1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NVIDIA Tegra XUSB device mode controller 4 * 5 * Copyright (c) 2013-2022, NVIDIA CORPORATION. All rights reserved. 6 * Copyright (c) 2015, Google Inc. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/interrupt.h> 15 #include <linux/iopoll.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/phy/phy.h> 20 #include <linux/phy/tegra/xusb.h> 21 #include <linux/pm_domain.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/reset.h> 26 #include <linux/usb/ch9.h> 27 #include <linux/usb/gadget.h> 28 #include <linux/usb/otg.h> 29 #include <linux/usb/role.h> 30 #include <linux/usb/phy.h> 31 #include <linux/workqueue.h> 32 33 /* XUSB_DEV registers */ 34 #define DB 0x004 35 #define DB_TARGET_MASK GENMASK(15, 8) 36 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK) 37 #define DB_STREAMID_MASK GENMASK(31, 16) 38 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK) 39 #define ERSTSZ 0x008 40 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16) 41 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0) 42 #define ERSTXBALO(x) (0x010 + 8 * (x)) 43 #define ERSTXBAHI(x) (0x014 + 8 * (x)) 44 #define ERDPLO 0x020 45 #define ERDPLO_EHB BIT(3) 46 #define ERDPHI 0x024 47 #define EREPLO 0x028 48 #define EREPLO_ECS BIT(0) 49 #define EREPLO_SEGI BIT(1) 50 #define EREPHI 0x02c 51 #define CTRL 0x030 52 #define CTRL_RUN BIT(0) 53 #define CTRL_LSE BIT(1) 54 #define CTRL_IE BIT(4) 55 #define CTRL_SMI_EVT BIT(5) 56 #define CTRL_SMI_DSE BIT(6) 57 #define CTRL_EWE BIT(7) 58 #define CTRL_DEVADDR_MASK GENMASK(30, 24) 59 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK) 60 #define CTRL_ENABLE BIT(31) 61 #define ST 0x034 62 #define ST_RC BIT(0) 63 #define ST_IP BIT(4) 64 #define RT_IMOD 0x038 65 #define RT_IMOD_IMODI_MASK GENMASK(15, 0) 66 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK) 67 #define RT_IMOD_IMODC_MASK GENMASK(31, 16) 68 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK) 69 #define PORTSC 0x03c 70 #define PORTSC_CCS BIT(0) 71 #define PORTSC_PED BIT(1) 72 #define PORTSC_PR BIT(4) 73 #define PORTSC_PLS_SHIFT 5 74 #define PORTSC_PLS_MASK GENMASK(8, 5) 75 #define PORTSC_PLS_U0 0x0 76 #define PORTSC_PLS_U2 0x2 77 #define PORTSC_PLS_U3 0x3 78 #define PORTSC_PLS_DISABLED 0x4 79 #define PORTSC_PLS_RXDETECT 0x5 80 #define PORTSC_PLS_INACTIVE 0x6 81 #define PORTSC_PLS_RESUME 0xf 82 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK) 83 #define PORTSC_PS_SHIFT 10 84 #define PORTSC_PS_MASK GENMASK(13, 10) 85 #define PORTSC_PS_UNDEFINED 0x0 86 #define PORTSC_PS_FS 0x1 87 #define PORTSC_PS_LS 0x2 88 #define PORTSC_PS_HS 0x3 89 #define PORTSC_PS_SS 0x4 90 #define PORTSC_LWS BIT(16) 91 #define PORTSC_CSC BIT(17) 92 #define PORTSC_WRC BIT(19) 93 #define PORTSC_PRC BIT(21) 94 #define PORTSC_PLC BIT(22) 95 #define PORTSC_CEC BIT(23) 96 #define PORTSC_WPR BIT(30) 97 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \ 98 PORTSC_PLC | PORTSC_CEC) 99 #define ECPLO 0x040 100 #define ECPHI 0x044 101 #define MFINDEX 0x048 102 #define MFINDEX_FRAME_SHIFT 3 103 #define MFINDEX_FRAME_MASK GENMASK(13, 3) 104 #define PORTPM 0x04c 105 #define PORTPM_L1S_MASK GENMASK(1, 0) 106 #define PORTPM_L1S_DROP 0x0 107 #define PORTPM_L1S_ACCEPT 0x1 108 #define PORTPM_L1S_NYET 0x2 109 #define PORTPM_L1S_STALL 0x3 110 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK) 111 #define PORTPM_RWE BIT(3) 112 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8) 113 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16) 114 #define PORTPM_FLA BIT(24) 115 #define PORTPM_VBA BIT(25) 116 #define PORTPM_WOC BIT(26) 117 #define PORTPM_WOD BIT(27) 118 #define PORTPM_U1E BIT(28) 119 #define PORTPM_U2E BIT(29) 120 #define PORTPM_FRWE BIT(30) 121 #define PORTPM_PNG_CYA BIT(31) 122 #define EP_HALT 0x050 123 #define EP_PAUSE 0x054 124 #define EP_RELOAD 0x058 125 #define EP_STCHG 0x05c 126 #define DEVNOTIF_LO 0x064 127 #define DEVNOTIF_LO_TRIG BIT(0) 128 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4) 129 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK) 130 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1 131 #define DEVNOTIF_HI 0x068 132 #define PORTHALT 0x06c 133 #define PORTHALT_HALT_LTSSM BIT(0) 134 #define PORTHALT_HALT_REJECT BIT(1) 135 #define PORTHALT_STCHG_REQ BIT(20) 136 #define PORTHALT_STCHG_INTR_EN BIT(24) 137 #define PORT_TM 0x070 138 #define EP_THREAD_ACTIVE 0x074 139 #define EP_STOPPED 0x078 140 #define HSFSPI_COUNT0 0x100 141 #define HSFSPI_COUNT13 0x134 142 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0) 143 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \ 144 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK) 145 #define BLCG 0x840 146 #define SSPX_CORE_CNT0 0x610 147 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0) 148 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK) 149 #define SSPX_CORE_CNT30 0x688 150 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0) 151 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \ 152 SSPX_CORE_CNT30_LMPITP_TIMER_MASK) 153 #define SSPX_CORE_CNT32 0x690 154 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0) 155 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \ 156 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK) 157 #define SSPX_CORE_CNT56 0x6fc 158 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0) 159 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \ 160 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK) 161 #define SSPX_CORE_CNT57 0x700 162 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0) 163 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \ 164 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK) 165 #define SSPX_CORE_CNT65 0x720 166 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0) 167 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \ 168 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK) 169 #define SSPX_CORE_CNT66 0x724 170 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0) 171 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \ 172 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK) 173 #define SSPX_CORE_CNT67 0x728 174 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0) 175 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \ 176 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK) 177 #define SSPX_CORE_CNT72 0x73c 178 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0) 179 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \ 180 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK) 181 #define SSPX_CORE_PADCTL4 0x750 182 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0) 183 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \ 184 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK) 185 #define BLCG_DFPCI BIT(0) 186 #define BLCG_UFPCI BIT(1) 187 #define BLCG_FE BIT(2) 188 #define BLCG_COREPLL_PWRDN BIT(8) 189 #define BLCG_IOPLL_0_PWRDN BIT(9) 190 #define BLCG_IOPLL_1_PWRDN BIT(10) 191 #define BLCG_IOPLL_2_PWRDN BIT(11) 192 #define BLCG_ALL 0x1ff 193 #define CFG_DEV_SSPI_XFER 0x858 194 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0) 195 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \ 196 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK) 197 #define CFG_DEV_FE 0x85c 198 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0) 199 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1 200 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2 201 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK) 202 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29) 203 204 /* FPCI registers */ 205 #define XUSB_DEV_CFG_1 0x004 206 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0) 207 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1) 208 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2) 209 #define XUSB_DEV_CFG_4 0x010 210 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15) 211 #define XUSB_DEV_CFG_5 0x014 212 213 /* IPFS registers */ 214 #define XUSB_DEV_CONFIGURATION_0 0x180 215 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0) 216 #define XUSB_DEV_INTR_MASK_0 0x188 217 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16) 218 219 struct tegra_xudc_ep_context { 220 __le32 info0; 221 __le32 info1; 222 __le32 deq_lo; 223 __le32 deq_hi; 224 __le32 tx_info; 225 __le32 rsvd[11]; 226 }; 227 228 #define EP_STATE_DISABLED 0 229 #define EP_STATE_RUNNING 1 230 #define EP_STATE_HALTED 2 231 #define EP_STATE_STOPPED 3 232 #define EP_STATE_ERROR 4 233 234 #define EP_TYPE_INVALID 0 235 #define EP_TYPE_ISOCH_OUT 1 236 #define EP_TYPE_BULK_OUT 2 237 #define EP_TYPE_INTERRUPT_OUT 3 238 #define EP_TYPE_CONTROL 4 239 #define EP_TYPE_ISCOH_IN 5 240 #define EP_TYPE_BULK_IN 6 241 #define EP_TYPE_INTERRUPT_IN 7 242 243 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \ 244 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \ 245 { \ 246 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \ 247 } \ 248 static inline void \ 249 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \ 250 { \ 251 u32 tmp; \ 252 \ 253 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \ 254 tmp |= (val & (mask)) << (shift); \ 255 ctx->member = cpu_to_le32(tmp); \ 256 } 257 258 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7) 259 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3) 260 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f) 261 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1) 262 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff) 263 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3) 264 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7) 265 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1) 266 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff) 267 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff) 268 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1) 269 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff) 270 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff) 271 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff) 272 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff) 273 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff) 274 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1) 275 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1) 276 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1) 277 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f) 278 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3) 279 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff) 280 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f) 281 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f) 282 283 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx) 284 { 285 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) | 286 (ep_ctx_read_deq_lo(ctx) << 4); 287 } 288 289 static inline void 290 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr) 291 { 292 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4); 293 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr)); 294 } 295 296 struct tegra_xudc_trb { 297 __le32 data_lo; 298 __le32 data_hi; 299 __le32 status; 300 __le32 control; 301 }; 302 303 #define TRB_TYPE_RSVD 0 304 #define TRB_TYPE_NORMAL 1 305 #define TRB_TYPE_SETUP_STAGE 2 306 #define TRB_TYPE_DATA_STAGE 3 307 #define TRB_TYPE_STATUS_STAGE 4 308 #define TRB_TYPE_ISOCH 5 309 #define TRB_TYPE_LINK 6 310 #define TRB_TYPE_TRANSFER_EVENT 32 311 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34 312 #define TRB_TYPE_STREAM 48 313 #define TRB_TYPE_SETUP_PACKET_EVENT 63 314 315 #define TRB_CMPL_CODE_INVALID 0 316 #define TRB_CMPL_CODE_SUCCESS 1 317 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2 318 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3 319 #define TRB_CMPL_CODE_USB_TRANS_ERR 4 320 #define TRB_CMPL_CODE_TRB_ERR 5 321 #define TRB_CMPL_CODE_STALL 6 322 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10 323 #define TRB_CMPL_CODE_SHORT_PACKET 13 324 #define TRB_CMPL_CODE_RING_UNDERRUN 14 325 #define TRB_CMPL_CODE_RING_OVERRUN 15 326 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21 327 #define TRB_CMPL_CODE_STOPPED 26 328 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31 329 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219 330 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220 331 #define TRB_CMPL_CODE_HOST_REJECTED 221 332 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222 333 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223 334 335 #define BUILD_TRB_RW(name, member, shift, mask) \ 336 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \ 337 { \ 338 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \ 339 } \ 340 static inline void \ 341 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \ 342 { \ 343 u32 tmp; \ 344 \ 345 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \ 346 tmp |= (val & (mask)) << (shift); \ 347 trb->member = cpu_to_le32(tmp); \ 348 } 349 350 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff) 351 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff) 352 BUILD_TRB_RW(seq_num, status, 0, 0xffff) 353 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff) 354 BUILD_TRB_RW(td_size, status, 17, 0x1f) 355 BUILD_TRB_RW(cmpl_code, status, 24, 0xff) 356 BUILD_TRB_RW(cycle, control, 0, 0x1) 357 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1) 358 BUILD_TRB_RW(isp, control, 2, 0x1) 359 BUILD_TRB_RW(chain, control, 4, 0x1) 360 BUILD_TRB_RW(ioc, control, 5, 0x1) 361 BUILD_TRB_RW(type, control, 10, 0x3f) 362 BUILD_TRB_RW(stream_id, control, 16, 0xffff) 363 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f) 364 BUILD_TRB_RW(tlbpc, control, 16, 0xf) 365 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1) 366 BUILD_TRB_RW(frame_id, control, 20, 0x7ff) 367 BUILD_TRB_RW(sia, control, 31, 0x1) 368 369 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb) 370 { 371 return ((u64)trb_read_data_hi(trb) << 32) | 372 trb_read_data_lo(trb); 373 } 374 375 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr) 376 { 377 trb_write_data_lo(trb, lower_32_bits(addr)); 378 trb_write_data_hi(trb, upper_32_bits(addr)); 379 } 380 381 struct tegra_xudc_request { 382 struct usb_request usb_req; 383 384 size_t buf_queued; 385 unsigned int trbs_queued; 386 unsigned int trbs_needed; 387 bool need_zlp; 388 389 struct tegra_xudc_trb *first_trb; 390 struct tegra_xudc_trb *last_trb; 391 392 struct list_head list; 393 }; 394 395 struct tegra_xudc_ep { 396 struct tegra_xudc *xudc; 397 struct usb_ep usb_ep; 398 unsigned int index; 399 char name[8]; 400 401 struct tegra_xudc_ep_context *context; 402 403 #define XUDC_TRANSFER_RING_SIZE 64 404 struct tegra_xudc_trb *transfer_ring; 405 dma_addr_t transfer_ring_phys; 406 407 unsigned int enq_ptr; 408 unsigned int deq_ptr; 409 bool pcs; 410 bool ring_full; 411 bool stream_rejected; 412 413 struct list_head queue; 414 const struct usb_endpoint_descriptor *desc; 415 const struct usb_ss_ep_comp_descriptor *comp_desc; 416 }; 417 418 struct tegra_xudc_sel_timing { 419 __u8 u1sel; 420 __u8 u1pel; 421 __le16 u2sel; 422 __le16 u2pel; 423 }; 424 425 enum tegra_xudc_setup_state { 426 WAIT_FOR_SETUP, 427 DATA_STAGE_XFER, 428 DATA_STAGE_RECV, 429 STATUS_STAGE_XFER, 430 STATUS_STAGE_RECV, 431 }; 432 433 struct tegra_xudc_setup_packet { 434 struct usb_ctrlrequest ctrl_req; 435 unsigned int seq_num; 436 }; 437 438 struct tegra_xudc_save_regs { 439 u32 ctrl; 440 u32 portpm; 441 }; 442 443 struct tegra_xudc { 444 struct device *dev; 445 const struct tegra_xudc_soc *soc; 446 struct tegra_xusb_padctl *padctl; 447 448 spinlock_t lock; 449 450 struct usb_gadget gadget; 451 struct usb_gadget_driver *driver; 452 453 #define XUDC_NR_EVENT_RINGS 2 454 #define XUDC_EVENT_RING_SIZE 4096 455 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS]; 456 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS]; 457 unsigned int event_ring_index; 458 unsigned int event_ring_deq_ptr; 459 bool ccs; 460 461 #define XUDC_NR_EPS 32 462 struct tegra_xudc_ep ep[XUDC_NR_EPS]; 463 struct tegra_xudc_ep_context *ep_context; 464 dma_addr_t ep_context_phys; 465 466 struct device *genpd_dev_device; 467 struct device *genpd_dev_ss; 468 struct device_link *genpd_dl_device; 469 struct device_link *genpd_dl_ss; 470 471 struct dma_pool *transfer_ring_pool; 472 473 bool queued_setup_packet; 474 struct tegra_xudc_setup_packet setup_packet; 475 enum tegra_xudc_setup_state setup_state; 476 u16 setup_seq_num; 477 478 u16 dev_addr; 479 u16 isoch_delay; 480 struct tegra_xudc_sel_timing sel_timing; 481 u8 test_mode_pattern; 482 u16 status_buf; 483 struct tegra_xudc_request *ep0_req; 484 485 bool pullup; 486 487 unsigned int nr_enabled_eps; 488 unsigned int nr_isoch_eps; 489 490 unsigned int device_state; 491 unsigned int resume_state; 492 493 int irq; 494 495 void __iomem *base; 496 resource_size_t phys_base; 497 void __iomem *ipfs; 498 void __iomem *fpci; 499 500 struct regulator_bulk_data *supplies; 501 502 struct clk_bulk_data *clks; 503 504 bool device_mode; 505 bool current_device_mode; 506 struct work_struct usb_role_sw_work; 507 508 struct phy **usb3_phy; 509 struct phy *curr_usb3_phy; 510 struct phy **utmi_phy; 511 struct phy *curr_utmi_phy; 512 513 struct tegra_xudc_save_regs saved_regs; 514 bool suspended; 515 bool powergated; 516 517 struct usb_phy **usbphy; 518 struct usb_phy *curr_usbphy; 519 struct notifier_block vbus_nb; 520 521 struct completion disconnect_complete; 522 523 bool selfpowered; 524 525 #define TOGGLE_VBUS_WAIT_MS 100 526 struct delayed_work plc_reset_work; 527 bool wait_csc; 528 529 struct delayed_work port_reset_war_work; 530 bool wait_for_sec_prc; 531 }; 532 533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536 534 #define XUDC_MAX_ISOCH_EPS 4 535 #define XUDC_INTERRUPT_MODERATION_US 0 536 537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = { 538 .bLength = USB_DT_ENDPOINT_SIZE, 539 .bDescriptorType = USB_DT_ENDPOINT, 540 .bEndpointAddress = 0, 541 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 542 .wMaxPacketSize = cpu_to_le16(64), 543 }; 544 545 struct tegra_xudc_soc { 546 const char * const *supply_names; 547 unsigned int num_supplies; 548 const char * const *clock_names; 549 unsigned int num_clks; 550 unsigned int num_phys; 551 bool u1_enable; 552 bool u2_enable; 553 bool lpm_enable; 554 bool invalid_seq_num; 555 bool pls_quirk; 556 bool port_reset_quirk; 557 bool port_speed_quirk; 558 bool has_ipfs; 559 }; 560 561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset) 562 { 563 return readl(xudc->fpci + offset); 564 } 565 566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val, 567 unsigned int offset) 568 { 569 writel(val, xudc->fpci + offset); 570 } 571 572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset) 573 { 574 return readl(xudc->ipfs + offset); 575 } 576 577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val, 578 unsigned int offset) 579 { 580 writel(val, xudc->ipfs + offset); 581 } 582 583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset) 584 { 585 return readl(xudc->base + offset); 586 } 587 588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val, 589 unsigned int offset) 590 { 591 writel(val, xudc->base + offset); 592 } 593 594 static inline int xudc_readl_poll(struct tegra_xudc *xudc, 595 unsigned int offset, u32 mask, u32 val) 596 { 597 u32 regval; 598 599 return readl_poll_timeout_atomic(xudc->base + offset, regval, 600 (regval & mask) == val, 1, 100); 601 } 602 603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget) 604 { 605 return container_of(gadget, struct tegra_xudc, gadget); 606 } 607 608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep) 609 { 610 return container_of(ep, struct tegra_xudc_ep, usb_ep); 611 } 612 613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req) 614 { 615 return container_of(req, struct tegra_xudc_request, usb_req); 616 } 617 618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type, 619 struct tegra_xudc_trb *trb) 620 { 621 dev_dbg(xudc->dev, 622 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n", 623 type, trb, trb->data_lo, trb->data_hi, trb->status, 624 trb->control); 625 } 626 627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc) 628 { 629 u32 val; 630 631 /* limit port speed to gen 1 */ 632 val = xudc_readl(xudc, SSPX_CORE_CNT56); 633 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 634 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260); 635 xudc_writel(xudc, val, SSPX_CORE_CNT56); 636 637 val = xudc_readl(xudc, SSPX_CORE_CNT57); 638 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 639 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6); 640 xudc_writel(xudc, val, SSPX_CORE_CNT57); 641 642 val = xudc_readl(xudc, SSPX_CORE_CNT65); 643 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 644 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0); 645 xudc_writel(xudc, val, SSPX_CORE_CNT66); 646 647 val = xudc_readl(xudc, SSPX_CORE_CNT66); 648 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 649 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0); 650 xudc_writel(xudc, val, SSPX_CORE_CNT66); 651 652 val = xudc_readl(xudc, SSPX_CORE_CNT67); 653 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 654 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0); 655 xudc_writel(xudc, val, SSPX_CORE_CNT67); 656 657 val = xudc_readl(xudc, SSPX_CORE_CNT72); 658 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 659 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10); 660 xudc_writel(xudc, val, SSPX_CORE_CNT72); 661 } 662 663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc) 664 { 665 u32 val; 666 667 /* restore port speed to gen2 */ 668 val = xudc_readl(xudc, SSPX_CORE_CNT56); 669 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 670 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438); 671 xudc_writel(xudc, val, SSPX_CORE_CNT56); 672 673 val = xudc_readl(xudc, SSPX_CORE_CNT57); 674 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 675 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528); 676 xudc_writel(xudc, val, SSPX_CORE_CNT57); 677 678 val = xudc_readl(xudc, SSPX_CORE_CNT65); 679 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 680 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10); 681 xudc_writel(xudc, val, SSPX_CORE_CNT66); 682 683 val = xudc_readl(xudc, SSPX_CORE_CNT66); 684 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 685 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348); 686 xudc_writel(xudc, val, SSPX_CORE_CNT66); 687 688 val = xudc_readl(xudc, SSPX_CORE_CNT67); 689 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 690 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0); 691 xudc_writel(xudc, val, SSPX_CORE_CNT67); 692 693 val = xudc_readl(xudc, SSPX_CORE_CNT72); 694 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 695 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21); 696 xudc_writel(xudc, val, SSPX_CORE_CNT72); 697 } 698 699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc) 700 { 701 int err; 702 703 pm_runtime_get_sync(xudc->dev); 704 705 tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy); 706 707 err = phy_power_on(xudc->curr_utmi_phy); 708 if (err < 0) 709 dev_err(xudc->dev, "UTMI power on failed: %d\n", err); 710 711 err = phy_power_on(xudc->curr_usb3_phy); 712 if (err < 0) 713 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err); 714 715 dev_dbg(xudc->dev, "device mode on\n"); 716 717 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 718 USB_ROLE_DEVICE); 719 720 xudc->current_device_mode = true; 721 } 722 723 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc) 724 { 725 bool connected = false; 726 u32 pls, val; 727 int err; 728 729 dev_dbg(xudc->dev, "device mode off\n"); 730 731 xudc->current_device_mode = false; 732 733 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS); 734 735 reinit_completion(&xudc->disconnect_complete); 736 737 if (xudc->soc->port_speed_quirk) 738 tegra_xudc_restore_port_speed(xudc); 739 740 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); 741 742 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 743 PORTSC_PLS_SHIFT; 744 745 /* Direct link to U0 if disconnected in RESUME or U2. */ 746 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER && 747 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) { 748 val = xudc_readl(xudc, PORTPM); 749 val |= PORTPM_FRWE; 750 xudc_writel(xudc, val, PORTPM); 751 752 val = xudc_readl(xudc, PORTSC); 753 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 754 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 755 xudc_writel(xudc, val, PORTSC); 756 } 757 758 /* Wait for disconnect event. */ 759 if (connected) 760 wait_for_completion(&xudc->disconnect_complete); 761 762 /* Make sure interrupt handler has completed before powergating. */ 763 synchronize_irq(xudc->irq); 764 765 tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy); 766 767 err = phy_power_off(xudc->curr_utmi_phy); 768 if (err < 0) 769 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err); 770 771 err = phy_power_off(xudc->curr_usb3_phy); 772 if (err < 0) 773 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err); 774 775 pm_runtime_put(xudc->dev); 776 } 777 778 static void tegra_xudc_usb_role_sw_work(struct work_struct *work) 779 { 780 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc, 781 usb_role_sw_work); 782 783 if (xudc->device_mode) 784 tegra_xudc_device_mode_on(xudc); 785 else 786 tegra_xudc_device_mode_off(xudc); 787 } 788 789 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc, 790 struct usb_phy *usbphy) 791 { 792 unsigned int i; 793 794 for (i = 0; i < xudc->soc->num_phys; i++) { 795 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i]) 796 return i; 797 } 798 799 dev_info(xudc->dev, "phy index could not be found for shared USB PHY"); 800 return -1; 801 } 802 803 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc, 804 struct usb_phy *usbphy) 805 { 806 int phy_index; 807 808 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) || 809 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) { 810 dev_dbg(xudc->dev, "Same role(%d) received. Ignore", 811 xudc->device_mode); 812 return; 813 } 814 815 xudc->device_mode = usbphy->last_event == USB_EVENT_VBUS; 816 817 phy_index = tegra_xudc_get_phy_index(xudc, usbphy); 818 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__, 819 phy_index); 820 821 if (!xudc->suspended && phy_index != -1) { 822 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index]; 823 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index]; 824 xudc->curr_usbphy = usbphy; 825 schedule_work(&xudc->usb_role_sw_work); 826 } 827 } 828 829 static int tegra_xudc_vbus_notify(struct notifier_block *nb, 830 unsigned long action, void *data) 831 { 832 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc, 833 vbus_nb); 834 struct usb_phy *usbphy = (struct usb_phy *)data; 835 836 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event); 837 838 tegra_xudc_update_data_role(xudc, usbphy); 839 840 return NOTIFY_OK; 841 } 842 843 static void tegra_xudc_plc_reset_work(struct work_struct *work) 844 { 845 struct delayed_work *dwork = to_delayed_work(work); 846 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc, 847 plc_reset_work); 848 unsigned long flags; 849 850 spin_lock_irqsave(&xudc->lock, flags); 851 852 if (xudc->wait_csc) { 853 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 854 PORTSC_PLS_SHIFT; 855 856 if (pls == PORTSC_PLS_INACTIVE) { 857 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n"); 858 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 859 USB_ROLE_NONE); 860 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 861 USB_ROLE_DEVICE); 862 863 xudc->wait_csc = false; 864 } 865 } 866 867 spin_unlock_irqrestore(&xudc->lock, flags); 868 } 869 870 static void tegra_xudc_port_reset_war_work(struct work_struct *work) 871 { 872 struct delayed_work *dwork = to_delayed_work(work); 873 struct tegra_xudc *xudc = 874 container_of(dwork, struct tegra_xudc, port_reset_war_work); 875 unsigned long flags; 876 u32 pls; 877 int ret; 878 879 spin_lock_irqsave(&xudc->lock, flags); 880 881 if (xudc->device_mode && xudc->wait_for_sec_prc) { 882 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 883 PORTSC_PLS_SHIFT; 884 dev_dbg(xudc->dev, "pls = %x\n", pls); 885 886 if (pls == PORTSC_PLS_DISABLED) { 887 dev_dbg(xudc->dev, "toggle vbus\n"); 888 /* PRC doesn't complete in 100ms, toggle the vbus */ 889 ret = tegra_phy_xusb_utmi_port_reset( 890 xudc->curr_utmi_phy); 891 if (ret == 1) 892 xudc->wait_for_sec_prc = 0; 893 } 894 } 895 896 spin_unlock_irqrestore(&xudc->lock, flags); 897 } 898 899 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep, 900 struct tegra_xudc_trb *trb) 901 { 902 unsigned int index; 903 904 index = trb - ep->transfer_ring; 905 906 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 907 return 0; 908 909 return (ep->transfer_ring_phys + index * sizeof(*trb)); 910 } 911 912 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep, 913 dma_addr_t addr) 914 { 915 struct tegra_xudc_trb *trb; 916 unsigned int index; 917 918 index = (addr - ep->transfer_ring_phys) / sizeof(*trb); 919 920 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 921 return NULL; 922 923 trb = &ep->transfer_ring[index]; 924 925 return trb; 926 } 927 928 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep) 929 { 930 xudc_writel(xudc, BIT(ep), EP_RELOAD); 931 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0); 932 } 933 934 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep) 935 { 936 u32 val; 937 938 val = xudc_readl(xudc, EP_PAUSE); 939 if (val & BIT(ep)) 940 return; 941 val |= BIT(ep); 942 943 xudc_writel(xudc, val, EP_PAUSE); 944 945 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 946 947 xudc_writel(xudc, BIT(ep), EP_STCHG); 948 } 949 950 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep) 951 { 952 u32 val; 953 954 val = xudc_readl(xudc, EP_PAUSE); 955 if (!(val & BIT(ep))) 956 return; 957 val &= ~BIT(ep); 958 959 xudc_writel(xudc, val, EP_PAUSE); 960 961 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 962 963 xudc_writel(xudc, BIT(ep), EP_STCHG); 964 } 965 966 static void ep_unpause_all(struct tegra_xudc *xudc) 967 { 968 u32 val; 969 970 val = xudc_readl(xudc, EP_PAUSE); 971 972 xudc_writel(xudc, 0, EP_PAUSE); 973 974 xudc_readl_poll(xudc, EP_STCHG, val, val); 975 976 xudc_writel(xudc, val, EP_STCHG); 977 } 978 979 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep) 980 { 981 u32 val; 982 983 val = xudc_readl(xudc, EP_HALT); 984 if (val & BIT(ep)) 985 return; 986 val |= BIT(ep); 987 xudc_writel(xudc, val, EP_HALT); 988 989 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 990 991 xudc_writel(xudc, BIT(ep), EP_STCHG); 992 } 993 994 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep) 995 { 996 u32 val; 997 998 val = xudc_readl(xudc, EP_HALT); 999 if (!(val & BIT(ep))) 1000 return; 1001 val &= ~BIT(ep); 1002 xudc_writel(xudc, val, EP_HALT); 1003 1004 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 1005 1006 xudc_writel(xudc, BIT(ep), EP_STCHG); 1007 } 1008 1009 static void ep_unhalt_all(struct tegra_xudc *xudc) 1010 { 1011 u32 val; 1012 1013 val = xudc_readl(xudc, EP_HALT); 1014 if (!val) 1015 return; 1016 xudc_writel(xudc, 0, EP_HALT); 1017 1018 xudc_readl_poll(xudc, EP_STCHG, val, val); 1019 1020 xudc_writel(xudc, val, EP_STCHG); 1021 } 1022 1023 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep) 1024 { 1025 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep)); 1026 xudc_writel(xudc, BIT(ep), EP_STOPPED); 1027 } 1028 1029 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep) 1030 { 1031 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0); 1032 } 1033 1034 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep, 1035 struct tegra_xudc_request *req, int status) 1036 { 1037 struct tegra_xudc *xudc = ep->xudc; 1038 1039 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n", 1040 req, ep->index, status); 1041 1042 if (likely(req->usb_req.status == -EINPROGRESS)) 1043 req->usb_req.status = status; 1044 1045 list_del_init(&req->list); 1046 1047 if (usb_endpoint_xfer_control(ep->desc)) { 1048 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1049 (xudc->setup_state == 1050 DATA_STAGE_XFER)); 1051 } else { 1052 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1053 usb_endpoint_dir_in(ep->desc)); 1054 } 1055 1056 spin_unlock(&xudc->lock); 1057 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req); 1058 spin_lock(&xudc->lock); 1059 } 1060 1061 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status) 1062 { 1063 struct tegra_xudc_request *req; 1064 1065 while (!list_empty(&ep->queue)) { 1066 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1067 list); 1068 tegra_xudc_req_done(ep, req, status); 1069 } 1070 } 1071 1072 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep) 1073 { 1074 if (ep->ring_full) 1075 return 0; 1076 1077 if (ep->deq_ptr > ep->enq_ptr) 1078 return ep->deq_ptr - ep->enq_ptr - 1; 1079 1080 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2; 1081 } 1082 1083 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep, 1084 struct tegra_xudc_request *req, 1085 struct tegra_xudc_trb *trb, 1086 bool ioc) 1087 { 1088 struct tegra_xudc *xudc = ep->xudc; 1089 dma_addr_t buf_addr; 1090 size_t len; 1091 1092 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length - 1093 req->buf_queued); 1094 if (len > 0) 1095 buf_addr = req->usb_req.dma + req->buf_queued; 1096 else 1097 buf_addr = 0; 1098 1099 trb_write_data_ptr(trb, buf_addr); 1100 1101 trb_write_transfer_len(trb, len); 1102 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1); 1103 1104 if (req->trbs_queued == req->trbs_needed - 1 || 1105 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2)) 1106 trb_write_chain(trb, 0); 1107 else 1108 trb_write_chain(trb, 1); 1109 1110 trb_write_ioc(trb, ioc); 1111 1112 if (usb_endpoint_dir_out(ep->desc) || 1113 (usb_endpoint_xfer_control(ep->desc) && 1114 (xudc->setup_state == DATA_STAGE_RECV))) 1115 trb_write_isp(trb, 1); 1116 else 1117 trb_write_isp(trb, 0); 1118 1119 if (usb_endpoint_xfer_control(ep->desc)) { 1120 if (xudc->setup_state == DATA_STAGE_XFER || 1121 xudc->setup_state == DATA_STAGE_RECV) 1122 trb_write_type(trb, TRB_TYPE_DATA_STAGE); 1123 else 1124 trb_write_type(trb, TRB_TYPE_STATUS_STAGE); 1125 1126 if (xudc->setup_state == DATA_STAGE_XFER || 1127 xudc->setup_state == STATUS_STAGE_XFER) 1128 trb_write_data_stage_dir(trb, 1); 1129 else 1130 trb_write_data_stage_dir(trb, 0); 1131 } else if (usb_endpoint_xfer_isoc(ep->desc)) { 1132 trb_write_type(trb, TRB_TYPE_ISOCH); 1133 trb_write_sia(trb, 1); 1134 trb_write_frame_id(trb, 0); 1135 trb_write_tlbpc(trb, 0); 1136 } else if (usb_ss_max_streams(ep->comp_desc)) { 1137 trb_write_type(trb, TRB_TYPE_STREAM); 1138 trb_write_stream_id(trb, req->usb_req.stream_id); 1139 } else { 1140 trb_write_type(trb, TRB_TYPE_NORMAL); 1141 trb_write_stream_id(trb, 0); 1142 } 1143 1144 trb_write_cycle(trb, ep->pcs); 1145 1146 req->trbs_queued++; 1147 req->buf_queued += len; 1148 1149 dump_trb(xudc, "TRANSFER", trb); 1150 } 1151 1152 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep, 1153 struct tegra_xudc_request *req) 1154 { 1155 unsigned int i, count, available; 1156 bool wait_td = false; 1157 1158 available = ep_available_trbs(ep); 1159 count = req->trbs_needed - req->trbs_queued; 1160 if (available < count) { 1161 count = available; 1162 ep->ring_full = true; 1163 } 1164 1165 /* 1166 * To generate zero-length packet on USB bus, SW needs schedule a 1167 * standalone zero-length TD. According to HW's behavior, SW needs 1168 * to schedule TDs in different ways for different endpoint types. 1169 * 1170 * For control endpoint: 1171 * - Data stage TD (IOC = 1, CH = 0) 1172 * - Ring doorbell and wait transfer event 1173 * - Data stage TD for ZLP (IOC = 1, CH = 0) 1174 * - Ring doorbell 1175 * 1176 * For bulk and interrupt endpoints: 1177 * - Normal transfer TD (IOC = 0, CH = 0) 1178 * - Normal transfer TD for ZLP (IOC = 1, CH = 0) 1179 * - Ring doorbell 1180 */ 1181 1182 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1) 1183 wait_td = true; 1184 1185 if (!req->first_trb) 1186 req->first_trb = &ep->transfer_ring[ep->enq_ptr]; 1187 1188 for (i = 0; i < count; i++) { 1189 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr]; 1190 bool ioc = false; 1191 1192 if ((i == count - 1) || (wait_td && i == count - 2)) 1193 ioc = true; 1194 1195 tegra_xudc_queue_one_trb(ep, req, trb, ioc); 1196 req->last_trb = trb; 1197 1198 ep->enq_ptr++; 1199 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) { 1200 trb = &ep->transfer_ring[ep->enq_ptr]; 1201 trb_write_cycle(trb, ep->pcs); 1202 ep->pcs = !ep->pcs; 1203 ep->enq_ptr = 0; 1204 } 1205 1206 if (ioc) 1207 break; 1208 } 1209 1210 return count; 1211 } 1212 1213 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep) 1214 { 1215 struct tegra_xudc *xudc = ep->xudc; 1216 u32 val; 1217 1218 if (list_empty(&ep->queue)) 1219 return; 1220 1221 val = DB_TARGET(ep->index); 1222 if (usb_endpoint_xfer_control(ep->desc)) { 1223 val |= DB_STREAMID(xudc->setup_seq_num); 1224 } else if (usb_ss_max_streams(ep->comp_desc) > 0) { 1225 struct tegra_xudc_request *req; 1226 1227 /* Don't ring doorbell if the stream has been rejected. */ 1228 if (ep->stream_rejected) 1229 return; 1230 1231 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1232 list); 1233 val |= DB_STREAMID(req->usb_req.stream_id); 1234 } 1235 1236 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val); 1237 xudc_writel(xudc, val, DB); 1238 } 1239 1240 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep) 1241 { 1242 struct tegra_xudc_request *req; 1243 bool trbs_queued = false; 1244 1245 list_for_each_entry(req, &ep->queue, list) { 1246 if (ep->ring_full) 1247 break; 1248 1249 if (tegra_xudc_queue_trbs(ep, req) > 0) 1250 trbs_queued = true; 1251 } 1252 1253 if (trbs_queued) 1254 tegra_xudc_ep_ring_doorbell(ep); 1255 } 1256 1257 static int 1258 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) 1259 { 1260 struct tegra_xudc *xudc = ep->xudc; 1261 int err; 1262 1263 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) { 1264 dev_err(xudc->dev, "control EP has pending transfers\n"); 1265 return -EINVAL; 1266 } 1267 1268 if (usb_endpoint_xfer_control(ep->desc)) { 1269 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1270 (xudc->setup_state == 1271 DATA_STAGE_XFER)); 1272 } else { 1273 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1274 usb_endpoint_dir_in(ep->desc)); 1275 } 1276 1277 if (err < 0) { 1278 dev_err(xudc->dev, "failed to map request: %d\n", err); 1279 return err; 1280 } 1281 1282 req->first_trb = NULL; 1283 req->last_trb = NULL; 1284 req->buf_queued = 0; 1285 req->trbs_queued = 0; 1286 req->need_zlp = false; 1287 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length, 1288 XUDC_TRB_MAX_BUFFER_SIZE); 1289 if (req->usb_req.length == 0) 1290 req->trbs_needed++; 1291 1292 if (!usb_endpoint_xfer_isoc(ep->desc) && 1293 req->usb_req.zero && req->usb_req.length && 1294 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) { 1295 req->trbs_needed++; 1296 req->need_zlp = true; 1297 } 1298 1299 req->usb_req.status = -EINPROGRESS; 1300 req->usb_req.actual = 0; 1301 1302 list_add_tail(&req->list, &ep->queue); 1303 1304 tegra_xudc_ep_kick_queue(ep); 1305 1306 return 0; 1307 } 1308 1309 static int 1310 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req, 1311 gfp_t gfp) 1312 { 1313 struct tegra_xudc_request *req; 1314 struct tegra_xudc_ep *ep; 1315 struct tegra_xudc *xudc; 1316 unsigned long flags; 1317 int ret; 1318 1319 if (!usb_ep || !usb_req) 1320 return -EINVAL; 1321 1322 ep = to_xudc_ep(usb_ep); 1323 req = to_xudc_req(usb_req); 1324 xudc = ep->xudc; 1325 1326 spin_lock_irqsave(&xudc->lock, flags); 1327 if (xudc->powergated || !ep->desc) { 1328 ret = -ESHUTDOWN; 1329 goto unlock; 1330 } 1331 1332 ret = __tegra_xudc_ep_queue(ep, req); 1333 unlock: 1334 spin_unlock_irqrestore(&xudc->lock, flags); 1335 1336 return ret; 1337 } 1338 1339 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep, 1340 struct tegra_xudc_request *req) 1341 { 1342 struct tegra_xudc_trb *trb = req->first_trb; 1343 bool pcs_enq = trb_read_cycle(trb); 1344 bool pcs; 1345 1346 /* 1347 * Clear out all the TRBs part of or after the cancelled request, 1348 * and must correct trb cycle bit to the last un-enqueued state. 1349 */ 1350 while (trb != &ep->transfer_ring[ep->enq_ptr]) { 1351 pcs = trb_read_cycle(trb); 1352 memset(trb, 0, sizeof(*trb)); 1353 trb_write_cycle(trb, !pcs); 1354 trb++; 1355 1356 if (trb_read_type(trb) == TRB_TYPE_LINK) 1357 trb = ep->transfer_ring; 1358 } 1359 1360 /* Requests will be re-queued at the start of the cancelled request. */ 1361 ep->enq_ptr = req->first_trb - ep->transfer_ring; 1362 /* 1363 * Retrieve the correct cycle bit state from the first trb of 1364 * the cancelled request. 1365 */ 1366 ep->pcs = pcs_enq; 1367 ep->ring_full = false; 1368 list_for_each_entry_continue(req, &ep->queue, list) { 1369 req->usb_req.status = -EINPROGRESS; 1370 req->usb_req.actual = 0; 1371 1372 req->first_trb = NULL; 1373 req->last_trb = NULL; 1374 req->buf_queued = 0; 1375 req->trbs_queued = 0; 1376 } 1377 } 1378 1379 /* 1380 * Determine if the given TRB is in the range [first trb, last trb] for the 1381 * given request. 1382 */ 1383 static bool trb_in_request(struct tegra_xudc_ep *ep, 1384 struct tegra_xudc_request *req, 1385 struct tegra_xudc_trb *trb) 1386 { 1387 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__, 1388 req->first_trb, req->last_trb, trb); 1389 1390 if (trb >= req->first_trb && (trb <= req->last_trb || 1391 req->last_trb < req->first_trb)) 1392 return true; 1393 1394 if (trb < req->first_trb && trb <= req->last_trb && 1395 req->last_trb < req->first_trb) 1396 return true; 1397 1398 return false; 1399 } 1400 1401 /* 1402 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB) 1403 * for the given endpoint and request. 1404 */ 1405 static bool trb_before_request(struct tegra_xudc_ep *ep, 1406 struct tegra_xudc_request *req, 1407 struct tegra_xudc_trb *trb) 1408 { 1409 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr]; 1410 1411 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n", 1412 __func__, req->first_trb, req->last_trb, enq_trb, trb); 1413 1414 if (trb < req->first_trb && (enq_trb <= trb || 1415 req->first_trb < enq_trb)) 1416 return true; 1417 1418 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 static int 1425 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep, 1426 struct tegra_xudc_request *req) 1427 { 1428 struct tegra_xudc *xudc = ep->xudc; 1429 struct tegra_xudc_request *r = NULL, *iter; 1430 struct tegra_xudc_trb *deq_trb; 1431 bool busy, kick_queue = false; 1432 int ret = 0; 1433 1434 /* Make sure the request is actually queued to this endpoint. */ 1435 list_for_each_entry(iter, &ep->queue, list) { 1436 if (iter != req) 1437 continue; 1438 r = iter; 1439 break; 1440 } 1441 1442 if (!r) 1443 return -EINVAL; 1444 1445 /* Request hasn't been queued in the transfer ring yet. */ 1446 if (!req->trbs_queued) { 1447 tegra_xudc_req_done(ep, req, -ECONNRESET); 1448 return 0; 1449 } 1450 1451 /* Halt DMA for this endpoint. */ 1452 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) { 1453 ep_pause(xudc, ep->index); 1454 ep_wait_for_inactive(xudc, ep->index); 1455 } 1456 1457 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context)); 1458 /* Is the hardware processing the TRB at the dequeue pointer? */ 1459 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context)); 1460 1461 if (trb_in_request(ep, req, deq_trb) && busy) { 1462 /* 1463 * Request has been partially completed or it hasn't 1464 * started processing yet. 1465 */ 1466 dma_addr_t deq_ptr; 1467 1468 squeeze_transfer_ring(ep, req); 1469 1470 req->usb_req.actual = ep_ctx_read_edtla(ep->context); 1471 tegra_xudc_req_done(ep, req, -ECONNRESET); 1472 kick_queue = true; 1473 1474 /* EDTLA is > 0: request has been partially completed */ 1475 if (req->usb_req.actual > 0) { 1476 /* 1477 * Abort the pending transfer and update the dequeue 1478 * pointer 1479 */ 1480 ep_ctx_write_edtla(ep->context, 0); 1481 ep_ctx_write_partial_td(ep->context, 0); 1482 ep_ctx_write_data_offset(ep->context, 0); 1483 1484 deq_ptr = trb_virt_to_phys(ep, 1485 &ep->transfer_ring[ep->enq_ptr]); 1486 1487 if (dma_mapping_error(xudc->dev, deq_ptr)) { 1488 ret = -EINVAL; 1489 } else { 1490 ep_ctx_write_deq_ptr(ep->context, deq_ptr); 1491 ep_ctx_write_dcs(ep->context, ep->pcs); 1492 ep_reload(xudc, ep->index); 1493 } 1494 } 1495 } else if (trb_before_request(ep, req, deq_trb) && busy) { 1496 /* Request hasn't started processing yet. */ 1497 squeeze_transfer_ring(ep, req); 1498 1499 tegra_xudc_req_done(ep, req, -ECONNRESET); 1500 kick_queue = true; 1501 } else { 1502 /* 1503 * Request has completed, but we haven't processed the 1504 * completion event yet. 1505 */ 1506 tegra_xudc_req_done(ep, req, -ECONNRESET); 1507 ret = -EINVAL; 1508 } 1509 1510 /* Resume the endpoint. */ 1511 ep_unpause(xudc, ep->index); 1512 1513 if (kick_queue) 1514 tegra_xudc_ep_kick_queue(ep); 1515 1516 return ret; 1517 } 1518 1519 static int 1520 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req) 1521 { 1522 struct tegra_xudc_request *req; 1523 struct tegra_xudc_ep *ep; 1524 struct tegra_xudc *xudc; 1525 unsigned long flags; 1526 int ret; 1527 1528 if (!usb_ep || !usb_req) 1529 return -EINVAL; 1530 1531 ep = to_xudc_ep(usb_ep); 1532 req = to_xudc_req(usb_req); 1533 xudc = ep->xudc; 1534 1535 spin_lock_irqsave(&xudc->lock, flags); 1536 1537 if (xudc->powergated || !ep->desc) { 1538 ret = -ESHUTDOWN; 1539 goto unlock; 1540 } 1541 1542 ret = __tegra_xudc_ep_dequeue(ep, req); 1543 unlock: 1544 spin_unlock_irqrestore(&xudc->lock, flags); 1545 1546 return ret; 1547 } 1548 1549 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt) 1550 { 1551 struct tegra_xudc *xudc = ep->xudc; 1552 1553 if (!ep->desc) 1554 return -EINVAL; 1555 1556 if (usb_endpoint_xfer_isoc(ep->desc)) { 1557 dev_err(xudc->dev, "can't halt isochronous EP\n"); 1558 return -ENOTSUPP; 1559 } 1560 1561 if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) { 1562 dev_dbg(xudc->dev, "EP %u already %s\n", ep->index, 1563 halt ? "halted" : "not halted"); 1564 return 0; 1565 } 1566 1567 if (halt) { 1568 ep_halt(xudc, ep->index); 1569 } else { 1570 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1571 1572 ep_reload(xudc, ep->index); 1573 1574 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1575 ep_ctx_write_rsvd(ep->context, 0); 1576 ep_ctx_write_partial_td(ep->context, 0); 1577 ep_ctx_write_splitxstate(ep->context, 0); 1578 ep_ctx_write_seq_num(ep->context, 0); 1579 1580 ep_reload(xudc, ep->index); 1581 ep_unpause(xudc, ep->index); 1582 ep_unhalt(xudc, ep->index); 1583 1584 tegra_xudc_ep_ring_doorbell(ep); 1585 } 1586 1587 return 0; 1588 } 1589 1590 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value) 1591 { 1592 struct tegra_xudc_ep *ep; 1593 struct tegra_xudc *xudc; 1594 unsigned long flags; 1595 int ret; 1596 1597 if (!usb_ep) 1598 return -EINVAL; 1599 1600 ep = to_xudc_ep(usb_ep); 1601 xudc = ep->xudc; 1602 1603 spin_lock_irqsave(&xudc->lock, flags); 1604 if (xudc->powergated) { 1605 ret = -ESHUTDOWN; 1606 goto unlock; 1607 } 1608 1609 if (value && usb_endpoint_dir_in(ep->desc) && 1610 !list_empty(&ep->queue)) { 1611 dev_err(xudc->dev, "can't halt EP with requests pending\n"); 1612 ret = -EAGAIN; 1613 goto unlock; 1614 } 1615 1616 ret = __tegra_xudc_ep_set_halt(ep, value); 1617 unlock: 1618 spin_unlock_irqrestore(&xudc->lock, flags); 1619 1620 return ret; 1621 } 1622 1623 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep) 1624 { 1625 const struct usb_endpoint_descriptor *desc = ep->desc; 1626 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc; 1627 struct tegra_xudc *xudc = ep->xudc; 1628 u16 maxpacket, maxburst = 0, esit = 0; 1629 u32 val; 1630 1631 maxpacket = usb_endpoint_maxp(desc); 1632 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1633 if (!usb_endpoint_xfer_control(desc)) 1634 maxburst = comp_desc->bMaxBurst; 1635 1636 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) 1637 esit = le16_to_cpu(comp_desc->wBytesPerInterval); 1638 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) && 1639 (usb_endpoint_xfer_int(desc) || 1640 usb_endpoint_xfer_isoc(desc))) { 1641 if (xudc->gadget.speed == USB_SPEED_HIGH) { 1642 maxburst = usb_endpoint_maxp_mult(desc) - 1; 1643 if (maxburst == 0x3) { 1644 dev_warn(xudc->dev, 1645 "invalid endpoint maxburst\n"); 1646 maxburst = 0x2; 1647 } 1648 } 1649 esit = maxpacket * (maxburst + 1); 1650 } 1651 1652 memset(ep->context, 0, sizeof(*ep->context)); 1653 1654 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1655 ep_ctx_write_interval(ep->context, desc->bInterval); 1656 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1657 if (usb_endpoint_xfer_isoc(desc)) { 1658 ep_ctx_write_mult(ep->context, 1659 comp_desc->bmAttributes & 0x3); 1660 } 1661 1662 if (usb_endpoint_xfer_bulk(desc)) { 1663 ep_ctx_write_max_pstreams(ep->context, 1664 comp_desc->bmAttributes & 1665 0x1f); 1666 ep_ctx_write_lsa(ep->context, 1); 1667 } 1668 } 1669 1670 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc)) 1671 val = usb_endpoint_type(desc); 1672 else 1673 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL; 1674 1675 ep_ctx_write_type(ep->context, val); 1676 ep_ctx_write_cerr(ep->context, 0x3); 1677 ep_ctx_write_max_packet_size(ep->context, maxpacket); 1678 ep_ctx_write_max_burst_size(ep->context, maxburst); 1679 1680 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys); 1681 ep_ctx_write_dcs(ep->context, ep->pcs); 1682 1683 /* Select a reasonable average TRB length based on endpoint type. */ 1684 switch (usb_endpoint_type(desc)) { 1685 case USB_ENDPOINT_XFER_CONTROL: 1686 val = 8; 1687 break; 1688 case USB_ENDPOINT_XFER_INT: 1689 val = 1024; 1690 break; 1691 case USB_ENDPOINT_XFER_BULK: 1692 case USB_ENDPOINT_XFER_ISOC: 1693 default: 1694 val = 3072; 1695 break; 1696 } 1697 1698 ep_ctx_write_avg_trb_len(ep->context, val); 1699 ep_ctx_write_max_esit_payload(ep->context, esit); 1700 1701 ep_ctx_write_cerrcnt(ep->context, 0x3); 1702 } 1703 1704 static void setup_link_trb(struct tegra_xudc_ep *ep, 1705 struct tegra_xudc_trb *trb) 1706 { 1707 trb_write_data_ptr(trb, ep->transfer_ring_phys); 1708 trb_write_type(trb, TRB_TYPE_LINK); 1709 trb_write_toggle_cycle(trb, 1); 1710 } 1711 1712 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep) 1713 { 1714 struct tegra_xudc *xudc = ep->xudc; 1715 1716 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 1717 dev_err(xudc->dev, "endpoint %u already disabled\n", 1718 ep->index); 1719 return -EINVAL; 1720 } 1721 1722 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1723 1724 ep_reload(xudc, ep->index); 1725 1726 tegra_xudc_ep_nuke(ep, -ESHUTDOWN); 1727 1728 xudc->nr_enabled_eps--; 1729 if (usb_endpoint_xfer_isoc(ep->desc)) 1730 xudc->nr_isoch_eps--; 1731 1732 ep->desc = NULL; 1733 ep->comp_desc = NULL; 1734 1735 memset(ep->context, 0, sizeof(*ep->context)); 1736 1737 ep_unpause(xudc, ep->index); 1738 ep_unhalt(xudc, ep->index); 1739 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index)) 1740 xudc_writel(xudc, BIT(ep->index), EP_STOPPED); 1741 1742 /* 1743 * If this is the last endpoint disabled in a de-configure request, 1744 * switch back to address state. 1745 */ 1746 if ((xudc->device_state == USB_STATE_CONFIGURED) && 1747 (xudc->nr_enabled_eps == 1)) { 1748 u32 val; 1749 1750 xudc->device_state = USB_STATE_ADDRESS; 1751 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1752 1753 val = xudc_readl(xudc, CTRL); 1754 val &= ~CTRL_RUN; 1755 xudc_writel(xudc, val, CTRL); 1756 1757 val = xudc_readl(xudc, ST); 1758 if (val & ST_RC) 1759 xudc_writel(xudc, ST_RC, ST); 1760 } 1761 1762 dev_info(xudc->dev, "ep %u disabled\n", ep->index); 1763 1764 return 0; 1765 } 1766 1767 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep) 1768 { 1769 struct tegra_xudc_ep *ep; 1770 struct tegra_xudc *xudc; 1771 unsigned long flags; 1772 int ret; 1773 1774 if (!usb_ep) 1775 return -EINVAL; 1776 1777 ep = to_xudc_ep(usb_ep); 1778 xudc = ep->xudc; 1779 1780 spin_lock_irqsave(&xudc->lock, flags); 1781 if (xudc->powergated) { 1782 ret = -ESHUTDOWN; 1783 goto unlock; 1784 } 1785 1786 ret = __tegra_xudc_ep_disable(ep); 1787 unlock: 1788 spin_unlock_irqrestore(&xudc->lock, flags); 1789 1790 return ret; 1791 } 1792 1793 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep, 1794 const struct usb_endpoint_descriptor *desc) 1795 { 1796 struct tegra_xudc *xudc = ep->xudc; 1797 unsigned int i; 1798 u32 val; 1799 1800 if (xudc->gadget.speed == USB_SPEED_SUPER && 1801 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc) 1802 return -EINVAL; 1803 1804 /* Disable the EP if it is not disabled */ 1805 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED) 1806 __tegra_xudc_ep_disable(ep); 1807 1808 ep->desc = desc; 1809 ep->comp_desc = ep->usb_ep.comp_desc; 1810 1811 if (usb_endpoint_xfer_isoc(desc)) { 1812 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) { 1813 dev_err(xudc->dev, "too many isochronous endpoints\n"); 1814 return -EBUSY; 1815 } 1816 xudc->nr_isoch_eps++; 1817 } 1818 1819 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE * 1820 sizeof(*ep->transfer_ring)); 1821 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]); 1822 1823 ep->enq_ptr = 0; 1824 ep->deq_ptr = 0; 1825 ep->pcs = true; 1826 ep->ring_full = false; 1827 xudc->nr_enabled_eps++; 1828 1829 tegra_xudc_ep_context_setup(ep); 1830 1831 /* 1832 * No need to reload and un-halt EP0. This will be done automatically 1833 * once a valid SETUP packet is received. 1834 */ 1835 if (usb_endpoint_xfer_control(desc)) 1836 goto out; 1837 1838 /* 1839 * Transition to configured state once the first non-control 1840 * endpoint is enabled. 1841 */ 1842 if (xudc->device_state == USB_STATE_ADDRESS) { 1843 val = xudc_readl(xudc, CTRL); 1844 val |= CTRL_RUN; 1845 xudc_writel(xudc, val, CTRL); 1846 1847 xudc->device_state = USB_STATE_CONFIGURED; 1848 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1849 } 1850 1851 if (usb_endpoint_xfer_isoc(desc)) { 1852 /* 1853 * Pause all bulk endpoints when enabling an isoch endpoint 1854 * to ensure the isoch endpoint is allocated enough bandwidth. 1855 */ 1856 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1857 if (xudc->ep[i].desc && 1858 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1859 ep_pause(xudc, i); 1860 } 1861 } 1862 1863 ep_reload(xudc, ep->index); 1864 ep_unpause(xudc, ep->index); 1865 ep_unhalt(xudc, ep->index); 1866 1867 if (usb_endpoint_xfer_isoc(desc)) { 1868 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1869 if (xudc->ep[i].desc && 1870 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1871 ep_unpause(xudc, i); 1872 } 1873 } 1874 1875 out: 1876 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index, 1877 usb_ep_type_string(usb_endpoint_type(ep->desc)), 1878 usb_endpoint_dir_in(ep->desc) ? "in" : "out"); 1879 1880 return 0; 1881 } 1882 1883 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep, 1884 const struct usb_endpoint_descriptor *desc) 1885 { 1886 struct tegra_xudc_ep *ep; 1887 struct tegra_xudc *xudc; 1888 unsigned long flags; 1889 int ret; 1890 1891 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT)) 1892 return -EINVAL; 1893 1894 ep = to_xudc_ep(usb_ep); 1895 xudc = ep->xudc; 1896 1897 spin_lock_irqsave(&xudc->lock, flags); 1898 if (xudc->powergated) { 1899 ret = -ESHUTDOWN; 1900 goto unlock; 1901 } 1902 1903 ret = __tegra_xudc_ep_enable(ep, desc); 1904 unlock: 1905 spin_unlock_irqrestore(&xudc->lock, flags); 1906 1907 return ret; 1908 } 1909 1910 static struct usb_request * 1911 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp) 1912 { 1913 struct tegra_xudc_request *req; 1914 1915 req = kzalloc(sizeof(*req), gfp); 1916 if (!req) 1917 return NULL; 1918 1919 INIT_LIST_HEAD(&req->list); 1920 1921 return &req->usb_req; 1922 } 1923 1924 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep, 1925 struct usb_request *usb_req) 1926 { 1927 struct tegra_xudc_request *req = to_xudc_req(usb_req); 1928 1929 kfree(req); 1930 } 1931 1932 static const struct usb_ep_ops tegra_xudc_ep_ops = { 1933 .enable = tegra_xudc_ep_enable, 1934 .disable = tegra_xudc_ep_disable, 1935 .alloc_request = tegra_xudc_ep_alloc_request, 1936 .free_request = tegra_xudc_ep_free_request, 1937 .queue = tegra_xudc_ep_queue, 1938 .dequeue = tegra_xudc_ep_dequeue, 1939 .set_halt = tegra_xudc_ep_set_halt, 1940 }; 1941 1942 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep, 1943 const struct usb_endpoint_descriptor *desc) 1944 { 1945 return -EBUSY; 1946 } 1947 1948 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep) 1949 { 1950 return -EBUSY; 1951 } 1952 1953 static const struct usb_ep_ops tegra_xudc_ep0_ops = { 1954 .enable = tegra_xudc_ep0_enable, 1955 .disable = tegra_xudc_ep0_disable, 1956 .alloc_request = tegra_xudc_ep_alloc_request, 1957 .free_request = tegra_xudc_ep_free_request, 1958 .queue = tegra_xudc_ep_queue, 1959 .dequeue = tegra_xudc_ep_dequeue, 1960 .set_halt = tegra_xudc_ep_set_halt, 1961 }; 1962 1963 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget) 1964 { 1965 struct tegra_xudc *xudc = to_xudc(gadget); 1966 unsigned long flags; 1967 int ret; 1968 1969 spin_lock_irqsave(&xudc->lock, flags); 1970 if (xudc->powergated) { 1971 ret = -ESHUTDOWN; 1972 goto unlock; 1973 } 1974 1975 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >> 1976 MFINDEX_FRAME_SHIFT; 1977 unlock: 1978 spin_unlock_irqrestore(&xudc->lock, flags); 1979 1980 return ret; 1981 } 1982 1983 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc) 1984 { 1985 unsigned int i; 1986 u32 val; 1987 1988 ep_unpause_all(xudc); 1989 1990 /* Direct link to U0. */ 1991 val = xudc_readl(xudc, PORTSC); 1992 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) { 1993 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 1994 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 1995 xudc_writel(xudc, val, PORTSC); 1996 } 1997 1998 if (xudc->device_state == USB_STATE_SUSPENDED) { 1999 xudc->device_state = xudc->resume_state; 2000 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2001 xudc->resume_state = 0; 2002 } 2003 2004 /* 2005 * Doorbells may be dropped if they are sent too soon (< ~200ns) 2006 * after unpausing the endpoint. Wait for 500ns just to be safe. 2007 */ 2008 ndelay(500); 2009 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2010 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]); 2011 } 2012 2013 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget) 2014 { 2015 struct tegra_xudc *xudc = to_xudc(gadget); 2016 unsigned long flags; 2017 int ret = 0; 2018 u32 val; 2019 2020 spin_lock_irqsave(&xudc->lock, flags); 2021 2022 if (xudc->powergated) { 2023 ret = -ESHUTDOWN; 2024 goto unlock; 2025 } 2026 val = xudc_readl(xudc, PORTPM); 2027 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__, 2028 val, gadget->speed); 2029 2030 if (((xudc->gadget.speed <= USB_SPEED_HIGH) && 2031 (val & PORTPM_RWE)) || 2032 ((xudc->gadget.speed == USB_SPEED_SUPER) && 2033 (val & PORTPM_FRWE))) { 2034 tegra_xudc_resume_device_state(xudc); 2035 2036 /* Send Device Notification packet. */ 2037 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2038 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE) 2039 | DEVNOTIF_LO_TRIG; 2040 xudc_writel(xudc, 0, DEVNOTIF_HI); 2041 xudc_writel(xudc, val, DEVNOTIF_LO); 2042 } 2043 } 2044 2045 unlock: 2046 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2047 spin_unlock_irqrestore(&xudc->lock, flags); 2048 2049 return ret; 2050 } 2051 2052 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on) 2053 { 2054 struct tegra_xudc *xudc = to_xudc(gadget); 2055 unsigned long flags; 2056 u32 val; 2057 2058 pm_runtime_get_sync(xudc->dev); 2059 2060 spin_lock_irqsave(&xudc->lock, flags); 2061 2062 if (is_on != xudc->pullup) { 2063 val = xudc_readl(xudc, CTRL); 2064 if (is_on) 2065 val |= CTRL_ENABLE; 2066 else 2067 val &= ~CTRL_ENABLE; 2068 xudc_writel(xudc, val, CTRL); 2069 } 2070 2071 xudc->pullup = is_on; 2072 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on); 2073 2074 spin_unlock_irqrestore(&xudc->lock, flags); 2075 2076 pm_runtime_put(xudc->dev); 2077 2078 return 0; 2079 } 2080 2081 static int tegra_xudc_gadget_start(struct usb_gadget *gadget, 2082 struct usb_gadget_driver *driver) 2083 { 2084 struct tegra_xudc *xudc = to_xudc(gadget); 2085 unsigned long flags; 2086 u32 val; 2087 int ret; 2088 unsigned int i; 2089 2090 if (!driver) 2091 return -EINVAL; 2092 2093 pm_runtime_get_sync(xudc->dev); 2094 2095 spin_lock_irqsave(&xudc->lock, flags); 2096 2097 if (xudc->driver) { 2098 ret = -EBUSY; 2099 goto unlock; 2100 } 2101 2102 xudc->setup_state = WAIT_FOR_SETUP; 2103 xudc->device_state = USB_STATE_DEFAULT; 2104 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2105 2106 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc); 2107 if (ret < 0) 2108 goto unlock; 2109 2110 val = xudc_readl(xudc, CTRL); 2111 val |= CTRL_IE | CTRL_LSE; 2112 xudc_writel(xudc, val, CTRL); 2113 2114 val = xudc_readl(xudc, PORTHALT); 2115 val |= PORTHALT_STCHG_INTR_EN; 2116 xudc_writel(xudc, val, PORTHALT); 2117 2118 if (xudc->pullup) { 2119 val = xudc_readl(xudc, CTRL); 2120 val |= CTRL_ENABLE; 2121 xudc_writel(xudc, val, CTRL); 2122 } 2123 2124 for (i = 0; i < xudc->soc->num_phys; i++) 2125 if (xudc->usbphy[i]) 2126 otg_set_peripheral(xudc->usbphy[i]->otg, gadget); 2127 2128 xudc->driver = driver; 2129 unlock: 2130 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2131 spin_unlock_irqrestore(&xudc->lock, flags); 2132 2133 pm_runtime_put(xudc->dev); 2134 2135 return ret; 2136 } 2137 2138 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget) 2139 { 2140 struct tegra_xudc *xudc = to_xudc(gadget); 2141 unsigned long flags; 2142 u32 val; 2143 unsigned int i; 2144 2145 pm_runtime_get_sync(xudc->dev); 2146 2147 spin_lock_irqsave(&xudc->lock, flags); 2148 2149 for (i = 0; i < xudc->soc->num_phys; i++) 2150 if (xudc->usbphy[i]) 2151 otg_set_peripheral(xudc->usbphy[i]->otg, NULL); 2152 2153 val = xudc_readl(xudc, CTRL); 2154 val &= ~(CTRL_IE | CTRL_ENABLE); 2155 xudc_writel(xudc, val, CTRL); 2156 2157 __tegra_xudc_ep_disable(&xudc->ep[0]); 2158 2159 xudc->driver = NULL; 2160 dev_dbg(xudc->dev, "Gadget stopped"); 2161 2162 spin_unlock_irqrestore(&xudc->lock, flags); 2163 2164 pm_runtime_put(xudc->dev); 2165 2166 return 0; 2167 } 2168 2169 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget, 2170 unsigned int m_a) 2171 { 2172 struct tegra_xudc *xudc = to_xudc(gadget); 2173 2174 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a); 2175 2176 if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE) 2177 return usb_phy_set_power(xudc->curr_usbphy, m_a); 2178 2179 return 0; 2180 } 2181 2182 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on) 2183 { 2184 struct tegra_xudc *xudc = to_xudc(gadget); 2185 2186 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on); 2187 xudc->selfpowered = !!is_on; 2188 2189 return 0; 2190 } 2191 2192 static const struct usb_gadget_ops tegra_xudc_gadget_ops = { 2193 .get_frame = tegra_xudc_gadget_get_frame, 2194 .wakeup = tegra_xudc_gadget_wakeup, 2195 .pullup = tegra_xudc_gadget_pullup, 2196 .udc_start = tegra_xudc_gadget_start, 2197 .udc_stop = tegra_xudc_gadget_stop, 2198 .vbus_draw = tegra_xudc_gadget_vbus_draw, 2199 .set_selfpowered = tegra_xudc_set_selfpowered, 2200 }; 2201 2202 static void no_op_complete(struct usb_ep *ep, struct usb_request *req) 2203 { 2204 } 2205 2206 static int 2207 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc, 2208 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2209 { 2210 xudc->ep0_req->usb_req.buf = NULL; 2211 xudc->ep0_req->usb_req.dma = 0; 2212 xudc->ep0_req->usb_req.length = 0; 2213 xudc->ep0_req->usb_req.complete = cmpl; 2214 xudc->ep0_req->usb_req.context = xudc; 2215 2216 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2217 } 2218 2219 static int 2220 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len, 2221 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2222 { 2223 xudc->ep0_req->usb_req.buf = buf; 2224 xudc->ep0_req->usb_req.length = len; 2225 xudc->ep0_req->usb_req.complete = cmpl; 2226 xudc->ep0_req->usb_req.context = xudc; 2227 2228 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2229 } 2230 2231 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc) 2232 { 2233 switch (xudc->setup_state) { 2234 case DATA_STAGE_XFER: 2235 xudc->setup_state = STATUS_STAGE_RECV; 2236 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2237 break; 2238 case DATA_STAGE_RECV: 2239 xudc->setup_state = STATUS_STAGE_XFER; 2240 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2241 break; 2242 default: 2243 xudc->setup_state = WAIT_FOR_SETUP; 2244 break; 2245 } 2246 } 2247 2248 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc, 2249 struct usb_ctrlrequest *ctrl) 2250 { 2251 int ret; 2252 2253 spin_unlock(&xudc->lock); 2254 ret = xudc->driver->setup(&xudc->gadget, ctrl); 2255 spin_lock(&xudc->lock); 2256 2257 return ret; 2258 } 2259 2260 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req) 2261 { 2262 struct tegra_xudc *xudc = req->context; 2263 2264 if (xudc->test_mode_pattern) { 2265 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM); 2266 xudc->test_mode_pattern = 0; 2267 } 2268 } 2269 2270 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc, 2271 struct usb_ctrlrequest *ctrl) 2272 { 2273 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 2274 u32 feature = le16_to_cpu(ctrl->wValue); 2275 u32 index = le16_to_cpu(ctrl->wIndex); 2276 u32 val, ep; 2277 int ret; 2278 2279 if (le16_to_cpu(ctrl->wLength) != 0) 2280 return -EINVAL; 2281 2282 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2283 case USB_RECIP_DEVICE: 2284 switch (feature) { 2285 case USB_DEVICE_REMOTE_WAKEUP: 2286 if ((xudc->gadget.speed == USB_SPEED_SUPER) || 2287 (xudc->device_state == USB_STATE_DEFAULT)) 2288 return -EINVAL; 2289 2290 val = xudc_readl(xudc, PORTPM); 2291 if (set) 2292 val |= PORTPM_RWE; 2293 else 2294 val &= ~PORTPM_RWE; 2295 2296 xudc_writel(xudc, val, PORTPM); 2297 break; 2298 case USB_DEVICE_U1_ENABLE: 2299 case USB_DEVICE_U2_ENABLE: 2300 if ((xudc->device_state != USB_STATE_CONFIGURED) || 2301 (xudc->gadget.speed != USB_SPEED_SUPER)) 2302 return -EINVAL; 2303 2304 val = xudc_readl(xudc, PORTPM); 2305 if ((feature == USB_DEVICE_U1_ENABLE) && 2306 xudc->soc->u1_enable) { 2307 if (set) 2308 val |= PORTPM_U1E; 2309 else 2310 val &= ~PORTPM_U1E; 2311 } 2312 2313 if ((feature == USB_DEVICE_U2_ENABLE) && 2314 xudc->soc->u2_enable) { 2315 if (set) 2316 val |= PORTPM_U2E; 2317 else 2318 val &= ~PORTPM_U2E; 2319 } 2320 2321 xudc_writel(xudc, val, PORTPM); 2322 break; 2323 case USB_DEVICE_TEST_MODE: 2324 if (xudc->gadget.speed != USB_SPEED_HIGH) 2325 return -EINVAL; 2326 2327 if (!set) 2328 return -EINVAL; 2329 2330 xudc->test_mode_pattern = index >> 8; 2331 break; 2332 default: 2333 return -EINVAL; 2334 } 2335 2336 break; 2337 case USB_RECIP_INTERFACE: 2338 if (xudc->device_state != USB_STATE_CONFIGURED) 2339 return -EINVAL; 2340 2341 switch (feature) { 2342 case USB_INTRF_FUNC_SUSPEND: 2343 if (set) { 2344 val = xudc_readl(xudc, PORTPM); 2345 2346 if (index & USB_INTRF_FUNC_SUSPEND_RW) 2347 val |= PORTPM_FRWE; 2348 else 2349 val &= ~PORTPM_FRWE; 2350 2351 xudc_writel(xudc, val, PORTPM); 2352 } 2353 2354 return tegra_xudc_ep0_delegate_req(xudc, ctrl); 2355 default: 2356 return -EINVAL; 2357 } 2358 2359 break; 2360 case USB_RECIP_ENDPOINT: 2361 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2362 ((index & USB_DIR_IN) ? 1 : 0); 2363 2364 if ((xudc->device_state == USB_STATE_DEFAULT) || 2365 ((xudc->device_state == USB_STATE_ADDRESS) && 2366 (index != 0))) 2367 return -EINVAL; 2368 2369 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set); 2370 if (ret < 0) 2371 return ret; 2372 break; 2373 default: 2374 return -EINVAL; 2375 } 2376 2377 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete); 2378 } 2379 2380 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc, 2381 struct usb_ctrlrequest *ctrl) 2382 { 2383 struct tegra_xudc_ep_context *ep_ctx; 2384 u32 val, ep, index = le16_to_cpu(ctrl->wIndex); 2385 u16 status = 0; 2386 2387 if (!(ctrl->bRequestType & USB_DIR_IN)) 2388 return -EINVAL; 2389 2390 if ((le16_to_cpu(ctrl->wValue) != 0) || 2391 (le16_to_cpu(ctrl->wLength) != 2)) 2392 return -EINVAL; 2393 2394 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2395 case USB_RECIP_DEVICE: 2396 val = xudc_readl(xudc, PORTPM); 2397 2398 if (xudc->selfpowered) 2399 status |= BIT(USB_DEVICE_SELF_POWERED); 2400 2401 if ((xudc->gadget.speed < USB_SPEED_SUPER) && 2402 (val & PORTPM_RWE)) 2403 status |= BIT(USB_DEVICE_REMOTE_WAKEUP); 2404 2405 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2406 if (val & PORTPM_U1E) 2407 status |= BIT(USB_DEV_STAT_U1_ENABLED); 2408 if (val & PORTPM_U2E) 2409 status |= BIT(USB_DEV_STAT_U2_ENABLED); 2410 } 2411 break; 2412 case USB_RECIP_INTERFACE: 2413 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2414 status |= USB_INTRF_STAT_FUNC_RW_CAP; 2415 val = xudc_readl(xudc, PORTPM); 2416 if (val & PORTPM_FRWE) 2417 status |= USB_INTRF_STAT_FUNC_RW; 2418 } 2419 break; 2420 case USB_RECIP_ENDPOINT: 2421 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2422 ((index & USB_DIR_IN) ? 1 : 0); 2423 ep_ctx = &xudc->ep_context[ep]; 2424 2425 if ((xudc->device_state != USB_STATE_CONFIGURED) && 2426 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0))) 2427 return -EINVAL; 2428 2429 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED) 2430 return -EINVAL; 2431 2432 if (xudc_readl(xudc, EP_HALT) & BIT(ep)) 2433 status |= BIT(USB_ENDPOINT_HALT); 2434 break; 2435 default: 2436 return -EINVAL; 2437 } 2438 2439 xudc->status_buf = cpu_to_le16(status); 2440 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf, 2441 sizeof(xudc->status_buf), 2442 no_op_complete); 2443 } 2444 2445 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req) 2446 { 2447 /* Nothing to do with SEL values */ 2448 } 2449 2450 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc, 2451 struct usb_ctrlrequest *ctrl) 2452 { 2453 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2454 USB_TYPE_STANDARD)) 2455 return -EINVAL; 2456 2457 if (xudc->device_state == USB_STATE_DEFAULT) 2458 return -EINVAL; 2459 2460 if ((le16_to_cpu(ctrl->wIndex) != 0) || 2461 (le16_to_cpu(ctrl->wValue) != 0) || 2462 (le16_to_cpu(ctrl->wLength) != 6)) 2463 return -EINVAL; 2464 2465 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing, 2466 sizeof(xudc->sel_timing), 2467 set_sel_complete); 2468 } 2469 2470 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req) 2471 { 2472 /* Nothing to do with isoch delay */ 2473 } 2474 2475 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc, 2476 struct usb_ctrlrequest *ctrl) 2477 { 2478 u32 delay = le16_to_cpu(ctrl->wValue); 2479 2480 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2481 USB_TYPE_STANDARD)) 2482 return -EINVAL; 2483 2484 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) || 2485 (le16_to_cpu(ctrl->wLength) != 0)) 2486 return -EINVAL; 2487 2488 xudc->isoch_delay = delay; 2489 2490 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete); 2491 } 2492 2493 static void set_address_complete(struct usb_ep *ep, struct usb_request *req) 2494 { 2495 struct tegra_xudc *xudc = req->context; 2496 2497 if ((xudc->device_state == USB_STATE_DEFAULT) && 2498 (xudc->dev_addr != 0)) { 2499 xudc->device_state = USB_STATE_ADDRESS; 2500 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2501 } else if ((xudc->device_state == USB_STATE_ADDRESS) && 2502 (xudc->dev_addr == 0)) { 2503 xudc->device_state = USB_STATE_DEFAULT; 2504 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2505 } 2506 } 2507 2508 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc, 2509 struct usb_ctrlrequest *ctrl) 2510 { 2511 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2512 u32 val, addr = le16_to_cpu(ctrl->wValue); 2513 2514 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2515 USB_TYPE_STANDARD)) 2516 return -EINVAL; 2517 2518 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) || 2519 (le16_to_cpu(ctrl->wLength) != 0)) 2520 return -EINVAL; 2521 2522 if (xudc->device_state == USB_STATE_CONFIGURED) 2523 return -EINVAL; 2524 2525 dev_dbg(xudc->dev, "set address: %u\n", addr); 2526 2527 xudc->dev_addr = addr; 2528 val = xudc_readl(xudc, CTRL); 2529 val &= ~(CTRL_DEVADDR_MASK); 2530 val |= CTRL_DEVADDR(addr); 2531 xudc_writel(xudc, val, CTRL); 2532 2533 ep_ctx_write_devaddr(ep0->context, addr); 2534 2535 return tegra_xudc_ep0_queue_status(xudc, set_address_complete); 2536 } 2537 2538 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc, 2539 struct usb_ctrlrequest *ctrl) 2540 { 2541 int ret; 2542 2543 switch (ctrl->bRequest) { 2544 case USB_REQ_GET_STATUS: 2545 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n"); 2546 ret = tegra_xudc_ep0_get_status(xudc, ctrl); 2547 break; 2548 case USB_REQ_SET_ADDRESS: 2549 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n"); 2550 ret = tegra_xudc_ep0_set_address(xudc, ctrl); 2551 break; 2552 case USB_REQ_SET_SEL: 2553 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n"); 2554 ret = tegra_xudc_ep0_set_sel(xudc, ctrl); 2555 break; 2556 case USB_REQ_SET_ISOCH_DELAY: 2557 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n"); 2558 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl); 2559 break; 2560 case USB_REQ_CLEAR_FEATURE: 2561 case USB_REQ_SET_FEATURE: 2562 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n"); 2563 ret = tegra_xudc_ep0_set_feature(xudc, ctrl); 2564 break; 2565 case USB_REQ_SET_CONFIGURATION: 2566 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n"); 2567 /* 2568 * In theory we need to clear RUN bit before status stage of 2569 * deconfig request sent, but this seems to be causing problems. 2570 * Clear RUN once all endpoints are disabled instead. 2571 */ 2572 fallthrough; 2573 default: 2574 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2575 break; 2576 } 2577 2578 return ret; 2579 } 2580 2581 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc, 2582 struct usb_ctrlrequest *ctrl, 2583 u16 seq_num) 2584 { 2585 int ret; 2586 2587 xudc->setup_seq_num = seq_num; 2588 2589 /* Ensure EP0 is unhalted. */ 2590 ep_unhalt(xudc, 0); 2591 2592 /* 2593 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff 2594 * are invalid. Halt EP0 until we get a valid packet. 2595 */ 2596 if (xudc->soc->invalid_seq_num && 2597 (seq_num == 0xfffe || seq_num == 0xffff)) { 2598 dev_warn(xudc->dev, "invalid sequence number detected\n"); 2599 ep_halt(xudc, 0); 2600 return; 2601 } 2602 2603 if (ctrl->wLength) 2604 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ? 2605 DATA_STAGE_XFER : DATA_STAGE_RECV; 2606 else 2607 xudc->setup_state = STATUS_STAGE_XFER; 2608 2609 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) 2610 ret = tegra_xudc_ep0_standard_req(xudc, ctrl); 2611 else 2612 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2613 2614 if (ret < 0) { 2615 dev_warn(xudc->dev, "setup request failed: %d\n", ret); 2616 xudc->setup_state = WAIT_FOR_SETUP; 2617 ep_halt(xudc, 0); 2618 } 2619 } 2620 2621 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc, 2622 struct tegra_xudc_trb *event) 2623 { 2624 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event; 2625 u16 seq_num = trb_read_seq_num(event); 2626 2627 if (xudc->setup_state != WAIT_FOR_SETUP) { 2628 /* 2629 * The controller is in the process of handling another 2630 * setup request. Queue subsequent requests and handle 2631 * the last one once the controller reports a sequence 2632 * number error. 2633 */ 2634 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl)); 2635 xudc->setup_packet.seq_num = seq_num; 2636 xudc->queued_setup_packet = true; 2637 } else { 2638 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num); 2639 } 2640 } 2641 2642 static struct tegra_xudc_request * 2643 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) 2644 { 2645 struct tegra_xudc_request *req; 2646 2647 list_for_each_entry(req, &ep->queue, list) { 2648 if (!req->trbs_queued) 2649 break; 2650 2651 if (trb_in_request(ep, req, trb)) 2652 return req; 2653 } 2654 2655 return NULL; 2656 } 2657 2658 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc, 2659 struct tegra_xudc_ep *ep, 2660 struct tegra_xudc_trb *event) 2661 { 2662 struct tegra_xudc_request *req; 2663 struct tegra_xudc_trb *trb; 2664 bool short_packet; 2665 2666 short_packet = (trb_read_cmpl_code(event) == 2667 TRB_CMPL_CODE_SHORT_PACKET); 2668 2669 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2670 req = trb_to_request(ep, trb); 2671 2672 /* 2673 * TDs are complete on short packet or when the completed TRB is the 2674 * last TRB in the TD (the CHAIN bit is unset). 2675 */ 2676 if (req && (short_packet || (!trb_read_chain(trb) && 2677 (req->trbs_needed == req->trbs_queued)))) { 2678 struct tegra_xudc_trb *last = req->last_trb; 2679 unsigned int residual; 2680 2681 residual = trb_read_transfer_len(event); 2682 req->usb_req.actual = req->usb_req.length - residual; 2683 2684 dev_dbg(xudc->dev, "bytes transferred %u / %u\n", 2685 req->usb_req.actual, req->usb_req.length); 2686 2687 tegra_xudc_req_done(ep, req, 0); 2688 2689 if (ep->desc && usb_endpoint_xfer_control(ep->desc)) 2690 tegra_xudc_ep0_req_done(xudc); 2691 2692 /* 2693 * Advance the dequeue pointer past the end of the current TD 2694 * on short packet completion. 2695 */ 2696 if (short_packet) { 2697 ep->deq_ptr = (last - ep->transfer_ring) + 1; 2698 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2699 ep->deq_ptr = 0; 2700 } 2701 } else if (!req) { 2702 dev_warn(xudc->dev, "transfer event on dequeued request\n"); 2703 } 2704 2705 if (ep->desc) 2706 tegra_xudc_ep_kick_queue(ep); 2707 } 2708 2709 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc, 2710 struct tegra_xudc_trb *event) 2711 { 2712 unsigned int ep_index = trb_read_endpoint_id(event); 2713 struct tegra_xudc_ep *ep = &xudc->ep[ep_index]; 2714 struct tegra_xudc_trb *trb; 2715 u16 comp_code; 2716 2717 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 2718 dev_warn(xudc->dev, "transfer event on disabled EP %u\n", 2719 ep_index); 2720 return; 2721 } 2722 2723 /* Update transfer ring dequeue pointer. */ 2724 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2725 comp_code = trb_read_cmpl_code(event); 2726 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) { 2727 ep->deq_ptr = (trb - ep->transfer_ring) + 1; 2728 2729 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2730 ep->deq_ptr = 0; 2731 ep->ring_full = false; 2732 } 2733 2734 switch (comp_code) { 2735 case TRB_CMPL_CODE_SUCCESS: 2736 case TRB_CMPL_CODE_SHORT_PACKET: 2737 tegra_xudc_handle_transfer_completion(xudc, ep, event); 2738 break; 2739 case TRB_CMPL_CODE_HOST_REJECTED: 2740 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index); 2741 2742 ep->stream_rejected = true; 2743 break; 2744 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED: 2745 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index); 2746 2747 if (ep->stream_rejected) { 2748 ep->stream_rejected = false; 2749 /* 2750 * An EP is stopped when a stream is rejected. Wait 2751 * for the EP to report that it is stopped and then 2752 * un-stop it. 2753 */ 2754 ep_wait_for_stopped(xudc, ep_index); 2755 } 2756 tegra_xudc_ep_ring_doorbell(ep); 2757 break; 2758 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR: 2759 /* 2760 * Wait for the EP to be stopped so the controller stops 2761 * processing doorbells. 2762 */ 2763 ep_wait_for_stopped(xudc, ep_index); 2764 ep->enq_ptr = ep->deq_ptr; 2765 tegra_xudc_ep_nuke(ep, -EIO); 2766 fallthrough; 2767 case TRB_CMPL_CODE_STREAM_NUMP_ERROR: 2768 case TRB_CMPL_CODE_CTRL_DIR_ERR: 2769 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR: 2770 case TRB_CMPL_CODE_RING_UNDERRUN: 2771 case TRB_CMPL_CODE_RING_OVERRUN: 2772 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN: 2773 case TRB_CMPL_CODE_USB_TRANS_ERR: 2774 case TRB_CMPL_CODE_TRB_ERR: 2775 dev_err(xudc->dev, "completion error %#x on EP %u\n", 2776 comp_code, ep_index); 2777 2778 ep_halt(xudc, ep_index); 2779 break; 2780 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR: 2781 dev_info(xudc->dev, "sequence number error\n"); 2782 2783 /* 2784 * Kill any queued control request and skip to the last 2785 * setup packet we received. 2786 */ 2787 tegra_xudc_ep_nuke(ep, -EINVAL); 2788 xudc->setup_state = WAIT_FOR_SETUP; 2789 if (!xudc->queued_setup_packet) 2790 break; 2791 2792 tegra_xudc_handle_ep0_setup_packet(xudc, 2793 &xudc->setup_packet.ctrl_req, 2794 xudc->setup_packet.seq_num); 2795 xudc->queued_setup_packet = false; 2796 break; 2797 case TRB_CMPL_CODE_STOPPED: 2798 dev_dbg(xudc->dev, "stop completion code on EP %u\n", 2799 ep_index); 2800 2801 /* Disconnected. */ 2802 tegra_xudc_ep_nuke(ep, -ECONNREFUSED); 2803 break; 2804 default: 2805 dev_dbg(xudc->dev, "completion event %#x on EP %u\n", 2806 comp_code, ep_index); 2807 break; 2808 } 2809 } 2810 2811 static void tegra_xudc_reset(struct tegra_xudc *xudc) 2812 { 2813 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2814 dma_addr_t deq_ptr; 2815 unsigned int i; 2816 2817 xudc->setup_state = WAIT_FOR_SETUP; 2818 xudc->device_state = USB_STATE_DEFAULT; 2819 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2820 2821 ep_unpause_all(xudc); 2822 2823 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2824 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN); 2825 2826 /* 2827 * Reset sequence number and dequeue pointer to flush the transfer 2828 * ring. 2829 */ 2830 ep0->deq_ptr = ep0->enq_ptr; 2831 ep0->ring_full = false; 2832 2833 xudc->setup_seq_num = 0; 2834 xudc->queued_setup_packet = false; 2835 2836 ep_ctx_write_rsvd(ep0->context, 0); 2837 ep_ctx_write_partial_td(ep0->context, 0); 2838 ep_ctx_write_splitxstate(ep0->context, 0); 2839 ep_ctx_write_seq_num(ep0->context, 0); 2840 2841 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]); 2842 2843 if (!dma_mapping_error(xudc->dev, deq_ptr)) { 2844 ep_ctx_write_deq_ptr(ep0->context, deq_ptr); 2845 ep_ctx_write_dcs(ep0->context, ep0->pcs); 2846 } 2847 2848 ep_unhalt_all(xudc); 2849 ep_reload(xudc, 0); 2850 ep_unpause(xudc, 0); 2851 } 2852 2853 static void tegra_xudc_port_connect(struct tegra_xudc *xudc) 2854 { 2855 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2856 u16 maxpacket; 2857 u32 val; 2858 2859 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT; 2860 switch (val) { 2861 case PORTSC_PS_LS: 2862 xudc->gadget.speed = USB_SPEED_LOW; 2863 break; 2864 case PORTSC_PS_FS: 2865 xudc->gadget.speed = USB_SPEED_FULL; 2866 break; 2867 case PORTSC_PS_HS: 2868 xudc->gadget.speed = USB_SPEED_HIGH; 2869 break; 2870 case PORTSC_PS_SS: 2871 xudc->gadget.speed = USB_SPEED_SUPER; 2872 break; 2873 default: 2874 xudc->gadget.speed = USB_SPEED_UNKNOWN; 2875 break; 2876 } 2877 2878 xudc->device_state = USB_STATE_DEFAULT; 2879 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2880 2881 xudc->setup_state = WAIT_FOR_SETUP; 2882 2883 if (xudc->gadget.speed == USB_SPEED_SUPER) 2884 maxpacket = 512; 2885 else 2886 maxpacket = 64; 2887 2888 ep_ctx_write_max_packet_size(ep0->context, maxpacket); 2889 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket); 2890 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket); 2891 2892 if (!xudc->soc->u1_enable) { 2893 val = xudc_readl(xudc, PORTPM); 2894 val &= ~(PORTPM_U1TIMEOUT_MASK); 2895 xudc_writel(xudc, val, PORTPM); 2896 } 2897 2898 if (!xudc->soc->u2_enable) { 2899 val = xudc_readl(xudc, PORTPM); 2900 val &= ~(PORTPM_U2TIMEOUT_MASK); 2901 xudc_writel(xudc, val, PORTPM); 2902 } 2903 2904 if (xudc->gadget.speed <= USB_SPEED_HIGH) { 2905 val = xudc_readl(xudc, PORTPM); 2906 val &= ~(PORTPM_L1S_MASK); 2907 if (xudc->soc->lpm_enable) 2908 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT); 2909 else 2910 val |= PORTPM_L1S(PORTPM_L1S_NYET); 2911 xudc_writel(xudc, val, PORTPM); 2912 } 2913 2914 val = xudc_readl(xudc, ST); 2915 if (val & ST_RC) 2916 xudc_writel(xudc, ST_RC, ST); 2917 } 2918 2919 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc) 2920 { 2921 tegra_xudc_reset(xudc); 2922 2923 if (xudc->driver && xudc->driver->disconnect) { 2924 spin_unlock(&xudc->lock); 2925 xudc->driver->disconnect(&xudc->gadget); 2926 spin_lock(&xudc->lock); 2927 } 2928 2929 xudc->device_state = USB_STATE_NOTATTACHED; 2930 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2931 2932 complete(&xudc->disconnect_complete); 2933 } 2934 2935 static void tegra_xudc_port_reset(struct tegra_xudc *xudc) 2936 { 2937 tegra_xudc_reset(xudc); 2938 2939 if (xudc->driver) { 2940 spin_unlock(&xudc->lock); 2941 usb_gadget_udc_reset(&xudc->gadget, xudc->driver); 2942 spin_lock(&xudc->lock); 2943 } 2944 2945 tegra_xudc_port_connect(xudc); 2946 } 2947 2948 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc) 2949 { 2950 dev_dbg(xudc->dev, "port suspend\n"); 2951 2952 xudc->resume_state = xudc->device_state; 2953 xudc->device_state = USB_STATE_SUSPENDED; 2954 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2955 2956 if (xudc->driver->suspend) { 2957 spin_unlock(&xudc->lock); 2958 xudc->driver->suspend(&xudc->gadget); 2959 spin_lock(&xudc->lock); 2960 } 2961 } 2962 2963 static void tegra_xudc_port_resume(struct tegra_xudc *xudc) 2964 { 2965 dev_dbg(xudc->dev, "port resume\n"); 2966 2967 tegra_xudc_resume_device_state(xudc); 2968 2969 if (xudc->driver->resume) { 2970 spin_unlock(&xudc->lock); 2971 xudc->driver->resume(&xudc->gadget); 2972 spin_lock(&xudc->lock); 2973 } 2974 } 2975 2976 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag) 2977 { 2978 u32 val; 2979 2980 val = xudc_readl(xudc, PORTSC); 2981 val &= ~PORTSC_CHANGE_MASK; 2982 val |= flag; 2983 xudc_writel(xudc, val, PORTSC); 2984 } 2985 2986 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 2987 { 2988 u32 portsc, porthalt; 2989 2990 porthalt = xudc_readl(xudc, PORTHALT); 2991 if ((porthalt & PORTHALT_STCHG_REQ) && 2992 (porthalt & PORTHALT_HALT_LTSSM)) { 2993 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt); 2994 porthalt &= ~PORTHALT_HALT_LTSSM; 2995 xudc_writel(xudc, porthalt, PORTHALT); 2996 } 2997 2998 portsc = xudc_readl(xudc, PORTSC); 2999 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) { 3000 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc); 3001 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 3002 #define TOGGLE_VBUS_WAIT_MS 100 3003 if (xudc->soc->port_reset_quirk) { 3004 schedule_delayed_work(&xudc->port_reset_war_work, 3005 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 3006 xudc->wait_for_sec_prc = 1; 3007 } 3008 } 3009 3010 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) { 3011 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc); 3012 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 3013 tegra_xudc_port_reset(xudc); 3014 cancel_delayed_work(&xudc->port_reset_war_work); 3015 xudc->wait_for_sec_prc = 0; 3016 } 3017 3018 portsc = xudc_readl(xudc, PORTSC); 3019 if (portsc & PORTSC_WRC) { 3020 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc); 3021 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED); 3022 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR)) 3023 tegra_xudc_port_reset(xudc); 3024 } 3025 3026 portsc = xudc_readl(xudc, PORTSC); 3027 if (portsc & PORTSC_CSC) { 3028 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc); 3029 clear_port_change(xudc, PORTSC_CSC); 3030 3031 if (portsc & PORTSC_CCS) 3032 tegra_xudc_port_connect(xudc); 3033 else 3034 tegra_xudc_port_disconnect(xudc); 3035 3036 if (xudc->wait_csc) { 3037 cancel_delayed_work(&xudc->plc_reset_work); 3038 xudc->wait_csc = false; 3039 } 3040 } 3041 3042 portsc = xudc_readl(xudc, PORTSC); 3043 if (portsc & PORTSC_PLC) { 3044 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; 3045 3046 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc); 3047 clear_port_change(xudc, PORTSC_PLC); 3048 switch (pls) { 3049 case PORTSC_PLS_U3: 3050 tegra_xudc_port_suspend(xudc); 3051 break; 3052 case PORTSC_PLS_U0: 3053 if (xudc->gadget.speed < USB_SPEED_SUPER) 3054 tegra_xudc_port_resume(xudc); 3055 break; 3056 case PORTSC_PLS_RESUME: 3057 if (xudc->gadget.speed == USB_SPEED_SUPER) 3058 tegra_xudc_port_resume(xudc); 3059 break; 3060 case PORTSC_PLS_INACTIVE: 3061 schedule_delayed_work(&xudc->plc_reset_work, 3062 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 3063 xudc->wait_csc = true; 3064 break; 3065 default: 3066 break; 3067 } 3068 } 3069 3070 if (portsc & PORTSC_CEC) { 3071 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc); 3072 clear_port_change(xudc, PORTSC_CEC); 3073 } 3074 3075 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC)); 3076 } 3077 3078 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 3079 { 3080 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) || 3081 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ)) 3082 __tegra_xudc_handle_port_status(xudc); 3083 } 3084 3085 static void tegra_xudc_handle_event(struct tegra_xudc *xudc, 3086 struct tegra_xudc_trb *event) 3087 { 3088 u32 type = trb_read_type(event); 3089 3090 dump_trb(xudc, "EVENT", event); 3091 3092 switch (type) { 3093 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT: 3094 tegra_xudc_handle_port_status(xudc); 3095 break; 3096 case TRB_TYPE_TRANSFER_EVENT: 3097 tegra_xudc_handle_transfer_event(xudc, event); 3098 break; 3099 case TRB_TYPE_SETUP_PACKET_EVENT: 3100 tegra_xudc_handle_ep0_event(xudc, event); 3101 break; 3102 default: 3103 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type); 3104 break; 3105 } 3106 } 3107 3108 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc) 3109 { 3110 struct tegra_xudc_trb *event; 3111 dma_addr_t erdp; 3112 3113 while (true) { 3114 event = xudc->event_ring[xudc->event_ring_index] + 3115 xudc->event_ring_deq_ptr; 3116 3117 if (trb_read_cycle(event) != xudc->ccs) 3118 break; 3119 3120 tegra_xudc_handle_event(xudc, event); 3121 3122 xudc->event_ring_deq_ptr++; 3123 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) { 3124 xudc->event_ring_deq_ptr = 0; 3125 xudc->event_ring_index++; 3126 } 3127 3128 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) { 3129 xudc->event_ring_index = 0; 3130 xudc->ccs = !xudc->ccs; 3131 } 3132 } 3133 3134 erdp = xudc->event_ring_phys[xudc->event_ring_index] + 3135 xudc->event_ring_deq_ptr * sizeof(*event); 3136 3137 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI); 3138 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO); 3139 } 3140 3141 static irqreturn_t tegra_xudc_irq(int irq, void *data) 3142 { 3143 struct tegra_xudc *xudc = data; 3144 unsigned long flags; 3145 u32 val; 3146 3147 val = xudc_readl(xudc, ST); 3148 if (!(val & ST_IP)) 3149 return IRQ_NONE; 3150 xudc_writel(xudc, ST_IP, ST); 3151 3152 spin_lock_irqsave(&xudc->lock, flags); 3153 tegra_xudc_process_event_ring(xudc); 3154 spin_unlock_irqrestore(&xudc->lock, flags); 3155 3156 return IRQ_HANDLED; 3157 } 3158 3159 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index) 3160 { 3161 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3162 3163 ep->xudc = xudc; 3164 ep->index = index; 3165 ep->context = &xudc->ep_context[index]; 3166 INIT_LIST_HEAD(&ep->queue); 3167 3168 /* 3169 * EP1 would be the input endpoint corresponding to EP0, but since 3170 * EP0 is bi-directional, EP1 is unused. 3171 */ 3172 if (index == 1) 3173 return 0; 3174 3175 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool, 3176 GFP_KERNEL, 3177 &ep->transfer_ring_phys); 3178 if (!ep->transfer_ring) 3179 return -ENOMEM; 3180 3181 if (index) { 3182 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2, 3183 (index % 2 == 0) ? "out" : "in"); 3184 ep->usb_ep.name = ep->name; 3185 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024); 3186 ep->usb_ep.max_streams = 16; 3187 ep->usb_ep.ops = &tegra_xudc_ep_ops; 3188 ep->usb_ep.caps.type_bulk = true; 3189 ep->usb_ep.caps.type_int = true; 3190 if (index & 1) 3191 ep->usb_ep.caps.dir_in = true; 3192 else 3193 ep->usb_ep.caps.dir_out = true; 3194 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list); 3195 } else { 3196 strscpy(ep->name, "ep0", 3); 3197 ep->usb_ep.name = ep->name; 3198 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512); 3199 ep->usb_ep.ops = &tegra_xudc_ep0_ops; 3200 ep->usb_ep.caps.type_control = true; 3201 ep->usb_ep.caps.dir_in = true; 3202 ep->usb_ep.caps.dir_out = true; 3203 } 3204 3205 return 0; 3206 } 3207 3208 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index) 3209 { 3210 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3211 3212 /* 3213 * EP1 would be the input endpoint corresponding to EP0, but since 3214 * EP0 is bi-directional, EP1 is unused. 3215 */ 3216 if (index == 1) 3217 return; 3218 3219 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring, 3220 ep->transfer_ring_phys); 3221 } 3222 3223 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc) 3224 { 3225 struct usb_request *req; 3226 unsigned int i; 3227 int err; 3228 3229 xudc->ep_context = 3230 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS * 3231 sizeof(*xudc->ep_context), 3232 &xudc->ep_context_phys, GFP_KERNEL); 3233 if (!xudc->ep_context) 3234 return -ENOMEM; 3235 3236 xudc->transfer_ring_pool = 3237 dmam_pool_create(dev_name(xudc->dev), xudc->dev, 3238 XUDC_TRANSFER_RING_SIZE * 3239 sizeof(struct tegra_xudc_trb), 3240 sizeof(struct tegra_xudc_trb), 0); 3241 if (!xudc->transfer_ring_pool) { 3242 err = -ENOMEM; 3243 goto free_ep_context; 3244 } 3245 3246 INIT_LIST_HEAD(&xudc->gadget.ep_list); 3247 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 3248 err = tegra_xudc_alloc_ep(xudc, i); 3249 if (err < 0) 3250 goto free_eps; 3251 } 3252 3253 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL); 3254 if (!req) { 3255 err = -ENOMEM; 3256 goto free_eps; 3257 } 3258 xudc->ep0_req = to_xudc_req(req); 3259 3260 return 0; 3261 3262 free_eps: 3263 for (; i > 0; i--) 3264 tegra_xudc_free_ep(xudc, i - 1); 3265 free_ep_context: 3266 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3267 xudc->ep_context, xudc->ep_context_phys); 3268 return err; 3269 } 3270 3271 static void tegra_xudc_init_eps(struct tegra_xudc *xudc) 3272 { 3273 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO); 3274 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI); 3275 } 3276 3277 static void tegra_xudc_free_eps(struct tegra_xudc *xudc) 3278 { 3279 unsigned int i; 3280 3281 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep, 3282 &xudc->ep0_req->usb_req); 3283 3284 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 3285 tegra_xudc_free_ep(xudc, i); 3286 3287 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3288 xudc->ep_context, xudc->ep_context_phys); 3289 } 3290 3291 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc) 3292 { 3293 unsigned int i; 3294 3295 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3296 xudc->event_ring[i] = 3297 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3298 sizeof(*xudc->event_ring[i]), 3299 &xudc->event_ring_phys[i], 3300 GFP_KERNEL); 3301 if (!xudc->event_ring[i]) 3302 goto free_dma; 3303 } 3304 3305 return 0; 3306 3307 free_dma: 3308 for (; i > 0; i--) { 3309 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3310 sizeof(*xudc->event_ring[i - 1]), 3311 xudc->event_ring[i - 1], 3312 xudc->event_ring_phys[i - 1]); 3313 } 3314 return -ENOMEM; 3315 } 3316 3317 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc) 3318 { 3319 unsigned int i; 3320 u32 val; 3321 3322 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3323 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE * 3324 sizeof(*xudc->event_ring[i])); 3325 3326 val = xudc_readl(xudc, ERSTSZ); 3327 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i)); 3328 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i); 3329 xudc_writel(xudc, val, ERSTSZ); 3330 3331 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]), 3332 ERSTXBALO(i)); 3333 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]), 3334 ERSTXBAHI(i)); 3335 } 3336 3337 val = lower_32_bits(xudc->event_ring_phys[0]); 3338 xudc_writel(xudc, val, ERDPLO); 3339 val |= EREPLO_ECS; 3340 xudc_writel(xudc, val, EREPLO); 3341 3342 val = upper_32_bits(xudc->event_ring_phys[0]); 3343 xudc_writel(xudc, val, ERDPHI); 3344 xudc_writel(xudc, val, EREPHI); 3345 3346 xudc->ccs = true; 3347 xudc->event_ring_index = 0; 3348 xudc->event_ring_deq_ptr = 0; 3349 } 3350 3351 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc) 3352 { 3353 unsigned int i; 3354 3355 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3356 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3357 sizeof(*xudc->event_ring[i]), 3358 xudc->event_ring[i], 3359 xudc->event_ring_phys[i]); 3360 } 3361 } 3362 3363 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc) 3364 { 3365 u32 val; 3366 3367 if (xudc->soc->has_ipfs) { 3368 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0); 3369 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI; 3370 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0); 3371 usleep_range(10, 15); 3372 } 3373 3374 /* Enable bus master */ 3375 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN | 3376 XUSB_DEV_CFG_1_BUS_MASTER_EN; 3377 fpci_writel(xudc, val, XUSB_DEV_CFG_1); 3378 3379 /* Program BAR0 space */ 3380 val = fpci_readl(xudc, XUSB_DEV_CFG_4); 3381 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3382 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3383 3384 fpci_writel(xudc, val, XUSB_DEV_CFG_4); 3385 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5); 3386 3387 usleep_range(100, 200); 3388 3389 if (xudc->soc->has_ipfs) { 3390 /* Enable interrupt assertion */ 3391 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0); 3392 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK; 3393 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0); 3394 } 3395 } 3396 3397 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc) 3398 { 3399 u32 val, imod; 3400 3401 if (xudc->soc->has_ipfs) { 3402 val = xudc_readl(xudc, BLCG); 3403 val |= BLCG_ALL; 3404 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE | 3405 BLCG_COREPLL_PWRDN); 3406 val |= BLCG_IOPLL_0_PWRDN; 3407 val |= BLCG_IOPLL_1_PWRDN; 3408 val |= BLCG_IOPLL_2_PWRDN; 3409 3410 xudc_writel(xudc, val, BLCG); 3411 } 3412 3413 if (xudc->soc->port_speed_quirk) 3414 tegra_xudc_limit_port_speed(xudc); 3415 3416 /* Set a reasonable U3 exit timer value. */ 3417 val = xudc_readl(xudc, SSPX_CORE_PADCTL4); 3418 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK); 3419 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0); 3420 xudc_writel(xudc, val, SSPX_CORE_PADCTL4); 3421 3422 /* Default ping LFPS tBurst is too large. */ 3423 val = xudc_readl(xudc, SSPX_CORE_CNT0); 3424 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK); 3425 val |= SSPX_CORE_CNT0_PING_TBURST(0xa); 3426 xudc_writel(xudc, val, SSPX_CORE_CNT0); 3427 3428 /* Default tPortConfiguration timeout is too small. */ 3429 val = xudc_readl(xudc, SSPX_CORE_CNT30); 3430 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK); 3431 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978); 3432 xudc_writel(xudc, val, SSPX_CORE_CNT30); 3433 3434 if (xudc->soc->lpm_enable) { 3435 /* Set L1 resume duration to 95 us. */ 3436 val = xudc_readl(xudc, HSFSPI_COUNT13); 3437 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK); 3438 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88); 3439 xudc_writel(xudc, val, HSFSPI_COUNT13); 3440 } 3441 3442 /* 3443 * Compliance suite appears to be violating polling LFPS tBurst max 3444 * of 1.4us. Send 1.45us instead. 3445 */ 3446 val = xudc_readl(xudc, SSPX_CORE_CNT32); 3447 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK); 3448 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0); 3449 xudc_writel(xudc, val, SSPX_CORE_CNT32); 3450 3451 /* Direct HS/FS port instance to RxDetect. */ 3452 val = xudc_readl(xudc, CFG_DEV_FE); 3453 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3454 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI); 3455 xudc_writel(xudc, val, CFG_DEV_FE); 3456 3457 val = xudc_readl(xudc, PORTSC); 3458 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3459 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3460 xudc_writel(xudc, val, PORTSC); 3461 3462 /* Direct SS port instance to RxDetect. */ 3463 val = xudc_readl(xudc, CFG_DEV_FE); 3464 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3465 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK; 3466 xudc_writel(xudc, val, CFG_DEV_FE); 3467 3468 val = xudc_readl(xudc, PORTSC); 3469 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3470 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3471 xudc_writel(xudc, val, PORTSC); 3472 3473 /* Restore port instance. */ 3474 val = xudc_readl(xudc, CFG_DEV_FE); 3475 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3476 xudc_writel(xudc, val, CFG_DEV_FE); 3477 3478 /* 3479 * Enable INFINITE_SS_RETRY to prevent device from entering 3480 * Disabled.Error when attached to buggy SuperSpeed hubs. 3481 */ 3482 val = xudc_readl(xudc, CFG_DEV_FE); 3483 val |= CFG_DEV_FE_INFINITE_SS_RETRY; 3484 xudc_writel(xudc, val, CFG_DEV_FE); 3485 3486 /* Set interrupt moderation. */ 3487 imod = XUDC_INTERRUPT_MODERATION_US * 4; 3488 val = xudc_readl(xudc, RT_IMOD); 3489 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK)); 3490 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod)); 3491 xudc_writel(xudc, val, RT_IMOD); 3492 3493 /* increase SSPI transaction timeout from 32us to 512us */ 3494 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER); 3495 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK); 3496 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000); 3497 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER); 3498 } 3499 3500 static int tegra_xudc_phy_get(struct tegra_xudc *xudc) 3501 { 3502 int err = 0, usb3_companion_port; 3503 unsigned int i, j; 3504 3505 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3506 sizeof(*xudc->utmi_phy), GFP_KERNEL); 3507 if (!xudc->utmi_phy) 3508 return -ENOMEM; 3509 3510 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3511 sizeof(*xudc->usb3_phy), GFP_KERNEL); 3512 if (!xudc->usb3_phy) 3513 return -ENOMEM; 3514 3515 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3516 sizeof(*xudc->usbphy), GFP_KERNEL); 3517 if (!xudc->usbphy) 3518 return -ENOMEM; 3519 3520 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify; 3521 3522 for (i = 0; i < xudc->soc->num_phys; i++) { 3523 char phy_name[] = "usb.-."; 3524 3525 /* Get USB2 phy */ 3526 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i); 3527 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3528 if (IS_ERR(xudc->utmi_phy[i])) { 3529 err = PTR_ERR(xudc->utmi_phy[i]); 3530 dev_err_probe(xudc->dev, err, 3531 "failed to get PHY for phy-name usb2-%d\n", i); 3532 goto clean_up; 3533 } else if (xudc->utmi_phy[i]) { 3534 /* Get usb-phy, if utmi phy is available */ 3535 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev, 3536 xudc->utmi_phy[i]->dev.of_node, 3537 NULL); 3538 if (IS_ERR(xudc->usbphy[i])) { 3539 err = PTR_ERR(xudc->usbphy[i]); 3540 dev_err_probe(xudc->dev, err, 3541 "failed to get usbphy-%d\n", i); 3542 goto clean_up; 3543 } 3544 } else if (!xudc->utmi_phy[i]) { 3545 /* if utmi phy is not available, ignore USB3 phy get */ 3546 continue; 3547 } 3548 3549 /* Get USB3 phy */ 3550 usb3_companion_port = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i); 3551 if (usb3_companion_port < 0) 3552 continue; 3553 3554 for (j = 0; j < xudc->soc->num_phys; j++) { 3555 snprintf(phy_name, sizeof(phy_name), "usb3-%d", j); 3556 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3557 if (IS_ERR(xudc->usb3_phy[i])) { 3558 err = PTR_ERR(xudc->usb3_phy[i]); 3559 dev_err_probe(xudc->dev, err, 3560 "failed to get PHY for phy-name usb3-%d\n", j); 3561 goto clean_up; 3562 } else if (xudc->usb3_phy[i]) { 3563 int usb2_port = 3564 tegra_xusb_padctl_get_port_number(xudc->utmi_phy[i]); 3565 int usb3_port = 3566 tegra_xusb_padctl_get_port_number(xudc->usb3_phy[i]); 3567 if (usb3_port == usb3_companion_port) { 3568 dev_dbg(xudc->dev, "USB2 port %d is paired with USB3 port %d for device mode port %d\n", 3569 usb2_port, usb3_port, i); 3570 break; 3571 } 3572 } 3573 } 3574 } 3575 3576 return err; 3577 3578 clean_up: 3579 for (i = 0; i < xudc->soc->num_phys; i++) { 3580 xudc->usb3_phy[i] = NULL; 3581 xudc->utmi_phy[i] = NULL; 3582 xudc->usbphy[i] = NULL; 3583 } 3584 3585 return err; 3586 } 3587 3588 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc) 3589 { 3590 unsigned int i; 3591 3592 for (i = 0; i < xudc->soc->num_phys; i++) { 3593 phy_exit(xudc->usb3_phy[i]); 3594 phy_exit(xudc->utmi_phy[i]); 3595 } 3596 } 3597 3598 static int tegra_xudc_phy_init(struct tegra_xudc *xudc) 3599 { 3600 int err; 3601 unsigned int i; 3602 3603 for (i = 0; i < xudc->soc->num_phys; i++) { 3604 err = phy_init(xudc->utmi_phy[i]); 3605 if (err < 0) { 3606 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err); 3607 goto exit_phy; 3608 } 3609 3610 err = phy_init(xudc->usb3_phy[i]); 3611 if (err < 0) { 3612 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err); 3613 goto exit_phy; 3614 } 3615 } 3616 return 0; 3617 3618 exit_phy: 3619 tegra_xudc_phy_exit(xudc); 3620 return err; 3621 } 3622 3623 static const char * const tegra210_xudc_supply_names[] = { 3624 "hvdd-usb", 3625 "avddio-usb", 3626 }; 3627 3628 static const char * const tegra210_xudc_clock_names[] = { 3629 "dev", 3630 "ss", 3631 "ss_src", 3632 "hs_src", 3633 "fs_src", 3634 }; 3635 3636 static const char * const tegra186_xudc_clock_names[] = { 3637 "dev", 3638 "ss", 3639 "ss_src", 3640 "fs_src", 3641 }; 3642 3643 static struct tegra_xudc_soc tegra210_xudc_soc_data = { 3644 .supply_names = tegra210_xudc_supply_names, 3645 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names), 3646 .clock_names = tegra210_xudc_clock_names, 3647 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names), 3648 .num_phys = 4, 3649 .u1_enable = false, 3650 .u2_enable = true, 3651 .lpm_enable = false, 3652 .invalid_seq_num = true, 3653 .pls_quirk = true, 3654 .port_reset_quirk = true, 3655 .port_speed_quirk = false, 3656 .has_ipfs = true, 3657 }; 3658 3659 static struct tegra_xudc_soc tegra186_xudc_soc_data = { 3660 .clock_names = tegra186_xudc_clock_names, 3661 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3662 .num_phys = 4, 3663 .u1_enable = true, 3664 .u2_enable = true, 3665 .lpm_enable = false, 3666 .invalid_seq_num = false, 3667 .pls_quirk = false, 3668 .port_reset_quirk = false, 3669 .port_speed_quirk = false, 3670 .has_ipfs = false, 3671 }; 3672 3673 static struct tegra_xudc_soc tegra194_xudc_soc_data = { 3674 .clock_names = tegra186_xudc_clock_names, 3675 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3676 .num_phys = 4, 3677 .u1_enable = true, 3678 .u2_enable = true, 3679 .lpm_enable = true, 3680 .invalid_seq_num = false, 3681 .pls_quirk = false, 3682 .port_reset_quirk = false, 3683 .port_speed_quirk = true, 3684 .has_ipfs = false, 3685 }; 3686 3687 static struct tegra_xudc_soc tegra234_xudc_soc_data = { 3688 .clock_names = tegra186_xudc_clock_names, 3689 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3690 .num_phys = 4, 3691 .u1_enable = true, 3692 .u2_enable = true, 3693 .lpm_enable = true, 3694 .invalid_seq_num = false, 3695 .pls_quirk = false, 3696 .port_reset_quirk = false, 3697 .has_ipfs = false, 3698 }; 3699 3700 static const struct of_device_id tegra_xudc_of_match[] = { 3701 { 3702 .compatible = "nvidia,tegra210-xudc", 3703 .data = &tegra210_xudc_soc_data 3704 }, 3705 { 3706 .compatible = "nvidia,tegra186-xudc", 3707 .data = &tegra186_xudc_soc_data 3708 }, 3709 { 3710 .compatible = "nvidia,tegra194-xudc", 3711 .data = &tegra194_xudc_soc_data 3712 }, 3713 { 3714 .compatible = "nvidia,tegra234-xudc", 3715 .data = &tegra234_xudc_soc_data 3716 }, 3717 { } 3718 }; 3719 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match); 3720 3721 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc) 3722 { 3723 if (xudc->genpd_dl_ss) 3724 device_link_del(xudc->genpd_dl_ss); 3725 if (xudc->genpd_dl_device) 3726 device_link_del(xudc->genpd_dl_device); 3727 if (xudc->genpd_dev_ss) 3728 dev_pm_domain_detach(xudc->genpd_dev_ss, true); 3729 if (xudc->genpd_dev_device) 3730 dev_pm_domain_detach(xudc->genpd_dev_device, true); 3731 } 3732 3733 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc) 3734 { 3735 struct device *dev = xudc->dev; 3736 int err; 3737 3738 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev"); 3739 if (IS_ERR(xudc->genpd_dev_device)) { 3740 err = PTR_ERR(xudc->genpd_dev_device); 3741 dev_err(dev, "failed to get device power domain: %d\n", err); 3742 return err; 3743 } 3744 3745 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss"); 3746 if (IS_ERR(xudc->genpd_dev_ss)) { 3747 err = PTR_ERR(xudc->genpd_dev_ss); 3748 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err); 3749 return err; 3750 } 3751 3752 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device, 3753 DL_FLAG_PM_RUNTIME | 3754 DL_FLAG_STATELESS); 3755 if (!xudc->genpd_dl_device) { 3756 dev_err(dev, "failed to add USB device link\n"); 3757 return -ENODEV; 3758 } 3759 3760 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss, 3761 DL_FLAG_PM_RUNTIME | 3762 DL_FLAG_STATELESS); 3763 if (!xudc->genpd_dl_ss) { 3764 dev_err(dev, "failed to add SuperSpeed device link\n"); 3765 return -ENODEV; 3766 } 3767 3768 return 0; 3769 } 3770 3771 static int tegra_xudc_probe(struct platform_device *pdev) 3772 { 3773 struct tegra_xudc *xudc; 3774 struct resource *res; 3775 unsigned int i; 3776 int err; 3777 3778 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL); 3779 if (!xudc) 3780 return -ENOMEM; 3781 3782 xudc->dev = &pdev->dev; 3783 platform_set_drvdata(pdev, xudc); 3784 3785 xudc->soc = of_device_get_match_data(&pdev->dev); 3786 if (!xudc->soc) 3787 return -ENODEV; 3788 3789 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 3790 xudc->base = devm_ioremap_resource(&pdev->dev, res); 3791 if (IS_ERR(xudc->base)) 3792 return PTR_ERR(xudc->base); 3793 xudc->phys_base = res->start; 3794 3795 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci"); 3796 if (IS_ERR(xudc->fpci)) 3797 return PTR_ERR(xudc->fpci); 3798 3799 if (xudc->soc->has_ipfs) { 3800 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs"); 3801 if (IS_ERR(xudc->ipfs)) 3802 return PTR_ERR(xudc->ipfs); 3803 } 3804 3805 xudc->irq = platform_get_irq(pdev, 0); 3806 if (xudc->irq < 0) 3807 return xudc->irq; 3808 3809 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0, 3810 dev_name(&pdev->dev), xudc); 3811 if (err < 0) { 3812 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq, 3813 err); 3814 return err; 3815 } 3816 3817 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks), 3818 GFP_KERNEL); 3819 if (!xudc->clks) 3820 return -ENOMEM; 3821 3822 for (i = 0; i < xudc->soc->num_clks; i++) 3823 xudc->clks[i].id = xudc->soc->clock_names[i]; 3824 3825 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks); 3826 if (err) { 3827 dev_err_probe(xudc->dev, err, "failed to request clocks\n"); 3828 return err; 3829 } 3830 3831 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies, 3832 sizeof(*xudc->supplies), GFP_KERNEL); 3833 if (!xudc->supplies) 3834 return -ENOMEM; 3835 3836 for (i = 0; i < xudc->soc->num_supplies; i++) 3837 xudc->supplies[i].supply = xudc->soc->supply_names[i]; 3838 3839 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies, 3840 xudc->supplies); 3841 if (err) { 3842 dev_err_probe(xudc->dev, err, "failed to request regulators\n"); 3843 return err; 3844 } 3845 3846 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev); 3847 if (IS_ERR(xudc->padctl)) 3848 return PTR_ERR(xudc->padctl); 3849 3850 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies); 3851 if (err) { 3852 dev_err(xudc->dev, "failed to enable regulators: %d\n", err); 3853 goto put_padctl; 3854 } 3855 3856 err = tegra_xudc_phy_get(xudc); 3857 if (err) 3858 goto disable_regulator; 3859 3860 err = tegra_xudc_powerdomain_init(xudc); 3861 if (err) 3862 goto put_powerdomains; 3863 3864 err = tegra_xudc_phy_init(xudc); 3865 if (err) 3866 goto put_powerdomains; 3867 3868 err = tegra_xudc_alloc_event_ring(xudc); 3869 if (err) 3870 goto disable_phy; 3871 3872 err = tegra_xudc_alloc_eps(xudc); 3873 if (err) 3874 goto free_event_ring; 3875 3876 spin_lock_init(&xudc->lock); 3877 3878 init_completion(&xudc->disconnect_complete); 3879 3880 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work); 3881 3882 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work); 3883 3884 INIT_DELAYED_WORK(&xudc->port_reset_war_work, 3885 tegra_xudc_port_reset_war_work); 3886 3887 pm_runtime_enable(&pdev->dev); 3888 3889 xudc->gadget.ops = &tegra_xudc_gadget_ops; 3890 xudc->gadget.ep0 = &xudc->ep[0].usb_ep; 3891 xudc->gadget.name = "tegra-xudc"; 3892 xudc->gadget.max_speed = USB_SPEED_SUPER; 3893 3894 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget); 3895 if (err) { 3896 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err); 3897 goto free_eps; 3898 } 3899 3900 for (i = 0; i < xudc->soc->num_phys; i++) { 3901 if (!xudc->usbphy[i]) 3902 continue; 3903 3904 usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb); 3905 tegra_xudc_update_data_role(xudc, xudc->usbphy[i]); 3906 } 3907 3908 return 0; 3909 3910 free_eps: 3911 pm_runtime_disable(&pdev->dev); 3912 tegra_xudc_free_eps(xudc); 3913 free_event_ring: 3914 tegra_xudc_free_event_ring(xudc); 3915 disable_phy: 3916 tegra_xudc_phy_exit(xudc); 3917 put_powerdomains: 3918 tegra_xudc_powerdomain_remove(xudc); 3919 disable_regulator: 3920 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3921 put_padctl: 3922 tegra_xusb_padctl_put(xudc->padctl); 3923 3924 return err; 3925 } 3926 3927 static void tegra_xudc_remove(struct platform_device *pdev) 3928 { 3929 struct tegra_xudc *xudc = platform_get_drvdata(pdev); 3930 unsigned int i; 3931 3932 pm_runtime_get_sync(xudc->dev); 3933 3934 cancel_delayed_work_sync(&xudc->plc_reset_work); 3935 cancel_work_sync(&xudc->usb_role_sw_work); 3936 3937 usb_del_gadget_udc(&xudc->gadget); 3938 3939 tegra_xudc_free_eps(xudc); 3940 tegra_xudc_free_event_ring(xudc); 3941 3942 tegra_xudc_powerdomain_remove(xudc); 3943 3944 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3945 3946 for (i = 0; i < xudc->soc->num_phys; i++) { 3947 phy_power_off(xudc->utmi_phy[i]); 3948 phy_power_off(xudc->usb3_phy[i]); 3949 } 3950 3951 tegra_xudc_phy_exit(xudc); 3952 3953 pm_runtime_disable(xudc->dev); 3954 pm_runtime_put(xudc->dev); 3955 3956 tegra_xusb_padctl_put(xudc->padctl); 3957 } 3958 3959 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc) 3960 { 3961 unsigned long flags; 3962 3963 dev_dbg(xudc->dev, "entering ELPG\n"); 3964 3965 spin_lock_irqsave(&xudc->lock, flags); 3966 3967 xudc->powergated = true; 3968 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL); 3969 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM); 3970 xudc_writel(xudc, 0, CTRL); 3971 3972 spin_unlock_irqrestore(&xudc->lock, flags); 3973 3974 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks); 3975 3976 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3977 3978 dev_dbg(xudc->dev, "entering ELPG done\n"); 3979 return 0; 3980 } 3981 3982 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc) 3983 { 3984 unsigned long flags; 3985 int err; 3986 3987 dev_dbg(xudc->dev, "exiting ELPG\n"); 3988 3989 err = regulator_bulk_enable(xudc->soc->num_supplies, 3990 xudc->supplies); 3991 if (err < 0) 3992 return err; 3993 3994 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks); 3995 if (err < 0) 3996 return err; 3997 3998 tegra_xudc_fpci_ipfs_init(xudc); 3999 4000 tegra_xudc_device_params_init(xudc); 4001 4002 tegra_xudc_init_event_ring(xudc); 4003 4004 tegra_xudc_init_eps(xudc); 4005 4006 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM); 4007 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL); 4008 4009 spin_lock_irqsave(&xudc->lock, flags); 4010 xudc->powergated = false; 4011 spin_unlock_irqrestore(&xudc->lock, flags); 4012 4013 dev_dbg(xudc->dev, "exiting ELPG done\n"); 4014 return 0; 4015 } 4016 4017 static int __maybe_unused tegra_xudc_suspend(struct device *dev) 4018 { 4019 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4020 unsigned long flags; 4021 4022 spin_lock_irqsave(&xudc->lock, flags); 4023 xudc->suspended = true; 4024 spin_unlock_irqrestore(&xudc->lock, flags); 4025 4026 flush_work(&xudc->usb_role_sw_work); 4027 4028 if (!pm_runtime_status_suspended(dev)) { 4029 /* Forcibly disconnect before powergating. */ 4030 tegra_xudc_device_mode_off(xudc); 4031 tegra_xudc_powergate(xudc); 4032 } 4033 4034 pm_runtime_disable(dev); 4035 4036 return 0; 4037 } 4038 4039 static int __maybe_unused tegra_xudc_resume(struct device *dev) 4040 { 4041 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4042 unsigned long flags; 4043 int err; 4044 4045 err = tegra_xudc_unpowergate(xudc); 4046 if (err < 0) 4047 return err; 4048 4049 spin_lock_irqsave(&xudc->lock, flags); 4050 xudc->suspended = false; 4051 if (xudc->device_mode != xudc->current_device_mode) 4052 schedule_work(&xudc->usb_role_sw_work); 4053 spin_unlock_irqrestore(&xudc->lock, flags); 4054 4055 pm_runtime_enable(dev); 4056 4057 return 0; 4058 } 4059 4060 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev) 4061 { 4062 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4063 4064 return tegra_xudc_powergate(xudc); 4065 } 4066 4067 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev) 4068 { 4069 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4070 4071 return tegra_xudc_unpowergate(xudc); 4072 } 4073 4074 static const struct dev_pm_ops tegra_xudc_pm_ops = { 4075 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume) 4076 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend, 4077 tegra_xudc_runtime_resume, NULL) 4078 }; 4079 4080 static struct platform_driver tegra_xudc_driver = { 4081 .probe = tegra_xudc_probe, 4082 .remove = tegra_xudc_remove, 4083 .driver = { 4084 .name = "tegra-xudc", 4085 .pm = &tegra_xudc_pm_ops, 4086 .of_match_table = tegra_xudc_of_match, 4087 }, 4088 }; 4089 module_platform_driver(tegra_xudc_driver); 4090 4091 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller"); 4092 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>"); 4093 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>"); 4094 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>"); 4095 MODULE_LICENSE("GPL v2"); 4096