1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NVIDIA Tegra XUSB device mode controller 4 * 5 * Copyright (c) 2013-2022, NVIDIA CORPORATION. All rights reserved. 6 * Copyright (c) 2015, Google Inc. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/interrupt.h> 15 #include <linux/iopoll.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/of_device.h> 20 #include <linux/phy/phy.h> 21 #include <linux/phy/tegra/xusb.h> 22 #include <linux/pm_domain.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/reset.h> 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/otg.h> 30 #include <linux/usb/role.h> 31 #include <linux/usb/phy.h> 32 #include <linux/workqueue.h> 33 34 /* XUSB_DEV registers */ 35 #define DB 0x004 36 #define DB_TARGET_MASK GENMASK(15, 8) 37 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK) 38 #define DB_STREAMID_MASK GENMASK(31, 16) 39 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK) 40 #define ERSTSZ 0x008 41 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16) 42 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0) 43 #define ERSTXBALO(x) (0x010 + 8 * (x)) 44 #define ERSTXBAHI(x) (0x014 + 8 * (x)) 45 #define ERDPLO 0x020 46 #define ERDPLO_EHB BIT(3) 47 #define ERDPHI 0x024 48 #define EREPLO 0x028 49 #define EREPLO_ECS BIT(0) 50 #define EREPLO_SEGI BIT(1) 51 #define EREPHI 0x02c 52 #define CTRL 0x030 53 #define CTRL_RUN BIT(0) 54 #define CTRL_LSE BIT(1) 55 #define CTRL_IE BIT(4) 56 #define CTRL_SMI_EVT BIT(5) 57 #define CTRL_SMI_DSE BIT(6) 58 #define CTRL_EWE BIT(7) 59 #define CTRL_DEVADDR_MASK GENMASK(30, 24) 60 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK) 61 #define CTRL_ENABLE BIT(31) 62 #define ST 0x034 63 #define ST_RC BIT(0) 64 #define ST_IP BIT(4) 65 #define RT_IMOD 0x038 66 #define RT_IMOD_IMODI_MASK GENMASK(15, 0) 67 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK) 68 #define RT_IMOD_IMODC_MASK GENMASK(31, 16) 69 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK) 70 #define PORTSC 0x03c 71 #define PORTSC_CCS BIT(0) 72 #define PORTSC_PED BIT(1) 73 #define PORTSC_PR BIT(4) 74 #define PORTSC_PLS_SHIFT 5 75 #define PORTSC_PLS_MASK GENMASK(8, 5) 76 #define PORTSC_PLS_U0 0x0 77 #define PORTSC_PLS_U2 0x2 78 #define PORTSC_PLS_U3 0x3 79 #define PORTSC_PLS_DISABLED 0x4 80 #define PORTSC_PLS_RXDETECT 0x5 81 #define PORTSC_PLS_INACTIVE 0x6 82 #define PORTSC_PLS_RESUME 0xf 83 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK) 84 #define PORTSC_PS_SHIFT 10 85 #define PORTSC_PS_MASK GENMASK(13, 10) 86 #define PORTSC_PS_UNDEFINED 0x0 87 #define PORTSC_PS_FS 0x1 88 #define PORTSC_PS_LS 0x2 89 #define PORTSC_PS_HS 0x3 90 #define PORTSC_PS_SS 0x4 91 #define PORTSC_LWS BIT(16) 92 #define PORTSC_CSC BIT(17) 93 #define PORTSC_WRC BIT(19) 94 #define PORTSC_PRC BIT(21) 95 #define PORTSC_PLC BIT(22) 96 #define PORTSC_CEC BIT(23) 97 #define PORTSC_WPR BIT(30) 98 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \ 99 PORTSC_PLC | PORTSC_CEC) 100 #define ECPLO 0x040 101 #define ECPHI 0x044 102 #define MFINDEX 0x048 103 #define MFINDEX_FRAME_SHIFT 3 104 #define MFINDEX_FRAME_MASK GENMASK(13, 3) 105 #define PORTPM 0x04c 106 #define PORTPM_L1S_MASK GENMASK(1, 0) 107 #define PORTPM_L1S_DROP 0x0 108 #define PORTPM_L1S_ACCEPT 0x1 109 #define PORTPM_L1S_NYET 0x2 110 #define PORTPM_L1S_STALL 0x3 111 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK) 112 #define PORTPM_RWE BIT(3) 113 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8) 114 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16) 115 #define PORTPM_FLA BIT(24) 116 #define PORTPM_VBA BIT(25) 117 #define PORTPM_WOC BIT(26) 118 #define PORTPM_WOD BIT(27) 119 #define PORTPM_U1E BIT(28) 120 #define PORTPM_U2E BIT(29) 121 #define PORTPM_FRWE BIT(30) 122 #define PORTPM_PNG_CYA BIT(31) 123 #define EP_HALT 0x050 124 #define EP_PAUSE 0x054 125 #define EP_RELOAD 0x058 126 #define EP_STCHG 0x05c 127 #define DEVNOTIF_LO 0x064 128 #define DEVNOTIF_LO_TRIG BIT(0) 129 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4) 130 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK) 131 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1 132 #define DEVNOTIF_HI 0x068 133 #define PORTHALT 0x06c 134 #define PORTHALT_HALT_LTSSM BIT(0) 135 #define PORTHALT_HALT_REJECT BIT(1) 136 #define PORTHALT_STCHG_REQ BIT(20) 137 #define PORTHALT_STCHG_INTR_EN BIT(24) 138 #define PORT_TM 0x070 139 #define EP_THREAD_ACTIVE 0x074 140 #define EP_STOPPED 0x078 141 #define HSFSPI_COUNT0 0x100 142 #define HSFSPI_COUNT13 0x134 143 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0) 144 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \ 145 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK) 146 #define BLCG 0x840 147 #define SSPX_CORE_CNT0 0x610 148 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0) 149 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK) 150 #define SSPX_CORE_CNT30 0x688 151 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0) 152 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \ 153 SSPX_CORE_CNT30_LMPITP_TIMER_MASK) 154 #define SSPX_CORE_CNT32 0x690 155 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0) 156 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \ 157 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK) 158 #define SSPX_CORE_CNT56 0x6fc 159 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0) 160 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \ 161 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK) 162 #define SSPX_CORE_CNT57 0x700 163 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0) 164 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \ 165 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK) 166 #define SSPX_CORE_CNT65 0x720 167 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0) 168 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \ 169 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK) 170 #define SSPX_CORE_CNT66 0x724 171 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0) 172 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \ 173 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK) 174 #define SSPX_CORE_CNT67 0x728 175 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0) 176 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \ 177 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK) 178 #define SSPX_CORE_CNT72 0x73c 179 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0) 180 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \ 181 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK) 182 #define SSPX_CORE_PADCTL4 0x750 183 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0) 184 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \ 185 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK) 186 #define BLCG_DFPCI BIT(0) 187 #define BLCG_UFPCI BIT(1) 188 #define BLCG_FE BIT(2) 189 #define BLCG_COREPLL_PWRDN BIT(8) 190 #define BLCG_IOPLL_0_PWRDN BIT(9) 191 #define BLCG_IOPLL_1_PWRDN BIT(10) 192 #define BLCG_IOPLL_2_PWRDN BIT(11) 193 #define BLCG_ALL 0x1ff 194 #define CFG_DEV_SSPI_XFER 0x858 195 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0) 196 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \ 197 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK) 198 #define CFG_DEV_FE 0x85c 199 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0) 200 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1 201 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2 202 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK) 203 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29) 204 205 /* FPCI registers */ 206 #define XUSB_DEV_CFG_1 0x004 207 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0) 208 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1) 209 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2) 210 #define XUSB_DEV_CFG_4 0x010 211 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15) 212 #define XUSB_DEV_CFG_5 0x014 213 214 /* IPFS registers */ 215 #define XUSB_DEV_CONFIGURATION_0 0x180 216 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0) 217 #define XUSB_DEV_INTR_MASK_0 0x188 218 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16) 219 220 struct tegra_xudc_ep_context { 221 __le32 info0; 222 __le32 info1; 223 __le32 deq_lo; 224 __le32 deq_hi; 225 __le32 tx_info; 226 __le32 rsvd[11]; 227 }; 228 229 #define EP_STATE_DISABLED 0 230 #define EP_STATE_RUNNING 1 231 #define EP_STATE_HALTED 2 232 #define EP_STATE_STOPPED 3 233 #define EP_STATE_ERROR 4 234 235 #define EP_TYPE_INVALID 0 236 #define EP_TYPE_ISOCH_OUT 1 237 #define EP_TYPE_BULK_OUT 2 238 #define EP_TYPE_INTERRUPT_OUT 3 239 #define EP_TYPE_CONTROL 4 240 #define EP_TYPE_ISCOH_IN 5 241 #define EP_TYPE_BULK_IN 6 242 #define EP_TYPE_INTERRUPT_IN 7 243 244 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \ 245 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \ 246 { \ 247 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \ 248 } \ 249 static inline void \ 250 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \ 251 { \ 252 u32 tmp; \ 253 \ 254 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \ 255 tmp |= (val & (mask)) << (shift); \ 256 ctx->member = cpu_to_le32(tmp); \ 257 } 258 259 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7) 260 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3) 261 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f) 262 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1) 263 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff) 264 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3) 265 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7) 266 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1) 267 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff) 268 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff) 269 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1) 270 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff) 271 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff) 272 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff) 273 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff) 274 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff) 275 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1) 276 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1) 277 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1) 278 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f) 279 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3) 280 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff) 281 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f) 282 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f) 283 284 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx) 285 { 286 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) | 287 (ep_ctx_read_deq_lo(ctx) << 4); 288 } 289 290 static inline void 291 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr) 292 { 293 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4); 294 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr)); 295 } 296 297 struct tegra_xudc_trb { 298 __le32 data_lo; 299 __le32 data_hi; 300 __le32 status; 301 __le32 control; 302 }; 303 304 #define TRB_TYPE_RSVD 0 305 #define TRB_TYPE_NORMAL 1 306 #define TRB_TYPE_SETUP_STAGE 2 307 #define TRB_TYPE_DATA_STAGE 3 308 #define TRB_TYPE_STATUS_STAGE 4 309 #define TRB_TYPE_ISOCH 5 310 #define TRB_TYPE_LINK 6 311 #define TRB_TYPE_TRANSFER_EVENT 32 312 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34 313 #define TRB_TYPE_STREAM 48 314 #define TRB_TYPE_SETUP_PACKET_EVENT 63 315 316 #define TRB_CMPL_CODE_INVALID 0 317 #define TRB_CMPL_CODE_SUCCESS 1 318 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2 319 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3 320 #define TRB_CMPL_CODE_USB_TRANS_ERR 4 321 #define TRB_CMPL_CODE_TRB_ERR 5 322 #define TRB_CMPL_CODE_STALL 6 323 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10 324 #define TRB_CMPL_CODE_SHORT_PACKET 13 325 #define TRB_CMPL_CODE_RING_UNDERRUN 14 326 #define TRB_CMPL_CODE_RING_OVERRUN 15 327 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21 328 #define TRB_CMPL_CODE_STOPPED 26 329 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31 330 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219 331 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220 332 #define TRB_CMPL_CODE_HOST_REJECTED 221 333 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222 334 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223 335 336 #define BUILD_TRB_RW(name, member, shift, mask) \ 337 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \ 338 { \ 339 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \ 340 } \ 341 static inline void \ 342 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \ 343 { \ 344 u32 tmp; \ 345 \ 346 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \ 347 tmp |= (val & (mask)) << (shift); \ 348 trb->member = cpu_to_le32(tmp); \ 349 } 350 351 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff) 352 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff) 353 BUILD_TRB_RW(seq_num, status, 0, 0xffff) 354 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff) 355 BUILD_TRB_RW(td_size, status, 17, 0x1f) 356 BUILD_TRB_RW(cmpl_code, status, 24, 0xff) 357 BUILD_TRB_RW(cycle, control, 0, 0x1) 358 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1) 359 BUILD_TRB_RW(isp, control, 2, 0x1) 360 BUILD_TRB_RW(chain, control, 4, 0x1) 361 BUILD_TRB_RW(ioc, control, 5, 0x1) 362 BUILD_TRB_RW(type, control, 10, 0x3f) 363 BUILD_TRB_RW(stream_id, control, 16, 0xffff) 364 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f) 365 BUILD_TRB_RW(tlbpc, control, 16, 0xf) 366 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1) 367 BUILD_TRB_RW(frame_id, control, 20, 0x7ff) 368 BUILD_TRB_RW(sia, control, 31, 0x1) 369 370 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb) 371 { 372 return ((u64)trb_read_data_hi(trb) << 32) | 373 trb_read_data_lo(trb); 374 } 375 376 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr) 377 { 378 trb_write_data_lo(trb, lower_32_bits(addr)); 379 trb_write_data_hi(trb, upper_32_bits(addr)); 380 } 381 382 struct tegra_xudc_request { 383 struct usb_request usb_req; 384 385 size_t buf_queued; 386 unsigned int trbs_queued; 387 unsigned int trbs_needed; 388 bool need_zlp; 389 390 struct tegra_xudc_trb *first_trb; 391 struct tegra_xudc_trb *last_trb; 392 393 struct list_head list; 394 }; 395 396 struct tegra_xudc_ep { 397 struct tegra_xudc *xudc; 398 struct usb_ep usb_ep; 399 unsigned int index; 400 char name[8]; 401 402 struct tegra_xudc_ep_context *context; 403 404 #define XUDC_TRANSFER_RING_SIZE 64 405 struct tegra_xudc_trb *transfer_ring; 406 dma_addr_t transfer_ring_phys; 407 408 unsigned int enq_ptr; 409 unsigned int deq_ptr; 410 bool pcs; 411 bool ring_full; 412 bool stream_rejected; 413 414 struct list_head queue; 415 const struct usb_endpoint_descriptor *desc; 416 const struct usb_ss_ep_comp_descriptor *comp_desc; 417 }; 418 419 struct tegra_xudc_sel_timing { 420 __u8 u1sel; 421 __u8 u1pel; 422 __le16 u2sel; 423 __le16 u2pel; 424 }; 425 426 enum tegra_xudc_setup_state { 427 WAIT_FOR_SETUP, 428 DATA_STAGE_XFER, 429 DATA_STAGE_RECV, 430 STATUS_STAGE_XFER, 431 STATUS_STAGE_RECV, 432 }; 433 434 struct tegra_xudc_setup_packet { 435 struct usb_ctrlrequest ctrl_req; 436 unsigned int seq_num; 437 }; 438 439 struct tegra_xudc_save_regs { 440 u32 ctrl; 441 u32 portpm; 442 }; 443 444 struct tegra_xudc { 445 struct device *dev; 446 const struct tegra_xudc_soc *soc; 447 struct tegra_xusb_padctl *padctl; 448 449 spinlock_t lock; 450 451 struct usb_gadget gadget; 452 struct usb_gadget_driver *driver; 453 454 #define XUDC_NR_EVENT_RINGS 2 455 #define XUDC_EVENT_RING_SIZE 4096 456 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS]; 457 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS]; 458 unsigned int event_ring_index; 459 unsigned int event_ring_deq_ptr; 460 bool ccs; 461 462 #define XUDC_NR_EPS 32 463 struct tegra_xudc_ep ep[XUDC_NR_EPS]; 464 struct tegra_xudc_ep_context *ep_context; 465 dma_addr_t ep_context_phys; 466 467 struct device *genpd_dev_device; 468 struct device *genpd_dev_ss; 469 struct device_link *genpd_dl_device; 470 struct device_link *genpd_dl_ss; 471 472 struct dma_pool *transfer_ring_pool; 473 474 bool queued_setup_packet; 475 struct tegra_xudc_setup_packet setup_packet; 476 enum tegra_xudc_setup_state setup_state; 477 u16 setup_seq_num; 478 479 u16 dev_addr; 480 u16 isoch_delay; 481 struct tegra_xudc_sel_timing sel_timing; 482 u8 test_mode_pattern; 483 u16 status_buf; 484 struct tegra_xudc_request *ep0_req; 485 486 bool pullup; 487 488 unsigned int nr_enabled_eps; 489 unsigned int nr_isoch_eps; 490 491 unsigned int device_state; 492 unsigned int resume_state; 493 494 int irq; 495 496 void __iomem *base; 497 resource_size_t phys_base; 498 void __iomem *ipfs; 499 void __iomem *fpci; 500 501 struct regulator_bulk_data *supplies; 502 503 struct clk_bulk_data *clks; 504 505 bool device_mode; 506 struct work_struct usb_role_sw_work; 507 508 struct phy **usb3_phy; 509 struct phy *curr_usb3_phy; 510 struct phy **utmi_phy; 511 struct phy *curr_utmi_phy; 512 513 struct tegra_xudc_save_regs saved_regs; 514 bool suspended; 515 bool powergated; 516 517 struct usb_phy **usbphy; 518 struct usb_phy *curr_usbphy; 519 struct notifier_block vbus_nb; 520 521 struct completion disconnect_complete; 522 523 bool selfpowered; 524 525 #define TOGGLE_VBUS_WAIT_MS 100 526 struct delayed_work plc_reset_work; 527 bool wait_csc; 528 529 struct delayed_work port_reset_war_work; 530 bool wait_for_sec_prc; 531 }; 532 533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536 534 #define XUDC_MAX_ISOCH_EPS 4 535 #define XUDC_INTERRUPT_MODERATION_US 0 536 537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = { 538 .bLength = USB_DT_ENDPOINT_SIZE, 539 .bDescriptorType = USB_DT_ENDPOINT, 540 .bEndpointAddress = 0, 541 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 542 .wMaxPacketSize = cpu_to_le16(64), 543 }; 544 545 struct tegra_xudc_soc { 546 const char * const *supply_names; 547 unsigned int num_supplies; 548 const char * const *clock_names; 549 unsigned int num_clks; 550 unsigned int num_phys; 551 bool u1_enable; 552 bool u2_enable; 553 bool lpm_enable; 554 bool invalid_seq_num; 555 bool pls_quirk; 556 bool port_reset_quirk; 557 bool port_speed_quirk; 558 bool has_ipfs; 559 }; 560 561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset) 562 { 563 return readl(xudc->fpci + offset); 564 } 565 566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val, 567 unsigned int offset) 568 { 569 writel(val, xudc->fpci + offset); 570 } 571 572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset) 573 { 574 return readl(xudc->ipfs + offset); 575 } 576 577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val, 578 unsigned int offset) 579 { 580 writel(val, xudc->ipfs + offset); 581 } 582 583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset) 584 { 585 return readl(xudc->base + offset); 586 } 587 588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val, 589 unsigned int offset) 590 { 591 writel(val, xudc->base + offset); 592 } 593 594 static inline int xudc_readl_poll(struct tegra_xudc *xudc, 595 unsigned int offset, u32 mask, u32 val) 596 { 597 u32 regval; 598 599 return readl_poll_timeout_atomic(xudc->base + offset, regval, 600 (regval & mask) == val, 1, 100); 601 } 602 603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget) 604 { 605 return container_of(gadget, struct tegra_xudc, gadget); 606 } 607 608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep) 609 { 610 return container_of(ep, struct tegra_xudc_ep, usb_ep); 611 } 612 613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req) 614 { 615 return container_of(req, struct tegra_xudc_request, usb_req); 616 } 617 618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type, 619 struct tegra_xudc_trb *trb) 620 { 621 dev_dbg(xudc->dev, 622 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n", 623 type, trb, trb->data_lo, trb->data_hi, trb->status, 624 trb->control); 625 } 626 627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc) 628 { 629 u32 val; 630 631 /* limit port speed to gen 1 */ 632 val = xudc_readl(xudc, SSPX_CORE_CNT56); 633 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 634 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260); 635 xudc_writel(xudc, val, SSPX_CORE_CNT56); 636 637 val = xudc_readl(xudc, SSPX_CORE_CNT57); 638 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 639 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6); 640 xudc_writel(xudc, val, SSPX_CORE_CNT57); 641 642 val = xudc_readl(xudc, SSPX_CORE_CNT65); 643 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 644 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0); 645 xudc_writel(xudc, val, SSPX_CORE_CNT66); 646 647 val = xudc_readl(xudc, SSPX_CORE_CNT66); 648 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 649 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0); 650 xudc_writel(xudc, val, SSPX_CORE_CNT66); 651 652 val = xudc_readl(xudc, SSPX_CORE_CNT67); 653 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 654 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0); 655 xudc_writel(xudc, val, SSPX_CORE_CNT67); 656 657 val = xudc_readl(xudc, SSPX_CORE_CNT72); 658 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 659 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10); 660 xudc_writel(xudc, val, SSPX_CORE_CNT72); 661 } 662 663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc) 664 { 665 u32 val; 666 667 /* restore port speed to gen2 */ 668 val = xudc_readl(xudc, SSPX_CORE_CNT56); 669 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 670 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438); 671 xudc_writel(xudc, val, SSPX_CORE_CNT56); 672 673 val = xudc_readl(xudc, SSPX_CORE_CNT57); 674 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 675 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528); 676 xudc_writel(xudc, val, SSPX_CORE_CNT57); 677 678 val = xudc_readl(xudc, SSPX_CORE_CNT65); 679 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 680 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10); 681 xudc_writel(xudc, val, SSPX_CORE_CNT66); 682 683 val = xudc_readl(xudc, SSPX_CORE_CNT66); 684 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 685 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348); 686 xudc_writel(xudc, val, SSPX_CORE_CNT66); 687 688 val = xudc_readl(xudc, SSPX_CORE_CNT67); 689 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 690 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0); 691 xudc_writel(xudc, val, SSPX_CORE_CNT67); 692 693 val = xudc_readl(xudc, SSPX_CORE_CNT72); 694 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 695 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21); 696 xudc_writel(xudc, val, SSPX_CORE_CNT72); 697 } 698 699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc) 700 { 701 int err; 702 703 pm_runtime_get_sync(xudc->dev); 704 705 tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy); 706 707 err = phy_power_on(xudc->curr_utmi_phy); 708 if (err < 0) 709 dev_err(xudc->dev, "UTMI power on failed: %d\n", err); 710 711 err = phy_power_on(xudc->curr_usb3_phy); 712 if (err < 0) 713 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err); 714 715 dev_dbg(xudc->dev, "device mode on\n"); 716 717 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 718 USB_ROLE_DEVICE); 719 } 720 721 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc) 722 { 723 bool connected = false; 724 u32 pls, val; 725 int err; 726 727 dev_dbg(xudc->dev, "device mode off\n"); 728 729 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS); 730 731 reinit_completion(&xudc->disconnect_complete); 732 733 if (xudc->soc->port_speed_quirk) 734 tegra_xudc_restore_port_speed(xudc); 735 736 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); 737 738 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 739 PORTSC_PLS_SHIFT; 740 741 /* Direct link to U0 if disconnected in RESUME or U2. */ 742 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER && 743 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) { 744 val = xudc_readl(xudc, PORTPM); 745 val |= PORTPM_FRWE; 746 xudc_writel(xudc, val, PORTPM); 747 748 val = xudc_readl(xudc, PORTSC); 749 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 750 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 751 xudc_writel(xudc, val, PORTSC); 752 } 753 754 /* Wait for disconnect event. */ 755 if (connected) 756 wait_for_completion(&xudc->disconnect_complete); 757 758 /* Make sure interrupt handler has completed before powergating. */ 759 synchronize_irq(xudc->irq); 760 761 tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy); 762 763 err = phy_power_off(xudc->curr_utmi_phy); 764 if (err < 0) 765 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err); 766 767 err = phy_power_off(xudc->curr_usb3_phy); 768 if (err < 0) 769 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err); 770 771 pm_runtime_put(xudc->dev); 772 } 773 774 static void tegra_xudc_usb_role_sw_work(struct work_struct *work) 775 { 776 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc, 777 usb_role_sw_work); 778 779 if (xudc->device_mode) 780 tegra_xudc_device_mode_on(xudc); 781 else 782 tegra_xudc_device_mode_off(xudc); 783 } 784 785 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc, 786 struct usb_phy *usbphy) 787 { 788 unsigned int i; 789 790 for (i = 0; i < xudc->soc->num_phys; i++) { 791 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i]) 792 return i; 793 } 794 795 dev_info(xudc->dev, "phy index could not be found for shared USB PHY"); 796 return -1; 797 } 798 799 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc, 800 struct usb_phy *usbphy) 801 { 802 int phy_index; 803 804 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) || 805 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) { 806 dev_dbg(xudc->dev, "Same role(%d) received. Ignore", 807 xudc->device_mode); 808 return; 809 } 810 811 xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true : 812 false; 813 814 phy_index = tegra_xudc_get_phy_index(xudc, usbphy); 815 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__, 816 phy_index); 817 818 if (!xudc->suspended && phy_index != -1) { 819 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index]; 820 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index]; 821 xudc->curr_usbphy = usbphy; 822 schedule_work(&xudc->usb_role_sw_work); 823 } 824 } 825 826 static int tegra_xudc_vbus_notify(struct notifier_block *nb, 827 unsigned long action, void *data) 828 { 829 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc, 830 vbus_nb); 831 struct usb_phy *usbphy = (struct usb_phy *)data; 832 833 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event); 834 835 tegra_xudc_update_data_role(xudc, usbphy); 836 837 return NOTIFY_OK; 838 } 839 840 static void tegra_xudc_plc_reset_work(struct work_struct *work) 841 { 842 struct delayed_work *dwork = to_delayed_work(work); 843 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc, 844 plc_reset_work); 845 unsigned long flags; 846 847 spin_lock_irqsave(&xudc->lock, flags); 848 849 if (xudc->wait_csc) { 850 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 851 PORTSC_PLS_SHIFT; 852 853 if (pls == PORTSC_PLS_INACTIVE) { 854 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n"); 855 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 856 USB_ROLE_NONE); 857 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 858 USB_ROLE_DEVICE); 859 860 xudc->wait_csc = false; 861 } 862 } 863 864 spin_unlock_irqrestore(&xudc->lock, flags); 865 } 866 867 static void tegra_xudc_port_reset_war_work(struct work_struct *work) 868 { 869 struct delayed_work *dwork = to_delayed_work(work); 870 struct tegra_xudc *xudc = 871 container_of(dwork, struct tegra_xudc, port_reset_war_work); 872 unsigned long flags; 873 u32 pls; 874 int ret; 875 876 spin_lock_irqsave(&xudc->lock, flags); 877 878 if (xudc->device_mode && xudc->wait_for_sec_prc) { 879 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 880 PORTSC_PLS_SHIFT; 881 dev_dbg(xudc->dev, "pls = %x\n", pls); 882 883 if (pls == PORTSC_PLS_DISABLED) { 884 dev_dbg(xudc->dev, "toggle vbus\n"); 885 /* PRC doesn't complete in 100ms, toggle the vbus */ 886 ret = tegra_phy_xusb_utmi_port_reset( 887 xudc->curr_utmi_phy); 888 if (ret == 1) 889 xudc->wait_for_sec_prc = 0; 890 } 891 } 892 893 spin_unlock_irqrestore(&xudc->lock, flags); 894 } 895 896 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep, 897 struct tegra_xudc_trb *trb) 898 { 899 unsigned int index; 900 901 index = trb - ep->transfer_ring; 902 903 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 904 return 0; 905 906 return (ep->transfer_ring_phys + index * sizeof(*trb)); 907 } 908 909 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep, 910 dma_addr_t addr) 911 { 912 struct tegra_xudc_trb *trb; 913 unsigned int index; 914 915 index = (addr - ep->transfer_ring_phys) / sizeof(*trb); 916 917 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 918 return NULL; 919 920 trb = &ep->transfer_ring[index]; 921 922 return trb; 923 } 924 925 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep) 926 { 927 xudc_writel(xudc, BIT(ep), EP_RELOAD); 928 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0); 929 } 930 931 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep) 932 { 933 u32 val; 934 935 val = xudc_readl(xudc, EP_PAUSE); 936 if (val & BIT(ep)) 937 return; 938 val |= BIT(ep); 939 940 xudc_writel(xudc, val, EP_PAUSE); 941 942 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 943 944 xudc_writel(xudc, BIT(ep), EP_STCHG); 945 } 946 947 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep) 948 { 949 u32 val; 950 951 val = xudc_readl(xudc, EP_PAUSE); 952 if (!(val & BIT(ep))) 953 return; 954 val &= ~BIT(ep); 955 956 xudc_writel(xudc, val, EP_PAUSE); 957 958 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 959 960 xudc_writel(xudc, BIT(ep), EP_STCHG); 961 } 962 963 static void ep_unpause_all(struct tegra_xudc *xudc) 964 { 965 u32 val; 966 967 val = xudc_readl(xudc, EP_PAUSE); 968 969 xudc_writel(xudc, 0, EP_PAUSE); 970 971 xudc_readl_poll(xudc, EP_STCHG, val, val); 972 973 xudc_writel(xudc, val, EP_STCHG); 974 } 975 976 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep) 977 { 978 u32 val; 979 980 val = xudc_readl(xudc, EP_HALT); 981 if (val & BIT(ep)) 982 return; 983 val |= BIT(ep); 984 xudc_writel(xudc, val, EP_HALT); 985 986 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 987 988 xudc_writel(xudc, BIT(ep), EP_STCHG); 989 } 990 991 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep) 992 { 993 u32 val; 994 995 val = xudc_readl(xudc, EP_HALT); 996 if (!(val & BIT(ep))) 997 return; 998 val &= ~BIT(ep); 999 xudc_writel(xudc, val, EP_HALT); 1000 1001 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 1002 1003 xudc_writel(xudc, BIT(ep), EP_STCHG); 1004 } 1005 1006 static void ep_unhalt_all(struct tegra_xudc *xudc) 1007 { 1008 u32 val; 1009 1010 val = xudc_readl(xudc, EP_HALT); 1011 if (!val) 1012 return; 1013 xudc_writel(xudc, 0, EP_HALT); 1014 1015 xudc_readl_poll(xudc, EP_STCHG, val, val); 1016 1017 xudc_writel(xudc, val, EP_STCHG); 1018 } 1019 1020 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep) 1021 { 1022 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep)); 1023 xudc_writel(xudc, BIT(ep), EP_STOPPED); 1024 } 1025 1026 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep) 1027 { 1028 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0); 1029 } 1030 1031 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep, 1032 struct tegra_xudc_request *req, int status) 1033 { 1034 struct tegra_xudc *xudc = ep->xudc; 1035 1036 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n", 1037 req, ep->index, status); 1038 1039 if (likely(req->usb_req.status == -EINPROGRESS)) 1040 req->usb_req.status = status; 1041 1042 list_del_init(&req->list); 1043 1044 if (usb_endpoint_xfer_control(ep->desc)) { 1045 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1046 (xudc->setup_state == 1047 DATA_STAGE_XFER)); 1048 } else { 1049 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1050 usb_endpoint_dir_in(ep->desc)); 1051 } 1052 1053 spin_unlock(&xudc->lock); 1054 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req); 1055 spin_lock(&xudc->lock); 1056 } 1057 1058 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status) 1059 { 1060 struct tegra_xudc_request *req; 1061 1062 while (!list_empty(&ep->queue)) { 1063 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1064 list); 1065 tegra_xudc_req_done(ep, req, status); 1066 } 1067 } 1068 1069 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep) 1070 { 1071 if (ep->ring_full) 1072 return 0; 1073 1074 if (ep->deq_ptr > ep->enq_ptr) 1075 return ep->deq_ptr - ep->enq_ptr - 1; 1076 1077 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2; 1078 } 1079 1080 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep, 1081 struct tegra_xudc_request *req, 1082 struct tegra_xudc_trb *trb, 1083 bool ioc) 1084 { 1085 struct tegra_xudc *xudc = ep->xudc; 1086 dma_addr_t buf_addr; 1087 size_t len; 1088 1089 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length - 1090 req->buf_queued); 1091 if (len > 0) 1092 buf_addr = req->usb_req.dma + req->buf_queued; 1093 else 1094 buf_addr = 0; 1095 1096 trb_write_data_ptr(trb, buf_addr); 1097 1098 trb_write_transfer_len(trb, len); 1099 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1); 1100 1101 if (req->trbs_queued == req->trbs_needed - 1 || 1102 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2)) 1103 trb_write_chain(trb, 0); 1104 else 1105 trb_write_chain(trb, 1); 1106 1107 trb_write_ioc(trb, ioc); 1108 1109 if (usb_endpoint_dir_out(ep->desc) || 1110 (usb_endpoint_xfer_control(ep->desc) && 1111 (xudc->setup_state == DATA_STAGE_RECV))) 1112 trb_write_isp(trb, 1); 1113 else 1114 trb_write_isp(trb, 0); 1115 1116 if (usb_endpoint_xfer_control(ep->desc)) { 1117 if (xudc->setup_state == DATA_STAGE_XFER || 1118 xudc->setup_state == DATA_STAGE_RECV) 1119 trb_write_type(trb, TRB_TYPE_DATA_STAGE); 1120 else 1121 trb_write_type(trb, TRB_TYPE_STATUS_STAGE); 1122 1123 if (xudc->setup_state == DATA_STAGE_XFER || 1124 xudc->setup_state == STATUS_STAGE_XFER) 1125 trb_write_data_stage_dir(trb, 1); 1126 else 1127 trb_write_data_stage_dir(trb, 0); 1128 } else if (usb_endpoint_xfer_isoc(ep->desc)) { 1129 trb_write_type(trb, TRB_TYPE_ISOCH); 1130 trb_write_sia(trb, 1); 1131 trb_write_frame_id(trb, 0); 1132 trb_write_tlbpc(trb, 0); 1133 } else if (usb_ss_max_streams(ep->comp_desc)) { 1134 trb_write_type(trb, TRB_TYPE_STREAM); 1135 trb_write_stream_id(trb, req->usb_req.stream_id); 1136 } else { 1137 trb_write_type(trb, TRB_TYPE_NORMAL); 1138 trb_write_stream_id(trb, 0); 1139 } 1140 1141 trb_write_cycle(trb, ep->pcs); 1142 1143 req->trbs_queued++; 1144 req->buf_queued += len; 1145 1146 dump_trb(xudc, "TRANSFER", trb); 1147 } 1148 1149 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep, 1150 struct tegra_xudc_request *req) 1151 { 1152 unsigned int i, count, available; 1153 bool wait_td = false; 1154 1155 available = ep_available_trbs(ep); 1156 count = req->trbs_needed - req->trbs_queued; 1157 if (available < count) { 1158 count = available; 1159 ep->ring_full = true; 1160 } 1161 1162 /* 1163 * To generate zero-length packet on USB bus, SW needs schedule a 1164 * standalone zero-length TD. According to HW's behavior, SW needs 1165 * to schedule TDs in different ways for different endpoint types. 1166 * 1167 * For control endpoint: 1168 * - Data stage TD (IOC = 1, CH = 0) 1169 * - Ring doorbell and wait transfer event 1170 * - Data stage TD for ZLP (IOC = 1, CH = 0) 1171 * - Ring doorbell 1172 * 1173 * For bulk and interrupt endpoints: 1174 * - Normal transfer TD (IOC = 0, CH = 0) 1175 * - Normal transfer TD for ZLP (IOC = 1, CH = 0) 1176 * - Ring doorbell 1177 */ 1178 1179 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1) 1180 wait_td = true; 1181 1182 if (!req->first_trb) 1183 req->first_trb = &ep->transfer_ring[ep->enq_ptr]; 1184 1185 for (i = 0; i < count; i++) { 1186 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr]; 1187 bool ioc = false; 1188 1189 if ((i == count - 1) || (wait_td && i == count - 2)) 1190 ioc = true; 1191 1192 tegra_xudc_queue_one_trb(ep, req, trb, ioc); 1193 req->last_trb = trb; 1194 1195 ep->enq_ptr++; 1196 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) { 1197 trb = &ep->transfer_ring[ep->enq_ptr]; 1198 trb_write_cycle(trb, ep->pcs); 1199 ep->pcs = !ep->pcs; 1200 ep->enq_ptr = 0; 1201 } 1202 1203 if (ioc) 1204 break; 1205 } 1206 1207 return count; 1208 } 1209 1210 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep) 1211 { 1212 struct tegra_xudc *xudc = ep->xudc; 1213 u32 val; 1214 1215 if (list_empty(&ep->queue)) 1216 return; 1217 1218 val = DB_TARGET(ep->index); 1219 if (usb_endpoint_xfer_control(ep->desc)) { 1220 val |= DB_STREAMID(xudc->setup_seq_num); 1221 } else if (usb_ss_max_streams(ep->comp_desc) > 0) { 1222 struct tegra_xudc_request *req; 1223 1224 /* Don't ring doorbell if the stream has been rejected. */ 1225 if (ep->stream_rejected) 1226 return; 1227 1228 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1229 list); 1230 val |= DB_STREAMID(req->usb_req.stream_id); 1231 } 1232 1233 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val); 1234 xudc_writel(xudc, val, DB); 1235 } 1236 1237 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep) 1238 { 1239 struct tegra_xudc_request *req; 1240 bool trbs_queued = false; 1241 1242 list_for_each_entry(req, &ep->queue, list) { 1243 if (ep->ring_full) 1244 break; 1245 1246 if (tegra_xudc_queue_trbs(ep, req) > 0) 1247 trbs_queued = true; 1248 } 1249 1250 if (trbs_queued) 1251 tegra_xudc_ep_ring_doorbell(ep); 1252 } 1253 1254 static int 1255 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) 1256 { 1257 struct tegra_xudc *xudc = ep->xudc; 1258 int err; 1259 1260 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) { 1261 dev_err(xudc->dev, "control EP has pending transfers\n"); 1262 return -EINVAL; 1263 } 1264 1265 if (usb_endpoint_xfer_control(ep->desc)) { 1266 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1267 (xudc->setup_state == 1268 DATA_STAGE_XFER)); 1269 } else { 1270 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1271 usb_endpoint_dir_in(ep->desc)); 1272 } 1273 1274 if (err < 0) { 1275 dev_err(xudc->dev, "failed to map request: %d\n", err); 1276 return err; 1277 } 1278 1279 req->first_trb = NULL; 1280 req->last_trb = NULL; 1281 req->buf_queued = 0; 1282 req->trbs_queued = 0; 1283 req->need_zlp = false; 1284 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length, 1285 XUDC_TRB_MAX_BUFFER_SIZE); 1286 if (req->usb_req.length == 0) 1287 req->trbs_needed++; 1288 1289 if (!usb_endpoint_xfer_isoc(ep->desc) && 1290 req->usb_req.zero && req->usb_req.length && 1291 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) { 1292 req->trbs_needed++; 1293 req->need_zlp = true; 1294 } 1295 1296 req->usb_req.status = -EINPROGRESS; 1297 req->usb_req.actual = 0; 1298 1299 list_add_tail(&req->list, &ep->queue); 1300 1301 tegra_xudc_ep_kick_queue(ep); 1302 1303 return 0; 1304 } 1305 1306 static int 1307 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req, 1308 gfp_t gfp) 1309 { 1310 struct tegra_xudc_request *req; 1311 struct tegra_xudc_ep *ep; 1312 struct tegra_xudc *xudc; 1313 unsigned long flags; 1314 int ret; 1315 1316 if (!usb_ep || !usb_req) 1317 return -EINVAL; 1318 1319 ep = to_xudc_ep(usb_ep); 1320 req = to_xudc_req(usb_req); 1321 xudc = ep->xudc; 1322 1323 spin_lock_irqsave(&xudc->lock, flags); 1324 if (xudc->powergated || !ep->desc) { 1325 ret = -ESHUTDOWN; 1326 goto unlock; 1327 } 1328 1329 ret = __tegra_xudc_ep_queue(ep, req); 1330 unlock: 1331 spin_unlock_irqrestore(&xudc->lock, flags); 1332 1333 return ret; 1334 } 1335 1336 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep, 1337 struct tegra_xudc_request *req) 1338 { 1339 struct tegra_xudc_trb *trb = req->first_trb; 1340 bool pcs_enq = trb_read_cycle(trb); 1341 bool pcs; 1342 1343 /* 1344 * Clear out all the TRBs part of or after the cancelled request, 1345 * and must correct trb cycle bit to the last un-enqueued state. 1346 */ 1347 while (trb != &ep->transfer_ring[ep->enq_ptr]) { 1348 pcs = trb_read_cycle(trb); 1349 memset(trb, 0, sizeof(*trb)); 1350 trb_write_cycle(trb, !pcs); 1351 trb++; 1352 1353 if (trb_read_type(trb) == TRB_TYPE_LINK) 1354 trb = ep->transfer_ring; 1355 } 1356 1357 /* Requests will be re-queued at the start of the cancelled request. */ 1358 ep->enq_ptr = req->first_trb - ep->transfer_ring; 1359 /* 1360 * Retrieve the correct cycle bit state from the first trb of 1361 * the cancelled request. 1362 */ 1363 ep->pcs = pcs_enq; 1364 ep->ring_full = false; 1365 list_for_each_entry_continue(req, &ep->queue, list) { 1366 req->usb_req.status = -EINPROGRESS; 1367 req->usb_req.actual = 0; 1368 1369 req->first_trb = NULL; 1370 req->last_trb = NULL; 1371 req->buf_queued = 0; 1372 req->trbs_queued = 0; 1373 } 1374 } 1375 1376 /* 1377 * Determine if the given TRB is in the range [first trb, last trb] for the 1378 * given request. 1379 */ 1380 static bool trb_in_request(struct tegra_xudc_ep *ep, 1381 struct tegra_xudc_request *req, 1382 struct tegra_xudc_trb *trb) 1383 { 1384 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__, 1385 req->first_trb, req->last_trb, trb); 1386 1387 if (trb >= req->first_trb && (trb <= req->last_trb || 1388 req->last_trb < req->first_trb)) 1389 return true; 1390 1391 if (trb < req->first_trb && trb <= req->last_trb && 1392 req->last_trb < req->first_trb) 1393 return true; 1394 1395 return false; 1396 } 1397 1398 /* 1399 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB) 1400 * for the given endpoint and request. 1401 */ 1402 static bool trb_before_request(struct tegra_xudc_ep *ep, 1403 struct tegra_xudc_request *req, 1404 struct tegra_xudc_trb *trb) 1405 { 1406 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr]; 1407 1408 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n", 1409 __func__, req->first_trb, req->last_trb, enq_trb, trb); 1410 1411 if (trb < req->first_trb && (enq_trb <= trb || 1412 req->first_trb < enq_trb)) 1413 return true; 1414 1415 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb) 1416 return true; 1417 1418 return false; 1419 } 1420 1421 static int 1422 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep, 1423 struct tegra_xudc_request *req) 1424 { 1425 struct tegra_xudc *xudc = ep->xudc; 1426 struct tegra_xudc_request *r = NULL, *iter; 1427 struct tegra_xudc_trb *deq_trb; 1428 bool busy, kick_queue = false; 1429 int ret = 0; 1430 1431 /* Make sure the request is actually queued to this endpoint. */ 1432 list_for_each_entry(iter, &ep->queue, list) { 1433 if (iter != req) 1434 continue; 1435 r = iter; 1436 break; 1437 } 1438 1439 if (!r) 1440 return -EINVAL; 1441 1442 /* Request hasn't been queued in the transfer ring yet. */ 1443 if (!req->trbs_queued) { 1444 tegra_xudc_req_done(ep, req, -ECONNRESET); 1445 return 0; 1446 } 1447 1448 /* Halt DMA for this endpoint. */ 1449 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) { 1450 ep_pause(xudc, ep->index); 1451 ep_wait_for_inactive(xudc, ep->index); 1452 } 1453 1454 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context)); 1455 /* Is the hardware processing the TRB at the dequeue pointer? */ 1456 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context)); 1457 1458 if (trb_in_request(ep, req, deq_trb) && busy) { 1459 /* 1460 * Request has been partially completed or it hasn't 1461 * started processing yet. 1462 */ 1463 dma_addr_t deq_ptr; 1464 1465 squeeze_transfer_ring(ep, req); 1466 1467 req->usb_req.actual = ep_ctx_read_edtla(ep->context); 1468 tegra_xudc_req_done(ep, req, -ECONNRESET); 1469 kick_queue = true; 1470 1471 /* EDTLA is > 0: request has been partially completed */ 1472 if (req->usb_req.actual > 0) { 1473 /* 1474 * Abort the pending transfer and update the dequeue 1475 * pointer 1476 */ 1477 ep_ctx_write_edtla(ep->context, 0); 1478 ep_ctx_write_partial_td(ep->context, 0); 1479 ep_ctx_write_data_offset(ep->context, 0); 1480 1481 deq_ptr = trb_virt_to_phys(ep, 1482 &ep->transfer_ring[ep->enq_ptr]); 1483 1484 if (dma_mapping_error(xudc->dev, deq_ptr)) { 1485 ret = -EINVAL; 1486 } else { 1487 ep_ctx_write_deq_ptr(ep->context, deq_ptr); 1488 ep_ctx_write_dcs(ep->context, ep->pcs); 1489 ep_reload(xudc, ep->index); 1490 } 1491 } 1492 } else if (trb_before_request(ep, req, deq_trb) && busy) { 1493 /* Request hasn't started processing yet. */ 1494 squeeze_transfer_ring(ep, req); 1495 1496 tegra_xudc_req_done(ep, req, -ECONNRESET); 1497 kick_queue = true; 1498 } else { 1499 /* 1500 * Request has completed, but we haven't processed the 1501 * completion event yet. 1502 */ 1503 tegra_xudc_req_done(ep, req, -ECONNRESET); 1504 ret = -EINVAL; 1505 } 1506 1507 /* Resume the endpoint. */ 1508 ep_unpause(xudc, ep->index); 1509 1510 if (kick_queue) 1511 tegra_xudc_ep_kick_queue(ep); 1512 1513 return ret; 1514 } 1515 1516 static int 1517 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req) 1518 { 1519 struct tegra_xudc_request *req; 1520 struct tegra_xudc_ep *ep; 1521 struct tegra_xudc *xudc; 1522 unsigned long flags; 1523 int ret; 1524 1525 if (!usb_ep || !usb_req) 1526 return -EINVAL; 1527 1528 ep = to_xudc_ep(usb_ep); 1529 req = to_xudc_req(usb_req); 1530 xudc = ep->xudc; 1531 1532 spin_lock_irqsave(&xudc->lock, flags); 1533 1534 if (xudc->powergated || !ep->desc) { 1535 ret = -ESHUTDOWN; 1536 goto unlock; 1537 } 1538 1539 ret = __tegra_xudc_ep_dequeue(ep, req); 1540 unlock: 1541 spin_unlock_irqrestore(&xudc->lock, flags); 1542 1543 return ret; 1544 } 1545 1546 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt) 1547 { 1548 struct tegra_xudc *xudc = ep->xudc; 1549 1550 if (!ep->desc) 1551 return -EINVAL; 1552 1553 if (usb_endpoint_xfer_isoc(ep->desc)) { 1554 dev_err(xudc->dev, "can't halt isochronous EP\n"); 1555 return -ENOTSUPP; 1556 } 1557 1558 if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) { 1559 dev_dbg(xudc->dev, "EP %u already %s\n", ep->index, 1560 halt ? "halted" : "not halted"); 1561 return 0; 1562 } 1563 1564 if (halt) { 1565 ep_halt(xudc, ep->index); 1566 } else { 1567 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1568 1569 ep_reload(xudc, ep->index); 1570 1571 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1572 ep_ctx_write_rsvd(ep->context, 0); 1573 ep_ctx_write_partial_td(ep->context, 0); 1574 ep_ctx_write_splitxstate(ep->context, 0); 1575 ep_ctx_write_seq_num(ep->context, 0); 1576 1577 ep_reload(xudc, ep->index); 1578 ep_unpause(xudc, ep->index); 1579 ep_unhalt(xudc, ep->index); 1580 1581 tegra_xudc_ep_ring_doorbell(ep); 1582 } 1583 1584 return 0; 1585 } 1586 1587 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value) 1588 { 1589 struct tegra_xudc_ep *ep; 1590 struct tegra_xudc *xudc; 1591 unsigned long flags; 1592 int ret; 1593 1594 if (!usb_ep) 1595 return -EINVAL; 1596 1597 ep = to_xudc_ep(usb_ep); 1598 xudc = ep->xudc; 1599 1600 spin_lock_irqsave(&xudc->lock, flags); 1601 if (xudc->powergated) { 1602 ret = -ESHUTDOWN; 1603 goto unlock; 1604 } 1605 1606 if (value && usb_endpoint_dir_in(ep->desc) && 1607 !list_empty(&ep->queue)) { 1608 dev_err(xudc->dev, "can't halt EP with requests pending\n"); 1609 ret = -EAGAIN; 1610 goto unlock; 1611 } 1612 1613 ret = __tegra_xudc_ep_set_halt(ep, value); 1614 unlock: 1615 spin_unlock_irqrestore(&xudc->lock, flags); 1616 1617 return ret; 1618 } 1619 1620 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep) 1621 { 1622 const struct usb_endpoint_descriptor *desc = ep->desc; 1623 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc; 1624 struct tegra_xudc *xudc = ep->xudc; 1625 u16 maxpacket, maxburst = 0, esit = 0; 1626 u32 val; 1627 1628 maxpacket = usb_endpoint_maxp(desc); 1629 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1630 if (!usb_endpoint_xfer_control(desc)) 1631 maxburst = comp_desc->bMaxBurst; 1632 1633 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) 1634 esit = le16_to_cpu(comp_desc->wBytesPerInterval); 1635 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) && 1636 (usb_endpoint_xfer_int(desc) || 1637 usb_endpoint_xfer_isoc(desc))) { 1638 if (xudc->gadget.speed == USB_SPEED_HIGH) { 1639 maxburst = usb_endpoint_maxp_mult(desc) - 1; 1640 if (maxburst == 0x3) { 1641 dev_warn(xudc->dev, 1642 "invalid endpoint maxburst\n"); 1643 maxburst = 0x2; 1644 } 1645 } 1646 esit = maxpacket * (maxburst + 1); 1647 } 1648 1649 memset(ep->context, 0, sizeof(*ep->context)); 1650 1651 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1652 ep_ctx_write_interval(ep->context, desc->bInterval); 1653 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1654 if (usb_endpoint_xfer_isoc(desc)) { 1655 ep_ctx_write_mult(ep->context, 1656 comp_desc->bmAttributes & 0x3); 1657 } 1658 1659 if (usb_endpoint_xfer_bulk(desc)) { 1660 ep_ctx_write_max_pstreams(ep->context, 1661 comp_desc->bmAttributes & 1662 0x1f); 1663 ep_ctx_write_lsa(ep->context, 1); 1664 } 1665 } 1666 1667 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc)) 1668 val = usb_endpoint_type(desc); 1669 else 1670 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL; 1671 1672 ep_ctx_write_type(ep->context, val); 1673 ep_ctx_write_cerr(ep->context, 0x3); 1674 ep_ctx_write_max_packet_size(ep->context, maxpacket); 1675 ep_ctx_write_max_burst_size(ep->context, maxburst); 1676 1677 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys); 1678 ep_ctx_write_dcs(ep->context, ep->pcs); 1679 1680 /* Select a reasonable average TRB length based on endpoint type. */ 1681 switch (usb_endpoint_type(desc)) { 1682 case USB_ENDPOINT_XFER_CONTROL: 1683 val = 8; 1684 break; 1685 case USB_ENDPOINT_XFER_INT: 1686 val = 1024; 1687 break; 1688 case USB_ENDPOINT_XFER_BULK: 1689 case USB_ENDPOINT_XFER_ISOC: 1690 default: 1691 val = 3072; 1692 break; 1693 } 1694 1695 ep_ctx_write_avg_trb_len(ep->context, val); 1696 ep_ctx_write_max_esit_payload(ep->context, esit); 1697 1698 ep_ctx_write_cerrcnt(ep->context, 0x3); 1699 } 1700 1701 static void setup_link_trb(struct tegra_xudc_ep *ep, 1702 struct tegra_xudc_trb *trb) 1703 { 1704 trb_write_data_ptr(trb, ep->transfer_ring_phys); 1705 trb_write_type(trb, TRB_TYPE_LINK); 1706 trb_write_toggle_cycle(trb, 1); 1707 } 1708 1709 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep) 1710 { 1711 struct tegra_xudc *xudc = ep->xudc; 1712 1713 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 1714 dev_err(xudc->dev, "endpoint %u already disabled\n", 1715 ep->index); 1716 return -EINVAL; 1717 } 1718 1719 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1720 1721 ep_reload(xudc, ep->index); 1722 1723 tegra_xudc_ep_nuke(ep, -ESHUTDOWN); 1724 1725 xudc->nr_enabled_eps--; 1726 if (usb_endpoint_xfer_isoc(ep->desc)) 1727 xudc->nr_isoch_eps--; 1728 1729 ep->desc = NULL; 1730 ep->comp_desc = NULL; 1731 1732 memset(ep->context, 0, sizeof(*ep->context)); 1733 1734 ep_unpause(xudc, ep->index); 1735 ep_unhalt(xudc, ep->index); 1736 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index)) 1737 xudc_writel(xudc, BIT(ep->index), EP_STOPPED); 1738 1739 /* 1740 * If this is the last endpoint disabled in a de-configure request, 1741 * switch back to address state. 1742 */ 1743 if ((xudc->device_state == USB_STATE_CONFIGURED) && 1744 (xudc->nr_enabled_eps == 1)) { 1745 u32 val; 1746 1747 xudc->device_state = USB_STATE_ADDRESS; 1748 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1749 1750 val = xudc_readl(xudc, CTRL); 1751 val &= ~CTRL_RUN; 1752 xudc_writel(xudc, val, CTRL); 1753 } 1754 1755 dev_info(xudc->dev, "ep %u disabled\n", ep->index); 1756 1757 return 0; 1758 } 1759 1760 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep) 1761 { 1762 struct tegra_xudc_ep *ep; 1763 struct tegra_xudc *xudc; 1764 unsigned long flags; 1765 int ret; 1766 1767 if (!usb_ep) 1768 return -EINVAL; 1769 1770 ep = to_xudc_ep(usb_ep); 1771 xudc = ep->xudc; 1772 1773 spin_lock_irqsave(&xudc->lock, flags); 1774 if (xudc->powergated) { 1775 ret = -ESHUTDOWN; 1776 goto unlock; 1777 } 1778 1779 ret = __tegra_xudc_ep_disable(ep); 1780 unlock: 1781 spin_unlock_irqrestore(&xudc->lock, flags); 1782 1783 return ret; 1784 } 1785 1786 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep, 1787 const struct usb_endpoint_descriptor *desc) 1788 { 1789 struct tegra_xudc *xudc = ep->xudc; 1790 unsigned int i; 1791 u32 val; 1792 1793 if (xudc->gadget.speed == USB_SPEED_SUPER && 1794 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc) 1795 return -EINVAL; 1796 1797 /* Disable the EP if it is not disabled */ 1798 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED) 1799 __tegra_xudc_ep_disable(ep); 1800 1801 ep->desc = desc; 1802 ep->comp_desc = ep->usb_ep.comp_desc; 1803 1804 if (usb_endpoint_xfer_isoc(desc)) { 1805 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) { 1806 dev_err(xudc->dev, "too many isochronous endpoints\n"); 1807 return -EBUSY; 1808 } 1809 xudc->nr_isoch_eps++; 1810 } 1811 1812 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE * 1813 sizeof(*ep->transfer_ring)); 1814 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]); 1815 1816 ep->enq_ptr = 0; 1817 ep->deq_ptr = 0; 1818 ep->pcs = true; 1819 ep->ring_full = false; 1820 xudc->nr_enabled_eps++; 1821 1822 tegra_xudc_ep_context_setup(ep); 1823 1824 /* 1825 * No need to reload and un-halt EP0. This will be done automatically 1826 * once a valid SETUP packet is received. 1827 */ 1828 if (usb_endpoint_xfer_control(desc)) 1829 goto out; 1830 1831 /* 1832 * Transition to configured state once the first non-control 1833 * endpoint is enabled. 1834 */ 1835 if (xudc->device_state == USB_STATE_ADDRESS) { 1836 val = xudc_readl(xudc, CTRL); 1837 val |= CTRL_RUN; 1838 xudc_writel(xudc, val, CTRL); 1839 1840 xudc->device_state = USB_STATE_CONFIGURED; 1841 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1842 } 1843 1844 if (usb_endpoint_xfer_isoc(desc)) { 1845 /* 1846 * Pause all bulk endpoints when enabling an isoch endpoint 1847 * to ensure the isoch endpoint is allocated enough bandwidth. 1848 */ 1849 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1850 if (xudc->ep[i].desc && 1851 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1852 ep_pause(xudc, i); 1853 } 1854 } 1855 1856 ep_reload(xudc, ep->index); 1857 ep_unpause(xudc, ep->index); 1858 ep_unhalt(xudc, ep->index); 1859 1860 if (usb_endpoint_xfer_isoc(desc)) { 1861 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1862 if (xudc->ep[i].desc && 1863 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1864 ep_unpause(xudc, i); 1865 } 1866 } 1867 1868 out: 1869 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index, 1870 usb_ep_type_string(usb_endpoint_type(ep->desc)), 1871 usb_endpoint_dir_in(ep->desc) ? "in" : "out"); 1872 1873 return 0; 1874 } 1875 1876 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep, 1877 const struct usb_endpoint_descriptor *desc) 1878 { 1879 struct tegra_xudc_ep *ep; 1880 struct tegra_xudc *xudc; 1881 unsigned long flags; 1882 int ret; 1883 1884 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT)) 1885 return -EINVAL; 1886 1887 ep = to_xudc_ep(usb_ep); 1888 xudc = ep->xudc; 1889 1890 spin_lock_irqsave(&xudc->lock, flags); 1891 if (xudc->powergated) { 1892 ret = -ESHUTDOWN; 1893 goto unlock; 1894 } 1895 1896 ret = __tegra_xudc_ep_enable(ep, desc); 1897 unlock: 1898 spin_unlock_irqrestore(&xudc->lock, flags); 1899 1900 return ret; 1901 } 1902 1903 static struct usb_request * 1904 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp) 1905 { 1906 struct tegra_xudc_request *req; 1907 1908 req = kzalloc(sizeof(*req), gfp); 1909 if (!req) 1910 return NULL; 1911 1912 INIT_LIST_HEAD(&req->list); 1913 1914 return &req->usb_req; 1915 } 1916 1917 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep, 1918 struct usb_request *usb_req) 1919 { 1920 struct tegra_xudc_request *req = to_xudc_req(usb_req); 1921 1922 kfree(req); 1923 } 1924 1925 static const struct usb_ep_ops tegra_xudc_ep_ops = { 1926 .enable = tegra_xudc_ep_enable, 1927 .disable = tegra_xudc_ep_disable, 1928 .alloc_request = tegra_xudc_ep_alloc_request, 1929 .free_request = tegra_xudc_ep_free_request, 1930 .queue = tegra_xudc_ep_queue, 1931 .dequeue = tegra_xudc_ep_dequeue, 1932 .set_halt = tegra_xudc_ep_set_halt, 1933 }; 1934 1935 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep, 1936 const struct usb_endpoint_descriptor *desc) 1937 { 1938 return -EBUSY; 1939 } 1940 1941 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep) 1942 { 1943 return -EBUSY; 1944 } 1945 1946 static const struct usb_ep_ops tegra_xudc_ep0_ops = { 1947 .enable = tegra_xudc_ep0_enable, 1948 .disable = tegra_xudc_ep0_disable, 1949 .alloc_request = tegra_xudc_ep_alloc_request, 1950 .free_request = tegra_xudc_ep_free_request, 1951 .queue = tegra_xudc_ep_queue, 1952 .dequeue = tegra_xudc_ep_dequeue, 1953 .set_halt = tegra_xudc_ep_set_halt, 1954 }; 1955 1956 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget) 1957 { 1958 struct tegra_xudc *xudc = to_xudc(gadget); 1959 unsigned long flags; 1960 int ret; 1961 1962 spin_lock_irqsave(&xudc->lock, flags); 1963 if (xudc->powergated) { 1964 ret = -ESHUTDOWN; 1965 goto unlock; 1966 } 1967 1968 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >> 1969 MFINDEX_FRAME_SHIFT; 1970 unlock: 1971 spin_unlock_irqrestore(&xudc->lock, flags); 1972 1973 return ret; 1974 } 1975 1976 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc) 1977 { 1978 unsigned int i; 1979 u32 val; 1980 1981 ep_unpause_all(xudc); 1982 1983 /* Direct link to U0. */ 1984 val = xudc_readl(xudc, PORTSC); 1985 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) { 1986 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 1987 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 1988 xudc_writel(xudc, val, PORTSC); 1989 } 1990 1991 if (xudc->device_state == USB_STATE_SUSPENDED) { 1992 xudc->device_state = xudc->resume_state; 1993 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1994 xudc->resume_state = 0; 1995 } 1996 1997 /* 1998 * Doorbells may be dropped if they are sent too soon (< ~200ns) 1999 * after unpausing the endpoint. Wait for 500ns just to be safe. 2000 */ 2001 ndelay(500); 2002 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2003 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]); 2004 } 2005 2006 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget) 2007 { 2008 struct tegra_xudc *xudc = to_xudc(gadget); 2009 unsigned long flags; 2010 int ret = 0; 2011 u32 val; 2012 2013 spin_lock_irqsave(&xudc->lock, flags); 2014 2015 if (xudc->powergated) { 2016 ret = -ESHUTDOWN; 2017 goto unlock; 2018 } 2019 val = xudc_readl(xudc, PORTPM); 2020 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__, 2021 val, gadget->speed); 2022 2023 if (((xudc->gadget.speed <= USB_SPEED_HIGH) && 2024 (val & PORTPM_RWE)) || 2025 ((xudc->gadget.speed == USB_SPEED_SUPER) && 2026 (val & PORTPM_FRWE))) { 2027 tegra_xudc_resume_device_state(xudc); 2028 2029 /* Send Device Notification packet. */ 2030 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2031 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE) 2032 | DEVNOTIF_LO_TRIG; 2033 xudc_writel(xudc, 0, DEVNOTIF_HI); 2034 xudc_writel(xudc, val, DEVNOTIF_LO); 2035 } 2036 } 2037 2038 unlock: 2039 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2040 spin_unlock_irqrestore(&xudc->lock, flags); 2041 2042 return ret; 2043 } 2044 2045 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on) 2046 { 2047 struct tegra_xudc *xudc = to_xudc(gadget); 2048 unsigned long flags; 2049 u32 val; 2050 2051 pm_runtime_get_sync(xudc->dev); 2052 2053 spin_lock_irqsave(&xudc->lock, flags); 2054 2055 if (is_on != xudc->pullup) { 2056 val = xudc_readl(xudc, CTRL); 2057 if (is_on) 2058 val |= CTRL_ENABLE; 2059 else 2060 val &= ~CTRL_ENABLE; 2061 xudc_writel(xudc, val, CTRL); 2062 } 2063 2064 xudc->pullup = is_on; 2065 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on); 2066 2067 spin_unlock_irqrestore(&xudc->lock, flags); 2068 2069 pm_runtime_put(xudc->dev); 2070 2071 return 0; 2072 } 2073 2074 static int tegra_xudc_gadget_start(struct usb_gadget *gadget, 2075 struct usb_gadget_driver *driver) 2076 { 2077 struct tegra_xudc *xudc = to_xudc(gadget); 2078 unsigned long flags; 2079 u32 val; 2080 int ret; 2081 unsigned int i; 2082 2083 if (!driver) 2084 return -EINVAL; 2085 2086 pm_runtime_get_sync(xudc->dev); 2087 2088 spin_lock_irqsave(&xudc->lock, flags); 2089 2090 if (xudc->driver) { 2091 ret = -EBUSY; 2092 goto unlock; 2093 } 2094 2095 xudc->setup_state = WAIT_FOR_SETUP; 2096 xudc->device_state = USB_STATE_DEFAULT; 2097 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2098 2099 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc); 2100 if (ret < 0) 2101 goto unlock; 2102 2103 val = xudc_readl(xudc, CTRL); 2104 val |= CTRL_IE | CTRL_LSE; 2105 xudc_writel(xudc, val, CTRL); 2106 2107 val = xudc_readl(xudc, PORTHALT); 2108 val |= PORTHALT_STCHG_INTR_EN; 2109 xudc_writel(xudc, val, PORTHALT); 2110 2111 if (xudc->pullup) { 2112 val = xudc_readl(xudc, CTRL); 2113 val |= CTRL_ENABLE; 2114 xudc_writel(xudc, val, CTRL); 2115 } 2116 2117 for (i = 0; i < xudc->soc->num_phys; i++) 2118 if (xudc->usbphy[i]) 2119 otg_set_peripheral(xudc->usbphy[i]->otg, gadget); 2120 2121 xudc->driver = driver; 2122 unlock: 2123 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2124 spin_unlock_irqrestore(&xudc->lock, flags); 2125 2126 pm_runtime_put(xudc->dev); 2127 2128 return ret; 2129 } 2130 2131 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget) 2132 { 2133 struct tegra_xudc *xudc = to_xudc(gadget); 2134 unsigned long flags; 2135 u32 val; 2136 unsigned int i; 2137 2138 pm_runtime_get_sync(xudc->dev); 2139 2140 spin_lock_irqsave(&xudc->lock, flags); 2141 2142 for (i = 0; i < xudc->soc->num_phys; i++) 2143 if (xudc->usbphy[i]) 2144 otg_set_peripheral(xudc->usbphy[i]->otg, NULL); 2145 2146 val = xudc_readl(xudc, CTRL); 2147 val &= ~(CTRL_IE | CTRL_ENABLE); 2148 xudc_writel(xudc, val, CTRL); 2149 2150 __tegra_xudc_ep_disable(&xudc->ep[0]); 2151 2152 xudc->driver = NULL; 2153 dev_dbg(xudc->dev, "Gadget stopped"); 2154 2155 spin_unlock_irqrestore(&xudc->lock, flags); 2156 2157 pm_runtime_put(xudc->dev); 2158 2159 return 0; 2160 } 2161 2162 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget, 2163 unsigned int m_a) 2164 { 2165 struct tegra_xudc *xudc = to_xudc(gadget); 2166 2167 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a); 2168 2169 if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE) 2170 return usb_phy_set_power(xudc->curr_usbphy, m_a); 2171 2172 return 0; 2173 } 2174 2175 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on) 2176 { 2177 struct tegra_xudc *xudc = to_xudc(gadget); 2178 2179 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on); 2180 xudc->selfpowered = !!is_on; 2181 2182 return 0; 2183 } 2184 2185 static const struct usb_gadget_ops tegra_xudc_gadget_ops = { 2186 .get_frame = tegra_xudc_gadget_get_frame, 2187 .wakeup = tegra_xudc_gadget_wakeup, 2188 .pullup = tegra_xudc_gadget_pullup, 2189 .udc_start = tegra_xudc_gadget_start, 2190 .udc_stop = tegra_xudc_gadget_stop, 2191 .vbus_draw = tegra_xudc_gadget_vbus_draw, 2192 .set_selfpowered = tegra_xudc_set_selfpowered, 2193 }; 2194 2195 static void no_op_complete(struct usb_ep *ep, struct usb_request *req) 2196 { 2197 } 2198 2199 static int 2200 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc, 2201 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2202 { 2203 xudc->ep0_req->usb_req.buf = NULL; 2204 xudc->ep0_req->usb_req.dma = 0; 2205 xudc->ep0_req->usb_req.length = 0; 2206 xudc->ep0_req->usb_req.complete = cmpl; 2207 xudc->ep0_req->usb_req.context = xudc; 2208 2209 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2210 } 2211 2212 static int 2213 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len, 2214 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2215 { 2216 xudc->ep0_req->usb_req.buf = buf; 2217 xudc->ep0_req->usb_req.length = len; 2218 xudc->ep0_req->usb_req.complete = cmpl; 2219 xudc->ep0_req->usb_req.context = xudc; 2220 2221 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2222 } 2223 2224 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc) 2225 { 2226 switch (xudc->setup_state) { 2227 case DATA_STAGE_XFER: 2228 xudc->setup_state = STATUS_STAGE_RECV; 2229 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2230 break; 2231 case DATA_STAGE_RECV: 2232 xudc->setup_state = STATUS_STAGE_XFER; 2233 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2234 break; 2235 default: 2236 xudc->setup_state = WAIT_FOR_SETUP; 2237 break; 2238 } 2239 } 2240 2241 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc, 2242 struct usb_ctrlrequest *ctrl) 2243 { 2244 int ret; 2245 2246 spin_unlock(&xudc->lock); 2247 ret = xudc->driver->setup(&xudc->gadget, ctrl); 2248 spin_lock(&xudc->lock); 2249 2250 return ret; 2251 } 2252 2253 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req) 2254 { 2255 struct tegra_xudc *xudc = req->context; 2256 2257 if (xudc->test_mode_pattern) { 2258 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM); 2259 xudc->test_mode_pattern = 0; 2260 } 2261 } 2262 2263 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc, 2264 struct usb_ctrlrequest *ctrl) 2265 { 2266 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 2267 u32 feature = le16_to_cpu(ctrl->wValue); 2268 u32 index = le16_to_cpu(ctrl->wIndex); 2269 u32 val, ep; 2270 int ret; 2271 2272 if (le16_to_cpu(ctrl->wLength) != 0) 2273 return -EINVAL; 2274 2275 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2276 case USB_RECIP_DEVICE: 2277 switch (feature) { 2278 case USB_DEVICE_REMOTE_WAKEUP: 2279 if ((xudc->gadget.speed == USB_SPEED_SUPER) || 2280 (xudc->device_state == USB_STATE_DEFAULT)) 2281 return -EINVAL; 2282 2283 val = xudc_readl(xudc, PORTPM); 2284 if (set) 2285 val |= PORTPM_RWE; 2286 else 2287 val &= ~PORTPM_RWE; 2288 2289 xudc_writel(xudc, val, PORTPM); 2290 break; 2291 case USB_DEVICE_U1_ENABLE: 2292 case USB_DEVICE_U2_ENABLE: 2293 if ((xudc->device_state != USB_STATE_CONFIGURED) || 2294 (xudc->gadget.speed != USB_SPEED_SUPER)) 2295 return -EINVAL; 2296 2297 val = xudc_readl(xudc, PORTPM); 2298 if ((feature == USB_DEVICE_U1_ENABLE) && 2299 xudc->soc->u1_enable) { 2300 if (set) 2301 val |= PORTPM_U1E; 2302 else 2303 val &= ~PORTPM_U1E; 2304 } 2305 2306 if ((feature == USB_DEVICE_U2_ENABLE) && 2307 xudc->soc->u2_enable) { 2308 if (set) 2309 val |= PORTPM_U2E; 2310 else 2311 val &= ~PORTPM_U2E; 2312 } 2313 2314 xudc_writel(xudc, val, PORTPM); 2315 break; 2316 case USB_DEVICE_TEST_MODE: 2317 if (xudc->gadget.speed != USB_SPEED_HIGH) 2318 return -EINVAL; 2319 2320 if (!set) 2321 return -EINVAL; 2322 2323 xudc->test_mode_pattern = index >> 8; 2324 break; 2325 default: 2326 return -EINVAL; 2327 } 2328 2329 break; 2330 case USB_RECIP_INTERFACE: 2331 if (xudc->device_state != USB_STATE_CONFIGURED) 2332 return -EINVAL; 2333 2334 switch (feature) { 2335 case USB_INTRF_FUNC_SUSPEND: 2336 if (set) { 2337 val = xudc_readl(xudc, PORTPM); 2338 2339 if (index & USB_INTRF_FUNC_SUSPEND_RW) 2340 val |= PORTPM_FRWE; 2341 else 2342 val &= ~PORTPM_FRWE; 2343 2344 xudc_writel(xudc, val, PORTPM); 2345 } 2346 2347 return tegra_xudc_ep0_delegate_req(xudc, ctrl); 2348 default: 2349 return -EINVAL; 2350 } 2351 2352 break; 2353 case USB_RECIP_ENDPOINT: 2354 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2355 ((index & USB_DIR_IN) ? 1 : 0); 2356 2357 if ((xudc->device_state == USB_STATE_DEFAULT) || 2358 ((xudc->device_state == USB_STATE_ADDRESS) && 2359 (index != 0))) 2360 return -EINVAL; 2361 2362 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set); 2363 if (ret < 0) 2364 return ret; 2365 break; 2366 default: 2367 return -EINVAL; 2368 } 2369 2370 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete); 2371 } 2372 2373 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc, 2374 struct usb_ctrlrequest *ctrl) 2375 { 2376 struct tegra_xudc_ep_context *ep_ctx; 2377 u32 val, ep, index = le16_to_cpu(ctrl->wIndex); 2378 u16 status = 0; 2379 2380 if (!(ctrl->bRequestType & USB_DIR_IN)) 2381 return -EINVAL; 2382 2383 if ((le16_to_cpu(ctrl->wValue) != 0) || 2384 (le16_to_cpu(ctrl->wLength) != 2)) 2385 return -EINVAL; 2386 2387 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2388 case USB_RECIP_DEVICE: 2389 val = xudc_readl(xudc, PORTPM); 2390 2391 if (xudc->selfpowered) 2392 status |= BIT(USB_DEVICE_SELF_POWERED); 2393 2394 if ((xudc->gadget.speed < USB_SPEED_SUPER) && 2395 (val & PORTPM_RWE)) 2396 status |= BIT(USB_DEVICE_REMOTE_WAKEUP); 2397 2398 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2399 if (val & PORTPM_U1E) 2400 status |= BIT(USB_DEV_STAT_U1_ENABLED); 2401 if (val & PORTPM_U2E) 2402 status |= BIT(USB_DEV_STAT_U2_ENABLED); 2403 } 2404 break; 2405 case USB_RECIP_INTERFACE: 2406 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2407 status |= USB_INTRF_STAT_FUNC_RW_CAP; 2408 val = xudc_readl(xudc, PORTPM); 2409 if (val & PORTPM_FRWE) 2410 status |= USB_INTRF_STAT_FUNC_RW; 2411 } 2412 break; 2413 case USB_RECIP_ENDPOINT: 2414 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2415 ((index & USB_DIR_IN) ? 1 : 0); 2416 ep_ctx = &xudc->ep_context[ep]; 2417 2418 if ((xudc->device_state != USB_STATE_CONFIGURED) && 2419 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0))) 2420 return -EINVAL; 2421 2422 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED) 2423 return -EINVAL; 2424 2425 if (xudc_readl(xudc, EP_HALT) & BIT(ep)) 2426 status |= BIT(USB_ENDPOINT_HALT); 2427 break; 2428 default: 2429 return -EINVAL; 2430 } 2431 2432 xudc->status_buf = cpu_to_le16(status); 2433 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf, 2434 sizeof(xudc->status_buf), 2435 no_op_complete); 2436 } 2437 2438 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req) 2439 { 2440 /* Nothing to do with SEL values */ 2441 } 2442 2443 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc, 2444 struct usb_ctrlrequest *ctrl) 2445 { 2446 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2447 USB_TYPE_STANDARD)) 2448 return -EINVAL; 2449 2450 if (xudc->device_state == USB_STATE_DEFAULT) 2451 return -EINVAL; 2452 2453 if ((le16_to_cpu(ctrl->wIndex) != 0) || 2454 (le16_to_cpu(ctrl->wValue) != 0) || 2455 (le16_to_cpu(ctrl->wLength) != 6)) 2456 return -EINVAL; 2457 2458 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing, 2459 sizeof(xudc->sel_timing), 2460 set_sel_complete); 2461 } 2462 2463 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req) 2464 { 2465 /* Nothing to do with isoch delay */ 2466 } 2467 2468 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc, 2469 struct usb_ctrlrequest *ctrl) 2470 { 2471 u32 delay = le16_to_cpu(ctrl->wValue); 2472 2473 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2474 USB_TYPE_STANDARD)) 2475 return -EINVAL; 2476 2477 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) || 2478 (le16_to_cpu(ctrl->wLength) != 0)) 2479 return -EINVAL; 2480 2481 xudc->isoch_delay = delay; 2482 2483 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete); 2484 } 2485 2486 static void set_address_complete(struct usb_ep *ep, struct usb_request *req) 2487 { 2488 struct tegra_xudc *xudc = req->context; 2489 2490 if ((xudc->device_state == USB_STATE_DEFAULT) && 2491 (xudc->dev_addr != 0)) { 2492 xudc->device_state = USB_STATE_ADDRESS; 2493 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2494 } else if ((xudc->device_state == USB_STATE_ADDRESS) && 2495 (xudc->dev_addr == 0)) { 2496 xudc->device_state = USB_STATE_DEFAULT; 2497 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2498 } 2499 } 2500 2501 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc, 2502 struct usb_ctrlrequest *ctrl) 2503 { 2504 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2505 u32 val, addr = le16_to_cpu(ctrl->wValue); 2506 2507 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2508 USB_TYPE_STANDARD)) 2509 return -EINVAL; 2510 2511 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) || 2512 (le16_to_cpu(ctrl->wLength) != 0)) 2513 return -EINVAL; 2514 2515 if (xudc->device_state == USB_STATE_CONFIGURED) 2516 return -EINVAL; 2517 2518 dev_dbg(xudc->dev, "set address: %u\n", addr); 2519 2520 xudc->dev_addr = addr; 2521 val = xudc_readl(xudc, CTRL); 2522 val &= ~(CTRL_DEVADDR_MASK); 2523 val |= CTRL_DEVADDR(addr); 2524 xudc_writel(xudc, val, CTRL); 2525 2526 ep_ctx_write_devaddr(ep0->context, addr); 2527 2528 return tegra_xudc_ep0_queue_status(xudc, set_address_complete); 2529 } 2530 2531 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc, 2532 struct usb_ctrlrequest *ctrl) 2533 { 2534 int ret; 2535 2536 switch (ctrl->bRequest) { 2537 case USB_REQ_GET_STATUS: 2538 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n"); 2539 ret = tegra_xudc_ep0_get_status(xudc, ctrl); 2540 break; 2541 case USB_REQ_SET_ADDRESS: 2542 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n"); 2543 ret = tegra_xudc_ep0_set_address(xudc, ctrl); 2544 break; 2545 case USB_REQ_SET_SEL: 2546 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n"); 2547 ret = tegra_xudc_ep0_set_sel(xudc, ctrl); 2548 break; 2549 case USB_REQ_SET_ISOCH_DELAY: 2550 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n"); 2551 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl); 2552 break; 2553 case USB_REQ_CLEAR_FEATURE: 2554 case USB_REQ_SET_FEATURE: 2555 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n"); 2556 ret = tegra_xudc_ep0_set_feature(xudc, ctrl); 2557 break; 2558 case USB_REQ_SET_CONFIGURATION: 2559 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n"); 2560 /* 2561 * In theory we need to clear RUN bit before status stage of 2562 * deconfig request sent, but this seems to be causing problems. 2563 * Clear RUN once all endpoints are disabled instead. 2564 */ 2565 fallthrough; 2566 default: 2567 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2568 break; 2569 } 2570 2571 return ret; 2572 } 2573 2574 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc, 2575 struct usb_ctrlrequest *ctrl, 2576 u16 seq_num) 2577 { 2578 int ret; 2579 2580 xudc->setup_seq_num = seq_num; 2581 2582 /* Ensure EP0 is unhalted. */ 2583 ep_unhalt(xudc, 0); 2584 2585 /* 2586 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff 2587 * are invalid. Halt EP0 until we get a valid packet. 2588 */ 2589 if (xudc->soc->invalid_seq_num && 2590 (seq_num == 0xfffe || seq_num == 0xffff)) { 2591 dev_warn(xudc->dev, "invalid sequence number detected\n"); 2592 ep_halt(xudc, 0); 2593 return; 2594 } 2595 2596 if (ctrl->wLength) 2597 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ? 2598 DATA_STAGE_XFER : DATA_STAGE_RECV; 2599 else 2600 xudc->setup_state = STATUS_STAGE_XFER; 2601 2602 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) 2603 ret = tegra_xudc_ep0_standard_req(xudc, ctrl); 2604 else 2605 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2606 2607 if (ret < 0) { 2608 dev_warn(xudc->dev, "setup request failed: %d\n", ret); 2609 xudc->setup_state = WAIT_FOR_SETUP; 2610 ep_halt(xudc, 0); 2611 } 2612 } 2613 2614 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc, 2615 struct tegra_xudc_trb *event) 2616 { 2617 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event; 2618 u16 seq_num = trb_read_seq_num(event); 2619 2620 if (xudc->setup_state != WAIT_FOR_SETUP) { 2621 /* 2622 * The controller is in the process of handling another 2623 * setup request. Queue subsequent requests and handle 2624 * the last one once the controller reports a sequence 2625 * number error. 2626 */ 2627 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl)); 2628 xudc->setup_packet.seq_num = seq_num; 2629 xudc->queued_setup_packet = true; 2630 } else { 2631 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num); 2632 } 2633 } 2634 2635 static struct tegra_xudc_request * 2636 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) 2637 { 2638 struct tegra_xudc_request *req; 2639 2640 list_for_each_entry(req, &ep->queue, list) { 2641 if (!req->trbs_queued) 2642 break; 2643 2644 if (trb_in_request(ep, req, trb)) 2645 return req; 2646 } 2647 2648 return NULL; 2649 } 2650 2651 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc, 2652 struct tegra_xudc_ep *ep, 2653 struct tegra_xudc_trb *event) 2654 { 2655 struct tegra_xudc_request *req; 2656 struct tegra_xudc_trb *trb; 2657 bool short_packet; 2658 2659 short_packet = (trb_read_cmpl_code(event) == 2660 TRB_CMPL_CODE_SHORT_PACKET); 2661 2662 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2663 req = trb_to_request(ep, trb); 2664 2665 /* 2666 * TDs are complete on short packet or when the completed TRB is the 2667 * last TRB in the TD (the CHAIN bit is unset). 2668 */ 2669 if (req && (short_packet || (!trb_read_chain(trb) && 2670 (req->trbs_needed == req->trbs_queued)))) { 2671 struct tegra_xudc_trb *last = req->last_trb; 2672 unsigned int residual; 2673 2674 residual = trb_read_transfer_len(event); 2675 req->usb_req.actual = req->usb_req.length - residual; 2676 2677 dev_dbg(xudc->dev, "bytes transferred %u / %u\n", 2678 req->usb_req.actual, req->usb_req.length); 2679 2680 tegra_xudc_req_done(ep, req, 0); 2681 2682 if (ep->desc && usb_endpoint_xfer_control(ep->desc)) 2683 tegra_xudc_ep0_req_done(xudc); 2684 2685 /* 2686 * Advance the dequeue pointer past the end of the current TD 2687 * on short packet completion. 2688 */ 2689 if (short_packet) { 2690 ep->deq_ptr = (last - ep->transfer_ring) + 1; 2691 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2692 ep->deq_ptr = 0; 2693 } 2694 } else if (!req) { 2695 dev_warn(xudc->dev, "transfer event on dequeued request\n"); 2696 } 2697 2698 if (ep->desc) 2699 tegra_xudc_ep_kick_queue(ep); 2700 } 2701 2702 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc, 2703 struct tegra_xudc_trb *event) 2704 { 2705 unsigned int ep_index = trb_read_endpoint_id(event); 2706 struct tegra_xudc_ep *ep = &xudc->ep[ep_index]; 2707 struct tegra_xudc_trb *trb; 2708 u16 comp_code; 2709 2710 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 2711 dev_warn(xudc->dev, "transfer event on disabled EP %u\n", 2712 ep_index); 2713 return; 2714 } 2715 2716 /* Update transfer ring dequeue pointer. */ 2717 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2718 comp_code = trb_read_cmpl_code(event); 2719 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) { 2720 ep->deq_ptr = (trb - ep->transfer_ring) + 1; 2721 2722 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2723 ep->deq_ptr = 0; 2724 ep->ring_full = false; 2725 } 2726 2727 switch (comp_code) { 2728 case TRB_CMPL_CODE_SUCCESS: 2729 case TRB_CMPL_CODE_SHORT_PACKET: 2730 tegra_xudc_handle_transfer_completion(xudc, ep, event); 2731 break; 2732 case TRB_CMPL_CODE_HOST_REJECTED: 2733 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index); 2734 2735 ep->stream_rejected = true; 2736 break; 2737 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED: 2738 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index); 2739 2740 if (ep->stream_rejected) { 2741 ep->stream_rejected = false; 2742 /* 2743 * An EP is stopped when a stream is rejected. Wait 2744 * for the EP to report that it is stopped and then 2745 * un-stop it. 2746 */ 2747 ep_wait_for_stopped(xudc, ep_index); 2748 } 2749 tegra_xudc_ep_ring_doorbell(ep); 2750 break; 2751 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR: 2752 /* 2753 * Wait for the EP to be stopped so the controller stops 2754 * processing doorbells. 2755 */ 2756 ep_wait_for_stopped(xudc, ep_index); 2757 ep->enq_ptr = ep->deq_ptr; 2758 tegra_xudc_ep_nuke(ep, -EIO); 2759 fallthrough; 2760 case TRB_CMPL_CODE_STREAM_NUMP_ERROR: 2761 case TRB_CMPL_CODE_CTRL_DIR_ERR: 2762 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR: 2763 case TRB_CMPL_CODE_RING_UNDERRUN: 2764 case TRB_CMPL_CODE_RING_OVERRUN: 2765 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN: 2766 case TRB_CMPL_CODE_USB_TRANS_ERR: 2767 case TRB_CMPL_CODE_TRB_ERR: 2768 dev_err(xudc->dev, "completion error %#x on EP %u\n", 2769 comp_code, ep_index); 2770 2771 ep_halt(xudc, ep_index); 2772 break; 2773 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR: 2774 dev_info(xudc->dev, "sequence number error\n"); 2775 2776 /* 2777 * Kill any queued control request and skip to the last 2778 * setup packet we received. 2779 */ 2780 tegra_xudc_ep_nuke(ep, -EINVAL); 2781 xudc->setup_state = WAIT_FOR_SETUP; 2782 if (!xudc->queued_setup_packet) 2783 break; 2784 2785 tegra_xudc_handle_ep0_setup_packet(xudc, 2786 &xudc->setup_packet.ctrl_req, 2787 xudc->setup_packet.seq_num); 2788 xudc->queued_setup_packet = false; 2789 break; 2790 case TRB_CMPL_CODE_STOPPED: 2791 dev_dbg(xudc->dev, "stop completion code on EP %u\n", 2792 ep_index); 2793 2794 /* Disconnected. */ 2795 tegra_xudc_ep_nuke(ep, -ECONNREFUSED); 2796 break; 2797 default: 2798 dev_dbg(xudc->dev, "completion event %#x on EP %u\n", 2799 comp_code, ep_index); 2800 break; 2801 } 2802 } 2803 2804 static void tegra_xudc_reset(struct tegra_xudc *xudc) 2805 { 2806 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2807 dma_addr_t deq_ptr; 2808 unsigned int i; 2809 2810 xudc->setup_state = WAIT_FOR_SETUP; 2811 xudc->device_state = USB_STATE_DEFAULT; 2812 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2813 2814 ep_unpause_all(xudc); 2815 2816 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2817 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN); 2818 2819 /* 2820 * Reset sequence number and dequeue pointer to flush the transfer 2821 * ring. 2822 */ 2823 ep0->deq_ptr = ep0->enq_ptr; 2824 ep0->ring_full = false; 2825 2826 xudc->setup_seq_num = 0; 2827 xudc->queued_setup_packet = false; 2828 2829 ep_ctx_write_rsvd(ep0->context, 0); 2830 ep_ctx_write_partial_td(ep0->context, 0); 2831 ep_ctx_write_splitxstate(ep0->context, 0); 2832 ep_ctx_write_seq_num(ep0->context, 0); 2833 2834 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]); 2835 2836 if (!dma_mapping_error(xudc->dev, deq_ptr)) { 2837 ep_ctx_write_deq_ptr(ep0->context, deq_ptr); 2838 ep_ctx_write_dcs(ep0->context, ep0->pcs); 2839 } 2840 2841 ep_unhalt_all(xudc); 2842 ep_reload(xudc, 0); 2843 ep_unpause(xudc, 0); 2844 } 2845 2846 static void tegra_xudc_port_connect(struct tegra_xudc *xudc) 2847 { 2848 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2849 u16 maxpacket; 2850 u32 val; 2851 2852 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT; 2853 switch (val) { 2854 case PORTSC_PS_LS: 2855 xudc->gadget.speed = USB_SPEED_LOW; 2856 break; 2857 case PORTSC_PS_FS: 2858 xudc->gadget.speed = USB_SPEED_FULL; 2859 break; 2860 case PORTSC_PS_HS: 2861 xudc->gadget.speed = USB_SPEED_HIGH; 2862 break; 2863 case PORTSC_PS_SS: 2864 xudc->gadget.speed = USB_SPEED_SUPER; 2865 break; 2866 default: 2867 xudc->gadget.speed = USB_SPEED_UNKNOWN; 2868 break; 2869 } 2870 2871 xudc->device_state = USB_STATE_DEFAULT; 2872 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2873 2874 xudc->setup_state = WAIT_FOR_SETUP; 2875 2876 if (xudc->gadget.speed == USB_SPEED_SUPER) 2877 maxpacket = 512; 2878 else 2879 maxpacket = 64; 2880 2881 ep_ctx_write_max_packet_size(ep0->context, maxpacket); 2882 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket); 2883 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket); 2884 2885 if (!xudc->soc->u1_enable) { 2886 val = xudc_readl(xudc, PORTPM); 2887 val &= ~(PORTPM_U1TIMEOUT_MASK); 2888 xudc_writel(xudc, val, PORTPM); 2889 } 2890 2891 if (!xudc->soc->u2_enable) { 2892 val = xudc_readl(xudc, PORTPM); 2893 val &= ~(PORTPM_U2TIMEOUT_MASK); 2894 xudc_writel(xudc, val, PORTPM); 2895 } 2896 2897 if (xudc->gadget.speed <= USB_SPEED_HIGH) { 2898 val = xudc_readl(xudc, PORTPM); 2899 val &= ~(PORTPM_L1S_MASK); 2900 if (xudc->soc->lpm_enable) 2901 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT); 2902 else 2903 val |= PORTPM_L1S(PORTPM_L1S_NYET); 2904 xudc_writel(xudc, val, PORTPM); 2905 } 2906 2907 val = xudc_readl(xudc, ST); 2908 if (val & ST_RC) 2909 xudc_writel(xudc, ST_RC, ST); 2910 } 2911 2912 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc) 2913 { 2914 tegra_xudc_reset(xudc); 2915 2916 if (xudc->driver && xudc->driver->disconnect) { 2917 spin_unlock(&xudc->lock); 2918 xudc->driver->disconnect(&xudc->gadget); 2919 spin_lock(&xudc->lock); 2920 } 2921 2922 xudc->device_state = USB_STATE_NOTATTACHED; 2923 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2924 2925 complete(&xudc->disconnect_complete); 2926 } 2927 2928 static void tegra_xudc_port_reset(struct tegra_xudc *xudc) 2929 { 2930 tegra_xudc_reset(xudc); 2931 2932 if (xudc->driver) { 2933 spin_unlock(&xudc->lock); 2934 usb_gadget_udc_reset(&xudc->gadget, xudc->driver); 2935 spin_lock(&xudc->lock); 2936 } 2937 2938 tegra_xudc_port_connect(xudc); 2939 } 2940 2941 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc) 2942 { 2943 dev_dbg(xudc->dev, "port suspend\n"); 2944 2945 xudc->resume_state = xudc->device_state; 2946 xudc->device_state = USB_STATE_SUSPENDED; 2947 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2948 2949 if (xudc->driver->suspend) { 2950 spin_unlock(&xudc->lock); 2951 xudc->driver->suspend(&xudc->gadget); 2952 spin_lock(&xudc->lock); 2953 } 2954 } 2955 2956 static void tegra_xudc_port_resume(struct tegra_xudc *xudc) 2957 { 2958 dev_dbg(xudc->dev, "port resume\n"); 2959 2960 tegra_xudc_resume_device_state(xudc); 2961 2962 if (xudc->driver->resume) { 2963 spin_unlock(&xudc->lock); 2964 xudc->driver->resume(&xudc->gadget); 2965 spin_lock(&xudc->lock); 2966 } 2967 } 2968 2969 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag) 2970 { 2971 u32 val; 2972 2973 val = xudc_readl(xudc, PORTSC); 2974 val &= ~PORTSC_CHANGE_MASK; 2975 val |= flag; 2976 xudc_writel(xudc, val, PORTSC); 2977 } 2978 2979 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 2980 { 2981 u32 portsc, porthalt; 2982 2983 porthalt = xudc_readl(xudc, PORTHALT); 2984 if ((porthalt & PORTHALT_STCHG_REQ) && 2985 (porthalt & PORTHALT_HALT_LTSSM)) { 2986 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt); 2987 porthalt &= ~PORTHALT_HALT_LTSSM; 2988 xudc_writel(xudc, porthalt, PORTHALT); 2989 } 2990 2991 portsc = xudc_readl(xudc, PORTSC); 2992 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) { 2993 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc); 2994 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 2995 #define TOGGLE_VBUS_WAIT_MS 100 2996 if (xudc->soc->port_reset_quirk) { 2997 schedule_delayed_work(&xudc->port_reset_war_work, 2998 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 2999 xudc->wait_for_sec_prc = 1; 3000 } 3001 } 3002 3003 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) { 3004 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc); 3005 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 3006 tegra_xudc_port_reset(xudc); 3007 cancel_delayed_work(&xudc->port_reset_war_work); 3008 xudc->wait_for_sec_prc = 0; 3009 } 3010 3011 portsc = xudc_readl(xudc, PORTSC); 3012 if (portsc & PORTSC_WRC) { 3013 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc); 3014 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED); 3015 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR)) 3016 tegra_xudc_port_reset(xudc); 3017 } 3018 3019 portsc = xudc_readl(xudc, PORTSC); 3020 if (portsc & PORTSC_CSC) { 3021 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc); 3022 clear_port_change(xudc, PORTSC_CSC); 3023 3024 if (portsc & PORTSC_CCS) 3025 tegra_xudc_port_connect(xudc); 3026 else 3027 tegra_xudc_port_disconnect(xudc); 3028 3029 if (xudc->wait_csc) { 3030 cancel_delayed_work(&xudc->plc_reset_work); 3031 xudc->wait_csc = false; 3032 } 3033 } 3034 3035 portsc = xudc_readl(xudc, PORTSC); 3036 if (portsc & PORTSC_PLC) { 3037 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; 3038 3039 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc); 3040 clear_port_change(xudc, PORTSC_PLC); 3041 switch (pls) { 3042 case PORTSC_PLS_U3: 3043 tegra_xudc_port_suspend(xudc); 3044 break; 3045 case PORTSC_PLS_U0: 3046 if (xudc->gadget.speed < USB_SPEED_SUPER) 3047 tegra_xudc_port_resume(xudc); 3048 break; 3049 case PORTSC_PLS_RESUME: 3050 if (xudc->gadget.speed == USB_SPEED_SUPER) 3051 tegra_xudc_port_resume(xudc); 3052 break; 3053 case PORTSC_PLS_INACTIVE: 3054 schedule_delayed_work(&xudc->plc_reset_work, 3055 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 3056 xudc->wait_csc = true; 3057 break; 3058 default: 3059 break; 3060 } 3061 } 3062 3063 if (portsc & PORTSC_CEC) { 3064 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc); 3065 clear_port_change(xudc, PORTSC_CEC); 3066 } 3067 3068 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC)); 3069 } 3070 3071 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 3072 { 3073 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) || 3074 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ)) 3075 __tegra_xudc_handle_port_status(xudc); 3076 } 3077 3078 static void tegra_xudc_handle_event(struct tegra_xudc *xudc, 3079 struct tegra_xudc_trb *event) 3080 { 3081 u32 type = trb_read_type(event); 3082 3083 dump_trb(xudc, "EVENT", event); 3084 3085 switch (type) { 3086 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT: 3087 tegra_xudc_handle_port_status(xudc); 3088 break; 3089 case TRB_TYPE_TRANSFER_EVENT: 3090 tegra_xudc_handle_transfer_event(xudc, event); 3091 break; 3092 case TRB_TYPE_SETUP_PACKET_EVENT: 3093 tegra_xudc_handle_ep0_event(xudc, event); 3094 break; 3095 default: 3096 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type); 3097 break; 3098 } 3099 } 3100 3101 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc) 3102 { 3103 struct tegra_xudc_trb *event; 3104 dma_addr_t erdp; 3105 3106 while (true) { 3107 event = xudc->event_ring[xudc->event_ring_index] + 3108 xudc->event_ring_deq_ptr; 3109 3110 if (trb_read_cycle(event) != xudc->ccs) 3111 break; 3112 3113 tegra_xudc_handle_event(xudc, event); 3114 3115 xudc->event_ring_deq_ptr++; 3116 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) { 3117 xudc->event_ring_deq_ptr = 0; 3118 xudc->event_ring_index++; 3119 } 3120 3121 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) { 3122 xudc->event_ring_index = 0; 3123 xudc->ccs = !xudc->ccs; 3124 } 3125 } 3126 3127 erdp = xudc->event_ring_phys[xudc->event_ring_index] + 3128 xudc->event_ring_deq_ptr * sizeof(*event); 3129 3130 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI); 3131 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO); 3132 } 3133 3134 static irqreturn_t tegra_xudc_irq(int irq, void *data) 3135 { 3136 struct tegra_xudc *xudc = data; 3137 unsigned long flags; 3138 u32 val; 3139 3140 val = xudc_readl(xudc, ST); 3141 if (!(val & ST_IP)) 3142 return IRQ_NONE; 3143 xudc_writel(xudc, ST_IP, ST); 3144 3145 spin_lock_irqsave(&xudc->lock, flags); 3146 tegra_xudc_process_event_ring(xudc); 3147 spin_unlock_irqrestore(&xudc->lock, flags); 3148 3149 return IRQ_HANDLED; 3150 } 3151 3152 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index) 3153 { 3154 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3155 3156 ep->xudc = xudc; 3157 ep->index = index; 3158 ep->context = &xudc->ep_context[index]; 3159 INIT_LIST_HEAD(&ep->queue); 3160 3161 /* 3162 * EP1 would be the input endpoint corresponding to EP0, but since 3163 * EP0 is bi-directional, EP1 is unused. 3164 */ 3165 if (index == 1) 3166 return 0; 3167 3168 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool, 3169 GFP_KERNEL, 3170 &ep->transfer_ring_phys); 3171 if (!ep->transfer_ring) 3172 return -ENOMEM; 3173 3174 if (index) { 3175 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2, 3176 (index % 2 == 0) ? "out" : "in"); 3177 ep->usb_ep.name = ep->name; 3178 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024); 3179 ep->usb_ep.max_streams = 16; 3180 ep->usb_ep.ops = &tegra_xudc_ep_ops; 3181 ep->usb_ep.caps.type_bulk = true; 3182 ep->usb_ep.caps.type_int = true; 3183 if (index & 1) 3184 ep->usb_ep.caps.dir_in = true; 3185 else 3186 ep->usb_ep.caps.dir_out = true; 3187 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list); 3188 } else { 3189 strscpy(ep->name, "ep0", 3); 3190 ep->usb_ep.name = ep->name; 3191 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512); 3192 ep->usb_ep.ops = &tegra_xudc_ep0_ops; 3193 ep->usb_ep.caps.type_control = true; 3194 ep->usb_ep.caps.dir_in = true; 3195 ep->usb_ep.caps.dir_out = true; 3196 } 3197 3198 return 0; 3199 } 3200 3201 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index) 3202 { 3203 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3204 3205 /* 3206 * EP1 would be the input endpoint corresponding to EP0, but since 3207 * EP0 is bi-directional, EP1 is unused. 3208 */ 3209 if (index == 1) 3210 return; 3211 3212 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring, 3213 ep->transfer_ring_phys); 3214 } 3215 3216 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc) 3217 { 3218 struct usb_request *req; 3219 unsigned int i; 3220 int err; 3221 3222 xudc->ep_context = 3223 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS * 3224 sizeof(*xudc->ep_context), 3225 &xudc->ep_context_phys, GFP_KERNEL); 3226 if (!xudc->ep_context) 3227 return -ENOMEM; 3228 3229 xudc->transfer_ring_pool = 3230 dmam_pool_create(dev_name(xudc->dev), xudc->dev, 3231 XUDC_TRANSFER_RING_SIZE * 3232 sizeof(struct tegra_xudc_trb), 3233 sizeof(struct tegra_xudc_trb), 0); 3234 if (!xudc->transfer_ring_pool) { 3235 err = -ENOMEM; 3236 goto free_ep_context; 3237 } 3238 3239 INIT_LIST_HEAD(&xudc->gadget.ep_list); 3240 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 3241 err = tegra_xudc_alloc_ep(xudc, i); 3242 if (err < 0) 3243 goto free_eps; 3244 } 3245 3246 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL); 3247 if (!req) { 3248 err = -ENOMEM; 3249 goto free_eps; 3250 } 3251 xudc->ep0_req = to_xudc_req(req); 3252 3253 return 0; 3254 3255 free_eps: 3256 for (; i > 0; i--) 3257 tegra_xudc_free_ep(xudc, i - 1); 3258 free_ep_context: 3259 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3260 xudc->ep_context, xudc->ep_context_phys); 3261 return err; 3262 } 3263 3264 static void tegra_xudc_init_eps(struct tegra_xudc *xudc) 3265 { 3266 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO); 3267 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI); 3268 } 3269 3270 static void tegra_xudc_free_eps(struct tegra_xudc *xudc) 3271 { 3272 unsigned int i; 3273 3274 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep, 3275 &xudc->ep0_req->usb_req); 3276 3277 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 3278 tegra_xudc_free_ep(xudc, i); 3279 3280 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3281 xudc->ep_context, xudc->ep_context_phys); 3282 } 3283 3284 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc) 3285 { 3286 unsigned int i; 3287 3288 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3289 xudc->event_ring[i] = 3290 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3291 sizeof(*xudc->event_ring[i]), 3292 &xudc->event_ring_phys[i], 3293 GFP_KERNEL); 3294 if (!xudc->event_ring[i]) 3295 goto free_dma; 3296 } 3297 3298 return 0; 3299 3300 free_dma: 3301 for (; i > 0; i--) { 3302 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3303 sizeof(*xudc->event_ring[i - 1]), 3304 xudc->event_ring[i - 1], 3305 xudc->event_ring_phys[i - 1]); 3306 } 3307 return -ENOMEM; 3308 } 3309 3310 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc) 3311 { 3312 unsigned int i; 3313 u32 val; 3314 3315 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3316 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE * 3317 sizeof(*xudc->event_ring[i])); 3318 3319 val = xudc_readl(xudc, ERSTSZ); 3320 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i)); 3321 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i); 3322 xudc_writel(xudc, val, ERSTSZ); 3323 3324 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]), 3325 ERSTXBALO(i)); 3326 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]), 3327 ERSTXBAHI(i)); 3328 } 3329 3330 val = lower_32_bits(xudc->event_ring_phys[0]); 3331 xudc_writel(xudc, val, ERDPLO); 3332 val |= EREPLO_ECS; 3333 xudc_writel(xudc, val, EREPLO); 3334 3335 val = upper_32_bits(xudc->event_ring_phys[0]); 3336 xudc_writel(xudc, val, ERDPHI); 3337 xudc_writel(xudc, val, EREPHI); 3338 3339 xudc->ccs = true; 3340 xudc->event_ring_index = 0; 3341 xudc->event_ring_deq_ptr = 0; 3342 } 3343 3344 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc) 3345 { 3346 unsigned int i; 3347 3348 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3349 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3350 sizeof(*xudc->event_ring[i]), 3351 xudc->event_ring[i], 3352 xudc->event_ring_phys[i]); 3353 } 3354 } 3355 3356 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc) 3357 { 3358 u32 val; 3359 3360 if (xudc->soc->has_ipfs) { 3361 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0); 3362 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI; 3363 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0); 3364 usleep_range(10, 15); 3365 } 3366 3367 /* Enable bus master */ 3368 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN | 3369 XUSB_DEV_CFG_1_BUS_MASTER_EN; 3370 fpci_writel(xudc, val, XUSB_DEV_CFG_1); 3371 3372 /* Program BAR0 space */ 3373 val = fpci_readl(xudc, XUSB_DEV_CFG_4); 3374 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3375 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3376 3377 fpci_writel(xudc, val, XUSB_DEV_CFG_4); 3378 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5); 3379 3380 usleep_range(100, 200); 3381 3382 if (xudc->soc->has_ipfs) { 3383 /* Enable interrupt assertion */ 3384 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0); 3385 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK; 3386 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0); 3387 } 3388 } 3389 3390 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc) 3391 { 3392 u32 val, imod; 3393 3394 if (xudc->soc->has_ipfs) { 3395 val = xudc_readl(xudc, BLCG); 3396 val |= BLCG_ALL; 3397 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE | 3398 BLCG_COREPLL_PWRDN); 3399 val |= BLCG_IOPLL_0_PWRDN; 3400 val |= BLCG_IOPLL_1_PWRDN; 3401 val |= BLCG_IOPLL_2_PWRDN; 3402 3403 xudc_writel(xudc, val, BLCG); 3404 } 3405 3406 if (xudc->soc->port_speed_quirk) 3407 tegra_xudc_limit_port_speed(xudc); 3408 3409 /* Set a reasonable U3 exit timer value. */ 3410 val = xudc_readl(xudc, SSPX_CORE_PADCTL4); 3411 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK); 3412 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0); 3413 xudc_writel(xudc, val, SSPX_CORE_PADCTL4); 3414 3415 /* Default ping LFPS tBurst is too large. */ 3416 val = xudc_readl(xudc, SSPX_CORE_CNT0); 3417 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK); 3418 val |= SSPX_CORE_CNT0_PING_TBURST(0xa); 3419 xudc_writel(xudc, val, SSPX_CORE_CNT0); 3420 3421 /* Default tPortConfiguration timeout is too small. */ 3422 val = xudc_readl(xudc, SSPX_CORE_CNT30); 3423 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK); 3424 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978); 3425 xudc_writel(xudc, val, SSPX_CORE_CNT30); 3426 3427 if (xudc->soc->lpm_enable) { 3428 /* Set L1 resume duration to 95 us. */ 3429 val = xudc_readl(xudc, HSFSPI_COUNT13); 3430 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK); 3431 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88); 3432 xudc_writel(xudc, val, HSFSPI_COUNT13); 3433 } 3434 3435 /* 3436 * Compliance suite appears to be violating polling LFPS tBurst max 3437 * of 1.4us. Send 1.45us instead. 3438 */ 3439 val = xudc_readl(xudc, SSPX_CORE_CNT32); 3440 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK); 3441 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0); 3442 xudc_writel(xudc, val, SSPX_CORE_CNT32); 3443 3444 /* Direct HS/FS port instance to RxDetect. */ 3445 val = xudc_readl(xudc, CFG_DEV_FE); 3446 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3447 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI); 3448 xudc_writel(xudc, val, CFG_DEV_FE); 3449 3450 val = xudc_readl(xudc, PORTSC); 3451 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3452 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3453 xudc_writel(xudc, val, PORTSC); 3454 3455 /* Direct SS port instance to RxDetect. */ 3456 val = xudc_readl(xudc, CFG_DEV_FE); 3457 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3458 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK; 3459 xudc_writel(xudc, val, CFG_DEV_FE); 3460 3461 val = xudc_readl(xudc, PORTSC); 3462 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3463 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3464 xudc_writel(xudc, val, PORTSC); 3465 3466 /* Restore port instance. */ 3467 val = xudc_readl(xudc, CFG_DEV_FE); 3468 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3469 xudc_writel(xudc, val, CFG_DEV_FE); 3470 3471 /* 3472 * Enable INFINITE_SS_RETRY to prevent device from entering 3473 * Disabled.Error when attached to buggy SuperSpeed hubs. 3474 */ 3475 val = xudc_readl(xudc, CFG_DEV_FE); 3476 val |= CFG_DEV_FE_INFINITE_SS_RETRY; 3477 xudc_writel(xudc, val, CFG_DEV_FE); 3478 3479 /* Set interrupt moderation. */ 3480 imod = XUDC_INTERRUPT_MODERATION_US * 4; 3481 val = xudc_readl(xudc, RT_IMOD); 3482 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK)); 3483 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod)); 3484 xudc_writel(xudc, val, RT_IMOD); 3485 3486 /* increase SSPI transaction timeout from 32us to 512us */ 3487 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER); 3488 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK); 3489 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000); 3490 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER); 3491 } 3492 3493 static int tegra_xudc_phy_get(struct tegra_xudc *xudc) 3494 { 3495 int err = 0, usb3; 3496 unsigned int i; 3497 3498 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3499 sizeof(*xudc->utmi_phy), GFP_KERNEL); 3500 if (!xudc->utmi_phy) 3501 return -ENOMEM; 3502 3503 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3504 sizeof(*xudc->usb3_phy), GFP_KERNEL); 3505 if (!xudc->usb3_phy) 3506 return -ENOMEM; 3507 3508 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3509 sizeof(*xudc->usbphy), GFP_KERNEL); 3510 if (!xudc->usbphy) 3511 return -ENOMEM; 3512 3513 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify; 3514 3515 for (i = 0; i < xudc->soc->num_phys; i++) { 3516 char phy_name[] = "usb.-."; 3517 3518 /* Get USB2 phy */ 3519 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i); 3520 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3521 if (IS_ERR(xudc->utmi_phy[i])) { 3522 err = PTR_ERR(xudc->utmi_phy[i]); 3523 dev_err_probe(xudc->dev, err, 3524 "failed to get usb2-%d PHY\n", i); 3525 goto clean_up; 3526 } else if (xudc->utmi_phy[i]) { 3527 /* Get usb-phy, if utmi phy is available */ 3528 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev, 3529 xudc->utmi_phy[i]->dev.of_node, 3530 NULL); 3531 if (IS_ERR(xudc->usbphy[i])) { 3532 err = PTR_ERR(xudc->usbphy[i]); 3533 dev_err_probe(xudc->dev, err, 3534 "failed to get usbphy-%d\n", i); 3535 goto clean_up; 3536 } 3537 } else if (!xudc->utmi_phy[i]) { 3538 /* if utmi phy is not available, ignore USB3 phy get */ 3539 continue; 3540 } 3541 3542 /* Get USB3 phy */ 3543 usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i); 3544 if (usb3 < 0) 3545 continue; 3546 3547 snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3); 3548 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3549 if (IS_ERR(xudc->usb3_phy[i])) { 3550 err = PTR_ERR(xudc->usb3_phy[i]); 3551 dev_err_probe(xudc->dev, err, 3552 "failed to get usb3-%d PHY\n", usb3); 3553 goto clean_up; 3554 } else if (xudc->usb3_phy[i]) 3555 dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3); 3556 } 3557 3558 return err; 3559 3560 clean_up: 3561 for (i = 0; i < xudc->soc->num_phys; i++) { 3562 xudc->usb3_phy[i] = NULL; 3563 xudc->utmi_phy[i] = NULL; 3564 xudc->usbphy[i] = NULL; 3565 } 3566 3567 return err; 3568 } 3569 3570 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc) 3571 { 3572 unsigned int i; 3573 3574 for (i = 0; i < xudc->soc->num_phys; i++) { 3575 phy_exit(xudc->usb3_phy[i]); 3576 phy_exit(xudc->utmi_phy[i]); 3577 } 3578 } 3579 3580 static int tegra_xudc_phy_init(struct tegra_xudc *xudc) 3581 { 3582 int err; 3583 unsigned int i; 3584 3585 for (i = 0; i < xudc->soc->num_phys; i++) { 3586 err = phy_init(xudc->utmi_phy[i]); 3587 if (err < 0) { 3588 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err); 3589 goto exit_phy; 3590 } 3591 3592 err = phy_init(xudc->usb3_phy[i]); 3593 if (err < 0) { 3594 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err); 3595 goto exit_phy; 3596 } 3597 } 3598 return 0; 3599 3600 exit_phy: 3601 tegra_xudc_phy_exit(xudc); 3602 return err; 3603 } 3604 3605 static const char * const tegra210_xudc_supply_names[] = { 3606 "hvdd-usb", 3607 "avddio-usb", 3608 }; 3609 3610 static const char * const tegra210_xudc_clock_names[] = { 3611 "dev", 3612 "ss", 3613 "ss_src", 3614 "hs_src", 3615 "fs_src", 3616 }; 3617 3618 static const char * const tegra186_xudc_clock_names[] = { 3619 "dev", 3620 "ss", 3621 "ss_src", 3622 "fs_src", 3623 }; 3624 3625 static struct tegra_xudc_soc tegra210_xudc_soc_data = { 3626 .supply_names = tegra210_xudc_supply_names, 3627 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names), 3628 .clock_names = tegra210_xudc_clock_names, 3629 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names), 3630 .num_phys = 4, 3631 .u1_enable = false, 3632 .u2_enable = true, 3633 .lpm_enable = false, 3634 .invalid_seq_num = true, 3635 .pls_quirk = true, 3636 .port_reset_quirk = true, 3637 .port_speed_quirk = false, 3638 .has_ipfs = true, 3639 }; 3640 3641 static struct tegra_xudc_soc tegra186_xudc_soc_data = { 3642 .clock_names = tegra186_xudc_clock_names, 3643 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3644 .num_phys = 4, 3645 .u1_enable = true, 3646 .u2_enable = true, 3647 .lpm_enable = false, 3648 .invalid_seq_num = false, 3649 .pls_quirk = false, 3650 .port_reset_quirk = false, 3651 .port_speed_quirk = false, 3652 .has_ipfs = false, 3653 }; 3654 3655 static struct tegra_xudc_soc tegra194_xudc_soc_data = { 3656 .clock_names = tegra186_xudc_clock_names, 3657 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3658 .num_phys = 4, 3659 .u1_enable = true, 3660 .u2_enable = true, 3661 .lpm_enable = true, 3662 .invalid_seq_num = false, 3663 .pls_quirk = false, 3664 .port_reset_quirk = false, 3665 .port_speed_quirk = true, 3666 .has_ipfs = false, 3667 }; 3668 3669 static struct tegra_xudc_soc tegra234_xudc_soc_data = { 3670 .clock_names = tegra186_xudc_clock_names, 3671 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3672 .num_phys = 4, 3673 .u1_enable = true, 3674 .u2_enable = true, 3675 .lpm_enable = true, 3676 .invalid_seq_num = false, 3677 .pls_quirk = false, 3678 .port_reset_quirk = false, 3679 .has_ipfs = false, 3680 }; 3681 3682 static const struct of_device_id tegra_xudc_of_match[] = { 3683 { 3684 .compatible = "nvidia,tegra210-xudc", 3685 .data = &tegra210_xudc_soc_data 3686 }, 3687 { 3688 .compatible = "nvidia,tegra186-xudc", 3689 .data = &tegra186_xudc_soc_data 3690 }, 3691 { 3692 .compatible = "nvidia,tegra194-xudc", 3693 .data = &tegra194_xudc_soc_data 3694 }, 3695 { 3696 .compatible = "nvidia,tegra234-xudc", 3697 .data = &tegra234_xudc_soc_data 3698 }, 3699 { } 3700 }; 3701 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match); 3702 3703 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc) 3704 { 3705 if (xudc->genpd_dl_ss) 3706 device_link_del(xudc->genpd_dl_ss); 3707 if (xudc->genpd_dl_device) 3708 device_link_del(xudc->genpd_dl_device); 3709 if (xudc->genpd_dev_ss) 3710 dev_pm_domain_detach(xudc->genpd_dev_ss, true); 3711 if (xudc->genpd_dev_device) 3712 dev_pm_domain_detach(xudc->genpd_dev_device, true); 3713 } 3714 3715 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc) 3716 { 3717 struct device *dev = xudc->dev; 3718 int err; 3719 3720 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev"); 3721 if (IS_ERR(xudc->genpd_dev_device)) { 3722 err = PTR_ERR(xudc->genpd_dev_device); 3723 dev_err(dev, "failed to get device power domain: %d\n", err); 3724 return err; 3725 } 3726 3727 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss"); 3728 if (IS_ERR(xudc->genpd_dev_ss)) { 3729 err = PTR_ERR(xudc->genpd_dev_ss); 3730 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err); 3731 return err; 3732 } 3733 3734 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device, 3735 DL_FLAG_PM_RUNTIME | 3736 DL_FLAG_STATELESS); 3737 if (!xudc->genpd_dl_device) { 3738 dev_err(dev, "failed to add USB device link\n"); 3739 return -ENODEV; 3740 } 3741 3742 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss, 3743 DL_FLAG_PM_RUNTIME | 3744 DL_FLAG_STATELESS); 3745 if (!xudc->genpd_dl_ss) { 3746 dev_err(dev, "failed to add SuperSpeed device link\n"); 3747 return -ENODEV; 3748 } 3749 3750 return 0; 3751 } 3752 3753 static int tegra_xudc_probe(struct platform_device *pdev) 3754 { 3755 struct tegra_xudc *xudc; 3756 struct resource *res; 3757 unsigned int i; 3758 int err; 3759 3760 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL); 3761 if (!xudc) 3762 return -ENOMEM; 3763 3764 xudc->dev = &pdev->dev; 3765 platform_set_drvdata(pdev, xudc); 3766 3767 xudc->soc = of_device_get_match_data(&pdev->dev); 3768 if (!xudc->soc) 3769 return -ENODEV; 3770 3771 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 3772 xudc->base = devm_ioremap_resource(&pdev->dev, res); 3773 if (IS_ERR(xudc->base)) 3774 return PTR_ERR(xudc->base); 3775 xudc->phys_base = res->start; 3776 3777 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci"); 3778 if (IS_ERR(xudc->fpci)) 3779 return PTR_ERR(xudc->fpci); 3780 3781 if (xudc->soc->has_ipfs) { 3782 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs"); 3783 if (IS_ERR(xudc->ipfs)) 3784 return PTR_ERR(xudc->ipfs); 3785 } 3786 3787 xudc->irq = platform_get_irq(pdev, 0); 3788 if (xudc->irq < 0) 3789 return xudc->irq; 3790 3791 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0, 3792 dev_name(&pdev->dev), xudc); 3793 if (err < 0) { 3794 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq, 3795 err); 3796 return err; 3797 } 3798 3799 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks), 3800 GFP_KERNEL); 3801 if (!xudc->clks) 3802 return -ENOMEM; 3803 3804 for (i = 0; i < xudc->soc->num_clks; i++) 3805 xudc->clks[i].id = xudc->soc->clock_names[i]; 3806 3807 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks); 3808 if (err) { 3809 dev_err_probe(xudc->dev, err, "failed to request clocks\n"); 3810 return err; 3811 } 3812 3813 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies, 3814 sizeof(*xudc->supplies), GFP_KERNEL); 3815 if (!xudc->supplies) 3816 return -ENOMEM; 3817 3818 for (i = 0; i < xudc->soc->num_supplies; i++) 3819 xudc->supplies[i].supply = xudc->soc->supply_names[i]; 3820 3821 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies, 3822 xudc->supplies); 3823 if (err) { 3824 dev_err_probe(xudc->dev, err, "failed to request regulators\n"); 3825 return err; 3826 } 3827 3828 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev); 3829 if (IS_ERR(xudc->padctl)) 3830 return PTR_ERR(xudc->padctl); 3831 3832 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies); 3833 if (err) { 3834 dev_err(xudc->dev, "failed to enable regulators: %d\n", err); 3835 goto put_padctl; 3836 } 3837 3838 err = tegra_xudc_phy_get(xudc); 3839 if (err) 3840 goto disable_regulator; 3841 3842 err = tegra_xudc_powerdomain_init(xudc); 3843 if (err) 3844 goto put_powerdomains; 3845 3846 err = tegra_xudc_phy_init(xudc); 3847 if (err) 3848 goto put_powerdomains; 3849 3850 err = tegra_xudc_alloc_event_ring(xudc); 3851 if (err) 3852 goto disable_phy; 3853 3854 err = tegra_xudc_alloc_eps(xudc); 3855 if (err) 3856 goto free_event_ring; 3857 3858 spin_lock_init(&xudc->lock); 3859 3860 init_completion(&xudc->disconnect_complete); 3861 3862 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work); 3863 3864 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work); 3865 3866 INIT_DELAYED_WORK(&xudc->port_reset_war_work, 3867 tegra_xudc_port_reset_war_work); 3868 3869 pm_runtime_enable(&pdev->dev); 3870 3871 xudc->gadget.ops = &tegra_xudc_gadget_ops; 3872 xudc->gadget.ep0 = &xudc->ep[0].usb_ep; 3873 xudc->gadget.name = "tegra-xudc"; 3874 xudc->gadget.max_speed = USB_SPEED_SUPER; 3875 3876 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget); 3877 if (err) { 3878 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err); 3879 goto free_eps; 3880 } 3881 3882 for (i = 0; i < xudc->soc->num_phys; i++) { 3883 if (!xudc->usbphy[i]) 3884 continue; 3885 3886 usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb); 3887 tegra_xudc_update_data_role(xudc, xudc->usbphy[i]); 3888 } 3889 3890 return 0; 3891 3892 free_eps: 3893 pm_runtime_disable(&pdev->dev); 3894 tegra_xudc_free_eps(xudc); 3895 free_event_ring: 3896 tegra_xudc_free_event_ring(xudc); 3897 disable_phy: 3898 tegra_xudc_phy_exit(xudc); 3899 put_powerdomains: 3900 tegra_xudc_powerdomain_remove(xudc); 3901 disable_regulator: 3902 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3903 put_padctl: 3904 tegra_xusb_padctl_put(xudc->padctl); 3905 3906 return err; 3907 } 3908 3909 static void tegra_xudc_remove(struct platform_device *pdev) 3910 { 3911 struct tegra_xudc *xudc = platform_get_drvdata(pdev); 3912 unsigned int i; 3913 3914 pm_runtime_get_sync(xudc->dev); 3915 3916 cancel_delayed_work_sync(&xudc->plc_reset_work); 3917 cancel_work_sync(&xudc->usb_role_sw_work); 3918 3919 usb_del_gadget_udc(&xudc->gadget); 3920 3921 tegra_xudc_free_eps(xudc); 3922 tegra_xudc_free_event_ring(xudc); 3923 3924 tegra_xudc_powerdomain_remove(xudc); 3925 3926 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3927 3928 for (i = 0; i < xudc->soc->num_phys; i++) { 3929 phy_power_off(xudc->utmi_phy[i]); 3930 phy_power_off(xudc->usb3_phy[i]); 3931 } 3932 3933 tegra_xudc_phy_exit(xudc); 3934 3935 pm_runtime_disable(xudc->dev); 3936 pm_runtime_put(xudc->dev); 3937 3938 tegra_xusb_padctl_put(xudc->padctl); 3939 } 3940 3941 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc) 3942 { 3943 unsigned long flags; 3944 3945 dev_dbg(xudc->dev, "entering ELPG\n"); 3946 3947 spin_lock_irqsave(&xudc->lock, flags); 3948 3949 xudc->powergated = true; 3950 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL); 3951 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM); 3952 xudc_writel(xudc, 0, CTRL); 3953 3954 spin_unlock_irqrestore(&xudc->lock, flags); 3955 3956 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks); 3957 3958 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3959 3960 dev_dbg(xudc->dev, "entering ELPG done\n"); 3961 return 0; 3962 } 3963 3964 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc) 3965 { 3966 unsigned long flags; 3967 int err; 3968 3969 dev_dbg(xudc->dev, "exiting ELPG\n"); 3970 3971 err = regulator_bulk_enable(xudc->soc->num_supplies, 3972 xudc->supplies); 3973 if (err < 0) 3974 return err; 3975 3976 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks); 3977 if (err < 0) 3978 return err; 3979 3980 tegra_xudc_fpci_ipfs_init(xudc); 3981 3982 tegra_xudc_device_params_init(xudc); 3983 3984 tegra_xudc_init_event_ring(xudc); 3985 3986 tegra_xudc_init_eps(xudc); 3987 3988 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM); 3989 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL); 3990 3991 spin_lock_irqsave(&xudc->lock, flags); 3992 xudc->powergated = false; 3993 spin_unlock_irqrestore(&xudc->lock, flags); 3994 3995 dev_dbg(xudc->dev, "exiting ELPG done\n"); 3996 return 0; 3997 } 3998 3999 static int __maybe_unused tegra_xudc_suspend(struct device *dev) 4000 { 4001 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4002 unsigned long flags; 4003 4004 spin_lock_irqsave(&xudc->lock, flags); 4005 xudc->suspended = true; 4006 spin_unlock_irqrestore(&xudc->lock, flags); 4007 4008 flush_work(&xudc->usb_role_sw_work); 4009 4010 if (!pm_runtime_status_suspended(dev)) { 4011 /* Forcibly disconnect before powergating. */ 4012 tegra_xudc_device_mode_off(xudc); 4013 tegra_xudc_powergate(xudc); 4014 } 4015 4016 pm_runtime_disable(dev); 4017 4018 return 0; 4019 } 4020 4021 static int __maybe_unused tegra_xudc_resume(struct device *dev) 4022 { 4023 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4024 unsigned long flags; 4025 int err; 4026 4027 err = tegra_xudc_unpowergate(xudc); 4028 if (err < 0) 4029 return err; 4030 4031 spin_lock_irqsave(&xudc->lock, flags); 4032 xudc->suspended = false; 4033 spin_unlock_irqrestore(&xudc->lock, flags); 4034 4035 schedule_work(&xudc->usb_role_sw_work); 4036 4037 pm_runtime_enable(dev); 4038 4039 return 0; 4040 } 4041 4042 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev) 4043 { 4044 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4045 4046 return tegra_xudc_powergate(xudc); 4047 } 4048 4049 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev) 4050 { 4051 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4052 4053 return tegra_xudc_unpowergate(xudc); 4054 } 4055 4056 static const struct dev_pm_ops tegra_xudc_pm_ops = { 4057 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume) 4058 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend, 4059 tegra_xudc_runtime_resume, NULL) 4060 }; 4061 4062 static struct platform_driver tegra_xudc_driver = { 4063 .probe = tegra_xudc_probe, 4064 .remove_new = tegra_xudc_remove, 4065 .driver = { 4066 .name = "tegra-xudc", 4067 .pm = &tegra_xudc_pm_ops, 4068 .of_match_table = tegra_xudc_of_match, 4069 }, 4070 }; 4071 module_platform_driver(tegra_xudc_driver); 4072 4073 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller"); 4074 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>"); 4075 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>"); 4076 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>"); 4077 MODULE_LICENSE("GPL v2"); 4078