xref: /linux/drivers/usb/gadget/udc/omap_udc.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * omap_udc.c -- for OMAP full speed udc; most chips support OTG.
3  *
4  * Copyright (C) 2004 Texas Instruments, Inc.
5  * Copyright (C) 2004-2005 David Brownell
6  *
7  * OMAP2 & DMA support by Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  */
14 
15 #undef	DEBUG
16 #undef	VERBOSE
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/ioport.h>
21 #include <linux/types.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/list.h>
27 #include <linux/interrupt.h>
28 #include <linux/proc_fs.h>
29 #include <linux/mm.h>
30 #include <linux/moduleparam.h>
31 #include <linux/platform_device.h>
32 #include <linux/usb/ch9.h>
33 #include <linux/usb/gadget.h>
34 #include <linux/usb/otg.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/clk.h>
37 #include <linux/err.h>
38 #include <linux/prefetch.h>
39 #include <linux/io.h>
40 
41 #include <asm/byteorder.h>
42 #include <asm/irq.h>
43 #include <asm/unaligned.h>
44 #include <asm/mach-types.h>
45 
46 #include <linux/omap-dma.h>
47 
48 #include <mach/usb.h>
49 
50 #include "omap_udc.h"
51 
52 #undef	USB_TRACE
53 
54 /* bulk DMA seems to be behaving for both IN and OUT */
55 #define	USE_DMA
56 
57 /* ISO too */
58 #define	USE_ISO
59 
60 #define	DRIVER_DESC	"OMAP UDC driver"
61 #define	DRIVER_VERSION	"4 October 2004"
62 
63 #define OMAP_DMA_USB_W2FC_TX0		29
64 #define OMAP_DMA_USB_W2FC_RX0		26
65 
66 /*
67  * The OMAP UDC needs _very_ early endpoint setup:  before enabling the
68  * D+ pullup to allow enumeration.  That's too early for the gadget
69  * framework to use from usb_endpoint_enable(), which happens after
70  * enumeration as part of activating an interface.  (But if we add an
71  * optional new "UDC not yet running" state to the gadget driver model,
72  * even just during driver binding, the endpoint autoconfig logic is the
73  * natural spot to manufacture new endpoints.)
74  *
75  * So instead of using endpoint enable calls to control the hardware setup,
76  * this driver defines a "fifo mode" parameter.  It's used during driver
77  * initialization to choose among a set of pre-defined endpoint configs.
78  * See omap_udc_setup() for available modes, or to add others.  That code
79  * lives in an init section, so use this driver as a module if you need
80  * to change the fifo mode after the kernel boots.
81  *
82  * Gadget drivers normally ignore endpoints they don't care about, and
83  * won't include them in configuration descriptors.  That means only
84  * misbehaving hosts would even notice they exist.
85  */
86 #ifdef	USE_ISO
87 static unsigned fifo_mode = 3;
88 #else
89 static unsigned fifo_mode;
90 #endif
91 
92 /* "modprobe omap_udc fifo_mode=42", or else as a kernel
93  * boot parameter "omap_udc:fifo_mode=42"
94  */
95 module_param(fifo_mode, uint, 0);
96 MODULE_PARM_DESC(fifo_mode, "endpoint configuration");
97 
98 #ifdef	USE_DMA
99 static bool use_dma = 1;
100 
101 /* "modprobe omap_udc use_dma=y", or else as a kernel
102  * boot parameter "omap_udc:use_dma=y"
103  */
104 module_param(use_dma, bool, 0);
105 MODULE_PARM_DESC(use_dma, "enable/disable DMA");
106 #else	/* !USE_DMA */
107 
108 /* save a bit of code */
109 #define	use_dma		0
110 #endif	/* !USE_DMA */
111 
112 
113 static const char driver_name[] = "omap_udc";
114 static const char driver_desc[] = DRIVER_DESC;
115 
116 /*-------------------------------------------------------------------------*/
117 
118 /* there's a notion of "current endpoint" for modifying endpoint
119  * state, and PIO access to its FIFO.
120  */
121 
122 static void use_ep(struct omap_ep *ep, u16 select)
123 {
124 	u16	num = ep->bEndpointAddress & 0x0f;
125 
126 	if (ep->bEndpointAddress & USB_DIR_IN)
127 		num |= UDC_EP_DIR;
128 	omap_writew(num | select, UDC_EP_NUM);
129 	/* when select, MUST deselect later !! */
130 }
131 
132 static inline void deselect_ep(void)
133 {
134 	u16 w;
135 
136 	w = omap_readw(UDC_EP_NUM);
137 	w &= ~UDC_EP_SEL;
138 	omap_writew(w, UDC_EP_NUM);
139 	/* 6 wait states before TX will happen */
140 }
141 
142 static void dma_channel_claim(struct omap_ep *ep, unsigned preferred);
143 
144 /*-------------------------------------------------------------------------*/
145 
146 static int omap_ep_enable(struct usb_ep *_ep,
147 		const struct usb_endpoint_descriptor *desc)
148 {
149 	struct omap_ep	*ep = container_of(_ep, struct omap_ep, ep);
150 	struct omap_udc	*udc;
151 	unsigned long	flags;
152 	u16		maxp;
153 
154 	/* catch various bogus parameters */
155 	if (!_ep || !desc
156 			|| desc->bDescriptorType != USB_DT_ENDPOINT
157 			|| ep->bEndpointAddress != desc->bEndpointAddress
158 			|| ep->maxpacket < usb_endpoint_maxp(desc)) {
159 		DBG("%s, bad ep or descriptor\n", __func__);
160 		return -EINVAL;
161 	}
162 	maxp = usb_endpoint_maxp(desc);
163 	if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
164 				&& maxp != ep->maxpacket)
165 			|| usb_endpoint_maxp(desc) > ep->maxpacket
166 			|| !desc->wMaxPacketSize) {
167 		DBG("%s, bad %s maxpacket\n", __func__, _ep->name);
168 		return -ERANGE;
169 	}
170 
171 #ifdef	USE_ISO
172 	if ((desc->bmAttributes == USB_ENDPOINT_XFER_ISOC
173 				&& desc->bInterval != 1)) {
174 		/* hardware wants period = 1; USB allows 2^(Interval-1) */
175 		DBG("%s, unsupported ISO period %dms\n", _ep->name,
176 				1 << (desc->bInterval - 1));
177 		return -EDOM;
178 	}
179 #else
180 	if (desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
181 		DBG("%s, ISO nyet\n", _ep->name);
182 		return -EDOM;
183 	}
184 #endif
185 
186 	/* xfer types must match, except that interrupt ~= bulk */
187 	if (ep->bmAttributes != desc->bmAttributes
188 			&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
189 			&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
190 		DBG("%s, %s type mismatch\n", __func__, _ep->name);
191 		return -EINVAL;
192 	}
193 
194 	udc = ep->udc;
195 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
196 		DBG("%s, bogus device state\n", __func__);
197 		return -ESHUTDOWN;
198 	}
199 
200 	spin_lock_irqsave(&udc->lock, flags);
201 
202 	ep->ep.desc = desc;
203 	ep->irqs = 0;
204 	ep->stopped = 0;
205 	ep->ep.maxpacket = maxp;
206 
207 	/* set endpoint to initial state */
208 	ep->dma_channel = 0;
209 	ep->has_dma = 0;
210 	ep->lch = -1;
211 	use_ep(ep, UDC_EP_SEL);
212 	omap_writew(udc->clr_halt, UDC_CTRL);
213 	ep->ackwait = 0;
214 	deselect_ep();
215 
216 	if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC)
217 		list_add(&ep->iso, &udc->iso);
218 
219 	/* maybe assign a DMA channel to this endpoint */
220 	if (use_dma && desc->bmAttributes == USB_ENDPOINT_XFER_BULK)
221 		/* FIXME ISO can dma, but prefers first channel */
222 		dma_channel_claim(ep, 0);
223 
224 	/* PIO OUT may RX packets */
225 	if (desc->bmAttributes != USB_ENDPOINT_XFER_ISOC
226 			&& !ep->has_dma
227 			&& !(ep->bEndpointAddress & USB_DIR_IN)) {
228 		omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
229 		ep->ackwait = 1 + ep->double_buf;
230 	}
231 
232 	spin_unlock_irqrestore(&udc->lock, flags);
233 	VDBG("%s enabled\n", _ep->name);
234 	return 0;
235 }
236 
237 static void nuke(struct omap_ep *, int status);
238 
239 static int omap_ep_disable(struct usb_ep *_ep)
240 {
241 	struct omap_ep	*ep = container_of(_ep, struct omap_ep, ep);
242 	unsigned long	flags;
243 
244 	if (!_ep || !ep->ep.desc) {
245 		DBG("%s, %s not enabled\n", __func__,
246 			_ep ? ep->ep.name : NULL);
247 		return -EINVAL;
248 	}
249 
250 	spin_lock_irqsave(&ep->udc->lock, flags);
251 	ep->ep.desc = NULL;
252 	nuke(ep, -ESHUTDOWN);
253 	ep->ep.maxpacket = ep->maxpacket;
254 	ep->has_dma = 0;
255 	omap_writew(UDC_SET_HALT, UDC_CTRL);
256 	list_del_init(&ep->iso);
257 	del_timer(&ep->timer);
258 
259 	spin_unlock_irqrestore(&ep->udc->lock, flags);
260 
261 	VDBG("%s disabled\n", _ep->name);
262 	return 0;
263 }
264 
265 /*-------------------------------------------------------------------------*/
266 
267 static struct usb_request *
268 omap_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
269 {
270 	struct omap_req	*req;
271 
272 	req = kzalloc(sizeof(*req), gfp_flags);
273 	if (!req)
274 		return NULL;
275 
276 	INIT_LIST_HEAD(&req->queue);
277 
278 	return &req->req;
279 }
280 
281 static void
282 omap_free_request(struct usb_ep *ep, struct usb_request *_req)
283 {
284 	struct omap_req	*req = container_of(_req, struct omap_req, req);
285 
286 	kfree(req);
287 }
288 
289 /*-------------------------------------------------------------------------*/
290 
291 static void
292 done(struct omap_ep *ep, struct omap_req *req, int status)
293 {
294 	struct omap_udc		*udc = ep->udc;
295 	unsigned		stopped = ep->stopped;
296 
297 	list_del_init(&req->queue);
298 
299 	if (req->req.status == -EINPROGRESS)
300 		req->req.status = status;
301 	else
302 		status = req->req.status;
303 
304 	if (use_dma && ep->has_dma)
305 		usb_gadget_unmap_request(&udc->gadget, &req->req,
306 				(ep->bEndpointAddress & USB_DIR_IN));
307 
308 #ifndef	USB_TRACE
309 	if (status && status != -ESHUTDOWN)
310 #endif
311 		VDBG("complete %s req %p stat %d len %u/%u\n",
312 			ep->ep.name, &req->req, status,
313 			req->req.actual, req->req.length);
314 
315 	/* don't modify queue heads during completion callback */
316 	ep->stopped = 1;
317 	spin_unlock(&ep->udc->lock);
318 	req->req.complete(&ep->ep, &req->req);
319 	spin_lock(&ep->udc->lock);
320 	ep->stopped = stopped;
321 }
322 
323 /*-------------------------------------------------------------------------*/
324 
325 #define UDC_FIFO_FULL		(UDC_NON_ISO_FIFO_FULL | UDC_ISO_FIFO_FULL)
326 #define UDC_FIFO_UNWRITABLE	(UDC_EP_HALTED | UDC_FIFO_FULL)
327 
328 #define FIFO_EMPTY	(UDC_NON_ISO_FIFO_EMPTY | UDC_ISO_FIFO_EMPTY)
329 #define FIFO_UNREADABLE (UDC_EP_HALTED | FIFO_EMPTY)
330 
331 static inline int
332 write_packet(u8 *buf, struct omap_req *req, unsigned max)
333 {
334 	unsigned	len;
335 	u16		*wp;
336 
337 	len = min(req->req.length - req->req.actual, max);
338 	req->req.actual += len;
339 
340 	max = len;
341 	if (likely((((int)buf) & 1) == 0)) {
342 		wp = (u16 *)buf;
343 		while (max >= 2) {
344 			omap_writew(*wp++, UDC_DATA);
345 			max -= 2;
346 		}
347 		buf = (u8 *)wp;
348 	}
349 	while (max--)
350 		omap_writeb(*buf++, UDC_DATA);
351 	return len;
352 }
353 
354 /* FIXME change r/w fifo calling convention */
355 
356 
357 /* return:  0 = still running, 1 = completed, negative = errno */
358 static int write_fifo(struct omap_ep *ep, struct omap_req *req)
359 {
360 	u8		*buf;
361 	unsigned	count;
362 	int		is_last;
363 	u16		ep_stat;
364 
365 	buf = req->req.buf + req->req.actual;
366 	prefetch(buf);
367 
368 	/* PIO-IN isn't double buffered except for iso */
369 	ep_stat = omap_readw(UDC_STAT_FLG);
370 	if (ep_stat & UDC_FIFO_UNWRITABLE)
371 		return 0;
372 
373 	count = ep->ep.maxpacket;
374 	count = write_packet(buf, req, count);
375 	omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
376 	ep->ackwait = 1;
377 
378 	/* last packet is often short (sometimes a zlp) */
379 	if (count != ep->ep.maxpacket)
380 		is_last = 1;
381 	else if (req->req.length == req->req.actual
382 			&& !req->req.zero)
383 		is_last = 1;
384 	else
385 		is_last = 0;
386 
387 	/* NOTE:  requests complete when all IN data is in a
388 	 * FIFO (or sometimes later, if a zlp was needed).
389 	 * Use usb_ep_fifo_status() where needed.
390 	 */
391 	if (is_last)
392 		done(ep, req, 0);
393 	return is_last;
394 }
395 
396 static inline int
397 read_packet(u8 *buf, struct omap_req *req, unsigned avail)
398 {
399 	unsigned	len;
400 	u16		*wp;
401 
402 	len = min(req->req.length - req->req.actual, avail);
403 	req->req.actual += len;
404 	avail = len;
405 
406 	if (likely((((int)buf) & 1) == 0)) {
407 		wp = (u16 *)buf;
408 		while (avail >= 2) {
409 			*wp++ = omap_readw(UDC_DATA);
410 			avail -= 2;
411 		}
412 		buf = (u8 *)wp;
413 	}
414 	while (avail--)
415 		*buf++ = omap_readb(UDC_DATA);
416 	return len;
417 }
418 
419 /* return:  0 = still running, 1 = queue empty, negative = errno */
420 static int read_fifo(struct omap_ep *ep, struct omap_req *req)
421 {
422 	u8		*buf;
423 	unsigned	count, avail;
424 	int		is_last;
425 
426 	buf = req->req.buf + req->req.actual;
427 	prefetchw(buf);
428 
429 	for (;;) {
430 		u16	ep_stat = omap_readw(UDC_STAT_FLG);
431 
432 		is_last = 0;
433 		if (ep_stat & FIFO_EMPTY) {
434 			if (!ep->double_buf)
435 				break;
436 			ep->fnf = 1;
437 		}
438 		if (ep_stat & UDC_EP_HALTED)
439 			break;
440 
441 		if (ep_stat & UDC_FIFO_FULL)
442 			avail = ep->ep.maxpacket;
443 		else  {
444 			avail = omap_readw(UDC_RXFSTAT);
445 			ep->fnf = ep->double_buf;
446 		}
447 		count = read_packet(buf, req, avail);
448 
449 		/* partial packet reads may not be errors */
450 		if (count < ep->ep.maxpacket) {
451 			is_last = 1;
452 			/* overflowed this request?  flush extra data */
453 			if (count != avail) {
454 				req->req.status = -EOVERFLOW;
455 				avail -= count;
456 				while (avail--)
457 					omap_readw(UDC_DATA);
458 			}
459 		} else if (req->req.length == req->req.actual)
460 			is_last = 1;
461 		else
462 			is_last = 0;
463 
464 		if (!ep->bEndpointAddress)
465 			break;
466 		if (is_last)
467 			done(ep, req, 0);
468 		break;
469 	}
470 	return is_last;
471 }
472 
473 /*-------------------------------------------------------------------------*/
474 
475 static u16 dma_src_len(struct omap_ep *ep, dma_addr_t start)
476 {
477 	dma_addr_t	end;
478 
479 	/* IN-DMA needs this on fault/cancel paths, so 15xx misreports
480 	 * the last transfer's bytecount by more than a FIFO's worth.
481 	 */
482 	if (cpu_is_omap15xx())
483 		return 0;
484 
485 	end = omap_get_dma_src_pos(ep->lch);
486 	if (end == ep->dma_counter)
487 		return 0;
488 
489 	end |= start & (0xffff << 16);
490 	if (end < start)
491 		end += 0x10000;
492 	return end - start;
493 }
494 
495 static u16 dma_dest_len(struct omap_ep *ep, dma_addr_t start)
496 {
497 	dma_addr_t	end;
498 
499 	end = omap_get_dma_dst_pos(ep->lch);
500 	if (end == ep->dma_counter)
501 		return 0;
502 
503 	end |= start & (0xffff << 16);
504 	if (cpu_is_omap15xx())
505 		end++;
506 	if (end < start)
507 		end += 0x10000;
508 	return end - start;
509 }
510 
511 
512 /* Each USB transfer request using DMA maps to one or more DMA transfers.
513  * When DMA completion isn't request completion, the UDC continues with
514  * the next DMA transfer for that USB transfer.
515  */
516 
517 static void next_in_dma(struct omap_ep *ep, struct omap_req *req)
518 {
519 	u16		txdma_ctrl, w;
520 	unsigned	length = req->req.length - req->req.actual;
521 	const int	sync_mode = cpu_is_omap15xx()
522 				? OMAP_DMA_SYNC_FRAME
523 				: OMAP_DMA_SYNC_ELEMENT;
524 	int		dma_trigger = 0;
525 
526 	/* measure length in either bytes or packets */
527 	if ((cpu_is_omap16xx() && length <= UDC_TXN_TSC)
528 			|| (cpu_is_omap15xx() && length < ep->maxpacket)) {
529 		txdma_ctrl = UDC_TXN_EOT | length;
530 		omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S8,
531 				length, 1, sync_mode, dma_trigger, 0);
532 	} else {
533 		length = min(length / ep->maxpacket,
534 				(unsigned) UDC_TXN_TSC + 1);
535 		txdma_ctrl = length;
536 		omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S16,
537 				ep->ep.maxpacket >> 1, length, sync_mode,
538 				dma_trigger, 0);
539 		length *= ep->maxpacket;
540 	}
541 	omap_set_dma_src_params(ep->lch, OMAP_DMA_PORT_EMIFF,
542 		OMAP_DMA_AMODE_POST_INC, req->req.dma + req->req.actual,
543 		0, 0);
544 
545 	omap_start_dma(ep->lch);
546 	ep->dma_counter = omap_get_dma_src_pos(ep->lch);
547 	w = omap_readw(UDC_DMA_IRQ_EN);
548 	w |= UDC_TX_DONE_IE(ep->dma_channel);
549 	omap_writew(w, UDC_DMA_IRQ_EN);
550 	omap_writew(UDC_TXN_START | txdma_ctrl, UDC_TXDMA(ep->dma_channel));
551 	req->dma_bytes = length;
552 }
553 
554 static void finish_in_dma(struct omap_ep *ep, struct omap_req *req, int status)
555 {
556 	u16 w;
557 
558 	if (status == 0) {
559 		req->req.actual += req->dma_bytes;
560 
561 		/* return if this request needs to send data or zlp */
562 		if (req->req.actual < req->req.length)
563 			return;
564 		if (req->req.zero
565 				&& req->dma_bytes != 0
566 				&& (req->req.actual % ep->maxpacket) == 0)
567 			return;
568 	} else
569 		req->req.actual += dma_src_len(ep, req->req.dma
570 							+ req->req.actual);
571 
572 	/* tx completion */
573 	omap_stop_dma(ep->lch);
574 	w = omap_readw(UDC_DMA_IRQ_EN);
575 	w &= ~UDC_TX_DONE_IE(ep->dma_channel);
576 	omap_writew(w, UDC_DMA_IRQ_EN);
577 	done(ep, req, status);
578 }
579 
580 static void next_out_dma(struct omap_ep *ep, struct omap_req *req)
581 {
582 	unsigned packets = req->req.length - req->req.actual;
583 	int dma_trigger = 0;
584 	u16 w;
585 
586 	/* set up this DMA transfer, enable the fifo, start */
587 	packets /= ep->ep.maxpacket;
588 	packets = min(packets, (unsigned)UDC_RXN_TC + 1);
589 	req->dma_bytes = packets * ep->ep.maxpacket;
590 	omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S16,
591 			ep->ep.maxpacket >> 1, packets,
592 			OMAP_DMA_SYNC_ELEMENT,
593 			dma_trigger, 0);
594 	omap_set_dma_dest_params(ep->lch, OMAP_DMA_PORT_EMIFF,
595 		OMAP_DMA_AMODE_POST_INC, req->req.dma + req->req.actual,
596 		0, 0);
597 	ep->dma_counter = omap_get_dma_dst_pos(ep->lch);
598 
599 	omap_writew(UDC_RXN_STOP | (packets - 1), UDC_RXDMA(ep->dma_channel));
600 	w = omap_readw(UDC_DMA_IRQ_EN);
601 	w |= UDC_RX_EOT_IE(ep->dma_channel);
602 	omap_writew(w, UDC_DMA_IRQ_EN);
603 	omap_writew(ep->bEndpointAddress & 0xf, UDC_EP_NUM);
604 	omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
605 
606 	omap_start_dma(ep->lch);
607 }
608 
609 static void
610 finish_out_dma(struct omap_ep *ep, struct omap_req *req, int status, int one)
611 {
612 	u16	count, w;
613 
614 	if (status == 0)
615 		ep->dma_counter = (u16) (req->req.dma + req->req.actual);
616 	count = dma_dest_len(ep, req->req.dma + req->req.actual);
617 	count += req->req.actual;
618 	if (one)
619 		count--;
620 	if (count <= req->req.length)
621 		req->req.actual = count;
622 
623 	if (count != req->dma_bytes || status)
624 		omap_stop_dma(ep->lch);
625 
626 	/* if this wasn't short, request may need another transfer */
627 	else if (req->req.actual < req->req.length)
628 		return;
629 
630 	/* rx completion */
631 	w = omap_readw(UDC_DMA_IRQ_EN);
632 	w &= ~UDC_RX_EOT_IE(ep->dma_channel);
633 	omap_writew(w, UDC_DMA_IRQ_EN);
634 	done(ep, req, status);
635 }
636 
637 static void dma_irq(struct omap_udc *udc, u16 irq_src)
638 {
639 	u16		dman_stat = omap_readw(UDC_DMAN_STAT);
640 	struct omap_ep	*ep;
641 	struct omap_req	*req;
642 
643 	/* IN dma: tx to host */
644 	if (irq_src & UDC_TXN_DONE) {
645 		ep = &udc->ep[16 + UDC_DMA_TX_SRC(dman_stat)];
646 		ep->irqs++;
647 		/* can see TXN_DONE after dma abort */
648 		if (!list_empty(&ep->queue)) {
649 			req = container_of(ep->queue.next,
650 						struct omap_req, queue);
651 			finish_in_dma(ep, req, 0);
652 		}
653 		omap_writew(UDC_TXN_DONE, UDC_IRQ_SRC);
654 
655 		if (!list_empty(&ep->queue)) {
656 			req = container_of(ep->queue.next,
657 					struct omap_req, queue);
658 			next_in_dma(ep, req);
659 		}
660 	}
661 
662 	/* OUT dma: rx from host */
663 	if (irq_src & UDC_RXN_EOT) {
664 		ep = &udc->ep[UDC_DMA_RX_SRC(dman_stat)];
665 		ep->irqs++;
666 		/* can see RXN_EOT after dma abort */
667 		if (!list_empty(&ep->queue)) {
668 			req = container_of(ep->queue.next,
669 					struct omap_req, queue);
670 			finish_out_dma(ep, req, 0, dman_stat & UDC_DMA_RX_SB);
671 		}
672 		omap_writew(UDC_RXN_EOT, UDC_IRQ_SRC);
673 
674 		if (!list_empty(&ep->queue)) {
675 			req = container_of(ep->queue.next,
676 					struct omap_req, queue);
677 			next_out_dma(ep, req);
678 		}
679 	}
680 
681 	if (irq_src & UDC_RXN_CNT) {
682 		ep = &udc->ep[UDC_DMA_RX_SRC(dman_stat)];
683 		ep->irqs++;
684 		/* omap15xx does this unasked... */
685 		VDBG("%s, RX_CNT irq?\n", ep->ep.name);
686 		omap_writew(UDC_RXN_CNT, UDC_IRQ_SRC);
687 	}
688 }
689 
690 static void dma_error(int lch, u16 ch_status, void *data)
691 {
692 	struct omap_ep	*ep = data;
693 
694 	/* if ch_status & OMAP_DMA_DROP_IRQ ... */
695 	/* if ch_status & OMAP1_DMA_TOUT_IRQ ... */
696 	ERR("%s dma error, lch %d status %02x\n", ep->ep.name, lch, ch_status);
697 
698 	/* complete current transfer ... */
699 }
700 
701 static void dma_channel_claim(struct omap_ep *ep, unsigned channel)
702 {
703 	u16	reg;
704 	int	status, restart, is_in;
705 	int	dma_channel;
706 
707 	is_in = ep->bEndpointAddress & USB_DIR_IN;
708 	if (is_in)
709 		reg = omap_readw(UDC_TXDMA_CFG);
710 	else
711 		reg = omap_readw(UDC_RXDMA_CFG);
712 	reg |= UDC_DMA_REQ;		/* "pulse" activated */
713 
714 	ep->dma_channel = 0;
715 	ep->lch = -1;
716 	if (channel == 0 || channel > 3) {
717 		if ((reg & 0x0f00) == 0)
718 			channel = 3;
719 		else if ((reg & 0x00f0) == 0)
720 			channel = 2;
721 		else if ((reg & 0x000f) == 0)	/* preferred for ISO */
722 			channel = 1;
723 		else {
724 			status = -EMLINK;
725 			goto just_restart;
726 		}
727 	}
728 	reg |= (0x0f & ep->bEndpointAddress) << (4 * (channel - 1));
729 	ep->dma_channel = channel;
730 
731 	if (is_in) {
732 		dma_channel = OMAP_DMA_USB_W2FC_TX0 - 1 + channel;
733 		status = omap_request_dma(dma_channel,
734 			ep->ep.name, dma_error, ep, &ep->lch);
735 		if (status == 0) {
736 			omap_writew(reg, UDC_TXDMA_CFG);
737 			/* EMIFF or SDRC */
738 			omap_set_dma_src_burst_mode(ep->lch,
739 						OMAP_DMA_DATA_BURST_4);
740 			omap_set_dma_src_data_pack(ep->lch, 1);
741 			/* TIPB */
742 			omap_set_dma_dest_params(ep->lch,
743 				OMAP_DMA_PORT_TIPB,
744 				OMAP_DMA_AMODE_CONSTANT,
745 				UDC_DATA_DMA,
746 				0, 0);
747 		}
748 	} else {
749 		dma_channel = OMAP_DMA_USB_W2FC_RX0 - 1 + channel;
750 		status = omap_request_dma(dma_channel,
751 			ep->ep.name, dma_error, ep, &ep->lch);
752 		if (status == 0) {
753 			omap_writew(reg, UDC_RXDMA_CFG);
754 			/* TIPB */
755 			omap_set_dma_src_params(ep->lch,
756 				OMAP_DMA_PORT_TIPB,
757 				OMAP_DMA_AMODE_CONSTANT,
758 				UDC_DATA_DMA,
759 				0, 0);
760 			/* EMIFF or SDRC */
761 			omap_set_dma_dest_burst_mode(ep->lch,
762 						OMAP_DMA_DATA_BURST_4);
763 			omap_set_dma_dest_data_pack(ep->lch, 1);
764 		}
765 	}
766 	if (status)
767 		ep->dma_channel = 0;
768 	else {
769 		ep->has_dma = 1;
770 		omap_disable_dma_irq(ep->lch, OMAP_DMA_BLOCK_IRQ);
771 
772 		/* channel type P: hw synch (fifo) */
773 		if (!cpu_is_omap15xx())
774 			omap_set_dma_channel_mode(ep->lch, OMAP_DMA_LCH_P);
775 	}
776 
777 just_restart:
778 	/* restart any queue, even if the claim failed  */
779 	restart = !ep->stopped && !list_empty(&ep->queue);
780 
781 	if (status)
782 		DBG("%s no dma channel: %d%s\n", ep->ep.name, status,
783 			restart ? " (restart)" : "");
784 	else
785 		DBG("%s claimed %cxdma%d lch %d%s\n", ep->ep.name,
786 			is_in ? 't' : 'r',
787 			ep->dma_channel - 1, ep->lch,
788 			restart ? " (restart)" : "");
789 
790 	if (restart) {
791 		struct omap_req	*req;
792 		req = container_of(ep->queue.next, struct omap_req, queue);
793 		if (ep->has_dma)
794 			(is_in ? next_in_dma : next_out_dma)(ep, req);
795 		else {
796 			use_ep(ep, UDC_EP_SEL);
797 			(is_in ? write_fifo : read_fifo)(ep, req);
798 			deselect_ep();
799 			if (!is_in) {
800 				omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
801 				ep->ackwait = 1 + ep->double_buf;
802 			}
803 			/* IN: 6 wait states before it'll tx */
804 		}
805 	}
806 }
807 
808 static void dma_channel_release(struct omap_ep *ep)
809 {
810 	int		shift = 4 * (ep->dma_channel - 1);
811 	u16		mask = 0x0f << shift;
812 	struct omap_req	*req;
813 	int		active;
814 
815 	/* abort any active usb transfer request */
816 	if (!list_empty(&ep->queue))
817 		req = container_of(ep->queue.next, struct omap_req, queue);
818 	else
819 		req = NULL;
820 
821 	active = omap_get_dma_active_status(ep->lch);
822 
823 	DBG("%s release %s %cxdma%d %p\n", ep->ep.name,
824 			active ? "active" : "idle",
825 			(ep->bEndpointAddress & USB_DIR_IN) ? 't' : 'r',
826 			ep->dma_channel - 1, req);
827 
828 	/* NOTE: re-setting RX_REQ/TX_REQ because of a chip bug (before
829 	 * OMAP 1710 ES2.0) where reading the DMA_CFG can clear them.
830 	 */
831 
832 	/* wait till current packet DMA finishes, and fifo empties */
833 	if (ep->bEndpointAddress & USB_DIR_IN) {
834 		omap_writew((omap_readw(UDC_TXDMA_CFG) & ~mask) | UDC_DMA_REQ,
835 					UDC_TXDMA_CFG);
836 
837 		if (req) {
838 			finish_in_dma(ep, req, -ECONNRESET);
839 
840 			/* clear FIFO; hosts probably won't empty it */
841 			use_ep(ep, UDC_EP_SEL);
842 			omap_writew(UDC_CLR_EP, UDC_CTRL);
843 			deselect_ep();
844 		}
845 		while (omap_readw(UDC_TXDMA_CFG) & mask)
846 			udelay(10);
847 	} else {
848 		omap_writew((omap_readw(UDC_RXDMA_CFG) & ~mask) | UDC_DMA_REQ,
849 					UDC_RXDMA_CFG);
850 
851 		/* dma empties the fifo */
852 		while (omap_readw(UDC_RXDMA_CFG) & mask)
853 			udelay(10);
854 		if (req)
855 			finish_out_dma(ep, req, -ECONNRESET, 0);
856 	}
857 	omap_free_dma(ep->lch);
858 	ep->dma_channel = 0;
859 	ep->lch = -1;
860 	/* has_dma still set, till endpoint is fully quiesced */
861 }
862 
863 
864 /*-------------------------------------------------------------------------*/
865 
866 static int
867 omap_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
868 {
869 	struct omap_ep	*ep = container_of(_ep, struct omap_ep, ep);
870 	struct omap_req	*req = container_of(_req, struct omap_req, req);
871 	struct omap_udc	*udc;
872 	unsigned long	flags;
873 	int		is_iso = 0;
874 
875 	/* catch various bogus parameters */
876 	if (!_req || !req->req.complete || !req->req.buf
877 			|| !list_empty(&req->queue)) {
878 		DBG("%s, bad params\n", __func__);
879 		return -EINVAL;
880 	}
881 	if (!_ep || (!ep->ep.desc && ep->bEndpointAddress)) {
882 		DBG("%s, bad ep\n", __func__);
883 		return -EINVAL;
884 	}
885 	if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
886 		if (req->req.length > ep->ep.maxpacket)
887 			return -EMSGSIZE;
888 		is_iso = 1;
889 	}
890 
891 	/* this isn't bogus, but OMAP DMA isn't the only hardware to
892 	 * have a hard time with partial packet reads...  reject it.
893 	 */
894 	if (use_dma
895 			&& ep->has_dma
896 			&& ep->bEndpointAddress != 0
897 			&& (ep->bEndpointAddress & USB_DIR_IN) == 0
898 			&& (req->req.length % ep->ep.maxpacket) != 0) {
899 		DBG("%s, no partial packet OUT reads\n", __func__);
900 		return -EMSGSIZE;
901 	}
902 
903 	udc = ep->udc;
904 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
905 		return -ESHUTDOWN;
906 
907 	if (use_dma && ep->has_dma)
908 		usb_gadget_map_request(&udc->gadget, &req->req,
909 				(ep->bEndpointAddress & USB_DIR_IN));
910 
911 	VDBG("%s queue req %p, len %d buf %p\n",
912 		ep->ep.name, _req, _req->length, _req->buf);
913 
914 	spin_lock_irqsave(&udc->lock, flags);
915 
916 	req->req.status = -EINPROGRESS;
917 	req->req.actual = 0;
918 
919 	/* maybe kickstart non-iso i/o queues */
920 	if (is_iso) {
921 		u16 w;
922 
923 		w = omap_readw(UDC_IRQ_EN);
924 		w |= UDC_SOF_IE;
925 		omap_writew(w, UDC_IRQ_EN);
926 	} else if (list_empty(&ep->queue) && !ep->stopped && !ep->ackwait) {
927 		int	is_in;
928 
929 		if (ep->bEndpointAddress == 0) {
930 			if (!udc->ep0_pending || !list_empty(&ep->queue)) {
931 				spin_unlock_irqrestore(&udc->lock, flags);
932 				return -EL2HLT;
933 			}
934 
935 			/* empty DATA stage? */
936 			is_in = udc->ep0_in;
937 			if (!req->req.length) {
938 
939 				/* chip became CONFIGURED or ADDRESSED
940 				 * earlier; drivers may already have queued
941 				 * requests to non-control endpoints
942 				 */
943 				if (udc->ep0_set_config) {
944 					u16	irq_en = omap_readw(UDC_IRQ_EN);
945 
946 					irq_en |= UDC_DS_CHG_IE | UDC_EP0_IE;
947 					if (!udc->ep0_reset_config)
948 						irq_en |= UDC_EPN_RX_IE
949 							| UDC_EPN_TX_IE;
950 					omap_writew(irq_en, UDC_IRQ_EN);
951 				}
952 
953 				/* STATUS for zero length DATA stages is
954 				 * always an IN ... even for IN transfers,
955 				 * a weird case which seem to stall OMAP.
956 				 */
957 				omap_writew(UDC_EP_SEL | UDC_EP_DIR,
958 						UDC_EP_NUM);
959 				omap_writew(UDC_CLR_EP, UDC_CTRL);
960 				omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
961 				omap_writew(UDC_EP_DIR, UDC_EP_NUM);
962 
963 				/* cleanup */
964 				udc->ep0_pending = 0;
965 				done(ep, req, 0);
966 				req = NULL;
967 
968 			/* non-empty DATA stage */
969 			} else if (is_in) {
970 				omap_writew(UDC_EP_SEL | UDC_EP_DIR,
971 						UDC_EP_NUM);
972 			} else {
973 				if (udc->ep0_setup)
974 					goto irq_wait;
975 				omap_writew(UDC_EP_SEL, UDC_EP_NUM);
976 			}
977 		} else {
978 			is_in = ep->bEndpointAddress & USB_DIR_IN;
979 			if (!ep->has_dma)
980 				use_ep(ep, UDC_EP_SEL);
981 			/* if ISO: SOF IRQs must be enabled/disabled! */
982 		}
983 
984 		if (ep->has_dma)
985 			(is_in ? next_in_dma : next_out_dma)(ep, req);
986 		else if (req) {
987 			if ((is_in ? write_fifo : read_fifo)(ep, req) == 1)
988 				req = NULL;
989 			deselect_ep();
990 			if (!is_in) {
991 				omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
992 				ep->ackwait = 1 + ep->double_buf;
993 			}
994 			/* IN: 6 wait states before it'll tx */
995 		}
996 	}
997 
998 irq_wait:
999 	/* irq handler advances the queue */
1000 	if (req != NULL)
1001 		list_add_tail(&req->queue, &ep->queue);
1002 	spin_unlock_irqrestore(&udc->lock, flags);
1003 
1004 	return 0;
1005 }
1006 
1007 static int omap_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1008 {
1009 	struct omap_ep	*ep = container_of(_ep, struct omap_ep, ep);
1010 	struct omap_req	*req;
1011 	unsigned long	flags;
1012 
1013 	if (!_ep || !_req)
1014 		return -EINVAL;
1015 
1016 	spin_lock_irqsave(&ep->udc->lock, flags);
1017 
1018 	/* make sure it's actually queued on this endpoint */
1019 	list_for_each_entry(req, &ep->queue, queue) {
1020 		if (&req->req == _req)
1021 			break;
1022 	}
1023 	if (&req->req != _req) {
1024 		spin_unlock_irqrestore(&ep->udc->lock, flags);
1025 		return -EINVAL;
1026 	}
1027 
1028 	if (use_dma && ep->dma_channel && ep->queue.next == &req->queue) {
1029 		int channel = ep->dma_channel;
1030 
1031 		/* releasing the channel cancels the request,
1032 		 * reclaiming the channel restarts the queue
1033 		 */
1034 		dma_channel_release(ep);
1035 		dma_channel_claim(ep, channel);
1036 	} else
1037 		done(ep, req, -ECONNRESET);
1038 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1039 	return 0;
1040 }
1041 
1042 /*-------------------------------------------------------------------------*/
1043 
1044 static int omap_ep_set_halt(struct usb_ep *_ep, int value)
1045 {
1046 	struct omap_ep	*ep = container_of(_ep, struct omap_ep, ep);
1047 	unsigned long	flags;
1048 	int		status = -EOPNOTSUPP;
1049 
1050 	spin_lock_irqsave(&ep->udc->lock, flags);
1051 
1052 	/* just use protocol stalls for ep0; real halts are annoying */
1053 	if (ep->bEndpointAddress == 0) {
1054 		if (!ep->udc->ep0_pending)
1055 			status = -EINVAL;
1056 		else if (value) {
1057 			if (ep->udc->ep0_set_config) {
1058 				WARNING("error changing config?\n");
1059 				omap_writew(UDC_CLR_CFG, UDC_SYSCON2);
1060 			}
1061 			omap_writew(UDC_STALL_CMD, UDC_SYSCON2);
1062 			ep->udc->ep0_pending = 0;
1063 			status = 0;
1064 		} else /* NOP */
1065 			status = 0;
1066 
1067 	/* otherwise, all active non-ISO endpoints can halt */
1068 	} else if (ep->bmAttributes != USB_ENDPOINT_XFER_ISOC && ep->ep.desc) {
1069 
1070 		/* IN endpoints must already be idle */
1071 		if ((ep->bEndpointAddress & USB_DIR_IN)
1072 				&& !list_empty(&ep->queue)) {
1073 			status = -EAGAIN;
1074 			goto done;
1075 		}
1076 
1077 		if (value) {
1078 			int	channel;
1079 
1080 			if (use_dma && ep->dma_channel
1081 					&& !list_empty(&ep->queue)) {
1082 				channel = ep->dma_channel;
1083 				dma_channel_release(ep);
1084 			} else
1085 				channel = 0;
1086 
1087 			use_ep(ep, UDC_EP_SEL);
1088 			if (omap_readw(UDC_STAT_FLG) & UDC_NON_ISO_FIFO_EMPTY) {
1089 				omap_writew(UDC_SET_HALT, UDC_CTRL);
1090 				status = 0;
1091 			} else
1092 				status = -EAGAIN;
1093 			deselect_ep();
1094 
1095 			if (channel)
1096 				dma_channel_claim(ep, channel);
1097 		} else {
1098 			use_ep(ep, 0);
1099 			omap_writew(ep->udc->clr_halt, UDC_CTRL);
1100 			ep->ackwait = 0;
1101 			if (!(ep->bEndpointAddress & USB_DIR_IN)) {
1102 				omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1103 				ep->ackwait = 1 + ep->double_buf;
1104 			}
1105 		}
1106 	}
1107 done:
1108 	VDBG("%s %s halt stat %d\n", ep->ep.name,
1109 		value ? "set" : "clear", status);
1110 
1111 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1112 	return status;
1113 }
1114 
1115 static struct usb_ep_ops omap_ep_ops = {
1116 	.enable		= omap_ep_enable,
1117 	.disable	= omap_ep_disable,
1118 
1119 	.alloc_request	= omap_alloc_request,
1120 	.free_request	= omap_free_request,
1121 
1122 	.queue		= omap_ep_queue,
1123 	.dequeue	= omap_ep_dequeue,
1124 
1125 	.set_halt	= omap_ep_set_halt,
1126 	/* fifo_status ... report bytes in fifo */
1127 	/* fifo_flush ... flush fifo */
1128 };
1129 
1130 /*-------------------------------------------------------------------------*/
1131 
1132 static int omap_get_frame(struct usb_gadget *gadget)
1133 {
1134 	u16	sof = omap_readw(UDC_SOF);
1135 	return (sof & UDC_TS_OK) ? (sof & UDC_TS) : -EL2NSYNC;
1136 }
1137 
1138 static int omap_wakeup(struct usb_gadget *gadget)
1139 {
1140 	struct omap_udc	*udc;
1141 	unsigned long	flags;
1142 	int		retval = -EHOSTUNREACH;
1143 
1144 	udc = container_of(gadget, struct omap_udc, gadget);
1145 
1146 	spin_lock_irqsave(&udc->lock, flags);
1147 	if (udc->devstat & UDC_SUS) {
1148 		/* NOTE:  OTG spec erratum says that OTG devices may
1149 		 * issue wakeups without host enable.
1150 		 */
1151 		if (udc->devstat & (UDC_B_HNP_ENABLE|UDC_R_WK_OK)) {
1152 			DBG("remote wakeup...\n");
1153 			omap_writew(UDC_RMT_WKP, UDC_SYSCON2);
1154 			retval = 0;
1155 		}
1156 
1157 	/* NOTE:  non-OTG systems may use SRP TOO... */
1158 	} else if (!(udc->devstat & UDC_ATT)) {
1159 		if (!IS_ERR_OR_NULL(udc->transceiver))
1160 			retval = otg_start_srp(udc->transceiver->otg);
1161 	}
1162 	spin_unlock_irqrestore(&udc->lock, flags);
1163 
1164 	return retval;
1165 }
1166 
1167 static int
1168 omap_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered)
1169 {
1170 	struct omap_udc	*udc;
1171 	unsigned long	flags;
1172 	u16		syscon1;
1173 
1174 	udc = container_of(gadget, struct omap_udc, gadget);
1175 	spin_lock_irqsave(&udc->lock, flags);
1176 	syscon1 = omap_readw(UDC_SYSCON1);
1177 	if (is_selfpowered)
1178 		syscon1 |= UDC_SELF_PWR;
1179 	else
1180 		syscon1 &= ~UDC_SELF_PWR;
1181 	omap_writew(syscon1, UDC_SYSCON1);
1182 	spin_unlock_irqrestore(&udc->lock, flags);
1183 
1184 	return 0;
1185 }
1186 
1187 static int can_pullup(struct omap_udc *udc)
1188 {
1189 	return udc->driver && udc->softconnect && udc->vbus_active;
1190 }
1191 
1192 static void pullup_enable(struct omap_udc *udc)
1193 {
1194 	u16 w;
1195 
1196 	w = omap_readw(UDC_SYSCON1);
1197 	w |= UDC_PULLUP_EN;
1198 	omap_writew(w, UDC_SYSCON1);
1199 	if (!gadget_is_otg(&udc->gadget) && !cpu_is_omap15xx()) {
1200 		u32 l;
1201 
1202 		l = omap_readl(OTG_CTRL);
1203 		l |= OTG_BSESSVLD;
1204 		omap_writel(l, OTG_CTRL);
1205 	}
1206 	omap_writew(UDC_DS_CHG_IE, UDC_IRQ_EN);
1207 }
1208 
1209 static void pullup_disable(struct omap_udc *udc)
1210 {
1211 	u16 w;
1212 
1213 	if (!gadget_is_otg(&udc->gadget) && !cpu_is_omap15xx()) {
1214 		u32 l;
1215 
1216 		l = omap_readl(OTG_CTRL);
1217 		l &= ~OTG_BSESSVLD;
1218 		omap_writel(l, OTG_CTRL);
1219 	}
1220 	omap_writew(UDC_DS_CHG_IE, UDC_IRQ_EN);
1221 	w = omap_readw(UDC_SYSCON1);
1222 	w &= ~UDC_PULLUP_EN;
1223 	omap_writew(w, UDC_SYSCON1);
1224 }
1225 
1226 static struct omap_udc *udc;
1227 
1228 static void omap_udc_enable_clock(int enable)
1229 {
1230 	if (udc == NULL || udc->dc_clk == NULL || udc->hhc_clk == NULL)
1231 		return;
1232 
1233 	if (enable) {
1234 		clk_enable(udc->dc_clk);
1235 		clk_enable(udc->hhc_clk);
1236 		udelay(100);
1237 	} else {
1238 		clk_disable(udc->hhc_clk);
1239 		clk_disable(udc->dc_clk);
1240 	}
1241 }
1242 
1243 /*
1244  * Called by whatever detects VBUS sessions:  external transceiver
1245  * driver, or maybe GPIO0 VBUS IRQ.  May request 48 MHz clock.
1246  */
1247 static int omap_vbus_session(struct usb_gadget *gadget, int is_active)
1248 {
1249 	struct omap_udc	*udc;
1250 	unsigned long	flags;
1251 	u32 l;
1252 
1253 	udc = container_of(gadget, struct omap_udc, gadget);
1254 	spin_lock_irqsave(&udc->lock, flags);
1255 	VDBG("VBUS %s\n", is_active ? "on" : "off");
1256 	udc->vbus_active = (is_active != 0);
1257 	if (cpu_is_omap15xx()) {
1258 		/* "software" detect, ignored if !VBUS_MODE_1510 */
1259 		l = omap_readl(FUNC_MUX_CTRL_0);
1260 		if (is_active)
1261 			l |= VBUS_CTRL_1510;
1262 		else
1263 			l &= ~VBUS_CTRL_1510;
1264 		omap_writel(l, FUNC_MUX_CTRL_0);
1265 	}
1266 	if (udc->dc_clk != NULL && is_active) {
1267 		if (!udc->clk_requested) {
1268 			omap_udc_enable_clock(1);
1269 			udc->clk_requested = 1;
1270 		}
1271 	}
1272 	if (can_pullup(udc))
1273 		pullup_enable(udc);
1274 	else
1275 		pullup_disable(udc);
1276 	if (udc->dc_clk != NULL && !is_active) {
1277 		if (udc->clk_requested) {
1278 			omap_udc_enable_clock(0);
1279 			udc->clk_requested = 0;
1280 		}
1281 	}
1282 	spin_unlock_irqrestore(&udc->lock, flags);
1283 	return 0;
1284 }
1285 
1286 static int omap_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1287 {
1288 	struct omap_udc	*udc;
1289 
1290 	udc = container_of(gadget, struct omap_udc, gadget);
1291 	if (!IS_ERR_OR_NULL(udc->transceiver))
1292 		return usb_phy_set_power(udc->transceiver, mA);
1293 	return -EOPNOTSUPP;
1294 }
1295 
1296 static int omap_pullup(struct usb_gadget *gadget, int is_on)
1297 {
1298 	struct omap_udc	*udc;
1299 	unsigned long	flags;
1300 
1301 	udc = container_of(gadget, struct omap_udc, gadget);
1302 	spin_lock_irqsave(&udc->lock, flags);
1303 	udc->softconnect = (is_on != 0);
1304 	if (can_pullup(udc))
1305 		pullup_enable(udc);
1306 	else
1307 		pullup_disable(udc);
1308 	spin_unlock_irqrestore(&udc->lock, flags);
1309 	return 0;
1310 }
1311 
1312 static int omap_udc_start(struct usb_gadget *g,
1313 		struct usb_gadget_driver *driver);
1314 static int omap_udc_stop(struct usb_gadget *g,
1315 		struct usb_gadget_driver *driver);
1316 
1317 static const struct usb_gadget_ops omap_gadget_ops = {
1318 	.get_frame		= omap_get_frame,
1319 	.wakeup			= omap_wakeup,
1320 	.set_selfpowered	= omap_set_selfpowered,
1321 	.vbus_session		= omap_vbus_session,
1322 	.vbus_draw		= omap_vbus_draw,
1323 	.pullup			= omap_pullup,
1324 	.udc_start		= omap_udc_start,
1325 	.udc_stop		= omap_udc_stop,
1326 };
1327 
1328 /*-------------------------------------------------------------------------*/
1329 
1330 /* dequeue ALL requests; caller holds udc->lock */
1331 static void nuke(struct omap_ep *ep, int status)
1332 {
1333 	struct omap_req	*req;
1334 
1335 	ep->stopped = 1;
1336 
1337 	if (use_dma && ep->dma_channel)
1338 		dma_channel_release(ep);
1339 
1340 	use_ep(ep, 0);
1341 	omap_writew(UDC_CLR_EP, UDC_CTRL);
1342 	if (ep->bEndpointAddress && ep->bmAttributes != USB_ENDPOINT_XFER_ISOC)
1343 		omap_writew(UDC_SET_HALT, UDC_CTRL);
1344 
1345 	while (!list_empty(&ep->queue)) {
1346 		req = list_entry(ep->queue.next, struct omap_req, queue);
1347 		done(ep, req, status);
1348 	}
1349 }
1350 
1351 /* caller holds udc->lock */
1352 static void udc_quiesce(struct omap_udc *udc)
1353 {
1354 	struct omap_ep	*ep;
1355 
1356 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1357 	nuke(&udc->ep[0], -ESHUTDOWN);
1358 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
1359 		nuke(ep, -ESHUTDOWN);
1360 }
1361 
1362 /*-------------------------------------------------------------------------*/
1363 
1364 static void update_otg(struct omap_udc *udc)
1365 {
1366 	u16	devstat;
1367 
1368 	if (!gadget_is_otg(&udc->gadget))
1369 		return;
1370 
1371 	if (omap_readl(OTG_CTRL) & OTG_ID)
1372 		devstat = omap_readw(UDC_DEVSTAT);
1373 	else
1374 		devstat = 0;
1375 
1376 	udc->gadget.b_hnp_enable = !!(devstat & UDC_B_HNP_ENABLE);
1377 	udc->gadget.a_hnp_support = !!(devstat & UDC_A_HNP_SUPPORT);
1378 	udc->gadget.a_alt_hnp_support = !!(devstat & UDC_A_ALT_HNP_SUPPORT);
1379 
1380 	/* Enable HNP early, avoiding races on suspend irq path.
1381 	 * ASSUMES OTG state machine B_BUS_REQ input is true.
1382 	 */
1383 	if (udc->gadget.b_hnp_enable) {
1384 		u32 l;
1385 
1386 		l = omap_readl(OTG_CTRL);
1387 		l |= OTG_B_HNPEN | OTG_B_BUSREQ;
1388 		l &= ~OTG_PULLUP;
1389 		omap_writel(l, OTG_CTRL);
1390 	}
1391 }
1392 
1393 static void ep0_irq(struct omap_udc *udc, u16 irq_src)
1394 {
1395 	struct omap_ep	*ep0 = &udc->ep[0];
1396 	struct omap_req	*req = NULL;
1397 
1398 	ep0->irqs++;
1399 
1400 	/* Clear any pending requests and then scrub any rx/tx state
1401 	 * before starting to handle the SETUP request.
1402 	 */
1403 	if (irq_src & UDC_SETUP) {
1404 		u16	ack = irq_src & (UDC_EP0_TX|UDC_EP0_RX);
1405 
1406 		nuke(ep0, 0);
1407 		if (ack) {
1408 			omap_writew(ack, UDC_IRQ_SRC);
1409 			irq_src = UDC_SETUP;
1410 		}
1411 	}
1412 
1413 	/* IN/OUT packets mean we're in the DATA or STATUS stage.
1414 	 * This driver uses only uses protocol stalls (ep0 never halts),
1415 	 * and if we got this far the gadget driver already had a
1416 	 * chance to stall.  Tries to be forgiving of host oddities.
1417 	 *
1418 	 * NOTE:  the last chance gadget drivers have to stall control
1419 	 * requests is during their request completion callback.
1420 	 */
1421 	if (!list_empty(&ep0->queue))
1422 		req = container_of(ep0->queue.next, struct omap_req, queue);
1423 
1424 	/* IN == TX to host */
1425 	if (irq_src & UDC_EP0_TX) {
1426 		int	stat;
1427 
1428 		omap_writew(UDC_EP0_TX, UDC_IRQ_SRC);
1429 		omap_writew(UDC_EP_SEL|UDC_EP_DIR, UDC_EP_NUM);
1430 		stat = omap_readw(UDC_STAT_FLG);
1431 		if (stat & UDC_ACK) {
1432 			if (udc->ep0_in) {
1433 				/* write next IN packet from response,
1434 				 * or set up the status stage.
1435 				 */
1436 				if (req)
1437 					stat = write_fifo(ep0, req);
1438 				omap_writew(UDC_EP_DIR, UDC_EP_NUM);
1439 				if (!req && udc->ep0_pending) {
1440 					omap_writew(UDC_EP_SEL, UDC_EP_NUM);
1441 					omap_writew(UDC_CLR_EP, UDC_CTRL);
1442 					omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1443 					omap_writew(0, UDC_EP_NUM);
1444 					udc->ep0_pending = 0;
1445 				} /* else:  6 wait states before it'll tx */
1446 			} else {
1447 				/* ack status stage of OUT transfer */
1448 				omap_writew(UDC_EP_DIR, UDC_EP_NUM);
1449 				if (req)
1450 					done(ep0, req, 0);
1451 			}
1452 			req = NULL;
1453 		} else if (stat & UDC_STALL) {
1454 			omap_writew(UDC_CLR_HALT, UDC_CTRL);
1455 			omap_writew(UDC_EP_DIR, UDC_EP_NUM);
1456 		} else {
1457 			omap_writew(UDC_EP_DIR, UDC_EP_NUM);
1458 		}
1459 	}
1460 
1461 	/* OUT == RX from host */
1462 	if (irq_src & UDC_EP0_RX) {
1463 		int	stat;
1464 
1465 		omap_writew(UDC_EP0_RX, UDC_IRQ_SRC);
1466 		omap_writew(UDC_EP_SEL, UDC_EP_NUM);
1467 		stat = omap_readw(UDC_STAT_FLG);
1468 		if (stat & UDC_ACK) {
1469 			if (!udc->ep0_in) {
1470 				stat = 0;
1471 				/* read next OUT packet of request, maybe
1472 				 * reactiviting the fifo; stall on errors.
1473 				 */
1474 				stat = read_fifo(ep0, req);
1475 				if (!req || stat < 0) {
1476 					omap_writew(UDC_STALL_CMD, UDC_SYSCON2);
1477 					udc->ep0_pending = 0;
1478 					stat = 0;
1479 				} else if (stat == 0)
1480 					omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1481 				omap_writew(0, UDC_EP_NUM);
1482 
1483 				/* activate status stage */
1484 				if (stat == 1) {
1485 					done(ep0, req, 0);
1486 					/* that may have STALLed ep0... */
1487 					omap_writew(UDC_EP_SEL | UDC_EP_DIR,
1488 							UDC_EP_NUM);
1489 					omap_writew(UDC_CLR_EP, UDC_CTRL);
1490 					omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1491 					omap_writew(UDC_EP_DIR, UDC_EP_NUM);
1492 					udc->ep0_pending = 0;
1493 				}
1494 			} else {
1495 				/* ack status stage of IN transfer */
1496 				omap_writew(0, UDC_EP_NUM);
1497 				if (req)
1498 					done(ep0, req, 0);
1499 			}
1500 		} else if (stat & UDC_STALL) {
1501 			omap_writew(UDC_CLR_HALT, UDC_CTRL);
1502 			omap_writew(0, UDC_EP_NUM);
1503 		} else {
1504 			omap_writew(0, UDC_EP_NUM);
1505 		}
1506 	}
1507 
1508 	/* SETUP starts all control transfers */
1509 	if (irq_src & UDC_SETUP) {
1510 		union u {
1511 			u16			word[4];
1512 			struct usb_ctrlrequest	r;
1513 		} u;
1514 		int			status = -EINVAL;
1515 		struct omap_ep		*ep;
1516 
1517 		/* read the (latest) SETUP message */
1518 		do {
1519 			omap_writew(UDC_SETUP_SEL, UDC_EP_NUM);
1520 			/* two bytes at a time */
1521 			u.word[0] = omap_readw(UDC_DATA);
1522 			u.word[1] = omap_readw(UDC_DATA);
1523 			u.word[2] = omap_readw(UDC_DATA);
1524 			u.word[3] = omap_readw(UDC_DATA);
1525 			omap_writew(0, UDC_EP_NUM);
1526 		} while (omap_readw(UDC_IRQ_SRC) & UDC_SETUP);
1527 
1528 #define	w_value		le16_to_cpu(u.r.wValue)
1529 #define	w_index		le16_to_cpu(u.r.wIndex)
1530 #define	w_length	le16_to_cpu(u.r.wLength)
1531 
1532 		/* Delegate almost all control requests to the gadget driver,
1533 		 * except for a handful of ch9 status/feature requests that
1534 		 * hardware doesn't autodecode _and_ the gadget API hides.
1535 		 */
1536 		udc->ep0_in = (u.r.bRequestType & USB_DIR_IN) != 0;
1537 		udc->ep0_set_config = 0;
1538 		udc->ep0_pending = 1;
1539 		ep0->stopped = 0;
1540 		ep0->ackwait = 0;
1541 		switch (u.r.bRequest) {
1542 		case USB_REQ_SET_CONFIGURATION:
1543 			/* udc needs to know when ep != 0 is valid */
1544 			if (u.r.bRequestType != USB_RECIP_DEVICE)
1545 				goto delegate;
1546 			if (w_length != 0)
1547 				goto do_stall;
1548 			udc->ep0_set_config = 1;
1549 			udc->ep0_reset_config = (w_value == 0);
1550 			VDBG("set config %d\n", w_value);
1551 
1552 			/* update udc NOW since gadget driver may start
1553 			 * queueing requests immediately; clear config
1554 			 * later if it fails the request.
1555 			 */
1556 			if (udc->ep0_reset_config)
1557 				omap_writew(UDC_CLR_CFG, UDC_SYSCON2);
1558 			else
1559 				omap_writew(UDC_DEV_CFG, UDC_SYSCON2);
1560 			update_otg(udc);
1561 			goto delegate;
1562 		case USB_REQ_CLEAR_FEATURE:
1563 			/* clear endpoint halt */
1564 			if (u.r.bRequestType != USB_RECIP_ENDPOINT)
1565 				goto delegate;
1566 			if (w_value != USB_ENDPOINT_HALT
1567 					|| w_length != 0)
1568 				goto do_stall;
1569 			ep = &udc->ep[w_index & 0xf];
1570 			if (ep != ep0) {
1571 				if (w_index & USB_DIR_IN)
1572 					ep += 16;
1573 				if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
1574 						|| !ep->ep.desc)
1575 					goto do_stall;
1576 				use_ep(ep, 0);
1577 				omap_writew(udc->clr_halt, UDC_CTRL);
1578 				ep->ackwait = 0;
1579 				if (!(ep->bEndpointAddress & USB_DIR_IN)) {
1580 					omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1581 					ep->ackwait = 1 + ep->double_buf;
1582 				}
1583 				/* NOTE:  assumes the host behaves sanely,
1584 				 * only clearing real halts.  Else we may
1585 				 * need to kill pending transfers and then
1586 				 * restart the queue... very messy for DMA!
1587 				 */
1588 			}
1589 			VDBG("%s halt cleared by host\n", ep->name);
1590 			goto ep0out_status_stage;
1591 		case USB_REQ_SET_FEATURE:
1592 			/* set endpoint halt */
1593 			if (u.r.bRequestType != USB_RECIP_ENDPOINT)
1594 				goto delegate;
1595 			if (w_value != USB_ENDPOINT_HALT
1596 					|| w_length != 0)
1597 				goto do_stall;
1598 			ep = &udc->ep[w_index & 0xf];
1599 			if (w_index & USB_DIR_IN)
1600 				ep += 16;
1601 			if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
1602 					|| ep == ep0 || !ep->ep.desc)
1603 				goto do_stall;
1604 			if (use_dma && ep->has_dma) {
1605 				/* this has rude side-effects (aborts) and
1606 				 * can't really work if DMA-IN is active
1607 				 */
1608 				DBG("%s host set_halt, NYET\n", ep->name);
1609 				goto do_stall;
1610 			}
1611 			use_ep(ep, 0);
1612 			/* can't halt if fifo isn't empty... */
1613 			omap_writew(UDC_CLR_EP, UDC_CTRL);
1614 			omap_writew(UDC_SET_HALT, UDC_CTRL);
1615 			VDBG("%s halted by host\n", ep->name);
1616 ep0out_status_stage:
1617 			status = 0;
1618 			omap_writew(UDC_EP_SEL|UDC_EP_DIR, UDC_EP_NUM);
1619 			omap_writew(UDC_CLR_EP, UDC_CTRL);
1620 			omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1621 			omap_writew(UDC_EP_DIR, UDC_EP_NUM);
1622 			udc->ep0_pending = 0;
1623 			break;
1624 		case USB_REQ_GET_STATUS:
1625 			/* USB_ENDPOINT_HALT status? */
1626 			if (u.r.bRequestType != (USB_DIR_IN|USB_RECIP_ENDPOINT))
1627 				goto intf_status;
1628 
1629 			/* ep0 never stalls */
1630 			if (!(w_index & 0xf))
1631 				goto zero_status;
1632 
1633 			/* only active endpoints count */
1634 			ep = &udc->ep[w_index & 0xf];
1635 			if (w_index & USB_DIR_IN)
1636 				ep += 16;
1637 			if (!ep->ep.desc)
1638 				goto do_stall;
1639 
1640 			/* iso never stalls */
1641 			if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC)
1642 				goto zero_status;
1643 
1644 			/* FIXME don't assume non-halted endpoints!! */
1645 			ERR("%s status, can't report\n", ep->ep.name);
1646 			goto do_stall;
1647 
1648 intf_status:
1649 			/* return interface status.  if we were pedantic,
1650 			 * we'd detect non-existent interfaces, and stall.
1651 			 */
1652 			if (u.r.bRequestType
1653 					!= (USB_DIR_IN|USB_RECIP_INTERFACE))
1654 				goto delegate;
1655 
1656 zero_status:
1657 			/* return two zero bytes */
1658 			omap_writew(UDC_EP_SEL|UDC_EP_DIR, UDC_EP_NUM);
1659 			omap_writew(0, UDC_DATA);
1660 			omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1661 			omap_writew(UDC_EP_DIR, UDC_EP_NUM);
1662 			status = 0;
1663 			VDBG("GET_STATUS, interface %d\n", w_index);
1664 			/* next, status stage */
1665 			break;
1666 		default:
1667 delegate:
1668 			/* activate the ep0out fifo right away */
1669 			if (!udc->ep0_in && w_length) {
1670 				omap_writew(0, UDC_EP_NUM);
1671 				omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1672 			}
1673 
1674 			/* gadget drivers see class/vendor specific requests,
1675 			 * {SET,GET}_{INTERFACE,DESCRIPTOR,CONFIGURATION},
1676 			 * and more
1677 			 */
1678 			VDBG("SETUP %02x.%02x v%04x i%04x l%04x\n",
1679 				u.r.bRequestType, u.r.bRequest,
1680 				w_value, w_index, w_length);
1681 
1682 #undef	w_value
1683 #undef	w_index
1684 #undef	w_length
1685 
1686 			/* The gadget driver may return an error here,
1687 			 * causing an immediate protocol stall.
1688 			 *
1689 			 * Else it must issue a response, either queueing a
1690 			 * response buffer for the DATA stage, or halting ep0
1691 			 * (causing a protocol stall, not a real halt).  A
1692 			 * zero length buffer means no DATA stage.
1693 			 *
1694 			 * It's fine to issue that response after the setup()
1695 			 * call returns, and this IRQ was handled.
1696 			 */
1697 			udc->ep0_setup = 1;
1698 			spin_unlock(&udc->lock);
1699 			status = udc->driver->setup(&udc->gadget, &u.r);
1700 			spin_lock(&udc->lock);
1701 			udc->ep0_setup = 0;
1702 		}
1703 
1704 		if (status < 0) {
1705 do_stall:
1706 			VDBG("req %02x.%02x protocol STALL; stat %d\n",
1707 					u.r.bRequestType, u.r.bRequest, status);
1708 			if (udc->ep0_set_config) {
1709 				if (udc->ep0_reset_config)
1710 					WARNING("error resetting config?\n");
1711 				else
1712 					omap_writew(UDC_CLR_CFG, UDC_SYSCON2);
1713 			}
1714 			omap_writew(UDC_STALL_CMD, UDC_SYSCON2);
1715 			udc->ep0_pending = 0;
1716 		}
1717 	}
1718 }
1719 
1720 /*-------------------------------------------------------------------------*/
1721 
1722 #define OTG_FLAGS (UDC_B_HNP_ENABLE|UDC_A_HNP_SUPPORT|UDC_A_ALT_HNP_SUPPORT)
1723 
1724 static void devstate_irq(struct omap_udc *udc, u16 irq_src)
1725 {
1726 	u16	devstat, change;
1727 
1728 	devstat = omap_readw(UDC_DEVSTAT);
1729 	change = devstat ^ udc->devstat;
1730 	udc->devstat = devstat;
1731 
1732 	if (change & (UDC_USB_RESET|UDC_ATT)) {
1733 		udc_quiesce(udc);
1734 
1735 		if (change & UDC_ATT) {
1736 			/* driver for any external transceiver will
1737 			 * have called omap_vbus_session() already
1738 			 */
1739 			if (devstat & UDC_ATT) {
1740 				udc->gadget.speed = USB_SPEED_FULL;
1741 				VDBG("connect\n");
1742 				if (IS_ERR_OR_NULL(udc->transceiver))
1743 					pullup_enable(udc);
1744 				/* if (driver->connect) call it */
1745 			} else if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
1746 				udc->gadget.speed = USB_SPEED_UNKNOWN;
1747 				if (IS_ERR_OR_NULL(udc->transceiver))
1748 					pullup_disable(udc);
1749 				DBG("disconnect, gadget %s\n",
1750 					udc->driver->driver.name);
1751 				if (udc->driver->disconnect) {
1752 					spin_unlock(&udc->lock);
1753 					udc->driver->disconnect(&udc->gadget);
1754 					spin_lock(&udc->lock);
1755 				}
1756 			}
1757 			change &= ~UDC_ATT;
1758 		}
1759 
1760 		if (change & UDC_USB_RESET) {
1761 			if (devstat & UDC_USB_RESET) {
1762 				VDBG("RESET=1\n");
1763 			} else {
1764 				udc->gadget.speed = USB_SPEED_FULL;
1765 				INFO("USB reset done, gadget %s\n",
1766 					udc->driver->driver.name);
1767 				/* ep0 traffic is legal from now on */
1768 				omap_writew(UDC_DS_CHG_IE | UDC_EP0_IE,
1769 						UDC_IRQ_EN);
1770 			}
1771 			change &= ~UDC_USB_RESET;
1772 		}
1773 	}
1774 	if (change & UDC_SUS) {
1775 		if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
1776 			/* FIXME tell isp1301 to suspend/resume (?) */
1777 			if (devstat & UDC_SUS) {
1778 				VDBG("suspend\n");
1779 				update_otg(udc);
1780 				/* HNP could be under way already */
1781 				if (udc->gadget.speed == USB_SPEED_FULL
1782 						&& udc->driver->suspend) {
1783 					spin_unlock(&udc->lock);
1784 					udc->driver->suspend(&udc->gadget);
1785 					spin_lock(&udc->lock);
1786 				}
1787 				if (!IS_ERR_OR_NULL(udc->transceiver))
1788 					usb_phy_set_suspend(
1789 							udc->transceiver, 1);
1790 			} else {
1791 				VDBG("resume\n");
1792 				if (!IS_ERR_OR_NULL(udc->transceiver))
1793 					usb_phy_set_suspend(
1794 							udc->transceiver, 0);
1795 				if (udc->gadget.speed == USB_SPEED_FULL
1796 						&& udc->driver->resume) {
1797 					spin_unlock(&udc->lock);
1798 					udc->driver->resume(&udc->gadget);
1799 					spin_lock(&udc->lock);
1800 				}
1801 			}
1802 		}
1803 		change &= ~UDC_SUS;
1804 	}
1805 	if (!cpu_is_omap15xx() && (change & OTG_FLAGS)) {
1806 		update_otg(udc);
1807 		change &= ~OTG_FLAGS;
1808 	}
1809 
1810 	change &= ~(UDC_CFG|UDC_DEF|UDC_ADD);
1811 	if (change)
1812 		VDBG("devstat %03x, ignore change %03x\n",
1813 			devstat,  change);
1814 
1815 	omap_writew(UDC_DS_CHG, UDC_IRQ_SRC);
1816 }
1817 
1818 static irqreturn_t omap_udc_irq(int irq, void *_udc)
1819 {
1820 	struct omap_udc	*udc = _udc;
1821 	u16		irq_src;
1822 	irqreturn_t	status = IRQ_NONE;
1823 	unsigned long	flags;
1824 
1825 	spin_lock_irqsave(&udc->lock, flags);
1826 	irq_src = omap_readw(UDC_IRQ_SRC);
1827 
1828 	/* Device state change (usb ch9 stuff) */
1829 	if (irq_src & UDC_DS_CHG) {
1830 		devstate_irq(_udc, irq_src);
1831 		status = IRQ_HANDLED;
1832 		irq_src &= ~UDC_DS_CHG;
1833 	}
1834 
1835 	/* EP0 control transfers */
1836 	if (irq_src & (UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX)) {
1837 		ep0_irq(_udc, irq_src);
1838 		status = IRQ_HANDLED;
1839 		irq_src &= ~(UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX);
1840 	}
1841 
1842 	/* DMA transfer completion */
1843 	if (use_dma && (irq_src & (UDC_TXN_DONE|UDC_RXN_CNT|UDC_RXN_EOT))) {
1844 		dma_irq(_udc, irq_src);
1845 		status = IRQ_HANDLED;
1846 		irq_src &= ~(UDC_TXN_DONE|UDC_RXN_CNT|UDC_RXN_EOT);
1847 	}
1848 
1849 	irq_src &= ~(UDC_IRQ_SOF | UDC_EPN_TX|UDC_EPN_RX);
1850 	if (irq_src)
1851 		DBG("udc_irq, unhandled %03x\n", irq_src);
1852 	spin_unlock_irqrestore(&udc->lock, flags);
1853 
1854 	return status;
1855 }
1856 
1857 /* workaround for seemingly-lost IRQs for RX ACKs... */
1858 #define PIO_OUT_TIMEOUT	(jiffies + HZ/3)
1859 #define HALF_FULL(f)	(!((f)&(UDC_NON_ISO_FIFO_FULL|UDC_NON_ISO_FIFO_EMPTY)))
1860 
1861 static void pio_out_timer(unsigned long _ep)
1862 {
1863 	struct omap_ep	*ep = (void *) _ep;
1864 	unsigned long	flags;
1865 	u16		stat_flg;
1866 
1867 	spin_lock_irqsave(&ep->udc->lock, flags);
1868 	if (!list_empty(&ep->queue) && ep->ackwait) {
1869 		use_ep(ep, UDC_EP_SEL);
1870 		stat_flg = omap_readw(UDC_STAT_FLG);
1871 
1872 		if ((stat_flg & UDC_ACK) && (!(stat_flg & UDC_FIFO_EN)
1873 				|| (ep->double_buf && HALF_FULL(stat_flg)))) {
1874 			struct omap_req	*req;
1875 
1876 			VDBG("%s: lose, %04x\n", ep->ep.name, stat_flg);
1877 			req = container_of(ep->queue.next,
1878 					struct omap_req, queue);
1879 			(void) read_fifo(ep, req);
1880 			omap_writew(ep->bEndpointAddress, UDC_EP_NUM);
1881 			omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1882 			ep->ackwait = 1 + ep->double_buf;
1883 		} else
1884 			deselect_ep();
1885 	}
1886 	mod_timer(&ep->timer, PIO_OUT_TIMEOUT);
1887 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1888 }
1889 
1890 static irqreturn_t omap_udc_pio_irq(int irq, void *_dev)
1891 {
1892 	u16		epn_stat, irq_src;
1893 	irqreturn_t	status = IRQ_NONE;
1894 	struct omap_ep	*ep;
1895 	int		epnum;
1896 	struct omap_udc	*udc = _dev;
1897 	struct omap_req	*req;
1898 	unsigned long	flags;
1899 
1900 	spin_lock_irqsave(&udc->lock, flags);
1901 	epn_stat = omap_readw(UDC_EPN_STAT);
1902 	irq_src = omap_readw(UDC_IRQ_SRC);
1903 
1904 	/* handle OUT first, to avoid some wasteful NAKs */
1905 	if (irq_src & UDC_EPN_RX) {
1906 		epnum = (epn_stat >> 8) & 0x0f;
1907 		omap_writew(UDC_EPN_RX, UDC_IRQ_SRC);
1908 		status = IRQ_HANDLED;
1909 		ep = &udc->ep[epnum];
1910 		ep->irqs++;
1911 
1912 		omap_writew(epnum | UDC_EP_SEL, UDC_EP_NUM);
1913 		ep->fnf = 0;
1914 		if (omap_readw(UDC_STAT_FLG) & UDC_ACK) {
1915 			ep->ackwait--;
1916 			if (!list_empty(&ep->queue)) {
1917 				int stat;
1918 				req = container_of(ep->queue.next,
1919 						struct omap_req, queue);
1920 				stat = read_fifo(ep, req);
1921 				if (!ep->double_buf)
1922 					ep->fnf = 1;
1923 			}
1924 		}
1925 		/* min 6 clock delay before clearing EP_SEL ... */
1926 		epn_stat = omap_readw(UDC_EPN_STAT);
1927 		epn_stat = omap_readw(UDC_EPN_STAT);
1928 		omap_writew(epnum, UDC_EP_NUM);
1929 
1930 		/* enabling fifo _after_ clearing ACK, contrary to docs,
1931 		 * reduces lossage; timer still needed though (sigh).
1932 		 */
1933 		if (ep->fnf) {
1934 			omap_writew(UDC_SET_FIFO_EN, UDC_CTRL);
1935 			ep->ackwait = 1 + ep->double_buf;
1936 		}
1937 		mod_timer(&ep->timer, PIO_OUT_TIMEOUT);
1938 	}
1939 
1940 	/* then IN transfers */
1941 	else if (irq_src & UDC_EPN_TX) {
1942 		epnum = epn_stat & 0x0f;
1943 		omap_writew(UDC_EPN_TX, UDC_IRQ_SRC);
1944 		status = IRQ_HANDLED;
1945 		ep = &udc->ep[16 + epnum];
1946 		ep->irqs++;
1947 
1948 		omap_writew(epnum | UDC_EP_DIR | UDC_EP_SEL, UDC_EP_NUM);
1949 		if (omap_readw(UDC_STAT_FLG) & UDC_ACK) {
1950 			ep->ackwait = 0;
1951 			if (!list_empty(&ep->queue)) {
1952 				req = container_of(ep->queue.next,
1953 						struct omap_req, queue);
1954 				(void) write_fifo(ep, req);
1955 			}
1956 		}
1957 		/* min 6 clock delay before clearing EP_SEL ... */
1958 		epn_stat = omap_readw(UDC_EPN_STAT);
1959 		epn_stat = omap_readw(UDC_EPN_STAT);
1960 		omap_writew(epnum | UDC_EP_DIR, UDC_EP_NUM);
1961 		/* then 6 clocks before it'd tx */
1962 	}
1963 
1964 	spin_unlock_irqrestore(&udc->lock, flags);
1965 	return status;
1966 }
1967 
1968 #ifdef	USE_ISO
1969 static irqreturn_t omap_udc_iso_irq(int irq, void *_dev)
1970 {
1971 	struct omap_udc	*udc = _dev;
1972 	struct omap_ep	*ep;
1973 	int		pending = 0;
1974 	unsigned long	flags;
1975 
1976 	spin_lock_irqsave(&udc->lock, flags);
1977 
1978 	/* handle all non-DMA ISO transfers */
1979 	list_for_each_entry(ep, &udc->iso, iso) {
1980 		u16		stat;
1981 		struct omap_req	*req;
1982 
1983 		if (ep->has_dma || list_empty(&ep->queue))
1984 			continue;
1985 		req = list_entry(ep->queue.next, struct omap_req, queue);
1986 
1987 		use_ep(ep, UDC_EP_SEL);
1988 		stat = omap_readw(UDC_STAT_FLG);
1989 
1990 		/* NOTE: like the other controller drivers, this isn't
1991 		 * currently reporting lost or damaged frames.
1992 		 */
1993 		if (ep->bEndpointAddress & USB_DIR_IN) {
1994 			if (stat & UDC_MISS_IN)
1995 				/* done(ep, req, -EPROTO) */;
1996 			else
1997 				write_fifo(ep, req);
1998 		} else {
1999 			int	status = 0;
2000 
2001 			if (stat & UDC_NO_RXPACKET)
2002 				status = -EREMOTEIO;
2003 			else if (stat & UDC_ISO_ERR)
2004 				status = -EILSEQ;
2005 			else if (stat & UDC_DATA_FLUSH)
2006 				status = -ENOSR;
2007 
2008 			if (status)
2009 				/* done(ep, req, status) */;
2010 			else
2011 				read_fifo(ep, req);
2012 		}
2013 		deselect_ep();
2014 		/* 6 wait states before next EP */
2015 
2016 		ep->irqs++;
2017 		if (!list_empty(&ep->queue))
2018 			pending = 1;
2019 	}
2020 	if (!pending) {
2021 		u16 w;
2022 
2023 		w = omap_readw(UDC_IRQ_EN);
2024 		w &= ~UDC_SOF_IE;
2025 		omap_writew(w, UDC_IRQ_EN);
2026 	}
2027 	omap_writew(UDC_IRQ_SOF, UDC_IRQ_SRC);
2028 
2029 	spin_unlock_irqrestore(&udc->lock, flags);
2030 	return IRQ_HANDLED;
2031 }
2032 #endif
2033 
2034 /*-------------------------------------------------------------------------*/
2035 
2036 static inline int machine_without_vbus_sense(void)
2037 {
2038 	return machine_is_omap_innovator()
2039 		|| machine_is_omap_osk()
2040 		|| machine_is_sx1()
2041 		/* No known omap7xx boards with vbus sense */
2042 		|| cpu_is_omap7xx();
2043 }
2044 
2045 static int omap_udc_start(struct usb_gadget *g,
2046 		struct usb_gadget_driver *driver)
2047 {
2048 	int		status = -ENODEV;
2049 	struct omap_ep	*ep;
2050 	unsigned long	flags;
2051 
2052 
2053 	spin_lock_irqsave(&udc->lock, flags);
2054 	/* reset state */
2055 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
2056 		ep->irqs = 0;
2057 		if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC)
2058 			continue;
2059 		use_ep(ep, 0);
2060 		omap_writew(UDC_SET_HALT, UDC_CTRL);
2061 	}
2062 	udc->ep0_pending = 0;
2063 	udc->ep[0].irqs = 0;
2064 	udc->softconnect = 1;
2065 
2066 	/* hook up the driver */
2067 	driver->driver.bus = NULL;
2068 	udc->driver = driver;
2069 	spin_unlock_irqrestore(&udc->lock, flags);
2070 
2071 	if (udc->dc_clk != NULL)
2072 		omap_udc_enable_clock(1);
2073 
2074 	omap_writew(UDC_IRQ_SRC_MASK, UDC_IRQ_SRC);
2075 
2076 	/* connect to bus through transceiver */
2077 	if (!IS_ERR_OR_NULL(udc->transceiver)) {
2078 		status = otg_set_peripheral(udc->transceiver->otg,
2079 						&udc->gadget);
2080 		if (status < 0) {
2081 			ERR("can't bind to transceiver\n");
2082 			udc->driver = NULL;
2083 			goto done;
2084 		}
2085 	} else {
2086 		if (can_pullup(udc))
2087 			pullup_enable(udc);
2088 		else
2089 			pullup_disable(udc);
2090 	}
2091 
2092 	/* boards that don't have VBUS sensing can't autogate 48MHz;
2093 	 * can't enter deep sleep while a gadget driver is active.
2094 	 */
2095 	if (machine_without_vbus_sense())
2096 		omap_vbus_session(&udc->gadget, 1);
2097 
2098 done:
2099 	if (udc->dc_clk != NULL)
2100 		omap_udc_enable_clock(0);
2101 
2102 	return status;
2103 }
2104 
2105 static int omap_udc_stop(struct usb_gadget *g,
2106 		struct usb_gadget_driver *driver)
2107 {
2108 	unsigned long	flags;
2109 	int		status = -ENODEV;
2110 
2111 	if (udc->dc_clk != NULL)
2112 		omap_udc_enable_clock(1);
2113 
2114 	if (machine_without_vbus_sense())
2115 		omap_vbus_session(&udc->gadget, 0);
2116 
2117 	if (!IS_ERR_OR_NULL(udc->transceiver))
2118 		(void) otg_set_peripheral(udc->transceiver->otg, NULL);
2119 	else
2120 		pullup_disable(udc);
2121 
2122 	spin_lock_irqsave(&udc->lock, flags);
2123 	udc_quiesce(udc);
2124 	spin_unlock_irqrestore(&udc->lock, flags);
2125 
2126 	udc->driver = NULL;
2127 
2128 	if (udc->dc_clk != NULL)
2129 		omap_udc_enable_clock(0);
2130 
2131 	return status;
2132 }
2133 
2134 /*-------------------------------------------------------------------------*/
2135 
2136 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2137 
2138 #include <linux/seq_file.h>
2139 
2140 static const char proc_filename[] = "driver/udc";
2141 
2142 #define FOURBITS "%s%s%s%s"
2143 #define EIGHTBITS "%s%s%s%s%s%s%s%s"
2144 
2145 static void proc_ep_show(struct seq_file *s, struct omap_ep *ep)
2146 {
2147 	u16		stat_flg;
2148 	struct omap_req	*req;
2149 	char		buf[20];
2150 
2151 	use_ep(ep, 0);
2152 
2153 	if (use_dma && ep->has_dma)
2154 		snprintf(buf, sizeof buf, "(%cxdma%d lch%d) ",
2155 			(ep->bEndpointAddress & USB_DIR_IN) ? 't' : 'r',
2156 			ep->dma_channel - 1, ep->lch);
2157 	else
2158 		buf[0] = 0;
2159 
2160 	stat_flg = omap_readw(UDC_STAT_FLG);
2161 	seq_printf(s,
2162 		"\n%s %s%s%sirqs %ld stat %04x " EIGHTBITS FOURBITS "%s\n",
2163 		ep->name, buf,
2164 		ep->double_buf ? "dbuf " : "",
2165 		({ char *s;
2166 		switch (ep->ackwait) {
2167 		case 0:
2168 			s = "";
2169 			break;
2170 		case 1:
2171 			s = "(ackw) ";
2172 			break;
2173 		case 2:
2174 			s = "(ackw2) ";
2175 			break;
2176 		default:
2177 			s = "(?) ";
2178 			break;
2179 		} s; }),
2180 		ep->irqs, stat_flg,
2181 		(stat_flg & UDC_NO_RXPACKET) ? "no_rxpacket " : "",
2182 		(stat_flg & UDC_MISS_IN) ? "miss_in " : "",
2183 		(stat_flg & UDC_DATA_FLUSH) ? "data_flush " : "",
2184 		(stat_flg & UDC_ISO_ERR) ? "iso_err " : "",
2185 		(stat_flg & UDC_ISO_FIFO_EMPTY) ? "iso_fifo_empty " : "",
2186 		(stat_flg & UDC_ISO_FIFO_FULL) ? "iso_fifo_full " : "",
2187 		(stat_flg & UDC_EP_HALTED) ? "HALT " : "",
2188 		(stat_flg & UDC_STALL) ? "STALL " : "",
2189 		(stat_flg & UDC_NAK) ? "NAK " : "",
2190 		(stat_flg & UDC_ACK) ? "ACK " : "",
2191 		(stat_flg & UDC_FIFO_EN) ? "fifo_en " : "",
2192 		(stat_flg & UDC_NON_ISO_FIFO_EMPTY) ? "fifo_empty " : "",
2193 		(stat_flg & UDC_NON_ISO_FIFO_FULL) ? "fifo_full " : "");
2194 
2195 	if (list_empty(&ep->queue))
2196 		seq_printf(s, "\t(queue empty)\n");
2197 	else
2198 		list_for_each_entry(req, &ep->queue, queue) {
2199 			unsigned	length = req->req.actual;
2200 
2201 			if (use_dma && buf[0]) {
2202 				length += ((ep->bEndpointAddress & USB_DIR_IN)
2203 						? dma_src_len : dma_dest_len)
2204 					(ep, req->req.dma + length);
2205 				buf[0] = 0;
2206 			}
2207 			seq_printf(s, "\treq %p len %d/%d buf %p\n",
2208 					&req->req, length,
2209 					req->req.length, req->req.buf);
2210 		}
2211 }
2212 
2213 static char *trx_mode(unsigned m, int enabled)
2214 {
2215 	switch (m) {
2216 	case 0:
2217 		return enabled ? "*6wire" : "unused";
2218 	case 1:
2219 		return "4wire";
2220 	case 2:
2221 		return "3wire";
2222 	case 3:
2223 		return "6wire";
2224 	default:
2225 		return "unknown";
2226 	}
2227 }
2228 
2229 static int proc_otg_show(struct seq_file *s)
2230 {
2231 	u32		tmp;
2232 	u32		trans = 0;
2233 	char		*ctrl_name = "(UNKNOWN)";
2234 
2235 	tmp = omap_readl(OTG_REV);
2236 	ctrl_name = "tranceiver_ctrl";
2237 	trans = omap_readw(USB_TRANSCEIVER_CTRL);
2238 	seq_printf(s, "\nOTG rev %d.%d, %s %05x\n",
2239 		tmp >> 4, tmp & 0xf, ctrl_name, trans);
2240 	tmp = omap_readw(OTG_SYSCON_1);
2241 	seq_printf(s, "otg_syscon1 %08x usb2 %s, usb1 %s, usb0 %s,"
2242 			FOURBITS "\n", tmp,
2243 		trx_mode(USB2_TRX_MODE(tmp), trans & CONF_USB2_UNI_R),
2244 		trx_mode(USB1_TRX_MODE(tmp), trans & CONF_USB1_UNI_R),
2245 		(USB0_TRX_MODE(tmp) == 0 && !cpu_is_omap1710())
2246 			? "internal"
2247 			: trx_mode(USB0_TRX_MODE(tmp), 1),
2248 		(tmp & OTG_IDLE_EN) ? " !otg" : "",
2249 		(tmp & HST_IDLE_EN) ? " !host" : "",
2250 		(tmp & DEV_IDLE_EN) ? " !dev" : "",
2251 		(tmp & OTG_RESET_DONE) ? " reset_done" : " reset_active");
2252 	tmp = omap_readl(OTG_SYSCON_2);
2253 	seq_printf(s, "otg_syscon2 %08x%s" EIGHTBITS
2254 			" b_ase_brst=%d hmc=%d\n", tmp,
2255 		(tmp & OTG_EN) ? " otg_en" : "",
2256 		(tmp & USBX_SYNCHRO) ? " synchro" : "",
2257 		/* much more SRP stuff */
2258 		(tmp & SRP_DATA) ? " srp_data" : "",
2259 		(tmp & SRP_VBUS) ? " srp_vbus" : "",
2260 		(tmp & OTG_PADEN) ? " otg_paden" : "",
2261 		(tmp & HMC_PADEN) ? " hmc_paden" : "",
2262 		(tmp & UHOST_EN) ? " uhost_en" : "",
2263 		(tmp & HMC_TLLSPEED) ? " tllspeed" : "",
2264 		(tmp & HMC_TLLATTACH) ? " tllattach" : "",
2265 		B_ASE_BRST(tmp),
2266 		OTG_HMC(tmp));
2267 	tmp = omap_readl(OTG_CTRL);
2268 	seq_printf(s, "otg_ctrl    %06x" EIGHTBITS EIGHTBITS "%s\n", tmp,
2269 		(tmp & OTG_ASESSVLD) ? " asess" : "",
2270 		(tmp & OTG_BSESSEND) ? " bsess_end" : "",
2271 		(tmp & OTG_BSESSVLD) ? " bsess" : "",
2272 		(tmp & OTG_VBUSVLD) ? " vbus" : "",
2273 		(tmp & OTG_ID) ? " id" : "",
2274 		(tmp & OTG_DRIVER_SEL) ? " DEVICE" : " HOST",
2275 		(tmp & OTG_A_SETB_HNPEN) ? " a_setb_hnpen" : "",
2276 		(tmp & OTG_A_BUSREQ) ? " a_bus" : "",
2277 		(tmp & OTG_B_HNPEN) ? " b_hnpen" : "",
2278 		(tmp & OTG_B_BUSREQ) ? " b_bus" : "",
2279 		(tmp & OTG_BUSDROP) ? " busdrop" : "",
2280 		(tmp & OTG_PULLDOWN) ? " down" : "",
2281 		(tmp & OTG_PULLUP) ? " up" : "",
2282 		(tmp & OTG_DRV_VBUS) ? " drv" : "",
2283 		(tmp & OTG_PD_VBUS) ? " pd_vb" : "",
2284 		(tmp & OTG_PU_VBUS) ? " pu_vb" : "",
2285 		(tmp & OTG_PU_ID) ? " pu_id" : ""
2286 		);
2287 	tmp = omap_readw(OTG_IRQ_EN);
2288 	seq_printf(s, "otg_irq_en  %04x" "\n", tmp);
2289 	tmp = omap_readw(OTG_IRQ_SRC);
2290 	seq_printf(s, "otg_irq_src %04x" "\n", tmp);
2291 	tmp = omap_readw(OTG_OUTCTRL);
2292 	seq_printf(s, "otg_outctrl %04x" "\n", tmp);
2293 	tmp = omap_readw(OTG_TEST);
2294 	seq_printf(s, "otg_test    %04x" "\n", tmp);
2295 	return 0;
2296 }
2297 
2298 static int proc_udc_show(struct seq_file *s, void *_)
2299 {
2300 	u32		tmp;
2301 	struct omap_ep	*ep;
2302 	unsigned long	flags;
2303 
2304 	spin_lock_irqsave(&udc->lock, flags);
2305 
2306 	seq_printf(s, "%s, version: " DRIVER_VERSION
2307 #ifdef	USE_ISO
2308 		" (iso)"
2309 #endif
2310 		"%s\n",
2311 		driver_desc,
2312 		use_dma ?  " (dma)" : "");
2313 
2314 	tmp = omap_readw(UDC_REV) & 0xff;
2315 	seq_printf(s,
2316 		"UDC rev %d.%d, fifo mode %d, gadget %s\n"
2317 		"hmc %d, transceiver %s\n",
2318 		tmp >> 4, tmp & 0xf,
2319 		fifo_mode,
2320 		udc->driver ? udc->driver->driver.name : "(none)",
2321 		HMC,
2322 		udc->transceiver
2323 			? udc->transceiver->label
2324 			: (cpu_is_omap1710()
2325 				? "external" : "(none)"));
2326 	seq_printf(s, "ULPD control %04x req %04x status %04x\n",
2327 		omap_readw(ULPD_CLOCK_CTRL),
2328 		omap_readw(ULPD_SOFT_REQ),
2329 		omap_readw(ULPD_STATUS_REQ));
2330 
2331 	/* OTG controller registers */
2332 	if (!cpu_is_omap15xx())
2333 		proc_otg_show(s);
2334 
2335 	tmp = omap_readw(UDC_SYSCON1);
2336 	seq_printf(s, "\nsyscon1     %04x" EIGHTBITS "\n", tmp,
2337 		(tmp & UDC_CFG_LOCK) ? " cfg_lock" : "",
2338 		(tmp & UDC_DATA_ENDIAN) ? " data_endian" : "",
2339 		(tmp & UDC_DMA_ENDIAN) ? " dma_endian" : "",
2340 		(tmp & UDC_NAK_EN) ? " nak" : "",
2341 		(tmp & UDC_AUTODECODE_DIS) ? " autodecode_dis" : "",
2342 		(tmp & UDC_SELF_PWR) ? " self_pwr" : "",
2343 		(tmp & UDC_SOFF_DIS) ? " soff_dis" : "",
2344 		(tmp & UDC_PULLUP_EN) ? " PULLUP" : "");
2345 	/* syscon2 is write-only */
2346 
2347 	/* UDC controller registers */
2348 	if (!(tmp & UDC_PULLUP_EN)) {
2349 		seq_printf(s, "(suspended)\n");
2350 		spin_unlock_irqrestore(&udc->lock, flags);
2351 		return 0;
2352 	}
2353 
2354 	tmp = omap_readw(UDC_DEVSTAT);
2355 	seq_printf(s, "devstat     %04x" EIGHTBITS "%s%s\n", tmp,
2356 		(tmp & UDC_B_HNP_ENABLE) ? " b_hnp" : "",
2357 		(tmp & UDC_A_HNP_SUPPORT) ? " a_hnp" : "",
2358 		(tmp & UDC_A_ALT_HNP_SUPPORT) ? " a_alt_hnp" : "",
2359 		(tmp & UDC_R_WK_OK) ? " r_wk_ok" : "",
2360 		(tmp & UDC_USB_RESET) ? " usb_reset" : "",
2361 		(tmp & UDC_SUS) ? " SUS" : "",
2362 		(tmp & UDC_CFG) ? " CFG" : "",
2363 		(tmp & UDC_ADD) ? " ADD" : "",
2364 		(tmp & UDC_DEF) ? " DEF" : "",
2365 		(tmp & UDC_ATT) ? " ATT" : "");
2366 	seq_printf(s, "sof         %04x\n", omap_readw(UDC_SOF));
2367 	tmp = omap_readw(UDC_IRQ_EN);
2368 	seq_printf(s, "irq_en      %04x" FOURBITS "%s\n", tmp,
2369 		(tmp & UDC_SOF_IE) ? " sof" : "",
2370 		(tmp & UDC_EPN_RX_IE) ? " epn_rx" : "",
2371 		(tmp & UDC_EPN_TX_IE) ? " epn_tx" : "",
2372 		(tmp & UDC_DS_CHG_IE) ? " ds_chg" : "",
2373 		(tmp & UDC_EP0_IE) ? " ep0" : "");
2374 	tmp = omap_readw(UDC_IRQ_SRC);
2375 	seq_printf(s, "irq_src     %04x" EIGHTBITS "%s%s\n", tmp,
2376 		(tmp & UDC_TXN_DONE) ? " txn_done" : "",
2377 		(tmp & UDC_RXN_CNT) ? " rxn_cnt" : "",
2378 		(tmp & UDC_RXN_EOT) ? " rxn_eot" : "",
2379 		(tmp & UDC_IRQ_SOF) ? " sof" : "",
2380 		(tmp & UDC_EPN_RX) ? " epn_rx" : "",
2381 		(tmp & UDC_EPN_TX) ? " epn_tx" : "",
2382 		(tmp & UDC_DS_CHG) ? " ds_chg" : "",
2383 		(tmp & UDC_SETUP) ? " setup" : "",
2384 		(tmp & UDC_EP0_RX) ? " ep0out" : "",
2385 		(tmp & UDC_EP0_TX) ? " ep0in" : "");
2386 	if (use_dma) {
2387 		unsigned i;
2388 
2389 		tmp = omap_readw(UDC_DMA_IRQ_EN);
2390 		seq_printf(s, "dma_irq_en  %04x%s" EIGHTBITS "\n", tmp,
2391 			(tmp & UDC_TX_DONE_IE(3)) ? " tx2_done" : "",
2392 			(tmp & UDC_RX_CNT_IE(3)) ? " rx2_cnt" : "",
2393 			(tmp & UDC_RX_EOT_IE(3)) ? " rx2_eot" : "",
2394 
2395 			(tmp & UDC_TX_DONE_IE(2)) ? " tx1_done" : "",
2396 			(tmp & UDC_RX_CNT_IE(2)) ? " rx1_cnt" : "",
2397 			(tmp & UDC_RX_EOT_IE(2)) ? " rx1_eot" : "",
2398 
2399 			(tmp & UDC_TX_DONE_IE(1)) ? " tx0_done" : "",
2400 			(tmp & UDC_RX_CNT_IE(1)) ? " rx0_cnt" : "",
2401 			(tmp & UDC_RX_EOT_IE(1)) ? " rx0_eot" : "");
2402 
2403 		tmp = omap_readw(UDC_RXDMA_CFG);
2404 		seq_printf(s, "rxdma_cfg   %04x\n", tmp);
2405 		if (tmp) {
2406 			for (i = 0; i < 3; i++) {
2407 				if ((tmp & (0x0f << (i * 4))) == 0)
2408 					continue;
2409 				seq_printf(s, "rxdma[%d]    %04x\n", i,
2410 						omap_readw(UDC_RXDMA(i + 1)));
2411 			}
2412 		}
2413 		tmp = omap_readw(UDC_TXDMA_CFG);
2414 		seq_printf(s, "txdma_cfg   %04x\n", tmp);
2415 		if (tmp) {
2416 			for (i = 0; i < 3; i++) {
2417 				if (!(tmp & (0x0f << (i * 4))))
2418 					continue;
2419 				seq_printf(s, "txdma[%d]    %04x\n", i,
2420 						omap_readw(UDC_TXDMA(i + 1)));
2421 			}
2422 		}
2423 	}
2424 
2425 	tmp = omap_readw(UDC_DEVSTAT);
2426 	if (tmp & UDC_ATT) {
2427 		proc_ep_show(s, &udc->ep[0]);
2428 		if (tmp & UDC_ADD) {
2429 			list_for_each_entry(ep, &udc->gadget.ep_list,
2430 					ep.ep_list) {
2431 				if (ep->ep.desc)
2432 					proc_ep_show(s, ep);
2433 			}
2434 		}
2435 	}
2436 	spin_unlock_irqrestore(&udc->lock, flags);
2437 	return 0;
2438 }
2439 
2440 static int proc_udc_open(struct inode *inode, struct file *file)
2441 {
2442 	return single_open(file, proc_udc_show, NULL);
2443 }
2444 
2445 static const struct file_operations proc_ops = {
2446 	.owner		= THIS_MODULE,
2447 	.open		= proc_udc_open,
2448 	.read		= seq_read,
2449 	.llseek		= seq_lseek,
2450 	.release	= single_release,
2451 };
2452 
2453 static void create_proc_file(void)
2454 {
2455 	proc_create(proc_filename, 0, NULL, &proc_ops);
2456 }
2457 
2458 static void remove_proc_file(void)
2459 {
2460 	remove_proc_entry(proc_filename, NULL);
2461 }
2462 
2463 #else
2464 
2465 static inline void create_proc_file(void) {}
2466 static inline void remove_proc_file(void) {}
2467 
2468 #endif
2469 
2470 /*-------------------------------------------------------------------------*/
2471 
2472 /* Before this controller can enumerate, we need to pick an endpoint
2473  * configuration, or "fifo_mode"  That involves allocating 2KB of packet
2474  * buffer space among the endpoints we'll be operating.
2475  *
2476  * NOTE: as of OMAP 1710 ES2.0, writing a new endpoint config when
2477  * UDC_SYSCON_1.CFG_LOCK is set can now work.  We won't use that
2478  * capability yet though.
2479  */
2480 static unsigned
2481 omap_ep_setup(char *name, u8 addr, u8 type,
2482 		unsigned buf, unsigned maxp, int dbuf)
2483 {
2484 	struct omap_ep	*ep;
2485 	u16		epn_rxtx = 0;
2486 
2487 	/* OUT endpoints first, then IN */
2488 	ep = &udc->ep[addr & 0xf];
2489 	if (addr & USB_DIR_IN)
2490 		ep += 16;
2491 
2492 	/* in case of ep init table bugs */
2493 	BUG_ON(ep->name[0]);
2494 
2495 	/* chip setup ... bit values are same for IN, OUT */
2496 	if (type == USB_ENDPOINT_XFER_ISOC) {
2497 		switch (maxp) {
2498 		case 8:
2499 			epn_rxtx = 0 << 12;
2500 			break;
2501 		case 16:
2502 			epn_rxtx = 1 << 12;
2503 			break;
2504 		case 32:
2505 			epn_rxtx = 2 << 12;
2506 			break;
2507 		case 64:
2508 			epn_rxtx = 3 << 12;
2509 			break;
2510 		case 128:
2511 			epn_rxtx = 4 << 12;
2512 			break;
2513 		case 256:
2514 			epn_rxtx = 5 << 12;
2515 			break;
2516 		case 512:
2517 			epn_rxtx = 6 << 12;
2518 			break;
2519 		default:
2520 			BUG();
2521 		}
2522 		epn_rxtx |= UDC_EPN_RX_ISO;
2523 		dbuf = 1;
2524 	} else {
2525 		/* double-buffering "not supported" on 15xx,
2526 		 * and ignored for PIO-IN on newer chips
2527 		 * (for more reliable behavior)
2528 		 */
2529 		if (!use_dma || cpu_is_omap15xx())
2530 			dbuf = 0;
2531 
2532 		switch (maxp) {
2533 		case 8:
2534 			epn_rxtx = 0 << 12;
2535 			break;
2536 		case 16:
2537 			epn_rxtx = 1 << 12;
2538 			break;
2539 		case 32:
2540 			epn_rxtx = 2 << 12;
2541 			break;
2542 		case 64:
2543 			epn_rxtx = 3 << 12;
2544 			break;
2545 		default:
2546 			BUG();
2547 		}
2548 		if (dbuf && addr)
2549 			epn_rxtx |= UDC_EPN_RX_DB;
2550 		init_timer(&ep->timer);
2551 		ep->timer.function = pio_out_timer;
2552 		ep->timer.data = (unsigned long) ep;
2553 	}
2554 	if (addr)
2555 		epn_rxtx |= UDC_EPN_RX_VALID;
2556 	BUG_ON(buf & 0x07);
2557 	epn_rxtx |= buf >> 3;
2558 
2559 	DBG("%s addr %02x rxtx %04x maxp %d%s buf %d\n",
2560 		name, addr, epn_rxtx, maxp, dbuf ? "x2" : "", buf);
2561 
2562 	if (addr & USB_DIR_IN)
2563 		omap_writew(epn_rxtx, UDC_EP_TX(addr & 0xf));
2564 	else
2565 		omap_writew(epn_rxtx, UDC_EP_RX(addr));
2566 
2567 	/* next endpoint's buffer starts after this one's */
2568 	buf += maxp;
2569 	if (dbuf)
2570 		buf += maxp;
2571 	BUG_ON(buf > 2048);
2572 
2573 	/* set up driver data structures */
2574 	BUG_ON(strlen(name) >= sizeof ep->name);
2575 	strlcpy(ep->name, name, sizeof ep->name);
2576 	INIT_LIST_HEAD(&ep->queue);
2577 	INIT_LIST_HEAD(&ep->iso);
2578 	ep->bEndpointAddress = addr;
2579 	ep->bmAttributes = type;
2580 	ep->double_buf = dbuf;
2581 	ep->udc = udc;
2582 
2583 	ep->ep.name = ep->name;
2584 	ep->ep.ops = &omap_ep_ops;
2585 	ep->maxpacket = maxp;
2586 	usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
2587 	list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
2588 
2589 	return buf;
2590 }
2591 
2592 static void omap_udc_release(struct device *dev)
2593 {
2594 	complete(udc->done);
2595 	kfree(udc);
2596 	udc = NULL;
2597 }
2598 
2599 static int
2600 omap_udc_setup(struct platform_device *odev, struct usb_phy *xceiv)
2601 {
2602 	unsigned	tmp, buf;
2603 
2604 	/* abolish any previous hardware state */
2605 	omap_writew(0, UDC_SYSCON1);
2606 	omap_writew(0, UDC_IRQ_EN);
2607 	omap_writew(UDC_IRQ_SRC_MASK, UDC_IRQ_SRC);
2608 	omap_writew(0, UDC_DMA_IRQ_EN);
2609 	omap_writew(0, UDC_RXDMA_CFG);
2610 	omap_writew(0, UDC_TXDMA_CFG);
2611 
2612 	/* UDC_PULLUP_EN gates the chip clock */
2613 	/* OTG_SYSCON_1 |= DEV_IDLE_EN; */
2614 
2615 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
2616 	if (!udc)
2617 		return -ENOMEM;
2618 
2619 	spin_lock_init(&udc->lock);
2620 
2621 	udc->gadget.ops = &omap_gadget_ops;
2622 	udc->gadget.ep0 = &udc->ep[0].ep;
2623 	INIT_LIST_HEAD(&udc->gadget.ep_list);
2624 	INIT_LIST_HEAD(&udc->iso);
2625 	udc->gadget.speed = USB_SPEED_UNKNOWN;
2626 	udc->gadget.max_speed = USB_SPEED_FULL;
2627 	udc->gadget.name = driver_name;
2628 	udc->transceiver = xceiv;
2629 
2630 	/* ep0 is special; put it right after the SETUP buffer */
2631 	buf = omap_ep_setup("ep0", 0, USB_ENDPOINT_XFER_CONTROL,
2632 			8 /* after SETUP */, 64 /* maxpacket */, 0);
2633 	list_del_init(&udc->ep[0].ep.ep_list);
2634 
2635 	/* initially disable all non-ep0 endpoints */
2636 	for (tmp = 1; tmp < 15; tmp++) {
2637 		omap_writew(0, UDC_EP_RX(tmp));
2638 		omap_writew(0, UDC_EP_TX(tmp));
2639 	}
2640 
2641 #define OMAP_BULK_EP(name, addr) \
2642 	buf = omap_ep_setup(name "-bulk", addr, \
2643 			USB_ENDPOINT_XFER_BULK, buf, 64, 1);
2644 #define OMAP_INT_EP(name, addr, maxp) \
2645 	buf = omap_ep_setup(name "-int", addr, \
2646 			USB_ENDPOINT_XFER_INT, buf, maxp, 0);
2647 #define OMAP_ISO_EP(name, addr, maxp) \
2648 	buf = omap_ep_setup(name "-iso", addr, \
2649 			USB_ENDPOINT_XFER_ISOC, buf, maxp, 1);
2650 
2651 	switch (fifo_mode) {
2652 	case 0:
2653 		OMAP_BULK_EP("ep1in",  USB_DIR_IN  | 1);
2654 		OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2);
2655 		OMAP_INT_EP("ep3in",   USB_DIR_IN  | 3, 16);
2656 		break;
2657 	case 1:
2658 		OMAP_BULK_EP("ep1in",  USB_DIR_IN  | 1);
2659 		OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2);
2660 		OMAP_INT_EP("ep9in",   USB_DIR_IN  | 9, 16);
2661 
2662 		OMAP_BULK_EP("ep3in",  USB_DIR_IN  | 3);
2663 		OMAP_BULK_EP("ep4out", USB_DIR_OUT | 4);
2664 		OMAP_INT_EP("ep10in",  USB_DIR_IN  | 10, 16);
2665 
2666 		OMAP_BULK_EP("ep5in",  USB_DIR_IN  | 5);
2667 		OMAP_BULK_EP("ep5out", USB_DIR_OUT | 5);
2668 		OMAP_INT_EP("ep11in",  USB_DIR_IN  | 11, 16);
2669 
2670 		OMAP_BULK_EP("ep6in",  USB_DIR_IN  | 6);
2671 		OMAP_BULK_EP("ep6out", USB_DIR_OUT | 6);
2672 		OMAP_INT_EP("ep12in",  USB_DIR_IN  | 12, 16);
2673 
2674 		OMAP_BULK_EP("ep7in",  USB_DIR_IN  | 7);
2675 		OMAP_BULK_EP("ep7out", USB_DIR_OUT | 7);
2676 		OMAP_INT_EP("ep13in",  USB_DIR_IN  | 13, 16);
2677 		OMAP_INT_EP("ep13out", USB_DIR_OUT | 13, 16);
2678 
2679 		OMAP_BULK_EP("ep8in",  USB_DIR_IN  | 8);
2680 		OMAP_BULK_EP("ep8out", USB_DIR_OUT | 8);
2681 		OMAP_INT_EP("ep14in",  USB_DIR_IN  | 14, 16);
2682 		OMAP_INT_EP("ep14out", USB_DIR_OUT | 14, 16);
2683 
2684 		OMAP_BULK_EP("ep15in",  USB_DIR_IN  | 15);
2685 		OMAP_BULK_EP("ep15out", USB_DIR_OUT | 15);
2686 
2687 		break;
2688 
2689 #ifdef	USE_ISO
2690 	case 2:			/* mixed iso/bulk */
2691 		OMAP_ISO_EP("ep1in",   USB_DIR_IN  | 1, 256);
2692 		OMAP_ISO_EP("ep2out",  USB_DIR_OUT | 2, 256);
2693 		OMAP_ISO_EP("ep3in",   USB_DIR_IN  | 3, 128);
2694 		OMAP_ISO_EP("ep4out",  USB_DIR_OUT | 4, 128);
2695 
2696 		OMAP_INT_EP("ep5in",   USB_DIR_IN  | 5, 16);
2697 
2698 		OMAP_BULK_EP("ep6in",  USB_DIR_IN  | 6);
2699 		OMAP_BULK_EP("ep7out", USB_DIR_OUT | 7);
2700 		OMAP_INT_EP("ep8in",   USB_DIR_IN  | 8, 16);
2701 		break;
2702 	case 3:			/* mixed bulk/iso */
2703 		OMAP_BULK_EP("ep1in",  USB_DIR_IN  | 1);
2704 		OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2);
2705 		OMAP_INT_EP("ep3in",   USB_DIR_IN  | 3, 16);
2706 
2707 		OMAP_BULK_EP("ep4in",  USB_DIR_IN  | 4);
2708 		OMAP_BULK_EP("ep5out", USB_DIR_OUT | 5);
2709 		OMAP_INT_EP("ep6in",   USB_DIR_IN  | 6, 16);
2710 
2711 		OMAP_ISO_EP("ep7in",   USB_DIR_IN  | 7, 256);
2712 		OMAP_ISO_EP("ep8out",  USB_DIR_OUT | 8, 256);
2713 		OMAP_INT_EP("ep9in",   USB_DIR_IN  | 9, 16);
2714 		break;
2715 #endif
2716 
2717 	/* add more modes as needed */
2718 
2719 	default:
2720 		ERR("unsupported fifo_mode #%d\n", fifo_mode);
2721 		return -ENODEV;
2722 	}
2723 	omap_writew(UDC_CFG_LOCK|UDC_SELF_PWR, UDC_SYSCON1);
2724 	INFO("fifo mode %d, %d bytes not used\n", fifo_mode, 2048 - buf);
2725 	return 0;
2726 }
2727 
2728 static int omap_udc_probe(struct platform_device *pdev)
2729 {
2730 	int			status = -ENODEV;
2731 	int			hmc;
2732 	struct usb_phy		*xceiv = NULL;
2733 	const char		*type = NULL;
2734 	struct omap_usb_config	*config = dev_get_platdata(&pdev->dev);
2735 	struct clk		*dc_clk = NULL;
2736 	struct clk		*hhc_clk = NULL;
2737 
2738 	if (cpu_is_omap7xx())
2739 		use_dma = 0;
2740 
2741 	/* NOTE:  "knows" the order of the resources! */
2742 	if (!request_mem_region(pdev->resource[0].start,
2743 			pdev->resource[0].end - pdev->resource[0].start + 1,
2744 			driver_name)) {
2745 		DBG("request_mem_region failed\n");
2746 		return -EBUSY;
2747 	}
2748 
2749 	if (cpu_is_omap16xx()) {
2750 		dc_clk = clk_get(&pdev->dev, "usb_dc_ck");
2751 		hhc_clk = clk_get(&pdev->dev, "usb_hhc_ck");
2752 		BUG_ON(IS_ERR(dc_clk) || IS_ERR(hhc_clk));
2753 		/* can't use omap_udc_enable_clock yet */
2754 		clk_enable(dc_clk);
2755 		clk_enable(hhc_clk);
2756 		udelay(100);
2757 	}
2758 
2759 	if (cpu_is_omap7xx()) {
2760 		dc_clk = clk_get(&pdev->dev, "usb_dc_ck");
2761 		hhc_clk = clk_get(&pdev->dev, "l3_ocpi_ck");
2762 		BUG_ON(IS_ERR(dc_clk) || IS_ERR(hhc_clk));
2763 		/* can't use omap_udc_enable_clock yet */
2764 		clk_enable(dc_clk);
2765 		clk_enable(hhc_clk);
2766 		udelay(100);
2767 	}
2768 
2769 	INFO("OMAP UDC rev %d.%d%s\n",
2770 		omap_readw(UDC_REV) >> 4, omap_readw(UDC_REV) & 0xf,
2771 		config->otg ? ", Mini-AB" : "");
2772 
2773 	/* use the mode given to us by board init code */
2774 	if (cpu_is_omap15xx()) {
2775 		hmc = HMC_1510;
2776 		type = "(unknown)";
2777 
2778 		if (machine_without_vbus_sense()) {
2779 			/* just set up software VBUS detect, and then
2780 			 * later rig it so we always report VBUS.
2781 			 * FIXME without really sensing VBUS, we can't
2782 			 * know when to turn PULLUP_EN on/off; and that
2783 			 * means we always "need" the 48MHz clock.
2784 			 */
2785 			u32 tmp = omap_readl(FUNC_MUX_CTRL_0);
2786 			tmp &= ~VBUS_CTRL_1510;
2787 			omap_writel(tmp, FUNC_MUX_CTRL_0);
2788 			tmp |= VBUS_MODE_1510;
2789 			tmp &= ~VBUS_CTRL_1510;
2790 			omap_writel(tmp, FUNC_MUX_CTRL_0);
2791 		}
2792 	} else {
2793 		/* The transceiver may package some GPIO logic or handle
2794 		 * loopback and/or transceiverless setup; if we find one,
2795 		 * use it.  Except for OTG, we don't _need_ to talk to one;
2796 		 * but not having one probably means no VBUS detection.
2797 		 */
2798 		xceiv = usb_get_phy(USB_PHY_TYPE_USB2);
2799 		if (!IS_ERR_OR_NULL(xceiv))
2800 			type = xceiv->label;
2801 		else if (config->otg) {
2802 			DBG("OTG requires external transceiver!\n");
2803 			goto cleanup0;
2804 		}
2805 
2806 		hmc = HMC_1610;
2807 
2808 		switch (hmc) {
2809 		case 0:			/* POWERUP DEFAULT == 0 */
2810 		case 4:
2811 		case 12:
2812 		case 20:
2813 			if (!cpu_is_omap1710()) {
2814 				type = "integrated";
2815 				break;
2816 			}
2817 			/* FALL THROUGH */
2818 		case 3:
2819 		case 11:
2820 		case 16:
2821 		case 19:
2822 		case 25:
2823 			if (IS_ERR_OR_NULL(xceiv)) {
2824 				DBG("external transceiver not registered!\n");
2825 				type = "unknown";
2826 			}
2827 			break;
2828 		case 21:			/* internal loopback */
2829 			type = "loopback";
2830 			break;
2831 		case 14:			/* transceiverless */
2832 			if (cpu_is_omap1710())
2833 				goto bad_on_1710;
2834 			/* FALL THROUGH */
2835 		case 13:
2836 		case 15:
2837 			type = "no";
2838 			break;
2839 
2840 		default:
2841 bad_on_1710:
2842 			ERR("unrecognized UDC HMC mode %d\n", hmc);
2843 			goto cleanup0;
2844 		}
2845 	}
2846 
2847 	INFO("hmc mode %d, %s transceiver\n", hmc, type);
2848 
2849 	/* a "gadget" abstracts/virtualizes the controller */
2850 	status = omap_udc_setup(pdev, xceiv);
2851 	if (status)
2852 		goto cleanup0;
2853 
2854 	xceiv = NULL;
2855 	/* "udc" is now valid */
2856 	pullup_disable(udc);
2857 #if	defined(CONFIG_USB_OHCI_HCD) || defined(CONFIG_USB_OHCI_HCD_MODULE)
2858 	udc->gadget.is_otg = (config->otg != 0);
2859 #endif
2860 
2861 	/* starting with omap1710 es2.0, clear toggle is a separate bit */
2862 	if (omap_readw(UDC_REV) >= 0x61)
2863 		udc->clr_halt = UDC_RESET_EP | UDC_CLRDATA_TOGGLE;
2864 	else
2865 		udc->clr_halt = UDC_RESET_EP;
2866 
2867 	/* USB general purpose IRQ:  ep0, state changes, dma, etc */
2868 	status = request_irq(pdev->resource[1].start, omap_udc_irq,
2869 			0, driver_name, udc);
2870 	if (status != 0) {
2871 		ERR("can't get irq %d, err %d\n",
2872 			(int) pdev->resource[1].start, status);
2873 		goto cleanup1;
2874 	}
2875 
2876 	/* USB "non-iso" IRQ (PIO for all but ep0) */
2877 	status = request_irq(pdev->resource[2].start, omap_udc_pio_irq,
2878 			0, "omap_udc pio", udc);
2879 	if (status != 0) {
2880 		ERR("can't get irq %d, err %d\n",
2881 			(int) pdev->resource[2].start, status);
2882 		goto cleanup2;
2883 	}
2884 #ifdef	USE_ISO
2885 	status = request_irq(pdev->resource[3].start, omap_udc_iso_irq,
2886 			0, "omap_udc iso", udc);
2887 	if (status != 0) {
2888 		ERR("can't get irq %d, err %d\n",
2889 			(int) pdev->resource[3].start, status);
2890 		goto cleanup3;
2891 	}
2892 #endif
2893 	if (cpu_is_omap16xx() || cpu_is_omap7xx()) {
2894 		udc->dc_clk = dc_clk;
2895 		udc->hhc_clk = hhc_clk;
2896 		clk_disable(hhc_clk);
2897 		clk_disable(dc_clk);
2898 	}
2899 
2900 	create_proc_file();
2901 	status = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2902 			omap_udc_release);
2903 	if (status)
2904 		goto cleanup4;
2905 
2906 	return 0;
2907 
2908 cleanup4:
2909 	remove_proc_file();
2910 
2911 #ifdef	USE_ISO
2912 cleanup3:
2913 	free_irq(pdev->resource[2].start, udc);
2914 #endif
2915 
2916 cleanup2:
2917 	free_irq(pdev->resource[1].start, udc);
2918 
2919 cleanup1:
2920 	kfree(udc);
2921 	udc = NULL;
2922 
2923 cleanup0:
2924 	if (!IS_ERR_OR_NULL(xceiv))
2925 		usb_put_phy(xceiv);
2926 
2927 	if (cpu_is_omap16xx() || cpu_is_omap7xx()) {
2928 		clk_disable(hhc_clk);
2929 		clk_disable(dc_clk);
2930 		clk_put(hhc_clk);
2931 		clk_put(dc_clk);
2932 	}
2933 
2934 	release_mem_region(pdev->resource[0].start,
2935 			pdev->resource[0].end - pdev->resource[0].start + 1);
2936 
2937 	return status;
2938 }
2939 
2940 static int omap_udc_remove(struct platform_device *pdev)
2941 {
2942 	DECLARE_COMPLETION_ONSTACK(done);
2943 
2944 	if (!udc)
2945 		return -ENODEV;
2946 
2947 	usb_del_gadget_udc(&udc->gadget);
2948 	if (udc->driver)
2949 		return -EBUSY;
2950 
2951 	udc->done = &done;
2952 
2953 	pullup_disable(udc);
2954 	if (!IS_ERR_OR_NULL(udc->transceiver)) {
2955 		usb_put_phy(udc->transceiver);
2956 		udc->transceiver = NULL;
2957 	}
2958 	omap_writew(0, UDC_SYSCON1);
2959 
2960 	remove_proc_file();
2961 
2962 #ifdef	USE_ISO
2963 	free_irq(pdev->resource[3].start, udc);
2964 #endif
2965 	free_irq(pdev->resource[2].start, udc);
2966 	free_irq(pdev->resource[1].start, udc);
2967 
2968 	if (udc->dc_clk) {
2969 		if (udc->clk_requested)
2970 			omap_udc_enable_clock(0);
2971 		clk_put(udc->hhc_clk);
2972 		clk_put(udc->dc_clk);
2973 	}
2974 
2975 	release_mem_region(pdev->resource[0].start,
2976 			pdev->resource[0].end - pdev->resource[0].start + 1);
2977 
2978 	wait_for_completion(&done);
2979 
2980 	return 0;
2981 }
2982 
2983 /* suspend/resume/wakeup from sysfs (echo > power/state) or when the
2984  * system is forced into deep sleep
2985  *
2986  * REVISIT we should probably reject suspend requests when there's a host
2987  * session active, rather than disconnecting, at least on boards that can
2988  * report VBUS irqs (UDC_DEVSTAT.UDC_ATT).  And in any case, we need to
2989  * make host resumes and VBUS detection trigger OMAP wakeup events; that
2990  * may involve talking to an external transceiver (e.g. isp1301).
2991  */
2992 
2993 static int omap_udc_suspend(struct platform_device *dev, pm_message_t message)
2994 {
2995 	u32	devstat;
2996 
2997 	devstat = omap_readw(UDC_DEVSTAT);
2998 
2999 	/* we're requesting 48 MHz clock if the pullup is enabled
3000 	 * (== we're attached to the host) and we're not suspended,
3001 	 * which would prevent entry to deep sleep...
3002 	 */
3003 	if ((devstat & UDC_ATT) != 0 && (devstat & UDC_SUS) == 0) {
3004 		WARNING("session active; suspend requires disconnect\n");
3005 		omap_pullup(&udc->gadget, 0);
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 static int omap_udc_resume(struct platform_device *dev)
3012 {
3013 	DBG("resume + wakeup/SRP\n");
3014 	omap_pullup(&udc->gadget, 1);
3015 
3016 	/* maybe the host would enumerate us if we nudged it */
3017 	msleep(100);
3018 	return omap_wakeup(&udc->gadget);
3019 }
3020 
3021 /*-------------------------------------------------------------------------*/
3022 
3023 static struct platform_driver udc_driver = {
3024 	.probe		= omap_udc_probe,
3025 	.remove		= omap_udc_remove,
3026 	.suspend	= omap_udc_suspend,
3027 	.resume		= omap_udc_resume,
3028 	.driver		= {
3029 		.owner	= THIS_MODULE,
3030 		.name	= (char *) driver_name,
3031 	},
3032 };
3033 
3034 module_platform_driver(udc_driver);
3035 
3036 MODULE_DESCRIPTION(DRIVER_DESC);
3037 MODULE_LICENSE("GPL");
3038 MODULE_ALIAS("platform:omap_udc");
3039