Enable the suspend, resume and disconnect */ 1495 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1496 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK | 1497 XUSB_STATUS_DISCONNECT_MASK; 1498 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1499 } 1500 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) { 1501 1502 dev_dbg(udc->dev, "Suspend\n"); 1503 1504 /* Enable the reset, resume and disconnect */ 1505 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1506 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1507 XUSB_STATUS_DISCONNECT_MASK; 1508 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1509 1510 udc->usb_state = USB_STATE_SUSPENDED; 1511 1512 if (udc->driver->suspend) { 1513 spin_unlock(&udc->lock); 1514 udc->driver->suspend(&udc->gadget); 1515 spin_lock(&udc->lock); 1516 } 1517 } 1518 if (intrstatus & XUSB_STATUS_RESUME_MASK) { 1519 bool condition = (udc->usb_state != USB_STATE_SUSPENDED); 1520 1521 dev_WARN_ONCE(udc->dev, condition, 1522 "Resume IRQ while not suspended\n"); 1523 1524 dev_dbg(udc->dev, "Resume\n"); 1525 1526 /* Enable the reset, suspend and disconnect */ 1527 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1528 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK | 1529 XUSB_STATUS_DISCONNECT_MASK; 1530 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1531 1532 udc->usb_state = 0; 1533 1534 if (udc->driver->resume) { 1535 spin_unlock(&udc->lock); 1536 udc->driver->resume(&udc->gadget); 1537 spin_lock(&udc->lock); 1538 } 1539 } 1540 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) { 1541 1542 dev_dbg(udc->dev, "Disconnect\n"); 1543 1544 /* Enable the reset, resume and suspend */ 1545 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1546 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1547 XUSB_STATUS_SUSPEND_MASK; 1548 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1549 1550 if (udc->driver && udc->driver->disconnect) { 1551 spin_unlock(&udc->lock); 1552 udc->driver->disconnect(&udc->gadget); 1553 spin_lock(&udc->lock); 1554 } 1555 } 1556 } 1557 1558 /** 1559 * xudc_ep0_stall - Stall endpoint zero. 1560 * @udc: pointer to the udc structure. 1561 * 1562 * This function stalls endpoint zero. 1563 */ 1564 static void xudc_ep0_stall(struct xusb_udc *udc) 1565 { 1566 u32 epcfgreg; 1567 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1568 1569 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1570 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1571 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1572 } 1573 1574 /** 1575 * xudc_setaddress - executes SET_ADDRESS command 1576 * @udc: pointer to the udc structure. 1577 * 1578 * This function executes USB SET_ADDRESS command 1579 */ 1580 static void xudc_setaddress(struct xusb_udc *udc) 1581 { 1582 struct xusb_ep *ep0 = &udc->ep[0]; 1583 struct xusb_req *req = udc->req; 1584 int ret; 1585 1586 req->usb_req.length = 0; 1587 ret = __xudc_ep0_queue(ep0, req); 1588 if (ret == 0) 1589 return; 1590 1591 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n"); 1592 xudc_ep0_stall(udc); 1593 } 1594 1595 /** 1596 * xudc_getstatus - executes GET_STATUS command 1597 * @udc: pointer to the udc structure. 1598 * 1599 * This function executes USB GET_STATUS command 1600 */ 1601 static void xudc_getstatus(struct xusb_udc *udc) 1602 { 1603 struct xusb_ep *ep0 = &udc->ep[0]; 1604 struct xusb_req *req = udc->req; 1605 struct xusb_ep *target_ep; 1606 u16 status = 0; 1607 u32 epcfgreg; 1608 int epnum; 1609 u32 halt; 1610 int ret; 1611 1612 switch (udc->setup.bRequestType & USB_RECIP_MASK) { 1613 case USB_RECIP_DEVICE: 1614 /* Get device status */ 1615 status = 1 << USB_DEVICE_SELF_POWERED; 1616 if (udc->remote_wkp) 1617 status |= (1 << USB_DEVICE_REMOTE_WAKEUP); 1618 break; 1619 case USB_RECIP_INTERFACE: 1620 break; 1621 case USB_RECIP_ENDPOINT: 1622 epnum = le16_to_cpu(udc->setup.wIndex) & USB_ENDPOINT_NUMBER_MASK; 1623 if (epnum >= XUSB_MAX_ENDPOINTS) 1624 goto stall; 1625 target_ep = &udc->ep[epnum]; 1626 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1627 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK; 1628 if (le16_to_cpu(udc->setup.wIndex) & USB_DIR_IN) { 1629 if (!target_ep->is_in) 1630 goto stall; 1631 } else { 1632 if (target_ep->is_in) 1633 goto stall; 1634 } 1635 if (halt) 1636 status = 1 << USB_ENDPOINT_HALT; 1637 break; 1638 default: 1639 goto stall; 1640 } 1641 1642 req->usb_req.length = 2; 1643 *(__le16 *)req->usb_req.buf = cpu_to_le16(status); 1644 ret = __xudc_ep0_queue(ep0, req); 1645 if (ret == 0) 1646 return; 1647 stall: 1648 dev_err(udc->dev, "Can't respond to getstatus request\n"); 1649 xudc_ep0_stall(udc); 1650 } 1651 1652 /** 1653 * xudc_set_clear_feature - Executes the set feature and clear feature commands. 1654 * @udc: pointer to the usb device controller structure. 1655 * 1656 * Processes the SET_FEATURE and CLEAR_FEATURE commands. 1657 */ 1658 static void xudc_set_clear_feature(struct xusb_udc *udc) 1659 { 1660 struct xusb_ep *ep0 = &udc->ep[0]; 1661 struct xusb_req *req = udc->req; 1662 struct xusb_ep *target_ep; 1663 u8 endpoint; 1664 u8 outinbit; 1665 u32 epcfgreg; 1666 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0); 1667 int ret; 1668 1669 switch (udc->setup.bRequestType) { 1670 case USB_RECIP_DEVICE: 1671 switch (le16_to_cpu(udc->setup.wValue)) { 1672 case USB_DEVICE_TEST_MODE: 1673 /* 1674 * The Test Mode will be executed 1675 * after the status phase. 1676 */ 1677 break; 1678 case USB_DEVICE_REMOTE_WAKEUP: 1679 if (flag) 1680 udc->remote_wkp = 1; 1681 else 1682 udc->remote_wkp = 0; 1683 break; 1684 default: 1685 xudc_ep0_stall(udc); 1686 break; 1687 } 1688 break; 1689 case USB_RECIP_ENDPOINT: 1690 if (!udc->setup.wValue) { 1691 endpoint = le16_to_cpu(udc->setup.wIndex) & 1692 USB_ENDPOINT_NUMBER_MASK; 1693 if (endpoint >= XUSB_MAX_ENDPOINTS) { 1694 xudc_ep0_stall(udc); 1695 return; 1696 } 1697 target_ep = &udc->ep[endpoint]; 1698 outinbit = le16_to_cpu(udc->setup.wIndex) & 1699 USB_ENDPOINT_DIR_MASK; 1700 outinbit = outinbit >> 7; 1701 1702 /* Make sure direction matches.*/ 1703 if (outinbit != target_ep->is_in) { 1704 xudc_ep0_stall(udc); 1705 return; 1706 } 1707 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1708 if (!endpoint) { 1709 /* Clear the stall.*/ 1710 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1711 udc->write_fn(udc->addr, 1712 target_ep->offset, epcfgreg); 1713 } else { 1714 if (flag) { 1715 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1716 udc->write_fn(udc->addr, 1717 target_ep->offset, 1718 epcfgreg); 1719 } else { 1720 /* Unstall the endpoint.*/ 1721 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK | 1722 XUSB_EP_CFG_DATA_TOGGLE_MASK); 1723 udc->write_fn(udc->addr, 1724 target_ep->offset, 1725 epcfgreg); 1726 } 1727 } 1728 } 1729 break; 1730 default: 1731 xudc_ep0_stall(udc); 1732 return; 1733 } 1734 1735 req->usb_req.length = 0; 1736 ret = __xudc_ep0_queue(ep0, req); 1737 if (ret == 0) 1738 return; 1739 1740 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n"); 1741 xudc_ep0_stall(udc); 1742 } 1743 1744 /** 1745 * xudc_handle_setup - Processes the setup packet. 1746 * @udc: pointer to the usb device controller structure. 1747 * 1748 * Process setup packet and delegate to gadget layer. 1749 */ 1750 static void xudc_handle_setup(struct xusb_udc *udc) 1751 __must_hold(&udc->lock) 1752 { 1753 struct xusb_ep *ep0 = &udc->ep[0]; 1754 struct usb_ctrlrequest setup; 1755 u32 *ep0rambase; 1756 1757 /* Load up the chapter 9 command buffer.*/ 1758 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET); 1759 memcpy_toio((void __iomem *)&setup, ep0rambase, 8); 1760 1761 udc->setup = setup; 1762 udc->setup.wValue = cpu_to_le16((u16 __force)setup.wValue); 1763 udc->setup.wIndex = cpu_to_le16((u16 __force)setup.wIndex); 1764 udc->setup.wLength = cpu_to_le16((u16 __force)setup.wLength); 1765 1766 /* Clear previous requests */ 1767 xudc_nuke(ep0, -ECONNRESET); 1768 1769 if (udc->setup.bRequestType & USB_DIR_IN) { 1770 /* Execute the get command.*/ 1771 udc->setupseqrx = STATUS_PHASE; 1772 udc->setupseqtx = DATA_PHASE; 1773 } else { 1774 /* Execute the put command.*/ 1775 udc->setupseqrx = DATA_PHASE; 1776 udc->setupseqtx = STATUS_PHASE; 1777 } 1778 1779 switch (udc->setup.bRequest) { 1780 case USB_REQ_GET_STATUS: 1781 /* Data+Status phase form udc */ 1782 if ((udc->setup.bRequestType & 1783 (USB_DIR_IN | USB_TYPE_MASK)) != 1784 (USB_DIR_IN | USB_TYPE_STANDARD)) 1785 break; 1786 xudc_getstatus(udc); 1787 return; 1788 case USB_REQ_SET_ADDRESS: 1789 /* Status phase from udc */ 1790 if (udc->setup.bRequestType != (USB_DIR_OUT | 1791 USB_TYPE_STANDARD | USB_RECIP_DEVICE)) 1792 break; 1793 xudc_setaddress(udc); 1794 return; 1795 case USB_REQ_CLEAR_FEATURE: 1796 case USB_REQ_SET_FEATURE: 1797 /* Requests with no data phase, status phase from udc */ 1798 if ((udc->setup.bRequestType & USB_TYPE_MASK) 1799 != USB_TYPE_STANDARD) 1800 break; 1801 xudc_set_clear_feature(udc); 1802 return; 1803 default: 1804 break; 1805 } 1806 1807 spin_unlock(&udc->lock); 1808 if (udc->driver->setup(&udc->gadget, &setup) < 0) 1809 xudc_ep0_stall(udc); 1810 spin_lock(&udc->lock); 1811 } 1812 1813 /** 1814 * xudc_ep0_out - Processes the endpoint 0 OUT token. 1815 * @udc: pointer to the usb device controller structure. 1816 */ 1817 static void xudc_ep0_out(struct xusb_udc *udc) 1818 { 1819 struct xusb_ep *ep0 = &udc->ep[0]; 1820 struct xusb_req *req; 1821 u8 *ep0rambase; 1822 unsigned int bytes_to_rx; 1823 void *buffer; 1824 1825 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1826 1827 switch (udc->setupseqrx) { 1828 case STATUS_PHASE: 1829 /* 1830 * This resets both state machines for the next 1831 * Setup packet. 1832 */ 1833 udc->setupseqrx = SETUP_PHASE; 1834 udc->setupseqtx = SETUP_PHASE; 1835 req->usb_req.actual = req->usb_req.length; 1836 xudc_done(ep0, req, 0); 1837 break; 1838 case DATA_PHASE: 1839 bytes_to_rx = udc->read_fn(udc->addr + 1840 XUSB_EP_BUF0COUNT_OFFSET); 1841 /* Copy the data to be received from the DPRAM. */ 1842 ep0rambase = (u8 __force *) (udc->addr + 1843 (ep0->rambase << 2)); 1844 buffer = req->usb_req.buf + req->usb_req.actual; 1845 req->usb_req.actual = req->usb_req.actual + bytes_to_rx; 1846 memcpy_toio((void __iomem *)buffer, ep0rambase, bytes_to_rx); 1847 1848 if (req->usb_req.length == req->usb_req.actual) { 1849 /* Data transfer completed get ready for Status stage */ 1850 xudc_wrstatus(udc); 1851 } else { 1852 /* Enable EP0 buffer to receive data */ 1853 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1854 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1855 } 1856 break; 1857 default: 1858 break; 1859 } 1860 } 1861 1862 /** 1863 * xudc_ep0_in - Processes the endpoint 0 IN token. 1864 * @udc: pointer to the usb device controller structure. 1865 */ 1866 static void xudc_ep0_in(struct xusb_udc *udc) 1867 { 1868 struct xusb_ep *ep0 = &udc->ep[0]; 1869 struct xusb_req *req; 1870 unsigned int bytes_to_tx; 1871 void *buffer; 1872 u32 epcfgreg; 1873 u16 count = 0; 1874 u16 length; 1875 u8 *ep0rambase; 1876 u8 test_mode = le16_to_cpu(udc->setup.wIndex) >> 8; 1877 1878 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1879 bytes_to_tx = req->usb_req.length - req->usb_req.actual; 1880 1881 switch (udc->setupseqtx) { 1882 case STATUS_PHASE: 1883 switch (udc->setup.bRequest) { 1884 case USB_REQ_SET_ADDRESS: 1885 /* Set the address of the device.*/ 1886 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 1887 le16_to_cpu(udc->setup.wValue)); 1888 break; 1889 case USB_REQ_SET_FEATURE: 1890 if (udc->setup.bRequestType == 1891 USB_RECIP_DEVICE) { 1892 if (le16_to_cpu(udc->setup.wValue) == 1893 USB_DEVICE_TEST_MODE) 1894 udc->write_fn(udc->addr, 1895 XUSB_TESTMODE_OFFSET, 1896 test_mode); 1897 } 1898 break; 1899 } 1900 req->usb_req.actual = req->usb_req.length; 1901 xudc_done(ep0, req, 0); 1902 break; 1903 case DATA_PHASE: 1904 if (!bytes_to_tx) { 1905 /* 1906 * We're done with data transfer, next 1907 * will be zero length OUT with data toggle of 1908 * 1. Setup data_toggle. 1909 */ 1910 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1911 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK; 1912 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1913 udc->setupseqtx = STATUS_PHASE; 1914 } else { 1915 length = count = min_t(u32, bytes_to_tx, 1916 EP0_MAX_PACKET); 1917 /* Copy the data to be transmitted into the DPRAM. */ 1918 ep0rambase = (u8 __force *) (udc->addr + 1919 (ep0->rambase << 2)); 1920 buffer = req->usb_req.buf + req->usb_req.actual; 1921 req->usb_req.actual = req->usb_req.actual + length; 1922 memcpy_toio((void __iomem *)ep0rambase, buffer, length); 1923 } 1924 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count); 1925 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1926 break; 1927 default: 1928 break; 1929 } 1930 } 1931 1932 /** 1933 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler. 1934 * @udc: pointer to the udc structure. 1935 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0. 1936 * 1937 * Processes the commands received during enumeration phase. 1938 */ 1939 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus) 1940 { 1941 1942 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) { 1943 xudc_handle_setup(udc); 1944 } else { 1945 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK) 1946 xudc_ep0_out(udc); 1947 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK) 1948 xudc_ep0_in(udc); 1949 } 1950 } 1951 1952 /** 1953 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler. 1954 * @udc: pointer to the udc structure. 1955 * @epnum: End point number for which the interrupt is to be processed 1956 * @intrstatus: mask value for interrupt sources of endpoints other 1957 * than endpoint 0. 1958 * 1959 * Processes the buffer completion interrupts. 1960 */ 1961 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum, 1962 u32 intrstatus) 1963 { 1964 1965 struct xusb_req *req; 1966 struct xusb_ep *ep; 1967 1968 ep = &udc->ep[epnum]; 1969 /* Process the End point interrupts.*/ 1970 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum)) 1971 ep->buffer0ready = 0; 1972 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum)) 1973 ep->buffer1ready = false; 1974 1975 if (list_empty(&ep->queue)) 1976 return; 1977 1978 req = list_first_entry(&ep->queue, struct xusb_req, queue); 1979 1980 if (ep->is_in) 1981 xudc_write_fifo(ep, req); 1982 else 1983 xudc_read_fifo(ep, req); 1984 } 1985 1986 /** 1987 * xudc_irq - The main interrupt handler. 1988 * @irq: The interrupt number. 1989 * @_udc: pointer to the usb device controller structure. 1990 * 1991 * Return: IRQ_HANDLED after the interrupt is handled. 1992 */ 1993 static irqreturn_t xudc_irq(int irq, void *_udc) 1994 { 1995 struct xusb_udc *udc = _udc; 1996 u32 intrstatus; 1997 u32 ier; 1998 u8 index; 1999 u32 bufintr; 2000 unsigned long flags; 2001 2002 spin_lock_irqsave(&udc->lock, flags); 2003 2004 /* 2005 * Event interrupts are level sensitive hence first disable 2006 * IER, read ISR and figure out active interrupts. 2007 */ 2008 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2009 ier &= ~XUSB_STATUS_INTR_EVENT_MASK; 2010 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2011 2012 /* Read the Interrupt Status Register.*/ 2013 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET); 2014 2015 /* Call the handler for the event interrupt.*/ 2016 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) { 2017 /* 2018 * Check if there is any action to be done for : 2019 * - USB Reset received {XUSB_STATUS_RESET_MASK} 2020 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK} 2021 * - USB Resume received {XUSB_STATUS_RESUME_MASK} 2022 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK} 2023 */ 2024 xudc_startup_handler(udc, intrstatus); 2025 } 2026 2027 /* Check the buffer completion interrupts */ 2028 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) { 2029 /* Enable Reset, Suspend, Resume and Disconnect */ 2030 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2031 ier |= XUSB_STATUS_INTR_EVENT_MASK; 2032 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2033 2034 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK) 2035 xudc_ctrl_ep_handler(udc, intrstatus); 2036 2037 for (index = 1; index < 8; index++) { 2038 bufintr = ((intrstatus & 2039 (XUSB_STATUS_EP1_BUFF1_COMP_MASK << 2040 (index - 1))) || (intrstatus & 2041 (XUSB_STATUS_EP1_BUFF2_COMP_MASK << 2042 (index - 1)))); 2043 if (bufintr) { 2044 xudc_nonctrl_ep_handler(udc, index, 2045 intrstatus); 2046 } 2047 } 2048 } 2049 2050 spin_unlock_irqrestore(&udc->lock, flags); 2051 return IRQ_HANDLED; 2052 } 2053 2054 /** 2055 * xudc_probe - The device probe function for driver initialization. 2056 * @pdev: pointer to the platform device structure. 2057 * 2058 * Return: 0 for success and error value on failure 2059 */ 2060 static int xudc_probe(struct platform_device *pdev) 2061 { 2062 struct device_node *np = pdev->dev.of_node; 2063 struct resource *res; 2064 struct xusb_udc *udc; 2065 int irq; 2066 int ret; 2067 u32 ier; 2068 u8 *buff; 2069 2070 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL); 2071 if (!udc) 2072 return -ENOMEM; 2073 2074 /* Create a dummy request for GET_STATUS, SET_ADDRESS */ 2075 udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req), 2076 GFP_KERNEL); 2077 if (!udc->req) 2078 return -ENOMEM; 2079 2080 buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL); 2081 if (!buff) 2082 return -ENOMEM; 2083 2084 udc->req->usb_req.buf = buff; 2085 2086 /* Map the registers */ 2087 udc->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2088 if (IS_ERR(udc->addr)) 2089 return PTR_ERR(udc->addr); 2090 2091 irq = platform_get_irq(pdev, 0); 2092 if (irq < 0) 2093 return irq; 2094 ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0, 2095 dev_name(&pdev->dev), udc); 2096 if (ret < 0) { 2097 dev_dbg(&pdev->dev, "unable to request irq %d", irq); 2098 goto fail; 2099 } 2100 2101 udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma"); 2102 2103 /* Setup gadget structure */ 2104 udc->gadget.ops = &xusb_udc_ops; 2105 udc->gadget.max_speed = USB_SPEED_HIGH; 2106 udc->gadget.speed = USB_SPEED_UNKNOWN; 2107 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb; 2108 udc->gadget.name = driver_name; 2109 2110 udc->clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); 2111 if (IS_ERR(udc->clk)) { 2112 if (PTR_ERR(udc->clk) != -ENOENT) { 2113 ret = PTR_ERR(udc->clk); 2114 goto fail; 2115 } 2116 2117 /* 2118 * Clock framework support is optional, continue on, 2119 * anyways if we don't find a matching clock 2120 */ 2121 dev_warn(&pdev->dev, "s_axi_aclk clock property is not found\n"); 2122 udc->clk = NULL; 2123 } 2124 2125 ret = clk_prepare_enable(udc->clk); 2126 if (ret) { 2127 dev_err(&pdev->dev, "Unable to enable clock.\n"); 2128 return ret; 2129 } 2130 2131 spin_lock_init(&udc->lock); 2132 2133 /* Check for IP endianness */ 2134 udc->write_fn = xudc_write32_be; 2135 udc->read_fn = xudc_read32_be; 2136 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J); 2137 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET)) 2138 != USB_TEST_J) { 2139 udc->write_fn = xudc_write32; 2140 udc->read_fn = xudc_read32; 2141 } 2142 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 2143 2144 xudc_eps_init(udc); 2145 2146 /* Set device address to 0.*/ 2147 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 2148 2149 ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2150 if (ret) 2151 goto err_disable_unprepare_clk; 2152 2153 udc->dev = &udc->gadget.dev; 2154 2155 /* Enable the interrupts.*/ 2156 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK | 2157 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK | 2158 XUSB_STATUS_SETUP_PACKET_MASK | 2159 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK; 2160 2161 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2162 2163 platform_set_drvdata(pdev, udc); 2164 2165 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n", 2166 driver_name, (u32)res->start, udc->addr, 2167 udc->dma_enabled ? "with DMA" : "without DMA"); 2168 2169 return 0; 2170 2171 err_disable_unprepare_clk: 2172 clk_disable_unprepare(udc->clk); 2173 fail: 2174 dev_err(&pdev->dev, "probe failed, %d\n", ret); 2175 return ret; 2176 } 2177 2178 /** 2179 * xudc_remove - Releases the resources allocated during the initialization. 2180 * @pdev: pointer to the platform device structure. 2181 * 2182 * Return: 0 always 2183 */ 2184 static void xudc_remove(struct platform_device *pdev) 2185 { 2186 struct xusb_udc *udc = platform_get_drvdata(pdev); 2187 2188 usb_del_gadget_udc(&udc->gadget); 2189 clk_disable_unprepare(udc->clk); 2190 } 2191 2192 #ifdef CONFIG_PM_SLEEP 2193 static int xudc_suspend(struct device *dev) 2194 { 2195 struct xusb_udc *udc; 2196 u32 crtlreg; 2197 unsigned long flags; 2198 2199 udc = dev_get_drvdata(dev); 2200 2201 spin_lock_irqsave(&udc->lock, flags); 2202 2203 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 2204 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; 2205 2206 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 2207 2208 spin_unlock_irqrestore(&udc->lock, flags); 2209 if (udc->driver && udc->driver->suspend) 2210 udc->driver->suspend(&udc->gadget); 2211 2212 clk_disable(udc->clk); 2213 2214 return 0; 2215 } 2216 2217 static int xudc_resume(struct device *dev) 2218 { 2219 struct xusb_udc *udc; 2220 u32 crtlreg; 2221 unsigned long flags; 2222 int ret; 2223 2224 udc = dev_get_drvdata(dev); 2225 2226 ret = clk_enable(udc->clk); 2227 if (ret < 0) 2228 return ret; 2229 2230 spin_lock_irqsave(&udc->lock, flags); 2231 2232 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 2233 crtlreg |= XUSB_CONTROL_USB_READY_MASK; 2234 2235 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 2236 2237 spin_unlock_irqrestore(&udc->lock, flags); 2238 2239 return 0; 2240 } 2241 #endif /* CONFIG_PM_SLEEP */ 2242 2243 static const struct dev_pm_ops xudc_pm_ops = { 2244 SET_SYSTEM_SLEEP_PM_OPS(xudc_suspend, xudc_resume) 2245 }; 2246 2247 /* Match table for of_platform binding */ 2248 static const struct of_device_id usb_of_match[] = { 2249 { .compatible = "xlnx,usb2-device-4.00.a", }, 2250 { /* end of list */ }, 2251 }; 2252 MODULE_DEVICE_TABLE(of, usb_of_match); 2253 2254 static struct platform_driver xudc_driver = { 2255 .driver = { 2256 .name = driver_name, 2257 .of_match_table = usb_of_match, 2258 .pm = &xudc_pm_ops, 2259 }, 2260 .probe = xudc_probe, 2261 .remove_new = xudc_remove, 2262 }; 2263 2264 module_platform_driver(xudc_driver); 2265 2266 MODULE_DESCRIPTION("Xilinx udc driver"); 2267 MODULE_AUTHOR("Xilinx, Inc"); 2268 MODULE_LICENSE("GPL"); 2269