xref: /linux/drivers/usb/gadget/udc/tegra-xudc.c (revision 402eb8ec54b36f8fc0649768c01abb57062d6f8b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NVIDIA Tegra XUSB device mode controller
4  *
5  * Copyright (c) 2013-2019, NVIDIA CORPORATION.  All rights reserved.
6  * Copyright (c) 2015, Google Inc.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/phy/phy.h>
21 #include <linux/phy/tegra/xusb.h>
22 #include <linux/pm_domain.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/otg.h>
30 #include <linux/usb/role.h>
31 #include <linux/usb/phy.h>
32 #include <linux/workqueue.h>
33 
34 /* XUSB_DEV registers */
35 #define DB 0x004
36 #define  DB_TARGET_MASK GENMASK(15, 8)
37 #define  DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
38 #define  DB_STREAMID_MASK GENMASK(31, 16)
39 #define  DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
40 #define ERSTSZ 0x008
41 #define  ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
42 #define  ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
43 #define ERSTXBALO(x) (0x010 + 8 * (x))
44 #define ERSTXBAHI(x) (0x014 + 8 * (x))
45 #define ERDPLO 0x020
46 #define  ERDPLO_EHB BIT(3)
47 #define ERDPHI 0x024
48 #define EREPLO 0x028
49 #define  EREPLO_ECS BIT(0)
50 #define  EREPLO_SEGI BIT(1)
51 #define EREPHI 0x02c
52 #define CTRL 0x030
53 #define  CTRL_RUN BIT(0)
54 #define  CTRL_LSE BIT(1)
55 #define  CTRL_IE BIT(4)
56 #define  CTRL_SMI_EVT BIT(5)
57 #define  CTRL_SMI_DSE BIT(6)
58 #define  CTRL_EWE BIT(7)
59 #define  CTRL_DEVADDR_MASK GENMASK(30, 24)
60 #define  CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
61 #define  CTRL_ENABLE BIT(31)
62 #define ST 0x034
63 #define  ST_RC BIT(0)
64 #define  ST_IP BIT(4)
65 #define RT_IMOD	0x038
66 #define  RT_IMOD_IMODI_MASK GENMASK(15, 0)
67 #define  RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
68 #define  RT_IMOD_IMODC_MASK GENMASK(31, 16)
69 #define  RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
70 #define PORTSC 0x03c
71 #define  PORTSC_CCS BIT(0)
72 #define  PORTSC_PED BIT(1)
73 #define  PORTSC_PR BIT(4)
74 #define  PORTSC_PLS_SHIFT 5
75 #define  PORTSC_PLS_MASK GENMASK(8, 5)
76 #define  PORTSC_PLS_U0 0x0
77 #define  PORTSC_PLS_U2 0x2
78 #define  PORTSC_PLS_U3 0x3
79 #define  PORTSC_PLS_DISABLED 0x4
80 #define  PORTSC_PLS_RXDETECT 0x5
81 #define  PORTSC_PLS_INACTIVE 0x6
82 #define  PORTSC_PLS_RESUME 0xf
83 #define  PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
84 #define  PORTSC_PS_SHIFT 10
85 #define  PORTSC_PS_MASK GENMASK(13, 10)
86 #define  PORTSC_PS_UNDEFINED 0x0
87 #define  PORTSC_PS_FS 0x1
88 #define  PORTSC_PS_LS 0x2
89 #define  PORTSC_PS_HS 0x3
90 #define  PORTSC_PS_SS 0x4
91 #define  PORTSC_LWS BIT(16)
92 #define  PORTSC_CSC BIT(17)
93 #define  PORTSC_WRC BIT(19)
94 #define  PORTSC_PRC BIT(21)
95 #define  PORTSC_PLC BIT(22)
96 #define  PORTSC_CEC BIT(23)
97 #define  PORTSC_WPR BIT(30)
98 #define  PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
99 			     PORTSC_PLC | PORTSC_CEC)
100 #define ECPLO 0x040
101 #define ECPHI 0x044
102 #define MFINDEX 0x048
103 #define  MFINDEX_FRAME_SHIFT 3
104 #define  MFINDEX_FRAME_MASK GENMASK(13, 3)
105 #define PORTPM 0x04c
106 #define  PORTPM_L1S_MASK GENMASK(1, 0)
107 #define  PORTPM_L1S_DROP 0x0
108 #define  PORTPM_L1S_ACCEPT 0x1
109 #define  PORTPM_L1S_NYET 0x2
110 #define  PORTPM_L1S_STALL 0x3
111 #define  PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
112 #define  PORTPM_RWE BIT(3)
113 #define  PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
114 #define  PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
115 #define  PORTPM_FLA BIT(24)
116 #define  PORTPM_VBA BIT(25)
117 #define  PORTPM_WOC BIT(26)
118 #define  PORTPM_WOD BIT(27)
119 #define  PORTPM_U1E BIT(28)
120 #define  PORTPM_U2E BIT(29)
121 #define  PORTPM_FRWE BIT(30)
122 #define  PORTPM_PNG_CYA BIT(31)
123 #define EP_HALT 0x050
124 #define EP_PAUSE 0x054
125 #define EP_RELOAD 0x058
126 #define EP_STCHG 0x05c
127 #define DEVNOTIF_LO 0x064
128 #define  DEVNOTIF_LO_TRIG BIT(0)
129 #define  DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
130 #define  DEVNOTIF_LO_TYPE(x) (((x) << 4)  & DEVNOTIF_LO_TYPE_MASK)
131 #define  DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
132 #define DEVNOTIF_HI 0x068
133 #define PORTHALT 0x06c
134 #define  PORTHALT_HALT_LTSSM BIT(0)
135 #define  PORTHALT_HALT_REJECT BIT(1)
136 #define  PORTHALT_STCHG_REQ BIT(20)
137 #define  PORTHALT_STCHG_INTR_EN BIT(24)
138 #define PORT_TM	0x070
139 #define EP_THREAD_ACTIVE 0x074
140 #define EP_STOPPED 0x078
141 #define HSFSPI_COUNT0 0x100
142 #define HSFSPI_COUNT13 0x134
143 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
144 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
145 				HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
146 #define BLCG 0x840
147 #define SSPX_CORE_CNT0 0x610
148 #define  SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
149 #define  SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
150 #define SSPX_CORE_CNT30 0x688
151 #define  SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
152 #define  SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
153 					SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
154 #define SSPX_CORE_CNT32 0x690
155 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
156 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
157 					SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
158 #define SSPX_CORE_CNT56 0x6fc
159 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0)
160 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \
161 				SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK)
162 #define SSPX_CORE_CNT57 0x700
163 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0)
164 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \
165 				SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK)
166 #define SSPX_CORE_CNT65 0x720
167 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0)
168 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \
169 				SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK)
170 #define SSPX_CORE_CNT66 0x724
171 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0)
172 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \
173 				SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK)
174 #define SSPX_CORE_CNT67 0x728
175 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0)
176 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \
177 				SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK)
178 #define SSPX_CORE_CNT72 0x73c
179 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0)
180 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \
181 				SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK)
182 #define SSPX_CORE_PADCTL4 0x750
183 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
184 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
185 				SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
186 #define  BLCG_DFPCI BIT(0)
187 #define  BLCG_UFPCI BIT(1)
188 #define  BLCG_FE BIT(2)
189 #define  BLCG_COREPLL_PWRDN BIT(8)
190 #define  BLCG_IOPLL_0_PWRDN BIT(9)
191 #define  BLCG_IOPLL_1_PWRDN BIT(10)
192 #define  BLCG_IOPLL_2_PWRDN BIT(11)
193 #define  BLCG_ALL 0x1ff
194 #define CFG_DEV_SSPI_XFER 0x858
195 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
196 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
197 					CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
198 #define CFG_DEV_FE 0x85c
199 #define  CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
200 #define  CFG_DEV_FE_PORTREGSEL_SS_PI 1
201 #define  CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
202 #define  CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
203 #define  CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
204 
205 /* FPCI registers */
206 #define XUSB_DEV_CFG_1 0x004
207 #define  XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
208 #define  XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
209 #define  XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
210 #define XUSB_DEV_CFG_4 0x010
211 #define  XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
212 #define XUSB_DEV_CFG_5 0x014
213 
214 /* IPFS registers */
215 #define XUSB_DEV_CONFIGURATION_0 0x180
216 #define  XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
217 #define XUSB_DEV_INTR_MASK_0 0x188
218 #define  XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
219 
220 struct tegra_xudc_ep_context {
221 	__le32 info0;
222 	__le32 info1;
223 	__le32 deq_lo;
224 	__le32 deq_hi;
225 	__le32 tx_info;
226 	__le32 rsvd[11];
227 };
228 
229 #define EP_STATE_DISABLED 0
230 #define EP_STATE_RUNNING 1
231 #define EP_STATE_HALTED 2
232 #define EP_STATE_STOPPED 3
233 #define EP_STATE_ERROR 4
234 
235 #define EP_TYPE_INVALID 0
236 #define EP_TYPE_ISOCH_OUT 1
237 #define EP_TYPE_BULK_OUT 2
238 #define EP_TYPE_INTERRUPT_OUT 3
239 #define EP_TYPE_CONTROL 4
240 #define EP_TYPE_ISCOH_IN 5
241 #define EP_TYPE_BULK_IN 6
242 #define EP_TYPE_INTERRUPT_IN 7
243 
244 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask)			\
245 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx)	\
246 {									\
247 	return (le32_to_cpu(ctx->member) >> (shift)) & (mask);		\
248 }									\
249 static inline void							\
250 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val)		\
251 {									\
252 	u32 tmp;							\
253 									\
254 	tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift));		\
255 	tmp |= (val & (mask)) << (shift);				\
256 	ctx->member = cpu_to_le32(tmp);					\
257 }
258 
259 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
260 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
261 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
262 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
263 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
264 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
265 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
266 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
267 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
268 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
269 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
270 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
271 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
272 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
273 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
274 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
275 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1)
276 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
277 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1)
278 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f)
279 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
280 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
281 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
282 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
283 
284 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
285 {
286 	return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
287 		(ep_ctx_read_deq_lo(ctx) << 4);
288 }
289 
290 static inline void
291 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
292 {
293 	ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
294 	ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
295 }
296 
297 struct tegra_xudc_trb {
298 	__le32 data_lo;
299 	__le32 data_hi;
300 	__le32 status;
301 	__le32 control;
302 };
303 
304 #define TRB_TYPE_RSVD 0
305 #define TRB_TYPE_NORMAL 1
306 #define TRB_TYPE_SETUP_STAGE 2
307 #define TRB_TYPE_DATA_STAGE 3
308 #define TRB_TYPE_STATUS_STAGE 4
309 #define TRB_TYPE_ISOCH 5
310 #define TRB_TYPE_LINK 6
311 #define TRB_TYPE_TRANSFER_EVENT 32
312 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
313 #define TRB_TYPE_STREAM 48
314 #define TRB_TYPE_SETUP_PACKET_EVENT 63
315 
316 #define TRB_CMPL_CODE_INVALID 0
317 #define TRB_CMPL_CODE_SUCCESS 1
318 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
319 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
320 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
321 #define TRB_CMPL_CODE_TRB_ERR 5
322 #define TRB_CMPL_CODE_STALL 6
323 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
324 #define TRB_CMPL_CODE_SHORT_PACKET 13
325 #define TRB_CMPL_CODE_RING_UNDERRUN 14
326 #define TRB_CMPL_CODE_RING_OVERRUN 15
327 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
328 #define TRB_CMPL_CODE_STOPPED 26
329 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
330 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
331 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
332 #define TRB_CMPL_CODE_HOST_REJECTED 221
333 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
334 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
335 
336 #define BUILD_TRB_RW(name, member, shift, mask)				\
337 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb)		\
338 {									\
339 	return (le32_to_cpu(trb->member) >> (shift)) & (mask);		\
340 }									\
341 static inline void							\
342 trb_write_##name(struct tegra_xudc_trb *trb, u32 val)			\
343 {									\
344 	u32 tmp;							\
345 									\
346 	tmp = le32_to_cpu(trb->member) & ~((mask) << (shift));		\
347 	tmp |= (val & (mask)) << (shift);				\
348 	trb->member = cpu_to_le32(tmp);					\
349 }
350 
351 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
352 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
353 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
354 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
355 BUILD_TRB_RW(td_size, status, 17, 0x1f)
356 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
357 BUILD_TRB_RW(cycle, control, 0, 0x1)
358 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
359 BUILD_TRB_RW(isp, control, 2, 0x1)
360 BUILD_TRB_RW(chain, control, 4, 0x1)
361 BUILD_TRB_RW(ioc, control, 5, 0x1)
362 BUILD_TRB_RW(type, control, 10, 0x3f)
363 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
364 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
365 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
366 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
367 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
368 BUILD_TRB_RW(sia, control, 31, 0x1)
369 
370 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
371 {
372 	return ((u64)trb_read_data_hi(trb) << 32) |
373 		trb_read_data_lo(trb);
374 }
375 
376 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
377 {
378 	trb_write_data_lo(trb, lower_32_bits(addr));
379 	trb_write_data_hi(trb, upper_32_bits(addr));
380 }
381 
382 struct tegra_xudc_request {
383 	struct usb_request usb_req;
384 
385 	size_t buf_queued;
386 	unsigned int trbs_queued;
387 	unsigned int trbs_needed;
388 	bool need_zlp;
389 
390 	struct tegra_xudc_trb *first_trb;
391 	struct tegra_xudc_trb *last_trb;
392 
393 	struct list_head list;
394 };
395 
396 struct tegra_xudc_ep {
397 	struct tegra_xudc *xudc;
398 	struct usb_ep usb_ep;
399 	unsigned int index;
400 	char name[8];
401 
402 	struct tegra_xudc_ep_context *context;
403 
404 #define XUDC_TRANSFER_RING_SIZE 64
405 	struct tegra_xudc_trb *transfer_ring;
406 	dma_addr_t transfer_ring_phys;
407 
408 	unsigned int enq_ptr;
409 	unsigned int deq_ptr;
410 	bool pcs;
411 	bool ring_full;
412 	bool stream_rejected;
413 
414 	struct list_head queue;
415 	const struct usb_endpoint_descriptor *desc;
416 	const struct usb_ss_ep_comp_descriptor *comp_desc;
417 };
418 
419 struct tegra_xudc_sel_timing {
420 	__u8 u1sel;
421 	__u8 u1pel;
422 	__le16 u2sel;
423 	__le16 u2pel;
424 };
425 
426 enum tegra_xudc_setup_state {
427 	WAIT_FOR_SETUP,
428 	DATA_STAGE_XFER,
429 	DATA_STAGE_RECV,
430 	STATUS_STAGE_XFER,
431 	STATUS_STAGE_RECV,
432 };
433 
434 struct tegra_xudc_setup_packet {
435 	struct usb_ctrlrequest ctrl_req;
436 	unsigned int seq_num;
437 };
438 
439 struct tegra_xudc_save_regs {
440 	u32 ctrl;
441 	u32 portpm;
442 };
443 
444 struct tegra_xudc {
445 	struct device *dev;
446 	const struct tegra_xudc_soc *soc;
447 	struct tegra_xusb_padctl *padctl;
448 
449 	spinlock_t lock;
450 
451 	struct usb_gadget gadget;
452 	struct usb_gadget_driver *driver;
453 
454 #define XUDC_NR_EVENT_RINGS 2
455 #define XUDC_EVENT_RING_SIZE 4096
456 	struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
457 	dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
458 	unsigned int event_ring_index;
459 	unsigned int event_ring_deq_ptr;
460 	bool ccs;
461 
462 #define XUDC_NR_EPS 32
463 	struct tegra_xudc_ep ep[XUDC_NR_EPS];
464 	struct tegra_xudc_ep_context *ep_context;
465 	dma_addr_t ep_context_phys;
466 
467 	struct device *genpd_dev_device;
468 	struct device *genpd_dev_ss;
469 	struct device_link *genpd_dl_device;
470 	struct device_link *genpd_dl_ss;
471 
472 	struct dma_pool *transfer_ring_pool;
473 
474 	bool queued_setup_packet;
475 	struct tegra_xudc_setup_packet setup_packet;
476 	enum tegra_xudc_setup_state setup_state;
477 	u16 setup_seq_num;
478 
479 	u16 dev_addr;
480 	u16 isoch_delay;
481 	struct tegra_xudc_sel_timing sel_timing;
482 	u8 test_mode_pattern;
483 	u16 status_buf;
484 	struct tegra_xudc_request *ep0_req;
485 
486 	bool pullup;
487 
488 	unsigned int nr_enabled_eps;
489 	unsigned int nr_isoch_eps;
490 
491 	unsigned int device_state;
492 	unsigned int resume_state;
493 
494 	int irq;
495 
496 	void __iomem *base;
497 	resource_size_t phys_base;
498 	void __iomem *ipfs;
499 	void __iomem *fpci;
500 
501 	struct regulator_bulk_data *supplies;
502 
503 	struct clk_bulk_data *clks;
504 
505 	bool device_mode;
506 	struct work_struct usb_role_sw_work;
507 
508 	struct phy **usb3_phy;
509 	struct phy *curr_usb3_phy;
510 	struct phy **utmi_phy;
511 	struct phy *curr_utmi_phy;
512 
513 	struct tegra_xudc_save_regs saved_regs;
514 	bool suspended;
515 	bool powergated;
516 
517 	struct usb_phy **usbphy;
518 	struct usb_phy *curr_usbphy;
519 	struct notifier_block vbus_nb;
520 
521 	struct completion disconnect_complete;
522 
523 	bool selfpowered;
524 
525 #define TOGGLE_VBUS_WAIT_MS 100
526 	struct delayed_work plc_reset_work;
527 	bool wait_csc;
528 
529 	struct delayed_work port_reset_war_work;
530 	bool wait_for_sec_prc;
531 };
532 
533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
534 #define XUDC_MAX_ISOCH_EPS 4
535 #define XUDC_INTERRUPT_MODERATION_US 0
536 
537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
538 	.bLength = USB_DT_ENDPOINT_SIZE,
539 	.bDescriptorType = USB_DT_ENDPOINT,
540 	.bEndpointAddress = 0,
541 	.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
542 	.wMaxPacketSize = cpu_to_le16(64),
543 };
544 
545 struct tegra_xudc_soc {
546 	const char * const *supply_names;
547 	unsigned int num_supplies;
548 	const char * const *clock_names;
549 	unsigned int num_clks;
550 	unsigned int num_phys;
551 	bool u1_enable;
552 	bool u2_enable;
553 	bool lpm_enable;
554 	bool invalid_seq_num;
555 	bool pls_quirk;
556 	bool port_reset_quirk;
557 	bool port_speed_quirk;
558 	bool has_ipfs;
559 };
560 
561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
562 {
563 	return readl(xudc->fpci + offset);
564 }
565 
566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
567 			       unsigned int offset)
568 {
569 	writel(val, xudc->fpci + offset);
570 }
571 
572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
573 {
574 	return readl(xudc->ipfs + offset);
575 }
576 
577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
578 			       unsigned int offset)
579 {
580 	writel(val, xudc->ipfs + offset);
581 }
582 
583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
584 {
585 	return readl(xudc->base + offset);
586 }
587 
588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
589 			       unsigned int offset)
590 {
591 	writel(val, xudc->base + offset);
592 }
593 
594 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
595 				  unsigned int offset, u32 mask, u32 val)
596 {
597 	u32 regval;
598 
599 	return readl_poll_timeout_atomic(xudc->base + offset, regval,
600 					 (regval & mask) == val, 1, 100);
601 }
602 
603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
604 {
605 	return container_of(gadget, struct tegra_xudc, gadget);
606 }
607 
608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
609 {
610 	return container_of(ep, struct tegra_xudc_ep, usb_ep);
611 }
612 
613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
614 {
615 	return container_of(req, struct tegra_xudc_request, usb_req);
616 }
617 
618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
619 			    struct tegra_xudc_trb *trb)
620 {
621 	dev_dbg(xudc->dev,
622 		"%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
623 		type, trb, trb->data_lo, trb->data_hi, trb->status,
624 		trb->control);
625 }
626 
627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc)
628 {
629 	u32 val;
630 
631 	/* limit port speed to gen 1 */
632 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
633 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
634 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260);
635 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
636 
637 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
638 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
639 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6);
640 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
641 
642 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
643 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
644 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0);
645 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
646 
647 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
648 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
649 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0);
650 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
651 
652 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
653 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
654 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0);
655 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
656 
657 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
658 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
659 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10);
660 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
661 }
662 
663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc)
664 {
665 	u32 val;
666 
667 	/* restore port speed to gen2 */
668 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
669 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
670 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438);
671 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
672 
673 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
674 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
675 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528);
676 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
677 
678 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
679 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
680 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10);
681 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
682 
683 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
684 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
685 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348);
686 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
687 
688 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
689 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
690 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0);
691 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
692 
693 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
694 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
695 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21);
696 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
697 }
698 
699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
700 {
701 	int err;
702 
703 	pm_runtime_get_sync(xudc->dev);
704 
705 	err = phy_power_on(xudc->curr_utmi_phy);
706 	if (err < 0)
707 		dev_err(xudc->dev, "UTMI power on failed: %d\n", err);
708 
709 	err = phy_power_on(xudc->curr_usb3_phy);
710 	if (err < 0)
711 		dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err);
712 
713 	dev_dbg(xudc->dev, "device mode on\n");
714 
715 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
716 			 USB_ROLE_DEVICE);
717 }
718 
719 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
720 {
721 	bool connected = false;
722 	u32 pls, val;
723 	int err;
724 
725 	dev_dbg(xudc->dev, "device mode off\n");
726 
727 	connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
728 
729 	reinit_completion(&xudc->disconnect_complete);
730 
731 	if (xudc->soc->port_speed_quirk)
732 		tegra_xudc_restore_port_speed(xudc);
733 
734 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
735 
736 	pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
737 		PORTSC_PLS_SHIFT;
738 
739 	/* Direct link to U0 if disconnected in RESUME or U2. */
740 	if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
741 	    (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
742 		val = xudc_readl(xudc, PORTPM);
743 		val |= PORTPM_FRWE;
744 		xudc_writel(xudc, val, PORTPM);
745 
746 		val = xudc_readl(xudc, PORTSC);
747 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
748 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
749 		xudc_writel(xudc, val, PORTSC);
750 	}
751 
752 	/* Wait for disconnect event. */
753 	if (connected)
754 		wait_for_completion(&xudc->disconnect_complete);
755 
756 	/* Make sure interrupt handler has completed before powergating. */
757 	synchronize_irq(xudc->irq);
758 
759 	err = phy_power_off(xudc->curr_utmi_phy);
760 	if (err < 0)
761 		dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err);
762 
763 	err = phy_power_off(xudc->curr_usb3_phy);
764 	if (err < 0)
765 		dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err);
766 
767 	pm_runtime_put(xudc->dev);
768 }
769 
770 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
771 {
772 	struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
773 					       usb_role_sw_work);
774 
775 	if (xudc->device_mode)
776 		tegra_xudc_device_mode_on(xudc);
777 	else
778 		tegra_xudc_device_mode_off(xudc);
779 }
780 
781 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
782 					      struct usb_phy *usbphy)
783 {
784 	unsigned int i;
785 
786 	for (i = 0; i < xudc->soc->num_phys; i++) {
787 		if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
788 			return i;
789 	}
790 
791 	dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
792 	return -1;
793 }
794 
795 static int tegra_xudc_vbus_notify(struct notifier_block *nb,
796 					 unsigned long action, void *data)
797 {
798 	struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
799 					       vbus_nb);
800 	struct usb_phy *usbphy = (struct usb_phy *)data;
801 	int phy_index;
802 
803 	dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
804 
805 	if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
806 	    (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
807 		dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
808 			xudc->device_mode);
809 		return NOTIFY_OK;
810 	}
811 
812 	xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true :
813 								     false;
814 
815 	phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
816 	dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
817 		phy_index);
818 
819 	if (!xudc->suspended && phy_index != -1) {
820 		xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
821 		xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
822 		xudc->curr_usbphy = usbphy;
823 		schedule_work(&xudc->usb_role_sw_work);
824 	}
825 
826 	return NOTIFY_OK;
827 }
828 
829 static void tegra_xudc_plc_reset_work(struct work_struct *work)
830 {
831 	struct delayed_work *dwork = to_delayed_work(work);
832 	struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
833 					       plc_reset_work);
834 	unsigned long flags;
835 
836 	spin_lock_irqsave(&xudc->lock, flags);
837 
838 	if (xudc->wait_csc) {
839 		u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
840 			PORTSC_PLS_SHIFT;
841 
842 		if (pls == PORTSC_PLS_INACTIVE) {
843 			dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
844 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
845 					 USB_ROLE_NONE);
846 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
847 					 USB_ROLE_DEVICE);
848 
849 			xudc->wait_csc = false;
850 		}
851 	}
852 
853 	spin_unlock_irqrestore(&xudc->lock, flags);
854 }
855 
856 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
857 {
858 	struct delayed_work *dwork = to_delayed_work(work);
859 	struct tegra_xudc *xudc =
860 		container_of(dwork, struct tegra_xudc, port_reset_war_work);
861 	unsigned long flags;
862 	u32 pls;
863 	int ret;
864 
865 	spin_lock_irqsave(&xudc->lock, flags);
866 
867 	if (xudc->device_mode && xudc->wait_for_sec_prc) {
868 		pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
869 			PORTSC_PLS_SHIFT;
870 		dev_dbg(xudc->dev, "pls = %x\n", pls);
871 
872 		if (pls == PORTSC_PLS_DISABLED) {
873 			dev_dbg(xudc->dev, "toggle vbus\n");
874 			/* PRC doesn't complete in 100ms, toggle the vbus */
875 			ret = tegra_phy_xusb_utmi_port_reset(
876 				xudc->curr_utmi_phy);
877 			if (ret == 1)
878 				xudc->wait_for_sec_prc = 0;
879 		}
880 	}
881 
882 	spin_unlock_irqrestore(&xudc->lock, flags);
883 }
884 
885 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
886 				   struct tegra_xudc_trb *trb)
887 {
888 	unsigned int index;
889 
890 	index = trb - ep->transfer_ring;
891 
892 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
893 		return 0;
894 
895 	return (ep->transfer_ring_phys + index * sizeof(*trb));
896 }
897 
898 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
899 					       dma_addr_t addr)
900 {
901 	struct tegra_xudc_trb *trb;
902 	unsigned int index;
903 
904 	index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
905 
906 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
907 		return NULL;
908 
909 	trb = &ep->transfer_ring[index];
910 
911 	return trb;
912 }
913 
914 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
915 {
916 	xudc_writel(xudc, BIT(ep), EP_RELOAD);
917 	xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
918 }
919 
920 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
921 {
922 	u32 val;
923 
924 	val = xudc_readl(xudc, EP_PAUSE);
925 	if (val & BIT(ep))
926 		return;
927 	val |= BIT(ep);
928 
929 	xudc_writel(xudc, val, EP_PAUSE);
930 
931 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
932 
933 	xudc_writel(xudc, BIT(ep), EP_STCHG);
934 }
935 
936 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
937 {
938 	u32 val;
939 
940 	val = xudc_readl(xudc, EP_PAUSE);
941 	if (!(val & BIT(ep)))
942 		return;
943 	val &= ~BIT(ep);
944 
945 	xudc_writel(xudc, val, EP_PAUSE);
946 
947 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
948 
949 	xudc_writel(xudc, BIT(ep), EP_STCHG);
950 }
951 
952 static void ep_unpause_all(struct tegra_xudc *xudc)
953 {
954 	u32 val;
955 
956 	val = xudc_readl(xudc, EP_PAUSE);
957 
958 	xudc_writel(xudc, 0, EP_PAUSE);
959 
960 	xudc_readl_poll(xudc, EP_STCHG, val, val);
961 
962 	xudc_writel(xudc, val, EP_STCHG);
963 }
964 
965 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
966 {
967 	u32 val;
968 
969 	val = xudc_readl(xudc, EP_HALT);
970 	if (val & BIT(ep))
971 		return;
972 	val |= BIT(ep);
973 	xudc_writel(xudc, val, EP_HALT);
974 
975 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
976 
977 	xudc_writel(xudc, BIT(ep), EP_STCHG);
978 }
979 
980 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
981 {
982 	u32 val;
983 
984 	val = xudc_readl(xudc, EP_HALT);
985 	if (!(val & BIT(ep)))
986 		return;
987 	val &= ~BIT(ep);
988 	xudc_writel(xudc, val, EP_HALT);
989 
990 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
991 
992 	xudc_writel(xudc, BIT(ep), EP_STCHG);
993 }
994 
995 static void ep_unhalt_all(struct tegra_xudc *xudc)
996 {
997 	u32 val;
998 
999 	val = xudc_readl(xudc, EP_HALT);
1000 	if (!val)
1001 		return;
1002 	xudc_writel(xudc, 0, EP_HALT);
1003 
1004 	xudc_readl_poll(xudc, EP_STCHG, val, val);
1005 
1006 	xudc_writel(xudc, val, EP_STCHG);
1007 }
1008 
1009 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
1010 {
1011 	xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
1012 	xudc_writel(xudc, BIT(ep), EP_STOPPED);
1013 }
1014 
1015 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
1016 {
1017 	xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
1018 }
1019 
1020 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
1021 				struct tegra_xudc_request *req, int status)
1022 {
1023 	struct tegra_xudc *xudc = ep->xudc;
1024 
1025 	dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
1026 		 req, ep->index, status);
1027 
1028 	if (likely(req->usb_req.status == -EINPROGRESS))
1029 		req->usb_req.status = status;
1030 
1031 	list_del_init(&req->list);
1032 
1033 	if (usb_endpoint_xfer_control(ep->desc)) {
1034 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1035 					 (xudc->setup_state ==
1036 					  DATA_STAGE_XFER));
1037 	} else {
1038 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1039 					 usb_endpoint_dir_in(ep->desc));
1040 	}
1041 
1042 	spin_unlock(&xudc->lock);
1043 	usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
1044 	spin_lock(&xudc->lock);
1045 }
1046 
1047 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
1048 {
1049 	struct tegra_xudc_request *req;
1050 
1051 	while (!list_empty(&ep->queue)) {
1052 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1053 				       list);
1054 		tegra_xudc_req_done(ep, req, status);
1055 	}
1056 }
1057 
1058 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
1059 {
1060 	if (ep->ring_full)
1061 		return 0;
1062 
1063 	if (ep->deq_ptr > ep->enq_ptr)
1064 		return ep->deq_ptr - ep->enq_ptr - 1;
1065 
1066 	return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
1067 }
1068 
1069 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
1070 				     struct tegra_xudc_request *req,
1071 				     struct tegra_xudc_trb *trb,
1072 				     bool ioc)
1073 {
1074 	struct tegra_xudc *xudc = ep->xudc;
1075 	dma_addr_t buf_addr;
1076 	size_t len;
1077 
1078 	len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
1079 		    req->buf_queued);
1080 	if (len > 0)
1081 		buf_addr = req->usb_req.dma + req->buf_queued;
1082 	else
1083 		buf_addr = 0;
1084 
1085 	trb_write_data_ptr(trb, buf_addr);
1086 
1087 	trb_write_transfer_len(trb, len);
1088 	trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
1089 
1090 	if (req->trbs_queued == req->trbs_needed - 1 ||
1091 		(req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
1092 		trb_write_chain(trb, 0);
1093 	else
1094 		trb_write_chain(trb, 1);
1095 
1096 	trb_write_ioc(trb, ioc);
1097 
1098 	if (usb_endpoint_dir_out(ep->desc) ||
1099 	    (usb_endpoint_xfer_control(ep->desc) &&
1100 	     (xudc->setup_state == DATA_STAGE_RECV)))
1101 		trb_write_isp(trb, 1);
1102 	else
1103 		trb_write_isp(trb, 0);
1104 
1105 	if (usb_endpoint_xfer_control(ep->desc)) {
1106 		if (xudc->setup_state == DATA_STAGE_XFER ||
1107 		    xudc->setup_state == DATA_STAGE_RECV)
1108 			trb_write_type(trb, TRB_TYPE_DATA_STAGE);
1109 		else
1110 			trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
1111 
1112 		if (xudc->setup_state == DATA_STAGE_XFER ||
1113 		    xudc->setup_state == STATUS_STAGE_XFER)
1114 			trb_write_data_stage_dir(trb, 1);
1115 		else
1116 			trb_write_data_stage_dir(trb, 0);
1117 	} else if (usb_endpoint_xfer_isoc(ep->desc)) {
1118 		trb_write_type(trb, TRB_TYPE_ISOCH);
1119 		trb_write_sia(trb, 1);
1120 		trb_write_frame_id(trb, 0);
1121 		trb_write_tlbpc(trb, 0);
1122 	} else if (usb_ss_max_streams(ep->comp_desc)) {
1123 		trb_write_type(trb, TRB_TYPE_STREAM);
1124 		trb_write_stream_id(trb, req->usb_req.stream_id);
1125 	} else {
1126 		trb_write_type(trb, TRB_TYPE_NORMAL);
1127 		trb_write_stream_id(trb, 0);
1128 	}
1129 
1130 	trb_write_cycle(trb, ep->pcs);
1131 
1132 	req->trbs_queued++;
1133 	req->buf_queued += len;
1134 
1135 	dump_trb(xudc, "TRANSFER", trb);
1136 }
1137 
1138 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1139 					  struct tegra_xudc_request *req)
1140 {
1141 	unsigned int i, count, available;
1142 	bool wait_td = false;
1143 
1144 	available = ep_available_trbs(ep);
1145 	count = req->trbs_needed - req->trbs_queued;
1146 	if (available < count) {
1147 		count = available;
1148 		ep->ring_full = true;
1149 	}
1150 
1151 	/*
1152 	 * To generate zero-length packet on USB bus, SW needs schedule a
1153 	 * standalone zero-length TD. According to HW's behavior, SW needs
1154 	 * to schedule TDs in different ways for different endpoint types.
1155 	 *
1156 	 * For control endpoint:
1157 	 * - Data stage TD (IOC = 1, CH = 0)
1158 	 * - Ring doorbell and wait transfer event
1159 	 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1160 	 * - Ring doorbell
1161 	 *
1162 	 * For bulk and interrupt endpoints:
1163 	 * - Normal transfer TD (IOC = 0, CH = 0)
1164 	 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1165 	 * - Ring doorbell
1166 	 */
1167 
1168 	if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1169 		wait_td = true;
1170 
1171 	if (!req->first_trb)
1172 		req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1173 
1174 	for (i = 0; i < count; i++) {
1175 		struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1176 		bool ioc = false;
1177 
1178 		if ((i == count - 1) || (wait_td && i == count - 2))
1179 			ioc = true;
1180 
1181 		tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1182 		req->last_trb = trb;
1183 
1184 		ep->enq_ptr++;
1185 		if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1186 			trb = &ep->transfer_ring[ep->enq_ptr];
1187 			trb_write_cycle(trb, ep->pcs);
1188 			ep->pcs = !ep->pcs;
1189 			ep->enq_ptr = 0;
1190 		}
1191 
1192 		if (ioc)
1193 			break;
1194 	}
1195 
1196 	return count;
1197 }
1198 
1199 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1200 {
1201 	struct tegra_xudc *xudc = ep->xudc;
1202 	u32 val;
1203 
1204 	if (list_empty(&ep->queue))
1205 		return;
1206 
1207 	val = DB_TARGET(ep->index);
1208 	if (usb_endpoint_xfer_control(ep->desc)) {
1209 		val |= DB_STREAMID(xudc->setup_seq_num);
1210 	} else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1211 		struct tegra_xudc_request *req;
1212 
1213 		/* Don't ring doorbell if the stream has been rejected. */
1214 		if (ep->stream_rejected)
1215 			return;
1216 
1217 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1218 				       list);
1219 		val |= DB_STREAMID(req->usb_req.stream_id);
1220 	}
1221 
1222 	dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1223 	xudc_writel(xudc, val, DB);
1224 }
1225 
1226 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1227 {
1228 	struct tegra_xudc_request *req;
1229 	bool trbs_queued = false;
1230 
1231 	list_for_each_entry(req, &ep->queue, list) {
1232 		if (ep->ring_full)
1233 			break;
1234 
1235 		if (tegra_xudc_queue_trbs(ep, req) > 0)
1236 			trbs_queued = true;
1237 	}
1238 
1239 	if (trbs_queued)
1240 		tegra_xudc_ep_ring_doorbell(ep);
1241 }
1242 
1243 static int
1244 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1245 {
1246 	struct tegra_xudc *xudc = ep->xudc;
1247 	int err;
1248 
1249 	if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1250 		dev_err(xudc->dev, "control EP has pending transfers\n");
1251 		return -EINVAL;
1252 	}
1253 
1254 	if (usb_endpoint_xfer_control(ep->desc)) {
1255 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1256 					     (xudc->setup_state ==
1257 					      DATA_STAGE_XFER));
1258 	} else {
1259 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1260 					     usb_endpoint_dir_in(ep->desc));
1261 	}
1262 
1263 	if (err < 0) {
1264 		dev_err(xudc->dev, "failed to map request: %d\n", err);
1265 		return err;
1266 	}
1267 
1268 	req->first_trb = NULL;
1269 	req->last_trb = NULL;
1270 	req->buf_queued = 0;
1271 	req->trbs_queued = 0;
1272 	req->need_zlp = false;
1273 	req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1274 					XUDC_TRB_MAX_BUFFER_SIZE);
1275 	if (req->usb_req.length == 0)
1276 		req->trbs_needed++;
1277 
1278 	if (!usb_endpoint_xfer_isoc(ep->desc) &&
1279 	    req->usb_req.zero && req->usb_req.length &&
1280 	    ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1281 		req->trbs_needed++;
1282 		req->need_zlp = true;
1283 	}
1284 
1285 	req->usb_req.status = -EINPROGRESS;
1286 	req->usb_req.actual = 0;
1287 
1288 	list_add_tail(&req->list, &ep->queue);
1289 
1290 	tegra_xudc_ep_kick_queue(ep);
1291 
1292 	return 0;
1293 }
1294 
1295 static int
1296 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1297 		    gfp_t gfp)
1298 {
1299 	struct tegra_xudc_request *req;
1300 	struct tegra_xudc_ep *ep;
1301 	struct tegra_xudc *xudc;
1302 	unsigned long flags;
1303 	int ret;
1304 
1305 	if (!usb_ep || !usb_req)
1306 		return -EINVAL;
1307 
1308 	ep = to_xudc_ep(usb_ep);
1309 	req = to_xudc_req(usb_req);
1310 	xudc = ep->xudc;
1311 
1312 	spin_lock_irqsave(&xudc->lock, flags);
1313 	if (xudc->powergated || !ep->desc) {
1314 		ret = -ESHUTDOWN;
1315 		goto unlock;
1316 	}
1317 
1318 	ret = __tegra_xudc_ep_queue(ep, req);
1319 unlock:
1320 	spin_unlock_irqrestore(&xudc->lock, flags);
1321 
1322 	return ret;
1323 }
1324 
1325 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1326 				  struct tegra_xudc_request *req)
1327 {
1328 	struct tegra_xudc_trb *trb = req->first_trb;
1329 	bool pcs_enq = trb_read_cycle(trb);
1330 	bool pcs;
1331 
1332 	/*
1333 	 * Clear out all the TRBs part of or after the cancelled request,
1334 	 * and must correct trb cycle bit to the last un-enqueued state.
1335 	 */
1336 	while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1337 		pcs = trb_read_cycle(trb);
1338 		memset(trb, 0, sizeof(*trb));
1339 		trb_write_cycle(trb, !pcs);
1340 		trb++;
1341 
1342 		if (trb_read_type(trb) == TRB_TYPE_LINK)
1343 			trb = ep->transfer_ring;
1344 	}
1345 
1346 	/* Requests will be re-queued at the start of the cancelled request. */
1347 	ep->enq_ptr = req->first_trb - ep->transfer_ring;
1348 	/*
1349 	 * Retrieve the correct cycle bit state from the first trb of
1350 	 * the cancelled request.
1351 	 */
1352 	ep->pcs = pcs_enq;
1353 	ep->ring_full = false;
1354 	list_for_each_entry_continue(req, &ep->queue, list) {
1355 		req->usb_req.status = -EINPROGRESS;
1356 		req->usb_req.actual = 0;
1357 
1358 		req->first_trb = NULL;
1359 		req->last_trb = NULL;
1360 		req->buf_queued = 0;
1361 		req->trbs_queued = 0;
1362 	}
1363 }
1364 
1365 /*
1366  * Determine if the given TRB is in the range [first trb, last trb] for the
1367  * given request.
1368  */
1369 static bool trb_in_request(struct tegra_xudc_ep *ep,
1370 			   struct tegra_xudc_request *req,
1371 			   struct tegra_xudc_trb *trb)
1372 {
1373 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1374 		req->first_trb, req->last_trb, trb);
1375 
1376 	if (trb >= req->first_trb && (trb <= req->last_trb ||
1377 				      req->last_trb < req->first_trb))
1378 		return true;
1379 
1380 	if (trb < req->first_trb && trb <= req->last_trb &&
1381 	    req->last_trb < req->first_trb)
1382 		return true;
1383 
1384 	return false;
1385 }
1386 
1387 /*
1388  * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1389  * for the given endpoint and request.
1390  */
1391 static bool trb_before_request(struct tegra_xudc_ep *ep,
1392 			       struct tegra_xudc_request *req,
1393 			       struct tegra_xudc_trb *trb)
1394 {
1395 	struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1396 
1397 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1398 		__func__, req->first_trb, req->last_trb, enq_trb, trb);
1399 
1400 	if (trb < req->first_trb && (enq_trb <= trb ||
1401 				     req->first_trb < enq_trb))
1402 		return true;
1403 
1404 	if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1405 		return true;
1406 
1407 	return false;
1408 }
1409 
1410 static int
1411 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1412 			struct tegra_xudc_request *req)
1413 {
1414 	struct tegra_xudc *xudc = ep->xudc;
1415 	struct tegra_xudc_request *r = NULL, *iter;
1416 	struct tegra_xudc_trb *deq_trb;
1417 	bool busy, kick_queue = false;
1418 	int ret = 0;
1419 
1420 	/* Make sure the request is actually queued to this endpoint. */
1421 	list_for_each_entry(iter, &ep->queue, list) {
1422 		if (iter != req)
1423 			continue;
1424 		r = iter;
1425 		break;
1426 	}
1427 
1428 	if (!r)
1429 		return -EINVAL;
1430 
1431 	/* Request hasn't been queued in the transfer ring yet. */
1432 	if (!req->trbs_queued) {
1433 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1434 		return 0;
1435 	}
1436 
1437 	/* Halt DMA for this endpiont. */
1438 	if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1439 		ep_pause(xudc, ep->index);
1440 		ep_wait_for_inactive(xudc, ep->index);
1441 	}
1442 
1443 	deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1444 	/* Is the hardware processing the TRB at the dequeue pointer? */
1445 	busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1446 
1447 	if (trb_in_request(ep, req, deq_trb) && busy) {
1448 		/*
1449 		 * Request has been partially completed or it hasn't
1450 		 * started processing yet.
1451 		 */
1452 		dma_addr_t deq_ptr;
1453 
1454 		squeeze_transfer_ring(ep, req);
1455 
1456 		req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1457 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1458 		kick_queue = true;
1459 
1460 		/* EDTLA is > 0: request has been partially completed */
1461 		if (req->usb_req.actual > 0) {
1462 			/*
1463 			 * Abort the pending transfer and update the dequeue
1464 			 * pointer
1465 			 */
1466 			ep_ctx_write_edtla(ep->context, 0);
1467 			ep_ctx_write_partial_td(ep->context, 0);
1468 			ep_ctx_write_data_offset(ep->context, 0);
1469 
1470 			deq_ptr = trb_virt_to_phys(ep,
1471 					&ep->transfer_ring[ep->enq_ptr]);
1472 
1473 			if (dma_mapping_error(xudc->dev, deq_ptr)) {
1474 				ret = -EINVAL;
1475 			} else {
1476 				ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1477 				ep_ctx_write_dcs(ep->context, ep->pcs);
1478 				ep_reload(xudc, ep->index);
1479 			}
1480 		}
1481 	} else if (trb_before_request(ep, req, deq_trb) && busy) {
1482 		/* Request hasn't started processing yet. */
1483 		squeeze_transfer_ring(ep, req);
1484 
1485 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1486 		kick_queue = true;
1487 	} else {
1488 		/*
1489 		 * Request has completed, but we haven't processed the
1490 		 * completion event yet.
1491 		 */
1492 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1493 		ret = -EINVAL;
1494 	}
1495 
1496 	/* Resume the endpoint. */
1497 	ep_unpause(xudc, ep->index);
1498 
1499 	if (kick_queue)
1500 		tegra_xudc_ep_kick_queue(ep);
1501 
1502 	return ret;
1503 }
1504 
1505 static int
1506 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1507 {
1508 	struct tegra_xudc_request *req;
1509 	struct tegra_xudc_ep *ep;
1510 	struct tegra_xudc *xudc;
1511 	unsigned long flags;
1512 	int ret;
1513 
1514 	if (!usb_ep || !usb_req)
1515 		return -EINVAL;
1516 
1517 	ep = to_xudc_ep(usb_ep);
1518 	req = to_xudc_req(usb_req);
1519 	xudc = ep->xudc;
1520 
1521 	spin_lock_irqsave(&xudc->lock, flags);
1522 
1523 	if (xudc->powergated || !ep->desc) {
1524 		ret = -ESHUTDOWN;
1525 		goto unlock;
1526 	}
1527 
1528 	ret = __tegra_xudc_ep_dequeue(ep, req);
1529 unlock:
1530 	spin_unlock_irqrestore(&xudc->lock, flags);
1531 
1532 	return ret;
1533 }
1534 
1535 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1536 {
1537 	struct tegra_xudc *xudc = ep->xudc;
1538 
1539 	if (!ep->desc)
1540 		return -EINVAL;
1541 
1542 	if (usb_endpoint_xfer_isoc(ep->desc)) {
1543 		dev_err(xudc->dev, "can't halt isochronous EP\n");
1544 		return -ENOTSUPP;
1545 	}
1546 
1547 	if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
1548 		dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
1549 			halt ? "halted" : "not halted");
1550 		return 0;
1551 	}
1552 
1553 	if (halt) {
1554 		ep_halt(xudc, ep->index);
1555 	} else {
1556 		ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1557 
1558 		ep_reload(xudc, ep->index);
1559 
1560 		ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1561 		ep_ctx_write_rsvd(ep->context, 0);
1562 		ep_ctx_write_partial_td(ep->context, 0);
1563 		ep_ctx_write_splitxstate(ep->context, 0);
1564 		ep_ctx_write_seq_num(ep->context, 0);
1565 
1566 		ep_reload(xudc, ep->index);
1567 		ep_unpause(xudc, ep->index);
1568 		ep_unhalt(xudc, ep->index);
1569 
1570 		tegra_xudc_ep_ring_doorbell(ep);
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1577 {
1578 	struct tegra_xudc_ep *ep;
1579 	struct tegra_xudc *xudc;
1580 	unsigned long flags;
1581 	int ret;
1582 
1583 	if (!usb_ep)
1584 		return -EINVAL;
1585 
1586 	ep = to_xudc_ep(usb_ep);
1587 	xudc = ep->xudc;
1588 
1589 	spin_lock_irqsave(&xudc->lock, flags);
1590 	if (xudc->powergated) {
1591 		ret = -ESHUTDOWN;
1592 		goto unlock;
1593 	}
1594 
1595 	if (value && usb_endpoint_dir_in(ep->desc) &&
1596 	    !list_empty(&ep->queue)) {
1597 		dev_err(xudc->dev, "can't halt EP with requests pending\n");
1598 		ret = -EAGAIN;
1599 		goto unlock;
1600 	}
1601 
1602 	ret = __tegra_xudc_ep_set_halt(ep, value);
1603 unlock:
1604 	spin_unlock_irqrestore(&xudc->lock, flags);
1605 
1606 	return ret;
1607 }
1608 
1609 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1610 {
1611 	const struct usb_endpoint_descriptor *desc = ep->desc;
1612 	const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1613 	struct tegra_xudc *xudc = ep->xudc;
1614 	u16 maxpacket, maxburst = 0, esit = 0;
1615 	u32 val;
1616 
1617 	maxpacket = usb_endpoint_maxp(desc);
1618 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1619 		if (!usb_endpoint_xfer_control(desc))
1620 			maxburst = comp_desc->bMaxBurst;
1621 
1622 		if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1623 			esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1624 	} else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1625 		   (usb_endpoint_xfer_int(desc) ||
1626 		    usb_endpoint_xfer_isoc(desc))) {
1627 		if (xudc->gadget.speed == USB_SPEED_HIGH) {
1628 			maxburst = usb_endpoint_maxp_mult(desc) - 1;
1629 			if (maxburst == 0x3) {
1630 				dev_warn(xudc->dev,
1631 					 "invalid endpoint maxburst\n");
1632 				maxburst = 0x2;
1633 			}
1634 		}
1635 		esit = maxpacket * (maxburst + 1);
1636 	}
1637 
1638 	memset(ep->context, 0, sizeof(*ep->context));
1639 
1640 	ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1641 	ep_ctx_write_interval(ep->context, desc->bInterval);
1642 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1643 		if (usb_endpoint_xfer_isoc(desc)) {
1644 			ep_ctx_write_mult(ep->context,
1645 					  comp_desc->bmAttributes & 0x3);
1646 		}
1647 
1648 		if (usb_endpoint_xfer_bulk(desc)) {
1649 			ep_ctx_write_max_pstreams(ep->context,
1650 						  comp_desc->bmAttributes &
1651 						  0x1f);
1652 			ep_ctx_write_lsa(ep->context, 1);
1653 		}
1654 	}
1655 
1656 	if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1657 		val = usb_endpoint_type(desc);
1658 	else
1659 		val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1660 
1661 	ep_ctx_write_type(ep->context, val);
1662 	ep_ctx_write_cerr(ep->context, 0x3);
1663 	ep_ctx_write_max_packet_size(ep->context, maxpacket);
1664 	ep_ctx_write_max_burst_size(ep->context, maxburst);
1665 
1666 	ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1667 	ep_ctx_write_dcs(ep->context, ep->pcs);
1668 
1669 	/* Select a reasonable average TRB length based on endpoint type. */
1670 	switch (usb_endpoint_type(desc)) {
1671 	case USB_ENDPOINT_XFER_CONTROL:
1672 		val = 8;
1673 		break;
1674 	case USB_ENDPOINT_XFER_INT:
1675 		val = 1024;
1676 		break;
1677 	case USB_ENDPOINT_XFER_BULK:
1678 	case USB_ENDPOINT_XFER_ISOC:
1679 	default:
1680 		val = 3072;
1681 		break;
1682 	}
1683 
1684 	ep_ctx_write_avg_trb_len(ep->context, val);
1685 	ep_ctx_write_max_esit_payload(ep->context, esit);
1686 
1687 	ep_ctx_write_cerrcnt(ep->context, 0x3);
1688 }
1689 
1690 static void setup_link_trb(struct tegra_xudc_ep *ep,
1691 			   struct tegra_xudc_trb *trb)
1692 {
1693 	trb_write_data_ptr(trb, ep->transfer_ring_phys);
1694 	trb_write_type(trb, TRB_TYPE_LINK);
1695 	trb_write_toggle_cycle(trb, 1);
1696 }
1697 
1698 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1699 {
1700 	struct tegra_xudc *xudc = ep->xudc;
1701 
1702 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1703 		dev_err(xudc->dev, "endpoint %u already disabled\n",
1704 			ep->index);
1705 		return -EINVAL;
1706 	}
1707 
1708 	ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1709 
1710 	ep_reload(xudc, ep->index);
1711 
1712 	tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1713 
1714 	xudc->nr_enabled_eps--;
1715 	if (usb_endpoint_xfer_isoc(ep->desc))
1716 		xudc->nr_isoch_eps--;
1717 
1718 	ep->desc = NULL;
1719 	ep->comp_desc = NULL;
1720 
1721 	memset(ep->context, 0, sizeof(*ep->context));
1722 
1723 	ep_unpause(xudc, ep->index);
1724 	ep_unhalt(xudc, ep->index);
1725 	if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1726 		xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1727 
1728 	/*
1729 	 * If this is the last endpoint disabled in a de-configure request,
1730 	 * switch back to address state.
1731 	 */
1732 	if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1733 	    (xudc->nr_enabled_eps == 1)) {
1734 		u32 val;
1735 
1736 		xudc->device_state = USB_STATE_ADDRESS;
1737 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1738 
1739 		val = xudc_readl(xudc, CTRL);
1740 		val &= ~CTRL_RUN;
1741 		xudc_writel(xudc, val, CTRL);
1742 	}
1743 
1744 	dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1745 
1746 	return 0;
1747 }
1748 
1749 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1750 {
1751 	struct tegra_xudc_ep *ep;
1752 	struct tegra_xudc *xudc;
1753 	unsigned long flags;
1754 	int ret;
1755 
1756 	if (!usb_ep)
1757 		return -EINVAL;
1758 
1759 	ep = to_xudc_ep(usb_ep);
1760 	xudc = ep->xudc;
1761 
1762 	spin_lock_irqsave(&xudc->lock, flags);
1763 	if (xudc->powergated) {
1764 		ret = -ESHUTDOWN;
1765 		goto unlock;
1766 	}
1767 
1768 	ret = __tegra_xudc_ep_disable(ep);
1769 unlock:
1770 	spin_unlock_irqrestore(&xudc->lock, flags);
1771 
1772 	return ret;
1773 }
1774 
1775 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1776 				  const struct usb_endpoint_descriptor *desc)
1777 {
1778 	struct tegra_xudc *xudc = ep->xudc;
1779 	unsigned int i;
1780 	u32 val;
1781 
1782 	if (xudc->gadget.speed == USB_SPEED_SUPER &&
1783 		!usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1784 		return -EINVAL;
1785 
1786 	/* Disable the EP if it is not disabled */
1787 	if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1788 		__tegra_xudc_ep_disable(ep);
1789 
1790 	ep->desc = desc;
1791 	ep->comp_desc = ep->usb_ep.comp_desc;
1792 
1793 	if (usb_endpoint_xfer_isoc(desc)) {
1794 		if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1795 			dev_err(xudc->dev, "too many isochronous endpoints\n");
1796 			return -EBUSY;
1797 		}
1798 		xudc->nr_isoch_eps++;
1799 	}
1800 
1801 	memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1802 	       sizeof(*ep->transfer_ring));
1803 	setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1804 
1805 	ep->enq_ptr = 0;
1806 	ep->deq_ptr = 0;
1807 	ep->pcs = true;
1808 	ep->ring_full = false;
1809 	xudc->nr_enabled_eps++;
1810 
1811 	tegra_xudc_ep_context_setup(ep);
1812 
1813 	/*
1814 	 * No need to reload and un-halt EP0.  This will be done automatically
1815 	 * once a valid SETUP packet is received.
1816 	 */
1817 	if (usb_endpoint_xfer_control(desc))
1818 		goto out;
1819 
1820 	/*
1821 	 * Transition to configured state once the first non-control
1822 	 * endpoint is enabled.
1823 	 */
1824 	if (xudc->device_state == USB_STATE_ADDRESS) {
1825 		val = xudc_readl(xudc, CTRL);
1826 		val |= CTRL_RUN;
1827 		xudc_writel(xudc, val, CTRL);
1828 
1829 		xudc->device_state = USB_STATE_CONFIGURED;
1830 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1831 	}
1832 
1833 	if (usb_endpoint_xfer_isoc(desc)) {
1834 		/*
1835 		 * Pause all bulk endpoints when enabling an isoch endpoint
1836 		 * to ensure the isoch endpoint is allocated enough bandwidth.
1837 		 */
1838 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1839 			if (xudc->ep[i].desc &&
1840 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1841 				ep_pause(xudc, i);
1842 		}
1843 	}
1844 
1845 	ep_reload(xudc, ep->index);
1846 	ep_unpause(xudc, ep->index);
1847 	ep_unhalt(xudc, ep->index);
1848 
1849 	if (usb_endpoint_xfer_isoc(desc)) {
1850 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1851 			if (xudc->ep[i].desc &&
1852 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1853 				ep_unpause(xudc, i);
1854 		}
1855 	}
1856 
1857 out:
1858 	dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1859 		 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1860 		 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1861 
1862 	return 0;
1863 }
1864 
1865 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1866 				const struct usb_endpoint_descriptor *desc)
1867 {
1868 	struct tegra_xudc_ep *ep;
1869 	struct tegra_xudc *xudc;
1870 	unsigned long flags;
1871 	int ret;
1872 
1873 	if  (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1874 		return -EINVAL;
1875 
1876 	ep = to_xudc_ep(usb_ep);
1877 	xudc = ep->xudc;
1878 
1879 	spin_lock_irqsave(&xudc->lock, flags);
1880 	if (xudc->powergated) {
1881 		ret = -ESHUTDOWN;
1882 		goto unlock;
1883 	}
1884 
1885 	ret = __tegra_xudc_ep_enable(ep, desc);
1886 unlock:
1887 	spin_unlock_irqrestore(&xudc->lock, flags);
1888 
1889 	return ret;
1890 }
1891 
1892 static struct usb_request *
1893 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1894 {
1895 	struct tegra_xudc_request *req;
1896 
1897 	req = kzalloc(sizeof(*req), gfp);
1898 	if (!req)
1899 		return NULL;
1900 
1901 	INIT_LIST_HEAD(&req->list);
1902 
1903 	return &req->usb_req;
1904 }
1905 
1906 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1907 				       struct usb_request *usb_req)
1908 {
1909 	struct tegra_xudc_request *req = to_xudc_req(usb_req);
1910 
1911 	kfree(req);
1912 }
1913 
1914 static const struct usb_ep_ops tegra_xudc_ep_ops = {
1915 	.enable = tegra_xudc_ep_enable,
1916 	.disable = tegra_xudc_ep_disable,
1917 	.alloc_request = tegra_xudc_ep_alloc_request,
1918 	.free_request = tegra_xudc_ep_free_request,
1919 	.queue = tegra_xudc_ep_queue,
1920 	.dequeue = tegra_xudc_ep_dequeue,
1921 	.set_halt = tegra_xudc_ep_set_halt,
1922 };
1923 
1924 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1925 				 const struct usb_endpoint_descriptor *desc)
1926 {
1927 	return -EBUSY;
1928 }
1929 
1930 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1931 {
1932 	return -EBUSY;
1933 }
1934 
1935 static const struct usb_ep_ops tegra_xudc_ep0_ops = {
1936 	.enable = tegra_xudc_ep0_enable,
1937 	.disable = tegra_xudc_ep0_disable,
1938 	.alloc_request = tegra_xudc_ep_alloc_request,
1939 	.free_request = tegra_xudc_ep_free_request,
1940 	.queue = tegra_xudc_ep_queue,
1941 	.dequeue = tegra_xudc_ep_dequeue,
1942 	.set_halt = tegra_xudc_ep_set_halt,
1943 };
1944 
1945 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1946 {
1947 	struct tegra_xudc *xudc = to_xudc(gadget);
1948 	unsigned long flags;
1949 	int ret;
1950 
1951 	spin_lock_irqsave(&xudc->lock, flags);
1952 	if (xudc->powergated) {
1953 		ret = -ESHUTDOWN;
1954 		goto unlock;
1955 	}
1956 
1957 	ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1958 		MFINDEX_FRAME_SHIFT;
1959 unlock:
1960 	spin_unlock_irqrestore(&xudc->lock, flags);
1961 
1962 	return ret;
1963 }
1964 
1965 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1966 {
1967 	unsigned int i;
1968 	u32 val;
1969 
1970 	ep_unpause_all(xudc);
1971 
1972 	/* Direct link to U0. */
1973 	val = xudc_readl(xudc, PORTSC);
1974 	if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1975 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1976 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1977 		xudc_writel(xudc, val, PORTSC);
1978 	}
1979 
1980 	if (xudc->device_state == USB_STATE_SUSPENDED) {
1981 		xudc->device_state = xudc->resume_state;
1982 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1983 		xudc->resume_state = 0;
1984 	}
1985 
1986 	/*
1987 	 * Doorbells may be dropped if they are sent too soon (< ~200ns)
1988 	 * after unpausing the endpoint.  Wait for 500ns just to be safe.
1989 	 */
1990 	ndelay(500);
1991 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
1992 		tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
1993 }
1994 
1995 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
1996 {
1997 	struct tegra_xudc *xudc = to_xudc(gadget);
1998 	unsigned long flags;
1999 	int ret = 0;
2000 	u32 val;
2001 
2002 	spin_lock_irqsave(&xudc->lock, flags);
2003 
2004 	if (xudc->powergated) {
2005 		ret = -ESHUTDOWN;
2006 		goto unlock;
2007 	}
2008 	val = xudc_readl(xudc, PORTPM);
2009 	dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
2010 			val, gadget->speed);
2011 
2012 	if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
2013 	     (val & PORTPM_RWE)) ||
2014 	    ((xudc->gadget.speed == USB_SPEED_SUPER) &&
2015 	     (val & PORTPM_FRWE))) {
2016 		tegra_xudc_resume_device_state(xudc);
2017 
2018 		/* Send Device Notification packet. */
2019 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2020 			val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
2021 					     | DEVNOTIF_LO_TRIG;
2022 			xudc_writel(xudc, 0, DEVNOTIF_HI);
2023 			xudc_writel(xudc, val, DEVNOTIF_LO);
2024 		}
2025 	}
2026 
2027 unlock:
2028 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2029 	spin_unlock_irqrestore(&xudc->lock, flags);
2030 
2031 	return ret;
2032 }
2033 
2034 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
2035 {
2036 	struct tegra_xudc *xudc = to_xudc(gadget);
2037 	unsigned long flags;
2038 	u32 val;
2039 
2040 	pm_runtime_get_sync(xudc->dev);
2041 
2042 	spin_lock_irqsave(&xudc->lock, flags);
2043 
2044 	if (is_on != xudc->pullup) {
2045 		val = xudc_readl(xudc, CTRL);
2046 		if (is_on)
2047 			val |= CTRL_ENABLE;
2048 		else
2049 			val &= ~CTRL_ENABLE;
2050 		xudc_writel(xudc, val, CTRL);
2051 	}
2052 
2053 	xudc->pullup = is_on;
2054 	dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
2055 
2056 	spin_unlock_irqrestore(&xudc->lock, flags);
2057 
2058 	pm_runtime_put(xudc->dev);
2059 
2060 	return 0;
2061 }
2062 
2063 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
2064 				   struct usb_gadget_driver *driver)
2065 {
2066 	struct tegra_xudc *xudc = to_xudc(gadget);
2067 	unsigned long flags;
2068 	u32 val;
2069 	int ret;
2070 	unsigned int i;
2071 
2072 	if (!driver)
2073 		return -EINVAL;
2074 
2075 	pm_runtime_get_sync(xudc->dev);
2076 
2077 	spin_lock_irqsave(&xudc->lock, flags);
2078 
2079 	if (xudc->driver) {
2080 		ret = -EBUSY;
2081 		goto unlock;
2082 	}
2083 
2084 	xudc->setup_state = WAIT_FOR_SETUP;
2085 	xudc->device_state = USB_STATE_DEFAULT;
2086 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2087 
2088 	ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
2089 	if (ret < 0)
2090 		goto unlock;
2091 
2092 	val = xudc_readl(xudc, CTRL);
2093 	val |= CTRL_IE | CTRL_LSE;
2094 	xudc_writel(xudc, val, CTRL);
2095 
2096 	val = xudc_readl(xudc, PORTHALT);
2097 	val |= PORTHALT_STCHG_INTR_EN;
2098 	xudc_writel(xudc, val, PORTHALT);
2099 
2100 	if (xudc->pullup) {
2101 		val = xudc_readl(xudc, CTRL);
2102 		val |= CTRL_ENABLE;
2103 		xudc_writel(xudc, val, CTRL);
2104 	}
2105 
2106 	for (i = 0; i < xudc->soc->num_phys; i++)
2107 		if (xudc->usbphy[i])
2108 			otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
2109 
2110 	xudc->driver = driver;
2111 unlock:
2112 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2113 	spin_unlock_irqrestore(&xudc->lock, flags);
2114 
2115 	pm_runtime_put(xudc->dev);
2116 
2117 	return ret;
2118 }
2119 
2120 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
2121 {
2122 	struct tegra_xudc *xudc = to_xudc(gadget);
2123 	unsigned long flags;
2124 	u32 val;
2125 	unsigned int i;
2126 
2127 	pm_runtime_get_sync(xudc->dev);
2128 
2129 	spin_lock_irqsave(&xudc->lock, flags);
2130 
2131 	for (i = 0; i < xudc->soc->num_phys; i++)
2132 		if (xudc->usbphy[i])
2133 			otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
2134 
2135 	val = xudc_readl(xudc, CTRL);
2136 	val &= ~(CTRL_IE | CTRL_ENABLE);
2137 	xudc_writel(xudc, val, CTRL);
2138 
2139 	__tegra_xudc_ep_disable(&xudc->ep[0]);
2140 
2141 	xudc->driver = NULL;
2142 	dev_dbg(xudc->dev, "Gadget stopped");
2143 
2144 	spin_unlock_irqrestore(&xudc->lock, flags);
2145 
2146 	pm_runtime_put(xudc->dev);
2147 
2148 	return 0;
2149 }
2150 
2151 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
2152 						unsigned int m_a)
2153 {
2154 	int ret = 0;
2155 	struct tegra_xudc *xudc = to_xudc(gadget);
2156 
2157 	dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
2158 
2159 	if (xudc->curr_usbphy->chg_type == SDP_TYPE)
2160 		ret = usb_phy_set_power(xudc->curr_usbphy, m_a);
2161 
2162 	return ret;
2163 }
2164 
2165 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2166 {
2167 	struct tegra_xudc *xudc = to_xudc(gadget);
2168 
2169 	dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2170 	xudc->selfpowered = !!is_on;
2171 
2172 	return 0;
2173 }
2174 
2175 static const struct usb_gadget_ops tegra_xudc_gadget_ops = {
2176 	.get_frame = tegra_xudc_gadget_get_frame,
2177 	.wakeup = tegra_xudc_gadget_wakeup,
2178 	.pullup = tegra_xudc_gadget_pullup,
2179 	.udc_start = tegra_xudc_gadget_start,
2180 	.udc_stop = tegra_xudc_gadget_stop,
2181 	.vbus_draw = tegra_xudc_gadget_vbus_draw,
2182 	.set_selfpowered = tegra_xudc_set_selfpowered,
2183 };
2184 
2185 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2186 {
2187 }
2188 
2189 static int
2190 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2191 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2192 {
2193 	xudc->ep0_req->usb_req.buf = NULL;
2194 	xudc->ep0_req->usb_req.dma = 0;
2195 	xudc->ep0_req->usb_req.length = 0;
2196 	xudc->ep0_req->usb_req.complete = cmpl;
2197 	xudc->ep0_req->usb_req.context = xudc;
2198 
2199 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2200 }
2201 
2202 static int
2203 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2204 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2205 {
2206 	xudc->ep0_req->usb_req.buf = buf;
2207 	xudc->ep0_req->usb_req.length = len;
2208 	xudc->ep0_req->usb_req.complete = cmpl;
2209 	xudc->ep0_req->usb_req.context = xudc;
2210 
2211 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2212 }
2213 
2214 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2215 {
2216 	switch (xudc->setup_state) {
2217 	case DATA_STAGE_XFER:
2218 		xudc->setup_state = STATUS_STAGE_RECV;
2219 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2220 		break;
2221 	case DATA_STAGE_RECV:
2222 		xudc->setup_state = STATUS_STAGE_XFER;
2223 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2224 		break;
2225 	default:
2226 		xudc->setup_state = WAIT_FOR_SETUP;
2227 		break;
2228 	}
2229 }
2230 
2231 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2232 				       struct usb_ctrlrequest *ctrl)
2233 {
2234 	int ret;
2235 
2236 	spin_unlock(&xudc->lock);
2237 	ret = xudc->driver->setup(&xudc->gadget, ctrl);
2238 	spin_lock(&xudc->lock);
2239 
2240 	return ret;
2241 }
2242 
2243 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2244 {
2245 	struct tegra_xudc *xudc = req->context;
2246 
2247 	if (xudc->test_mode_pattern) {
2248 		xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2249 		xudc->test_mode_pattern = 0;
2250 	}
2251 }
2252 
2253 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2254 				      struct usb_ctrlrequest *ctrl)
2255 {
2256 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2257 	u32 feature = le16_to_cpu(ctrl->wValue);
2258 	u32 index = le16_to_cpu(ctrl->wIndex);
2259 	u32 val, ep;
2260 	int ret;
2261 
2262 	if (le16_to_cpu(ctrl->wLength) != 0)
2263 		return -EINVAL;
2264 
2265 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2266 	case USB_RECIP_DEVICE:
2267 		switch (feature) {
2268 		case USB_DEVICE_REMOTE_WAKEUP:
2269 			if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2270 			    (xudc->device_state == USB_STATE_DEFAULT))
2271 				return -EINVAL;
2272 
2273 			val = xudc_readl(xudc, PORTPM);
2274 			if (set)
2275 				val |= PORTPM_RWE;
2276 			else
2277 				val &= ~PORTPM_RWE;
2278 
2279 			xudc_writel(xudc, val, PORTPM);
2280 			break;
2281 		case USB_DEVICE_U1_ENABLE:
2282 		case USB_DEVICE_U2_ENABLE:
2283 			if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2284 			    (xudc->gadget.speed != USB_SPEED_SUPER))
2285 				return -EINVAL;
2286 
2287 			val = xudc_readl(xudc, PORTPM);
2288 			if ((feature == USB_DEVICE_U1_ENABLE) &&
2289 			     xudc->soc->u1_enable) {
2290 				if (set)
2291 					val |= PORTPM_U1E;
2292 				else
2293 					val &= ~PORTPM_U1E;
2294 			}
2295 
2296 			if ((feature == USB_DEVICE_U2_ENABLE) &&
2297 			     xudc->soc->u2_enable) {
2298 				if (set)
2299 					val |= PORTPM_U2E;
2300 				else
2301 					val &= ~PORTPM_U2E;
2302 			}
2303 
2304 			xudc_writel(xudc, val, PORTPM);
2305 			break;
2306 		case USB_DEVICE_TEST_MODE:
2307 			if (xudc->gadget.speed != USB_SPEED_HIGH)
2308 				return -EINVAL;
2309 
2310 			if (!set)
2311 				return -EINVAL;
2312 
2313 			xudc->test_mode_pattern = index >> 8;
2314 			break;
2315 		default:
2316 			return -EINVAL;
2317 		}
2318 
2319 		break;
2320 	case USB_RECIP_INTERFACE:
2321 		if (xudc->device_state != USB_STATE_CONFIGURED)
2322 			return -EINVAL;
2323 
2324 		switch (feature) {
2325 		case USB_INTRF_FUNC_SUSPEND:
2326 			if (set) {
2327 				val = xudc_readl(xudc, PORTPM);
2328 
2329 				if (index & USB_INTRF_FUNC_SUSPEND_RW)
2330 					val |= PORTPM_FRWE;
2331 				else
2332 					val &= ~PORTPM_FRWE;
2333 
2334 				xudc_writel(xudc, val, PORTPM);
2335 			}
2336 
2337 			return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2338 		default:
2339 			return -EINVAL;
2340 		}
2341 
2342 		break;
2343 	case USB_RECIP_ENDPOINT:
2344 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2345 			((index & USB_DIR_IN) ? 1 : 0);
2346 
2347 		if ((xudc->device_state == USB_STATE_DEFAULT) ||
2348 		    ((xudc->device_state == USB_STATE_ADDRESS) &&
2349 		     (index != 0)))
2350 			return -EINVAL;
2351 
2352 		ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2353 		if (ret < 0)
2354 			return ret;
2355 		break;
2356 	default:
2357 		return -EINVAL;
2358 	}
2359 
2360 	return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2361 }
2362 
2363 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2364 				     struct usb_ctrlrequest *ctrl)
2365 {
2366 	struct tegra_xudc_ep_context *ep_ctx;
2367 	u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2368 	u16 status = 0;
2369 
2370 	if (!(ctrl->bRequestType & USB_DIR_IN))
2371 		return -EINVAL;
2372 
2373 	if ((le16_to_cpu(ctrl->wValue) != 0) ||
2374 	    (le16_to_cpu(ctrl->wLength) != 2))
2375 		return -EINVAL;
2376 
2377 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2378 	case USB_RECIP_DEVICE:
2379 		val = xudc_readl(xudc, PORTPM);
2380 
2381 		if (xudc->selfpowered)
2382 			status |= BIT(USB_DEVICE_SELF_POWERED);
2383 
2384 		if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2385 		    (val & PORTPM_RWE))
2386 			status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2387 
2388 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2389 			if (val & PORTPM_U1E)
2390 				status |= BIT(USB_DEV_STAT_U1_ENABLED);
2391 			if (val & PORTPM_U2E)
2392 				status |= BIT(USB_DEV_STAT_U2_ENABLED);
2393 		}
2394 		break;
2395 	case USB_RECIP_INTERFACE:
2396 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2397 			status |= USB_INTRF_STAT_FUNC_RW_CAP;
2398 			val = xudc_readl(xudc, PORTPM);
2399 			if (val & PORTPM_FRWE)
2400 				status |= USB_INTRF_STAT_FUNC_RW;
2401 		}
2402 		break;
2403 	case USB_RECIP_ENDPOINT:
2404 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2405 			((index & USB_DIR_IN) ? 1 : 0);
2406 		ep_ctx = &xudc->ep_context[ep];
2407 
2408 		if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2409 		    ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2410 			return -EINVAL;
2411 
2412 		if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2413 			return -EINVAL;
2414 
2415 		if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2416 			status |= BIT(USB_ENDPOINT_HALT);
2417 		break;
2418 	default:
2419 		return -EINVAL;
2420 	}
2421 
2422 	xudc->status_buf = cpu_to_le16(status);
2423 	return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2424 					 sizeof(xudc->status_buf),
2425 					 no_op_complete);
2426 }
2427 
2428 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2429 {
2430 	/* Nothing to do with SEL values */
2431 }
2432 
2433 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2434 				  struct usb_ctrlrequest *ctrl)
2435 {
2436 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2437 				     USB_TYPE_STANDARD))
2438 		return -EINVAL;
2439 
2440 	if (xudc->device_state == USB_STATE_DEFAULT)
2441 		return -EINVAL;
2442 
2443 	if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2444 	    (le16_to_cpu(ctrl->wValue) != 0) ||
2445 	    (le16_to_cpu(ctrl->wLength) != 6))
2446 		return -EINVAL;
2447 
2448 	return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2449 					 sizeof(xudc->sel_timing),
2450 					 set_sel_complete);
2451 }
2452 
2453 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2454 {
2455 	/* Nothing to do with isoch delay */
2456 }
2457 
2458 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2459 					  struct usb_ctrlrequest *ctrl)
2460 {
2461 	u32 delay = le16_to_cpu(ctrl->wValue);
2462 
2463 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2464 				   USB_TYPE_STANDARD))
2465 		return -EINVAL;
2466 
2467 	if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2468 	    (le16_to_cpu(ctrl->wLength) != 0))
2469 		return -EINVAL;
2470 
2471 	xudc->isoch_delay = delay;
2472 
2473 	return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2474 }
2475 
2476 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2477 {
2478 	struct tegra_xudc *xudc = req->context;
2479 
2480 	if ((xudc->device_state == USB_STATE_DEFAULT) &&
2481 	    (xudc->dev_addr != 0)) {
2482 		xudc->device_state = USB_STATE_ADDRESS;
2483 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2484 	} else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2485 		   (xudc->dev_addr == 0)) {
2486 		xudc->device_state = USB_STATE_DEFAULT;
2487 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2488 	}
2489 }
2490 
2491 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2492 				      struct usb_ctrlrequest *ctrl)
2493 {
2494 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2495 	u32 val, addr = le16_to_cpu(ctrl->wValue);
2496 
2497 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2498 				     USB_TYPE_STANDARD))
2499 		return -EINVAL;
2500 
2501 	if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2502 	    (le16_to_cpu(ctrl->wLength) != 0))
2503 		return -EINVAL;
2504 
2505 	if (xudc->device_state == USB_STATE_CONFIGURED)
2506 		return -EINVAL;
2507 
2508 	dev_dbg(xudc->dev, "set address: %u\n", addr);
2509 
2510 	xudc->dev_addr = addr;
2511 	val = xudc_readl(xudc, CTRL);
2512 	val &= ~(CTRL_DEVADDR_MASK);
2513 	val |= CTRL_DEVADDR(addr);
2514 	xudc_writel(xudc, val, CTRL);
2515 
2516 	ep_ctx_write_devaddr(ep0->context, addr);
2517 
2518 	return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2519 }
2520 
2521 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2522 				      struct usb_ctrlrequest *ctrl)
2523 {
2524 	int ret;
2525 
2526 	switch (ctrl->bRequest) {
2527 	case USB_REQ_GET_STATUS:
2528 		dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2529 		ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2530 		break;
2531 	case USB_REQ_SET_ADDRESS:
2532 		dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2533 		ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2534 		break;
2535 	case USB_REQ_SET_SEL:
2536 		dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2537 		ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2538 		break;
2539 	case USB_REQ_SET_ISOCH_DELAY:
2540 		dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2541 		ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2542 		break;
2543 	case USB_REQ_CLEAR_FEATURE:
2544 	case USB_REQ_SET_FEATURE:
2545 		dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2546 		ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2547 		break;
2548 	case USB_REQ_SET_CONFIGURATION:
2549 		dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2550 		/*
2551 		 * In theory we need to clear RUN bit before status stage of
2552 		 * deconfig request sent, but this seems to be causing problems.
2553 		 * Clear RUN once all endpoints are disabled instead.
2554 		 */
2555 		fallthrough;
2556 	default:
2557 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2558 		break;
2559 	}
2560 
2561 	return ret;
2562 }
2563 
2564 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2565 					       struct usb_ctrlrequest *ctrl,
2566 					       u16 seq_num)
2567 {
2568 	int ret;
2569 
2570 	xudc->setup_seq_num = seq_num;
2571 
2572 	/* Ensure EP0 is unhalted. */
2573 	ep_unhalt(xudc, 0);
2574 
2575 	/*
2576 	 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2577 	 * are invalid.  Halt EP0 until we get a valid packet.
2578 	 */
2579 	if (xudc->soc->invalid_seq_num &&
2580 	    (seq_num == 0xfffe || seq_num == 0xffff)) {
2581 		dev_warn(xudc->dev, "invalid sequence number detected\n");
2582 		ep_halt(xudc, 0);
2583 		return;
2584 	}
2585 
2586 	if (ctrl->wLength)
2587 		xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2588 			DATA_STAGE_XFER :  DATA_STAGE_RECV;
2589 	else
2590 		xudc->setup_state = STATUS_STAGE_XFER;
2591 
2592 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2593 		ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2594 	else
2595 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2596 
2597 	if (ret < 0) {
2598 		dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2599 		xudc->setup_state = WAIT_FOR_SETUP;
2600 		ep_halt(xudc, 0);
2601 	}
2602 }
2603 
2604 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2605 					struct tegra_xudc_trb *event)
2606 {
2607 	struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2608 	u16 seq_num = trb_read_seq_num(event);
2609 
2610 	if (xudc->setup_state != WAIT_FOR_SETUP) {
2611 		/*
2612 		 * The controller is in the process of handling another
2613 		 * setup request.  Queue subsequent requests and handle
2614 		 * the last one once the controller reports a sequence
2615 		 * number error.
2616 		 */
2617 		memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2618 		xudc->setup_packet.seq_num = seq_num;
2619 		xudc->queued_setup_packet = true;
2620 	} else {
2621 		tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2622 	}
2623 }
2624 
2625 static struct tegra_xudc_request *
2626 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2627 {
2628 	struct tegra_xudc_request *req;
2629 
2630 	list_for_each_entry(req, &ep->queue, list) {
2631 		if (!req->trbs_queued)
2632 			break;
2633 
2634 		if (trb_in_request(ep, req, trb))
2635 			return req;
2636 	}
2637 
2638 	return NULL;
2639 }
2640 
2641 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2642 						  struct tegra_xudc_ep *ep,
2643 						  struct tegra_xudc_trb *event)
2644 {
2645 	struct tegra_xudc_request *req;
2646 	struct tegra_xudc_trb *trb;
2647 	bool short_packet;
2648 
2649 	short_packet = (trb_read_cmpl_code(event) ==
2650 			TRB_CMPL_CODE_SHORT_PACKET);
2651 
2652 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2653 	req = trb_to_request(ep, trb);
2654 
2655 	/*
2656 	 * TDs are complete on short packet or when the completed TRB is the
2657 	 * last TRB in the TD (the CHAIN bit is unset).
2658 	 */
2659 	if (req && (short_packet || (!trb_read_chain(trb) &&
2660 		(req->trbs_needed == req->trbs_queued)))) {
2661 		struct tegra_xudc_trb *last = req->last_trb;
2662 		unsigned int residual;
2663 
2664 		residual = trb_read_transfer_len(event);
2665 		req->usb_req.actual = req->usb_req.length - residual;
2666 
2667 		dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2668 			req->usb_req.actual, req->usb_req.length);
2669 
2670 		tegra_xudc_req_done(ep, req, 0);
2671 
2672 		if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2673 			tegra_xudc_ep0_req_done(xudc);
2674 
2675 		/*
2676 		 * Advance the dequeue pointer past the end of the current TD
2677 		 * on short packet completion.
2678 		 */
2679 		if (short_packet) {
2680 			ep->deq_ptr = (last - ep->transfer_ring) + 1;
2681 			if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2682 				ep->deq_ptr = 0;
2683 		}
2684 	} else if (!req) {
2685 		dev_warn(xudc->dev, "transfer event on dequeued request\n");
2686 	}
2687 
2688 	if (ep->desc)
2689 		tegra_xudc_ep_kick_queue(ep);
2690 }
2691 
2692 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2693 					     struct tegra_xudc_trb *event)
2694 {
2695 	unsigned int ep_index = trb_read_endpoint_id(event);
2696 	struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2697 	struct tegra_xudc_trb *trb;
2698 	u16 comp_code;
2699 
2700 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2701 		dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2702 			 ep_index);
2703 		return;
2704 	}
2705 
2706 	/* Update transfer ring dequeue pointer. */
2707 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2708 	comp_code = trb_read_cmpl_code(event);
2709 	if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2710 		ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2711 
2712 		if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2713 			ep->deq_ptr = 0;
2714 		ep->ring_full = false;
2715 	}
2716 
2717 	switch (comp_code) {
2718 	case TRB_CMPL_CODE_SUCCESS:
2719 	case TRB_CMPL_CODE_SHORT_PACKET:
2720 		tegra_xudc_handle_transfer_completion(xudc, ep, event);
2721 		break;
2722 	case TRB_CMPL_CODE_HOST_REJECTED:
2723 		dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2724 
2725 		ep->stream_rejected = true;
2726 		break;
2727 	case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2728 		dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2729 
2730 		if (ep->stream_rejected) {
2731 			ep->stream_rejected = false;
2732 			/*
2733 			 * An EP is stopped when a stream is rejected.  Wait
2734 			 * for the EP to report that it is stopped and then
2735 			 * un-stop it.
2736 			 */
2737 			ep_wait_for_stopped(xudc, ep_index);
2738 		}
2739 		tegra_xudc_ep_ring_doorbell(ep);
2740 		break;
2741 	case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2742 		/*
2743 		 * Wait for the EP to be stopped so the controller stops
2744 		 * processing doorbells.
2745 		 */
2746 		ep_wait_for_stopped(xudc, ep_index);
2747 		ep->enq_ptr = ep->deq_ptr;
2748 		tegra_xudc_ep_nuke(ep, -EIO);
2749 		fallthrough;
2750 	case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2751 	case TRB_CMPL_CODE_CTRL_DIR_ERR:
2752 	case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2753 	case TRB_CMPL_CODE_RING_UNDERRUN:
2754 	case TRB_CMPL_CODE_RING_OVERRUN:
2755 	case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2756 	case TRB_CMPL_CODE_USB_TRANS_ERR:
2757 	case TRB_CMPL_CODE_TRB_ERR:
2758 		dev_err(xudc->dev, "completion error %#x on EP %u\n",
2759 			comp_code, ep_index);
2760 
2761 		ep_halt(xudc, ep_index);
2762 		break;
2763 	case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2764 		dev_info(xudc->dev, "sequence number error\n");
2765 
2766 		/*
2767 		 * Kill any queued control request and skip to the last
2768 		 * setup packet we received.
2769 		 */
2770 		tegra_xudc_ep_nuke(ep, -EINVAL);
2771 		xudc->setup_state = WAIT_FOR_SETUP;
2772 		if (!xudc->queued_setup_packet)
2773 			break;
2774 
2775 		tegra_xudc_handle_ep0_setup_packet(xudc,
2776 						   &xudc->setup_packet.ctrl_req,
2777 						   xudc->setup_packet.seq_num);
2778 		xudc->queued_setup_packet = false;
2779 		break;
2780 	case TRB_CMPL_CODE_STOPPED:
2781 		dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2782 			ep_index);
2783 
2784 		/* Disconnected. */
2785 		tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2786 		break;
2787 	default:
2788 		dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2789 			comp_code, ep_index);
2790 		break;
2791 	}
2792 }
2793 
2794 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2795 {
2796 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2797 	dma_addr_t deq_ptr;
2798 	unsigned int i;
2799 
2800 	xudc->setup_state = WAIT_FOR_SETUP;
2801 	xudc->device_state = USB_STATE_DEFAULT;
2802 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2803 
2804 	ep_unpause_all(xudc);
2805 
2806 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2807 		tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2808 
2809 	/*
2810 	 * Reset sequence number and dequeue pointer to flush the transfer
2811 	 * ring.
2812 	 */
2813 	ep0->deq_ptr = ep0->enq_ptr;
2814 	ep0->ring_full = false;
2815 
2816 	xudc->setup_seq_num = 0;
2817 	xudc->queued_setup_packet = false;
2818 
2819 	ep_ctx_write_rsvd(ep0->context, 0);
2820 	ep_ctx_write_partial_td(ep0->context, 0);
2821 	ep_ctx_write_splitxstate(ep0->context, 0);
2822 	ep_ctx_write_seq_num(ep0->context, 0);
2823 
2824 	deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2825 
2826 	if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2827 		ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2828 		ep_ctx_write_dcs(ep0->context, ep0->pcs);
2829 	}
2830 
2831 	ep_unhalt_all(xudc);
2832 	ep_reload(xudc, 0);
2833 	ep_unpause(xudc, 0);
2834 }
2835 
2836 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2837 {
2838 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2839 	u16 maxpacket;
2840 	u32 val;
2841 
2842 	val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2843 	switch (val) {
2844 	case PORTSC_PS_LS:
2845 		xudc->gadget.speed = USB_SPEED_LOW;
2846 		break;
2847 	case PORTSC_PS_FS:
2848 		xudc->gadget.speed = USB_SPEED_FULL;
2849 		break;
2850 	case PORTSC_PS_HS:
2851 		xudc->gadget.speed = USB_SPEED_HIGH;
2852 		break;
2853 	case PORTSC_PS_SS:
2854 		xudc->gadget.speed = USB_SPEED_SUPER;
2855 		break;
2856 	default:
2857 		xudc->gadget.speed = USB_SPEED_UNKNOWN;
2858 		break;
2859 	}
2860 
2861 	xudc->device_state = USB_STATE_DEFAULT;
2862 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2863 
2864 	xudc->setup_state = WAIT_FOR_SETUP;
2865 
2866 	if (xudc->gadget.speed == USB_SPEED_SUPER)
2867 		maxpacket = 512;
2868 	else
2869 		maxpacket = 64;
2870 
2871 	ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2872 	tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2873 	usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2874 
2875 	if (!xudc->soc->u1_enable) {
2876 		val = xudc_readl(xudc, PORTPM);
2877 		val &= ~(PORTPM_U1TIMEOUT_MASK);
2878 		xudc_writel(xudc, val, PORTPM);
2879 	}
2880 
2881 	if (!xudc->soc->u2_enable) {
2882 		val = xudc_readl(xudc, PORTPM);
2883 		val &= ~(PORTPM_U2TIMEOUT_MASK);
2884 		xudc_writel(xudc, val, PORTPM);
2885 	}
2886 
2887 	if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2888 		val = xudc_readl(xudc, PORTPM);
2889 		val &= ~(PORTPM_L1S_MASK);
2890 		if (xudc->soc->lpm_enable)
2891 			val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2892 		else
2893 			val |= PORTPM_L1S(PORTPM_L1S_NYET);
2894 		xudc_writel(xudc, val, PORTPM);
2895 	}
2896 
2897 	val = xudc_readl(xudc, ST);
2898 	if (val & ST_RC)
2899 		xudc_writel(xudc, ST_RC, ST);
2900 }
2901 
2902 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2903 {
2904 	tegra_xudc_reset(xudc);
2905 
2906 	if (xudc->driver && xudc->driver->disconnect) {
2907 		spin_unlock(&xudc->lock);
2908 		xudc->driver->disconnect(&xudc->gadget);
2909 		spin_lock(&xudc->lock);
2910 	}
2911 
2912 	xudc->device_state = USB_STATE_NOTATTACHED;
2913 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2914 
2915 	complete(&xudc->disconnect_complete);
2916 }
2917 
2918 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2919 {
2920 	tegra_xudc_reset(xudc);
2921 
2922 	if (xudc->driver) {
2923 		spin_unlock(&xudc->lock);
2924 		usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2925 		spin_lock(&xudc->lock);
2926 	}
2927 
2928 	tegra_xudc_port_connect(xudc);
2929 }
2930 
2931 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2932 {
2933 	dev_dbg(xudc->dev, "port suspend\n");
2934 
2935 	xudc->resume_state = xudc->device_state;
2936 	xudc->device_state = USB_STATE_SUSPENDED;
2937 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2938 
2939 	if (xudc->driver->suspend) {
2940 		spin_unlock(&xudc->lock);
2941 		xudc->driver->suspend(&xudc->gadget);
2942 		spin_lock(&xudc->lock);
2943 	}
2944 }
2945 
2946 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2947 {
2948 	dev_dbg(xudc->dev, "port resume\n");
2949 
2950 	tegra_xudc_resume_device_state(xudc);
2951 
2952 	if (xudc->driver->resume) {
2953 		spin_unlock(&xudc->lock);
2954 		xudc->driver->resume(&xudc->gadget);
2955 		spin_lock(&xudc->lock);
2956 	}
2957 }
2958 
2959 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2960 {
2961 	u32 val;
2962 
2963 	val = xudc_readl(xudc, PORTSC);
2964 	val &= ~PORTSC_CHANGE_MASK;
2965 	val |= flag;
2966 	xudc_writel(xudc, val, PORTSC);
2967 }
2968 
2969 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2970 {
2971 	u32 portsc, porthalt;
2972 
2973 	porthalt = xudc_readl(xudc, PORTHALT);
2974 	if ((porthalt & PORTHALT_STCHG_REQ) &&
2975 	    (porthalt & PORTHALT_HALT_LTSSM)) {
2976 		dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2977 		porthalt &= ~PORTHALT_HALT_LTSSM;
2978 		xudc_writel(xudc, porthalt, PORTHALT);
2979 	}
2980 
2981 	portsc = xudc_readl(xudc, PORTSC);
2982 	if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
2983 		dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
2984 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2985 #define TOGGLE_VBUS_WAIT_MS 100
2986 		if (xudc->soc->port_reset_quirk) {
2987 			schedule_delayed_work(&xudc->port_reset_war_work,
2988 				msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
2989 			xudc->wait_for_sec_prc = 1;
2990 		}
2991 	}
2992 
2993 	if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
2994 		dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
2995 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2996 		tegra_xudc_port_reset(xudc);
2997 		cancel_delayed_work(&xudc->port_reset_war_work);
2998 		xudc->wait_for_sec_prc = 0;
2999 	}
3000 
3001 	portsc = xudc_readl(xudc, PORTSC);
3002 	if (portsc & PORTSC_WRC) {
3003 		dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
3004 		clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
3005 		if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
3006 			tegra_xudc_port_reset(xudc);
3007 	}
3008 
3009 	portsc = xudc_readl(xudc, PORTSC);
3010 	if (portsc & PORTSC_CSC) {
3011 		dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
3012 		clear_port_change(xudc, PORTSC_CSC);
3013 
3014 		if (portsc & PORTSC_CCS)
3015 			tegra_xudc_port_connect(xudc);
3016 		else
3017 			tegra_xudc_port_disconnect(xudc);
3018 
3019 		if (xudc->wait_csc) {
3020 			cancel_delayed_work(&xudc->plc_reset_work);
3021 			xudc->wait_csc = false;
3022 		}
3023 	}
3024 
3025 	portsc = xudc_readl(xudc, PORTSC);
3026 	if (portsc & PORTSC_PLC) {
3027 		u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
3028 
3029 		dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
3030 		clear_port_change(xudc, PORTSC_PLC);
3031 		switch (pls) {
3032 		case PORTSC_PLS_U3:
3033 			tegra_xudc_port_suspend(xudc);
3034 			break;
3035 		case PORTSC_PLS_U0:
3036 			if (xudc->gadget.speed < USB_SPEED_SUPER)
3037 				tegra_xudc_port_resume(xudc);
3038 			break;
3039 		case PORTSC_PLS_RESUME:
3040 			if (xudc->gadget.speed == USB_SPEED_SUPER)
3041 				tegra_xudc_port_resume(xudc);
3042 			break;
3043 		case PORTSC_PLS_INACTIVE:
3044 			schedule_delayed_work(&xudc->plc_reset_work,
3045 					msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3046 			xudc->wait_csc = true;
3047 			break;
3048 		default:
3049 			break;
3050 		}
3051 	}
3052 
3053 	if (portsc & PORTSC_CEC) {
3054 		dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
3055 		clear_port_change(xudc, PORTSC_CEC);
3056 	}
3057 
3058 	dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
3059 }
3060 
3061 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
3062 {
3063 	while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
3064 	       (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
3065 		__tegra_xudc_handle_port_status(xudc);
3066 }
3067 
3068 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
3069 				    struct tegra_xudc_trb *event)
3070 {
3071 	u32 type = trb_read_type(event);
3072 
3073 	dump_trb(xudc, "EVENT", event);
3074 
3075 	switch (type) {
3076 	case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
3077 		tegra_xudc_handle_port_status(xudc);
3078 		break;
3079 	case TRB_TYPE_TRANSFER_EVENT:
3080 		tegra_xudc_handle_transfer_event(xudc, event);
3081 		break;
3082 	case TRB_TYPE_SETUP_PACKET_EVENT:
3083 		tegra_xudc_handle_ep0_event(xudc, event);
3084 		break;
3085 	default:
3086 		dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
3087 		break;
3088 	}
3089 }
3090 
3091 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
3092 {
3093 	struct tegra_xudc_trb *event;
3094 	dma_addr_t erdp;
3095 
3096 	while (true) {
3097 		event = xudc->event_ring[xudc->event_ring_index] +
3098 			xudc->event_ring_deq_ptr;
3099 
3100 		if (trb_read_cycle(event) != xudc->ccs)
3101 			break;
3102 
3103 		tegra_xudc_handle_event(xudc, event);
3104 
3105 		xudc->event_ring_deq_ptr++;
3106 		if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
3107 			xudc->event_ring_deq_ptr = 0;
3108 			xudc->event_ring_index++;
3109 		}
3110 
3111 		if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
3112 			xudc->event_ring_index = 0;
3113 			xudc->ccs = !xudc->ccs;
3114 		}
3115 	}
3116 
3117 	erdp = xudc->event_ring_phys[xudc->event_ring_index] +
3118 		xudc->event_ring_deq_ptr * sizeof(*event);
3119 
3120 	xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
3121 	xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
3122 }
3123 
3124 static irqreturn_t tegra_xudc_irq(int irq, void *data)
3125 {
3126 	struct tegra_xudc *xudc = data;
3127 	unsigned long flags;
3128 	u32 val;
3129 
3130 	val = xudc_readl(xudc, ST);
3131 	if (!(val & ST_IP))
3132 		return IRQ_NONE;
3133 	xudc_writel(xudc, ST_IP, ST);
3134 
3135 	spin_lock_irqsave(&xudc->lock, flags);
3136 	tegra_xudc_process_event_ring(xudc);
3137 	spin_unlock_irqrestore(&xudc->lock, flags);
3138 
3139 	return IRQ_HANDLED;
3140 }
3141 
3142 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
3143 {
3144 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3145 
3146 	ep->xudc = xudc;
3147 	ep->index = index;
3148 	ep->context = &xudc->ep_context[index];
3149 	INIT_LIST_HEAD(&ep->queue);
3150 
3151 	/*
3152 	 * EP1 would be the input endpoint corresponding to EP0, but since
3153 	 * EP0 is bi-directional, EP1 is unused.
3154 	 */
3155 	if (index == 1)
3156 		return 0;
3157 
3158 	ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
3159 					   GFP_KERNEL,
3160 					   &ep->transfer_ring_phys);
3161 	if (!ep->transfer_ring)
3162 		return -ENOMEM;
3163 
3164 	if (index) {
3165 		snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
3166 			 (index % 2 == 0) ? "out" : "in");
3167 		ep->usb_ep.name = ep->name;
3168 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3169 		ep->usb_ep.max_streams = 16;
3170 		ep->usb_ep.ops = &tegra_xudc_ep_ops;
3171 		ep->usb_ep.caps.type_bulk = true;
3172 		ep->usb_ep.caps.type_int = true;
3173 		if (index & 1)
3174 			ep->usb_ep.caps.dir_in = true;
3175 		else
3176 			ep->usb_ep.caps.dir_out = true;
3177 		list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3178 	} else {
3179 		strscpy(ep->name, "ep0", 3);
3180 		ep->usb_ep.name = ep->name;
3181 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3182 		ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3183 		ep->usb_ep.caps.type_control = true;
3184 		ep->usb_ep.caps.dir_in = true;
3185 		ep->usb_ep.caps.dir_out = true;
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3192 {
3193 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3194 
3195 	/*
3196 	 * EP1 would be the input endpoint corresponding to EP0, but since
3197 	 * EP0 is bi-directional, EP1 is unused.
3198 	 */
3199 	if (index == 1)
3200 		return;
3201 
3202 	dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3203 		      ep->transfer_ring_phys);
3204 }
3205 
3206 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3207 {
3208 	struct usb_request *req;
3209 	unsigned int i;
3210 	int err;
3211 
3212 	xudc->ep_context =
3213 		dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3214 				    sizeof(*xudc->ep_context),
3215 				    &xudc->ep_context_phys, GFP_KERNEL);
3216 	if (!xudc->ep_context)
3217 		return -ENOMEM;
3218 
3219 	xudc->transfer_ring_pool =
3220 		dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3221 				 XUDC_TRANSFER_RING_SIZE *
3222 				 sizeof(struct tegra_xudc_trb),
3223 				 sizeof(struct tegra_xudc_trb), 0);
3224 	if (!xudc->transfer_ring_pool) {
3225 		err = -ENOMEM;
3226 		goto free_ep_context;
3227 	}
3228 
3229 	INIT_LIST_HEAD(&xudc->gadget.ep_list);
3230 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3231 		err = tegra_xudc_alloc_ep(xudc, i);
3232 		if (err < 0)
3233 			goto free_eps;
3234 	}
3235 
3236 	req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3237 	if (!req) {
3238 		err = -ENOMEM;
3239 		goto free_eps;
3240 	}
3241 	xudc->ep0_req = to_xudc_req(req);
3242 
3243 	return 0;
3244 
3245 free_eps:
3246 	for (; i > 0; i--)
3247 		tegra_xudc_free_ep(xudc, i - 1);
3248 free_ep_context:
3249 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3250 			  xudc->ep_context, xudc->ep_context_phys);
3251 	return err;
3252 }
3253 
3254 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3255 {
3256 	xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3257 	xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3258 }
3259 
3260 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3261 {
3262 	unsigned int i;
3263 
3264 	tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3265 				   &xudc->ep0_req->usb_req);
3266 
3267 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3268 		tegra_xudc_free_ep(xudc, i);
3269 
3270 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3271 			  xudc->ep_context, xudc->ep_context_phys);
3272 }
3273 
3274 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3275 {
3276 	unsigned int i;
3277 
3278 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3279 		xudc->event_ring[i] =
3280 			dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3281 					   sizeof(*xudc->event_ring[i]),
3282 					   &xudc->event_ring_phys[i],
3283 					   GFP_KERNEL);
3284 		if (!xudc->event_ring[i])
3285 			goto free_dma;
3286 	}
3287 
3288 	return 0;
3289 
3290 free_dma:
3291 	for (; i > 0; i--) {
3292 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3293 				  sizeof(*xudc->event_ring[i - 1]),
3294 				  xudc->event_ring[i - 1],
3295 				  xudc->event_ring_phys[i - 1]);
3296 	}
3297 	return -ENOMEM;
3298 }
3299 
3300 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3301 {
3302 	unsigned int i;
3303 	u32 val;
3304 
3305 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3306 		memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3307 		       sizeof(*xudc->event_ring[i]));
3308 
3309 		val = xudc_readl(xudc, ERSTSZ);
3310 		val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3311 		val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3312 		xudc_writel(xudc, val, ERSTSZ);
3313 
3314 		xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3315 			    ERSTXBALO(i));
3316 		xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3317 			    ERSTXBAHI(i));
3318 	}
3319 
3320 	val = lower_32_bits(xudc->event_ring_phys[0]);
3321 	xudc_writel(xudc, val, ERDPLO);
3322 	val |= EREPLO_ECS;
3323 	xudc_writel(xudc, val, EREPLO);
3324 
3325 	val = upper_32_bits(xudc->event_ring_phys[0]);
3326 	xudc_writel(xudc, val, ERDPHI);
3327 	xudc_writel(xudc, val, EREPHI);
3328 
3329 	xudc->ccs = true;
3330 	xudc->event_ring_index = 0;
3331 	xudc->event_ring_deq_ptr = 0;
3332 }
3333 
3334 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3335 {
3336 	unsigned int i;
3337 
3338 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3339 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3340 				  sizeof(*xudc->event_ring[i]),
3341 				  xudc->event_ring[i],
3342 				  xudc->event_ring_phys[i]);
3343 	}
3344 }
3345 
3346 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3347 {
3348 	u32 val;
3349 
3350 	if (xudc->soc->has_ipfs) {
3351 		val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3352 		val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3353 		ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3354 		usleep_range(10, 15);
3355 	}
3356 
3357 	/* Enable bus master */
3358 	val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3359 		XUSB_DEV_CFG_1_BUS_MASTER_EN;
3360 	fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3361 
3362 	/* Program BAR0 space */
3363 	val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3364 	val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3365 	val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3366 
3367 	fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3368 	fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3369 
3370 	usleep_range(100, 200);
3371 
3372 	if (xudc->soc->has_ipfs) {
3373 		/* Enable interrupt assertion */
3374 		val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3375 		val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3376 		ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3377 	}
3378 }
3379 
3380 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3381 {
3382 	u32 val, imod;
3383 
3384 	if (xudc->soc->has_ipfs) {
3385 		val = xudc_readl(xudc, BLCG);
3386 		val |= BLCG_ALL;
3387 		val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3388 				BLCG_COREPLL_PWRDN);
3389 		val |= BLCG_IOPLL_0_PWRDN;
3390 		val |= BLCG_IOPLL_1_PWRDN;
3391 		val |= BLCG_IOPLL_2_PWRDN;
3392 
3393 		xudc_writel(xudc, val, BLCG);
3394 	}
3395 
3396 	if (xudc->soc->port_speed_quirk)
3397 		tegra_xudc_limit_port_speed(xudc);
3398 
3399 	/* Set a reasonable U3 exit timer value. */
3400 	val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3401 	val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3402 	val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3403 	xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3404 
3405 	/* Default ping LFPS tBurst is too large. */
3406 	val = xudc_readl(xudc, SSPX_CORE_CNT0);
3407 	val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3408 	val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3409 	xudc_writel(xudc, val, SSPX_CORE_CNT0);
3410 
3411 	/* Default tPortConfiguration timeout is too small. */
3412 	val = xudc_readl(xudc, SSPX_CORE_CNT30);
3413 	val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3414 	val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3415 	xudc_writel(xudc, val, SSPX_CORE_CNT30);
3416 
3417 	if (xudc->soc->lpm_enable) {
3418 		/* Set L1 resume duration to 95 us. */
3419 		val = xudc_readl(xudc, HSFSPI_COUNT13);
3420 		val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3421 		val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3422 		xudc_writel(xudc, val, HSFSPI_COUNT13);
3423 	}
3424 
3425 	/*
3426 	 * Compliacne suite appears to be violating polling LFPS tBurst max
3427 	 * of 1.4us.  Send 1.45us instead.
3428 	 */
3429 	val = xudc_readl(xudc, SSPX_CORE_CNT32);
3430 	val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3431 	val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3432 	xudc_writel(xudc, val, SSPX_CORE_CNT32);
3433 
3434 	/* Direct HS/FS port instance to RxDetect. */
3435 	val = xudc_readl(xudc, CFG_DEV_FE);
3436 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3437 	val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3438 	xudc_writel(xudc, val, CFG_DEV_FE);
3439 
3440 	val = xudc_readl(xudc, PORTSC);
3441 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3442 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3443 	xudc_writel(xudc, val, PORTSC);
3444 
3445 	/* Direct SS port instance to RxDetect. */
3446 	val = xudc_readl(xudc, CFG_DEV_FE);
3447 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3448 	val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3449 	xudc_writel(xudc, val, CFG_DEV_FE);
3450 
3451 	val = xudc_readl(xudc, PORTSC);
3452 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3453 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3454 	xudc_writel(xudc, val, PORTSC);
3455 
3456 	/* Restore port instance. */
3457 	val = xudc_readl(xudc, CFG_DEV_FE);
3458 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3459 	xudc_writel(xudc, val, CFG_DEV_FE);
3460 
3461 	/*
3462 	 * Enable INFINITE_SS_RETRY to prevent device from entering
3463 	 * Disabled.Error when attached to buggy SuperSpeed hubs.
3464 	 */
3465 	val = xudc_readl(xudc, CFG_DEV_FE);
3466 	val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3467 	xudc_writel(xudc, val, CFG_DEV_FE);
3468 
3469 	/* Set interrupt moderation. */
3470 	imod = XUDC_INTERRUPT_MODERATION_US * 4;
3471 	val = xudc_readl(xudc, RT_IMOD);
3472 	val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3473 	val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3474 	xudc_writel(xudc, val, RT_IMOD);
3475 
3476 	/* increase SSPI transaction timeout from 32us to 512us */
3477 	val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3478 	val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3479 	val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3480 	xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3481 }
3482 
3483 static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
3484 {
3485 	int err = 0, usb3;
3486 	unsigned int i;
3487 
3488 	xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3489 					   sizeof(*xudc->utmi_phy), GFP_KERNEL);
3490 	if (!xudc->utmi_phy)
3491 		return -ENOMEM;
3492 
3493 	xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3494 					   sizeof(*xudc->usb3_phy), GFP_KERNEL);
3495 	if (!xudc->usb3_phy)
3496 		return -ENOMEM;
3497 
3498 	xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3499 					   sizeof(*xudc->usbphy), GFP_KERNEL);
3500 	if (!xudc->usbphy)
3501 		return -ENOMEM;
3502 
3503 	xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
3504 
3505 	for (i = 0; i < xudc->soc->num_phys; i++) {
3506 		char phy_name[] = "usb.-.";
3507 
3508 		/* Get USB2 phy */
3509 		snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
3510 		xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3511 		if (IS_ERR(xudc->utmi_phy[i])) {
3512 			err = PTR_ERR(xudc->utmi_phy[i]);
3513 			dev_err_probe(xudc->dev, err,
3514 				      "failed to get usb2-%d PHY\n", i);
3515 			goto clean_up;
3516 		} else if (xudc->utmi_phy[i]) {
3517 			/* Get usb-phy, if utmi phy is available */
3518 			xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
3519 						xudc->utmi_phy[i]->dev.of_node,
3520 						&xudc->vbus_nb);
3521 			if (IS_ERR(xudc->usbphy[i])) {
3522 				err = PTR_ERR(xudc->usbphy[i]);
3523 				dev_err_probe(xudc->dev, err,
3524 					      "failed to get usbphy-%d\n", i);
3525 				goto clean_up;
3526 			}
3527 		} else if (!xudc->utmi_phy[i]) {
3528 			/* if utmi phy is not available, ignore USB3 phy get */
3529 			continue;
3530 		}
3531 
3532 		/* Get USB3 phy */
3533 		usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
3534 		if (usb3 < 0)
3535 			continue;
3536 
3537 		snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3);
3538 		xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3539 		if (IS_ERR(xudc->usb3_phy[i])) {
3540 			err = PTR_ERR(xudc->usb3_phy[i]);
3541 			dev_err_probe(xudc->dev, err,
3542 				      "failed to get usb3-%d PHY\n", usb3);
3543 			goto clean_up;
3544 		} else if (xudc->usb3_phy[i])
3545 			dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3);
3546 	}
3547 
3548 	return err;
3549 
3550 clean_up:
3551 	for (i = 0; i < xudc->soc->num_phys; i++) {
3552 		xudc->usb3_phy[i] = NULL;
3553 		xudc->utmi_phy[i] = NULL;
3554 		xudc->usbphy[i] = NULL;
3555 	}
3556 
3557 	return err;
3558 }
3559 
3560 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3561 {
3562 	unsigned int i;
3563 
3564 	for (i = 0; i < xudc->soc->num_phys; i++) {
3565 		phy_exit(xudc->usb3_phy[i]);
3566 		phy_exit(xudc->utmi_phy[i]);
3567 	}
3568 }
3569 
3570 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3571 {
3572 	int err;
3573 	unsigned int i;
3574 
3575 	for (i = 0; i < xudc->soc->num_phys; i++) {
3576 		err = phy_init(xudc->utmi_phy[i]);
3577 		if (err < 0) {
3578 			dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err);
3579 			goto exit_phy;
3580 		}
3581 
3582 		err = phy_init(xudc->usb3_phy[i]);
3583 		if (err < 0) {
3584 			dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err);
3585 			goto exit_phy;
3586 		}
3587 	}
3588 	return 0;
3589 
3590 exit_phy:
3591 	tegra_xudc_phy_exit(xudc);
3592 	return err;
3593 }
3594 
3595 static const char * const tegra210_xudc_supply_names[] = {
3596 	"hvdd-usb",
3597 	"avddio-usb",
3598 };
3599 
3600 static const char * const tegra210_xudc_clock_names[] = {
3601 	"dev",
3602 	"ss",
3603 	"ss_src",
3604 	"hs_src",
3605 	"fs_src",
3606 };
3607 
3608 static const char * const tegra186_xudc_clock_names[] = {
3609 	"dev",
3610 	"ss",
3611 	"ss_src",
3612 	"fs_src",
3613 };
3614 
3615 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3616 	.supply_names = tegra210_xudc_supply_names,
3617 	.num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3618 	.clock_names = tegra210_xudc_clock_names,
3619 	.num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3620 	.num_phys = 4,
3621 	.u1_enable = false,
3622 	.u2_enable = true,
3623 	.lpm_enable = false,
3624 	.invalid_seq_num = true,
3625 	.pls_quirk = true,
3626 	.port_reset_quirk = true,
3627 	.port_speed_quirk = false,
3628 	.has_ipfs = true,
3629 };
3630 
3631 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3632 	.clock_names = tegra186_xudc_clock_names,
3633 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3634 	.num_phys = 4,
3635 	.u1_enable = true,
3636 	.u2_enable = true,
3637 	.lpm_enable = false,
3638 	.invalid_seq_num = false,
3639 	.pls_quirk = false,
3640 	.port_reset_quirk = false,
3641 	.port_speed_quirk = false,
3642 	.has_ipfs = false,
3643 };
3644 
3645 static struct tegra_xudc_soc tegra194_xudc_soc_data = {
3646 	.clock_names = tegra186_xudc_clock_names,
3647 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3648 	.num_phys = 4,
3649 	.u1_enable = true,
3650 	.u2_enable = true,
3651 	.lpm_enable = true,
3652 	.invalid_seq_num = false,
3653 	.pls_quirk = false,
3654 	.port_reset_quirk = false,
3655 	.port_speed_quirk = true,
3656 	.has_ipfs = false,
3657 };
3658 
3659 static const struct of_device_id tegra_xudc_of_match[] = {
3660 	{
3661 		.compatible = "nvidia,tegra210-xudc",
3662 		.data = &tegra210_xudc_soc_data
3663 	},
3664 	{
3665 		.compatible = "nvidia,tegra186-xudc",
3666 		.data = &tegra186_xudc_soc_data
3667 	},
3668 	{
3669 		.compatible = "nvidia,tegra194-xudc",
3670 		.data = &tegra194_xudc_soc_data
3671 	},
3672 	{ }
3673 };
3674 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3675 
3676 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3677 {
3678 	if (xudc->genpd_dl_ss)
3679 		device_link_del(xudc->genpd_dl_ss);
3680 	if (xudc->genpd_dl_device)
3681 		device_link_del(xudc->genpd_dl_device);
3682 	if (xudc->genpd_dev_ss)
3683 		dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3684 	if (xudc->genpd_dev_device)
3685 		dev_pm_domain_detach(xudc->genpd_dev_device, true);
3686 }
3687 
3688 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3689 {
3690 	struct device *dev = xudc->dev;
3691 	int err;
3692 
3693 	xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev");
3694 	if (IS_ERR(xudc->genpd_dev_device)) {
3695 		err = PTR_ERR(xudc->genpd_dev_device);
3696 		dev_err(dev, "failed to get device power domain: %d\n", err);
3697 		return err;
3698 	}
3699 
3700 	xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3701 	if (IS_ERR(xudc->genpd_dev_ss)) {
3702 		err = PTR_ERR(xudc->genpd_dev_ss);
3703 		dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err);
3704 		return err;
3705 	}
3706 
3707 	xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3708 						DL_FLAG_PM_RUNTIME |
3709 						DL_FLAG_STATELESS);
3710 	if (!xudc->genpd_dl_device) {
3711 		dev_err(dev, "failed to add USB device link\n");
3712 		return -ENODEV;
3713 	}
3714 
3715 	xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3716 					    DL_FLAG_PM_RUNTIME |
3717 					    DL_FLAG_STATELESS);
3718 	if (!xudc->genpd_dl_ss) {
3719 		dev_err(dev, "failed to add SuperSpeed device link\n");
3720 		return -ENODEV;
3721 	}
3722 
3723 	return 0;
3724 }
3725 
3726 static int tegra_xudc_probe(struct platform_device *pdev)
3727 {
3728 	struct tegra_xudc *xudc;
3729 	struct resource *res;
3730 	unsigned int i;
3731 	int err;
3732 
3733 	xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL);
3734 	if (!xudc)
3735 		return -ENOMEM;
3736 
3737 	xudc->dev = &pdev->dev;
3738 	platform_set_drvdata(pdev, xudc);
3739 
3740 	xudc->soc = of_device_get_match_data(&pdev->dev);
3741 	if (!xudc->soc)
3742 		return -ENODEV;
3743 
3744 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3745 	xudc->base = devm_ioremap_resource(&pdev->dev, res);
3746 	if (IS_ERR(xudc->base))
3747 		return PTR_ERR(xudc->base);
3748 	xudc->phys_base = res->start;
3749 
3750 	xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci");
3751 	if (IS_ERR(xudc->fpci))
3752 		return PTR_ERR(xudc->fpci);
3753 
3754 	if (xudc->soc->has_ipfs) {
3755 		xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs");
3756 		if (IS_ERR(xudc->ipfs))
3757 			return PTR_ERR(xudc->ipfs);
3758 	}
3759 
3760 	xudc->irq = platform_get_irq(pdev, 0);
3761 	if (xudc->irq < 0)
3762 		return xudc->irq;
3763 
3764 	err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3765 			       dev_name(&pdev->dev), xudc);
3766 	if (err < 0) {
3767 		dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3768 			err);
3769 		return err;
3770 	}
3771 
3772 	xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks),
3773 				  GFP_KERNEL);
3774 	if (!xudc->clks)
3775 		return -ENOMEM;
3776 
3777 	for (i = 0; i < xudc->soc->num_clks; i++)
3778 		xudc->clks[i].id = xudc->soc->clock_names[i];
3779 
3780 	err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks);
3781 	if (err) {
3782 		dev_err_probe(xudc->dev, err, "failed to request clocks\n");
3783 		return err;
3784 	}
3785 
3786 	xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3787 				      sizeof(*xudc->supplies), GFP_KERNEL);
3788 	if (!xudc->supplies)
3789 		return -ENOMEM;
3790 
3791 	for (i = 0; i < xudc->soc->num_supplies; i++)
3792 		xudc->supplies[i].supply = xudc->soc->supply_names[i];
3793 
3794 	err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3795 				      xudc->supplies);
3796 	if (err) {
3797 		dev_err_probe(xudc->dev, err, "failed to request regulators\n");
3798 		return err;
3799 	}
3800 
3801 	xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3802 	if (IS_ERR(xudc->padctl))
3803 		return PTR_ERR(xudc->padctl);
3804 
3805 	err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3806 	if (err) {
3807 		dev_err(xudc->dev, "failed to enable regulators: %d\n", err);
3808 		goto put_padctl;
3809 	}
3810 
3811 	err = tegra_xudc_phy_get(xudc);
3812 	if (err)
3813 		goto disable_regulator;
3814 
3815 	err = tegra_xudc_powerdomain_init(xudc);
3816 	if (err)
3817 		goto put_powerdomains;
3818 
3819 	err = tegra_xudc_phy_init(xudc);
3820 	if (err)
3821 		goto put_powerdomains;
3822 
3823 	err = tegra_xudc_alloc_event_ring(xudc);
3824 	if (err)
3825 		goto disable_phy;
3826 
3827 	err = tegra_xudc_alloc_eps(xudc);
3828 	if (err)
3829 		goto free_event_ring;
3830 
3831 	spin_lock_init(&xudc->lock);
3832 
3833 	init_completion(&xudc->disconnect_complete);
3834 
3835 	INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3836 
3837 	INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3838 
3839 	INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3840 				tegra_xudc_port_reset_war_work);
3841 
3842 	pm_runtime_enable(&pdev->dev);
3843 
3844 	xudc->gadget.ops = &tegra_xudc_gadget_ops;
3845 	xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3846 	xudc->gadget.name = "tegra-xudc";
3847 	xudc->gadget.max_speed = USB_SPEED_SUPER;
3848 
3849 	err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3850 	if (err) {
3851 		dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3852 		goto free_eps;
3853 	}
3854 
3855 	return 0;
3856 
3857 free_eps:
3858 	pm_runtime_disable(&pdev->dev);
3859 	tegra_xudc_free_eps(xudc);
3860 free_event_ring:
3861 	tegra_xudc_free_event_ring(xudc);
3862 disable_phy:
3863 	tegra_xudc_phy_exit(xudc);
3864 put_powerdomains:
3865 	tegra_xudc_powerdomain_remove(xudc);
3866 disable_regulator:
3867 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3868 put_padctl:
3869 	tegra_xusb_padctl_put(xudc->padctl);
3870 
3871 	return err;
3872 }
3873 
3874 static int tegra_xudc_remove(struct platform_device *pdev)
3875 {
3876 	struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3877 	unsigned int i;
3878 
3879 	pm_runtime_get_sync(xudc->dev);
3880 
3881 	cancel_delayed_work_sync(&xudc->plc_reset_work);
3882 	cancel_work_sync(&xudc->usb_role_sw_work);
3883 
3884 	usb_del_gadget_udc(&xudc->gadget);
3885 
3886 	tegra_xudc_free_eps(xudc);
3887 	tegra_xudc_free_event_ring(xudc);
3888 
3889 	tegra_xudc_powerdomain_remove(xudc);
3890 
3891 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3892 
3893 	for (i = 0; i < xudc->soc->num_phys; i++) {
3894 		phy_power_off(xudc->utmi_phy[i]);
3895 		phy_power_off(xudc->usb3_phy[i]);
3896 	}
3897 
3898 	tegra_xudc_phy_exit(xudc);
3899 
3900 	pm_runtime_disable(xudc->dev);
3901 	pm_runtime_put(xudc->dev);
3902 
3903 	tegra_xusb_padctl_put(xudc->padctl);
3904 
3905 	return 0;
3906 }
3907 
3908 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3909 {
3910 	unsigned long flags;
3911 
3912 	dev_dbg(xudc->dev, "entering ELPG\n");
3913 
3914 	spin_lock_irqsave(&xudc->lock, flags);
3915 
3916 	xudc->powergated = true;
3917 	xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3918 	xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3919 	xudc_writel(xudc, 0, CTRL);
3920 
3921 	spin_unlock_irqrestore(&xudc->lock, flags);
3922 
3923 	clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3924 
3925 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3926 
3927 	dev_dbg(xudc->dev, "entering ELPG done\n");
3928 	return 0;
3929 }
3930 
3931 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3932 {
3933 	unsigned long flags;
3934 	int err;
3935 
3936 	dev_dbg(xudc->dev, "exiting ELPG\n");
3937 
3938 	err = regulator_bulk_enable(xudc->soc->num_supplies,
3939 			xudc->supplies);
3940 	if (err < 0)
3941 		return err;
3942 
3943 	err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3944 	if (err < 0)
3945 		return err;
3946 
3947 	tegra_xudc_fpci_ipfs_init(xudc);
3948 
3949 	tegra_xudc_device_params_init(xudc);
3950 
3951 	tegra_xudc_init_event_ring(xudc);
3952 
3953 	tegra_xudc_init_eps(xudc);
3954 
3955 	xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
3956 	xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
3957 
3958 	spin_lock_irqsave(&xudc->lock, flags);
3959 	xudc->powergated = false;
3960 	spin_unlock_irqrestore(&xudc->lock, flags);
3961 
3962 	dev_dbg(xudc->dev, "exiting ELPG done\n");
3963 	return 0;
3964 }
3965 
3966 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
3967 {
3968 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3969 	unsigned long flags;
3970 
3971 	spin_lock_irqsave(&xudc->lock, flags);
3972 	xudc->suspended = true;
3973 	spin_unlock_irqrestore(&xudc->lock, flags);
3974 
3975 	flush_work(&xudc->usb_role_sw_work);
3976 
3977 	if (!pm_runtime_status_suspended(dev)) {
3978 		/* Forcibly disconnect before powergating. */
3979 		tegra_xudc_device_mode_off(xudc);
3980 		tegra_xudc_powergate(xudc);
3981 	}
3982 
3983 	pm_runtime_disable(dev);
3984 
3985 	return 0;
3986 }
3987 
3988 static int __maybe_unused tegra_xudc_resume(struct device *dev)
3989 {
3990 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3991 	unsigned long flags;
3992 	int err;
3993 
3994 	err = tegra_xudc_unpowergate(xudc);
3995 	if (err < 0)
3996 		return err;
3997 
3998 	spin_lock_irqsave(&xudc->lock, flags);
3999 	xudc->suspended = false;
4000 	spin_unlock_irqrestore(&xudc->lock, flags);
4001 
4002 	schedule_work(&xudc->usb_role_sw_work);
4003 
4004 	pm_runtime_enable(dev);
4005 
4006 	return 0;
4007 }
4008 
4009 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
4010 {
4011 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4012 
4013 	return tegra_xudc_powergate(xudc);
4014 }
4015 
4016 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
4017 {
4018 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4019 
4020 	return tegra_xudc_unpowergate(xudc);
4021 }
4022 
4023 static const struct dev_pm_ops tegra_xudc_pm_ops = {
4024 	SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
4025 	SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
4026 			   tegra_xudc_runtime_resume, NULL)
4027 };
4028 
4029 static struct platform_driver tegra_xudc_driver = {
4030 	.probe = tegra_xudc_probe,
4031 	.remove = tegra_xudc_remove,
4032 	.driver = {
4033 		.name = "tegra-xudc",
4034 		.pm = &tegra_xudc_pm_ops,
4035 		.of_match_table = tegra_xudc_of_match,
4036 	},
4037 };
4038 module_platform_driver(tegra_xudc_driver);
4039 
4040 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
4041 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
4042 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
4043 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
4044 MODULE_LICENSE("GPL v2");
4045