1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NVIDIA Tegra XUSB device mode controller 4 * 5 * Copyright (c) 2013-2022, NVIDIA CORPORATION. All rights reserved. 6 * Copyright (c) 2015, Google Inc. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/interrupt.h> 15 #include <linux/iopoll.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/phy/phy.h> 20 #include <linux/phy/tegra/xusb.h> 21 #include <linux/pm_domain.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/reset.h> 26 #include <linux/usb/ch9.h> 27 #include <linux/usb/gadget.h> 28 #include <linux/usb/otg.h> 29 #include <linux/usb/role.h> 30 #include <linux/usb/phy.h> 31 #include <linux/workqueue.h> 32 33 /* XUSB_DEV registers */ 34 #define DB 0x004 35 #define DB_TARGET_MASK GENMASK(15, 8) 36 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK) 37 #define DB_STREAMID_MASK GENMASK(31, 16) 38 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK) 39 #define ERSTSZ 0x008 40 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16) 41 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0) 42 #define ERSTXBALO(x) (0x010 + 8 * (x)) 43 #define ERSTXBAHI(x) (0x014 + 8 * (x)) 44 #define ERDPLO 0x020 45 #define ERDPLO_EHB BIT(3) 46 #define ERDPHI 0x024 47 #define EREPLO 0x028 48 #define EREPLO_ECS BIT(0) 49 #define EREPLO_SEGI BIT(1) 50 #define EREPHI 0x02c 51 #define CTRL 0x030 52 #define CTRL_RUN BIT(0) 53 #define CTRL_LSE BIT(1) 54 #define CTRL_IE BIT(4) 55 #define CTRL_SMI_EVT BIT(5) 56 #define CTRL_SMI_DSE BIT(6) 57 #define CTRL_EWE BIT(7) 58 #define CTRL_DEVADDR_MASK GENMASK(30, 24) 59 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK) 60 #define CTRL_ENABLE BIT(31) 61 #define ST 0x034 62 #define ST_RC BIT(0) 63 #define ST_IP BIT(4) 64 #define RT_IMOD 0x038 65 #define RT_IMOD_IMODI_MASK GENMASK(15, 0) 66 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK) 67 #define RT_IMOD_IMODC_MASK GENMASK(31, 16) 68 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK) 69 #define PORTSC 0x03c 70 #define PORTSC_CCS BIT(0) 71 #define PORTSC_PED BIT(1) 72 #define PORTSC_PR BIT(4) 73 #define PORTSC_PLS_SHIFT 5 74 #define PORTSC_PLS_MASK GENMASK(8, 5) 75 #define PORTSC_PLS_U0 0x0 76 #define PORTSC_PLS_U2 0x2 77 #define PORTSC_PLS_U3 0x3 78 #define PORTSC_PLS_DISABLED 0x4 79 #define PORTSC_PLS_RXDETECT 0x5 80 #define PORTSC_PLS_INACTIVE 0x6 81 #define PORTSC_PLS_RESUME 0xf 82 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK) 83 #define PORTSC_PS_SHIFT 10 84 #define PORTSC_PS_MASK GENMASK(13, 10) 85 #define PORTSC_PS_UNDEFINED 0x0 86 #define PORTSC_PS_FS 0x1 87 #define PORTSC_PS_LS 0x2 88 #define PORTSC_PS_HS 0x3 89 #define PORTSC_PS_SS 0x4 90 #define PORTSC_LWS BIT(16) 91 #define PORTSC_CSC BIT(17) 92 #define PORTSC_WRC BIT(19) 93 #define PORTSC_PRC BIT(21) 94 #define PORTSC_PLC BIT(22) 95 #define PORTSC_CEC BIT(23) 96 #define PORTSC_WPR BIT(30) 97 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \ 98 PORTSC_PLC | PORTSC_CEC) 99 #define ECPLO 0x040 100 #define ECPHI 0x044 101 #define MFINDEX 0x048 102 #define MFINDEX_FRAME_SHIFT 3 103 #define MFINDEX_FRAME_MASK GENMASK(13, 3) 104 #define PORTPM 0x04c 105 #define PORTPM_L1S_MASK GENMASK(1, 0) 106 #define PORTPM_L1S_DROP 0x0 107 #define PORTPM_L1S_ACCEPT 0x1 108 #define PORTPM_L1S_NYET 0x2 109 #define PORTPM_L1S_STALL 0x3 110 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK) 111 #define PORTPM_RWE BIT(3) 112 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8) 113 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16) 114 #define PORTPM_FLA BIT(24) 115 #define PORTPM_VBA BIT(25) 116 #define PORTPM_WOC BIT(26) 117 #define PORTPM_WOD BIT(27) 118 #define PORTPM_U1E BIT(28) 119 #define PORTPM_U2E BIT(29) 120 #define PORTPM_FRWE BIT(30) 121 #define PORTPM_PNG_CYA BIT(31) 122 #define EP_HALT 0x050 123 #define EP_PAUSE 0x054 124 #define EP_RELOAD 0x058 125 #define EP_STCHG 0x05c 126 #define DEVNOTIF_LO 0x064 127 #define DEVNOTIF_LO_TRIG BIT(0) 128 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4) 129 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK) 130 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1 131 #define DEVNOTIF_HI 0x068 132 #define PORTHALT 0x06c 133 #define PORTHALT_HALT_LTSSM BIT(0) 134 #define PORTHALT_HALT_REJECT BIT(1) 135 #define PORTHALT_STCHG_REQ BIT(20) 136 #define PORTHALT_STCHG_INTR_EN BIT(24) 137 #define PORT_TM 0x070 138 #define EP_THREAD_ACTIVE 0x074 139 #define EP_STOPPED 0x078 140 #define HSFSPI_COUNT0 0x100 141 #define HSFSPI_COUNT13 0x134 142 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0) 143 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \ 144 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK) 145 #define BLCG 0x840 146 #define SSPX_CORE_CNT0 0x610 147 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0) 148 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK) 149 #define SSPX_CORE_CNT30 0x688 150 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0) 151 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \ 152 SSPX_CORE_CNT30_LMPITP_TIMER_MASK) 153 #define SSPX_CORE_CNT32 0x690 154 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0) 155 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \ 156 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK) 157 #define SSPX_CORE_CNT56 0x6fc 158 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0) 159 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \ 160 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK) 161 #define SSPX_CORE_CNT57 0x700 162 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0) 163 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \ 164 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK) 165 #define SSPX_CORE_CNT65 0x720 166 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0) 167 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \ 168 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK) 169 #define SSPX_CORE_CNT66 0x724 170 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0) 171 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \ 172 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK) 173 #define SSPX_CORE_CNT67 0x728 174 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0) 175 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \ 176 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK) 177 #define SSPX_CORE_CNT72 0x73c 178 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0) 179 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \ 180 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK) 181 #define SSPX_CORE_PADCTL4 0x750 182 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0) 183 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \ 184 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK) 185 #define BLCG_DFPCI BIT(0) 186 #define BLCG_UFPCI BIT(1) 187 #define BLCG_FE BIT(2) 188 #define BLCG_COREPLL_PWRDN BIT(8) 189 #define BLCG_IOPLL_0_PWRDN BIT(9) 190 #define BLCG_IOPLL_1_PWRDN BIT(10) 191 #define BLCG_IOPLL_2_PWRDN BIT(11) 192 #define BLCG_ALL 0x1ff 193 #define CFG_DEV_SSPI_XFER 0x858 194 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0) 195 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \ 196 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK) 197 #define CFG_DEV_FE 0x85c 198 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0) 199 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1 200 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2 201 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK) 202 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29) 203 204 /* FPCI registers */ 205 #define XUSB_DEV_CFG_1 0x004 206 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0) 207 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1) 208 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2) 209 #define XUSB_DEV_CFG_4 0x010 210 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15) 211 #define XUSB_DEV_CFG_5 0x014 212 213 /* IPFS registers */ 214 #define XUSB_DEV_CONFIGURATION_0 0x180 215 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0) 216 #define XUSB_DEV_INTR_MASK_0 0x188 217 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16) 218 219 struct tegra_xudc_ep_context { 220 __le32 info0; 221 __le32 info1; 222 __le32 deq_lo; 223 __le32 deq_hi; 224 __le32 tx_info; 225 __le32 rsvd[11]; 226 }; 227 228 #define EP_STATE_DISABLED 0 229 #define EP_STATE_RUNNING 1 230 #define EP_STATE_HALTED 2 231 #define EP_STATE_STOPPED 3 232 #define EP_STATE_ERROR 4 233 234 #define EP_TYPE_INVALID 0 235 #define EP_TYPE_ISOCH_OUT 1 236 #define EP_TYPE_BULK_OUT 2 237 #define EP_TYPE_INTERRUPT_OUT 3 238 #define EP_TYPE_CONTROL 4 239 #define EP_TYPE_ISCOH_IN 5 240 #define EP_TYPE_BULK_IN 6 241 #define EP_TYPE_INTERRUPT_IN 7 242 243 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \ 244 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \ 245 { \ 246 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \ 247 } \ 248 static inline void \ 249 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \ 250 { \ 251 u32 tmp; \ 252 \ 253 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \ 254 tmp |= (val & (mask)) << (shift); \ 255 ctx->member = cpu_to_le32(tmp); \ 256 } 257 258 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7) 259 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3) 260 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f) 261 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1) 262 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff) 263 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3) 264 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7) 265 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1) 266 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff) 267 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff) 268 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1) 269 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff) 270 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff) 271 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff) 272 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff) 273 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff) 274 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1) 275 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1) 276 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1) 277 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f) 278 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3) 279 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff) 280 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f) 281 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f) 282 283 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx) 284 { 285 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) | 286 (ep_ctx_read_deq_lo(ctx) << 4); 287 } 288 289 static inline void 290 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr) 291 { 292 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4); 293 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr)); 294 } 295 296 struct tegra_xudc_trb { 297 __le32 data_lo; 298 __le32 data_hi; 299 __le32 status; 300 __le32 control; 301 }; 302 303 #define TRB_TYPE_RSVD 0 304 #define TRB_TYPE_NORMAL 1 305 #define TRB_TYPE_SETUP_STAGE 2 306 #define TRB_TYPE_DATA_STAGE 3 307 #define TRB_TYPE_STATUS_STAGE 4 308 #define TRB_TYPE_ISOCH 5 309 #define TRB_TYPE_LINK 6 310 #define TRB_TYPE_TRANSFER_EVENT 32 311 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34 312 #define TRB_TYPE_STREAM 48 313 #define TRB_TYPE_SETUP_PACKET_EVENT 63 314 315 #define TRB_CMPL_CODE_INVALID 0 316 #define TRB_CMPL_CODE_SUCCESS 1 317 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2 318 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3 319 #define TRB_CMPL_CODE_USB_TRANS_ERR 4 320 #define TRB_CMPL_CODE_TRB_ERR 5 321 #define TRB_CMPL_CODE_STALL 6 322 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10 323 #define TRB_CMPL_CODE_SHORT_PACKET 13 324 #define TRB_CMPL_CODE_RING_UNDERRUN 14 325 #define TRB_CMPL_CODE_RING_OVERRUN 15 326 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21 327 #define TRB_CMPL_CODE_STOPPED 26 328 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31 329 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219 330 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220 331 #define TRB_CMPL_CODE_HOST_REJECTED 221 332 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222 333 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223 334 335 #define BUILD_TRB_RW(name, member, shift, mask) \ 336 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \ 337 { \ 338 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \ 339 } \ 340 static inline void \ 341 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \ 342 { \ 343 u32 tmp; \ 344 \ 345 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \ 346 tmp |= (val & (mask)) << (shift); \ 347 trb->member = cpu_to_le32(tmp); \ 348 } 349 350 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff) 351 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff) 352 BUILD_TRB_RW(seq_num, status, 0, 0xffff) 353 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff) 354 BUILD_TRB_RW(td_size, status, 17, 0x1f) 355 BUILD_TRB_RW(cmpl_code, status, 24, 0xff) 356 BUILD_TRB_RW(cycle, control, 0, 0x1) 357 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1) 358 BUILD_TRB_RW(isp, control, 2, 0x1) 359 BUILD_TRB_RW(chain, control, 4, 0x1) 360 BUILD_TRB_RW(ioc, control, 5, 0x1) 361 BUILD_TRB_RW(type, control, 10, 0x3f) 362 BUILD_TRB_RW(stream_id, control, 16, 0xffff) 363 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f) 364 BUILD_TRB_RW(tlbpc, control, 16, 0xf) 365 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1) 366 BUILD_TRB_RW(frame_id, control, 20, 0x7ff) 367 BUILD_TRB_RW(sia, control, 31, 0x1) 368 369 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb) 370 { 371 return ((u64)trb_read_data_hi(trb) << 32) | 372 trb_read_data_lo(trb); 373 } 374 375 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr) 376 { 377 trb_write_data_lo(trb, lower_32_bits(addr)); 378 trb_write_data_hi(trb, upper_32_bits(addr)); 379 } 380 381 struct tegra_xudc_request { 382 struct usb_request usb_req; 383 384 size_t buf_queued; 385 unsigned int trbs_queued; 386 unsigned int trbs_needed; 387 bool need_zlp; 388 389 struct tegra_xudc_trb *first_trb; 390 struct tegra_xudc_trb *last_trb; 391 392 struct list_head list; 393 }; 394 395 struct tegra_xudc_ep { 396 struct tegra_xudc *xudc; 397 struct usb_ep usb_ep; 398 unsigned int index; 399 char name[8]; 400 401 struct tegra_xudc_ep_context *context; 402 403 #define XUDC_TRANSFER_RING_SIZE 64 404 struct tegra_xudc_trb *transfer_ring; 405 dma_addr_t transfer_ring_phys; 406 407 unsigned int enq_ptr; 408 unsigned int deq_ptr; 409 bool pcs; 410 bool ring_full; 411 bool stream_rejected; 412 413 struct list_head queue; 414 const struct usb_endpoint_descriptor *desc; 415 const struct usb_ss_ep_comp_descriptor *comp_desc; 416 }; 417 418 struct tegra_xudc_sel_timing { 419 __u8 u1sel; 420 __u8 u1pel; 421 __le16 u2sel; 422 __le16 u2pel; 423 }; 424 425 enum tegra_xudc_setup_state { 426 WAIT_FOR_SETUP, 427 DATA_STAGE_XFER, 428 DATA_STAGE_RECV, 429 STATUS_STAGE_XFER, 430 STATUS_STAGE_RECV, 431 }; 432 433 struct tegra_xudc_setup_packet { 434 struct usb_ctrlrequest ctrl_req; 435 unsigned int seq_num; 436 }; 437 438 struct tegra_xudc_save_regs { 439 u32 ctrl; 440 u32 portpm; 441 }; 442 443 struct tegra_xudc { 444 struct device *dev; 445 const struct tegra_xudc_soc *soc; 446 struct tegra_xusb_padctl *padctl; 447 448 spinlock_t lock; 449 450 struct usb_gadget gadget; 451 struct usb_gadget_driver *driver; 452 453 #define XUDC_NR_EVENT_RINGS 2 454 #define XUDC_EVENT_RING_SIZE 4096 455 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS]; 456 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS]; 457 unsigned int event_ring_index; 458 unsigned int event_ring_deq_ptr; 459 bool ccs; 460 461 #define XUDC_NR_EPS 32 462 struct tegra_xudc_ep ep[XUDC_NR_EPS]; 463 struct tegra_xudc_ep_context *ep_context; 464 dma_addr_t ep_context_phys; 465 466 struct device *genpd_dev_device; 467 struct device *genpd_dev_ss; 468 struct device_link *genpd_dl_device; 469 struct device_link *genpd_dl_ss; 470 471 struct dma_pool *transfer_ring_pool; 472 473 bool queued_setup_packet; 474 struct tegra_xudc_setup_packet setup_packet; 475 enum tegra_xudc_setup_state setup_state; 476 u16 setup_seq_num; 477 478 u16 dev_addr; 479 u16 isoch_delay; 480 struct tegra_xudc_sel_timing sel_timing; 481 u8 test_mode_pattern; 482 u16 status_buf; 483 struct tegra_xudc_request *ep0_req; 484 485 bool pullup; 486 487 unsigned int nr_enabled_eps; 488 unsigned int nr_isoch_eps; 489 490 unsigned int device_state; 491 unsigned int resume_state; 492 493 int irq; 494 495 void __iomem *base; 496 resource_size_t phys_base; 497 void __iomem *ipfs; 498 void __iomem *fpci; 499 500 struct regulator_bulk_data *supplies; 501 502 struct clk_bulk_data *clks; 503 504 bool device_mode; 505 struct work_struct usb_role_sw_work; 506 507 struct phy **usb3_phy; 508 struct phy *curr_usb3_phy; 509 struct phy **utmi_phy; 510 struct phy *curr_utmi_phy; 511 512 struct tegra_xudc_save_regs saved_regs; 513 bool suspended; 514 bool powergated; 515 516 struct usb_phy **usbphy; 517 struct usb_phy *curr_usbphy; 518 struct notifier_block vbus_nb; 519 520 struct completion disconnect_complete; 521 522 bool selfpowered; 523 524 #define TOGGLE_VBUS_WAIT_MS 100 525 struct delayed_work plc_reset_work; 526 bool wait_csc; 527 528 struct delayed_work port_reset_war_work; 529 bool wait_for_sec_prc; 530 }; 531 532 #define XUDC_TRB_MAX_BUFFER_SIZE 65536 533 #define XUDC_MAX_ISOCH_EPS 4 534 #define XUDC_INTERRUPT_MODERATION_US 0 535 536 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = { 537 .bLength = USB_DT_ENDPOINT_SIZE, 538 .bDescriptorType = USB_DT_ENDPOINT, 539 .bEndpointAddress = 0, 540 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 541 .wMaxPacketSize = cpu_to_le16(64), 542 }; 543 544 struct tegra_xudc_soc { 545 const char * const *supply_names; 546 unsigned int num_supplies; 547 const char * const *clock_names; 548 unsigned int num_clks; 549 unsigned int num_phys; 550 bool u1_enable; 551 bool u2_enable; 552 bool lpm_enable; 553 bool invalid_seq_num; 554 bool pls_quirk; 555 bool port_reset_quirk; 556 bool port_speed_quirk; 557 bool has_ipfs; 558 }; 559 560 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset) 561 { 562 return readl(xudc->fpci + offset); 563 } 564 565 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val, 566 unsigned int offset) 567 { 568 writel(val, xudc->fpci + offset); 569 } 570 571 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset) 572 { 573 return readl(xudc->ipfs + offset); 574 } 575 576 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val, 577 unsigned int offset) 578 { 579 writel(val, xudc->ipfs + offset); 580 } 581 582 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset) 583 { 584 return readl(xudc->base + offset); 585 } 586 587 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val, 588 unsigned int offset) 589 { 590 writel(val, xudc->base + offset); 591 } 592 593 static inline int xudc_readl_poll(struct tegra_xudc *xudc, 594 unsigned int offset, u32 mask, u32 val) 595 { 596 u32 regval; 597 598 return readl_poll_timeout_atomic(xudc->base + offset, regval, 599 (regval & mask) == val, 1, 100); 600 } 601 602 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget) 603 { 604 return container_of(gadget, struct tegra_xudc, gadget); 605 } 606 607 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep) 608 { 609 return container_of(ep, struct tegra_xudc_ep, usb_ep); 610 } 611 612 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req) 613 { 614 return container_of(req, struct tegra_xudc_request, usb_req); 615 } 616 617 static inline void dump_trb(struct tegra_xudc *xudc, const char *type, 618 struct tegra_xudc_trb *trb) 619 { 620 dev_dbg(xudc->dev, 621 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n", 622 type, trb, trb->data_lo, trb->data_hi, trb->status, 623 trb->control); 624 } 625 626 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc) 627 { 628 u32 val; 629 630 /* limit port speed to gen 1 */ 631 val = xudc_readl(xudc, SSPX_CORE_CNT56); 632 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 633 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260); 634 xudc_writel(xudc, val, SSPX_CORE_CNT56); 635 636 val = xudc_readl(xudc, SSPX_CORE_CNT57); 637 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 638 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6); 639 xudc_writel(xudc, val, SSPX_CORE_CNT57); 640 641 val = xudc_readl(xudc, SSPX_CORE_CNT65); 642 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 643 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0); 644 xudc_writel(xudc, val, SSPX_CORE_CNT66); 645 646 val = xudc_readl(xudc, SSPX_CORE_CNT66); 647 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 648 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0); 649 xudc_writel(xudc, val, SSPX_CORE_CNT66); 650 651 val = xudc_readl(xudc, SSPX_CORE_CNT67); 652 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 653 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0); 654 xudc_writel(xudc, val, SSPX_CORE_CNT67); 655 656 val = xudc_readl(xudc, SSPX_CORE_CNT72); 657 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 658 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10); 659 xudc_writel(xudc, val, SSPX_CORE_CNT72); 660 } 661 662 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc) 663 { 664 u32 val; 665 666 /* restore port speed to gen2 */ 667 val = xudc_readl(xudc, SSPX_CORE_CNT56); 668 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 669 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438); 670 xudc_writel(xudc, val, SSPX_CORE_CNT56); 671 672 val = xudc_readl(xudc, SSPX_CORE_CNT57); 673 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 674 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528); 675 xudc_writel(xudc, val, SSPX_CORE_CNT57); 676 677 val = xudc_readl(xudc, SSPX_CORE_CNT65); 678 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 679 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10); 680 xudc_writel(xudc, val, SSPX_CORE_CNT66); 681 682 val = xudc_readl(xudc, SSPX_CORE_CNT66); 683 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 684 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348); 685 xudc_writel(xudc, val, SSPX_CORE_CNT66); 686 687 val = xudc_readl(xudc, SSPX_CORE_CNT67); 688 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 689 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0); 690 xudc_writel(xudc, val, SSPX_CORE_CNT67); 691 692 val = xudc_readl(xudc, SSPX_CORE_CNT72); 693 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 694 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21); 695 xudc_writel(xudc, val, SSPX_CORE_CNT72); 696 } 697 698 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc) 699 { 700 int err; 701 702 pm_runtime_get_sync(xudc->dev); 703 704 tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy); 705 706 err = phy_power_on(xudc->curr_utmi_phy); 707 if (err < 0) 708 dev_err(xudc->dev, "UTMI power on failed: %d\n", err); 709 710 err = phy_power_on(xudc->curr_usb3_phy); 711 if (err < 0) 712 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err); 713 714 dev_dbg(xudc->dev, "device mode on\n"); 715 716 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 717 USB_ROLE_DEVICE); 718 } 719 720 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc) 721 { 722 bool connected = false; 723 u32 pls, val; 724 int err; 725 726 dev_dbg(xudc->dev, "device mode off\n"); 727 728 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS); 729 730 reinit_completion(&xudc->disconnect_complete); 731 732 if (xudc->soc->port_speed_quirk) 733 tegra_xudc_restore_port_speed(xudc); 734 735 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); 736 737 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 738 PORTSC_PLS_SHIFT; 739 740 /* Direct link to U0 if disconnected in RESUME or U2. */ 741 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER && 742 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) { 743 val = xudc_readl(xudc, PORTPM); 744 val |= PORTPM_FRWE; 745 xudc_writel(xudc, val, PORTPM); 746 747 val = xudc_readl(xudc, PORTSC); 748 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 749 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 750 xudc_writel(xudc, val, PORTSC); 751 } 752 753 /* Wait for disconnect event. */ 754 if (connected) 755 wait_for_completion(&xudc->disconnect_complete); 756 757 /* Make sure interrupt handler has completed before powergating. */ 758 synchronize_irq(xudc->irq); 759 760 tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy); 761 762 err = phy_power_off(xudc->curr_utmi_phy); 763 if (err < 0) 764 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err); 765 766 err = phy_power_off(xudc->curr_usb3_phy); 767 if (err < 0) 768 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err); 769 770 pm_runtime_put(xudc->dev); 771 } 772 773 static void tegra_xudc_usb_role_sw_work(struct work_struct *work) 774 { 775 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc, 776 usb_role_sw_work); 777 778 if (xudc->device_mode) 779 tegra_xudc_device_mode_on(xudc); 780 else 781 tegra_xudc_device_mode_off(xudc); 782 } 783 784 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc, 785 struct usb_phy *usbphy) 786 { 787 unsigned int i; 788 789 for (i = 0; i < xudc->soc->num_phys; i++) { 790 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i]) 791 return i; 792 } 793 794 dev_info(xudc->dev, "phy index could not be found for shared USB PHY"); 795 return -1; 796 } 797 798 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc, 799 struct usb_phy *usbphy) 800 { 801 int phy_index; 802 803 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) || 804 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) { 805 dev_dbg(xudc->dev, "Same role(%d) received. Ignore", 806 xudc->device_mode); 807 return; 808 } 809 810 xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true : 811 false; 812 813 phy_index = tegra_xudc_get_phy_index(xudc, usbphy); 814 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__, 815 phy_index); 816 817 if (!xudc->suspended && phy_index != -1) { 818 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index]; 819 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index]; 820 xudc->curr_usbphy = usbphy; 821 schedule_work(&xudc->usb_role_sw_work); 822 } 823 } 824 825 static int tegra_xudc_vbus_notify(struct notifier_block *nb, 826 unsigned long action, void *data) 827 { 828 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc, 829 vbus_nb); 830 struct usb_phy *usbphy = (struct usb_phy *)data; 831 832 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event); 833 834 tegra_xudc_update_data_role(xudc, usbphy); 835 836 return NOTIFY_OK; 837 } 838 839 static void tegra_xudc_plc_reset_work(struct work_struct *work) 840 { 841 struct delayed_work *dwork = to_delayed_work(work); 842 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc, 843 plc_reset_work); 844 unsigned long flags; 845 846 spin_lock_irqsave(&xudc->lock, flags); 847 848 if (xudc->wait_csc) { 849 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 850 PORTSC_PLS_SHIFT; 851 852 if (pls == PORTSC_PLS_INACTIVE) { 853 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n"); 854 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 855 USB_ROLE_NONE); 856 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 857 USB_ROLE_DEVICE); 858 859 xudc->wait_csc = false; 860 } 861 } 862 863 spin_unlock_irqrestore(&xudc->lock, flags); 864 } 865 866 static void tegra_xudc_port_reset_war_work(struct work_struct *work) 867 { 868 struct delayed_work *dwork = to_delayed_work(work); 869 struct tegra_xudc *xudc = 870 container_of(dwork, struct tegra_xudc, port_reset_war_work); 871 unsigned long flags; 872 u32 pls; 873 int ret; 874 875 spin_lock_irqsave(&xudc->lock, flags); 876 877 if (xudc->device_mode && xudc->wait_for_sec_prc) { 878 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 879 PORTSC_PLS_SHIFT; 880 dev_dbg(xudc->dev, "pls = %x\n", pls); 881 882 if (pls == PORTSC_PLS_DISABLED) { 883 dev_dbg(xudc->dev, "toggle vbus\n"); 884 /* PRC doesn't complete in 100ms, toggle the vbus */ 885 ret = tegra_phy_xusb_utmi_port_reset( 886 xudc->curr_utmi_phy); 887 if (ret == 1) 888 xudc->wait_for_sec_prc = 0; 889 } 890 } 891 892 spin_unlock_irqrestore(&xudc->lock, flags); 893 } 894 895 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep, 896 struct tegra_xudc_trb *trb) 897 { 898 unsigned int index; 899 900 index = trb - ep->transfer_ring; 901 902 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 903 return 0; 904 905 return (ep->transfer_ring_phys + index * sizeof(*trb)); 906 } 907 908 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep, 909 dma_addr_t addr) 910 { 911 struct tegra_xudc_trb *trb; 912 unsigned int index; 913 914 index = (addr - ep->transfer_ring_phys) / sizeof(*trb); 915 916 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 917 return NULL; 918 919 trb = &ep->transfer_ring[index]; 920 921 return trb; 922 } 923 924 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep) 925 { 926 xudc_writel(xudc, BIT(ep), EP_RELOAD); 927 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0); 928 } 929 930 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep) 931 { 932 u32 val; 933 934 val = xudc_readl(xudc, EP_PAUSE); 935 if (val & BIT(ep)) 936 return; 937 val |= BIT(ep); 938 939 xudc_writel(xudc, val, EP_PAUSE); 940 941 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 942 943 xudc_writel(xudc, BIT(ep), EP_STCHG); 944 } 945 946 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep) 947 { 948 u32 val; 949 950 val = xudc_readl(xudc, EP_PAUSE); 951 if (!(val & BIT(ep))) 952 return; 953 val &= ~BIT(ep); 954 955 xudc_writel(xudc, val, EP_PAUSE); 956 957 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 958 959 xudc_writel(xudc, BIT(ep), EP_STCHG); 960 } 961 962 static void ep_unpause_all(struct tegra_xudc *xudc) 963 { 964 u32 val; 965 966 val = xudc_readl(xudc, EP_PAUSE); 967 968 xudc_writel(xudc, 0, EP_PAUSE); 969 970 xudc_readl_poll(xudc, EP_STCHG, val, val); 971 972 xudc_writel(xudc, val, EP_STCHG); 973 } 974 975 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep) 976 { 977 u32 val; 978 979 val = xudc_readl(xudc, EP_HALT); 980 if (val & BIT(ep)) 981 return; 982 val |= BIT(ep); 983 xudc_writel(xudc, val, EP_HALT); 984 985 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 986 987 xudc_writel(xudc, BIT(ep), EP_STCHG); 988 } 989 990 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep) 991 { 992 u32 val; 993 994 val = xudc_readl(xudc, EP_HALT); 995 if (!(val & BIT(ep))) 996 return; 997 val &= ~BIT(ep); 998 xudc_writel(xudc, val, EP_HALT); 999 1000 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 1001 1002 xudc_writel(xudc, BIT(ep), EP_STCHG); 1003 } 1004 1005 static void ep_unhalt_all(struct tegra_xudc *xudc) 1006 { 1007 u32 val; 1008 1009 val = xudc_readl(xudc, EP_HALT); 1010 if (!val) 1011 return; 1012 xudc_writel(xudc, 0, EP_HALT); 1013 1014 xudc_readl_poll(xudc, EP_STCHG, val, val); 1015 1016 xudc_writel(xudc, val, EP_STCHG); 1017 } 1018 1019 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep) 1020 { 1021 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep)); 1022 xudc_writel(xudc, BIT(ep), EP_STOPPED); 1023 } 1024 1025 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep) 1026 { 1027 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0); 1028 } 1029 1030 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep, 1031 struct tegra_xudc_request *req, int status) 1032 { 1033 struct tegra_xudc *xudc = ep->xudc; 1034 1035 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n", 1036 req, ep->index, status); 1037 1038 if (likely(req->usb_req.status == -EINPROGRESS)) 1039 req->usb_req.status = status; 1040 1041 list_del_init(&req->list); 1042 1043 if (usb_endpoint_xfer_control(ep->desc)) { 1044 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1045 (xudc->setup_state == 1046 DATA_STAGE_XFER)); 1047 } else { 1048 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1049 usb_endpoint_dir_in(ep->desc)); 1050 } 1051 1052 spin_unlock(&xudc->lock); 1053 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req); 1054 spin_lock(&xudc->lock); 1055 } 1056 1057 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status) 1058 { 1059 struct tegra_xudc_request *req; 1060 1061 while (!list_empty(&ep->queue)) { 1062 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1063 list); 1064 tegra_xudc_req_done(ep, req, status); 1065 } 1066 } 1067 1068 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep) 1069 { 1070 if (ep->ring_full) 1071 return 0; 1072 1073 if (ep->deq_ptr > ep->enq_ptr) 1074 return ep->deq_ptr - ep->enq_ptr - 1; 1075 1076 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2; 1077 } 1078 1079 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep, 1080 struct tegra_xudc_request *req, 1081 struct tegra_xudc_trb *trb, 1082 bool ioc) 1083 { 1084 struct tegra_xudc *xudc = ep->xudc; 1085 dma_addr_t buf_addr; 1086 size_t len; 1087 1088 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length - 1089 req->buf_queued); 1090 if (len > 0) 1091 buf_addr = req->usb_req.dma + req->buf_queued; 1092 else 1093 buf_addr = 0; 1094 1095 trb_write_data_ptr(trb, buf_addr); 1096 1097 trb_write_transfer_len(trb, len); 1098 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1); 1099 1100 if (req->trbs_queued == req->trbs_needed - 1 || 1101 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2)) 1102 trb_write_chain(trb, 0); 1103 else 1104 trb_write_chain(trb, 1); 1105 1106 trb_write_ioc(trb, ioc); 1107 1108 if (usb_endpoint_dir_out(ep->desc) || 1109 (usb_endpoint_xfer_control(ep->desc) && 1110 (xudc->setup_state == DATA_STAGE_RECV))) 1111 trb_write_isp(trb, 1); 1112 else 1113 trb_write_isp(trb, 0); 1114 1115 if (usb_endpoint_xfer_control(ep->desc)) { 1116 if (xudc->setup_state == DATA_STAGE_XFER || 1117 xudc->setup_state == DATA_STAGE_RECV) 1118 trb_write_type(trb, TRB_TYPE_DATA_STAGE); 1119 else 1120 trb_write_type(trb, TRB_TYPE_STATUS_STAGE); 1121 1122 if (xudc->setup_state == DATA_STAGE_XFER || 1123 xudc->setup_state == STATUS_STAGE_XFER) 1124 trb_write_data_stage_dir(trb, 1); 1125 else 1126 trb_write_data_stage_dir(trb, 0); 1127 } else if (usb_endpoint_xfer_isoc(ep->desc)) { 1128 trb_write_type(trb, TRB_TYPE_ISOCH); 1129 trb_write_sia(trb, 1); 1130 trb_write_frame_id(trb, 0); 1131 trb_write_tlbpc(trb, 0); 1132 } else if (usb_ss_max_streams(ep->comp_desc)) { 1133 trb_write_type(trb, TRB_TYPE_STREAM); 1134 trb_write_stream_id(trb, req->usb_req.stream_id); 1135 } else { 1136 trb_write_type(trb, TRB_TYPE_NORMAL); 1137 trb_write_stream_id(trb, 0); 1138 } 1139 1140 trb_write_cycle(trb, ep->pcs); 1141 1142 req->trbs_queued++; 1143 req->buf_queued += len; 1144 1145 dump_trb(xudc, "TRANSFER", trb); 1146 } 1147 1148 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep, 1149 struct tegra_xudc_request *req) 1150 { 1151 unsigned int i, count, available; 1152 bool wait_td = false; 1153 1154 available = ep_available_trbs(ep); 1155 count = req->trbs_needed - req->trbs_queued; 1156 if (available < count) { 1157 count = available; 1158 ep->ring_full = true; 1159 } 1160 1161 /* 1162 * To generate zero-length packet on USB bus, SW needs schedule a 1163 * standalone zero-length TD. According to HW's behavior, SW needs 1164 * to schedule TDs in different ways for different endpoint types. 1165 * 1166 * For control endpoint: 1167 * - Data stage TD (IOC = 1, CH = 0) 1168 * - Ring doorbell and wait transfer event 1169 * - Data stage TD for ZLP (IOC = 1, CH = 0) 1170 * - Ring doorbell 1171 * 1172 * For bulk and interrupt endpoints: 1173 * - Normal transfer TD (IOC = 0, CH = 0) 1174 * - Normal transfer TD for ZLP (IOC = 1, CH = 0) 1175 * - Ring doorbell 1176 */ 1177 1178 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1) 1179 wait_td = true; 1180 1181 if (!req->first_trb) 1182 req->first_trb = &ep->transfer_ring[ep->enq_ptr]; 1183 1184 for (i = 0; i < count; i++) { 1185 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr]; 1186 bool ioc = false; 1187 1188 if ((i == count - 1) || (wait_td && i == count - 2)) 1189 ioc = true; 1190 1191 tegra_xudc_queue_one_trb(ep, req, trb, ioc); 1192 req->last_trb = trb; 1193 1194 ep->enq_ptr++; 1195 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) { 1196 trb = &ep->transfer_ring[ep->enq_ptr]; 1197 trb_write_cycle(trb, ep->pcs); 1198 ep->pcs = !ep->pcs; 1199 ep->enq_ptr = 0; 1200 } 1201 1202 if (ioc) 1203 break; 1204 } 1205 1206 return count; 1207 } 1208 1209 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep) 1210 { 1211 struct tegra_xudc *xudc = ep->xudc; 1212 u32 val; 1213 1214 if (list_empty(&ep->queue)) 1215 return; 1216 1217 val = DB_TARGET(ep->index); 1218 if (usb_endpoint_xfer_control(ep->desc)) { 1219 val |= DB_STREAMID(xudc->setup_seq_num); 1220 } else if (usb_ss_max_streams(ep->comp_desc) > 0) { 1221 struct tegra_xudc_request *req; 1222 1223 /* Don't ring doorbell if the stream has been rejected. */ 1224 if (ep->stream_rejected) 1225 return; 1226 1227 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1228 list); 1229 val |= DB_STREAMID(req->usb_req.stream_id); 1230 } 1231 1232 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val); 1233 xudc_writel(xudc, val, DB); 1234 } 1235 1236 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep) 1237 { 1238 struct tegra_xudc_request *req; 1239 bool trbs_queued = false; 1240 1241 list_for_each_entry(req, &ep->queue, list) { 1242 if (ep->ring_full) 1243 break; 1244 1245 if (tegra_xudc_queue_trbs(ep, req) > 0) 1246 trbs_queued = true; 1247 } 1248 1249 if (trbs_queued) 1250 tegra_xudc_ep_ring_doorbell(ep); 1251 } 1252 1253 static int 1254 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) 1255 { 1256 struct tegra_xudc *xudc = ep->xudc; 1257 int err; 1258 1259 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) { 1260 dev_err(xudc->dev, "control EP has pending transfers\n"); 1261 return -EINVAL; 1262 } 1263 1264 if (usb_endpoint_xfer_control(ep->desc)) { 1265 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1266 (xudc->setup_state == 1267 DATA_STAGE_XFER)); 1268 } else { 1269 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1270 usb_endpoint_dir_in(ep->desc)); 1271 } 1272 1273 if (err < 0) { 1274 dev_err(xudc->dev, "failed to map request: %d\n", err); 1275 return err; 1276 } 1277 1278 req->first_trb = NULL; 1279 req->last_trb = NULL; 1280 req->buf_queued = 0; 1281 req->trbs_queued = 0; 1282 req->need_zlp = false; 1283 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length, 1284 XUDC_TRB_MAX_BUFFER_SIZE); 1285 if (req->usb_req.length == 0) 1286 req->trbs_needed++; 1287 1288 if (!usb_endpoint_xfer_isoc(ep->desc) && 1289 req->usb_req.zero && req->usb_req.length && 1290 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) { 1291 req->trbs_needed++; 1292 req->need_zlp = true; 1293 } 1294 1295 req->usb_req.status = -EINPROGRESS; 1296 req->usb_req.actual = 0; 1297 1298 list_add_tail(&req->list, &ep->queue); 1299 1300 tegra_xudc_ep_kick_queue(ep); 1301 1302 return 0; 1303 } 1304 1305 static int 1306 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req, 1307 gfp_t gfp) 1308 { 1309 struct tegra_xudc_request *req; 1310 struct tegra_xudc_ep *ep; 1311 struct tegra_xudc *xudc; 1312 unsigned long flags; 1313 int ret; 1314 1315 if (!usb_ep || !usb_req) 1316 return -EINVAL; 1317 1318 ep = to_xudc_ep(usb_ep); 1319 req = to_xudc_req(usb_req); 1320 xudc = ep->xudc; 1321 1322 spin_lock_irqsave(&xudc->lock, flags); 1323 if (xudc->powergated || !ep->desc) { 1324 ret = -ESHUTDOWN; 1325 goto unlock; 1326 } 1327 1328 ret = __tegra_xudc_ep_queue(ep, req); 1329 unlock: 1330 spin_unlock_irqrestore(&xudc->lock, flags); 1331 1332 return ret; 1333 } 1334 1335 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep, 1336 struct tegra_xudc_request *req) 1337 { 1338 struct tegra_xudc_trb *trb = req->first_trb; 1339 bool pcs_enq = trb_read_cycle(trb); 1340 bool pcs; 1341 1342 /* 1343 * Clear out all the TRBs part of or after the cancelled request, 1344 * and must correct trb cycle bit to the last un-enqueued state. 1345 */ 1346 while (trb != &ep->transfer_ring[ep->enq_ptr]) { 1347 pcs = trb_read_cycle(trb); 1348 memset(trb, 0, sizeof(*trb)); 1349 trb_write_cycle(trb, !pcs); 1350 trb++; 1351 1352 if (trb_read_type(trb) == TRB_TYPE_LINK) 1353 trb = ep->transfer_ring; 1354 } 1355 1356 /* Requests will be re-queued at the start of the cancelled request. */ 1357 ep->enq_ptr = req->first_trb - ep->transfer_ring; 1358 /* 1359 * Retrieve the correct cycle bit state from the first trb of 1360 * the cancelled request. 1361 */ 1362 ep->pcs = pcs_enq; 1363 ep->ring_full = false; 1364 list_for_each_entry_continue(req, &ep->queue, list) { 1365 req->usb_req.status = -EINPROGRESS; 1366 req->usb_req.actual = 0; 1367 1368 req->first_trb = NULL; 1369 req->last_trb = NULL; 1370 req->buf_queued = 0; 1371 req->trbs_queued = 0; 1372 } 1373 } 1374 1375 /* 1376 * Determine if the given TRB is in the range [first trb, last trb] for the 1377 * given request. 1378 */ 1379 static bool trb_in_request(struct tegra_xudc_ep *ep, 1380 struct tegra_xudc_request *req, 1381 struct tegra_xudc_trb *trb) 1382 { 1383 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__, 1384 req->first_trb, req->last_trb, trb); 1385 1386 if (trb >= req->first_trb && (trb <= req->last_trb || 1387 req->last_trb < req->first_trb)) 1388 return true; 1389 1390 if (trb < req->first_trb && trb <= req->last_trb && 1391 req->last_trb < req->first_trb) 1392 return true; 1393 1394 return false; 1395 } 1396 1397 /* 1398 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB) 1399 * for the given endpoint and request. 1400 */ 1401 static bool trb_before_request(struct tegra_xudc_ep *ep, 1402 struct tegra_xudc_request *req, 1403 struct tegra_xudc_trb *trb) 1404 { 1405 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr]; 1406 1407 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n", 1408 __func__, req->first_trb, req->last_trb, enq_trb, trb); 1409 1410 if (trb < req->first_trb && (enq_trb <= trb || 1411 req->first_trb < enq_trb)) 1412 return true; 1413 1414 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb) 1415 return true; 1416 1417 return false; 1418 } 1419 1420 static int 1421 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep, 1422 struct tegra_xudc_request *req) 1423 { 1424 struct tegra_xudc *xudc = ep->xudc; 1425 struct tegra_xudc_request *r = NULL, *iter; 1426 struct tegra_xudc_trb *deq_trb; 1427 bool busy, kick_queue = false; 1428 int ret = 0; 1429 1430 /* Make sure the request is actually queued to this endpoint. */ 1431 list_for_each_entry(iter, &ep->queue, list) { 1432 if (iter != req) 1433 continue; 1434 r = iter; 1435 break; 1436 } 1437 1438 if (!r) 1439 return -EINVAL; 1440 1441 /* Request hasn't been queued in the transfer ring yet. */ 1442 if (!req->trbs_queued) { 1443 tegra_xudc_req_done(ep, req, -ECONNRESET); 1444 return 0; 1445 } 1446 1447 /* Halt DMA for this endpoint. */ 1448 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) { 1449 ep_pause(xudc, ep->index); 1450 ep_wait_for_inactive(xudc, ep->index); 1451 } 1452 1453 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context)); 1454 /* Is the hardware processing the TRB at the dequeue pointer? */ 1455 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context)); 1456 1457 if (trb_in_request(ep, req, deq_trb) && busy) { 1458 /* 1459 * Request has been partially completed or it hasn't 1460 * started processing yet. 1461 */ 1462 dma_addr_t deq_ptr; 1463 1464 squeeze_transfer_ring(ep, req); 1465 1466 req->usb_req.actual = ep_ctx_read_edtla(ep->context); 1467 tegra_xudc_req_done(ep, req, -ECONNRESET); 1468 kick_queue = true; 1469 1470 /* EDTLA is > 0: request has been partially completed */ 1471 if (req->usb_req.actual > 0) { 1472 /* 1473 * Abort the pending transfer and update the dequeue 1474 * pointer 1475 */ 1476 ep_ctx_write_edtla(ep->context, 0); 1477 ep_ctx_write_partial_td(ep->context, 0); 1478 ep_ctx_write_data_offset(ep->context, 0); 1479 1480 deq_ptr = trb_virt_to_phys(ep, 1481 &ep->transfer_ring[ep->enq_ptr]); 1482 1483 if (dma_mapping_error(xudc->dev, deq_ptr)) { 1484 ret = -EINVAL; 1485 } else { 1486 ep_ctx_write_deq_ptr(ep->context, deq_ptr); 1487 ep_ctx_write_dcs(ep->context, ep->pcs); 1488 ep_reload(xudc, ep->index); 1489 } 1490 } 1491 } else if (trb_before_request(ep, req, deq_trb) && busy) { 1492 /* Request hasn't started processing yet. */ 1493 squeeze_transfer_ring(ep, req); 1494 1495 tegra_xudc_req_done(ep, req, -ECONNRESET); 1496 kick_queue = true; 1497 } else { 1498 /* 1499 * Request has completed, but we haven't processed the 1500 * completion event yet. 1501 */ 1502 tegra_xudc_req_done(ep, req, -ECONNRESET); 1503 ret = -EINVAL; 1504 } 1505 1506 /* Resume the endpoint. */ 1507 ep_unpause(xudc, ep->index); 1508 1509 if (kick_queue) 1510 tegra_xudc_ep_kick_queue(ep); 1511 1512 return ret; 1513 } 1514 1515 static int 1516 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req) 1517 { 1518 struct tegra_xudc_request *req; 1519 struct tegra_xudc_ep *ep; 1520 struct tegra_xudc *xudc; 1521 unsigned long flags; 1522 int ret; 1523 1524 if (!usb_ep || !usb_req) 1525 return -EINVAL; 1526 1527 ep = to_xudc_ep(usb_ep); 1528 req = to_xudc_req(usb_req); 1529 xudc = ep->xudc; 1530 1531 spin_lock_irqsave(&xudc->lock, flags); 1532 1533 if (xudc->powergated || !ep->desc) { 1534 ret = -ESHUTDOWN; 1535 goto unlock; 1536 } 1537 1538 ret = __tegra_xudc_ep_dequeue(ep, req); 1539 unlock: 1540 spin_unlock_irqrestore(&xudc->lock, flags); 1541 1542 return ret; 1543 } 1544 1545 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt) 1546 { 1547 struct tegra_xudc *xudc = ep->xudc; 1548 1549 if (!ep->desc) 1550 return -EINVAL; 1551 1552 if (usb_endpoint_xfer_isoc(ep->desc)) { 1553 dev_err(xudc->dev, "can't halt isochronous EP\n"); 1554 return -ENOTSUPP; 1555 } 1556 1557 if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) { 1558 dev_dbg(xudc->dev, "EP %u already %s\n", ep->index, 1559 halt ? "halted" : "not halted"); 1560 return 0; 1561 } 1562 1563 if (halt) { 1564 ep_halt(xudc, ep->index); 1565 } else { 1566 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1567 1568 ep_reload(xudc, ep->index); 1569 1570 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1571 ep_ctx_write_rsvd(ep->context, 0); 1572 ep_ctx_write_partial_td(ep->context, 0); 1573 ep_ctx_write_splitxstate(ep->context, 0); 1574 ep_ctx_write_seq_num(ep->context, 0); 1575 1576 ep_reload(xudc, ep->index); 1577 ep_unpause(xudc, ep->index); 1578 ep_unhalt(xudc, ep->index); 1579 1580 tegra_xudc_ep_ring_doorbell(ep); 1581 } 1582 1583 return 0; 1584 } 1585 1586 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value) 1587 { 1588 struct tegra_xudc_ep *ep; 1589 struct tegra_xudc *xudc; 1590 unsigned long flags; 1591 int ret; 1592 1593 if (!usb_ep) 1594 return -EINVAL; 1595 1596 ep = to_xudc_ep(usb_ep); 1597 xudc = ep->xudc; 1598 1599 spin_lock_irqsave(&xudc->lock, flags); 1600 if (xudc->powergated) { 1601 ret = -ESHUTDOWN; 1602 goto unlock; 1603 } 1604 1605 if (value && usb_endpoint_dir_in(ep->desc) && 1606 !list_empty(&ep->queue)) { 1607 dev_err(xudc->dev, "can't halt EP with requests pending\n"); 1608 ret = -EAGAIN; 1609 goto unlock; 1610 } 1611 1612 ret = __tegra_xudc_ep_set_halt(ep, value); 1613 unlock: 1614 spin_unlock_irqrestore(&xudc->lock, flags); 1615 1616 return ret; 1617 } 1618 1619 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep) 1620 { 1621 const struct usb_endpoint_descriptor *desc = ep->desc; 1622 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc; 1623 struct tegra_xudc *xudc = ep->xudc; 1624 u16 maxpacket, maxburst = 0, esit = 0; 1625 u32 val; 1626 1627 maxpacket = usb_endpoint_maxp(desc); 1628 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1629 if (!usb_endpoint_xfer_control(desc)) 1630 maxburst = comp_desc->bMaxBurst; 1631 1632 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) 1633 esit = le16_to_cpu(comp_desc->wBytesPerInterval); 1634 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) && 1635 (usb_endpoint_xfer_int(desc) || 1636 usb_endpoint_xfer_isoc(desc))) { 1637 if (xudc->gadget.speed == USB_SPEED_HIGH) { 1638 maxburst = usb_endpoint_maxp_mult(desc) - 1; 1639 if (maxburst == 0x3) { 1640 dev_warn(xudc->dev, 1641 "invalid endpoint maxburst\n"); 1642 maxburst = 0x2; 1643 } 1644 } 1645 esit = maxpacket * (maxburst + 1); 1646 } 1647 1648 memset(ep->context, 0, sizeof(*ep->context)); 1649 1650 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1651 ep_ctx_write_interval(ep->context, desc->bInterval); 1652 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1653 if (usb_endpoint_xfer_isoc(desc)) { 1654 ep_ctx_write_mult(ep->context, 1655 comp_desc->bmAttributes & 0x3); 1656 } 1657 1658 if (usb_endpoint_xfer_bulk(desc)) { 1659 ep_ctx_write_max_pstreams(ep->context, 1660 comp_desc->bmAttributes & 1661 0x1f); 1662 ep_ctx_write_lsa(ep->context, 1); 1663 } 1664 } 1665 1666 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc)) 1667 val = usb_endpoint_type(desc); 1668 else 1669 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL; 1670 1671 ep_ctx_write_type(ep->context, val); 1672 ep_ctx_write_cerr(ep->context, 0x3); 1673 ep_ctx_write_max_packet_size(ep->context, maxpacket); 1674 ep_ctx_write_max_burst_size(ep->context, maxburst); 1675 1676 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys); 1677 ep_ctx_write_dcs(ep->context, ep->pcs); 1678 1679 /* Select a reasonable average TRB length based on endpoint type. */ 1680 switch (usb_endpoint_type(desc)) { 1681 case USB_ENDPOINT_XFER_CONTROL: 1682 val = 8; 1683 break; 1684 case USB_ENDPOINT_XFER_INT: 1685 val = 1024; 1686 break; 1687 case USB_ENDPOINT_XFER_BULK: 1688 case USB_ENDPOINT_XFER_ISOC: 1689 default: 1690 val = 3072; 1691 break; 1692 } 1693 1694 ep_ctx_write_avg_trb_len(ep->context, val); 1695 ep_ctx_write_max_esit_payload(ep->context, esit); 1696 1697 ep_ctx_write_cerrcnt(ep->context, 0x3); 1698 } 1699 1700 static void setup_link_trb(struct tegra_xudc_ep *ep, 1701 struct tegra_xudc_trb *trb) 1702 { 1703 trb_write_data_ptr(trb, ep->transfer_ring_phys); 1704 trb_write_type(trb, TRB_TYPE_LINK); 1705 trb_write_toggle_cycle(trb, 1); 1706 } 1707 1708 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep) 1709 { 1710 struct tegra_xudc *xudc = ep->xudc; 1711 1712 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 1713 dev_err(xudc->dev, "endpoint %u already disabled\n", 1714 ep->index); 1715 return -EINVAL; 1716 } 1717 1718 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1719 1720 ep_reload(xudc, ep->index); 1721 1722 tegra_xudc_ep_nuke(ep, -ESHUTDOWN); 1723 1724 xudc->nr_enabled_eps--; 1725 if (usb_endpoint_xfer_isoc(ep->desc)) 1726 xudc->nr_isoch_eps--; 1727 1728 ep->desc = NULL; 1729 ep->comp_desc = NULL; 1730 1731 memset(ep->context, 0, sizeof(*ep->context)); 1732 1733 ep_unpause(xudc, ep->index); 1734 ep_unhalt(xudc, ep->index); 1735 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index)) 1736 xudc_writel(xudc, BIT(ep->index), EP_STOPPED); 1737 1738 /* 1739 * If this is the last endpoint disabled in a de-configure request, 1740 * switch back to address state. 1741 */ 1742 if ((xudc->device_state == USB_STATE_CONFIGURED) && 1743 (xudc->nr_enabled_eps == 1)) { 1744 u32 val; 1745 1746 xudc->device_state = USB_STATE_ADDRESS; 1747 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1748 1749 val = xudc_readl(xudc, CTRL); 1750 val &= ~CTRL_RUN; 1751 xudc_writel(xudc, val, CTRL); 1752 } 1753 1754 dev_info(xudc->dev, "ep %u disabled\n", ep->index); 1755 1756 return 0; 1757 } 1758 1759 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep) 1760 { 1761 struct tegra_xudc_ep *ep; 1762 struct tegra_xudc *xudc; 1763 unsigned long flags; 1764 int ret; 1765 1766 if (!usb_ep) 1767 return -EINVAL; 1768 1769 ep = to_xudc_ep(usb_ep); 1770 xudc = ep->xudc; 1771 1772 spin_lock_irqsave(&xudc->lock, flags); 1773 if (xudc->powergated) { 1774 ret = -ESHUTDOWN; 1775 goto unlock; 1776 } 1777 1778 ret = __tegra_xudc_ep_disable(ep); 1779 unlock: 1780 spin_unlock_irqrestore(&xudc->lock, flags); 1781 1782 return ret; 1783 } 1784 1785 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep, 1786 const struct usb_endpoint_descriptor *desc) 1787 { 1788 struct tegra_xudc *xudc = ep->xudc; 1789 unsigned int i; 1790 u32 val; 1791 1792 if (xudc->gadget.speed == USB_SPEED_SUPER && 1793 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc) 1794 return -EINVAL; 1795 1796 /* Disable the EP if it is not disabled */ 1797 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED) 1798 __tegra_xudc_ep_disable(ep); 1799 1800 ep->desc = desc; 1801 ep->comp_desc = ep->usb_ep.comp_desc; 1802 1803 if (usb_endpoint_xfer_isoc(desc)) { 1804 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) { 1805 dev_err(xudc->dev, "too many isochronous endpoints\n"); 1806 return -EBUSY; 1807 } 1808 xudc->nr_isoch_eps++; 1809 } 1810 1811 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE * 1812 sizeof(*ep->transfer_ring)); 1813 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]); 1814 1815 ep->enq_ptr = 0; 1816 ep->deq_ptr = 0; 1817 ep->pcs = true; 1818 ep->ring_full = false; 1819 xudc->nr_enabled_eps++; 1820 1821 tegra_xudc_ep_context_setup(ep); 1822 1823 /* 1824 * No need to reload and un-halt EP0. This will be done automatically 1825 * once a valid SETUP packet is received. 1826 */ 1827 if (usb_endpoint_xfer_control(desc)) 1828 goto out; 1829 1830 /* 1831 * Transition to configured state once the first non-control 1832 * endpoint is enabled. 1833 */ 1834 if (xudc->device_state == USB_STATE_ADDRESS) { 1835 val = xudc_readl(xudc, CTRL); 1836 val |= CTRL_RUN; 1837 xudc_writel(xudc, val, CTRL); 1838 1839 xudc->device_state = USB_STATE_CONFIGURED; 1840 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1841 } 1842 1843 if (usb_endpoint_xfer_isoc(desc)) { 1844 /* 1845 * Pause all bulk endpoints when enabling an isoch endpoint 1846 * to ensure the isoch endpoint is allocated enough bandwidth. 1847 */ 1848 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1849 if (xudc->ep[i].desc && 1850 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1851 ep_pause(xudc, i); 1852 } 1853 } 1854 1855 ep_reload(xudc, ep->index); 1856 ep_unpause(xudc, ep->index); 1857 ep_unhalt(xudc, ep->index); 1858 1859 if (usb_endpoint_xfer_isoc(desc)) { 1860 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1861 if (xudc->ep[i].desc && 1862 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1863 ep_unpause(xudc, i); 1864 } 1865 } 1866 1867 out: 1868 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index, 1869 usb_ep_type_string(usb_endpoint_type(ep->desc)), 1870 usb_endpoint_dir_in(ep->desc) ? "in" : "out"); 1871 1872 return 0; 1873 } 1874 1875 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep, 1876 const struct usb_endpoint_descriptor *desc) 1877 { 1878 struct tegra_xudc_ep *ep; 1879 struct tegra_xudc *xudc; 1880 unsigned long flags; 1881 int ret; 1882 1883 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT)) 1884 return -EINVAL; 1885 1886 ep = to_xudc_ep(usb_ep); 1887 xudc = ep->xudc; 1888 1889 spin_lock_irqsave(&xudc->lock, flags); 1890 if (xudc->powergated) { 1891 ret = -ESHUTDOWN; 1892 goto unlock; 1893 } 1894 1895 ret = __tegra_xudc_ep_enable(ep, desc); 1896 unlock: 1897 spin_unlock_irqrestore(&xudc->lock, flags); 1898 1899 return ret; 1900 } 1901 1902 static struct usb_request * 1903 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp) 1904 { 1905 struct tegra_xudc_request *req; 1906 1907 req = kzalloc(sizeof(*req), gfp); 1908 if (!req) 1909 return NULL; 1910 1911 INIT_LIST_HEAD(&req->list); 1912 1913 return &req->usb_req; 1914 } 1915 1916 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep, 1917 struct usb_request *usb_req) 1918 { 1919 struct tegra_xudc_request *req = to_xudc_req(usb_req); 1920 1921 kfree(req); 1922 } 1923 1924 static const struct usb_ep_ops tegra_xudc_ep_ops = { 1925 .enable = tegra_xudc_ep_enable, 1926 .disable = tegra_xudc_ep_disable, 1927 .alloc_request = tegra_xudc_ep_alloc_request, 1928 .free_request = tegra_xudc_ep_free_request, 1929 .queue = tegra_xudc_ep_queue, 1930 .dequeue = tegra_xudc_ep_dequeue, 1931 .set_halt = tegra_xudc_ep_set_halt, 1932 }; 1933 1934 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep, 1935 const struct usb_endpoint_descriptor *desc) 1936 { 1937 return -EBUSY; 1938 } 1939 1940 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep) 1941 { 1942 return -EBUSY; 1943 } 1944 1945 static const struct usb_ep_ops tegra_xudc_ep0_ops = { 1946 .enable = tegra_xudc_ep0_enable, 1947 .disable = tegra_xudc_ep0_disable, 1948 .alloc_request = tegra_xudc_ep_alloc_request, 1949 .free_request = tegra_xudc_ep_free_request, 1950 .queue = tegra_xudc_ep_queue, 1951 .dequeue = tegra_xudc_ep_dequeue, 1952 .set_halt = tegra_xudc_ep_set_halt, 1953 }; 1954 1955 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget) 1956 { 1957 struct tegra_xudc *xudc = to_xudc(gadget); 1958 unsigned long flags; 1959 int ret; 1960 1961 spin_lock_irqsave(&xudc->lock, flags); 1962 if (xudc->powergated) { 1963 ret = -ESHUTDOWN; 1964 goto unlock; 1965 } 1966 1967 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >> 1968 MFINDEX_FRAME_SHIFT; 1969 unlock: 1970 spin_unlock_irqrestore(&xudc->lock, flags); 1971 1972 return ret; 1973 } 1974 1975 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc) 1976 { 1977 unsigned int i; 1978 u32 val; 1979 1980 ep_unpause_all(xudc); 1981 1982 /* Direct link to U0. */ 1983 val = xudc_readl(xudc, PORTSC); 1984 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) { 1985 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 1986 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 1987 xudc_writel(xudc, val, PORTSC); 1988 } 1989 1990 if (xudc->device_state == USB_STATE_SUSPENDED) { 1991 xudc->device_state = xudc->resume_state; 1992 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1993 xudc->resume_state = 0; 1994 } 1995 1996 /* 1997 * Doorbells may be dropped if they are sent too soon (< ~200ns) 1998 * after unpausing the endpoint. Wait for 500ns just to be safe. 1999 */ 2000 ndelay(500); 2001 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2002 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]); 2003 } 2004 2005 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget) 2006 { 2007 struct tegra_xudc *xudc = to_xudc(gadget); 2008 unsigned long flags; 2009 int ret = 0; 2010 u32 val; 2011 2012 spin_lock_irqsave(&xudc->lock, flags); 2013 2014 if (xudc->powergated) { 2015 ret = -ESHUTDOWN; 2016 goto unlock; 2017 } 2018 val = xudc_readl(xudc, PORTPM); 2019 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__, 2020 val, gadget->speed); 2021 2022 if (((xudc->gadget.speed <= USB_SPEED_HIGH) && 2023 (val & PORTPM_RWE)) || 2024 ((xudc->gadget.speed == USB_SPEED_SUPER) && 2025 (val & PORTPM_FRWE))) { 2026 tegra_xudc_resume_device_state(xudc); 2027 2028 /* Send Device Notification packet. */ 2029 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2030 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE) 2031 | DEVNOTIF_LO_TRIG; 2032 xudc_writel(xudc, 0, DEVNOTIF_HI); 2033 xudc_writel(xudc, val, DEVNOTIF_LO); 2034 } 2035 } 2036 2037 unlock: 2038 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2039 spin_unlock_irqrestore(&xudc->lock, flags); 2040 2041 return ret; 2042 } 2043 2044 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on) 2045 { 2046 struct tegra_xudc *xudc = to_xudc(gadget); 2047 unsigned long flags; 2048 u32 val; 2049 2050 pm_runtime_get_sync(xudc->dev); 2051 2052 spin_lock_irqsave(&xudc->lock, flags); 2053 2054 if (is_on != xudc->pullup) { 2055 val = xudc_readl(xudc, CTRL); 2056 if (is_on) 2057 val |= CTRL_ENABLE; 2058 else 2059 val &= ~CTRL_ENABLE; 2060 xudc_writel(xudc, val, CTRL); 2061 } 2062 2063 xudc->pullup = is_on; 2064 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on); 2065 2066 spin_unlock_irqrestore(&xudc->lock, flags); 2067 2068 pm_runtime_put(xudc->dev); 2069 2070 return 0; 2071 } 2072 2073 static int tegra_xudc_gadget_start(struct usb_gadget *gadget, 2074 struct usb_gadget_driver *driver) 2075 { 2076 struct tegra_xudc *xudc = to_xudc(gadget); 2077 unsigned long flags; 2078 u32 val; 2079 int ret; 2080 unsigned int i; 2081 2082 if (!driver) 2083 return -EINVAL; 2084 2085 pm_runtime_get_sync(xudc->dev); 2086 2087 spin_lock_irqsave(&xudc->lock, flags); 2088 2089 if (xudc->driver) { 2090 ret = -EBUSY; 2091 goto unlock; 2092 } 2093 2094 xudc->setup_state = WAIT_FOR_SETUP; 2095 xudc->device_state = USB_STATE_DEFAULT; 2096 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2097 2098 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc); 2099 if (ret < 0) 2100 goto unlock; 2101 2102 val = xudc_readl(xudc, CTRL); 2103 val |= CTRL_IE | CTRL_LSE; 2104 xudc_writel(xudc, val, CTRL); 2105 2106 val = xudc_readl(xudc, PORTHALT); 2107 val |= PORTHALT_STCHG_INTR_EN; 2108 xudc_writel(xudc, val, PORTHALT); 2109 2110 if (xudc->pullup) { 2111 val = xudc_readl(xudc, CTRL); 2112 val |= CTRL_ENABLE; 2113 xudc_writel(xudc, val, CTRL); 2114 } 2115 2116 for (i = 0; i < xudc->soc->num_phys; i++) 2117 if (xudc->usbphy[i]) 2118 otg_set_peripheral(xudc->usbphy[i]->otg, gadget); 2119 2120 xudc->driver = driver; 2121 unlock: 2122 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2123 spin_unlock_irqrestore(&xudc->lock, flags); 2124 2125 pm_runtime_put(xudc->dev); 2126 2127 return ret; 2128 } 2129 2130 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget) 2131 { 2132 struct tegra_xudc *xudc = to_xudc(gadget); 2133 unsigned long flags; 2134 u32 val; 2135 unsigned int i; 2136 2137 pm_runtime_get_sync(xudc->dev); 2138 2139 spin_lock_irqsave(&xudc->lock, flags); 2140 2141 for (i = 0; i < xudc->soc->num_phys; i++) 2142 if (xudc->usbphy[i]) 2143 otg_set_peripheral(xudc->usbphy[i]->otg, NULL); 2144 2145 val = xudc_readl(xudc, CTRL); 2146 val &= ~(CTRL_IE | CTRL_ENABLE); 2147 xudc_writel(xudc, val, CTRL); 2148 2149 __tegra_xudc_ep_disable(&xudc->ep[0]); 2150 2151 xudc->driver = NULL; 2152 dev_dbg(xudc->dev, "Gadget stopped"); 2153 2154 spin_unlock_irqrestore(&xudc->lock, flags); 2155 2156 pm_runtime_put(xudc->dev); 2157 2158 return 0; 2159 } 2160 2161 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget, 2162 unsigned int m_a) 2163 { 2164 struct tegra_xudc *xudc = to_xudc(gadget); 2165 2166 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a); 2167 2168 if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE) 2169 return usb_phy_set_power(xudc->curr_usbphy, m_a); 2170 2171 return 0; 2172 } 2173 2174 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on) 2175 { 2176 struct tegra_xudc *xudc = to_xudc(gadget); 2177 2178 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on); 2179 xudc->selfpowered = !!is_on; 2180 2181 return 0; 2182 } 2183 2184 static const struct usb_gadget_ops tegra_xudc_gadget_ops = { 2185 .get_frame = tegra_xudc_gadget_get_frame, 2186 .wakeup = tegra_xudc_gadget_wakeup, 2187 .pullup = tegra_xudc_gadget_pullup, 2188 .udc_start = tegra_xudc_gadget_start, 2189 .udc_stop = tegra_xudc_gadget_stop, 2190 .vbus_draw = tegra_xudc_gadget_vbus_draw, 2191 .set_selfpowered = tegra_xudc_set_selfpowered, 2192 }; 2193 2194 static void no_op_complete(struct usb_ep *ep, struct usb_request *req) 2195 { 2196 } 2197 2198 static int 2199 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc, 2200 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2201 { 2202 xudc->ep0_req->usb_req.buf = NULL; 2203 xudc->ep0_req->usb_req.dma = 0; 2204 xudc->ep0_req->usb_req.length = 0; 2205 xudc->ep0_req->usb_req.complete = cmpl; 2206 xudc->ep0_req->usb_req.context = xudc; 2207 2208 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2209 } 2210 2211 static int 2212 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len, 2213 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2214 { 2215 xudc->ep0_req->usb_req.buf = buf; 2216 xudc->ep0_req->usb_req.length = len; 2217 xudc->ep0_req->usb_req.complete = cmpl; 2218 xudc->ep0_req->usb_req.context = xudc; 2219 2220 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2221 } 2222 2223 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc) 2224 { 2225 switch (xudc->setup_state) { 2226 case DATA_STAGE_XFER: 2227 xudc->setup_state = STATUS_STAGE_RECV; 2228 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2229 break; 2230 case DATA_STAGE_RECV: 2231 xudc->setup_state = STATUS_STAGE_XFER; 2232 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2233 break; 2234 default: 2235 xudc->setup_state = WAIT_FOR_SETUP; 2236 break; 2237 } 2238 } 2239 2240 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc, 2241 struct usb_ctrlrequest *ctrl) 2242 { 2243 int ret; 2244 2245 spin_unlock(&xudc->lock); 2246 ret = xudc->driver->setup(&xudc->gadget, ctrl); 2247 spin_lock(&xudc->lock); 2248 2249 return ret; 2250 } 2251 2252 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req) 2253 { 2254 struct tegra_xudc *xudc = req->context; 2255 2256 if (xudc->test_mode_pattern) { 2257 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM); 2258 xudc->test_mode_pattern = 0; 2259 } 2260 } 2261 2262 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc, 2263 struct usb_ctrlrequest *ctrl) 2264 { 2265 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 2266 u32 feature = le16_to_cpu(ctrl->wValue); 2267 u32 index = le16_to_cpu(ctrl->wIndex); 2268 u32 val, ep; 2269 int ret; 2270 2271 if (le16_to_cpu(ctrl->wLength) != 0) 2272 return -EINVAL; 2273 2274 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2275 case USB_RECIP_DEVICE: 2276 switch (feature) { 2277 case USB_DEVICE_REMOTE_WAKEUP: 2278 if ((xudc->gadget.speed == USB_SPEED_SUPER) || 2279 (xudc->device_state == USB_STATE_DEFAULT)) 2280 return -EINVAL; 2281 2282 val = xudc_readl(xudc, PORTPM); 2283 if (set) 2284 val |= PORTPM_RWE; 2285 else 2286 val &= ~PORTPM_RWE; 2287 2288 xudc_writel(xudc, val, PORTPM); 2289 break; 2290 case USB_DEVICE_U1_ENABLE: 2291 case USB_DEVICE_U2_ENABLE: 2292 if ((xudc->device_state != USB_STATE_CONFIGURED) || 2293 (xudc->gadget.speed != USB_SPEED_SUPER)) 2294 return -EINVAL; 2295 2296 val = xudc_readl(xudc, PORTPM); 2297 if ((feature == USB_DEVICE_U1_ENABLE) && 2298 xudc->soc->u1_enable) { 2299 if (set) 2300 val |= PORTPM_U1E; 2301 else 2302 val &= ~PORTPM_U1E; 2303 } 2304 2305 if ((feature == USB_DEVICE_U2_ENABLE) && 2306 xudc->soc->u2_enable) { 2307 if (set) 2308 val |= PORTPM_U2E; 2309 else 2310 val &= ~PORTPM_U2E; 2311 } 2312 2313 xudc_writel(xudc, val, PORTPM); 2314 break; 2315 case USB_DEVICE_TEST_MODE: 2316 if (xudc->gadget.speed != USB_SPEED_HIGH) 2317 return -EINVAL; 2318 2319 if (!set) 2320 return -EINVAL; 2321 2322 xudc->test_mode_pattern = index >> 8; 2323 break; 2324 default: 2325 return -EINVAL; 2326 } 2327 2328 break; 2329 case USB_RECIP_INTERFACE: 2330 if (xudc->device_state != USB_STATE_CONFIGURED) 2331 return -EINVAL; 2332 2333 switch (feature) { 2334 case USB_INTRF_FUNC_SUSPEND: 2335 if (set) { 2336 val = xudc_readl(xudc, PORTPM); 2337 2338 if (index & USB_INTRF_FUNC_SUSPEND_RW) 2339 val |= PORTPM_FRWE; 2340 else 2341 val &= ~PORTPM_FRWE; 2342 2343 xudc_writel(xudc, val, PORTPM); 2344 } 2345 2346 return tegra_xudc_ep0_delegate_req(xudc, ctrl); 2347 default: 2348 return -EINVAL; 2349 } 2350 2351 break; 2352 case USB_RECIP_ENDPOINT: 2353 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2354 ((index & USB_DIR_IN) ? 1 : 0); 2355 2356 if ((xudc->device_state == USB_STATE_DEFAULT) || 2357 ((xudc->device_state == USB_STATE_ADDRESS) && 2358 (index != 0))) 2359 return -EINVAL; 2360 2361 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set); 2362 if (ret < 0) 2363 return ret; 2364 break; 2365 default: 2366 return -EINVAL; 2367 } 2368 2369 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete); 2370 } 2371 2372 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc, 2373 struct usb_ctrlrequest *ctrl) 2374 { 2375 struct tegra_xudc_ep_context *ep_ctx; 2376 u32 val, ep, index = le16_to_cpu(ctrl->wIndex); 2377 u16 status = 0; 2378 2379 if (!(ctrl->bRequestType & USB_DIR_IN)) 2380 return -EINVAL; 2381 2382 if ((le16_to_cpu(ctrl->wValue) != 0) || 2383 (le16_to_cpu(ctrl->wLength) != 2)) 2384 return -EINVAL; 2385 2386 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2387 case USB_RECIP_DEVICE: 2388 val = xudc_readl(xudc, PORTPM); 2389 2390 if (xudc->selfpowered) 2391 status |= BIT(USB_DEVICE_SELF_POWERED); 2392 2393 if ((xudc->gadget.speed < USB_SPEED_SUPER) && 2394 (val & PORTPM_RWE)) 2395 status |= BIT(USB_DEVICE_REMOTE_WAKEUP); 2396 2397 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2398 if (val & PORTPM_U1E) 2399 status |= BIT(USB_DEV_STAT_U1_ENABLED); 2400 if (val & PORTPM_U2E) 2401 status |= BIT(USB_DEV_STAT_U2_ENABLED); 2402 } 2403 break; 2404 case USB_RECIP_INTERFACE: 2405 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2406 status |= USB_INTRF_STAT_FUNC_RW_CAP; 2407 val = xudc_readl(xudc, PORTPM); 2408 if (val & PORTPM_FRWE) 2409 status |= USB_INTRF_STAT_FUNC_RW; 2410 } 2411 break; 2412 case USB_RECIP_ENDPOINT: 2413 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2414 ((index & USB_DIR_IN) ? 1 : 0); 2415 ep_ctx = &xudc->ep_context[ep]; 2416 2417 if ((xudc->device_state != USB_STATE_CONFIGURED) && 2418 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0))) 2419 return -EINVAL; 2420 2421 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED) 2422 return -EINVAL; 2423 2424 if (xudc_readl(xudc, EP_HALT) & BIT(ep)) 2425 status |= BIT(USB_ENDPOINT_HALT); 2426 break; 2427 default: 2428 return -EINVAL; 2429 } 2430 2431 xudc->status_buf = cpu_to_le16(status); 2432 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf, 2433 sizeof(xudc->status_buf), 2434 no_op_complete); 2435 } 2436 2437 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req) 2438 { 2439 /* Nothing to do with SEL values */ 2440 } 2441 2442 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc, 2443 struct usb_ctrlrequest *ctrl) 2444 { 2445 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2446 USB_TYPE_STANDARD)) 2447 return -EINVAL; 2448 2449 if (xudc->device_state == USB_STATE_DEFAULT) 2450 return -EINVAL; 2451 2452 if ((le16_to_cpu(ctrl->wIndex) != 0) || 2453 (le16_to_cpu(ctrl->wValue) != 0) || 2454 (le16_to_cpu(ctrl->wLength) != 6)) 2455 return -EINVAL; 2456 2457 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing, 2458 sizeof(xudc->sel_timing), 2459 set_sel_complete); 2460 } 2461 2462 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req) 2463 { 2464 /* Nothing to do with isoch delay */ 2465 } 2466 2467 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc, 2468 struct usb_ctrlrequest *ctrl) 2469 { 2470 u32 delay = le16_to_cpu(ctrl->wValue); 2471 2472 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2473 USB_TYPE_STANDARD)) 2474 return -EINVAL; 2475 2476 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) || 2477 (le16_to_cpu(ctrl->wLength) != 0)) 2478 return -EINVAL; 2479 2480 xudc->isoch_delay = delay; 2481 2482 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete); 2483 } 2484 2485 static void set_address_complete(struct usb_ep *ep, struct usb_request *req) 2486 { 2487 struct tegra_xudc *xudc = req->context; 2488 2489 if ((xudc->device_state == USB_STATE_DEFAULT) && 2490 (xudc->dev_addr != 0)) { 2491 xudc->device_state = USB_STATE_ADDRESS; 2492 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2493 } else if ((xudc->device_state == USB_STATE_ADDRESS) && 2494 (xudc->dev_addr == 0)) { 2495 xudc->device_state = USB_STATE_DEFAULT; 2496 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2497 } 2498 } 2499 2500 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc, 2501 struct usb_ctrlrequest *ctrl) 2502 { 2503 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2504 u32 val, addr = le16_to_cpu(ctrl->wValue); 2505 2506 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2507 USB_TYPE_STANDARD)) 2508 return -EINVAL; 2509 2510 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) || 2511 (le16_to_cpu(ctrl->wLength) != 0)) 2512 return -EINVAL; 2513 2514 if (xudc->device_state == USB_STATE_CONFIGURED) 2515 return -EINVAL; 2516 2517 dev_dbg(xudc->dev, "set address: %u\n", addr); 2518 2519 xudc->dev_addr = addr; 2520 val = xudc_readl(xudc, CTRL); 2521 val &= ~(CTRL_DEVADDR_MASK); 2522 val |= CTRL_DEVADDR(addr); 2523 xudc_writel(xudc, val, CTRL); 2524 2525 ep_ctx_write_devaddr(ep0->context, addr); 2526 2527 return tegra_xudc_ep0_queue_status(xudc, set_address_complete); 2528 } 2529 2530 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc, 2531 struct usb_ctrlrequest *ctrl) 2532 { 2533 int ret; 2534 2535 switch (ctrl->bRequest) { 2536 case USB_REQ_GET_STATUS: 2537 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n"); 2538 ret = tegra_xudc_ep0_get_status(xudc, ctrl); 2539 break; 2540 case USB_REQ_SET_ADDRESS: 2541 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n"); 2542 ret = tegra_xudc_ep0_set_address(xudc, ctrl); 2543 break; 2544 case USB_REQ_SET_SEL: 2545 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n"); 2546 ret = tegra_xudc_ep0_set_sel(xudc, ctrl); 2547 break; 2548 case USB_REQ_SET_ISOCH_DELAY: 2549 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n"); 2550 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl); 2551 break; 2552 case USB_REQ_CLEAR_FEATURE: 2553 case USB_REQ_SET_FEATURE: 2554 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n"); 2555 ret = tegra_xudc_ep0_set_feature(xudc, ctrl); 2556 break; 2557 case USB_REQ_SET_CONFIGURATION: 2558 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n"); 2559 /* 2560 * In theory we need to clear RUN bit before status stage of 2561 * deconfig request sent, but this seems to be causing problems. 2562 * Clear RUN once all endpoints are disabled instead. 2563 */ 2564 fallthrough; 2565 default: 2566 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2567 break; 2568 } 2569 2570 return ret; 2571 } 2572 2573 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc, 2574 struct usb_ctrlrequest *ctrl, 2575 u16 seq_num) 2576 { 2577 int ret; 2578 2579 xudc->setup_seq_num = seq_num; 2580 2581 /* Ensure EP0 is unhalted. */ 2582 ep_unhalt(xudc, 0); 2583 2584 /* 2585 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff 2586 * are invalid. Halt EP0 until we get a valid packet. 2587 */ 2588 if (xudc->soc->invalid_seq_num && 2589 (seq_num == 0xfffe || seq_num == 0xffff)) { 2590 dev_warn(xudc->dev, "invalid sequence number detected\n"); 2591 ep_halt(xudc, 0); 2592 return; 2593 } 2594 2595 if (ctrl->wLength) 2596 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ? 2597 DATA_STAGE_XFER : DATA_STAGE_RECV; 2598 else 2599 xudc->setup_state = STATUS_STAGE_XFER; 2600 2601 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) 2602 ret = tegra_xudc_ep0_standard_req(xudc, ctrl); 2603 else 2604 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2605 2606 if (ret < 0) { 2607 dev_warn(xudc->dev, "setup request failed: %d\n", ret); 2608 xudc->setup_state = WAIT_FOR_SETUP; 2609 ep_halt(xudc, 0); 2610 } 2611 } 2612 2613 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc, 2614 struct tegra_xudc_trb *event) 2615 { 2616 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event; 2617 u16 seq_num = trb_read_seq_num(event); 2618 2619 if (xudc->setup_state != WAIT_FOR_SETUP) { 2620 /* 2621 * The controller is in the process of handling another 2622 * setup request. Queue subsequent requests and handle 2623 * the last one once the controller reports a sequence 2624 * number error. 2625 */ 2626 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl)); 2627 xudc->setup_packet.seq_num = seq_num; 2628 xudc->queued_setup_packet = true; 2629 } else { 2630 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num); 2631 } 2632 } 2633 2634 static struct tegra_xudc_request * 2635 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) 2636 { 2637 struct tegra_xudc_request *req; 2638 2639 list_for_each_entry(req, &ep->queue, list) { 2640 if (!req->trbs_queued) 2641 break; 2642 2643 if (trb_in_request(ep, req, trb)) 2644 return req; 2645 } 2646 2647 return NULL; 2648 } 2649 2650 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc, 2651 struct tegra_xudc_ep *ep, 2652 struct tegra_xudc_trb *event) 2653 { 2654 struct tegra_xudc_request *req; 2655 struct tegra_xudc_trb *trb; 2656 bool short_packet; 2657 2658 short_packet = (trb_read_cmpl_code(event) == 2659 TRB_CMPL_CODE_SHORT_PACKET); 2660 2661 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2662 req = trb_to_request(ep, trb); 2663 2664 /* 2665 * TDs are complete on short packet or when the completed TRB is the 2666 * last TRB in the TD (the CHAIN bit is unset). 2667 */ 2668 if (req && (short_packet || (!trb_read_chain(trb) && 2669 (req->trbs_needed == req->trbs_queued)))) { 2670 struct tegra_xudc_trb *last = req->last_trb; 2671 unsigned int residual; 2672 2673 residual = trb_read_transfer_len(event); 2674 req->usb_req.actual = req->usb_req.length - residual; 2675 2676 dev_dbg(xudc->dev, "bytes transferred %u / %u\n", 2677 req->usb_req.actual, req->usb_req.length); 2678 2679 tegra_xudc_req_done(ep, req, 0); 2680 2681 if (ep->desc && usb_endpoint_xfer_control(ep->desc)) 2682 tegra_xudc_ep0_req_done(xudc); 2683 2684 /* 2685 * Advance the dequeue pointer past the end of the current TD 2686 * on short packet completion. 2687 */ 2688 if (short_packet) { 2689 ep->deq_ptr = (last - ep->transfer_ring) + 1; 2690 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2691 ep->deq_ptr = 0; 2692 } 2693 } else if (!req) { 2694 dev_warn(xudc->dev, "transfer event on dequeued request\n"); 2695 } 2696 2697 if (ep->desc) 2698 tegra_xudc_ep_kick_queue(ep); 2699 } 2700 2701 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc, 2702 struct tegra_xudc_trb *event) 2703 { 2704 unsigned int ep_index = trb_read_endpoint_id(event); 2705 struct tegra_xudc_ep *ep = &xudc->ep[ep_index]; 2706 struct tegra_xudc_trb *trb; 2707 u16 comp_code; 2708 2709 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 2710 dev_warn(xudc->dev, "transfer event on disabled EP %u\n", 2711 ep_index); 2712 return; 2713 } 2714 2715 /* Update transfer ring dequeue pointer. */ 2716 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2717 comp_code = trb_read_cmpl_code(event); 2718 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) { 2719 ep->deq_ptr = (trb - ep->transfer_ring) + 1; 2720 2721 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2722 ep->deq_ptr = 0; 2723 ep->ring_full = false; 2724 } 2725 2726 switch (comp_code) { 2727 case TRB_CMPL_CODE_SUCCESS: 2728 case TRB_CMPL_CODE_SHORT_PACKET: 2729 tegra_xudc_handle_transfer_completion(xudc, ep, event); 2730 break; 2731 case TRB_CMPL_CODE_HOST_REJECTED: 2732 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index); 2733 2734 ep->stream_rejected = true; 2735 break; 2736 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED: 2737 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index); 2738 2739 if (ep->stream_rejected) { 2740 ep->stream_rejected = false; 2741 /* 2742 * An EP is stopped when a stream is rejected. Wait 2743 * for the EP to report that it is stopped and then 2744 * un-stop it. 2745 */ 2746 ep_wait_for_stopped(xudc, ep_index); 2747 } 2748 tegra_xudc_ep_ring_doorbell(ep); 2749 break; 2750 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR: 2751 /* 2752 * Wait for the EP to be stopped so the controller stops 2753 * processing doorbells. 2754 */ 2755 ep_wait_for_stopped(xudc, ep_index); 2756 ep->enq_ptr = ep->deq_ptr; 2757 tegra_xudc_ep_nuke(ep, -EIO); 2758 fallthrough; 2759 case TRB_CMPL_CODE_STREAM_NUMP_ERROR: 2760 case TRB_CMPL_CODE_CTRL_DIR_ERR: 2761 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR: 2762 case TRB_CMPL_CODE_RING_UNDERRUN: 2763 case TRB_CMPL_CODE_RING_OVERRUN: 2764 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN: 2765 case TRB_CMPL_CODE_USB_TRANS_ERR: 2766 case TRB_CMPL_CODE_TRB_ERR: 2767 dev_err(xudc->dev, "completion error %#x on EP %u\n", 2768 comp_code, ep_index); 2769 2770 ep_halt(xudc, ep_index); 2771 break; 2772 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR: 2773 dev_info(xudc->dev, "sequence number error\n"); 2774 2775 /* 2776 * Kill any queued control request and skip to the last 2777 * setup packet we received. 2778 */ 2779 tegra_xudc_ep_nuke(ep, -EINVAL); 2780 xudc->setup_state = WAIT_FOR_SETUP; 2781 if (!xudc->queued_setup_packet) 2782 break; 2783 2784 tegra_xudc_handle_ep0_setup_packet(xudc, 2785 &xudc->setup_packet.ctrl_req, 2786 xudc->setup_packet.seq_num); 2787 xudc->queued_setup_packet = false; 2788 break; 2789 case TRB_CMPL_CODE_STOPPED: 2790 dev_dbg(xudc->dev, "stop completion code on EP %u\n", 2791 ep_index); 2792 2793 /* Disconnected. */ 2794 tegra_xudc_ep_nuke(ep, -ECONNREFUSED); 2795 break; 2796 default: 2797 dev_dbg(xudc->dev, "completion event %#x on EP %u\n", 2798 comp_code, ep_index); 2799 break; 2800 } 2801 } 2802 2803 static void tegra_xudc_reset(struct tegra_xudc *xudc) 2804 { 2805 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2806 dma_addr_t deq_ptr; 2807 unsigned int i; 2808 2809 xudc->setup_state = WAIT_FOR_SETUP; 2810 xudc->device_state = USB_STATE_DEFAULT; 2811 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2812 2813 ep_unpause_all(xudc); 2814 2815 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2816 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN); 2817 2818 /* 2819 * Reset sequence number and dequeue pointer to flush the transfer 2820 * ring. 2821 */ 2822 ep0->deq_ptr = ep0->enq_ptr; 2823 ep0->ring_full = false; 2824 2825 xudc->setup_seq_num = 0; 2826 xudc->queued_setup_packet = false; 2827 2828 ep_ctx_write_rsvd(ep0->context, 0); 2829 ep_ctx_write_partial_td(ep0->context, 0); 2830 ep_ctx_write_splitxstate(ep0->context, 0); 2831 ep_ctx_write_seq_num(ep0->context, 0); 2832 2833 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]); 2834 2835 if (!dma_mapping_error(xudc->dev, deq_ptr)) { 2836 ep_ctx_write_deq_ptr(ep0->context, deq_ptr); 2837 ep_ctx_write_dcs(ep0->context, ep0->pcs); 2838 } 2839 2840 ep_unhalt_all(xudc); 2841 ep_reload(xudc, 0); 2842 ep_unpause(xudc, 0); 2843 } 2844 2845 static void tegra_xudc_port_connect(struct tegra_xudc *xudc) 2846 { 2847 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2848 u16 maxpacket; 2849 u32 val; 2850 2851 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT; 2852 switch (val) { 2853 case PORTSC_PS_LS: 2854 xudc->gadget.speed = USB_SPEED_LOW; 2855 break; 2856 case PORTSC_PS_FS: 2857 xudc->gadget.speed = USB_SPEED_FULL; 2858 break; 2859 case PORTSC_PS_HS: 2860 xudc->gadget.speed = USB_SPEED_HIGH; 2861 break; 2862 case PORTSC_PS_SS: 2863 xudc->gadget.speed = USB_SPEED_SUPER; 2864 break; 2865 default: 2866 xudc->gadget.speed = USB_SPEED_UNKNOWN; 2867 break; 2868 } 2869 2870 xudc->device_state = USB_STATE_DEFAULT; 2871 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2872 2873 xudc->setup_state = WAIT_FOR_SETUP; 2874 2875 if (xudc->gadget.speed == USB_SPEED_SUPER) 2876 maxpacket = 512; 2877 else 2878 maxpacket = 64; 2879 2880 ep_ctx_write_max_packet_size(ep0->context, maxpacket); 2881 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket); 2882 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket); 2883 2884 if (!xudc->soc->u1_enable) { 2885 val = xudc_readl(xudc, PORTPM); 2886 val &= ~(PORTPM_U1TIMEOUT_MASK); 2887 xudc_writel(xudc, val, PORTPM); 2888 } 2889 2890 if (!xudc->soc->u2_enable) { 2891 val = xudc_readl(xudc, PORTPM); 2892 val &= ~(PORTPM_U2TIMEOUT_MASK); 2893 xudc_writel(xudc, val, PORTPM); 2894 } 2895 2896 if (xudc->gadget.speed <= USB_SPEED_HIGH) { 2897 val = xudc_readl(xudc, PORTPM); 2898 val &= ~(PORTPM_L1S_MASK); 2899 if (xudc->soc->lpm_enable) 2900 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT); 2901 else 2902 val |= PORTPM_L1S(PORTPM_L1S_NYET); 2903 xudc_writel(xudc, val, PORTPM); 2904 } 2905 2906 val = xudc_readl(xudc, ST); 2907 if (val & ST_RC) 2908 xudc_writel(xudc, ST_RC, ST); 2909 } 2910 2911 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc) 2912 { 2913 tegra_xudc_reset(xudc); 2914 2915 if (xudc->driver && xudc->driver->disconnect) { 2916 spin_unlock(&xudc->lock); 2917 xudc->driver->disconnect(&xudc->gadget); 2918 spin_lock(&xudc->lock); 2919 } 2920 2921 xudc->device_state = USB_STATE_NOTATTACHED; 2922 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2923 2924 complete(&xudc->disconnect_complete); 2925 } 2926 2927 static void tegra_xudc_port_reset(struct tegra_xudc *xudc) 2928 { 2929 tegra_xudc_reset(xudc); 2930 2931 if (xudc->driver) { 2932 spin_unlock(&xudc->lock); 2933 usb_gadget_udc_reset(&xudc->gadget, xudc->driver); 2934 spin_lock(&xudc->lock); 2935 } 2936 2937 tegra_xudc_port_connect(xudc); 2938 } 2939 2940 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc) 2941 { 2942 dev_dbg(xudc->dev, "port suspend\n"); 2943 2944 xudc->resume_state = xudc->device_state; 2945 xudc->device_state = USB_STATE_SUSPENDED; 2946 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2947 2948 if (xudc->driver->suspend) { 2949 spin_unlock(&xudc->lock); 2950 xudc->driver->suspend(&xudc->gadget); 2951 spin_lock(&xudc->lock); 2952 } 2953 } 2954 2955 static void tegra_xudc_port_resume(struct tegra_xudc *xudc) 2956 { 2957 dev_dbg(xudc->dev, "port resume\n"); 2958 2959 tegra_xudc_resume_device_state(xudc); 2960 2961 if (xudc->driver->resume) { 2962 spin_unlock(&xudc->lock); 2963 xudc->driver->resume(&xudc->gadget); 2964 spin_lock(&xudc->lock); 2965 } 2966 } 2967 2968 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag) 2969 { 2970 u32 val; 2971 2972 val = xudc_readl(xudc, PORTSC); 2973 val &= ~PORTSC_CHANGE_MASK; 2974 val |= flag; 2975 xudc_writel(xudc, val, PORTSC); 2976 } 2977 2978 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 2979 { 2980 u32 portsc, porthalt; 2981 2982 porthalt = xudc_readl(xudc, PORTHALT); 2983 if ((porthalt & PORTHALT_STCHG_REQ) && 2984 (porthalt & PORTHALT_HALT_LTSSM)) { 2985 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt); 2986 porthalt &= ~PORTHALT_HALT_LTSSM; 2987 xudc_writel(xudc, porthalt, PORTHALT); 2988 } 2989 2990 portsc = xudc_readl(xudc, PORTSC); 2991 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) { 2992 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc); 2993 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 2994 #define TOGGLE_VBUS_WAIT_MS 100 2995 if (xudc->soc->port_reset_quirk) { 2996 schedule_delayed_work(&xudc->port_reset_war_work, 2997 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 2998 xudc->wait_for_sec_prc = 1; 2999 } 3000 } 3001 3002 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) { 3003 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc); 3004 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 3005 tegra_xudc_port_reset(xudc); 3006 cancel_delayed_work(&xudc->port_reset_war_work); 3007 xudc->wait_for_sec_prc = 0; 3008 } 3009 3010 portsc = xudc_readl(xudc, PORTSC); 3011 if (portsc & PORTSC_WRC) { 3012 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc); 3013 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED); 3014 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR)) 3015 tegra_xudc_port_reset(xudc); 3016 } 3017 3018 portsc = xudc_readl(xudc, PORTSC); 3019 if (portsc & PORTSC_CSC) { 3020 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc); 3021 clear_port_change(xudc, PORTSC_CSC); 3022 3023 if (portsc & PORTSC_CCS) 3024 tegra_xudc_port_connect(xudc); 3025 else 3026 tegra_xudc_port_disconnect(xudc); 3027 3028 if (xudc->wait_csc) { 3029 cancel_delayed_work(&xudc->plc_reset_work); 3030 xudc->wait_csc = false; 3031 } 3032 } 3033 3034 portsc = xudc_readl(xudc, PORTSC); 3035 if (portsc & PORTSC_PLC) { 3036 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; 3037 3038 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc); 3039 clear_port_change(xudc, PORTSC_PLC); 3040 switch (pls) { 3041 case PORTSC_PLS_U3: 3042 tegra_xudc_port_suspend(xudc); 3043 break; 3044 case PORTSC_PLS_U0: 3045 if (xudc->gadget.speed < USB_SPEED_SUPER) 3046 tegra_xudc_port_resume(xudc); 3047 break; 3048 case PORTSC_PLS_RESUME: 3049 if (xudc->gadget.speed == USB_SPEED_SUPER) 3050 tegra_xudc_port_resume(xudc); 3051 break; 3052 case PORTSC_PLS_INACTIVE: 3053 schedule_delayed_work(&xudc->plc_reset_work, 3054 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 3055 xudc->wait_csc = true; 3056 break; 3057 default: 3058 break; 3059 } 3060 } 3061 3062 if (portsc & PORTSC_CEC) { 3063 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc); 3064 clear_port_change(xudc, PORTSC_CEC); 3065 } 3066 3067 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC)); 3068 } 3069 3070 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 3071 { 3072 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) || 3073 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ)) 3074 __tegra_xudc_handle_port_status(xudc); 3075 } 3076 3077 static void tegra_xudc_handle_event(struct tegra_xudc *xudc, 3078 struct tegra_xudc_trb *event) 3079 { 3080 u32 type = trb_read_type(event); 3081 3082 dump_trb(xudc, "EVENT", event); 3083 3084 switch (type) { 3085 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT: 3086 tegra_xudc_handle_port_status(xudc); 3087 break; 3088 case TRB_TYPE_TRANSFER_EVENT: 3089 tegra_xudc_handle_transfer_event(xudc, event); 3090 break; 3091 case TRB_TYPE_SETUP_PACKET_EVENT: 3092 tegra_xudc_handle_ep0_event(xudc, event); 3093 break; 3094 default: 3095 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type); 3096 break; 3097 } 3098 } 3099 3100 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc) 3101 { 3102 struct tegra_xudc_trb *event; 3103 dma_addr_t erdp; 3104 3105 while (true) { 3106 event = xudc->event_ring[xudc->event_ring_index] + 3107 xudc->event_ring_deq_ptr; 3108 3109 if (trb_read_cycle(event) != xudc->ccs) 3110 break; 3111 3112 tegra_xudc_handle_event(xudc, event); 3113 3114 xudc->event_ring_deq_ptr++; 3115 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) { 3116 xudc->event_ring_deq_ptr = 0; 3117 xudc->event_ring_index++; 3118 } 3119 3120 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) { 3121 xudc->event_ring_index = 0; 3122 xudc->ccs = !xudc->ccs; 3123 } 3124 } 3125 3126 erdp = xudc->event_ring_phys[xudc->event_ring_index] + 3127 xudc->event_ring_deq_ptr * sizeof(*event); 3128 3129 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI); 3130 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO); 3131 } 3132 3133 static irqreturn_t tegra_xudc_irq(int irq, void *data) 3134 { 3135 struct tegra_xudc *xudc = data; 3136 unsigned long flags; 3137 u32 val; 3138 3139 val = xudc_readl(xudc, ST); 3140 if (!(val & ST_IP)) 3141 return IRQ_NONE; 3142 xudc_writel(xudc, ST_IP, ST); 3143 3144 spin_lock_irqsave(&xudc->lock, flags); 3145 tegra_xudc_process_event_ring(xudc); 3146 spin_unlock_irqrestore(&xudc->lock, flags); 3147 3148 return IRQ_HANDLED; 3149 } 3150 3151 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index) 3152 { 3153 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3154 3155 ep->xudc = xudc; 3156 ep->index = index; 3157 ep->context = &xudc->ep_context[index]; 3158 INIT_LIST_HEAD(&ep->queue); 3159 3160 /* 3161 * EP1 would be the input endpoint corresponding to EP0, but since 3162 * EP0 is bi-directional, EP1 is unused. 3163 */ 3164 if (index == 1) 3165 return 0; 3166 3167 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool, 3168 GFP_KERNEL, 3169 &ep->transfer_ring_phys); 3170 if (!ep->transfer_ring) 3171 return -ENOMEM; 3172 3173 if (index) { 3174 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2, 3175 (index % 2 == 0) ? "out" : "in"); 3176 ep->usb_ep.name = ep->name; 3177 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024); 3178 ep->usb_ep.max_streams = 16; 3179 ep->usb_ep.ops = &tegra_xudc_ep_ops; 3180 ep->usb_ep.caps.type_bulk = true; 3181 ep->usb_ep.caps.type_int = true; 3182 if (index & 1) 3183 ep->usb_ep.caps.dir_in = true; 3184 else 3185 ep->usb_ep.caps.dir_out = true; 3186 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list); 3187 } else { 3188 strscpy(ep->name, "ep0", 3); 3189 ep->usb_ep.name = ep->name; 3190 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512); 3191 ep->usb_ep.ops = &tegra_xudc_ep0_ops; 3192 ep->usb_ep.caps.type_control = true; 3193 ep->usb_ep.caps.dir_in = true; 3194 ep->usb_ep.caps.dir_out = true; 3195 } 3196 3197 return 0; 3198 } 3199 3200 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index) 3201 { 3202 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3203 3204 /* 3205 * EP1 would be the input endpoint corresponding to EP0, but since 3206 * EP0 is bi-directional, EP1 is unused. 3207 */ 3208 if (index == 1) 3209 return; 3210 3211 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring, 3212 ep->transfer_ring_phys); 3213 } 3214 3215 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc) 3216 { 3217 struct usb_request *req; 3218 unsigned int i; 3219 int err; 3220 3221 xudc->ep_context = 3222 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS * 3223 sizeof(*xudc->ep_context), 3224 &xudc->ep_context_phys, GFP_KERNEL); 3225 if (!xudc->ep_context) 3226 return -ENOMEM; 3227 3228 xudc->transfer_ring_pool = 3229 dmam_pool_create(dev_name(xudc->dev), xudc->dev, 3230 XUDC_TRANSFER_RING_SIZE * 3231 sizeof(struct tegra_xudc_trb), 3232 sizeof(struct tegra_xudc_trb), 0); 3233 if (!xudc->transfer_ring_pool) { 3234 err = -ENOMEM; 3235 goto free_ep_context; 3236 } 3237 3238 INIT_LIST_HEAD(&xudc->gadget.ep_list); 3239 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 3240 err = tegra_xudc_alloc_ep(xudc, i); 3241 if (err < 0) 3242 goto free_eps; 3243 } 3244 3245 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL); 3246 if (!req) { 3247 err = -ENOMEM; 3248 goto free_eps; 3249 } 3250 xudc->ep0_req = to_xudc_req(req); 3251 3252 return 0; 3253 3254 free_eps: 3255 for (; i > 0; i--) 3256 tegra_xudc_free_ep(xudc, i - 1); 3257 free_ep_context: 3258 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3259 xudc->ep_context, xudc->ep_context_phys); 3260 return err; 3261 } 3262 3263 static void tegra_xudc_init_eps(struct tegra_xudc *xudc) 3264 { 3265 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO); 3266 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI); 3267 } 3268 3269 static void tegra_xudc_free_eps(struct tegra_xudc *xudc) 3270 { 3271 unsigned int i; 3272 3273 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep, 3274 &xudc->ep0_req->usb_req); 3275 3276 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 3277 tegra_xudc_free_ep(xudc, i); 3278 3279 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3280 xudc->ep_context, xudc->ep_context_phys); 3281 } 3282 3283 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc) 3284 { 3285 unsigned int i; 3286 3287 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3288 xudc->event_ring[i] = 3289 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3290 sizeof(*xudc->event_ring[i]), 3291 &xudc->event_ring_phys[i], 3292 GFP_KERNEL); 3293 if (!xudc->event_ring[i]) 3294 goto free_dma; 3295 } 3296 3297 return 0; 3298 3299 free_dma: 3300 for (; i > 0; i--) { 3301 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3302 sizeof(*xudc->event_ring[i - 1]), 3303 xudc->event_ring[i - 1], 3304 xudc->event_ring_phys[i - 1]); 3305 } 3306 return -ENOMEM; 3307 } 3308 3309 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc) 3310 { 3311 unsigned int i; 3312 u32 val; 3313 3314 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3315 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE * 3316 sizeof(*xudc->event_ring[i])); 3317 3318 val = xudc_readl(xudc, ERSTSZ); 3319 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i)); 3320 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i); 3321 xudc_writel(xudc, val, ERSTSZ); 3322 3323 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]), 3324 ERSTXBALO(i)); 3325 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]), 3326 ERSTXBAHI(i)); 3327 } 3328 3329 val = lower_32_bits(xudc->event_ring_phys[0]); 3330 xudc_writel(xudc, val, ERDPLO); 3331 val |= EREPLO_ECS; 3332 xudc_writel(xudc, val, EREPLO); 3333 3334 val = upper_32_bits(xudc->event_ring_phys[0]); 3335 xudc_writel(xudc, val, ERDPHI); 3336 xudc_writel(xudc, val, EREPHI); 3337 3338 xudc->ccs = true; 3339 xudc->event_ring_index = 0; 3340 xudc->event_ring_deq_ptr = 0; 3341 } 3342 3343 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc) 3344 { 3345 unsigned int i; 3346 3347 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3348 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3349 sizeof(*xudc->event_ring[i]), 3350 xudc->event_ring[i], 3351 xudc->event_ring_phys[i]); 3352 } 3353 } 3354 3355 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc) 3356 { 3357 u32 val; 3358 3359 if (xudc->soc->has_ipfs) { 3360 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0); 3361 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI; 3362 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0); 3363 usleep_range(10, 15); 3364 } 3365 3366 /* Enable bus master */ 3367 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN | 3368 XUSB_DEV_CFG_1_BUS_MASTER_EN; 3369 fpci_writel(xudc, val, XUSB_DEV_CFG_1); 3370 3371 /* Program BAR0 space */ 3372 val = fpci_readl(xudc, XUSB_DEV_CFG_4); 3373 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3374 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3375 3376 fpci_writel(xudc, val, XUSB_DEV_CFG_4); 3377 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5); 3378 3379 usleep_range(100, 200); 3380 3381 if (xudc->soc->has_ipfs) { 3382 /* Enable interrupt assertion */ 3383 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0); 3384 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK; 3385 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0); 3386 } 3387 } 3388 3389 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc) 3390 { 3391 u32 val, imod; 3392 3393 if (xudc->soc->has_ipfs) { 3394 val = xudc_readl(xudc, BLCG); 3395 val |= BLCG_ALL; 3396 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE | 3397 BLCG_COREPLL_PWRDN); 3398 val |= BLCG_IOPLL_0_PWRDN; 3399 val |= BLCG_IOPLL_1_PWRDN; 3400 val |= BLCG_IOPLL_2_PWRDN; 3401 3402 xudc_writel(xudc, val, BLCG); 3403 } 3404 3405 if (xudc->soc->port_speed_quirk) 3406 tegra_xudc_limit_port_speed(xudc); 3407 3408 /* Set a reasonable U3 exit timer value. */ 3409 val = xudc_readl(xudc, SSPX_CORE_PADCTL4); 3410 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK); 3411 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0); 3412 xudc_writel(xudc, val, SSPX_CORE_PADCTL4); 3413 3414 /* Default ping LFPS tBurst is too large. */ 3415 val = xudc_readl(xudc, SSPX_CORE_CNT0); 3416 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK); 3417 val |= SSPX_CORE_CNT0_PING_TBURST(0xa); 3418 xudc_writel(xudc, val, SSPX_CORE_CNT0); 3419 3420 /* Default tPortConfiguration timeout is too small. */ 3421 val = xudc_readl(xudc, SSPX_CORE_CNT30); 3422 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK); 3423 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978); 3424 xudc_writel(xudc, val, SSPX_CORE_CNT30); 3425 3426 if (xudc->soc->lpm_enable) { 3427 /* Set L1 resume duration to 95 us. */ 3428 val = xudc_readl(xudc, HSFSPI_COUNT13); 3429 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK); 3430 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88); 3431 xudc_writel(xudc, val, HSFSPI_COUNT13); 3432 } 3433 3434 /* 3435 * Compliance suite appears to be violating polling LFPS tBurst max 3436 * of 1.4us. Send 1.45us instead. 3437 */ 3438 val = xudc_readl(xudc, SSPX_CORE_CNT32); 3439 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK); 3440 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0); 3441 xudc_writel(xudc, val, SSPX_CORE_CNT32); 3442 3443 /* Direct HS/FS port instance to RxDetect. */ 3444 val = xudc_readl(xudc, CFG_DEV_FE); 3445 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3446 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI); 3447 xudc_writel(xudc, val, CFG_DEV_FE); 3448 3449 val = xudc_readl(xudc, PORTSC); 3450 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3451 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3452 xudc_writel(xudc, val, PORTSC); 3453 3454 /* Direct SS port instance to RxDetect. */ 3455 val = xudc_readl(xudc, CFG_DEV_FE); 3456 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3457 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK; 3458 xudc_writel(xudc, val, CFG_DEV_FE); 3459 3460 val = xudc_readl(xudc, PORTSC); 3461 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3462 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3463 xudc_writel(xudc, val, PORTSC); 3464 3465 /* Restore port instance. */ 3466 val = xudc_readl(xudc, CFG_DEV_FE); 3467 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3468 xudc_writel(xudc, val, CFG_DEV_FE); 3469 3470 /* 3471 * Enable INFINITE_SS_RETRY to prevent device from entering 3472 * Disabled.Error when attached to buggy SuperSpeed hubs. 3473 */ 3474 val = xudc_readl(xudc, CFG_DEV_FE); 3475 val |= CFG_DEV_FE_INFINITE_SS_RETRY; 3476 xudc_writel(xudc, val, CFG_DEV_FE); 3477 3478 /* Set interrupt moderation. */ 3479 imod = XUDC_INTERRUPT_MODERATION_US * 4; 3480 val = xudc_readl(xudc, RT_IMOD); 3481 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK)); 3482 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod)); 3483 xudc_writel(xudc, val, RT_IMOD); 3484 3485 /* increase SSPI transaction timeout from 32us to 512us */ 3486 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER); 3487 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK); 3488 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000); 3489 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER); 3490 } 3491 3492 static int tegra_xudc_phy_get(struct tegra_xudc *xudc) 3493 { 3494 int err = 0, usb3_companion_port; 3495 unsigned int i, j; 3496 3497 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3498 sizeof(*xudc->utmi_phy), GFP_KERNEL); 3499 if (!xudc->utmi_phy) 3500 return -ENOMEM; 3501 3502 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3503 sizeof(*xudc->usb3_phy), GFP_KERNEL); 3504 if (!xudc->usb3_phy) 3505 return -ENOMEM; 3506 3507 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3508 sizeof(*xudc->usbphy), GFP_KERNEL); 3509 if (!xudc->usbphy) 3510 return -ENOMEM; 3511 3512 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify; 3513 3514 for (i = 0; i < xudc->soc->num_phys; i++) { 3515 char phy_name[] = "usb.-."; 3516 3517 /* Get USB2 phy */ 3518 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i); 3519 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3520 if (IS_ERR(xudc->utmi_phy[i])) { 3521 err = PTR_ERR(xudc->utmi_phy[i]); 3522 dev_err_probe(xudc->dev, err, 3523 "failed to get PHY for phy-name usb2-%d\n", i); 3524 goto clean_up; 3525 } else if (xudc->utmi_phy[i]) { 3526 /* Get usb-phy, if utmi phy is available */ 3527 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev, 3528 xudc->utmi_phy[i]->dev.of_node, 3529 NULL); 3530 if (IS_ERR(xudc->usbphy[i])) { 3531 err = PTR_ERR(xudc->usbphy[i]); 3532 dev_err_probe(xudc->dev, err, 3533 "failed to get usbphy-%d\n", i); 3534 goto clean_up; 3535 } 3536 } else if (!xudc->utmi_phy[i]) { 3537 /* if utmi phy is not available, ignore USB3 phy get */ 3538 continue; 3539 } 3540 3541 /* Get USB3 phy */ 3542 usb3_companion_port = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i); 3543 if (usb3_companion_port < 0) 3544 continue; 3545 3546 for (j = 0; j < xudc->soc->num_phys; j++) { 3547 snprintf(phy_name, sizeof(phy_name), "usb3-%d", j); 3548 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3549 if (IS_ERR(xudc->usb3_phy[i])) { 3550 err = PTR_ERR(xudc->usb3_phy[i]); 3551 dev_err_probe(xudc->dev, err, 3552 "failed to get PHY for phy-name usb3-%d\n", j); 3553 goto clean_up; 3554 } else if (xudc->usb3_phy[i]) { 3555 int usb2_port = 3556 tegra_xusb_padctl_get_port_number(xudc->utmi_phy[i]); 3557 int usb3_port = 3558 tegra_xusb_padctl_get_port_number(xudc->usb3_phy[i]); 3559 if (usb3_port == usb3_companion_port) { 3560 dev_dbg(xudc->dev, "USB2 port %d is paired with USB3 port %d for device mode port %d\n", 3561 usb2_port, usb3_port, i); 3562 break; 3563 } 3564 } 3565 } 3566 } 3567 3568 return err; 3569 3570 clean_up: 3571 for (i = 0; i < xudc->soc->num_phys; i++) { 3572 xudc->usb3_phy[i] = NULL; 3573 xudc->utmi_phy[i] = NULL; 3574 xudc->usbphy[i] = NULL; 3575 } 3576 3577 return err; 3578 } 3579 3580 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc) 3581 { 3582 unsigned int i; 3583 3584 for (i = 0; i < xudc->soc->num_phys; i++) { 3585 phy_exit(xudc->usb3_phy[i]); 3586 phy_exit(xudc->utmi_phy[i]); 3587 } 3588 } 3589 3590 static int tegra_xudc_phy_init(struct tegra_xudc *xudc) 3591 { 3592 int err; 3593 unsigned int i; 3594 3595 for (i = 0; i < xudc->soc->num_phys; i++) { 3596 err = phy_init(xudc->utmi_phy[i]); 3597 if (err < 0) { 3598 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err); 3599 goto exit_phy; 3600 } 3601 3602 err = phy_init(xudc->usb3_phy[i]); 3603 if (err < 0) { 3604 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err); 3605 goto exit_phy; 3606 } 3607 } 3608 return 0; 3609 3610 exit_phy: 3611 tegra_xudc_phy_exit(xudc); 3612 return err; 3613 } 3614 3615 static const char * const tegra210_xudc_supply_names[] = { 3616 "hvdd-usb", 3617 "avddio-usb", 3618 }; 3619 3620 static const char * const tegra210_xudc_clock_names[] = { 3621 "dev", 3622 "ss", 3623 "ss_src", 3624 "hs_src", 3625 "fs_src", 3626 }; 3627 3628 static const char * const tegra186_xudc_clock_names[] = { 3629 "dev", 3630 "ss", 3631 "ss_src", 3632 "fs_src", 3633 }; 3634 3635 static struct tegra_xudc_soc tegra210_xudc_soc_data = { 3636 .supply_names = tegra210_xudc_supply_names, 3637 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names), 3638 .clock_names = tegra210_xudc_clock_names, 3639 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names), 3640 .num_phys = 4, 3641 .u1_enable = false, 3642 .u2_enable = true, 3643 .lpm_enable = false, 3644 .invalid_seq_num = true, 3645 .pls_quirk = true, 3646 .port_reset_quirk = true, 3647 .port_speed_quirk = false, 3648 .has_ipfs = true, 3649 }; 3650 3651 static struct tegra_xudc_soc tegra186_xudc_soc_data = { 3652 .clock_names = tegra186_xudc_clock_names, 3653 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3654 .num_phys = 4, 3655 .u1_enable = true, 3656 .u2_enable = true, 3657 .lpm_enable = false, 3658 .invalid_seq_num = false, 3659 .pls_quirk = false, 3660 .port_reset_quirk = false, 3661 .port_speed_quirk = false, 3662 .has_ipfs = false, 3663 }; 3664 3665 static struct tegra_xudc_soc tegra194_xudc_soc_data = { 3666 .clock_names = tegra186_xudc_clock_names, 3667 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3668 .num_phys = 4, 3669 .u1_enable = true, 3670 .u2_enable = true, 3671 .lpm_enable = true, 3672 .invalid_seq_num = false, 3673 .pls_quirk = false, 3674 .port_reset_quirk = false, 3675 .port_speed_quirk = true, 3676 .has_ipfs = false, 3677 }; 3678 3679 static struct tegra_xudc_soc tegra234_xudc_soc_data = { 3680 .clock_names = tegra186_xudc_clock_names, 3681 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3682 .num_phys = 4, 3683 .u1_enable = true, 3684 .u2_enable = true, 3685 .lpm_enable = true, 3686 .invalid_seq_num = false, 3687 .pls_quirk = false, 3688 .port_reset_quirk = false, 3689 .has_ipfs = false, 3690 }; 3691 3692 static const struct of_device_id tegra_xudc_of_match[] = { 3693 { 3694 .compatible = "nvidia,tegra210-xudc", 3695 .data = &tegra210_xudc_soc_data 3696 }, 3697 { 3698 .compatible = "nvidia,tegra186-xudc", 3699 .data = &tegra186_xudc_soc_data 3700 }, 3701 { 3702 .compatible = "nvidia,tegra194-xudc", 3703 .data = &tegra194_xudc_soc_data 3704 }, 3705 { 3706 .compatible = "nvidia,tegra234-xudc", 3707 .data = &tegra234_xudc_soc_data 3708 }, 3709 { } 3710 }; 3711 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match); 3712 3713 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc) 3714 { 3715 if (xudc->genpd_dl_ss) 3716 device_link_del(xudc->genpd_dl_ss); 3717 if (xudc->genpd_dl_device) 3718 device_link_del(xudc->genpd_dl_device); 3719 if (xudc->genpd_dev_ss) 3720 dev_pm_domain_detach(xudc->genpd_dev_ss, true); 3721 if (xudc->genpd_dev_device) 3722 dev_pm_domain_detach(xudc->genpd_dev_device, true); 3723 } 3724 3725 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc) 3726 { 3727 struct device *dev = xudc->dev; 3728 int err; 3729 3730 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev"); 3731 if (IS_ERR(xudc->genpd_dev_device)) { 3732 err = PTR_ERR(xudc->genpd_dev_device); 3733 dev_err(dev, "failed to get device power domain: %d\n", err); 3734 return err; 3735 } 3736 3737 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss"); 3738 if (IS_ERR(xudc->genpd_dev_ss)) { 3739 err = PTR_ERR(xudc->genpd_dev_ss); 3740 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err); 3741 return err; 3742 } 3743 3744 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device, 3745 DL_FLAG_PM_RUNTIME | 3746 DL_FLAG_STATELESS); 3747 if (!xudc->genpd_dl_device) { 3748 dev_err(dev, "failed to add USB device link\n"); 3749 return -ENODEV; 3750 } 3751 3752 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss, 3753 DL_FLAG_PM_RUNTIME | 3754 DL_FLAG_STATELESS); 3755 if (!xudc->genpd_dl_ss) { 3756 dev_err(dev, "failed to add SuperSpeed device link\n"); 3757 return -ENODEV; 3758 } 3759 3760 return 0; 3761 } 3762 3763 static int tegra_xudc_probe(struct platform_device *pdev) 3764 { 3765 struct tegra_xudc *xudc; 3766 struct resource *res; 3767 unsigned int i; 3768 int err; 3769 3770 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL); 3771 if (!xudc) 3772 return -ENOMEM; 3773 3774 xudc->dev = &pdev->dev; 3775 platform_set_drvdata(pdev, xudc); 3776 3777 xudc->soc = of_device_get_match_data(&pdev->dev); 3778 if (!xudc->soc) 3779 return -ENODEV; 3780 3781 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 3782 xudc->base = devm_ioremap_resource(&pdev->dev, res); 3783 if (IS_ERR(xudc->base)) 3784 return PTR_ERR(xudc->base); 3785 xudc->phys_base = res->start; 3786 3787 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci"); 3788 if (IS_ERR(xudc->fpci)) 3789 return PTR_ERR(xudc->fpci); 3790 3791 if (xudc->soc->has_ipfs) { 3792 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs"); 3793 if (IS_ERR(xudc->ipfs)) 3794 return PTR_ERR(xudc->ipfs); 3795 } 3796 3797 xudc->irq = platform_get_irq(pdev, 0); 3798 if (xudc->irq < 0) 3799 return xudc->irq; 3800 3801 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0, 3802 dev_name(&pdev->dev), xudc); 3803 if (err < 0) { 3804 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq, 3805 err); 3806 return err; 3807 } 3808 3809 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks), 3810 GFP_KERNEL); 3811 if (!xudc->clks) 3812 return -ENOMEM; 3813 3814 for (i = 0; i < xudc->soc->num_clks; i++) 3815 xudc->clks[i].id = xudc->soc->clock_names[i]; 3816 3817 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks); 3818 if (err) { 3819 dev_err_probe(xudc->dev, err, "failed to request clocks\n"); 3820 return err; 3821 } 3822 3823 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies, 3824 sizeof(*xudc->supplies), GFP_KERNEL); 3825 if (!xudc->supplies) 3826 return -ENOMEM; 3827 3828 for (i = 0; i < xudc->soc->num_supplies; i++) 3829 xudc->supplies[i].supply = xudc->soc->supply_names[i]; 3830 3831 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies, 3832 xudc->supplies); 3833 if (err) { 3834 dev_err_probe(xudc->dev, err, "failed to request regulators\n"); 3835 return err; 3836 } 3837 3838 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev); 3839 if (IS_ERR(xudc->padctl)) 3840 return PTR_ERR(xudc->padctl); 3841 3842 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies); 3843 if (err) { 3844 dev_err(xudc->dev, "failed to enable regulators: %d\n", err); 3845 goto put_padctl; 3846 } 3847 3848 err = tegra_xudc_phy_get(xudc); 3849 if (err) 3850 goto disable_regulator; 3851 3852 err = tegra_xudc_powerdomain_init(xudc); 3853 if (err) 3854 goto put_powerdomains; 3855 3856 err = tegra_xudc_phy_init(xudc); 3857 if (err) 3858 goto put_powerdomains; 3859 3860 err = tegra_xudc_alloc_event_ring(xudc); 3861 if (err) 3862 goto disable_phy; 3863 3864 err = tegra_xudc_alloc_eps(xudc); 3865 if (err) 3866 goto free_event_ring; 3867 3868 spin_lock_init(&xudc->lock); 3869 3870 init_completion(&xudc->disconnect_complete); 3871 3872 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work); 3873 3874 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work); 3875 3876 INIT_DELAYED_WORK(&xudc->port_reset_war_work, 3877 tegra_xudc_port_reset_war_work); 3878 3879 pm_runtime_enable(&pdev->dev); 3880 3881 xudc->gadget.ops = &tegra_xudc_gadget_ops; 3882 xudc->gadget.ep0 = &xudc->ep[0].usb_ep; 3883 xudc->gadget.name = "tegra-xudc"; 3884 xudc->gadget.max_speed = USB_SPEED_SUPER; 3885 3886 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget); 3887 if (err) { 3888 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err); 3889 goto free_eps; 3890 } 3891 3892 for (i = 0; i < xudc->soc->num_phys; i++) { 3893 if (!xudc->usbphy[i]) 3894 continue; 3895 3896 usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb); 3897 tegra_xudc_update_data_role(xudc, xudc->usbphy[i]); 3898 } 3899 3900 return 0; 3901 3902 free_eps: 3903 pm_runtime_disable(&pdev->dev); 3904 tegra_xudc_free_eps(xudc); 3905 free_event_ring: 3906 tegra_xudc_free_event_ring(xudc); 3907 disable_phy: 3908 tegra_xudc_phy_exit(xudc); 3909 put_powerdomains: 3910 tegra_xudc_powerdomain_remove(xudc); 3911 disable_regulator: 3912 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3913 put_padctl: 3914 tegra_xusb_padctl_put(xudc->padctl); 3915 3916 return err; 3917 } 3918 3919 static void tegra_xudc_remove(struct platform_device *pdev) 3920 { 3921 struct tegra_xudc *xudc = platform_get_drvdata(pdev); 3922 unsigned int i; 3923 3924 pm_runtime_get_sync(xudc->dev); 3925 3926 cancel_delayed_work_sync(&xudc->plc_reset_work); 3927 cancel_work_sync(&xudc->usb_role_sw_work); 3928 3929 usb_del_gadget_udc(&xudc->gadget); 3930 3931 tegra_xudc_free_eps(xudc); 3932 tegra_xudc_free_event_ring(xudc); 3933 3934 tegra_xudc_powerdomain_remove(xudc); 3935 3936 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3937 3938 for (i = 0; i < xudc->soc->num_phys; i++) { 3939 phy_power_off(xudc->utmi_phy[i]); 3940 phy_power_off(xudc->usb3_phy[i]); 3941 } 3942 3943 tegra_xudc_phy_exit(xudc); 3944 3945 pm_runtime_disable(xudc->dev); 3946 pm_runtime_put(xudc->dev); 3947 3948 tegra_xusb_padctl_put(xudc->padctl); 3949 } 3950 3951 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc) 3952 { 3953 unsigned long flags; 3954 3955 dev_dbg(xudc->dev, "entering ELPG\n"); 3956 3957 spin_lock_irqsave(&xudc->lock, flags); 3958 3959 xudc->powergated = true; 3960 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL); 3961 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM); 3962 xudc_writel(xudc, 0, CTRL); 3963 3964 spin_unlock_irqrestore(&xudc->lock, flags); 3965 3966 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks); 3967 3968 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3969 3970 dev_dbg(xudc->dev, "entering ELPG done\n"); 3971 return 0; 3972 } 3973 3974 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc) 3975 { 3976 unsigned long flags; 3977 int err; 3978 3979 dev_dbg(xudc->dev, "exiting ELPG\n"); 3980 3981 err = regulator_bulk_enable(xudc->soc->num_supplies, 3982 xudc->supplies); 3983 if (err < 0) 3984 return err; 3985 3986 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks); 3987 if (err < 0) 3988 return err; 3989 3990 tegra_xudc_fpci_ipfs_init(xudc); 3991 3992 tegra_xudc_device_params_init(xudc); 3993 3994 tegra_xudc_init_event_ring(xudc); 3995 3996 tegra_xudc_init_eps(xudc); 3997 3998 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM); 3999 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL); 4000 4001 spin_lock_irqsave(&xudc->lock, flags); 4002 xudc->powergated = false; 4003 spin_unlock_irqrestore(&xudc->lock, flags); 4004 4005 dev_dbg(xudc->dev, "exiting ELPG done\n"); 4006 return 0; 4007 } 4008 4009 static int __maybe_unused tegra_xudc_suspend(struct device *dev) 4010 { 4011 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4012 unsigned long flags; 4013 4014 spin_lock_irqsave(&xudc->lock, flags); 4015 xudc->suspended = true; 4016 spin_unlock_irqrestore(&xudc->lock, flags); 4017 4018 flush_work(&xudc->usb_role_sw_work); 4019 4020 if (!pm_runtime_status_suspended(dev)) { 4021 /* Forcibly disconnect before powergating. */ 4022 tegra_xudc_device_mode_off(xudc); 4023 tegra_xudc_powergate(xudc); 4024 } 4025 4026 pm_runtime_disable(dev); 4027 4028 return 0; 4029 } 4030 4031 static int __maybe_unused tegra_xudc_resume(struct device *dev) 4032 { 4033 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4034 unsigned long flags; 4035 int err; 4036 4037 err = tegra_xudc_unpowergate(xudc); 4038 if (err < 0) 4039 return err; 4040 4041 spin_lock_irqsave(&xudc->lock, flags); 4042 xudc->suspended = false; 4043 spin_unlock_irqrestore(&xudc->lock, flags); 4044 4045 schedule_work(&xudc->usb_role_sw_work); 4046 4047 pm_runtime_enable(dev); 4048 4049 return 0; 4050 } 4051 4052 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev) 4053 { 4054 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4055 4056 return tegra_xudc_powergate(xudc); 4057 } 4058 4059 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev) 4060 { 4061 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4062 4063 return tegra_xudc_unpowergate(xudc); 4064 } 4065 4066 static const struct dev_pm_ops tegra_xudc_pm_ops = { 4067 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume) 4068 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend, 4069 tegra_xudc_runtime_resume, NULL) 4070 }; 4071 4072 static struct platform_driver tegra_xudc_driver = { 4073 .probe = tegra_xudc_probe, 4074 .remove = tegra_xudc_remove, 4075 .driver = { 4076 .name = "tegra-xudc", 4077 .pm = &tegra_xudc_pm_ops, 4078 .of_match_table = tegra_xudc_of_match, 4079 }, 4080 }; 4081 module_platform_driver(tegra_xudc_driver); 4082 4083 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller"); 4084 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>"); 4085 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>"); 4086 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>"); 4087 MODULE_LICENSE("GPL v2"); 4088