1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NVIDIA Tegra XUSB device mode controller 4 * 5 * Copyright (c) 2013-2022, NVIDIA CORPORATION. All rights reserved. 6 * Copyright (c) 2015, Google Inc. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/interrupt.h> 15 #include <linux/iopoll.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/phy/phy.h> 20 #include <linux/phy/tegra/xusb.h> 21 #include <linux/pm_domain.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/reset.h> 26 #include <linux/usb/ch9.h> 27 #include <linux/usb/gadget.h> 28 #include <linux/usb/otg.h> 29 #include <linux/usb/role.h> 30 #include <linux/usb/phy.h> 31 #include <linux/workqueue.h> 32 33 /* XUSB_DEV registers */ 34 #define DB 0x004 35 #define DB_TARGET_MASK GENMASK(15, 8) 36 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK) 37 #define DB_STREAMID_MASK GENMASK(31, 16) 38 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK) 39 #define ERSTSZ 0x008 40 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16) 41 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0) 42 #define ERSTXBALO(x) (0x010 + 8 * (x)) 43 #define ERSTXBAHI(x) (0x014 + 8 * (x)) 44 #define ERDPLO 0x020 45 #define ERDPLO_EHB BIT(3) 46 #define ERDPHI 0x024 47 #define EREPLO 0x028 48 #define EREPLO_ECS BIT(0) 49 #define EREPLO_SEGI BIT(1) 50 #define EREPHI 0x02c 51 #define CTRL 0x030 52 #define CTRL_RUN BIT(0) 53 #define CTRL_LSE BIT(1) 54 #define CTRL_IE BIT(4) 55 #define CTRL_SMI_EVT BIT(5) 56 #define CTRL_SMI_DSE BIT(6) 57 #define CTRL_EWE BIT(7) 58 #define CTRL_DEVADDR_MASK GENMASK(30, 24) 59 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK) 60 #define CTRL_ENABLE BIT(31) 61 #define ST 0x034 62 #define ST_RC BIT(0) 63 #define ST_IP BIT(4) 64 #define RT_IMOD 0x038 65 #define RT_IMOD_IMODI_MASK GENMASK(15, 0) 66 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK) 67 #define RT_IMOD_IMODC_MASK GENMASK(31, 16) 68 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK) 69 #define PORTSC 0x03c 70 #define PORTSC_CCS BIT(0) 71 #define PORTSC_PED BIT(1) 72 #define PORTSC_PR BIT(4) 73 #define PORTSC_PLS_SHIFT 5 74 #define PORTSC_PLS_MASK GENMASK(8, 5) 75 #define PORTSC_PLS_U0 0x0 76 #define PORTSC_PLS_U2 0x2 77 #define PORTSC_PLS_U3 0x3 78 #define PORTSC_PLS_DISABLED 0x4 79 #define PORTSC_PLS_RXDETECT 0x5 80 #define PORTSC_PLS_INACTIVE 0x6 81 #define PORTSC_PLS_RESUME 0xf 82 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK) 83 #define PORTSC_PS_SHIFT 10 84 #define PORTSC_PS_MASK GENMASK(13, 10) 85 #define PORTSC_PS_UNDEFINED 0x0 86 #define PORTSC_PS_FS 0x1 87 #define PORTSC_PS_LS 0x2 88 #define PORTSC_PS_HS 0x3 89 #define PORTSC_PS_SS 0x4 90 #define PORTSC_LWS BIT(16) 91 #define PORTSC_CSC BIT(17) 92 #define PORTSC_WRC BIT(19) 93 #define PORTSC_PRC BIT(21) 94 #define PORTSC_PLC BIT(22) 95 #define PORTSC_CEC BIT(23) 96 #define PORTSC_WPR BIT(30) 97 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \ 98 PORTSC_PLC | PORTSC_CEC) 99 #define ECPLO 0x040 100 #define ECPHI 0x044 101 #define MFINDEX 0x048 102 #define MFINDEX_FRAME_SHIFT 3 103 #define MFINDEX_FRAME_MASK GENMASK(13, 3) 104 #define PORTPM 0x04c 105 #define PORTPM_L1S_MASK GENMASK(1, 0) 106 #define PORTPM_L1S_DROP 0x0 107 #define PORTPM_L1S_ACCEPT 0x1 108 #define PORTPM_L1S_NYET 0x2 109 #define PORTPM_L1S_STALL 0x3 110 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK) 111 #define PORTPM_RWE BIT(3) 112 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8) 113 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16) 114 #define PORTPM_FLA BIT(24) 115 #define PORTPM_VBA BIT(25) 116 #define PORTPM_WOC BIT(26) 117 #define PORTPM_WOD BIT(27) 118 #define PORTPM_U1E BIT(28) 119 #define PORTPM_U2E BIT(29) 120 #define PORTPM_FRWE BIT(30) 121 #define PORTPM_PNG_CYA BIT(31) 122 #define EP_HALT 0x050 123 #define EP_PAUSE 0x054 124 #define EP_RELOAD 0x058 125 #define EP_STCHG 0x05c 126 #define DEVNOTIF_LO 0x064 127 #define DEVNOTIF_LO_TRIG BIT(0) 128 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4) 129 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK) 130 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1 131 #define DEVNOTIF_HI 0x068 132 #define PORTHALT 0x06c 133 #define PORTHALT_HALT_LTSSM BIT(0) 134 #define PORTHALT_HALT_REJECT BIT(1) 135 #define PORTHALT_STCHG_REQ BIT(20) 136 #define PORTHALT_STCHG_INTR_EN BIT(24) 137 #define PORT_TM 0x070 138 #define EP_THREAD_ACTIVE 0x074 139 #define EP_STOPPED 0x078 140 #define HSFSPI_COUNT0 0x100 141 #define HSFSPI_COUNT13 0x134 142 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0) 143 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \ 144 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK) 145 #define BLCG 0x840 146 #define SSPX_CORE_CNT0 0x610 147 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0) 148 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK) 149 #define SSPX_CORE_CNT30 0x688 150 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0) 151 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \ 152 SSPX_CORE_CNT30_LMPITP_TIMER_MASK) 153 #define SSPX_CORE_CNT32 0x690 154 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0) 155 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \ 156 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK) 157 #define SSPX_CORE_CNT56 0x6fc 158 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0) 159 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \ 160 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK) 161 #define SSPX_CORE_CNT57 0x700 162 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0) 163 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \ 164 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK) 165 #define SSPX_CORE_CNT65 0x720 166 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0) 167 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \ 168 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK) 169 #define SSPX_CORE_CNT66 0x724 170 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0) 171 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \ 172 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK) 173 #define SSPX_CORE_CNT67 0x728 174 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0) 175 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \ 176 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK) 177 #define SSPX_CORE_CNT72 0x73c 178 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0) 179 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \ 180 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK) 181 #define SSPX_CORE_PADCTL4 0x750 182 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0) 183 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \ 184 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK) 185 #define BLCG_DFPCI BIT(0) 186 #define BLCG_UFPCI BIT(1) 187 #define BLCG_FE BIT(2) 188 #define BLCG_COREPLL_PWRDN BIT(8) 189 #define BLCG_IOPLL_0_PWRDN BIT(9) 190 #define BLCG_IOPLL_1_PWRDN BIT(10) 191 #define BLCG_IOPLL_2_PWRDN BIT(11) 192 #define BLCG_ALL 0x1ff 193 #define CFG_DEV_SSPI_XFER 0x858 194 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0) 195 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \ 196 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK) 197 #define CFG_DEV_FE 0x85c 198 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0) 199 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1 200 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2 201 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK) 202 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29) 203 204 /* FPCI registers */ 205 #define XUSB_DEV_CFG_1 0x004 206 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0) 207 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1) 208 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2) 209 #define XUSB_DEV_CFG_4 0x010 210 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15) 211 #define XUSB_DEV_CFG_5 0x014 212 213 /* IPFS registers */ 214 #define XUSB_DEV_CONFIGURATION_0 0x180 215 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0) 216 #define XUSB_DEV_INTR_MASK_0 0x188 217 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16) 218 219 struct tegra_xudc_ep_context { 220 __le32 info0; 221 __le32 info1; 222 __le32 deq_lo; 223 __le32 deq_hi; 224 __le32 tx_info; 225 __le32 rsvd[11]; 226 }; 227 228 #define EP_STATE_DISABLED 0 229 #define EP_STATE_RUNNING 1 230 #define EP_STATE_HALTED 2 231 #define EP_STATE_STOPPED 3 232 #define EP_STATE_ERROR 4 233 234 #define EP_TYPE_INVALID 0 235 #define EP_TYPE_ISOCH_OUT 1 236 #define EP_TYPE_BULK_OUT 2 237 #define EP_TYPE_INTERRUPT_OUT 3 238 #define EP_TYPE_CONTROL 4 239 #define EP_TYPE_ISCOH_IN 5 240 #define EP_TYPE_BULK_IN 6 241 #define EP_TYPE_INTERRUPT_IN 7 242 243 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \ 244 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \ 245 { \ 246 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \ 247 } \ 248 static inline void \ 249 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \ 250 { \ 251 u32 tmp; \ 252 \ 253 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \ 254 tmp |= (val & (mask)) << (shift); \ 255 ctx->member = cpu_to_le32(tmp); \ 256 } 257 258 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7) 259 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3) 260 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f) 261 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1) 262 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff) 263 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3) 264 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7) 265 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1) 266 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff) 267 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff) 268 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1) 269 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff) 270 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff) 271 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff) 272 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff) 273 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff) 274 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1) 275 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1) 276 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1) 277 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f) 278 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3) 279 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff) 280 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f) 281 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f) 282 283 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx) 284 { 285 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) | 286 (ep_ctx_read_deq_lo(ctx) << 4); 287 } 288 289 static inline void 290 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr) 291 { 292 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4); 293 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr)); 294 } 295 296 struct tegra_xudc_trb { 297 __le32 data_lo; 298 __le32 data_hi; 299 __le32 status; 300 __le32 control; 301 }; 302 303 #define TRB_TYPE_RSVD 0 304 #define TRB_TYPE_NORMAL 1 305 #define TRB_TYPE_SETUP_STAGE 2 306 #define TRB_TYPE_DATA_STAGE 3 307 #define TRB_TYPE_STATUS_STAGE 4 308 #define TRB_TYPE_ISOCH 5 309 #define TRB_TYPE_LINK 6 310 #define TRB_TYPE_TRANSFER_EVENT 32 311 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34 312 #define TRB_TYPE_STREAM 48 313 #define TRB_TYPE_SETUP_PACKET_EVENT 63 314 315 #define TRB_CMPL_CODE_INVALID 0 316 #define TRB_CMPL_CODE_SUCCESS 1 317 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2 318 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3 319 #define TRB_CMPL_CODE_USB_TRANS_ERR 4 320 #define TRB_CMPL_CODE_TRB_ERR 5 321 #define TRB_CMPL_CODE_STALL 6 322 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10 323 #define TRB_CMPL_CODE_SHORT_PACKET 13 324 #define TRB_CMPL_CODE_RING_UNDERRUN 14 325 #define TRB_CMPL_CODE_RING_OVERRUN 15 326 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21 327 #define TRB_CMPL_CODE_STOPPED 26 328 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31 329 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219 330 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220 331 #define TRB_CMPL_CODE_HOST_REJECTED 221 332 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222 333 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223 334 335 #define BUILD_TRB_RW(name, member, shift, mask) \ 336 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \ 337 { \ 338 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \ 339 } \ 340 static inline void \ 341 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \ 342 { \ 343 u32 tmp; \ 344 \ 345 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \ 346 tmp |= (val & (mask)) << (shift); \ 347 trb->member = cpu_to_le32(tmp); \ 348 } 349 350 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff) 351 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff) 352 BUILD_TRB_RW(seq_num, status, 0, 0xffff) 353 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff) 354 BUILD_TRB_RW(td_size, status, 17, 0x1f) 355 BUILD_TRB_RW(cmpl_code, status, 24, 0xff) 356 BUILD_TRB_RW(cycle, control, 0, 0x1) 357 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1) 358 BUILD_TRB_RW(isp, control, 2, 0x1) 359 BUILD_TRB_RW(chain, control, 4, 0x1) 360 BUILD_TRB_RW(ioc, control, 5, 0x1) 361 BUILD_TRB_RW(type, control, 10, 0x3f) 362 BUILD_TRB_RW(stream_id, control, 16, 0xffff) 363 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f) 364 BUILD_TRB_RW(tlbpc, control, 16, 0xf) 365 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1) 366 BUILD_TRB_RW(frame_id, control, 20, 0x7ff) 367 BUILD_TRB_RW(sia, control, 31, 0x1) 368 369 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb) 370 { 371 return ((u64)trb_read_data_hi(trb) << 32) | 372 trb_read_data_lo(trb); 373 } 374 375 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr) 376 { 377 trb_write_data_lo(trb, lower_32_bits(addr)); 378 trb_write_data_hi(trb, upper_32_bits(addr)); 379 } 380 381 struct tegra_xudc_request { 382 struct usb_request usb_req; 383 384 size_t buf_queued; 385 unsigned int trbs_queued; 386 unsigned int trbs_needed; 387 bool need_zlp; 388 389 struct tegra_xudc_trb *first_trb; 390 struct tegra_xudc_trb *last_trb; 391 392 struct list_head list; 393 }; 394 395 struct tegra_xudc_ep { 396 struct tegra_xudc *xudc; 397 struct usb_ep usb_ep; 398 unsigned int index; 399 char name[8]; 400 401 struct tegra_xudc_ep_context *context; 402 403 #define XUDC_TRANSFER_RING_SIZE 64 404 struct tegra_xudc_trb *transfer_ring; 405 dma_addr_t transfer_ring_phys; 406 407 unsigned int enq_ptr; 408 unsigned int deq_ptr; 409 bool pcs; 410 bool ring_full; 411 bool stream_rejected; 412 413 struct list_head queue; 414 const struct usb_endpoint_descriptor *desc; 415 const struct usb_ss_ep_comp_descriptor *comp_desc; 416 }; 417 418 struct tegra_xudc_sel_timing { 419 __u8 u1sel; 420 __u8 u1pel; 421 __le16 u2sel; 422 __le16 u2pel; 423 }; 424 425 enum tegra_xudc_setup_state { 426 WAIT_FOR_SETUP, 427 DATA_STAGE_XFER, 428 DATA_STAGE_RECV, 429 STATUS_STAGE_XFER, 430 STATUS_STAGE_RECV, 431 }; 432 433 struct tegra_xudc_setup_packet { 434 struct usb_ctrlrequest ctrl_req; 435 unsigned int seq_num; 436 }; 437 438 struct tegra_xudc_save_regs { 439 u32 ctrl; 440 u32 portpm; 441 }; 442 443 struct tegra_xudc { 444 struct device *dev; 445 const struct tegra_xudc_soc *soc; 446 struct tegra_xusb_padctl *padctl; 447 448 spinlock_t lock; 449 450 struct usb_gadget gadget; 451 struct usb_gadget_driver *driver; 452 453 #define XUDC_NR_EVENT_RINGS 2 454 #define XUDC_EVENT_RING_SIZE 4096 455 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS]; 456 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS]; 457 unsigned int event_ring_index; 458 unsigned int event_ring_deq_ptr; 459 bool ccs; 460 461 #define XUDC_NR_EPS 32 462 struct tegra_xudc_ep ep[XUDC_NR_EPS]; 463 struct tegra_xudc_ep_context *ep_context; 464 dma_addr_t ep_context_phys; 465 466 struct device *genpd_dev_device; 467 struct device *genpd_dev_ss; 468 struct device_link *genpd_dl_device; 469 struct device_link *genpd_dl_ss; 470 471 struct dma_pool *transfer_ring_pool; 472 473 bool queued_setup_packet; 474 struct tegra_xudc_setup_packet setup_packet; 475 enum tegra_xudc_setup_state setup_state; 476 u16 setup_seq_num; 477 478 u16 dev_addr; 479 u16 isoch_delay; 480 struct tegra_xudc_sel_timing sel_timing; 481 u8 test_mode_pattern; 482 u16 status_buf; 483 struct tegra_xudc_request *ep0_req; 484 485 bool pullup; 486 487 unsigned int nr_enabled_eps; 488 unsigned int nr_isoch_eps; 489 490 unsigned int device_state; 491 unsigned int resume_state; 492 493 int irq; 494 495 void __iomem *base; 496 resource_size_t phys_base; 497 void __iomem *ipfs; 498 void __iomem *fpci; 499 500 struct regulator_bulk_data *supplies; 501 502 struct clk_bulk_data *clks; 503 504 bool device_mode; 505 bool current_device_mode; 506 struct work_struct usb_role_sw_work; 507 508 struct phy **usb3_phy; 509 struct phy *curr_usb3_phy; 510 struct phy **utmi_phy; 511 struct phy *curr_utmi_phy; 512 513 struct tegra_xudc_save_regs saved_regs; 514 bool suspended; 515 bool powergated; 516 517 struct usb_phy **usbphy; 518 struct usb_phy *curr_usbphy; 519 struct notifier_block vbus_nb; 520 521 struct completion disconnect_complete; 522 523 bool selfpowered; 524 525 #define TOGGLE_VBUS_WAIT_MS 100 526 struct delayed_work plc_reset_work; 527 bool wait_csc; 528 529 struct delayed_work port_reset_war_work; 530 bool wait_for_sec_prc; 531 }; 532 533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536 534 #define XUDC_MAX_ISOCH_EPS 4 535 #define XUDC_INTERRUPT_MODERATION_US 0 536 537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = { 538 .bLength = USB_DT_ENDPOINT_SIZE, 539 .bDescriptorType = USB_DT_ENDPOINT, 540 .bEndpointAddress = 0, 541 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 542 .wMaxPacketSize = cpu_to_le16(64), 543 }; 544 545 struct tegra_xudc_soc { 546 const char * const *supply_names; 547 unsigned int num_supplies; 548 const char * const *clock_names; 549 unsigned int num_clks; 550 unsigned int num_phys; 551 bool u1_enable; 552 bool u2_enable; 553 bool lpm_enable; 554 bool invalid_seq_num; 555 bool pls_quirk; 556 bool port_reset_quirk; 557 bool port_speed_quirk; 558 bool has_ipfs; 559 }; 560 561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset) 562 { 563 return readl(xudc->fpci + offset); 564 } 565 566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val, 567 unsigned int offset) 568 { 569 writel(val, xudc->fpci + offset); 570 } 571 572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset) 573 { 574 return readl(xudc->ipfs + offset); 575 } 576 577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val, 578 unsigned int offset) 579 { 580 writel(val, xudc->ipfs + offset); 581 } 582 583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset) 584 { 585 return readl(xudc->base + offset); 586 } 587 588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val, 589 unsigned int offset) 590 { 591 writel(val, xudc->base + offset); 592 } 593 594 static inline int xudc_readl_poll(struct tegra_xudc *xudc, 595 unsigned int offset, u32 mask, u32 val) 596 { 597 u32 regval; 598 599 return readl_poll_timeout_atomic(xudc->base + offset, regval, 600 (regval & mask) == val, 1, 100); 601 } 602 603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget) 604 { 605 return container_of(gadget, struct tegra_xudc, gadget); 606 } 607 608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep) 609 { 610 return container_of(ep, struct tegra_xudc_ep, usb_ep); 611 } 612 613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req) 614 { 615 return container_of(req, struct tegra_xudc_request, usb_req); 616 } 617 618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type, 619 struct tegra_xudc_trb *trb) 620 { 621 dev_dbg(xudc->dev, 622 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n", 623 type, trb, trb->data_lo, trb->data_hi, trb->status, 624 trb->control); 625 } 626 627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc) 628 { 629 u32 val; 630 631 /* limit port speed to gen 1 */ 632 val = xudc_readl(xudc, SSPX_CORE_CNT56); 633 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 634 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260); 635 xudc_writel(xudc, val, SSPX_CORE_CNT56); 636 637 val = xudc_readl(xudc, SSPX_CORE_CNT57); 638 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 639 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6); 640 xudc_writel(xudc, val, SSPX_CORE_CNT57); 641 642 val = xudc_readl(xudc, SSPX_CORE_CNT65); 643 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 644 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0); 645 xudc_writel(xudc, val, SSPX_CORE_CNT66); 646 647 val = xudc_readl(xudc, SSPX_CORE_CNT66); 648 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 649 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0); 650 xudc_writel(xudc, val, SSPX_CORE_CNT66); 651 652 val = xudc_readl(xudc, SSPX_CORE_CNT67); 653 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 654 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0); 655 xudc_writel(xudc, val, SSPX_CORE_CNT67); 656 657 val = xudc_readl(xudc, SSPX_CORE_CNT72); 658 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 659 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10); 660 xudc_writel(xudc, val, SSPX_CORE_CNT72); 661 } 662 663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc) 664 { 665 u32 val; 666 667 /* restore port speed to gen2 */ 668 val = xudc_readl(xudc, SSPX_CORE_CNT56); 669 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 670 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438); 671 xudc_writel(xudc, val, SSPX_CORE_CNT56); 672 673 val = xudc_readl(xudc, SSPX_CORE_CNT57); 674 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 675 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528); 676 xudc_writel(xudc, val, SSPX_CORE_CNT57); 677 678 val = xudc_readl(xudc, SSPX_CORE_CNT65); 679 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 680 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10); 681 xudc_writel(xudc, val, SSPX_CORE_CNT66); 682 683 val = xudc_readl(xudc, SSPX_CORE_CNT66); 684 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 685 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348); 686 xudc_writel(xudc, val, SSPX_CORE_CNT66); 687 688 val = xudc_readl(xudc, SSPX_CORE_CNT67); 689 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 690 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0); 691 xudc_writel(xudc, val, SSPX_CORE_CNT67); 692 693 val = xudc_readl(xudc, SSPX_CORE_CNT72); 694 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 695 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21); 696 xudc_writel(xudc, val, SSPX_CORE_CNT72); 697 } 698 699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc) 700 { 701 int err; 702 703 pm_runtime_get_sync(xudc->dev); 704 705 tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy); 706 707 err = phy_power_on(xudc->curr_utmi_phy); 708 if (err < 0) 709 dev_err(xudc->dev, "UTMI power on failed: %d\n", err); 710 711 err = phy_power_on(xudc->curr_usb3_phy); 712 if (err < 0) 713 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err); 714 715 dev_dbg(xudc->dev, "device mode on\n"); 716 717 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 718 USB_ROLE_DEVICE); 719 720 xudc->current_device_mode = true; 721 } 722 723 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc) 724 { 725 bool connected = false; 726 u32 pls, val; 727 int err; 728 729 dev_dbg(xudc->dev, "device mode off\n"); 730 731 xudc->current_device_mode = false; 732 733 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS); 734 735 reinit_completion(&xudc->disconnect_complete); 736 737 if (xudc->soc->port_speed_quirk) 738 tegra_xudc_restore_port_speed(xudc); 739 740 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); 741 742 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 743 PORTSC_PLS_SHIFT; 744 745 /* Direct link to U0 if disconnected in RESUME or U2. */ 746 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER && 747 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) { 748 val = xudc_readl(xudc, PORTPM); 749 val |= PORTPM_FRWE; 750 xudc_writel(xudc, val, PORTPM); 751 752 val = xudc_readl(xudc, PORTSC); 753 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 754 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 755 xudc_writel(xudc, val, PORTSC); 756 } 757 758 /* Wait for disconnect event. */ 759 if (connected) 760 wait_for_completion(&xudc->disconnect_complete); 761 762 /* Make sure interrupt handler has completed before powergating. */ 763 synchronize_irq(xudc->irq); 764 765 tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy); 766 767 err = phy_power_off(xudc->curr_utmi_phy); 768 if (err < 0) 769 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err); 770 771 err = phy_power_off(xudc->curr_usb3_phy); 772 if (err < 0) 773 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err); 774 775 pm_runtime_put(xudc->dev); 776 } 777 778 static void tegra_xudc_usb_role_sw_work(struct work_struct *work) 779 { 780 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc, 781 usb_role_sw_work); 782 783 if (xudc->device_mode) 784 tegra_xudc_device_mode_on(xudc); 785 else 786 tegra_xudc_device_mode_off(xudc); 787 } 788 789 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc, 790 struct usb_phy *usbphy) 791 { 792 unsigned int i; 793 794 for (i = 0; i < xudc->soc->num_phys; i++) { 795 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i]) 796 return i; 797 } 798 799 dev_info(xudc->dev, "phy index could not be found for shared USB PHY"); 800 return -1; 801 } 802 803 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc, 804 struct usb_phy *usbphy) 805 { 806 int phy_index; 807 808 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) || 809 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) { 810 dev_dbg(xudc->dev, "Same role(%d) received. Ignore", 811 xudc->device_mode); 812 return; 813 } 814 815 xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true : 816 false; 817 818 phy_index = tegra_xudc_get_phy_index(xudc, usbphy); 819 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__, 820 phy_index); 821 822 if (!xudc->suspended && phy_index != -1) { 823 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index]; 824 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index]; 825 xudc->curr_usbphy = usbphy; 826 schedule_work(&xudc->usb_role_sw_work); 827 } 828 } 829 830 static int tegra_xudc_vbus_notify(struct notifier_block *nb, 831 unsigned long action, void *data) 832 { 833 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc, 834 vbus_nb); 835 struct usb_phy *usbphy = (struct usb_phy *)data; 836 837 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event); 838 839 tegra_xudc_update_data_role(xudc, usbphy); 840 841 return NOTIFY_OK; 842 } 843 844 static void tegra_xudc_plc_reset_work(struct work_struct *work) 845 { 846 struct delayed_work *dwork = to_delayed_work(work); 847 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc, 848 plc_reset_work); 849 unsigned long flags; 850 851 spin_lock_irqsave(&xudc->lock, flags); 852 853 if (xudc->wait_csc) { 854 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 855 PORTSC_PLS_SHIFT; 856 857 if (pls == PORTSC_PLS_INACTIVE) { 858 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n"); 859 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 860 USB_ROLE_NONE); 861 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 862 USB_ROLE_DEVICE); 863 864 xudc->wait_csc = false; 865 } 866 } 867 868 spin_unlock_irqrestore(&xudc->lock, flags); 869 } 870 871 static void tegra_xudc_port_reset_war_work(struct work_struct *work) 872 { 873 struct delayed_work *dwork = to_delayed_work(work); 874 struct tegra_xudc *xudc = 875 container_of(dwork, struct tegra_xudc, port_reset_war_work); 876 unsigned long flags; 877 u32 pls; 878 int ret; 879 880 spin_lock_irqsave(&xudc->lock, flags); 881 882 if (xudc->device_mode && xudc->wait_for_sec_prc) { 883 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 884 PORTSC_PLS_SHIFT; 885 dev_dbg(xudc->dev, "pls = %x\n", pls); 886 887 if (pls == PORTSC_PLS_DISABLED) { 888 dev_dbg(xudc->dev, "toggle vbus\n"); 889 /* PRC doesn't complete in 100ms, toggle the vbus */ 890 ret = tegra_phy_xusb_utmi_port_reset( 891 xudc->curr_utmi_phy); 892 if (ret == 1) 893 xudc->wait_for_sec_prc = 0; 894 } 895 } 896 897 spin_unlock_irqrestore(&xudc->lock, flags); 898 } 899 900 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep, 901 struct tegra_xudc_trb *trb) 902 { 903 unsigned int index; 904 905 index = trb - ep->transfer_ring; 906 907 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 908 return 0; 909 910 return (ep->transfer_ring_phys + index * sizeof(*trb)); 911 } 912 913 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep, 914 dma_addr_t addr) 915 { 916 struct tegra_xudc_trb *trb; 917 unsigned int index; 918 919 index = (addr - ep->transfer_ring_phys) / sizeof(*trb); 920 921 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 922 return NULL; 923 924 trb = &ep->transfer_ring[index]; 925 926 return trb; 927 } 928 929 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep) 930 { 931 xudc_writel(xudc, BIT(ep), EP_RELOAD); 932 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0); 933 } 934 935 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep) 936 { 937 u32 val; 938 939 val = xudc_readl(xudc, EP_PAUSE); 940 if (val & BIT(ep)) 941 return; 942 val |= BIT(ep); 943 944 xudc_writel(xudc, val, EP_PAUSE); 945 946 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 947 948 xudc_writel(xudc, BIT(ep), EP_STCHG); 949 } 950 951 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep) 952 { 953 u32 val; 954 955 val = xudc_readl(xudc, EP_PAUSE); 956 if (!(val & BIT(ep))) 957 return; 958 val &= ~BIT(ep); 959 960 xudc_writel(xudc, val, EP_PAUSE); 961 962 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 963 964 xudc_writel(xudc, BIT(ep), EP_STCHG); 965 } 966 967 static void ep_unpause_all(struct tegra_xudc *xudc) 968 { 969 u32 val; 970 971 val = xudc_readl(xudc, EP_PAUSE); 972 973 xudc_writel(xudc, 0, EP_PAUSE); 974 975 xudc_readl_poll(xudc, EP_STCHG, val, val); 976 977 xudc_writel(xudc, val, EP_STCHG); 978 } 979 980 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep) 981 { 982 u32 val; 983 984 val = xudc_readl(xudc, EP_HALT); 985 if (val & BIT(ep)) 986 return; 987 val |= BIT(ep); 988 xudc_writel(xudc, val, EP_HALT); 989 990 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 991 992 xudc_writel(xudc, BIT(ep), EP_STCHG); 993 } 994 995 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep) 996 { 997 u32 val; 998 999 val = xudc_readl(xudc, EP_HALT); 1000 if (!(val & BIT(ep))) 1001 return; 1002 val &= ~BIT(ep); 1003 xudc_writel(xudc, val, EP_HALT); 1004 1005 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 1006 1007 xudc_writel(xudc, BIT(ep), EP_STCHG); 1008 } 1009 1010 static void ep_unhalt_all(struct tegra_xudc *xudc) 1011 { 1012 u32 val; 1013 1014 val = xudc_readl(xudc, EP_HALT); 1015 if (!val) 1016 return; 1017 xudc_writel(xudc, 0, EP_HALT); 1018 1019 xudc_readl_poll(xudc, EP_STCHG, val, val); 1020 1021 xudc_writel(xudc, val, EP_STCHG); 1022 } 1023 1024 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep) 1025 { 1026 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep)); 1027 xudc_writel(xudc, BIT(ep), EP_STOPPED); 1028 } 1029 1030 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep) 1031 { 1032 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0); 1033 } 1034 1035 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep, 1036 struct tegra_xudc_request *req, int status) 1037 { 1038 struct tegra_xudc *xudc = ep->xudc; 1039 1040 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n", 1041 req, ep->index, status); 1042 1043 if (likely(req->usb_req.status == -EINPROGRESS)) 1044 req->usb_req.status = status; 1045 1046 list_del_init(&req->list); 1047 1048 if (usb_endpoint_xfer_control(ep->desc)) { 1049 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1050 (xudc->setup_state == 1051 DATA_STAGE_XFER)); 1052 } else { 1053 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1054 usb_endpoint_dir_in(ep->desc)); 1055 } 1056 1057 spin_unlock(&xudc->lock); 1058 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req); 1059 spin_lock(&xudc->lock); 1060 } 1061 1062 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status) 1063 { 1064 struct tegra_xudc_request *req; 1065 1066 while (!list_empty(&ep->queue)) { 1067 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1068 list); 1069 tegra_xudc_req_done(ep, req, status); 1070 } 1071 } 1072 1073 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep) 1074 { 1075 if (ep->ring_full) 1076 return 0; 1077 1078 if (ep->deq_ptr > ep->enq_ptr) 1079 return ep->deq_ptr - ep->enq_ptr - 1; 1080 1081 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2; 1082 } 1083 1084 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep, 1085 struct tegra_xudc_request *req, 1086 struct tegra_xudc_trb *trb, 1087 bool ioc) 1088 { 1089 struct tegra_xudc *xudc = ep->xudc; 1090 dma_addr_t buf_addr; 1091 size_t len; 1092 1093 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length - 1094 req->buf_queued); 1095 if (len > 0) 1096 buf_addr = req->usb_req.dma + req->buf_queued; 1097 else 1098 buf_addr = 0; 1099 1100 trb_write_data_ptr(trb, buf_addr); 1101 1102 trb_write_transfer_len(trb, len); 1103 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1); 1104 1105 if (req->trbs_queued == req->trbs_needed - 1 || 1106 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2)) 1107 trb_write_chain(trb, 0); 1108 else 1109 trb_write_chain(trb, 1); 1110 1111 trb_write_ioc(trb, ioc); 1112 1113 if (usb_endpoint_dir_out(ep->desc) || 1114 (usb_endpoint_xfer_control(ep->desc) && 1115 (xudc->setup_state == DATA_STAGE_RECV))) 1116 trb_write_isp(trb, 1); 1117 else 1118 trb_write_isp(trb, 0); 1119 1120 if (usb_endpoint_xfer_control(ep->desc)) { 1121 if (xudc->setup_state == DATA_STAGE_XFER || 1122 xudc->setup_state == DATA_STAGE_RECV) 1123 trb_write_type(trb, TRB_TYPE_DATA_STAGE); 1124 else 1125 trb_write_type(trb, TRB_TYPE_STATUS_STAGE); 1126 1127 if (xudc->setup_state == DATA_STAGE_XFER || 1128 xudc->setup_state == STATUS_STAGE_XFER) 1129 trb_write_data_stage_dir(trb, 1); 1130 else 1131 trb_write_data_stage_dir(trb, 0); 1132 } else if (usb_endpoint_xfer_isoc(ep->desc)) { 1133 trb_write_type(trb, TRB_TYPE_ISOCH); 1134 trb_write_sia(trb, 1); 1135 trb_write_frame_id(trb, 0); 1136 trb_write_tlbpc(trb, 0); 1137 } else if (usb_ss_max_streams(ep->comp_desc)) { 1138 trb_write_type(trb, TRB_TYPE_STREAM); 1139 trb_write_stream_id(trb, req->usb_req.stream_id); 1140 } else { 1141 trb_write_type(trb, TRB_TYPE_NORMAL); 1142 trb_write_stream_id(trb, 0); 1143 } 1144 1145 trb_write_cycle(trb, ep->pcs); 1146 1147 req->trbs_queued++; 1148 req->buf_queued += len; 1149 1150 dump_trb(xudc, "TRANSFER", trb); 1151 } 1152 1153 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep, 1154 struct tegra_xudc_request *req) 1155 { 1156 unsigned int i, count, available; 1157 bool wait_td = false; 1158 1159 available = ep_available_trbs(ep); 1160 count = req->trbs_needed - req->trbs_queued; 1161 if (available < count) { 1162 count = available; 1163 ep->ring_full = true; 1164 } 1165 1166 /* 1167 * To generate zero-length packet on USB bus, SW needs schedule a 1168 * standalone zero-length TD. According to HW's behavior, SW needs 1169 * to schedule TDs in different ways for different endpoint types. 1170 * 1171 * For control endpoint: 1172 * - Data stage TD (IOC = 1, CH = 0) 1173 * - Ring doorbell and wait transfer event 1174 * - Data stage TD for ZLP (IOC = 1, CH = 0) 1175 * - Ring doorbell 1176 * 1177 * For bulk and interrupt endpoints: 1178 * - Normal transfer TD (IOC = 0, CH = 0) 1179 * - Normal transfer TD for ZLP (IOC = 1, CH = 0) 1180 * - Ring doorbell 1181 */ 1182 1183 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1) 1184 wait_td = true; 1185 1186 if (!req->first_trb) 1187 req->first_trb = &ep->transfer_ring[ep->enq_ptr]; 1188 1189 for (i = 0; i < count; i++) { 1190 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr]; 1191 bool ioc = false; 1192 1193 if ((i == count - 1) || (wait_td && i == count - 2)) 1194 ioc = true; 1195 1196 tegra_xudc_queue_one_trb(ep, req, trb, ioc); 1197 req->last_trb = trb; 1198 1199 ep->enq_ptr++; 1200 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) { 1201 trb = &ep->transfer_ring[ep->enq_ptr]; 1202 trb_write_cycle(trb, ep->pcs); 1203 ep->pcs = !ep->pcs; 1204 ep->enq_ptr = 0; 1205 } 1206 1207 if (ioc) 1208 break; 1209 } 1210 1211 return count; 1212 } 1213 1214 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep) 1215 { 1216 struct tegra_xudc *xudc = ep->xudc; 1217 u32 val; 1218 1219 if (list_empty(&ep->queue)) 1220 return; 1221 1222 val = DB_TARGET(ep->index); 1223 if (usb_endpoint_xfer_control(ep->desc)) { 1224 val |= DB_STREAMID(xudc->setup_seq_num); 1225 } else if (usb_ss_max_streams(ep->comp_desc) > 0) { 1226 struct tegra_xudc_request *req; 1227 1228 /* Don't ring doorbell if the stream has been rejected. */ 1229 if (ep->stream_rejected) 1230 return; 1231 1232 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1233 list); 1234 val |= DB_STREAMID(req->usb_req.stream_id); 1235 } 1236 1237 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val); 1238 xudc_writel(xudc, val, DB); 1239 } 1240 1241 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep) 1242 { 1243 struct tegra_xudc_request *req; 1244 bool trbs_queued = false; 1245 1246 list_for_each_entry(req, &ep->queue, list) { 1247 if (ep->ring_full) 1248 break; 1249 1250 if (tegra_xudc_queue_trbs(ep, req) > 0) 1251 trbs_queued = true; 1252 } 1253 1254 if (trbs_queued) 1255 tegra_xudc_ep_ring_doorbell(ep); 1256 } 1257 1258 static int 1259 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) 1260 { 1261 struct tegra_xudc *xudc = ep->xudc; 1262 int err; 1263 1264 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) { 1265 dev_err(xudc->dev, "control EP has pending transfers\n"); 1266 return -EINVAL; 1267 } 1268 1269 if (usb_endpoint_xfer_control(ep->desc)) { 1270 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1271 (xudc->setup_state == 1272 DATA_STAGE_XFER)); 1273 } else { 1274 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1275 usb_endpoint_dir_in(ep->desc)); 1276 } 1277 1278 if (err < 0) { 1279 dev_err(xudc->dev, "failed to map request: %d\n", err); 1280 return err; 1281 } 1282 1283 req->first_trb = NULL; 1284 req->last_trb = NULL; 1285 req->buf_queued = 0; 1286 req->trbs_queued = 0; 1287 req->need_zlp = false; 1288 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length, 1289 XUDC_TRB_MAX_BUFFER_SIZE); 1290 if (req->usb_req.length == 0) 1291 req->trbs_needed++; 1292 1293 if (!usb_endpoint_xfer_isoc(ep->desc) && 1294 req->usb_req.zero && req->usb_req.length && 1295 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) { 1296 req->trbs_needed++; 1297 req->need_zlp = true; 1298 } 1299 1300 req->usb_req.status = -EINPROGRESS; 1301 req->usb_req.actual = 0; 1302 1303 list_add_tail(&req->list, &ep->queue); 1304 1305 tegra_xudc_ep_kick_queue(ep); 1306 1307 return 0; 1308 } 1309 1310 static int 1311 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req, 1312 gfp_t gfp) 1313 { 1314 struct tegra_xudc_request *req; 1315 struct tegra_xudc_ep *ep; 1316 struct tegra_xudc *xudc; 1317 unsigned long flags; 1318 int ret; 1319 1320 if (!usb_ep || !usb_req) 1321 return -EINVAL; 1322 1323 ep = to_xudc_ep(usb_ep); 1324 req = to_xudc_req(usb_req); 1325 xudc = ep->xudc; 1326 1327 spin_lock_irqsave(&xudc->lock, flags); 1328 if (xudc->powergated || !ep->desc) { 1329 ret = -ESHUTDOWN; 1330 goto unlock; 1331 } 1332 1333 ret = __tegra_xudc_ep_queue(ep, req); 1334 unlock: 1335 spin_unlock_irqrestore(&xudc->lock, flags); 1336 1337 return ret; 1338 } 1339 1340 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep, 1341 struct tegra_xudc_request *req) 1342 { 1343 struct tegra_xudc_trb *trb = req->first_trb; 1344 bool pcs_enq = trb_read_cycle(trb); 1345 bool pcs; 1346 1347 /* 1348 * Clear out all the TRBs part of or after the cancelled request, 1349 * and must correct trb cycle bit to the last un-enqueued state. 1350 */ 1351 while (trb != &ep->transfer_ring[ep->enq_ptr]) { 1352 pcs = trb_read_cycle(trb); 1353 memset(trb, 0, sizeof(*trb)); 1354 trb_write_cycle(trb, !pcs); 1355 trb++; 1356 1357 if (trb_read_type(trb) == TRB_TYPE_LINK) 1358 trb = ep->transfer_ring; 1359 } 1360 1361 /* Requests will be re-queued at the start of the cancelled request. */ 1362 ep->enq_ptr = req->first_trb - ep->transfer_ring; 1363 /* 1364 * Retrieve the correct cycle bit state from the first trb of 1365 * the cancelled request. 1366 */ 1367 ep->pcs = pcs_enq; 1368 ep->ring_full = false; 1369 list_for_each_entry_continue(req, &ep->queue, list) { 1370 req->usb_req.status = -EINPROGRESS; 1371 req->usb_req.actual = 0; 1372 1373 req->first_trb = NULL; 1374 req->last_trb = NULL; 1375 req->buf_queued = 0; 1376 req->trbs_queued = 0; 1377 } 1378 } 1379 1380 /* 1381 * Determine if the given TRB is in the range [first trb, last trb] for the 1382 * given request. 1383 */ 1384 static bool trb_in_request(struct tegra_xudc_ep *ep, 1385 struct tegra_xudc_request *req, 1386 struct tegra_xudc_trb *trb) 1387 { 1388 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__, 1389 req->first_trb, req->last_trb, trb); 1390 1391 if (trb >= req->first_trb && (trb <= req->last_trb || 1392 req->last_trb < req->first_trb)) 1393 return true; 1394 1395 if (trb < req->first_trb && trb <= req->last_trb && 1396 req->last_trb < req->first_trb) 1397 return true; 1398 1399 return false; 1400 } 1401 1402 /* 1403 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB) 1404 * for the given endpoint and request. 1405 */ 1406 static bool trb_before_request(struct tegra_xudc_ep *ep, 1407 struct tegra_xudc_request *req, 1408 struct tegra_xudc_trb *trb) 1409 { 1410 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr]; 1411 1412 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n", 1413 __func__, req->first_trb, req->last_trb, enq_trb, trb); 1414 1415 if (trb < req->first_trb && (enq_trb <= trb || 1416 req->first_trb < enq_trb)) 1417 return true; 1418 1419 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 static int 1426 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep, 1427 struct tegra_xudc_request *req) 1428 { 1429 struct tegra_xudc *xudc = ep->xudc; 1430 struct tegra_xudc_request *r = NULL, *iter; 1431 struct tegra_xudc_trb *deq_trb; 1432 bool busy, kick_queue = false; 1433 int ret = 0; 1434 1435 /* Make sure the request is actually queued to this endpoint. */ 1436 list_for_each_entry(iter, &ep->queue, list) { 1437 if (iter != req) 1438 continue; 1439 r = iter; 1440 break; 1441 } 1442 1443 if (!r) 1444 return -EINVAL; 1445 1446 /* Request hasn't been queued in the transfer ring yet. */ 1447 if (!req->trbs_queued) { 1448 tegra_xudc_req_done(ep, req, -ECONNRESET); 1449 return 0; 1450 } 1451 1452 /* Halt DMA for this endpoint. */ 1453 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) { 1454 ep_pause(xudc, ep->index); 1455 ep_wait_for_inactive(xudc, ep->index); 1456 } 1457 1458 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context)); 1459 /* Is the hardware processing the TRB at the dequeue pointer? */ 1460 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context)); 1461 1462 if (trb_in_request(ep, req, deq_trb) && busy) { 1463 /* 1464 * Request has been partially completed or it hasn't 1465 * started processing yet. 1466 */ 1467 dma_addr_t deq_ptr; 1468 1469 squeeze_transfer_ring(ep, req); 1470 1471 req->usb_req.actual = ep_ctx_read_edtla(ep->context); 1472 tegra_xudc_req_done(ep, req, -ECONNRESET); 1473 kick_queue = true; 1474 1475 /* EDTLA is > 0: request has been partially completed */ 1476 if (req->usb_req.actual > 0) { 1477 /* 1478 * Abort the pending transfer and update the dequeue 1479 * pointer 1480 */ 1481 ep_ctx_write_edtla(ep->context, 0); 1482 ep_ctx_write_partial_td(ep->context, 0); 1483 ep_ctx_write_data_offset(ep->context, 0); 1484 1485 deq_ptr = trb_virt_to_phys(ep, 1486 &ep->transfer_ring[ep->enq_ptr]); 1487 1488 if (dma_mapping_error(xudc->dev, deq_ptr)) { 1489 ret = -EINVAL; 1490 } else { 1491 ep_ctx_write_deq_ptr(ep->context, deq_ptr); 1492 ep_ctx_write_dcs(ep->context, ep->pcs); 1493 ep_reload(xudc, ep->index); 1494 } 1495 } 1496 } else if (trb_before_request(ep, req, deq_trb) && busy) { 1497 /* Request hasn't started processing yet. */ 1498 squeeze_transfer_ring(ep, req); 1499 1500 tegra_xudc_req_done(ep, req, -ECONNRESET); 1501 kick_queue = true; 1502 } else { 1503 /* 1504 * Request has completed, but we haven't processed the 1505 * completion event yet. 1506 */ 1507 tegra_xudc_req_done(ep, req, -ECONNRESET); 1508 ret = -EINVAL; 1509 } 1510 1511 /* Resume the endpoint. */ 1512 ep_unpause(xudc, ep->index); 1513 1514 if (kick_queue) 1515 tegra_xudc_ep_kick_queue(ep); 1516 1517 return ret; 1518 } 1519 1520 static int 1521 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req) 1522 { 1523 struct tegra_xudc_request *req; 1524 struct tegra_xudc_ep *ep; 1525 struct tegra_xudc *xudc; 1526 unsigned long flags; 1527 int ret; 1528 1529 if (!usb_ep || !usb_req) 1530 return -EINVAL; 1531 1532 ep = to_xudc_ep(usb_ep); 1533 req = to_xudc_req(usb_req); 1534 xudc = ep->xudc; 1535 1536 spin_lock_irqsave(&xudc->lock, flags); 1537 1538 if (xudc->powergated || !ep->desc) { 1539 ret = -ESHUTDOWN; 1540 goto unlock; 1541 } 1542 1543 ret = __tegra_xudc_ep_dequeue(ep, req); 1544 unlock: 1545 spin_unlock_irqrestore(&xudc->lock, flags); 1546 1547 return ret; 1548 } 1549 1550 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt) 1551 { 1552 struct tegra_xudc *xudc = ep->xudc; 1553 1554 if (!ep->desc) 1555 return -EINVAL; 1556 1557 if (usb_endpoint_xfer_isoc(ep->desc)) { 1558 dev_err(xudc->dev, "can't halt isochronous EP\n"); 1559 return -ENOTSUPP; 1560 } 1561 1562 if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) { 1563 dev_dbg(xudc->dev, "EP %u already %s\n", ep->index, 1564 halt ? "halted" : "not halted"); 1565 return 0; 1566 } 1567 1568 if (halt) { 1569 ep_halt(xudc, ep->index); 1570 } else { 1571 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1572 1573 ep_reload(xudc, ep->index); 1574 1575 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1576 ep_ctx_write_rsvd(ep->context, 0); 1577 ep_ctx_write_partial_td(ep->context, 0); 1578 ep_ctx_write_splitxstate(ep->context, 0); 1579 ep_ctx_write_seq_num(ep->context, 0); 1580 1581 ep_reload(xudc, ep->index); 1582 ep_unpause(xudc, ep->index); 1583 ep_unhalt(xudc, ep->index); 1584 1585 tegra_xudc_ep_ring_doorbell(ep); 1586 } 1587 1588 return 0; 1589 } 1590 1591 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value) 1592 { 1593 struct tegra_xudc_ep *ep; 1594 struct tegra_xudc *xudc; 1595 unsigned long flags; 1596 int ret; 1597 1598 if (!usb_ep) 1599 return -EINVAL; 1600 1601 ep = to_xudc_ep(usb_ep); 1602 xudc = ep->xudc; 1603 1604 spin_lock_irqsave(&xudc->lock, flags); 1605 if (xudc->powergated) { 1606 ret = -ESHUTDOWN; 1607 goto unlock; 1608 } 1609 1610 if (value && usb_endpoint_dir_in(ep->desc) && 1611 !list_empty(&ep->queue)) { 1612 dev_err(xudc->dev, "can't halt EP with requests pending\n"); 1613 ret = -EAGAIN; 1614 goto unlock; 1615 } 1616 1617 ret = __tegra_xudc_ep_set_halt(ep, value); 1618 unlock: 1619 spin_unlock_irqrestore(&xudc->lock, flags); 1620 1621 return ret; 1622 } 1623 1624 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep) 1625 { 1626 const struct usb_endpoint_descriptor *desc = ep->desc; 1627 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc; 1628 struct tegra_xudc *xudc = ep->xudc; 1629 u16 maxpacket, maxburst = 0, esit = 0; 1630 u32 val; 1631 1632 maxpacket = usb_endpoint_maxp(desc); 1633 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1634 if (!usb_endpoint_xfer_control(desc)) 1635 maxburst = comp_desc->bMaxBurst; 1636 1637 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) 1638 esit = le16_to_cpu(comp_desc->wBytesPerInterval); 1639 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) && 1640 (usb_endpoint_xfer_int(desc) || 1641 usb_endpoint_xfer_isoc(desc))) { 1642 if (xudc->gadget.speed == USB_SPEED_HIGH) { 1643 maxburst = usb_endpoint_maxp_mult(desc) - 1; 1644 if (maxburst == 0x3) { 1645 dev_warn(xudc->dev, 1646 "invalid endpoint maxburst\n"); 1647 maxburst = 0x2; 1648 } 1649 } 1650 esit = maxpacket * (maxburst + 1); 1651 } 1652 1653 memset(ep->context, 0, sizeof(*ep->context)); 1654 1655 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1656 ep_ctx_write_interval(ep->context, desc->bInterval); 1657 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1658 if (usb_endpoint_xfer_isoc(desc)) { 1659 ep_ctx_write_mult(ep->context, 1660 comp_desc->bmAttributes & 0x3); 1661 } 1662 1663 if (usb_endpoint_xfer_bulk(desc)) { 1664 ep_ctx_write_max_pstreams(ep->context, 1665 comp_desc->bmAttributes & 1666 0x1f); 1667 ep_ctx_write_lsa(ep->context, 1); 1668 } 1669 } 1670 1671 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc)) 1672 val = usb_endpoint_type(desc); 1673 else 1674 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL; 1675 1676 ep_ctx_write_type(ep->context, val); 1677 ep_ctx_write_cerr(ep->context, 0x3); 1678 ep_ctx_write_max_packet_size(ep->context, maxpacket); 1679 ep_ctx_write_max_burst_size(ep->context, maxburst); 1680 1681 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys); 1682 ep_ctx_write_dcs(ep->context, ep->pcs); 1683 1684 /* Select a reasonable average TRB length based on endpoint type. */ 1685 switch (usb_endpoint_type(desc)) { 1686 case USB_ENDPOINT_XFER_CONTROL: 1687 val = 8; 1688 break; 1689 case USB_ENDPOINT_XFER_INT: 1690 val = 1024; 1691 break; 1692 case USB_ENDPOINT_XFER_BULK: 1693 case USB_ENDPOINT_XFER_ISOC: 1694 default: 1695 val = 3072; 1696 break; 1697 } 1698 1699 ep_ctx_write_avg_trb_len(ep->context, val); 1700 ep_ctx_write_max_esit_payload(ep->context, esit); 1701 1702 ep_ctx_write_cerrcnt(ep->context, 0x3); 1703 } 1704 1705 static void setup_link_trb(struct tegra_xudc_ep *ep, 1706 struct tegra_xudc_trb *trb) 1707 { 1708 trb_write_data_ptr(trb, ep->transfer_ring_phys); 1709 trb_write_type(trb, TRB_TYPE_LINK); 1710 trb_write_toggle_cycle(trb, 1); 1711 } 1712 1713 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep) 1714 { 1715 struct tegra_xudc *xudc = ep->xudc; 1716 1717 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 1718 dev_err(xudc->dev, "endpoint %u already disabled\n", 1719 ep->index); 1720 return -EINVAL; 1721 } 1722 1723 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1724 1725 ep_reload(xudc, ep->index); 1726 1727 tegra_xudc_ep_nuke(ep, -ESHUTDOWN); 1728 1729 xudc->nr_enabled_eps--; 1730 if (usb_endpoint_xfer_isoc(ep->desc)) 1731 xudc->nr_isoch_eps--; 1732 1733 ep->desc = NULL; 1734 ep->comp_desc = NULL; 1735 1736 memset(ep->context, 0, sizeof(*ep->context)); 1737 1738 ep_unpause(xudc, ep->index); 1739 ep_unhalt(xudc, ep->index); 1740 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index)) 1741 xudc_writel(xudc, BIT(ep->index), EP_STOPPED); 1742 1743 /* 1744 * If this is the last endpoint disabled in a de-configure request, 1745 * switch back to address state. 1746 */ 1747 if ((xudc->device_state == USB_STATE_CONFIGURED) && 1748 (xudc->nr_enabled_eps == 1)) { 1749 u32 val; 1750 1751 xudc->device_state = USB_STATE_ADDRESS; 1752 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1753 1754 val = xudc_readl(xudc, CTRL); 1755 val &= ~CTRL_RUN; 1756 xudc_writel(xudc, val, CTRL); 1757 1758 val = xudc_readl(xudc, ST); 1759 if (val & ST_RC) 1760 xudc_writel(xudc, ST_RC, ST); 1761 } 1762 1763 dev_info(xudc->dev, "ep %u disabled\n", ep->index); 1764 1765 return 0; 1766 } 1767 1768 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep) 1769 { 1770 struct tegra_xudc_ep *ep; 1771 struct tegra_xudc *xudc; 1772 unsigned long flags; 1773 int ret; 1774 1775 if (!usb_ep) 1776 return -EINVAL; 1777 1778 ep = to_xudc_ep(usb_ep); 1779 xudc = ep->xudc; 1780 1781 spin_lock_irqsave(&xudc->lock, flags); 1782 if (xudc->powergated) { 1783 ret = -ESHUTDOWN; 1784 goto unlock; 1785 } 1786 1787 ret = __tegra_xudc_ep_disable(ep); 1788 unlock: 1789 spin_unlock_irqrestore(&xudc->lock, flags); 1790 1791 return ret; 1792 } 1793 1794 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep, 1795 const struct usb_endpoint_descriptor *desc) 1796 { 1797 struct tegra_xudc *xudc = ep->xudc; 1798 unsigned int i; 1799 u32 val; 1800 1801 if (xudc->gadget.speed == USB_SPEED_SUPER && 1802 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc) 1803 return -EINVAL; 1804 1805 /* Disable the EP if it is not disabled */ 1806 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED) 1807 __tegra_xudc_ep_disable(ep); 1808 1809 ep->desc = desc; 1810 ep->comp_desc = ep->usb_ep.comp_desc; 1811 1812 if (usb_endpoint_xfer_isoc(desc)) { 1813 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) { 1814 dev_err(xudc->dev, "too many isochronous endpoints\n"); 1815 return -EBUSY; 1816 } 1817 xudc->nr_isoch_eps++; 1818 } 1819 1820 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE * 1821 sizeof(*ep->transfer_ring)); 1822 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]); 1823 1824 ep->enq_ptr = 0; 1825 ep->deq_ptr = 0; 1826 ep->pcs = true; 1827 ep->ring_full = false; 1828 xudc->nr_enabled_eps++; 1829 1830 tegra_xudc_ep_context_setup(ep); 1831 1832 /* 1833 * No need to reload and un-halt EP0. This will be done automatically 1834 * once a valid SETUP packet is received. 1835 */ 1836 if (usb_endpoint_xfer_control(desc)) 1837 goto out; 1838 1839 /* 1840 * Transition to configured state once the first non-control 1841 * endpoint is enabled. 1842 */ 1843 if (xudc->device_state == USB_STATE_ADDRESS) { 1844 val = xudc_readl(xudc, CTRL); 1845 val |= CTRL_RUN; 1846 xudc_writel(xudc, val, CTRL); 1847 1848 xudc->device_state = USB_STATE_CONFIGURED; 1849 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1850 } 1851 1852 if (usb_endpoint_xfer_isoc(desc)) { 1853 /* 1854 * Pause all bulk endpoints when enabling an isoch endpoint 1855 * to ensure the isoch endpoint is allocated enough bandwidth. 1856 */ 1857 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1858 if (xudc->ep[i].desc && 1859 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1860 ep_pause(xudc, i); 1861 } 1862 } 1863 1864 ep_reload(xudc, ep->index); 1865 ep_unpause(xudc, ep->index); 1866 ep_unhalt(xudc, ep->index); 1867 1868 if (usb_endpoint_xfer_isoc(desc)) { 1869 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1870 if (xudc->ep[i].desc && 1871 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1872 ep_unpause(xudc, i); 1873 } 1874 } 1875 1876 out: 1877 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index, 1878 usb_ep_type_string(usb_endpoint_type(ep->desc)), 1879 usb_endpoint_dir_in(ep->desc) ? "in" : "out"); 1880 1881 return 0; 1882 } 1883 1884 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep, 1885 const struct usb_endpoint_descriptor *desc) 1886 { 1887 struct tegra_xudc_ep *ep; 1888 struct tegra_xudc *xudc; 1889 unsigned long flags; 1890 int ret; 1891 1892 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT)) 1893 return -EINVAL; 1894 1895 ep = to_xudc_ep(usb_ep); 1896 xudc = ep->xudc; 1897 1898 spin_lock_irqsave(&xudc->lock, flags); 1899 if (xudc->powergated) { 1900 ret = -ESHUTDOWN; 1901 goto unlock; 1902 } 1903 1904 ret = __tegra_xudc_ep_enable(ep, desc); 1905 unlock: 1906 spin_unlock_irqrestore(&xudc->lock, flags); 1907 1908 return ret; 1909 } 1910 1911 static struct usb_request * 1912 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp) 1913 { 1914 struct tegra_xudc_request *req; 1915 1916 req = kzalloc(sizeof(*req), gfp); 1917 if (!req) 1918 return NULL; 1919 1920 INIT_LIST_HEAD(&req->list); 1921 1922 return &req->usb_req; 1923 } 1924 1925 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep, 1926 struct usb_request *usb_req) 1927 { 1928 struct tegra_xudc_request *req = to_xudc_req(usb_req); 1929 1930 kfree(req); 1931 } 1932 1933 static const struct usb_ep_ops tegra_xudc_ep_ops = { 1934 .enable = tegra_xudc_ep_enable, 1935 .disable = tegra_xudc_ep_disable, 1936 .alloc_request = tegra_xudc_ep_alloc_request, 1937 .free_request = tegra_xudc_ep_free_request, 1938 .queue = tegra_xudc_ep_queue, 1939 .dequeue = tegra_xudc_ep_dequeue, 1940 .set_halt = tegra_xudc_ep_set_halt, 1941 }; 1942 1943 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep, 1944 const struct usb_endpoint_descriptor *desc) 1945 { 1946 return -EBUSY; 1947 } 1948 1949 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep) 1950 { 1951 return -EBUSY; 1952 } 1953 1954 static const struct usb_ep_ops tegra_xudc_ep0_ops = { 1955 .enable = tegra_xudc_ep0_enable, 1956 .disable = tegra_xudc_ep0_disable, 1957 .alloc_request = tegra_xudc_ep_alloc_request, 1958 .free_request = tegra_xudc_ep_free_request, 1959 .queue = tegra_xudc_ep_queue, 1960 .dequeue = tegra_xudc_ep_dequeue, 1961 .set_halt = tegra_xudc_ep_set_halt, 1962 }; 1963 1964 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget) 1965 { 1966 struct tegra_xudc *xudc = to_xudc(gadget); 1967 unsigned long flags; 1968 int ret; 1969 1970 spin_lock_irqsave(&xudc->lock, flags); 1971 if (xudc->powergated) { 1972 ret = -ESHUTDOWN; 1973 goto unlock; 1974 } 1975 1976 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >> 1977 MFINDEX_FRAME_SHIFT; 1978 unlock: 1979 spin_unlock_irqrestore(&xudc->lock, flags); 1980 1981 return ret; 1982 } 1983 1984 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc) 1985 { 1986 unsigned int i; 1987 u32 val; 1988 1989 ep_unpause_all(xudc); 1990 1991 /* Direct link to U0. */ 1992 val = xudc_readl(xudc, PORTSC); 1993 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) { 1994 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 1995 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 1996 xudc_writel(xudc, val, PORTSC); 1997 } 1998 1999 if (xudc->device_state == USB_STATE_SUSPENDED) { 2000 xudc->device_state = xudc->resume_state; 2001 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2002 xudc->resume_state = 0; 2003 } 2004 2005 /* 2006 * Doorbells may be dropped if they are sent too soon (< ~200ns) 2007 * after unpausing the endpoint. Wait for 500ns just to be safe. 2008 */ 2009 ndelay(500); 2010 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2011 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]); 2012 } 2013 2014 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget) 2015 { 2016 struct tegra_xudc *xudc = to_xudc(gadget); 2017 unsigned long flags; 2018 int ret = 0; 2019 u32 val; 2020 2021 spin_lock_irqsave(&xudc->lock, flags); 2022 2023 if (xudc->powergated) { 2024 ret = -ESHUTDOWN; 2025 goto unlock; 2026 } 2027 val = xudc_readl(xudc, PORTPM); 2028 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__, 2029 val, gadget->speed); 2030 2031 if (((xudc->gadget.speed <= USB_SPEED_HIGH) && 2032 (val & PORTPM_RWE)) || 2033 ((xudc->gadget.speed == USB_SPEED_SUPER) && 2034 (val & PORTPM_FRWE))) { 2035 tegra_xudc_resume_device_state(xudc); 2036 2037 /* Send Device Notification packet. */ 2038 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2039 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE) 2040 | DEVNOTIF_LO_TRIG; 2041 xudc_writel(xudc, 0, DEVNOTIF_HI); 2042 xudc_writel(xudc, val, DEVNOTIF_LO); 2043 } 2044 } 2045 2046 unlock: 2047 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2048 spin_unlock_irqrestore(&xudc->lock, flags); 2049 2050 return ret; 2051 } 2052 2053 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on) 2054 { 2055 struct tegra_xudc *xudc = to_xudc(gadget); 2056 unsigned long flags; 2057 u32 val; 2058 2059 pm_runtime_get_sync(xudc->dev); 2060 2061 spin_lock_irqsave(&xudc->lock, flags); 2062 2063 if (is_on != xudc->pullup) { 2064 val = xudc_readl(xudc, CTRL); 2065 if (is_on) 2066 val |= CTRL_ENABLE; 2067 else 2068 val &= ~CTRL_ENABLE; 2069 xudc_writel(xudc, val, CTRL); 2070 } 2071 2072 xudc->pullup = is_on; 2073 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on); 2074 2075 spin_unlock_irqrestore(&xudc->lock, flags); 2076 2077 pm_runtime_put(xudc->dev); 2078 2079 return 0; 2080 } 2081 2082 static int tegra_xudc_gadget_start(struct usb_gadget *gadget, 2083 struct usb_gadget_driver *driver) 2084 { 2085 struct tegra_xudc *xudc = to_xudc(gadget); 2086 unsigned long flags; 2087 u32 val; 2088 int ret; 2089 unsigned int i; 2090 2091 if (!driver) 2092 return -EINVAL; 2093 2094 pm_runtime_get_sync(xudc->dev); 2095 2096 spin_lock_irqsave(&xudc->lock, flags); 2097 2098 if (xudc->driver) { 2099 ret = -EBUSY; 2100 goto unlock; 2101 } 2102 2103 xudc->setup_state = WAIT_FOR_SETUP; 2104 xudc->device_state = USB_STATE_DEFAULT; 2105 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2106 2107 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc); 2108 if (ret < 0) 2109 goto unlock; 2110 2111 val = xudc_readl(xudc, CTRL); 2112 val |= CTRL_IE | CTRL_LSE; 2113 xudc_writel(xudc, val, CTRL); 2114 2115 val = xudc_readl(xudc, PORTHALT); 2116 val |= PORTHALT_STCHG_INTR_EN; 2117 xudc_writel(xudc, val, PORTHALT); 2118 2119 if (xudc->pullup) { 2120 val = xudc_readl(xudc, CTRL); 2121 val |= CTRL_ENABLE; 2122 xudc_writel(xudc, val, CTRL); 2123 } 2124 2125 for (i = 0; i < xudc->soc->num_phys; i++) 2126 if (xudc->usbphy[i]) 2127 otg_set_peripheral(xudc->usbphy[i]->otg, gadget); 2128 2129 xudc->driver = driver; 2130 unlock: 2131 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2132 spin_unlock_irqrestore(&xudc->lock, flags); 2133 2134 pm_runtime_put(xudc->dev); 2135 2136 return ret; 2137 } 2138 2139 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget) 2140 { 2141 struct tegra_xudc *xudc = to_xudc(gadget); 2142 unsigned long flags; 2143 u32 val; 2144 unsigned int i; 2145 2146 pm_runtime_get_sync(xudc->dev); 2147 2148 spin_lock_irqsave(&xudc->lock, flags); 2149 2150 for (i = 0; i < xudc->soc->num_phys; i++) 2151 if (xudc->usbphy[i]) 2152 otg_set_peripheral(xudc->usbphy[i]->otg, NULL); 2153 2154 val = xudc_readl(xudc, CTRL); 2155 val &= ~(CTRL_IE | CTRL_ENABLE); 2156 xudc_writel(xudc, val, CTRL); 2157 2158 __tegra_xudc_ep_disable(&xudc->ep[0]); 2159 2160 xudc->driver = NULL; 2161 dev_dbg(xudc->dev, "Gadget stopped"); 2162 2163 spin_unlock_irqrestore(&xudc->lock, flags); 2164 2165 pm_runtime_put(xudc->dev); 2166 2167 return 0; 2168 } 2169 2170 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget, 2171 unsigned int m_a) 2172 { 2173 struct tegra_xudc *xudc = to_xudc(gadget); 2174 2175 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a); 2176 2177 if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE) 2178 return usb_phy_set_power(xudc->curr_usbphy, m_a); 2179 2180 return 0; 2181 } 2182 2183 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on) 2184 { 2185 struct tegra_xudc *xudc = to_xudc(gadget); 2186 2187 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on); 2188 xudc->selfpowered = !!is_on; 2189 2190 return 0; 2191 } 2192 2193 static const struct usb_gadget_ops tegra_xudc_gadget_ops = { 2194 .get_frame = tegra_xudc_gadget_get_frame, 2195 .wakeup = tegra_xudc_gadget_wakeup, 2196 .pullup = tegra_xudc_gadget_pullup, 2197 .udc_start = tegra_xudc_gadget_start, 2198 .udc_stop = tegra_xudc_gadget_stop, 2199 .vbus_draw = tegra_xudc_gadget_vbus_draw, 2200 .set_selfpowered = tegra_xudc_set_selfpowered, 2201 }; 2202 2203 static void no_op_complete(struct usb_ep *ep, struct usb_request *req) 2204 { 2205 } 2206 2207 static int 2208 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc, 2209 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2210 { 2211 xudc->ep0_req->usb_req.buf = NULL; 2212 xudc->ep0_req->usb_req.dma = 0; 2213 xudc->ep0_req->usb_req.length = 0; 2214 xudc->ep0_req->usb_req.complete = cmpl; 2215 xudc->ep0_req->usb_req.context = xudc; 2216 2217 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2218 } 2219 2220 static int 2221 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len, 2222 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2223 { 2224 xudc->ep0_req->usb_req.buf = buf; 2225 xudc->ep0_req->usb_req.length = len; 2226 xudc->ep0_req->usb_req.complete = cmpl; 2227 xudc->ep0_req->usb_req.context = xudc; 2228 2229 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2230 } 2231 2232 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc) 2233 { 2234 switch (xudc->setup_state) { 2235 case DATA_STAGE_XFER: 2236 xudc->setup_state = STATUS_STAGE_RECV; 2237 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2238 break; 2239 case DATA_STAGE_RECV: 2240 xudc->setup_state = STATUS_STAGE_XFER; 2241 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2242 break; 2243 default: 2244 xudc->setup_state = WAIT_FOR_SETUP; 2245 break; 2246 } 2247 } 2248 2249 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc, 2250 struct usb_ctrlrequest *ctrl) 2251 { 2252 int ret; 2253 2254 spin_unlock(&xudc->lock); 2255 ret = xudc->driver->setup(&xudc->gadget, ctrl); 2256 spin_lock(&xudc->lock); 2257 2258 return ret; 2259 } 2260 2261 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req) 2262 { 2263 struct tegra_xudc *xudc = req->context; 2264 2265 if (xudc->test_mode_pattern) { 2266 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM); 2267 xudc->test_mode_pattern = 0; 2268 } 2269 } 2270 2271 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc, 2272 struct usb_ctrlrequest *ctrl) 2273 { 2274 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 2275 u32 feature = le16_to_cpu(ctrl->wValue); 2276 u32 index = le16_to_cpu(ctrl->wIndex); 2277 u32 val, ep; 2278 int ret; 2279 2280 if (le16_to_cpu(ctrl->wLength) != 0) 2281 return -EINVAL; 2282 2283 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2284 case USB_RECIP_DEVICE: 2285 switch (feature) { 2286 case USB_DEVICE_REMOTE_WAKEUP: 2287 if ((xudc->gadget.speed == USB_SPEED_SUPER) || 2288 (xudc->device_state == USB_STATE_DEFAULT)) 2289 return -EINVAL; 2290 2291 val = xudc_readl(xudc, PORTPM); 2292 if (set) 2293 val |= PORTPM_RWE; 2294 else 2295 val &= ~PORTPM_RWE; 2296 2297 xudc_writel(xudc, val, PORTPM); 2298 break; 2299 case USB_DEVICE_U1_ENABLE: 2300 case USB_DEVICE_U2_ENABLE: 2301 if ((xudc->device_state != USB_STATE_CONFIGURED) || 2302 (xudc->gadget.speed != USB_SPEED_SUPER)) 2303 return -EINVAL; 2304 2305 val = xudc_readl(xudc, PORTPM); 2306 if ((feature == USB_DEVICE_U1_ENABLE) && 2307 xudc->soc->u1_enable) { 2308 if (set) 2309 val |= PORTPM_U1E; 2310 else 2311 val &= ~PORTPM_U1E; 2312 } 2313 2314 if ((feature == USB_DEVICE_U2_ENABLE) && 2315 xudc->soc->u2_enable) { 2316 if (set) 2317 val |= PORTPM_U2E; 2318 else 2319 val &= ~PORTPM_U2E; 2320 } 2321 2322 xudc_writel(xudc, val, PORTPM); 2323 break; 2324 case USB_DEVICE_TEST_MODE: 2325 if (xudc->gadget.speed != USB_SPEED_HIGH) 2326 return -EINVAL; 2327 2328 if (!set) 2329 return -EINVAL; 2330 2331 xudc->test_mode_pattern = index >> 8; 2332 break; 2333 default: 2334 return -EINVAL; 2335 } 2336 2337 break; 2338 case USB_RECIP_INTERFACE: 2339 if (xudc->device_state != USB_STATE_CONFIGURED) 2340 return -EINVAL; 2341 2342 switch (feature) { 2343 case USB_INTRF_FUNC_SUSPEND: 2344 if (set) { 2345 val = xudc_readl(xudc, PORTPM); 2346 2347 if (index & USB_INTRF_FUNC_SUSPEND_RW) 2348 val |= PORTPM_FRWE; 2349 else 2350 val &= ~PORTPM_FRWE; 2351 2352 xudc_writel(xudc, val, PORTPM); 2353 } 2354 2355 return tegra_xudc_ep0_delegate_req(xudc, ctrl); 2356 default: 2357 return -EINVAL; 2358 } 2359 2360 break; 2361 case USB_RECIP_ENDPOINT: 2362 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2363 ((index & USB_DIR_IN) ? 1 : 0); 2364 2365 if ((xudc->device_state == USB_STATE_DEFAULT) || 2366 ((xudc->device_state == USB_STATE_ADDRESS) && 2367 (index != 0))) 2368 return -EINVAL; 2369 2370 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set); 2371 if (ret < 0) 2372 return ret; 2373 break; 2374 default: 2375 return -EINVAL; 2376 } 2377 2378 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete); 2379 } 2380 2381 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc, 2382 struct usb_ctrlrequest *ctrl) 2383 { 2384 struct tegra_xudc_ep_context *ep_ctx; 2385 u32 val, ep, index = le16_to_cpu(ctrl->wIndex); 2386 u16 status = 0; 2387 2388 if (!(ctrl->bRequestType & USB_DIR_IN)) 2389 return -EINVAL; 2390 2391 if ((le16_to_cpu(ctrl->wValue) != 0) || 2392 (le16_to_cpu(ctrl->wLength) != 2)) 2393 return -EINVAL; 2394 2395 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2396 case USB_RECIP_DEVICE: 2397 val = xudc_readl(xudc, PORTPM); 2398 2399 if (xudc->selfpowered) 2400 status |= BIT(USB_DEVICE_SELF_POWERED); 2401 2402 if ((xudc->gadget.speed < USB_SPEED_SUPER) && 2403 (val & PORTPM_RWE)) 2404 status |= BIT(USB_DEVICE_REMOTE_WAKEUP); 2405 2406 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2407 if (val & PORTPM_U1E) 2408 status |= BIT(USB_DEV_STAT_U1_ENABLED); 2409 if (val & PORTPM_U2E) 2410 status |= BIT(USB_DEV_STAT_U2_ENABLED); 2411 } 2412 break; 2413 case USB_RECIP_INTERFACE: 2414 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2415 status |= USB_INTRF_STAT_FUNC_RW_CAP; 2416 val = xudc_readl(xudc, PORTPM); 2417 if (val & PORTPM_FRWE) 2418 status |= USB_INTRF_STAT_FUNC_RW; 2419 } 2420 break; 2421 case USB_RECIP_ENDPOINT: 2422 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2423 ((index & USB_DIR_IN) ? 1 : 0); 2424 ep_ctx = &xudc->ep_context[ep]; 2425 2426 if ((xudc->device_state != USB_STATE_CONFIGURED) && 2427 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0))) 2428 return -EINVAL; 2429 2430 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED) 2431 return -EINVAL; 2432 2433 if (xudc_readl(xudc, EP_HALT) & BIT(ep)) 2434 status |= BIT(USB_ENDPOINT_HALT); 2435 break; 2436 default: 2437 return -EINVAL; 2438 } 2439 2440 xudc->status_buf = cpu_to_le16(status); 2441 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf, 2442 sizeof(xudc->status_buf), 2443 no_op_complete); 2444 } 2445 2446 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req) 2447 { 2448 /* Nothing to do with SEL values */ 2449 } 2450 2451 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc, 2452 struct usb_ctrlrequest *ctrl) 2453 { 2454 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2455 USB_TYPE_STANDARD)) 2456 return -EINVAL; 2457 2458 if (xudc->device_state == USB_STATE_DEFAULT) 2459 return -EINVAL; 2460 2461 if ((le16_to_cpu(ctrl->wIndex) != 0) || 2462 (le16_to_cpu(ctrl->wValue) != 0) || 2463 (le16_to_cpu(ctrl->wLength) != 6)) 2464 return -EINVAL; 2465 2466 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing, 2467 sizeof(xudc->sel_timing), 2468 set_sel_complete); 2469 } 2470 2471 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req) 2472 { 2473 /* Nothing to do with isoch delay */ 2474 } 2475 2476 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc, 2477 struct usb_ctrlrequest *ctrl) 2478 { 2479 u32 delay = le16_to_cpu(ctrl->wValue); 2480 2481 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2482 USB_TYPE_STANDARD)) 2483 return -EINVAL; 2484 2485 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) || 2486 (le16_to_cpu(ctrl->wLength) != 0)) 2487 return -EINVAL; 2488 2489 xudc->isoch_delay = delay; 2490 2491 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete); 2492 } 2493 2494 static void set_address_complete(struct usb_ep *ep, struct usb_request *req) 2495 { 2496 struct tegra_xudc *xudc = req->context; 2497 2498 if ((xudc->device_state == USB_STATE_DEFAULT) && 2499 (xudc->dev_addr != 0)) { 2500 xudc->device_state = USB_STATE_ADDRESS; 2501 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2502 } else if ((xudc->device_state == USB_STATE_ADDRESS) && 2503 (xudc->dev_addr == 0)) { 2504 xudc->device_state = USB_STATE_DEFAULT; 2505 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2506 } 2507 } 2508 2509 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc, 2510 struct usb_ctrlrequest *ctrl) 2511 { 2512 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2513 u32 val, addr = le16_to_cpu(ctrl->wValue); 2514 2515 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2516 USB_TYPE_STANDARD)) 2517 return -EINVAL; 2518 2519 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) || 2520 (le16_to_cpu(ctrl->wLength) != 0)) 2521 return -EINVAL; 2522 2523 if (xudc->device_state == USB_STATE_CONFIGURED) 2524 return -EINVAL; 2525 2526 dev_dbg(xudc->dev, "set address: %u\n", addr); 2527 2528 xudc->dev_addr = addr; 2529 val = xudc_readl(xudc, CTRL); 2530 val &= ~(CTRL_DEVADDR_MASK); 2531 val |= CTRL_DEVADDR(addr); 2532 xudc_writel(xudc, val, CTRL); 2533 2534 ep_ctx_write_devaddr(ep0->context, addr); 2535 2536 return tegra_xudc_ep0_queue_status(xudc, set_address_complete); 2537 } 2538 2539 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc, 2540 struct usb_ctrlrequest *ctrl) 2541 { 2542 int ret; 2543 2544 switch (ctrl->bRequest) { 2545 case USB_REQ_GET_STATUS: 2546 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n"); 2547 ret = tegra_xudc_ep0_get_status(xudc, ctrl); 2548 break; 2549 case USB_REQ_SET_ADDRESS: 2550 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n"); 2551 ret = tegra_xudc_ep0_set_address(xudc, ctrl); 2552 break; 2553 case USB_REQ_SET_SEL: 2554 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n"); 2555 ret = tegra_xudc_ep0_set_sel(xudc, ctrl); 2556 break; 2557 case USB_REQ_SET_ISOCH_DELAY: 2558 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n"); 2559 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl); 2560 break; 2561 case USB_REQ_CLEAR_FEATURE: 2562 case USB_REQ_SET_FEATURE: 2563 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n"); 2564 ret = tegra_xudc_ep0_set_feature(xudc, ctrl); 2565 break; 2566 case USB_REQ_SET_CONFIGURATION: 2567 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n"); 2568 /* 2569 * In theory we need to clear RUN bit before status stage of 2570 * deconfig request sent, but this seems to be causing problems. 2571 * Clear RUN once all endpoints are disabled instead. 2572 */ 2573 fallthrough; 2574 default: 2575 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2576 break; 2577 } 2578 2579 return ret; 2580 } 2581 2582 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc, 2583 struct usb_ctrlrequest *ctrl, 2584 u16 seq_num) 2585 { 2586 int ret; 2587 2588 xudc->setup_seq_num = seq_num; 2589 2590 /* Ensure EP0 is unhalted. */ 2591 ep_unhalt(xudc, 0); 2592 2593 /* 2594 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff 2595 * are invalid. Halt EP0 until we get a valid packet. 2596 */ 2597 if (xudc->soc->invalid_seq_num && 2598 (seq_num == 0xfffe || seq_num == 0xffff)) { 2599 dev_warn(xudc->dev, "invalid sequence number detected\n"); 2600 ep_halt(xudc, 0); 2601 return; 2602 } 2603 2604 if (ctrl->wLength) 2605 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ? 2606 DATA_STAGE_XFER : DATA_STAGE_RECV; 2607 else 2608 xudc->setup_state = STATUS_STAGE_XFER; 2609 2610 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) 2611 ret = tegra_xudc_ep0_standard_req(xudc, ctrl); 2612 else 2613 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2614 2615 if (ret < 0) { 2616 dev_warn(xudc->dev, "setup request failed: %d\n", ret); 2617 xudc->setup_state = WAIT_FOR_SETUP; 2618 ep_halt(xudc, 0); 2619 } 2620 } 2621 2622 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc, 2623 struct tegra_xudc_trb *event) 2624 { 2625 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event; 2626 u16 seq_num = trb_read_seq_num(event); 2627 2628 if (xudc->setup_state != WAIT_FOR_SETUP) { 2629 /* 2630 * The controller is in the process of handling another 2631 * setup request. Queue subsequent requests and handle 2632 * the last one once the controller reports a sequence 2633 * number error. 2634 */ 2635 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl)); 2636 xudc->setup_packet.seq_num = seq_num; 2637 xudc->queued_setup_packet = true; 2638 } else { 2639 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num); 2640 } 2641 } 2642 2643 static struct tegra_xudc_request * 2644 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) 2645 { 2646 struct tegra_xudc_request *req; 2647 2648 list_for_each_entry(req, &ep->queue, list) { 2649 if (!req->trbs_queued) 2650 break; 2651 2652 if (trb_in_request(ep, req, trb)) 2653 return req; 2654 } 2655 2656 return NULL; 2657 } 2658 2659 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc, 2660 struct tegra_xudc_ep *ep, 2661 struct tegra_xudc_trb *event) 2662 { 2663 struct tegra_xudc_request *req; 2664 struct tegra_xudc_trb *trb; 2665 bool short_packet; 2666 2667 short_packet = (trb_read_cmpl_code(event) == 2668 TRB_CMPL_CODE_SHORT_PACKET); 2669 2670 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2671 req = trb_to_request(ep, trb); 2672 2673 /* 2674 * TDs are complete on short packet or when the completed TRB is the 2675 * last TRB in the TD (the CHAIN bit is unset). 2676 */ 2677 if (req && (short_packet || (!trb_read_chain(trb) && 2678 (req->trbs_needed == req->trbs_queued)))) { 2679 struct tegra_xudc_trb *last = req->last_trb; 2680 unsigned int residual; 2681 2682 residual = trb_read_transfer_len(event); 2683 req->usb_req.actual = req->usb_req.length - residual; 2684 2685 dev_dbg(xudc->dev, "bytes transferred %u / %u\n", 2686 req->usb_req.actual, req->usb_req.length); 2687 2688 tegra_xudc_req_done(ep, req, 0); 2689 2690 if (ep->desc && usb_endpoint_xfer_control(ep->desc)) 2691 tegra_xudc_ep0_req_done(xudc); 2692 2693 /* 2694 * Advance the dequeue pointer past the end of the current TD 2695 * on short packet completion. 2696 */ 2697 if (short_packet) { 2698 ep->deq_ptr = (last - ep->transfer_ring) + 1; 2699 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2700 ep->deq_ptr = 0; 2701 } 2702 } else if (!req) { 2703 dev_warn(xudc->dev, "transfer event on dequeued request\n"); 2704 } 2705 2706 if (ep->desc) 2707 tegra_xudc_ep_kick_queue(ep); 2708 } 2709 2710 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc, 2711 struct tegra_xudc_trb *event) 2712 { 2713 unsigned int ep_index = trb_read_endpoint_id(event); 2714 struct tegra_xudc_ep *ep = &xudc->ep[ep_index]; 2715 struct tegra_xudc_trb *trb; 2716 u16 comp_code; 2717 2718 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 2719 dev_warn(xudc->dev, "transfer event on disabled EP %u\n", 2720 ep_index); 2721 return; 2722 } 2723 2724 /* Update transfer ring dequeue pointer. */ 2725 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2726 comp_code = trb_read_cmpl_code(event); 2727 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) { 2728 ep->deq_ptr = (trb - ep->transfer_ring) + 1; 2729 2730 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2731 ep->deq_ptr = 0; 2732 ep->ring_full = false; 2733 } 2734 2735 switch (comp_code) { 2736 case TRB_CMPL_CODE_SUCCESS: 2737 case TRB_CMPL_CODE_SHORT_PACKET: 2738 tegra_xudc_handle_transfer_completion(xudc, ep, event); 2739 break; 2740 case TRB_CMPL_CODE_HOST_REJECTED: 2741 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index); 2742 2743 ep->stream_rejected = true; 2744 break; 2745 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED: 2746 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index); 2747 2748 if (ep->stream_rejected) { 2749 ep->stream_rejected = false; 2750 /* 2751 * An EP is stopped when a stream is rejected. Wait 2752 * for the EP to report that it is stopped and then 2753 * un-stop it. 2754 */ 2755 ep_wait_for_stopped(xudc, ep_index); 2756 } 2757 tegra_xudc_ep_ring_doorbell(ep); 2758 break; 2759 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR: 2760 /* 2761 * Wait for the EP to be stopped so the controller stops 2762 * processing doorbells. 2763 */ 2764 ep_wait_for_stopped(xudc, ep_index); 2765 ep->enq_ptr = ep->deq_ptr; 2766 tegra_xudc_ep_nuke(ep, -EIO); 2767 fallthrough; 2768 case TRB_CMPL_CODE_STREAM_NUMP_ERROR: 2769 case TRB_CMPL_CODE_CTRL_DIR_ERR: 2770 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR: 2771 case TRB_CMPL_CODE_RING_UNDERRUN: 2772 case TRB_CMPL_CODE_RING_OVERRUN: 2773 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN: 2774 case TRB_CMPL_CODE_USB_TRANS_ERR: 2775 case TRB_CMPL_CODE_TRB_ERR: 2776 dev_err(xudc->dev, "completion error %#x on EP %u\n", 2777 comp_code, ep_index); 2778 2779 ep_halt(xudc, ep_index); 2780 break; 2781 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR: 2782 dev_info(xudc->dev, "sequence number error\n"); 2783 2784 /* 2785 * Kill any queued control request and skip to the last 2786 * setup packet we received. 2787 */ 2788 tegra_xudc_ep_nuke(ep, -EINVAL); 2789 xudc->setup_state = WAIT_FOR_SETUP; 2790 if (!xudc->queued_setup_packet) 2791 break; 2792 2793 tegra_xudc_handle_ep0_setup_packet(xudc, 2794 &xudc->setup_packet.ctrl_req, 2795 xudc->setup_packet.seq_num); 2796 xudc->queued_setup_packet = false; 2797 break; 2798 case TRB_CMPL_CODE_STOPPED: 2799 dev_dbg(xudc->dev, "stop completion code on EP %u\n", 2800 ep_index); 2801 2802 /* Disconnected. */ 2803 tegra_xudc_ep_nuke(ep, -ECONNREFUSED); 2804 break; 2805 default: 2806 dev_dbg(xudc->dev, "completion event %#x on EP %u\n", 2807 comp_code, ep_index); 2808 break; 2809 } 2810 } 2811 2812 static void tegra_xudc_reset(struct tegra_xudc *xudc) 2813 { 2814 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2815 dma_addr_t deq_ptr; 2816 unsigned int i; 2817 2818 xudc->setup_state = WAIT_FOR_SETUP; 2819 xudc->device_state = USB_STATE_DEFAULT; 2820 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2821 2822 ep_unpause_all(xudc); 2823 2824 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2825 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN); 2826 2827 /* 2828 * Reset sequence number and dequeue pointer to flush the transfer 2829 * ring. 2830 */ 2831 ep0->deq_ptr = ep0->enq_ptr; 2832 ep0->ring_full = false; 2833 2834 xudc->setup_seq_num = 0; 2835 xudc->queued_setup_packet = false; 2836 2837 ep_ctx_write_rsvd(ep0->context, 0); 2838 ep_ctx_write_partial_td(ep0->context, 0); 2839 ep_ctx_write_splitxstate(ep0->context, 0); 2840 ep_ctx_write_seq_num(ep0->context, 0); 2841 2842 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]); 2843 2844 if (!dma_mapping_error(xudc->dev, deq_ptr)) { 2845 ep_ctx_write_deq_ptr(ep0->context, deq_ptr); 2846 ep_ctx_write_dcs(ep0->context, ep0->pcs); 2847 } 2848 2849 ep_unhalt_all(xudc); 2850 ep_reload(xudc, 0); 2851 ep_unpause(xudc, 0); 2852 } 2853 2854 static void tegra_xudc_port_connect(struct tegra_xudc *xudc) 2855 { 2856 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2857 u16 maxpacket; 2858 u32 val; 2859 2860 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT; 2861 switch (val) { 2862 case PORTSC_PS_LS: 2863 xudc->gadget.speed = USB_SPEED_LOW; 2864 break; 2865 case PORTSC_PS_FS: 2866 xudc->gadget.speed = USB_SPEED_FULL; 2867 break; 2868 case PORTSC_PS_HS: 2869 xudc->gadget.speed = USB_SPEED_HIGH; 2870 break; 2871 case PORTSC_PS_SS: 2872 xudc->gadget.speed = USB_SPEED_SUPER; 2873 break; 2874 default: 2875 xudc->gadget.speed = USB_SPEED_UNKNOWN; 2876 break; 2877 } 2878 2879 xudc->device_state = USB_STATE_DEFAULT; 2880 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2881 2882 xudc->setup_state = WAIT_FOR_SETUP; 2883 2884 if (xudc->gadget.speed == USB_SPEED_SUPER) 2885 maxpacket = 512; 2886 else 2887 maxpacket = 64; 2888 2889 ep_ctx_write_max_packet_size(ep0->context, maxpacket); 2890 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket); 2891 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket); 2892 2893 if (!xudc->soc->u1_enable) { 2894 val = xudc_readl(xudc, PORTPM); 2895 val &= ~(PORTPM_U1TIMEOUT_MASK); 2896 xudc_writel(xudc, val, PORTPM); 2897 } 2898 2899 if (!xudc->soc->u2_enable) { 2900 val = xudc_readl(xudc, PORTPM); 2901 val &= ~(PORTPM_U2TIMEOUT_MASK); 2902 xudc_writel(xudc, val, PORTPM); 2903 } 2904 2905 if (xudc->gadget.speed <= USB_SPEED_HIGH) { 2906 val = xudc_readl(xudc, PORTPM); 2907 val &= ~(PORTPM_L1S_MASK); 2908 if (xudc->soc->lpm_enable) 2909 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT); 2910 else 2911 val |= PORTPM_L1S(PORTPM_L1S_NYET); 2912 xudc_writel(xudc, val, PORTPM); 2913 } 2914 2915 val = xudc_readl(xudc, ST); 2916 if (val & ST_RC) 2917 xudc_writel(xudc, ST_RC, ST); 2918 } 2919 2920 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc) 2921 { 2922 tegra_xudc_reset(xudc); 2923 2924 if (xudc->driver && xudc->driver->disconnect) { 2925 spin_unlock(&xudc->lock); 2926 xudc->driver->disconnect(&xudc->gadget); 2927 spin_lock(&xudc->lock); 2928 } 2929 2930 xudc->device_state = USB_STATE_NOTATTACHED; 2931 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2932 2933 complete(&xudc->disconnect_complete); 2934 } 2935 2936 static void tegra_xudc_port_reset(struct tegra_xudc *xudc) 2937 { 2938 tegra_xudc_reset(xudc); 2939 2940 if (xudc->driver) { 2941 spin_unlock(&xudc->lock); 2942 usb_gadget_udc_reset(&xudc->gadget, xudc->driver); 2943 spin_lock(&xudc->lock); 2944 } 2945 2946 tegra_xudc_port_connect(xudc); 2947 } 2948 2949 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc) 2950 { 2951 dev_dbg(xudc->dev, "port suspend\n"); 2952 2953 xudc->resume_state = xudc->device_state; 2954 xudc->device_state = USB_STATE_SUSPENDED; 2955 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2956 2957 if (xudc->driver->suspend) { 2958 spin_unlock(&xudc->lock); 2959 xudc->driver->suspend(&xudc->gadget); 2960 spin_lock(&xudc->lock); 2961 } 2962 } 2963 2964 static void tegra_xudc_port_resume(struct tegra_xudc *xudc) 2965 { 2966 dev_dbg(xudc->dev, "port resume\n"); 2967 2968 tegra_xudc_resume_device_state(xudc); 2969 2970 if (xudc->driver->resume) { 2971 spin_unlock(&xudc->lock); 2972 xudc->driver->resume(&xudc->gadget); 2973 spin_lock(&xudc->lock); 2974 } 2975 } 2976 2977 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag) 2978 { 2979 u32 val; 2980 2981 val = xudc_readl(xudc, PORTSC); 2982 val &= ~PORTSC_CHANGE_MASK; 2983 val |= flag; 2984 xudc_writel(xudc, val, PORTSC); 2985 } 2986 2987 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 2988 { 2989 u32 portsc, porthalt; 2990 2991 porthalt = xudc_readl(xudc, PORTHALT); 2992 if ((porthalt & PORTHALT_STCHG_REQ) && 2993 (porthalt & PORTHALT_HALT_LTSSM)) { 2994 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt); 2995 porthalt &= ~PORTHALT_HALT_LTSSM; 2996 xudc_writel(xudc, porthalt, PORTHALT); 2997 } 2998 2999 portsc = xudc_readl(xudc, PORTSC); 3000 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) { 3001 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc); 3002 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 3003 #define TOGGLE_VBUS_WAIT_MS 100 3004 if (xudc->soc->port_reset_quirk) { 3005 schedule_delayed_work(&xudc->port_reset_war_work, 3006 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 3007 xudc->wait_for_sec_prc = 1; 3008 } 3009 } 3010 3011 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) { 3012 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc); 3013 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 3014 tegra_xudc_port_reset(xudc); 3015 cancel_delayed_work(&xudc->port_reset_war_work); 3016 xudc->wait_for_sec_prc = 0; 3017 } 3018 3019 portsc = xudc_readl(xudc, PORTSC); 3020 if (portsc & PORTSC_WRC) { 3021 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc); 3022 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED); 3023 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR)) 3024 tegra_xudc_port_reset(xudc); 3025 } 3026 3027 portsc = xudc_readl(xudc, PORTSC); 3028 if (portsc & PORTSC_CSC) { 3029 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc); 3030 clear_port_change(xudc, PORTSC_CSC); 3031 3032 if (portsc & PORTSC_CCS) 3033 tegra_xudc_port_connect(xudc); 3034 else 3035 tegra_xudc_port_disconnect(xudc); 3036 3037 if (xudc->wait_csc) { 3038 cancel_delayed_work(&xudc->plc_reset_work); 3039 xudc->wait_csc = false; 3040 } 3041 } 3042 3043 portsc = xudc_readl(xudc, PORTSC); 3044 if (portsc & PORTSC_PLC) { 3045 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; 3046 3047 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc); 3048 clear_port_change(xudc, PORTSC_PLC); 3049 switch (pls) { 3050 case PORTSC_PLS_U3: 3051 tegra_xudc_port_suspend(xudc); 3052 break; 3053 case PORTSC_PLS_U0: 3054 if (xudc->gadget.speed < USB_SPEED_SUPER) 3055 tegra_xudc_port_resume(xudc); 3056 break; 3057 case PORTSC_PLS_RESUME: 3058 if (xudc->gadget.speed == USB_SPEED_SUPER) 3059 tegra_xudc_port_resume(xudc); 3060 break; 3061 case PORTSC_PLS_INACTIVE: 3062 schedule_delayed_work(&xudc->plc_reset_work, 3063 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 3064 xudc->wait_csc = true; 3065 break; 3066 default: 3067 break; 3068 } 3069 } 3070 3071 if (portsc & PORTSC_CEC) { 3072 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc); 3073 clear_port_change(xudc, PORTSC_CEC); 3074 } 3075 3076 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC)); 3077 } 3078 3079 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 3080 { 3081 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) || 3082 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ)) 3083 __tegra_xudc_handle_port_status(xudc); 3084 } 3085 3086 static void tegra_xudc_handle_event(struct tegra_xudc *xudc, 3087 struct tegra_xudc_trb *event) 3088 { 3089 u32 type = trb_read_type(event); 3090 3091 dump_trb(xudc, "EVENT", event); 3092 3093 switch (type) { 3094 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT: 3095 tegra_xudc_handle_port_status(xudc); 3096 break; 3097 case TRB_TYPE_TRANSFER_EVENT: 3098 tegra_xudc_handle_transfer_event(xudc, event); 3099 break; 3100 case TRB_TYPE_SETUP_PACKET_EVENT: 3101 tegra_xudc_handle_ep0_event(xudc, event); 3102 break; 3103 default: 3104 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type); 3105 break; 3106 } 3107 } 3108 3109 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc) 3110 { 3111 struct tegra_xudc_trb *event; 3112 dma_addr_t erdp; 3113 3114 while (true) { 3115 event = xudc->event_ring[xudc->event_ring_index] + 3116 xudc->event_ring_deq_ptr; 3117 3118 if (trb_read_cycle(event) != xudc->ccs) 3119 break; 3120 3121 tegra_xudc_handle_event(xudc, event); 3122 3123 xudc->event_ring_deq_ptr++; 3124 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) { 3125 xudc->event_ring_deq_ptr = 0; 3126 xudc->event_ring_index++; 3127 } 3128 3129 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) { 3130 xudc->event_ring_index = 0; 3131 xudc->ccs = !xudc->ccs; 3132 } 3133 } 3134 3135 erdp = xudc->event_ring_phys[xudc->event_ring_index] + 3136 xudc->event_ring_deq_ptr * sizeof(*event); 3137 3138 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI); 3139 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO); 3140 } 3141 3142 static irqreturn_t tegra_xudc_irq(int irq, void *data) 3143 { 3144 struct tegra_xudc *xudc = data; 3145 unsigned long flags; 3146 u32 val; 3147 3148 val = xudc_readl(xudc, ST); 3149 if (!(val & ST_IP)) 3150 return IRQ_NONE; 3151 xudc_writel(xudc, ST_IP, ST); 3152 3153 spin_lock_irqsave(&xudc->lock, flags); 3154 tegra_xudc_process_event_ring(xudc); 3155 spin_unlock_irqrestore(&xudc->lock, flags); 3156 3157 return IRQ_HANDLED; 3158 } 3159 3160 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index) 3161 { 3162 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3163 3164 ep->xudc = xudc; 3165 ep->index = index; 3166 ep->context = &xudc->ep_context[index]; 3167 INIT_LIST_HEAD(&ep->queue); 3168 3169 /* 3170 * EP1 would be the input endpoint corresponding to EP0, but since 3171 * EP0 is bi-directional, EP1 is unused. 3172 */ 3173 if (index == 1) 3174 return 0; 3175 3176 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool, 3177 GFP_KERNEL, 3178 &ep->transfer_ring_phys); 3179 if (!ep->transfer_ring) 3180 return -ENOMEM; 3181 3182 if (index) { 3183 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2, 3184 (index % 2 == 0) ? "out" : "in"); 3185 ep->usb_ep.name = ep->name; 3186 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024); 3187 ep->usb_ep.max_streams = 16; 3188 ep->usb_ep.ops = &tegra_xudc_ep_ops; 3189 ep->usb_ep.caps.type_bulk = true; 3190 ep->usb_ep.caps.type_int = true; 3191 if (index & 1) 3192 ep->usb_ep.caps.dir_in = true; 3193 else 3194 ep->usb_ep.caps.dir_out = true; 3195 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list); 3196 } else { 3197 strscpy(ep->name, "ep0", 3); 3198 ep->usb_ep.name = ep->name; 3199 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512); 3200 ep->usb_ep.ops = &tegra_xudc_ep0_ops; 3201 ep->usb_ep.caps.type_control = true; 3202 ep->usb_ep.caps.dir_in = true; 3203 ep->usb_ep.caps.dir_out = true; 3204 } 3205 3206 return 0; 3207 } 3208 3209 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index) 3210 { 3211 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3212 3213 /* 3214 * EP1 would be the input endpoint corresponding to EP0, but since 3215 * EP0 is bi-directional, EP1 is unused. 3216 */ 3217 if (index == 1) 3218 return; 3219 3220 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring, 3221 ep->transfer_ring_phys); 3222 } 3223 3224 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc) 3225 { 3226 struct usb_request *req; 3227 unsigned int i; 3228 int err; 3229 3230 xudc->ep_context = 3231 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS * 3232 sizeof(*xudc->ep_context), 3233 &xudc->ep_context_phys, GFP_KERNEL); 3234 if (!xudc->ep_context) 3235 return -ENOMEM; 3236 3237 xudc->transfer_ring_pool = 3238 dmam_pool_create(dev_name(xudc->dev), xudc->dev, 3239 XUDC_TRANSFER_RING_SIZE * 3240 sizeof(struct tegra_xudc_trb), 3241 sizeof(struct tegra_xudc_trb), 0); 3242 if (!xudc->transfer_ring_pool) { 3243 err = -ENOMEM; 3244 goto free_ep_context; 3245 } 3246 3247 INIT_LIST_HEAD(&xudc->gadget.ep_list); 3248 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 3249 err = tegra_xudc_alloc_ep(xudc, i); 3250 if (err < 0) 3251 goto free_eps; 3252 } 3253 3254 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL); 3255 if (!req) { 3256 err = -ENOMEM; 3257 goto free_eps; 3258 } 3259 xudc->ep0_req = to_xudc_req(req); 3260 3261 return 0; 3262 3263 free_eps: 3264 for (; i > 0; i--) 3265 tegra_xudc_free_ep(xudc, i - 1); 3266 free_ep_context: 3267 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3268 xudc->ep_context, xudc->ep_context_phys); 3269 return err; 3270 } 3271 3272 static void tegra_xudc_init_eps(struct tegra_xudc *xudc) 3273 { 3274 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO); 3275 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI); 3276 } 3277 3278 static void tegra_xudc_free_eps(struct tegra_xudc *xudc) 3279 { 3280 unsigned int i; 3281 3282 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep, 3283 &xudc->ep0_req->usb_req); 3284 3285 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 3286 tegra_xudc_free_ep(xudc, i); 3287 3288 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3289 xudc->ep_context, xudc->ep_context_phys); 3290 } 3291 3292 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc) 3293 { 3294 unsigned int i; 3295 3296 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3297 xudc->event_ring[i] = 3298 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3299 sizeof(*xudc->event_ring[i]), 3300 &xudc->event_ring_phys[i], 3301 GFP_KERNEL); 3302 if (!xudc->event_ring[i]) 3303 goto free_dma; 3304 } 3305 3306 return 0; 3307 3308 free_dma: 3309 for (; i > 0; i--) { 3310 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3311 sizeof(*xudc->event_ring[i - 1]), 3312 xudc->event_ring[i - 1], 3313 xudc->event_ring_phys[i - 1]); 3314 } 3315 return -ENOMEM; 3316 } 3317 3318 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc) 3319 { 3320 unsigned int i; 3321 u32 val; 3322 3323 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3324 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE * 3325 sizeof(*xudc->event_ring[i])); 3326 3327 val = xudc_readl(xudc, ERSTSZ); 3328 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i)); 3329 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i); 3330 xudc_writel(xudc, val, ERSTSZ); 3331 3332 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]), 3333 ERSTXBALO(i)); 3334 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]), 3335 ERSTXBAHI(i)); 3336 } 3337 3338 val = lower_32_bits(xudc->event_ring_phys[0]); 3339 xudc_writel(xudc, val, ERDPLO); 3340 val |= EREPLO_ECS; 3341 xudc_writel(xudc, val, EREPLO); 3342 3343 val = upper_32_bits(xudc->event_ring_phys[0]); 3344 xudc_writel(xudc, val, ERDPHI); 3345 xudc_writel(xudc, val, EREPHI); 3346 3347 xudc->ccs = true; 3348 xudc->event_ring_index = 0; 3349 xudc->event_ring_deq_ptr = 0; 3350 } 3351 3352 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc) 3353 { 3354 unsigned int i; 3355 3356 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3357 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3358 sizeof(*xudc->event_ring[i]), 3359 xudc->event_ring[i], 3360 xudc->event_ring_phys[i]); 3361 } 3362 } 3363 3364 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc) 3365 { 3366 u32 val; 3367 3368 if (xudc->soc->has_ipfs) { 3369 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0); 3370 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI; 3371 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0); 3372 usleep_range(10, 15); 3373 } 3374 3375 /* Enable bus master */ 3376 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN | 3377 XUSB_DEV_CFG_1_BUS_MASTER_EN; 3378 fpci_writel(xudc, val, XUSB_DEV_CFG_1); 3379 3380 /* Program BAR0 space */ 3381 val = fpci_readl(xudc, XUSB_DEV_CFG_4); 3382 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3383 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3384 3385 fpci_writel(xudc, val, XUSB_DEV_CFG_4); 3386 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5); 3387 3388 usleep_range(100, 200); 3389 3390 if (xudc->soc->has_ipfs) { 3391 /* Enable interrupt assertion */ 3392 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0); 3393 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK; 3394 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0); 3395 } 3396 } 3397 3398 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc) 3399 { 3400 u32 val, imod; 3401 3402 if (xudc->soc->has_ipfs) { 3403 val = xudc_readl(xudc, BLCG); 3404 val |= BLCG_ALL; 3405 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE | 3406 BLCG_COREPLL_PWRDN); 3407 val |= BLCG_IOPLL_0_PWRDN; 3408 val |= BLCG_IOPLL_1_PWRDN; 3409 val |= BLCG_IOPLL_2_PWRDN; 3410 3411 xudc_writel(xudc, val, BLCG); 3412 } 3413 3414 if (xudc->soc->port_speed_quirk) 3415 tegra_xudc_limit_port_speed(xudc); 3416 3417 /* Set a reasonable U3 exit timer value. */ 3418 val = xudc_readl(xudc, SSPX_CORE_PADCTL4); 3419 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK); 3420 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0); 3421 xudc_writel(xudc, val, SSPX_CORE_PADCTL4); 3422 3423 /* Default ping LFPS tBurst is too large. */ 3424 val = xudc_readl(xudc, SSPX_CORE_CNT0); 3425 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK); 3426 val |= SSPX_CORE_CNT0_PING_TBURST(0xa); 3427 xudc_writel(xudc, val, SSPX_CORE_CNT0); 3428 3429 /* Default tPortConfiguration timeout is too small. */ 3430 val = xudc_readl(xudc, SSPX_CORE_CNT30); 3431 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK); 3432 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978); 3433 xudc_writel(xudc, val, SSPX_CORE_CNT30); 3434 3435 if (xudc->soc->lpm_enable) { 3436 /* Set L1 resume duration to 95 us. */ 3437 val = xudc_readl(xudc, HSFSPI_COUNT13); 3438 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK); 3439 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88); 3440 xudc_writel(xudc, val, HSFSPI_COUNT13); 3441 } 3442 3443 /* 3444 * Compliance suite appears to be violating polling LFPS tBurst max 3445 * of 1.4us. Send 1.45us instead. 3446 */ 3447 val = xudc_readl(xudc, SSPX_CORE_CNT32); 3448 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK); 3449 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0); 3450 xudc_writel(xudc, val, SSPX_CORE_CNT32); 3451 3452 /* Direct HS/FS port instance to RxDetect. */ 3453 val = xudc_readl(xudc, CFG_DEV_FE); 3454 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3455 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI); 3456 xudc_writel(xudc, val, CFG_DEV_FE); 3457 3458 val = xudc_readl(xudc, PORTSC); 3459 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3460 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3461 xudc_writel(xudc, val, PORTSC); 3462 3463 /* Direct SS port instance to RxDetect. */ 3464 val = xudc_readl(xudc, CFG_DEV_FE); 3465 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3466 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK; 3467 xudc_writel(xudc, val, CFG_DEV_FE); 3468 3469 val = xudc_readl(xudc, PORTSC); 3470 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3471 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3472 xudc_writel(xudc, val, PORTSC); 3473 3474 /* Restore port instance. */ 3475 val = xudc_readl(xudc, CFG_DEV_FE); 3476 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3477 xudc_writel(xudc, val, CFG_DEV_FE); 3478 3479 /* 3480 * Enable INFINITE_SS_RETRY to prevent device from entering 3481 * Disabled.Error when attached to buggy SuperSpeed hubs. 3482 */ 3483 val = xudc_readl(xudc, CFG_DEV_FE); 3484 val |= CFG_DEV_FE_INFINITE_SS_RETRY; 3485 xudc_writel(xudc, val, CFG_DEV_FE); 3486 3487 /* Set interrupt moderation. */ 3488 imod = XUDC_INTERRUPT_MODERATION_US * 4; 3489 val = xudc_readl(xudc, RT_IMOD); 3490 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK)); 3491 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod)); 3492 xudc_writel(xudc, val, RT_IMOD); 3493 3494 /* increase SSPI transaction timeout from 32us to 512us */ 3495 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER); 3496 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK); 3497 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000); 3498 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER); 3499 } 3500 3501 static int tegra_xudc_phy_get(struct tegra_xudc *xudc) 3502 { 3503 int err = 0, usb3_companion_port; 3504 unsigned int i, j; 3505 3506 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3507 sizeof(*xudc->utmi_phy), GFP_KERNEL); 3508 if (!xudc->utmi_phy) 3509 return -ENOMEM; 3510 3511 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3512 sizeof(*xudc->usb3_phy), GFP_KERNEL); 3513 if (!xudc->usb3_phy) 3514 return -ENOMEM; 3515 3516 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3517 sizeof(*xudc->usbphy), GFP_KERNEL); 3518 if (!xudc->usbphy) 3519 return -ENOMEM; 3520 3521 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify; 3522 3523 for (i = 0; i < xudc->soc->num_phys; i++) { 3524 char phy_name[] = "usb.-."; 3525 3526 /* Get USB2 phy */ 3527 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i); 3528 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3529 if (IS_ERR(xudc->utmi_phy[i])) { 3530 err = PTR_ERR(xudc->utmi_phy[i]); 3531 dev_err_probe(xudc->dev, err, 3532 "failed to get PHY for phy-name usb2-%d\n", i); 3533 goto clean_up; 3534 } else if (xudc->utmi_phy[i]) { 3535 /* Get usb-phy, if utmi phy is available */ 3536 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev, 3537 xudc->utmi_phy[i]->dev.of_node, 3538 NULL); 3539 if (IS_ERR(xudc->usbphy[i])) { 3540 err = PTR_ERR(xudc->usbphy[i]); 3541 dev_err_probe(xudc->dev, err, 3542 "failed to get usbphy-%d\n", i); 3543 goto clean_up; 3544 } 3545 } else if (!xudc->utmi_phy[i]) { 3546 /* if utmi phy is not available, ignore USB3 phy get */ 3547 continue; 3548 } 3549 3550 /* Get USB3 phy */ 3551 usb3_companion_port = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i); 3552 if (usb3_companion_port < 0) 3553 continue; 3554 3555 for (j = 0; j < xudc->soc->num_phys; j++) { 3556 snprintf(phy_name, sizeof(phy_name), "usb3-%d", j); 3557 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3558 if (IS_ERR(xudc->usb3_phy[i])) { 3559 err = PTR_ERR(xudc->usb3_phy[i]); 3560 dev_err_probe(xudc->dev, err, 3561 "failed to get PHY for phy-name usb3-%d\n", j); 3562 goto clean_up; 3563 } else if (xudc->usb3_phy[i]) { 3564 int usb2_port = 3565 tegra_xusb_padctl_get_port_number(xudc->utmi_phy[i]); 3566 int usb3_port = 3567 tegra_xusb_padctl_get_port_number(xudc->usb3_phy[i]); 3568 if (usb3_port == usb3_companion_port) { 3569 dev_dbg(xudc->dev, "USB2 port %d is paired with USB3 port %d for device mode port %d\n", 3570 usb2_port, usb3_port, i); 3571 break; 3572 } 3573 } 3574 } 3575 } 3576 3577 return err; 3578 3579 clean_up: 3580 for (i = 0; i < xudc->soc->num_phys; i++) { 3581 xudc->usb3_phy[i] = NULL; 3582 xudc->utmi_phy[i] = NULL; 3583 xudc->usbphy[i] = NULL; 3584 } 3585 3586 return err; 3587 } 3588 3589 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc) 3590 { 3591 unsigned int i; 3592 3593 for (i = 0; i < xudc->soc->num_phys; i++) { 3594 phy_exit(xudc->usb3_phy[i]); 3595 phy_exit(xudc->utmi_phy[i]); 3596 } 3597 } 3598 3599 static int tegra_xudc_phy_init(struct tegra_xudc *xudc) 3600 { 3601 int err; 3602 unsigned int i; 3603 3604 for (i = 0; i < xudc->soc->num_phys; i++) { 3605 err = phy_init(xudc->utmi_phy[i]); 3606 if (err < 0) { 3607 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err); 3608 goto exit_phy; 3609 } 3610 3611 err = phy_init(xudc->usb3_phy[i]); 3612 if (err < 0) { 3613 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err); 3614 goto exit_phy; 3615 } 3616 } 3617 return 0; 3618 3619 exit_phy: 3620 tegra_xudc_phy_exit(xudc); 3621 return err; 3622 } 3623 3624 static const char * const tegra210_xudc_supply_names[] = { 3625 "hvdd-usb", 3626 "avddio-usb", 3627 }; 3628 3629 static const char * const tegra210_xudc_clock_names[] = { 3630 "dev", 3631 "ss", 3632 "ss_src", 3633 "hs_src", 3634 "fs_src", 3635 }; 3636 3637 static const char * const tegra186_xudc_clock_names[] = { 3638 "dev", 3639 "ss", 3640 "ss_src", 3641 "fs_src", 3642 }; 3643 3644 static struct tegra_xudc_soc tegra210_xudc_soc_data = { 3645 .supply_names = tegra210_xudc_supply_names, 3646 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names), 3647 .clock_names = tegra210_xudc_clock_names, 3648 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names), 3649 .num_phys = 4, 3650 .u1_enable = false, 3651 .u2_enable = true, 3652 .lpm_enable = false, 3653 .invalid_seq_num = true, 3654 .pls_quirk = true, 3655 .port_reset_quirk = true, 3656 .port_speed_quirk = false, 3657 .has_ipfs = true, 3658 }; 3659 3660 static struct tegra_xudc_soc tegra186_xudc_soc_data = { 3661 .clock_names = tegra186_xudc_clock_names, 3662 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3663 .num_phys = 4, 3664 .u1_enable = true, 3665 .u2_enable = true, 3666 .lpm_enable = false, 3667 .invalid_seq_num = false, 3668 .pls_quirk = false, 3669 .port_reset_quirk = false, 3670 .port_speed_quirk = false, 3671 .has_ipfs = false, 3672 }; 3673 3674 static struct tegra_xudc_soc tegra194_xudc_soc_data = { 3675 .clock_names = tegra186_xudc_clock_names, 3676 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3677 .num_phys = 4, 3678 .u1_enable = true, 3679 .u2_enable = true, 3680 .lpm_enable = true, 3681 .invalid_seq_num = false, 3682 .pls_quirk = false, 3683 .port_reset_quirk = false, 3684 .port_speed_quirk = true, 3685 .has_ipfs = false, 3686 }; 3687 3688 static struct tegra_xudc_soc tegra234_xudc_soc_data = { 3689 .clock_names = tegra186_xudc_clock_names, 3690 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3691 .num_phys = 4, 3692 .u1_enable = true, 3693 .u2_enable = true, 3694 .lpm_enable = true, 3695 .invalid_seq_num = false, 3696 .pls_quirk = false, 3697 .port_reset_quirk = false, 3698 .has_ipfs = false, 3699 }; 3700 3701 static const struct of_device_id tegra_xudc_of_match[] = { 3702 { 3703 .compatible = "nvidia,tegra210-xudc", 3704 .data = &tegra210_xudc_soc_data 3705 }, 3706 { 3707 .compatible = "nvidia,tegra186-xudc", 3708 .data = &tegra186_xudc_soc_data 3709 }, 3710 { 3711 .compatible = "nvidia,tegra194-xudc", 3712 .data = &tegra194_xudc_soc_data 3713 }, 3714 { 3715 .compatible = "nvidia,tegra234-xudc", 3716 .data = &tegra234_xudc_soc_data 3717 }, 3718 { } 3719 }; 3720 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match); 3721 3722 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc) 3723 { 3724 if (xudc->genpd_dl_ss) 3725 device_link_del(xudc->genpd_dl_ss); 3726 if (xudc->genpd_dl_device) 3727 device_link_del(xudc->genpd_dl_device); 3728 if (xudc->genpd_dev_ss) 3729 dev_pm_domain_detach(xudc->genpd_dev_ss, true); 3730 if (xudc->genpd_dev_device) 3731 dev_pm_domain_detach(xudc->genpd_dev_device, true); 3732 } 3733 3734 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc) 3735 { 3736 struct device *dev = xudc->dev; 3737 int err; 3738 3739 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev"); 3740 if (IS_ERR(xudc->genpd_dev_device)) { 3741 err = PTR_ERR(xudc->genpd_dev_device); 3742 dev_err(dev, "failed to get device power domain: %d\n", err); 3743 return err; 3744 } 3745 3746 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss"); 3747 if (IS_ERR(xudc->genpd_dev_ss)) { 3748 err = PTR_ERR(xudc->genpd_dev_ss); 3749 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err); 3750 return err; 3751 } 3752 3753 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device, 3754 DL_FLAG_PM_RUNTIME | 3755 DL_FLAG_STATELESS); 3756 if (!xudc->genpd_dl_device) { 3757 dev_err(dev, "failed to add USB device link\n"); 3758 return -ENODEV; 3759 } 3760 3761 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss, 3762 DL_FLAG_PM_RUNTIME | 3763 DL_FLAG_STATELESS); 3764 if (!xudc->genpd_dl_ss) { 3765 dev_err(dev, "failed to add SuperSpeed device link\n"); 3766 return -ENODEV; 3767 } 3768 3769 return 0; 3770 } 3771 3772 static int tegra_xudc_probe(struct platform_device *pdev) 3773 { 3774 struct tegra_xudc *xudc; 3775 struct resource *res; 3776 unsigned int i; 3777 int err; 3778 3779 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL); 3780 if (!xudc) 3781 return -ENOMEM; 3782 3783 xudc->dev = &pdev->dev; 3784 platform_set_drvdata(pdev, xudc); 3785 3786 xudc->soc = of_device_get_match_data(&pdev->dev); 3787 if (!xudc->soc) 3788 return -ENODEV; 3789 3790 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 3791 xudc->base = devm_ioremap_resource(&pdev->dev, res); 3792 if (IS_ERR(xudc->base)) 3793 return PTR_ERR(xudc->base); 3794 xudc->phys_base = res->start; 3795 3796 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci"); 3797 if (IS_ERR(xudc->fpci)) 3798 return PTR_ERR(xudc->fpci); 3799 3800 if (xudc->soc->has_ipfs) { 3801 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs"); 3802 if (IS_ERR(xudc->ipfs)) 3803 return PTR_ERR(xudc->ipfs); 3804 } 3805 3806 xudc->irq = platform_get_irq(pdev, 0); 3807 if (xudc->irq < 0) 3808 return xudc->irq; 3809 3810 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0, 3811 dev_name(&pdev->dev), xudc); 3812 if (err < 0) { 3813 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq, 3814 err); 3815 return err; 3816 } 3817 3818 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks), 3819 GFP_KERNEL); 3820 if (!xudc->clks) 3821 return -ENOMEM; 3822 3823 for (i = 0; i < xudc->soc->num_clks; i++) 3824 xudc->clks[i].id = xudc->soc->clock_names[i]; 3825 3826 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks); 3827 if (err) { 3828 dev_err_probe(xudc->dev, err, "failed to request clocks\n"); 3829 return err; 3830 } 3831 3832 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies, 3833 sizeof(*xudc->supplies), GFP_KERNEL); 3834 if (!xudc->supplies) 3835 return -ENOMEM; 3836 3837 for (i = 0; i < xudc->soc->num_supplies; i++) 3838 xudc->supplies[i].supply = xudc->soc->supply_names[i]; 3839 3840 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies, 3841 xudc->supplies); 3842 if (err) { 3843 dev_err_probe(xudc->dev, err, "failed to request regulators\n"); 3844 return err; 3845 } 3846 3847 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev); 3848 if (IS_ERR(xudc->padctl)) 3849 return PTR_ERR(xudc->padctl); 3850 3851 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies); 3852 if (err) { 3853 dev_err(xudc->dev, "failed to enable regulators: %d\n", err); 3854 goto put_padctl; 3855 } 3856 3857 err = tegra_xudc_phy_get(xudc); 3858 if (err) 3859 goto disable_regulator; 3860 3861 err = tegra_xudc_powerdomain_init(xudc); 3862 if (err) 3863 goto put_powerdomains; 3864 3865 err = tegra_xudc_phy_init(xudc); 3866 if (err) 3867 goto put_powerdomains; 3868 3869 err = tegra_xudc_alloc_event_ring(xudc); 3870 if (err) 3871 goto disable_phy; 3872 3873 err = tegra_xudc_alloc_eps(xudc); 3874 if (err) 3875 goto free_event_ring; 3876 3877 spin_lock_init(&xudc->lock); 3878 3879 init_completion(&xudc->disconnect_complete); 3880 3881 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work); 3882 3883 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work); 3884 3885 INIT_DELAYED_WORK(&xudc->port_reset_war_work, 3886 tegra_xudc_port_reset_war_work); 3887 3888 pm_runtime_enable(&pdev->dev); 3889 3890 xudc->gadget.ops = &tegra_xudc_gadget_ops; 3891 xudc->gadget.ep0 = &xudc->ep[0].usb_ep; 3892 xudc->gadget.name = "tegra-xudc"; 3893 xudc->gadget.max_speed = USB_SPEED_SUPER; 3894 3895 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget); 3896 if (err) { 3897 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err); 3898 goto free_eps; 3899 } 3900 3901 for (i = 0; i < xudc->soc->num_phys; i++) { 3902 if (!xudc->usbphy[i]) 3903 continue; 3904 3905 usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb); 3906 tegra_xudc_update_data_role(xudc, xudc->usbphy[i]); 3907 } 3908 3909 return 0; 3910 3911 free_eps: 3912 pm_runtime_disable(&pdev->dev); 3913 tegra_xudc_free_eps(xudc); 3914 free_event_ring: 3915 tegra_xudc_free_event_ring(xudc); 3916 disable_phy: 3917 tegra_xudc_phy_exit(xudc); 3918 put_powerdomains: 3919 tegra_xudc_powerdomain_remove(xudc); 3920 disable_regulator: 3921 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3922 put_padctl: 3923 tegra_xusb_padctl_put(xudc->padctl); 3924 3925 return err; 3926 } 3927 3928 static void tegra_xudc_remove(struct platform_device *pdev) 3929 { 3930 struct tegra_xudc *xudc = platform_get_drvdata(pdev); 3931 unsigned int i; 3932 3933 pm_runtime_get_sync(xudc->dev); 3934 3935 cancel_delayed_work_sync(&xudc->plc_reset_work); 3936 cancel_work_sync(&xudc->usb_role_sw_work); 3937 3938 usb_del_gadget_udc(&xudc->gadget); 3939 3940 tegra_xudc_free_eps(xudc); 3941 tegra_xudc_free_event_ring(xudc); 3942 3943 tegra_xudc_powerdomain_remove(xudc); 3944 3945 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3946 3947 for (i = 0; i < xudc->soc->num_phys; i++) { 3948 phy_power_off(xudc->utmi_phy[i]); 3949 phy_power_off(xudc->usb3_phy[i]); 3950 } 3951 3952 tegra_xudc_phy_exit(xudc); 3953 3954 pm_runtime_disable(xudc->dev); 3955 pm_runtime_put(xudc->dev); 3956 3957 tegra_xusb_padctl_put(xudc->padctl); 3958 } 3959 3960 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc) 3961 { 3962 unsigned long flags; 3963 3964 dev_dbg(xudc->dev, "entering ELPG\n"); 3965 3966 spin_lock_irqsave(&xudc->lock, flags); 3967 3968 xudc->powergated = true; 3969 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL); 3970 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM); 3971 xudc_writel(xudc, 0, CTRL); 3972 3973 spin_unlock_irqrestore(&xudc->lock, flags); 3974 3975 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks); 3976 3977 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3978 3979 dev_dbg(xudc->dev, "entering ELPG done\n"); 3980 return 0; 3981 } 3982 3983 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc) 3984 { 3985 unsigned long flags; 3986 int err; 3987 3988 dev_dbg(xudc->dev, "exiting ELPG\n"); 3989 3990 err = regulator_bulk_enable(xudc->soc->num_supplies, 3991 xudc->supplies); 3992 if (err < 0) 3993 return err; 3994 3995 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks); 3996 if (err < 0) 3997 return err; 3998 3999 tegra_xudc_fpci_ipfs_init(xudc); 4000 4001 tegra_xudc_device_params_init(xudc); 4002 4003 tegra_xudc_init_event_ring(xudc); 4004 4005 tegra_xudc_init_eps(xudc); 4006 4007 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM); 4008 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL); 4009 4010 spin_lock_irqsave(&xudc->lock, flags); 4011 xudc->powergated = false; 4012 spin_unlock_irqrestore(&xudc->lock, flags); 4013 4014 dev_dbg(xudc->dev, "exiting ELPG done\n"); 4015 return 0; 4016 } 4017 4018 static int __maybe_unused tegra_xudc_suspend(struct device *dev) 4019 { 4020 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4021 unsigned long flags; 4022 4023 spin_lock_irqsave(&xudc->lock, flags); 4024 xudc->suspended = true; 4025 spin_unlock_irqrestore(&xudc->lock, flags); 4026 4027 flush_work(&xudc->usb_role_sw_work); 4028 4029 if (!pm_runtime_status_suspended(dev)) { 4030 /* Forcibly disconnect before powergating. */ 4031 tegra_xudc_device_mode_off(xudc); 4032 tegra_xudc_powergate(xudc); 4033 } 4034 4035 pm_runtime_disable(dev); 4036 4037 return 0; 4038 } 4039 4040 static int __maybe_unused tegra_xudc_resume(struct device *dev) 4041 { 4042 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4043 unsigned long flags; 4044 int err; 4045 4046 err = tegra_xudc_unpowergate(xudc); 4047 if (err < 0) 4048 return err; 4049 4050 spin_lock_irqsave(&xudc->lock, flags); 4051 xudc->suspended = false; 4052 if (xudc->device_mode != xudc->current_device_mode) 4053 schedule_work(&xudc->usb_role_sw_work); 4054 spin_unlock_irqrestore(&xudc->lock, flags); 4055 4056 pm_runtime_enable(dev); 4057 4058 return 0; 4059 } 4060 4061 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev) 4062 { 4063 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4064 4065 return tegra_xudc_powergate(xudc); 4066 } 4067 4068 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev) 4069 { 4070 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4071 4072 return tegra_xudc_unpowergate(xudc); 4073 } 4074 4075 static const struct dev_pm_ops tegra_xudc_pm_ops = { 4076 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume) 4077 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend, 4078 tegra_xudc_runtime_resume, NULL) 4079 }; 4080 4081 static struct platform_driver tegra_xudc_driver = { 4082 .probe = tegra_xudc_probe, 4083 .remove = tegra_xudc_remove, 4084 .driver = { 4085 .name = "tegra-xudc", 4086 .pm = &tegra_xudc_pm_ops, 4087 .of_match_table = tegra_xudc_of_match, 4088 }, 4089 }; 4090 module_platform_driver(tegra_xudc_driver); 4091 4092 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller"); 4093 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>"); 4094 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>"); 4095 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>"); 4096 MODULE_LICENSE("GPL v2"); 4097