xref: /linux/drivers/usb/gadget/udc/lpc32xx_udc.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * USB Gadget driver for LPC32xx
4  *
5  * Authors:
6  *    Kevin Wells <kevin.wells@nxp.com>
7  *    Mike James
8  *    Roland Stigge <stigge@antcom.de>
9  *
10  * Copyright (C) 2006 Philips Semiconductors
11  * Copyright (C) 2009 NXP Semiconductors
12  * Copyright (C) 2012 Roland Stigge
13  *
14  * Note: This driver is based on original work done by Mike James for
15  *       the LPC3180.
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/prefetch.h>
28 #include <linux/proc_fs.h>
29 #include <linux/slab.h>
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/isp1301.h>
33 
34 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif
38 
39 /*
40  * USB device configuration structure
41  */
42 typedef void (*usc_chg_event)(int);
43 struct lpc32xx_usbd_cfg {
44 	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
45 	usc_chg_event conn_chgb; /* Connection change event (optional) */
46 	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
47 	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
48 };
49 
50 /*
51  * controller driver data structures
52  */
53 
54 /* 16 endpoints (not to be confused with 32 hardware endpoints) */
55 #define	NUM_ENDPOINTS	16
56 
57 /*
58  * IRQ indices make reading the code a little easier
59  */
60 #define IRQ_USB_LP	0
61 #define IRQ_USB_HP	1
62 #define IRQ_USB_DEVDMA	2
63 #define IRQ_USB_ATX	3
64 
65 #define EP_OUT 0 /* RX (from host) */
66 #define EP_IN 1 /* TX (to host) */
67 
68 /* Returns the interrupt mask for the selected hardware endpoint */
69 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
70 
71 #define EP_INT_TYPE 0
72 #define EP_ISO_TYPE 1
73 #define EP_BLK_TYPE 2
74 #define EP_CTL_TYPE 3
75 
76 /* EP0 states */
77 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */
78 #define DATA_IN        1 /* Expect dev->host transfer */
79 #define DATA_OUT       2 /* Expect host->dev transfer */
80 
81 /* DD (DMA Descriptor) structure, requires word alignment, this is already
82  * defined in the LPC32XX USB device header file, but this version is slightly
83  * modified to tag some work data with each DMA descriptor. */
84 struct lpc32xx_usbd_dd_gad {
85 	u32 dd_next_phy;
86 	u32 dd_setup;
87 	u32 dd_buffer_addr;
88 	u32 dd_status;
89 	u32 dd_iso_ps_mem_addr;
90 	u32 this_dma;
91 	u32 iso_status[6]; /* 5 spare */
92 	u32 dd_next_v;
93 };
94 
95 /*
96  * Logical endpoint structure
97  */
98 struct lpc32xx_ep {
99 	struct usb_ep		ep;
100 	struct list_head	queue;
101 	struct lpc32xx_udc	*udc;
102 
103 	u32			hwep_num_base; /* Physical hardware EP */
104 	u32			hwep_num; /* Maps to hardware endpoint */
105 	u32			maxpacket;
106 	u32			lep;
107 
108 	bool			is_in;
109 	bool			req_pending;
110 	u32			eptype;
111 
112 	u32                     totalints;
113 
114 	bool			wedge;
115 };
116 
117 enum atx_type {
118 	ISP1301,
119 	STOTG04,
120 };
121 
122 /*
123  * Common UDC structure
124  */
125 struct lpc32xx_udc {
126 	struct usb_gadget	gadget;
127 	struct usb_gadget_driver *driver;
128 	struct platform_device	*pdev;
129 	struct device		*dev;
130 	struct dentry		*pde;
131 	spinlock_t		lock;
132 	struct i2c_client	*isp1301_i2c_client;
133 
134 	/* Board and device specific */
135 	struct lpc32xx_usbd_cfg	*board;
136 	void __iomem		*udp_baseaddr;
137 	int			udp_irq[4];
138 	struct clk		*usb_slv_clk;
139 
140 	/* DMA support */
141 	u32			*udca_v_base;
142 	u32			udca_p_base;
143 	struct dma_pool		*dd_cache;
144 
145 	/* Common EP and control data */
146 	u32			enabled_devints;
147 	u32			enabled_hwepints;
148 	u32			dev_status;
149 	u32			realized_eps;
150 
151 	/* VBUS detection, pullup, and power flags */
152 	u8			vbus;
153 	u8			last_vbus;
154 	int			pullup;
155 	int			poweron;
156 	enum atx_type		atx;
157 
158 	/* Work queues related to I2C support */
159 	struct work_struct	pullup_job;
160 	struct work_struct	power_job;
161 
162 	/* USB device peripheral - various */
163 	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
164 	bool			enabled;
165 	bool			clocked;
166 	bool			suspended;
167 	int                     ep0state;
168 	atomic_t                enabled_ep_cnt;
169 	wait_queue_head_t       ep_disable_wait_queue;
170 };
171 
172 /*
173  * Endpoint request
174  */
175 struct lpc32xx_request {
176 	struct usb_request	req;
177 	struct list_head	queue;
178 	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
179 	bool			mapped;
180 	bool			send_zlp;
181 };
182 
183 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
184 {
185 	return container_of(g, struct lpc32xx_udc, gadget);
186 }
187 
188 #define ep_dbg(epp, fmt, arg...) \
189 	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
190 #define ep_err(epp, fmt, arg...) \
191 	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
192 #define ep_info(epp, fmt, arg...) \
193 	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
194 #define ep_warn(epp, fmt, arg...) \
195 	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
196 
197 #define UDCA_BUFF_SIZE (128)
198 
199 /**********************************************************************
200  * USB device controller register offsets
201  **********************************************************************/
202 
203 #define USBD_DEVINTST(x)	((x) + 0x200)
204 #define USBD_DEVINTEN(x)	((x) + 0x204)
205 #define USBD_DEVINTCLR(x)	((x) + 0x208)
206 #define USBD_DEVINTSET(x)	((x) + 0x20C)
207 #define USBD_CMDCODE(x)		((x) + 0x210)
208 #define USBD_CMDDATA(x)		((x) + 0x214)
209 #define USBD_RXDATA(x)		((x) + 0x218)
210 #define USBD_TXDATA(x)		((x) + 0x21C)
211 #define USBD_RXPLEN(x)		((x) + 0x220)
212 #define USBD_TXPLEN(x)		((x) + 0x224)
213 #define USBD_CTRL(x)		((x) + 0x228)
214 #define USBD_DEVINTPRI(x)	((x) + 0x22C)
215 #define USBD_EPINTST(x)		((x) + 0x230)
216 #define USBD_EPINTEN(x)		((x) + 0x234)
217 #define USBD_EPINTCLR(x)	((x) + 0x238)
218 #define USBD_EPINTSET(x)	((x) + 0x23C)
219 #define USBD_EPINTPRI(x)	((x) + 0x240)
220 #define USBD_REEP(x)		((x) + 0x244)
221 #define USBD_EPIND(x)		((x) + 0x248)
222 #define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
223 /* DMA support registers only below */
224 /* Set, clear, or get enabled state of the DMA request status. If
225  * enabled, an IN or OUT token will start a DMA transfer for the EP */
226 #define USBD_DMARST(x)		((x) + 0x250)
227 #define USBD_DMARCLR(x)		((x) + 0x254)
228 #define USBD_DMARSET(x)		((x) + 0x258)
229 /* DMA UDCA head pointer */
230 #define USBD_UDCAH(x)		((x) + 0x280)
231 /* EP DMA status, enable, and disable. This is used to specifically
232  * enabled or disable DMA for a specific EP */
233 #define USBD_EPDMAST(x)		((x) + 0x284)
234 #define USBD_EPDMAEN(x)		((x) + 0x288)
235 #define USBD_EPDMADIS(x)	((x) + 0x28C)
236 /* DMA master interrupts enable and pending interrupts */
237 #define USBD_DMAINTST(x)	((x) + 0x290)
238 #define USBD_DMAINTEN(x)	((x) + 0x294)
239 /* DMA end of transfer interrupt enable, disable, status */
240 #define USBD_EOTINTST(x)	((x) + 0x2A0)
241 #define USBD_EOTINTCLR(x)	((x) + 0x2A4)
242 #define USBD_EOTINTSET(x)	((x) + 0x2A8)
243 /* New DD request interrupt enable, disable, status */
244 #define USBD_NDDRTINTST(x)	((x) + 0x2AC)
245 #define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
246 #define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
247 /* DMA error interrupt enable, disable, status */
248 #define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
249 #define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
250 #define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
251 
252 /**********************************************************************
253  * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
254  * USBD_DEVINTPRI register definitions
255  **********************************************************************/
256 #define USBD_ERR_INT		(1 << 9)
257 #define USBD_EP_RLZED		(1 << 8)
258 #define USBD_TXENDPKT		(1 << 7)
259 #define USBD_RXENDPKT		(1 << 6)
260 #define USBD_CDFULL		(1 << 5)
261 #define USBD_CCEMPTY		(1 << 4)
262 #define USBD_DEV_STAT		(1 << 3)
263 #define USBD_EP_SLOW		(1 << 2)
264 #define USBD_EP_FAST		(1 << 1)
265 #define USBD_FRAME		(1 << 0)
266 
267 /**********************************************************************
268  * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
269  * USBD_EPINTPRI register definitions
270  **********************************************************************/
271 /* End point selection macro (RX) */
272 #define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
273 
274 /* End point selection macro (TX) */
275 #define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
276 
277 /**********************************************************************
278  * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
279  * USBD_EPDMAEN/USBD_EPDMADIS/
280  * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
281  * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
282  * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
283  * register definitions
284  **********************************************************************/
285 /* Endpoint selection macro */
286 #define USBD_EP_SEL(e)		(1 << (e))
287 
288 /**********************************************************************
289  * SBD_DMAINTST/USBD_DMAINTEN
290  **********************************************************************/
291 #define USBD_SYS_ERR_INT	(1 << 2)
292 #define USBD_NEW_DD_INT		(1 << 1)
293 #define USBD_EOT_INT		(1 << 0)
294 
295 /**********************************************************************
296  * USBD_RXPLEN register definitions
297  **********************************************************************/
298 #define USBD_PKT_RDY		(1 << 11)
299 #define USBD_DV			(1 << 10)
300 #define USBD_PK_LEN_MASK	0x3FF
301 
302 /**********************************************************************
303  * USBD_CTRL register definitions
304  **********************************************************************/
305 #define USBD_LOG_ENDPOINT(e)	((e) << 2)
306 #define USBD_WR_EN		(1 << 1)
307 #define USBD_RD_EN		(1 << 0)
308 
309 /**********************************************************************
310  * USBD_CMDCODE register definitions
311  **********************************************************************/
312 #define USBD_CMD_CODE(c)	((c) << 16)
313 #define USBD_CMD_PHASE(p)	((p) << 8)
314 
315 /**********************************************************************
316  * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
317  **********************************************************************/
318 #define USBD_DMAEP(e)		(1 << (e))
319 
320 /* DD (DMA Descriptor) structure, requires word alignment */
321 struct lpc32xx_usbd_dd {
322 	u32 *dd_next;
323 	u32 dd_setup;
324 	u32 dd_buffer_addr;
325 	u32 dd_status;
326 	u32 dd_iso_ps_mem_addr;
327 };
328 
329 /* dd_setup bit defines */
330 #define DD_SETUP_ATLE_DMA_MODE	0x01
331 #define DD_SETUP_NEXT_DD_VALID	0x04
332 #define DD_SETUP_ISO_EP		0x10
333 #define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
334 #define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
335 
336 /* dd_status bit defines */
337 #define DD_STATUS_DD_RETIRED	0x01
338 #define DD_STATUS_STS_MASK	0x1E
339 #define DD_STATUS_STS_NS	0x00 /* Not serviced */
340 #define DD_STATUS_STS_BS	0x02 /* Being serviced */
341 #define DD_STATUS_STS_NC	0x04 /* Normal completion */
342 #define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
343 #define DD_STATUS_STS_DOR	0x08 /* Data overrun */
344 #define DD_STATUS_STS_SE	0x12 /* System error */
345 #define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
346 #define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
347 #define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
348 #define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
349 #define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
350 
351 /*
352  *
353  * Protocol engine bits below
354  *
355  */
356 /* Device Interrupt Bit Definitions */
357 #define FRAME_INT		0x00000001
358 #define EP_FAST_INT		0x00000002
359 #define EP_SLOW_INT		0x00000004
360 #define DEV_STAT_INT		0x00000008
361 #define CCEMTY_INT		0x00000010
362 #define CDFULL_INT		0x00000020
363 #define RxENDPKT_INT		0x00000040
364 #define TxENDPKT_INT		0x00000080
365 #define EP_RLZED_INT		0x00000100
366 #define ERR_INT			0x00000200
367 
368 /* Rx & Tx Packet Length Definitions */
369 #define PKT_LNGTH_MASK		0x000003FF
370 #define PKT_DV			0x00000400
371 #define PKT_RDY			0x00000800
372 
373 /* USB Control Definitions */
374 #define CTRL_RD_EN		0x00000001
375 #define CTRL_WR_EN		0x00000002
376 
377 /* Command Codes */
378 #define CMD_SET_ADDR		0x00D00500
379 #define CMD_CFG_DEV		0x00D80500
380 #define CMD_SET_MODE		0x00F30500
381 #define CMD_RD_FRAME		0x00F50500
382 #define DAT_RD_FRAME		0x00F50200
383 #define CMD_RD_TEST		0x00FD0500
384 #define DAT_RD_TEST		0x00FD0200
385 #define CMD_SET_DEV_STAT	0x00FE0500
386 #define CMD_GET_DEV_STAT	0x00FE0500
387 #define DAT_GET_DEV_STAT	0x00FE0200
388 #define CMD_GET_ERR_CODE	0x00FF0500
389 #define DAT_GET_ERR_CODE	0x00FF0200
390 #define CMD_RD_ERR_STAT		0x00FB0500
391 #define DAT_RD_ERR_STAT		0x00FB0200
392 #define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
393 #define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
394 #define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
395 #define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
396 #define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
397 #define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
398 #define CMD_CLR_BUF		0x00F20500
399 #define DAT_CLR_BUF		0x00F20200
400 #define CMD_VALID_BUF		0x00FA0500
401 
402 /* Device Address Register Definitions */
403 #define DEV_ADDR_MASK		0x7F
404 #define DEV_EN			0x80
405 
406 /* Device Configure Register Definitions */
407 #define CONF_DVICE		0x01
408 
409 /* Device Mode Register Definitions */
410 #define AP_CLK			0x01
411 #define INAK_CI			0x02
412 #define INAK_CO			0x04
413 #define INAK_II			0x08
414 #define INAK_IO			0x10
415 #define INAK_BI			0x20
416 #define INAK_BO			0x40
417 
418 /* Device Status Register Definitions */
419 #define DEV_CON			0x01
420 #define DEV_CON_CH		0x02
421 #define DEV_SUS			0x04
422 #define DEV_SUS_CH		0x08
423 #define DEV_RST			0x10
424 
425 /* Error Code Register Definitions */
426 #define ERR_EC_MASK		0x0F
427 #define ERR_EA			0x10
428 
429 /* Error Status Register Definitions */
430 #define ERR_PID			0x01
431 #define ERR_UEPKT		0x02
432 #define ERR_DCRC		0x04
433 #define ERR_TIMOUT		0x08
434 #define ERR_EOP			0x10
435 #define ERR_B_OVRN		0x20
436 #define ERR_BTSTF		0x40
437 #define ERR_TGL			0x80
438 
439 /* Endpoint Select Register Definitions */
440 #define EP_SEL_F		0x01
441 #define EP_SEL_ST		0x02
442 #define EP_SEL_STP		0x04
443 #define EP_SEL_PO		0x08
444 #define EP_SEL_EPN		0x10
445 #define EP_SEL_B_1_FULL		0x20
446 #define EP_SEL_B_2_FULL		0x40
447 
448 /* Endpoint Status Register Definitions */
449 #define EP_STAT_ST		0x01
450 #define EP_STAT_DA		0x20
451 #define EP_STAT_RF_MO		0x40
452 #define EP_STAT_CND_ST		0x80
453 
454 /* Clear Buffer Register Definitions */
455 #define CLR_BUF_PO		0x01
456 
457 /* DMA Interrupt Bit Definitions */
458 #define EOT_INT			0x01
459 #define NDD_REQ_INT		0x02
460 #define SYS_ERR_INT		0x04
461 
462 #define	DRIVER_VERSION	"1.03"
463 static const char driver_name[] = "lpc32xx_udc";
464 
465 /*
466  *
467  * proc interface support
468  *
469  */
470 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
471 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
472 static const char debug_filename[] = "driver/udc";
473 
474 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
475 {
476 	struct lpc32xx_request *req;
477 
478 	seq_printf(s, "\n");
479 	seq_printf(s, "%12s, maxpacket %4d %3s",
480 			ep->ep.name, ep->ep.maxpacket,
481 			ep->is_in ? "in" : "out");
482 	seq_printf(s, " type %4s", epnames[ep->eptype]);
483 	seq_printf(s, " ints: %12d", ep->totalints);
484 
485 	if (list_empty(&ep->queue))
486 		seq_printf(s, "\t(queue empty)\n");
487 	else {
488 		list_for_each_entry(req, &ep->queue, queue) {
489 			u32 length = req->req.actual;
490 
491 			seq_printf(s, "\treq %p len %d/%d buf %p\n",
492 				   &req->req, length,
493 				   req->req.length, req->req.buf);
494 		}
495 	}
496 }
497 
498 static int udc_show(struct seq_file *s, void *unused)
499 {
500 	struct lpc32xx_udc *udc = s->private;
501 	struct lpc32xx_ep *ep;
502 	unsigned long flags;
503 
504 	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
505 
506 	spin_lock_irqsave(&udc->lock, flags);
507 
508 	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
509 		   udc->vbus ? "present" : "off",
510 		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
511 		   "disabled",
512 		   udc->gadget.is_selfpowered ? "self" : "VBUS",
513 		   udc->suspended ? ", suspended" : "",
514 		   udc->driver ? udc->driver->driver.name : "(none)");
515 
516 	if (udc->enabled && udc->vbus) {
517 		proc_ep_show(s, &udc->ep[0]);
518 		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
519 			proc_ep_show(s, ep);
520 	}
521 
522 	spin_unlock_irqrestore(&udc->lock, flags);
523 
524 	return 0;
525 }
526 
527 DEFINE_SHOW_ATTRIBUTE(udc);
528 
529 static void create_debug_file(struct lpc32xx_udc *udc)
530 {
531 	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &udc_fops);
532 }
533 
534 static void remove_debug_file(struct lpc32xx_udc *udc)
535 {
536 	debugfs_remove(udc->pde);
537 }
538 
539 #else
540 static inline void create_debug_file(struct lpc32xx_udc *udc) {}
541 static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
542 #endif
543 
544 /* Primary initialization sequence for the ISP1301 transceiver */
545 static void isp1301_udc_configure(struct lpc32xx_udc *udc)
546 {
547 	u8 value;
548 	s32 vendor, product;
549 
550 	vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00);
551 	product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02);
552 
553 	if (vendor == 0x0483 && product == 0xa0c4)
554 		udc->atx = STOTG04;
555 
556 	/* LPC32XX only supports DAT_SE0 USB mode */
557 	/* This sequence is important */
558 
559 	/* Disable transparent UART mode first */
560 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
561 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
562 		MC1_UART_EN);
563 
564 	/* Set full speed and SE0 mode */
565 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
566 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
567 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
568 		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
569 
570 	/*
571 	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
572 	 */
573 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
574 		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
575 
576 	value = MC2_BI_DI;
577 	if (udc->atx != STOTG04)
578 		value |= MC2_SPD_SUSP_CTRL;
579 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
580 		ISP1301_I2C_MODE_CONTROL_2, value);
581 
582 	/* Driver VBUS_DRV high or low depending on board setup */
583 	if (udc->board->vbus_drv_pol != 0)
584 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
585 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
586 	else
587 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
588 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
589 			OTG1_VBUS_DRV);
590 
591 	/* Bi-directional mode with suspend control
592 	 * Enable both pulldowns for now - the pullup will be enable when VBUS
593 	 * is detected */
594 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
595 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
596 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
597 		ISP1301_I2C_OTG_CONTROL_1,
598 		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
599 
600 	/* Discharge VBUS (just in case) */
601 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
602 		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
603 	msleep(1);
604 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
605 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
606 		OTG1_VBUS_DISCHRG);
607 
608 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
609 		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
610 
611 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
612 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
613 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
614 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
615 
616 	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n", vendor);
617 	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
618 	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
619 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
620 
621 }
622 
623 /* Enables or disables the USB device pullup via the ISP1301 transceiver */
624 static void isp1301_pullup_set(struct lpc32xx_udc *udc)
625 {
626 	if (udc->pullup)
627 		/* Enable pullup for bus signalling */
628 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
629 			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
630 	else
631 		/* Enable pullup for bus signalling */
632 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
633 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
634 			OTG1_DP_PULLUP);
635 }
636 
637 static void pullup_work(struct work_struct *work)
638 {
639 	struct lpc32xx_udc *udc =
640 		container_of(work, struct lpc32xx_udc, pullup_job);
641 
642 	isp1301_pullup_set(udc);
643 }
644 
645 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
646 				  int block)
647 {
648 	if (en_pullup == udc->pullup)
649 		return;
650 
651 	udc->pullup = en_pullup;
652 	if (block)
653 		isp1301_pullup_set(udc);
654 	else
655 		/* defer slow i2c pull up setting */
656 		schedule_work(&udc->pullup_job);
657 }
658 
659 #ifdef CONFIG_PM
660 /* Powers up or down the ISP1301 transceiver */
661 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
662 {
663 	/* There is no "global power down" register for stotg04 */
664 	if (udc->atx == STOTG04)
665 		return;
666 
667 	if (enable != 0)
668 		/* Power up ISP1301 - this ISP1301 will automatically wakeup
669 		   when VBUS is detected */
670 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
671 			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
672 			MC2_GLOBAL_PWR_DN);
673 	else
674 		/* Power down ISP1301 */
675 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
676 			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
677 }
678 
679 static void power_work(struct work_struct *work)
680 {
681 	struct lpc32xx_udc *udc =
682 		container_of(work, struct lpc32xx_udc, power_job);
683 
684 	isp1301_set_powerstate(udc, udc->poweron);
685 }
686 #endif
687 
688 /*
689  *
690  * USB protocol engine command/data read/write helper functions
691  *
692  */
693 /* Issues a single command to the USB device state machine */
694 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
695 {
696 	u32 pass = 0;
697 	int to;
698 
699 	/* EP may lock on CLRI if this read isn't done */
700 	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
701 	(void) tmp;
702 
703 	while (pass == 0) {
704 		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
705 
706 		/* Write command code */
707 		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
708 		to = 10000;
709 		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
710 			 USBD_CCEMPTY) == 0) && (to > 0)) {
711 			to--;
712 		}
713 
714 		if (to > 0)
715 			pass = 1;
716 
717 		cpu_relax();
718 	}
719 }
720 
721 /* Issues 2 commands (or command and data) to the USB device state machine */
722 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
723 					   u32 data)
724 {
725 	udc_protocol_cmd_w(udc, cmd);
726 	udc_protocol_cmd_w(udc, data);
727 }
728 
729 /* Issues a single command to the USB device state machine and reads
730  * response data */
731 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
732 {
733 	int to = 1000;
734 
735 	/* Write a command and read data from the protocol engine */
736 	writel((USBD_CDFULL | USBD_CCEMPTY),
737 		     USBD_DEVINTCLR(udc->udp_baseaddr));
738 
739 	/* Write command code */
740 	udc_protocol_cmd_w(udc, cmd);
741 
742 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
743 	       && (to > 0))
744 		to--;
745 	if (!to)
746 		dev_dbg(udc->dev,
747 			"Protocol engine didn't receive response (CDFULL)\n");
748 
749 	return readl(USBD_CMDDATA(udc->udp_baseaddr));
750 }
751 
752 /*
753  *
754  * USB device interrupt mask support functions
755  *
756  */
757 /* Enable one or more USB device interrupts */
758 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
759 {
760 	udc->enabled_devints |= devmask;
761 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
762 }
763 
764 /* Disable one or more USB device interrupts */
765 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
766 {
767 	udc->enabled_devints &= ~mask;
768 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
769 }
770 
771 /* Clear one or more USB device interrupts */
772 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
773 {
774 	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
775 }
776 
777 /*
778  *
779  * Endpoint interrupt disable/enable functions
780  *
781  */
782 /* Enable one or more USB endpoint interrupts */
783 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
784 {
785 	udc->enabled_hwepints |= (1 << hwep);
786 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
787 }
788 
789 /* Disable one or more USB endpoint interrupts */
790 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
791 {
792 	udc->enabled_hwepints &= ~(1 << hwep);
793 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
794 }
795 
796 /* Clear one or more USB endpoint interrupts */
797 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
798 {
799 	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
800 }
801 
802 /* Enable DMA for the HW channel */
803 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
804 {
805 	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
806 }
807 
808 /* Disable DMA for the HW channel */
809 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
810 {
811 	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
812 }
813 
814 /*
815  *
816  * Endpoint realize/unrealize functions
817  *
818  */
819 /* Before an endpoint can be used, it needs to be realized
820  * in the USB protocol engine - this realizes the endpoint.
821  * The interrupt (FIFO or DMA) is not enabled with this function */
822 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
823 			     u32 maxpacket)
824 {
825 	int to = 1000;
826 
827 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
828 	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
829 	udc->realized_eps |= (1 << hwep);
830 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
831 	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
832 
833 	/* Wait until endpoint is realized in hardware */
834 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
835 		  USBD_EP_RLZED)) && (to > 0))
836 		to--;
837 	if (!to)
838 		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
839 
840 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
841 }
842 
843 /* Unrealize an EP */
844 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
845 {
846 	udc->realized_eps &= ~(1 << hwep);
847 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
848 }
849 
850 /*
851  *
852  * Endpoint support functions
853  *
854  */
855 /* Select and clear endpoint interrupt */
856 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
857 {
858 	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
859 	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
860 }
861 
862 /* Disables the endpoint in the USB protocol engine */
863 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
864 {
865 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
866 				DAT_WR_BYTE(EP_STAT_DA));
867 }
868 
869 /* Stalls the endpoint - endpoint will return STALL */
870 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
871 {
872 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
873 				DAT_WR_BYTE(EP_STAT_ST));
874 }
875 
876 /* Clear stall or reset endpoint */
877 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
878 {
879 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
880 				DAT_WR_BYTE(0));
881 }
882 
883 /* Select an endpoint for endpoint status, clear, validate */
884 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
885 {
886 	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
887 }
888 
889 /*
890  *
891  * Endpoint buffer management functions
892  *
893  */
894 /* Clear the current endpoint's buffer */
895 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
896 {
897 	udc_select_hwep(udc, hwep);
898 	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
899 }
900 
901 /* Validate the current endpoint's buffer */
902 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
903 {
904 	udc_select_hwep(udc, hwep);
905 	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
906 }
907 
908 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
909 {
910 	/* Clear EP interrupt */
911 	uda_clear_hwepint(udc, hwep);
912 	return udc_selep_clrint(udc, hwep);
913 }
914 
915 /*
916  *
917  * USB EP DMA support
918  *
919  */
920 /* Allocate a DMA Descriptor */
921 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
922 {
923 	dma_addr_t			dma;
924 	struct lpc32xx_usbd_dd_gad	*dd;
925 
926 	dd = dma_pool_alloc(udc->dd_cache, GFP_ATOMIC | GFP_DMA, &dma);
927 	if (dd)
928 		dd->this_dma = dma;
929 
930 	return dd;
931 }
932 
933 /* Free a DMA Descriptor */
934 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
935 {
936 	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
937 }
938 
939 /*
940  *
941  * USB setup and shutdown functions
942  *
943  */
944 /* Enables or disables most of the USB system clocks when low power mode is
945  * needed. Clocks are typically started on a connection event, and disabled
946  * when a cable is disconnected */
947 static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
948 {
949 	if (enable != 0) {
950 		if (udc->clocked)
951 			return;
952 
953 		udc->clocked = 1;
954 		clk_prepare_enable(udc->usb_slv_clk);
955 	} else {
956 		if (!udc->clocked)
957 			return;
958 
959 		udc->clocked = 0;
960 		clk_disable_unprepare(udc->usb_slv_clk);
961 	}
962 }
963 
964 /* Set/reset USB device address */
965 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
966 {
967 	/* Address will be latched at the end of the status phase, or
968 	   latched immediately if function is called twice */
969 	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
970 				DAT_WR_BYTE(DEV_EN | addr));
971 }
972 
973 /* Setup up a IN request for DMA transfer - this consists of determining the
974  * list of DMA addresses for the transfer, allocating DMA Descriptors,
975  * installing the DD into the UDCA, and then enabling the DMA for that EP */
976 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
977 {
978 	struct lpc32xx_request *req;
979 	u32 hwep = ep->hwep_num;
980 
981 	ep->req_pending = 1;
982 
983 	/* There will always be a request waiting here */
984 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
985 
986 	/* Place the DD Descriptor into the UDCA */
987 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
988 
989 	/* Enable DMA and interrupt for the HW EP */
990 	udc_ep_dma_enable(udc, hwep);
991 
992 	/* Clear ZLP if last packet is not of MAXP size */
993 	if (req->req.length % ep->ep.maxpacket)
994 		req->send_zlp = 0;
995 
996 	return 0;
997 }
998 
999 /* Setup up a OUT request for DMA transfer - this consists of determining the
1000  * list of DMA addresses for the transfer, allocating DMA Descriptors,
1001  * installing the DD into the UDCA, and then enabling the DMA for that EP */
1002 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1003 {
1004 	struct lpc32xx_request *req;
1005 	u32 hwep = ep->hwep_num;
1006 
1007 	ep->req_pending = 1;
1008 
1009 	/* There will always be a request waiting here */
1010 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1011 
1012 	/* Place the DD Descriptor into the UDCA */
1013 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1014 
1015 	/* Enable DMA and interrupt for the HW EP */
1016 	udc_ep_dma_enable(udc, hwep);
1017 	return 0;
1018 }
1019 
1020 static void udc_disable(struct lpc32xx_udc *udc)
1021 {
1022 	u32 i;
1023 
1024 	/* Disable device */
1025 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1026 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1027 
1028 	/* Disable all device interrupts (including EP0) */
1029 	uda_disable_devint(udc, 0x3FF);
1030 
1031 	/* Disable and reset all endpoint interrupts */
1032 	for (i = 0; i < 32; i++) {
1033 		uda_disable_hwepint(udc, i);
1034 		uda_clear_hwepint(udc, i);
1035 		udc_disable_hwep(udc, i);
1036 		udc_unrealize_hwep(udc, i);
1037 		udc->udca_v_base[i] = 0;
1038 
1039 		/* Disable and clear all interrupts and DMA */
1040 		udc_ep_dma_disable(udc, i);
1041 		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1042 		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1043 		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1044 		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1045 	}
1046 
1047 	/* Disable DMA interrupts */
1048 	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1049 
1050 	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1051 }
1052 
1053 static void udc_enable(struct lpc32xx_udc *udc)
1054 {
1055 	u32 i;
1056 	struct lpc32xx_ep *ep = &udc->ep[0];
1057 
1058 	/* Start with known state */
1059 	udc_disable(udc);
1060 
1061 	/* Enable device */
1062 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1063 
1064 	/* EP interrupts on high priority, FRAME interrupt on low priority */
1065 	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1066 	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1067 
1068 	/* Clear any pending device interrupts */
1069 	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1070 
1071 	/* Setup UDCA - not yet used (DMA) */
1072 	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1073 
1074 	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1075 	for (i = 0; i <= 1; i++) {
1076 		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1077 		uda_enable_hwepint(udc, i);
1078 		udc_select_hwep(udc, i);
1079 		udc_clrstall_hwep(udc, i);
1080 		udc_clr_buffer_hwep(udc, i);
1081 	}
1082 
1083 	/* Device interrupt setup */
1084 	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1085 			       USBD_EP_FAST));
1086 	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1087 				USBD_EP_FAST));
1088 
1089 	/* Set device address to 0 - called twice to force a latch in the USB
1090 	   engine without the need of a setup packet status closure */
1091 	udc_set_address(udc, 0);
1092 	udc_set_address(udc, 0);
1093 
1094 	/* Enable master DMA interrupts */
1095 	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1096 		     USBD_DMAINTEN(udc->udp_baseaddr));
1097 
1098 	udc->dev_status = 0;
1099 }
1100 
1101 /*
1102  *
1103  * USB device board specific events handled via callbacks
1104  *
1105  */
1106 /* Connection change event - notify board function of change */
1107 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1108 {
1109 	/* Just notify of a connection change event (optional) */
1110 	if (udc->board->conn_chgb != NULL)
1111 		udc->board->conn_chgb(conn);
1112 }
1113 
1114 /* Suspend/resume event - notify board function of change */
1115 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1116 {
1117 	/* Just notify of a Suspend/resume change event (optional) */
1118 	if (udc->board->susp_chgb != NULL)
1119 		udc->board->susp_chgb(conn);
1120 
1121 	if (conn)
1122 		udc->suspended = 0;
1123 	else
1124 		udc->suspended = 1;
1125 }
1126 
1127 /* Remote wakeup enable/disable - notify board function of change */
1128 static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1129 {
1130 	if (udc->board->rmwk_chgb != NULL)
1131 		udc->board->rmwk_chgb(udc->dev_status &
1132 				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1133 }
1134 
1135 /* Reads data from FIFO, adjusts for alignment and data size */
1136 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1137 {
1138 	int n, i, bl;
1139 	u16 *p16;
1140 	u32 *p32, tmp, cbytes;
1141 
1142 	/* Use optimal data transfer method based on source address and size */
1143 	switch (((uintptr_t) data) & 0x3) {
1144 	case 0: /* 32-bit aligned */
1145 		p32 = (u32 *) data;
1146 		cbytes = (bytes & ~0x3);
1147 
1148 		/* Copy 32-bit aligned data first */
1149 		for (n = 0; n < cbytes; n += 4)
1150 			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1151 
1152 		/* Handle any remaining bytes */
1153 		bl = bytes - cbytes;
1154 		if (bl) {
1155 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1156 			for (n = 0; n < bl; n++)
1157 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1158 
1159 		}
1160 		break;
1161 
1162 	case 1: /* 8-bit aligned */
1163 	case 3:
1164 		/* Each byte has to be handled independently */
1165 		for (n = 0; n < bytes; n += 4) {
1166 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1167 
1168 			bl = bytes - n;
1169 			if (bl > 4)
1170 				bl = 4;
1171 
1172 			for (i = 0; i < bl; i++)
1173 				data[n + i] = (u8) ((tmp >> (i * 8)) & 0xFF);
1174 		}
1175 		break;
1176 
1177 	case 2: /* 16-bit aligned */
1178 		p16 = (u16 *) data;
1179 		cbytes = (bytes & ~0x3);
1180 
1181 		/* Copy 32-bit sized objects first with 16-bit alignment */
1182 		for (n = 0; n < cbytes; n += 4) {
1183 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1184 			*p16++ = (u16)(tmp & 0xFFFF);
1185 			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1186 		}
1187 
1188 		/* Handle any remaining bytes */
1189 		bl = bytes - cbytes;
1190 		if (bl) {
1191 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1192 			for (n = 0; n < bl; n++)
1193 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1194 		}
1195 		break;
1196 	}
1197 }
1198 
1199 /* Read data from the FIFO for an endpoint. This function is for endpoints (such
1200  * as EP0) that don't use DMA. This function should only be called if a packet
1201  * is known to be ready to read for the endpoint. Note that the endpoint must
1202  * be selected in the protocol engine prior to this call. */
1203 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1204 			 u32 bytes)
1205 {
1206 	u32 tmpv;
1207 	int to = 1000;
1208 	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1209 
1210 	/* Setup read of endpoint */
1211 	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1212 
1213 	/* Wait until packet is ready */
1214 	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1215 		 PKT_RDY) == 0)	&& (to > 0))
1216 		to--;
1217 	if (!to)
1218 		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1219 
1220 	/* Mask out count */
1221 	tmp = tmpv & PKT_LNGTH_MASK;
1222 	if (bytes < tmp)
1223 		tmp = bytes;
1224 
1225 	if ((tmp > 0) && (data != NULL))
1226 		udc_pop_fifo(udc, (u8 *) data, tmp);
1227 
1228 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1229 
1230 	/* Clear the buffer */
1231 	udc_clr_buffer_hwep(udc, hwep);
1232 
1233 	return tmp;
1234 }
1235 
1236 /* Stuffs data into the FIFO, adjusts for alignment and data size */
1237 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1238 {
1239 	int n, i, bl;
1240 	u16 *p16;
1241 	u32 *p32, tmp, cbytes;
1242 
1243 	/* Use optimal data transfer method based on source address and size */
1244 	switch (((uintptr_t) data) & 0x3) {
1245 	case 0: /* 32-bit aligned */
1246 		p32 = (u32 *) data;
1247 		cbytes = (bytes & ~0x3);
1248 
1249 		/* Copy 32-bit aligned data first */
1250 		for (n = 0; n < cbytes; n += 4)
1251 			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1252 
1253 		/* Handle any remaining bytes */
1254 		bl = bytes - cbytes;
1255 		if (bl) {
1256 			tmp = 0;
1257 			for (n = 0; n < bl; n++)
1258 				tmp |= data[cbytes + n] << (n * 8);
1259 
1260 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1261 		}
1262 		break;
1263 
1264 	case 1: /* 8-bit aligned */
1265 	case 3:
1266 		/* Each byte has to be handled independently */
1267 		for (n = 0; n < bytes; n += 4) {
1268 			bl = bytes - n;
1269 			if (bl > 4)
1270 				bl = 4;
1271 
1272 			tmp = 0;
1273 			for (i = 0; i < bl; i++)
1274 				tmp |= data[n + i] << (i * 8);
1275 
1276 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1277 		}
1278 		break;
1279 
1280 	case 2: /* 16-bit aligned */
1281 		p16 = (u16 *) data;
1282 		cbytes = (bytes & ~0x3);
1283 
1284 		/* Copy 32-bit aligned data first */
1285 		for (n = 0; n < cbytes; n += 4) {
1286 			tmp = *p16++ & 0xFFFF;
1287 			tmp |= (*p16++ & 0xFFFF) << 16;
1288 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1289 		}
1290 
1291 		/* Handle any remaining bytes */
1292 		bl = bytes - cbytes;
1293 		if (bl) {
1294 			tmp = 0;
1295 			for (n = 0; n < bl; n++)
1296 				tmp |= data[cbytes + n] << (n * 8);
1297 
1298 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1299 		}
1300 		break;
1301 	}
1302 }
1303 
1304 /* Write data to the FIFO for an endpoint. This function is for endpoints (such
1305  * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1306  * protocol engine prior to this call. */
1307 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1308 			   u32 bytes)
1309 {
1310 	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1311 
1312 	if ((bytes > 0) && (data == NULL))
1313 		return;
1314 
1315 	/* Setup write of endpoint */
1316 	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1317 
1318 	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1319 
1320 	/* Need at least 1 byte to trigger TX */
1321 	if (bytes == 0)
1322 		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1323 	else
1324 		udc_stuff_fifo(udc, (u8 *) data, bytes);
1325 
1326 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1327 
1328 	udc_val_buffer_hwep(udc, hwep);
1329 }
1330 
1331 /* USB device reset - resets USB to a default state with just EP0
1332    enabled */
1333 static void uda_usb_reset(struct lpc32xx_udc *udc)
1334 {
1335 	u32 i = 0;
1336 	/* Re-init device controller and EP0 */
1337 	udc_enable(udc);
1338 	udc->gadget.speed = USB_SPEED_FULL;
1339 
1340 	for (i = 1; i < NUM_ENDPOINTS; i++) {
1341 		struct lpc32xx_ep *ep = &udc->ep[i];
1342 		ep->req_pending = 0;
1343 	}
1344 }
1345 
1346 /* Send a ZLP on EP0 */
1347 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1348 {
1349 	udc_write_hwep(udc, EP_IN, NULL, 0);
1350 }
1351 
1352 /* Get current frame number */
1353 static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1354 {
1355 	u16 flo, fhi;
1356 
1357 	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1358 	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1359 	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1360 
1361 	return (fhi << 8) | flo;
1362 }
1363 
1364 /* Set the device as configured - enables all endpoints */
1365 static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1366 {
1367 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1368 }
1369 
1370 /* Set the device as unconfigured - disables all endpoints */
1371 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1372 {
1373 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1374 }
1375 
1376 /* reinit == restore initial software state */
1377 static void udc_reinit(struct lpc32xx_udc *udc)
1378 {
1379 	u32 i;
1380 
1381 	INIT_LIST_HEAD(&udc->gadget.ep_list);
1382 	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1383 
1384 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1385 		struct lpc32xx_ep *ep = &udc->ep[i];
1386 
1387 		if (i != 0)
1388 			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1389 		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1390 		INIT_LIST_HEAD(&ep->queue);
1391 		ep->req_pending = 0;
1392 	}
1393 
1394 	udc->ep0state = WAIT_FOR_SETUP;
1395 }
1396 
1397 /* Must be called with lock */
1398 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1399 {
1400 	struct lpc32xx_udc *udc = ep->udc;
1401 
1402 	list_del_init(&req->queue);
1403 	if (req->req.status == -EINPROGRESS)
1404 		req->req.status = status;
1405 	else
1406 		status = req->req.status;
1407 
1408 	if (ep->lep) {
1409 		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1410 
1411 		/* Free DDs */
1412 		udc_dd_free(udc, req->dd_desc_ptr);
1413 	}
1414 
1415 	if (status && status != -ESHUTDOWN)
1416 		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1417 
1418 	ep->req_pending = 0;
1419 	spin_unlock(&udc->lock);
1420 	usb_gadget_giveback_request(&ep->ep, &req->req);
1421 	spin_lock(&udc->lock);
1422 }
1423 
1424 /* Must be called with lock */
1425 static void nuke(struct lpc32xx_ep *ep, int status)
1426 {
1427 	struct lpc32xx_request *req;
1428 
1429 	while (!list_empty(&ep->queue)) {
1430 		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1431 		done(ep, req, status);
1432 	}
1433 
1434 	if (status == -ESHUTDOWN) {
1435 		uda_disable_hwepint(ep->udc, ep->hwep_num);
1436 		udc_disable_hwep(ep->udc, ep->hwep_num);
1437 	}
1438 }
1439 
1440 /* IN endpoint 0 transfer */
1441 static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1442 {
1443 	struct lpc32xx_request *req;
1444 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1445 	u32 tsend, ts = 0;
1446 
1447 	if (list_empty(&ep0->queue))
1448 		/* Nothing to send */
1449 		return 0;
1450 	else
1451 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1452 				 queue);
1453 
1454 	tsend = ts = req->req.length - req->req.actual;
1455 	if (ts == 0) {
1456 		/* Send a ZLP */
1457 		udc_ep0_send_zlp(udc);
1458 		done(ep0, req, 0);
1459 		return 1;
1460 	} else if (ts > ep0->ep.maxpacket)
1461 		ts = ep0->ep.maxpacket; /* Just send what we can */
1462 
1463 	/* Write data to the EP0 FIFO and start transfer */
1464 	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1465 
1466 	/* Increment data pointer */
1467 	req->req.actual += ts;
1468 
1469 	if (tsend >= ep0->ep.maxpacket)
1470 		return 0; /* Stay in data transfer state */
1471 
1472 	/* Transfer request is complete */
1473 	udc->ep0state = WAIT_FOR_SETUP;
1474 	done(ep0, req, 0);
1475 	return 1;
1476 }
1477 
1478 /* OUT endpoint 0 transfer */
1479 static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1480 {
1481 	struct lpc32xx_request *req;
1482 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1483 	u32 tr, bufferspace;
1484 
1485 	if (list_empty(&ep0->queue))
1486 		return 0;
1487 	else
1488 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1489 				 queue);
1490 
1491 	if (req) {
1492 		if (req->req.length == 0) {
1493 			/* Just dequeue request */
1494 			done(ep0, req, 0);
1495 			udc->ep0state = WAIT_FOR_SETUP;
1496 			return 1;
1497 		}
1498 
1499 		/* Get data from FIFO */
1500 		bufferspace = req->req.length - req->req.actual;
1501 		if (bufferspace > ep0->ep.maxpacket)
1502 			bufferspace = ep0->ep.maxpacket;
1503 
1504 		/* Copy data to buffer */
1505 		prefetchw(req->req.buf + req->req.actual);
1506 		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1507 				   bufferspace);
1508 		req->req.actual += bufferspace;
1509 
1510 		if (tr < ep0->ep.maxpacket) {
1511 			/* This is the last packet */
1512 			done(ep0, req, 0);
1513 			udc->ep0state = WAIT_FOR_SETUP;
1514 			return 1;
1515 		}
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 /* Must be called with lock */
1522 static void stop_activity(struct lpc32xx_udc *udc)
1523 {
1524 	struct usb_gadget_driver *driver = udc->driver;
1525 	int i;
1526 
1527 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1528 		driver = NULL;
1529 
1530 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1531 	udc->suspended = 0;
1532 
1533 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1534 		struct lpc32xx_ep *ep = &udc->ep[i];
1535 		nuke(ep, -ESHUTDOWN);
1536 	}
1537 	if (driver) {
1538 		spin_unlock(&udc->lock);
1539 		driver->disconnect(&udc->gadget);
1540 		spin_lock(&udc->lock);
1541 	}
1542 
1543 	isp1301_pullup_enable(udc, 0, 0);
1544 	udc_disable(udc);
1545 	udc_reinit(udc);
1546 }
1547 
1548 /*
1549  * Activate or kill host pullup
1550  * Can be called with or without lock
1551  */
1552 static void pullup(struct lpc32xx_udc *udc, int is_on)
1553 {
1554 	if (!udc->clocked)
1555 		return;
1556 
1557 	if (!udc->enabled || !udc->vbus)
1558 		is_on = 0;
1559 
1560 	if (is_on != udc->pullup)
1561 		isp1301_pullup_enable(udc, is_on, 0);
1562 }
1563 
1564 /* Must be called without lock */
1565 static int lpc32xx_ep_disable(struct usb_ep *_ep)
1566 {
1567 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1568 	struct lpc32xx_udc *udc = ep->udc;
1569 	unsigned long	flags;
1570 
1571 	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1572 		return -EINVAL;
1573 	spin_lock_irqsave(&udc->lock, flags);
1574 
1575 	nuke(ep, -ESHUTDOWN);
1576 
1577 	/* Clear all DMA statuses for this EP */
1578 	udc_ep_dma_disable(udc, ep->hwep_num);
1579 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1580 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1581 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1582 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1583 
1584 	/* Remove the DD pointer in the UDCA */
1585 	udc->udca_v_base[ep->hwep_num] = 0;
1586 
1587 	/* Disable and reset endpoint and interrupt */
1588 	uda_clear_hwepint(udc, ep->hwep_num);
1589 	udc_unrealize_hwep(udc, ep->hwep_num);
1590 
1591 	ep->hwep_num = 0;
1592 
1593 	spin_unlock_irqrestore(&udc->lock, flags);
1594 
1595 	atomic_dec(&udc->enabled_ep_cnt);
1596 	wake_up(&udc->ep_disable_wait_queue);
1597 
1598 	return 0;
1599 }
1600 
1601 /* Must be called without lock */
1602 static int lpc32xx_ep_enable(struct usb_ep *_ep,
1603 			     const struct usb_endpoint_descriptor *desc)
1604 {
1605 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1606 	struct lpc32xx_udc *udc;
1607 	u16 maxpacket;
1608 	u32 tmp;
1609 	unsigned long flags;
1610 
1611 	/* Verify EP data */
1612 	if ((!_ep) || (!ep) || (!desc) ||
1613 	    (desc->bDescriptorType != USB_DT_ENDPOINT))
1614 		return -EINVAL;
1615 
1616 	udc = ep->udc;
1617 	maxpacket = usb_endpoint_maxp(desc);
1618 	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1619 		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1620 		return -EINVAL;
1621 	}
1622 
1623 	/* Don't touch EP0 */
1624 	if (ep->hwep_num_base == 0) {
1625 		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1626 		return -EINVAL;
1627 	}
1628 
1629 	/* Is driver ready? */
1630 	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1631 		dev_dbg(udc->dev, "bogus device state\n");
1632 		return -ESHUTDOWN;
1633 	}
1634 
1635 	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1636 	switch (tmp) {
1637 	case USB_ENDPOINT_XFER_CONTROL:
1638 		return -EINVAL;
1639 
1640 	case USB_ENDPOINT_XFER_INT:
1641 		if (maxpacket > ep->maxpacket) {
1642 			dev_dbg(udc->dev,
1643 				"Bad INT endpoint maxpacket %d\n", maxpacket);
1644 			return -EINVAL;
1645 		}
1646 		break;
1647 
1648 	case USB_ENDPOINT_XFER_BULK:
1649 		switch (maxpacket) {
1650 		case 8:
1651 		case 16:
1652 		case 32:
1653 		case 64:
1654 			break;
1655 
1656 		default:
1657 			dev_dbg(udc->dev,
1658 				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1659 			return -EINVAL;
1660 		}
1661 		break;
1662 
1663 	case USB_ENDPOINT_XFER_ISOC:
1664 		break;
1665 	}
1666 	spin_lock_irqsave(&udc->lock, flags);
1667 
1668 	/* Initialize endpoint to match the selected descriptor */
1669 	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1670 	ep->ep.maxpacket = maxpacket;
1671 
1672 	/* Map hardware endpoint from base and direction */
1673 	if (ep->is_in)
1674 		/* IN endpoints are offset 1 from the OUT endpoint */
1675 		ep->hwep_num = ep->hwep_num_base + EP_IN;
1676 	else
1677 		ep->hwep_num = ep->hwep_num_base;
1678 
1679 	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1680 	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1681 
1682 	/* Realize the endpoint, interrupt is enabled later when
1683 	 * buffers are queued, IN EPs will NAK until buffers are ready */
1684 	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1685 	udc_clr_buffer_hwep(udc, ep->hwep_num);
1686 	uda_disable_hwepint(udc, ep->hwep_num);
1687 	udc_clrstall_hwep(udc, ep->hwep_num);
1688 
1689 	/* Clear all DMA statuses for this EP */
1690 	udc_ep_dma_disable(udc, ep->hwep_num);
1691 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1692 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1693 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1694 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1695 
1696 	spin_unlock_irqrestore(&udc->lock, flags);
1697 
1698 	atomic_inc(&udc->enabled_ep_cnt);
1699 	return 0;
1700 }
1701 
1702 /*
1703  * Allocate a USB request list
1704  * Can be called with or without lock
1705  */
1706 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1707 						    gfp_t gfp_flags)
1708 {
1709 	struct lpc32xx_request *req;
1710 
1711 	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1712 	if (!req)
1713 		return NULL;
1714 
1715 	INIT_LIST_HEAD(&req->queue);
1716 	return &req->req;
1717 }
1718 
1719 /*
1720  * De-allocate a USB request list
1721  * Can be called with or without lock
1722  */
1723 static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1724 				    struct usb_request *_req)
1725 {
1726 	struct lpc32xx_request *req;
1727 
1728 	req = container_of(_req, struct lpc32xx_request, req);
1729 	BUG_ON(!list_empty(&req->queue));
1730 	kfree(req);
1731 }
1732 
1733 /* Must be called without lock */
1734 static int lpc32xx_ep_queue(struct usb_ep *_ep,
1735 			    struct usb_request *_req, gfp_t gfp_flags)
1736 {
1737 	struct lpc32xx_request *req;
1738 	struct lpc32xx_ep *ep;
1739 	struct lpc32xx_udc *udc;
1740 	unsigned long flags;
1741 	int status = 0;
1742 
1743 	req = container_of(_req, struct lpc32xx_request, req);
1744 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1745 
1746 	if (!_ep || !_req || !_req->complete || !_req->buf ||
1747 	    !list_empty(&req->queue))
1748 		return -EINVAL;
1749 
1750 	udc = ep->udc;
1751 
1752 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1753 		return -EPIPE;
1754 
1755 	if (ep->lep) {
1756 		struct lpc32xx_usbd_dd_gad *dd;
1757 
1758 		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1759 		if (status)
1760 			return status;
1761 
1762 		/* For the request, build a list of DDs */
1763 		dd = udc_dd_alloc(udc);
1764 		if (!dd) {
1765 			/* Error allocating DD */
1766 			return -ENOMEM;
1767 		}
1768 		req->dd_desc_ptr = dd;
1769 
1770 		/* Setup the DMA descriptor */
1771 		dd->dd_next_phy = dd->dd_next_v = 0;
1772 		dd->dd_buffer_addr = req->req.dma;
1773 		dd->dd_status = 0;
1774 
1775 		/* Special handling for ISO EPs */
1776 		if (ep->eptype == EP_ISO_TYPE) {
1777 			dd->dd_setup = DD_SETUP_ISO_EP |
1778 				DD_SETUP_PACKETLEN(0) |
1779 				DD_SETUP_DMALENBYTES(1);
1780 			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1781 			if (ep->is_in)
1782 				dd->iso_status[0] = req->req.length;
1783 			else
1784 				dd->iso_status[0] = 0;
1785 		} else
1786 			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1787 				DD_SETUP_DMALENBYTES(req->req.length);
1788 	}
1789 
1790 	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1791 	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1792 
1793 	spin_lock_irqsave(&udc->lock, flags);
1794 
1795 	_req->status = -EINPROGRESS;
1796 	_req->actual = 0;
1797 	req->send_zlp = _req->zero;
1798 
1799 	/* Kickstart empty queues */
1800 	if (list_empty(&ep->queue)) {
1801 		list_add_tail(&req->queue, &ep->queue);
1802 
1803 		if (ep->hwep_num_base == 0) {
1804 			/* Handle expected data direction */
1805 			if (ep->is_in) {
1806 				/* IN packet to host */
1807 				udc->ep0state = DATA_IN;
1808 				status = udc_ep0_in_req(udc);
1809 			} else {
1810 				/* OUT packet from host */
1811 				udc->ep0state = DATA_OUT;
1812 				status = udc_ep0_out_req(udc);
1813 			}
1814 		} else if (ep->is_in) {
1815 			/* IN packet to host and kick off transfer */
1816 			if (!ep->req_pending)
1817 				udc_ep_in_req_dma(udc, ep);
1818 		} else
1819 			/* OUT packet from host and kick off list */
1820 			if (!ep->req_pending)
1821 				udc_ep_out_req_dma(udc, ep);
1822 	} else
1823 		list_add_tail(&req->queue, &ep->queue);
1824 
1825 	spin_unlock_irqrestore(&udc->lock, flags);
1826 
1827 	return (status < 0) ? status : 0;
1828 }
1829 
1830 /* Must be called without lock */
1831 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1832 {
1833 	struct lpc32xx_ep *ep;
1834 	struct lpc32xx_request *req;
1835 	unsigned long flags;
1836 
1837 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1838 	if (!_ep || ep->hwep_num_base == 0)
1839 		return -EINVAL;
1840 
1841 	spin_lock_irqsave(&ep->udc->lock, flags);
1842 
1843 	/* make sure it's actually queued on this endpoint */
1844 	list_for_each_entry(req, &ep->queue, queue) {
1845 		if (&req->req == _req)
1846 			break;
1847 	}
1848 	if (&req->req != _req) {
1849 		spin_unlock_irqrestore(&ep->udc->lock, flags);
1850 		return -EINVAL;
1851 	}
1852 
1853 	done(ep, req, -ECONNRESET);
1854 
1855 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1856 
1857 	return 0;
1858 }
1859 
1860 /* Must be called without lock */
1861 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1862 {
1863 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1864 	struct lpc32xx_udc *udc;
1865 	unsigned long flags;
1866 
1867 	if ((!ep) || (ep->hwep_num <= 1))
1868 		return -EINVAL;
1869 
1870 	/* Don't halt an IN EP */
1871 	if (ep->is_in)
1872 		return -EAGAIN;
1873 
1874 	udc = ep->udc;
1875 	spin_lock_irqsave(&udc->lock, flags);
1876 
1877 	if (value == 1) {
1878 		/* stall */
1879 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1880 					DAT_WR_BYTE(EP_STAT_ST));
1881 	} else {
1882 		/* End stall */
1883 		ep->wedge = 0;
1884 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1885 					DAT_WR_BYTE(0));
1886 	}
1887 
1888 	spin_unlock_irqrestore(&udc->lock, flags);
1889 
1890 	return 0;
1891 }
1892 
1893 /* set the halt feature and ignores clear requests */
1894 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1895 {
1896 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1897 
1898 	if (!_ep || !ep->udc)
1899 		return -EINVAL;
1900 
1901 	ep->wedge = 1;
1902 
1903 	return usb_ep_set_halt(_ep);
1904 }
1905 
1906 static const struct usb_ep_ops lpc32xx_ep_ops = {
1907 	.enable		= lpc32xx_ep_enable,
1908 	.disable	= lpc32xx_ep_disable,
1909 	.alloc_request	= lpc32xx_ep_alloc_request,
1910 	.free_request	= lpc32xx_ep_free_request,
1911 	.queue		= lpc32xx_ep_queue,
1912 	.dequeue	= lpc32xx_ep_dequeue,
1913 	.set_halt	= lpc32xx_ep_set_halt,
1914 	.set_wedge	= lpc32xx_ep_set_wedge,
1915 };
1916 
1917 /* Send a ZLP on a non-0 IN EP */
1918 static void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1919 {
1920 	/* Clear EP status */
1921 	udc_clearep_getsts(udc, ep->hwep_num);
1922 
1923 	/* Send ZLP via FIFO mechanism */
1924 	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1925 }
1926 
1927 /*
1928  * Handle EP completion for ZLP
1929  * This function will only be called when a delayed ZLP needs to be sent out
1930  * after a DMA transfer has filled both buffers.
1931  */
1932 static void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1933 {
1934 	u32 epstatus;
1935 	struct lpc32xx_request *req;
1936 
1937 	if (ep->hwep_num <= 0)
1938 		return;
1939 
1940 	uda_clear_hwepint(udc, ep->hwep_num);
1941 
1942 	/* If this interrupt isn't enabled, return now */
1943 	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1944 		return;
1945 
1946 	/* Get endpoint status */
1947 	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1948 
1949 	/*
1950 	 * This should never happen, but protect against writing to the
1951 	 * buffer when full.
1952 	 */
1953 	if (epstatus & EP_SEL_F)
1954 		return;
1955 
1956 	if (ep->is_in) {
1957 		udc_send_in_zlp(udc, ep);
1958 		uda_disable_hwepint(udc, ep->hwep_num);
1959 	} else
1960 		return;
1961 
1962 	/* If there isn't a request waiting, something went wrong */
1963 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1964 	if (req) {
1965 		done(ep, req, 0);
1966 
1967 		/* Start another request if ready */
1968 		if (!list_empty(&ep->queue)) {
1969 			if (ep->is_in)
1970 				udc_ep_in_req_dma(udc, ep);
1971 			else
1972 				udc_ep_out_req_dma(udc, ep);
1973 		} else
1974 			ep->req_pending = 0;
1975 	}
1976 }
1977 
1978 
1979 /* DMA end of transfer completion */
1980 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1981 {
1982 	u32 status;
1983 	struct lpc32xx_request *req;
1984 	struct lpc32xx_usbd_dd_gad *dd;
1985 
1986 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
1987 	ep->totalints++;
1988 #endif
1989 
1990 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1991 	if (!req) {
1992 		ep_err(ep, "DMA interrupt on no req!\n");
1993 		return;
1994 	}
1995 	dd = req->dd_desc_ptr;
1996 
1997 	/* DMA descriptor should always be retired for this call */
1998 	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
1999 		ep_warn(ep, "DMA descriptor did not retire\n");
2000 
2001 	/* Disable DMA */
2002 	udc_ep_dma_disable(udc, ep->hwep_num);
2003 	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2004 	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2005 
2006 	/* System error? */
2007 	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2008 	    (1 << ep->hwep_num)) {
2009 		writel((1 << ep->hwep_num),
2010 			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2011 		ep_err(ep, "AHB critical error!\n");
2012 		ep->req_pending = 0;
2013 
2014 		/* The error could have occurred on a packet of a multipacket
2015 		 * transfer, so recovering the transfer is not possible. Close
2016 		 * the request with an error */
2017 		done(ep, req, -ECONNABORTED);
2018 		return;
2019 	}
2020 
2021 	/* Handle the current DD's status */
2022 	status = dd->dd_status;
2023 	switch (status & DD_STATUS_STS_MASK) {
2024 	case DD_STATUS_STS_NS:
2025 		/* DD not serviced? This shouldn't happen! */
2026 		ep->req_pending = 0;
2027 		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2028 		       status);
2029 
2030 		done(ep, req, -ECONNABORTED);
2031 		return;
2032 
2033 	case DD_STATUS_STS_BS:
2034 		/* Interrupt only fires on EOT - This shouldn't happen! */
2035 		ep->req_pending = 0;
2036 		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2037 		       status);
2038 		done(ep, req, -ECONNABORTED);
2039 		return;
2040 
2041 	case DD_STATUS_STS_NC:
2042 	case DD_STATUS_STS_DUR:
2043 		/* Really just a short packet, not an underrun */
2044 		/* This is a good status and what we expect */
2045 		break;
2046 
2047 	default:
2048 		/* Data overrun, system error, or unknown */
2049 		ep->req_pending = 0;
2050 		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2051 		       status);
2052 		done(ep, req, -ECONNABORTED);
2053 		return;
2054 	}
2055 
2056 	/* ISO endpoints are handled differently */
2057 	if (ep->eptype == EP_ISO_TYPE) {
2058 		if (ep->is_in)
2059 			req->req.actual = req->req.length;
2060 		else
2061 			req->req.actual = dd->iso_status[0] & 0xFFFF;
2062 	} else
2063 		req->req.actual += DD_STATUS_CURDMACNT(status);
2064 
2065 	/* Send a ZLP if necessary. This will be done for non-int
2066 	 * packets which have a size that is a divisor of MAXP */
2067 	if (req->send_zlp) {
2068 		/*
2069 		 * If at least 1 buffer is available, send the ZLP now.
2070 		 * Otherwise, the ZLP send needs to be deferred until a
2071 		 * buffer is available.
2072 		 */
2073 		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2074 			udc_clearep_getsts(udc, ep->hwep_num);
2075 			uda_enable_hwepint(udc, ep->hwep_num);
2076 			udc_clearep_getsts(udc, ep->hwep_num);
2077 
2078 			/* Let the EP interrupt handle the ZLP */
2079 			return;
2080 		} else
2081 			udc_send_in_zlp(udc, ep);
2082 	}
2083 
2084 	/* Transfer request is complete */
2085 	done(ep, req, 0);
2086 
2087 	/* Start another request if ready */
2088 	udc_clearep_getsts(udc, ep->hwep_num);
2089 	if (!list_empty((&ep->queue))) {
2090 		if (ep->is_in)
2091 			udc_ep_in_req_dma(udc, ep);
2092 		else
2093 			udc_ep_out_req_dma(udc, ep);
2094 	} else
2095 		ep->req_pending = 0;
2096 
2097 }
2098 
2099 /*
2100  *
2101  * Endpoint 0 functions
2102  *
2103  */
2104 static void udc_handle_dev(struct lpc32xx_udc *udc)
2105 {
2106 	u32 tmp;
2107 
2108 	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2109 	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2110 
2111 	if (tmp & DEV_RST)
2112 		uda_usb_reset(udc);
2113 	else if (tmp & DEV_CON_CH)
2114 		uda_power_event(udc, (tmp & DEV_CON));
2115 	else if (tmp & DEV_SUS_CH) {
2116 		if (tmp & DEV_SUS) {
2117 			if (udc->vbus == 0)
2118 				stop_activity(udc);
2119 			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2120 				 udc->driver) {
2121 				/* Power down transceiver */
2122 				udc->poweron = 0;
2123 				schedule_work(&udc->pullup_job);
2124 				uda_resm_susp_event(udc, 1);
2125 			}
2126 		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2127 			   udc->driver && udc->vbus) {
2128 			uda_resm_susp_event(udc, 0);
2129 			/* Power up transceiver */
2130 			udc->poweron = 1;
2131 			schedule_work(&udc->pullup_job);
2132 		}
2133 	}
2134 }
2135 
2136 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2137 {
2138 	struct lpc32xx_ep *ep;
2139 	u32 ep0buff = 0, tmp;
2140 
2141 	switch (reqtype & USB_RECIP_MASK) {
2142 	case USB_RECIP_INTERFACE:
2143 		break; /* Not supported */
2144 
2145 	case USB_RECIP_DEVICE:
2146 		ep0buff = udc->gadget.is_selfpowered;
2147 		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2148 			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2149 		break;
2150 
2151 	case USB_RECIP_ENDPOINT:
2152 		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2153 		ep = &udc->ep[tmp];
2154 		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2155 			return -EOPNOTSUPP;
2156 
2157 		if (wIndex & USB_DIR_IN) {
2158 			if (!ep->is_in)
2159 				return -EOPNOTSUPP; /* Something's wrong */
2160 		} else if (ep->is_in)
2161 			return -EOPNOTSUPP; /* Not an IN endpoint */
2162 
2163 		/* Get status of the endpoint */
2164 		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2165 		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2166 
2167 		if (tmp & EP_SEL_ST)
2168 			ep0buff = (1 << USB_ENDPOINT_HALT);
2169 		else
2170 			ep0buff = 0;
2171 		break;
2172 
2173 	default:
2174 		break;
2175 	}
2176 
2177 	/* Return data */
2178 	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2179 
2180 	return 0;
2181 }
2182 
2183 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2184 {
2185 	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2186 	struct usb_ctrlrequest ctrlpkt;
2187 	int i, bytes;
2188 	u16 wIndex, wValue, reqtype, req, tmp;
2189 
2190 	/* Nuke previous transfers */
2191 	nuke(ep0, -EPROTO);
2192 
2193 	/* Get setup packet */
2194 	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2195 	if (bytes != 8) {
2196 		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2197 			bytes);
2198 		return;
2199 	}
2200 
2201 	/* Native endianness */
2202 	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2203 	wValue = le16_to_cpu(ctrlpkt.wValue);
2204 	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2205 
2206 	/* Set direction of EP0 */
2207 	if (likely(reqtype & USB_DIR_IN))
2208 		ep0->is_in = 1;
2209 	else
2210 		ep0->is_in = 0;
2211 
2212 	/* Handle SETUP packet */
2213 	req = le16_to_cpu(ctrlpkt.bRequest);
2214 	switch (req) {
2215 	case USB_REQ_CLEAR_FEATURE:
2216 	case USB_REQ_SET_FEATURE:
2217 		switch (reqtype) {
2218 		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2219 			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2220 				goto stall; /* Nothing else handled */
2221 
2222 			/* Tell board about event */
2223 			if (req == USB_REQ_CLEAR_FEATURE)
2224 				udc->dev_status &=
2225 					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2226 			else
2227 				udc->dev_status |=
2228 					(1 << USB_DEVICE_REMOTE_WAKEUP);
2229 			uda_remwkp_cgh(udc);
2230 			goto zlp_send;
2231 
2232 		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2233 			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2234 			if ((wValue != USB_ENDPOINT_HALT) ||
2235 			    (tmp >= NUM_ENDPOINTS))
2236 				break;
2237 
2238 			/* Find hardware endpoint from logical endpoint */
2239 			ep = &udc->ep[tmp];
2240 			tmp = ep->hwep_num;
2241 			if (tmp == 0)
2242 				break;
2243 
2244 			if (req == USB_REQ_SET_FEATURE)
2245 				udc_stall_hwep(udc, tmp);
2246 			else if (!ep->wedge)
2247 				udc_clrstall_hwep(udc, tmp);
2248 
2249 			goto zlp_send;
2250 
2251 		default:
2252 			break;
2253 		}
2254 		break;
2255 
2256 	case USB_REQ_SET_ADDRESS:
2257 		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2258 			udc_set_address(udc, wValue);
2259 			goto zlp_send;
2260 		}
2261 		break;
2262 
2263 	case USB_REQ_GET_STATUS:
2264 		udc_get_status(udc, reqtype, wIndex);
2265 		return;
2266 
2267 	default:
2268 		break; /* Let GadgetFS handle the descriptor instead */
2269 	}
2270 
2271 	if (likely(udc->driver)) {
2272 		/* device-2-host (IN) or no data setup command, process
2273 		 * immediately */
2274 		spin_unlock(&udc->lock);
2275 		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2276 
2277 		spin_lock(&udc->lock);
2278 		if (req == USB_REQ_SET_CONFIGURATION) {
2279 			/* Configuration is set after endpoints are realized */
2280 			if (wValue) {
2281 				/* Set configuration */
2282 				udc_set_device_configured(udc);
2283 
2284 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2285 							DAT_WR_BYTE(AP_CLK |
2286 							INAK_BI | INAK_II));
2287 			} else {
2288 				/* Clear configuration */
2289 				udc_set_device_unconfigured(udc);
2290 
2291 				/* Disable NAK interrupts */
2292 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2293 							DAT_WR_BYTE(AP_CLK));
2294 			}
2295 		}
2296 
2297 		if (i < 0) {
2298 			/* setup processing failed, force stall */
2299 			dev_dbg(udc->dev,
2300 				"req %02x.%02x protocol STALL; stat %d\n",
2301 				reqtype, req, i);
2302 			udc->ep0state = WAIT_FOR_SETUP;
2303 			goto stall;
2304 		}
2305 	}
2306 
2307 	if (!ep0->is_in)
2308 		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2309 
2310 	return;
2311 
2312 stall:
2313 	udc_stall_hwep(udc, EP_IN);
2314 	return;
2315 
2316 zlp_send:
2317 	udc_ep0_send_zlp(udc);
2318 	return;
2319 }
2320 
2321 /* IN endpoint 0 transfer */
2322 static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2323 {
2324 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2325 	u32 epstatus;
2326 
2327 	/* Clear EP interrupt */
2328 	epstatus = udc_clearep_getsts(udc, EP_IN);
2329 
2330 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2331 	ep0->totalints++;
2332 #endif
2333 
2334 	/* Stalled? Clear stall and reset buffers */
2335 	if (epstatus & EP_SEL_ST) {
2336 		udc_clrstall_hwep(udc, EP_IN);
2337 		nuke(ep0, -ECONNABORTED);
2338 		udc->ep0state = WAIT_FOR_SETUP;
2339 		return;
2340 	}
2341 
2342 	/* Is a buffer available? */
2343 	if (!(epstatus & EP_SEL_F)) {
2344 		/* Handle based on current state */
2345 		if (udc->ep0state == DATA_IN)
2346 			udc_ep0_in_req(udc);
2347 		else {
2348 			/* Unknown state for EP0 oe end of DATA IN phase */
2349 			nuke(ep0, -ECONNABORTED);
2350 			udc->ep0state = WAIT_FOR_SETUP;
2351 		}
2352 	}
2353 }
2354 
2355 /* OUT endpoint 0 transfer */
2356 static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2357 {
2358 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2359 	u32 epstatus;
2360 
2361 	/* Clear EP interrupt */
2362 	epstatus = udc_clearep_getsts(udc, EP_OUT);
2363 
2364 
2365 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2366 	ep0->totalints++;
2367 #endif
2368 
2369 	/* Stalled? */
2370 	if (epstatus & EP_SEL_ST) {
2371 		udc_clrstall_hwep(udc, EP_OUT);
2372 		nuke(ep0, -ECONNABORTED);
2373 		udc->ep0state = WAIT_FOR_SETUP;
2374 		return;
2375 	}
2376 
2377 	/* A NAK may occur if a packet couldn't be received yet */
2378 	if (epstatus & EP_SEL_EPN)
2379 		return;
2380 	/* Setup packet incoming? */
2381 	if (epstatus & EP_SEL_STP) {
2382 		nuke(ep0, 0);
2383 		udc->ep0state = WAIT_FOR_SETUP;
2384 	}
2385 
2386 	/* Data available? */
2387 	if (epstatus & EP_SEL_F)
2388 		/* Handle based on current state */
2389 		switch (udc->ep0state) {
2390 		case WAIT_FOR_SETUP:
2391 			udc_handle_ep0_setup(udc);
2392 			break;
2393 
2394 		case DATA_OUT:
2395 			udc_ep0_out_req(udc);
2396 			break;
2397 
2398 		default:
2399 			/* Unknown state for EP0 */
2400 			nuke(ep0, -ECONNABORTED);
2401 			udc->ep0state = WAIT_FOR_SETUP;
2402 		}
2403 }
2404 
2405 /* Must be called without lock */
2406 static int lpc32xx_get_frame(struct usb_gadget *gadget)
2407 {
2408 	int frame;
2409 	unsigned long flags;
2410 	struct lpc32xx_udc *udc = to_udc(gadget);
2411 
2412 	if (!udc->clocked)
2413 		return -EINVAL;
2414 
2415 	spin_lock_irqsave(&udc->lock, flags);
2416 
2417 	frame = (int) udc_get_current_frame(udc);
2418 
2419 	spin_unlock_irqrestore(&udc->lock, flags);
2420 
2421 	return frame;
2422 }
2423 
2424 static int lpc32xx_wakeup(struct usb_gadget *gadget)
2425 {
2426 	return -ENOTSUPP;
2427 }
2428 
2429 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2430 {
2431 	gadget->is_selfpowered = (is_on != 0);
2432 
2433 	return 0;
2434 }
2435 
2436 /*
2437  * vbus is here!  turn everything on that's ready
2438  * Must be called without lock
2439  */
2440 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2441 {
2442 	unsigned long flags;
2443 	struct lpc32xx_udc *udc = to_udc(gadget);
2444 
2445 	spin_lock_irqsave(&udc->lock, flags);
2446 
2447 	/* Doesn't need lock */
2448 	if (udc->driver) {
2449 		udc_clk_set(udc, 1);
2450 		udc_enable(udc);
2451 		pullup(udc, is_active);
2452 	} else {
2453 		stop_activity(udc);
2454 		pullup(udc, 0);
2455 
2456 		spin_unlock_irqrestore(&udc->lock, flags);
2457 		/*
2458 		 *  Wait for all the endpoints to disable,
2459 		 *  before disabling clocks. Don't wait if
2460 		 *  endpoints are not enabled.
2461 		 */
2462 		if (atomic_read(&udc->enabled_ep_cnt))
2463 			wait_event_interruptible(udc->ep_disable_wait_queue,
2464 				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2465 
2466 		spin_lock_irqsave(&udc->lock, flags);
2467 
2468 		udc_clk_set(udc, 0);
2469 	}
2470 
2471 	spin_unlock_irqrestore(&udc->lock, flags);
2472 
2473 	return 0;
2474 }
2475 
2476 /* Can be called with or without lock */
2477 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2478 {
2479 	struct lpc32xx_udc *udc = to_udc(gadget);
2480 
2481 	/* Doesn't need lock */
2482 	pullup(udc, is_on);
2483 
2484 	return 0;
2485 }
2486 
2487 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2488 static int lpc32xx_stop(struct usb_gadget *);
2489 
2490 static const struct usb_gadget_ops lpc32xx_udc_ops = {
2491 	.get_frame		= lpc32xx_get_frame,
2492 	.wakeup			= lpc32xx_wakeup,
2493 	.set_selfpowered	= lpc32xx_set_selfpowered,
2494 	.vbus_session		= lpc32xx_vbus_session,
2495 	.pullup			= lpc32xx_pullup,
2496 	.udc_start		= lpc32xx_start,
2497 	.udc_stop		= lpc32xx_stop,
2498 };
2499 
2500 static void nop_release(struct device *dev)
2501 {
2502 	/* nothing to free */
2503 }
2504 
2505 static const struct lpc32xx_udc controller_template = {
2506 	.gadget = {
2507 		.ops	= &lpc32xx_udc_ops,
2508 		.name	= driver_name,
2509 		.dev	= {
2510 			.init_name = "gadget",
2511 			.release = nop_release,
2512 		}
2513 	},
2514 	.ep[0] = {
2515 		.ep = {
2516 			.name	= "ep0",
2517 			.ops	= &lpc32xx_ep_ops,
2518 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2519 					USB_EP_CAPS_DIR_ALL),
2520 		},
2521 		.maxpacket	= 64,
2522 		.hwep_num_base	= 0,
2523 		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2524 		.lep		= 0,
2525 		.eptype		= EP_CTL_TYPE,
2526 	},
2527 	.ep[1] = {
2528 		.ep = {
2529 			.name	= "ep1-int",
2530 			.ops	= &lpc32xx_ep_ops,
2531 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2532 					USB_EP_CAPS_DIR_ALL),
2533 		},
2534 		.maxpacket	= 64,
2535 		.hwep_num_base	= 2,
2536 		.hwep_num	= 0, /* 2 or 3, will be set later */
2537 		.lep		= 1,
2538 		.eptype		= EP_INT_TYPE,
2539 	},
2540 	.ep[2] = {
2541 		.ep = {
2542 			.name	= "ep2-bulk",
2543 			.ops	= &lpc32xx_ep_ops,
2544 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2545 					USB_EP_CAPS_DIR_ALL),
2546 		},
2547 		.maxpacket	= 64,
2548 		.hwep_num_base	= 4,
2549 		.hwep_num	= 0, /* 4 or 5, will be set later */
2550 		.lep		= 2,
2551 		.eptype		= EP_BLK_TYPE,
2552 	},
2553 	.ep[3] = {
2554 		.ep = {
2555 			.name	= "ep3-iso",
2556 			.ops	= &lpc32xx_ep_ops,
2557 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2558 					USB_EP_CAPS_DIR_ALL),
2559 		},
2560 		.maxpacket	= 1023,
2561 		.hwep_num_base	= 6,
2562 		.hwep_num	= 0, /* 6 or 7, will be set later */
2563 		.lep		= 3,
2564 		.eptype		= EP_ISO_TYPE,
2565 	},
2566 	.ep[4] = {
2567 		.ep = {
2568 			.name	= "ep4-int",
2569 			.ops	= &lpc32xx_ep_ops,
2570 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2571 					USB_EP_CAPS_DIR_ALL),
2572 		},
2573 		.maxpacket	= 64,
2574 		.hwep_num_base	= 8,
2575 		.hwep_num	= 0, /* 8 or 9, will be set later */
2576 		.lep		= 4,
2577 		.eptype		= EP_INT_TYPE,
2578 	},
2579 	.ep[5] = {
2580 		.ep = {
2581 			.name	= "ep5-bulk",
2582 			.ops	= &lpc32xx_ep_ops,
2583 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2584 					USB_EP_CAPS_DIR_ALL),
2585 		},
2586 		.maxpacket	= 64,
2587 		.hwep_num_base	= 10,
2588 		.hwep_num	= 0, /* 10 or 11, will be set later */
2589 		.lep		= 5,
2590 		.eptype		= EP_BLK_TYPE,
2591 	},
2592 	.ep[6] = {
2593 		.ep = {
2594 			.name	= "ep6-iso",
2595 			.ops	= &lpc32xx_ep_ops,
2596 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2597 					USB_EP_CAPS_DIR_ALL),
2598 		},
2599 		.maxpacket	= 1023,
2600 		.hwep_num_base	= 12,
2601 		.hwep_num	= 0, /* 12 or 13, will be set later */
2602 		.lep		= 6,
2603 		.eptype		= EP_ISO_TYPE,
2604 	},
2605 	.ep[7] = {
2606 		.ep = {
2607 			.name	= "ep7-int",
2608 			.ops	= &lpc32xx_ep_ops,
2609 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2610 					USB_EP_CAPS_DIR_ALL),
2611 		},
2612 		.maxpacket	= 64,
2613 		.hwep_num_base	= 14,
2614 		.hwep_num	= 0,
2615 		.lep		= 7,
2616 		.eptype		= EP_INT_TYPE,
2617 	},
2618 	.ep[8] = {
2619 		.ep = {
2620 			.name	= "ep8-bulk",
2621 			.ops	= &lpc32xx_ep_ops,
2622 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2623 					USB_EP_CAPS_DIR_ALL),
2624 		},
2625 		.maxpacket	= 64,
2626 		.hwep_num_base	= 16,
2627 		.hwep_num	= 0,
2628 		.lep		= 8,
2629 		.eptype		= EP_BLK_TYPE,
2630 	},
2631 	.ep[9] = {
2632 		.ep = {
2633 			.name	= "ep9-iso",
2634 			.ops	= &lpc32xx_ep_ops,
2635 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2636 					USB_EP_CAPS_DIR_ALL),
2637 		},
2638 		.maxpacket	= 1023,
2639 		.hwep_num_base	= 18,
2640 		.hwep_num	= 0,
2641 		.lep		= 9,
2642 		.eptype		= EP_ISO_TYPE,
2643 	},
2644 	.ep[10] = {
2645 		.ep = {
2646 			.name	= "ep10-int",
2647 			.ops	= &lpc32xx_ep_ops,
2648 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2649 					USB_EP_CAPS_DIR_ALL),
2650 		},
2651 		.maxpacket	= 64,
2652 		.hwep_num_base	= 20,
2653 		.hwep_num	= 0,
2654 		.lep		= 10,
2655 		.eptype		= EP_INT_TYPE,
2656 	},
2657 	.ep[11] = {
2658 		.ep = {
2659 			.name	= "ep11-bulk",
2660 			.ops	= &lpc32xx_ep_ops,
2661 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2662 					USB_EP_CAPS_DIR_ALL),
2663 		},
2664 		.maxpacket	= 64,
2665 		.hwep_num_base	= 22,
2666 		.hwep_num	= 0,
2667 		.lep		= 11,
2668 		.eptype		= EP_BLK_TYPE,
2669 	},
2670 	.ep[12] = {
2671 		.ep = {
2672 			.name	= "ep12-iso",
2673 			.ops	= &lpc32xx_ep_ops,
2674 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2675 					USB_EP_CAPS_DIR_ALL),
2676 		},
2677 		.maxpacket	= 1023,
2678 		.hwep_num_base	= 24,
2679 		.hwep_num	= 0,
2680 		.lep		= 12,
2681 		.eptype		= EP_ISO_TYPE,
2682 	},
2683 	.ep[13] = {
2684 		.ep = {
2685 			.name	= "ep13-int",
2686 			.ops	= &lpc32xx_ep_ops,
2687 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2688 					USB_EP_CAPS_DIR_ALL),
2689 		},
2690 		.maxpacket	= 64,
2691 		.hwep_num_base	= 26,
2692 		.hwep_num	= 0,
2693 		.lep		= 13,
2694 		.eptype		= EP_INT_TYPE,
2695 	},
2696 	.ep[14] = {
2697 		.ep = {
2698 			.name	= "ep14-bulk",
2699 			.ops	= &lpc32xx_ep_ops,
2700 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2701 					USB_EP_CAPS_DIR_ALL),
2702 		},
2703 		.maxpacket	= 64,
2704 		.hwep_num_base	= 28,
2705 		.hwep_num	= 0,
2706 		.lep		= 14,
2707 		.eptype		= EP_BLK_TYPE,
2708 	},
2709 	.ep[15] = {
2710 		.ep = {
2711 			.name	= "ep15-bulk",
2712 			.ops	= &lpc32xx_ep_ops,
2713 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2714 					USB_EP_CAPS_DIR_ALL),
2715 		},
2716 		.maxpacket	= 1023,
2717 		.hwep_num_base	= 30,
2718 		.hwep_num	= 0,
2719 		.lep		= 15,
2720 		.eptype		= EP_BLK_TYPE,
2721 	},
2722 };
2723 
2724 /* ISO and status interrupts */
2725 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2726 {
2727 	u32 tmp, devstat;
2728 	struct lpc32xx_udc *udc = _udc;
2729 
2730 	spin_lock(&udc->lock);
2731 
2732 	/* Read the device status register */
2733 	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2734 
2735 	devstat &= ~USBD_EP_FAST;
2736 	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2737 	devstat = devstat & udc->enabled_devints;
2738 
2739 	/* Device specific handling needed? */
2740 	if (devstat & USBD_DEV_STAT)
2741 		udc_handle_dev(udc);
2742 
2743 	/* Start of frame? (devstat & FRAME_INT):
2744 	 * The frame interrupt isn't really needed for ISO support,
2745 	 * as the driver will queue the necessary packets */
2746 
2747 	/* Error? */
2748 	if (devstat & ERR_INT) {
2749 		/* All types of errors, from cable removal during transfer to
2750 		 * misc protocol and bit errors. These are mostly for just info,
2751 		 * as the USB hardware will work around these. If these errors
2752 		 * happen alot, something is wrong. */
2753 		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2754 		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2755 		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2756 	}
2757 
2758 	spin_unlock(&udc->lock);
2759 
2760 	return IRQ_HANDLED;
2761 }
2762 
2763 /* EP interrupts */
2764 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2765 {
2766 	u32 tmp;
2767 	struct lpc32xx_udc *udc = _udc;
2768 
2769 	spin_lock(&udc->lock);
2770 
2771 	/* Read the device status register */
2772 	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2773 
2774 	/* Endpoints */
2775 	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2776 
2777 	/* Special handling for EP0 */
2778 	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2779 		/* Handle EP0 IN */
2780 		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2781 			udc_handle_ep0_in(udc);
2782 
2783 		/* Handle EP0 OUT */
2784 		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2785 			udc_handle_ep0_out(udc);
2786 	}
2787 
2788 	/* All other EPs */
2789 	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2790 		int i;
2791 
2792 		/* Handle other EP interrupts */
2793 		for (i = 1; i < NUM_ENDPOINTS; i++) {
2794 			if (tmp & (1 << udc->ep[i].hwep_num))
2795 				udc_handle_eps(udc, &udc->ep[i]);
2796 		}
2797 	}
2798 
2799 	spin_unlock(&udc->lock);
2800 
2801 	return IRQ_HANDLED;
2802 }
2803 
2804 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2805 {
2806 	struct lpc32xx_udc *udc = _udc;
2807 
2808 	int i;
2809 	u32 tmp;
2810 
2811 	spin_lock(&udc->lock);
2812 
2813 	/* Handle EP DMA EOT interrupts */
2814 	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2815 		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2816 		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2817 		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2818 	for (i = 1; i < NUM_ENDPOINTS; i++) {
2819 		if (tmp & (1 << udc->ep[i].hwep_num))
2820 			udc_handle_dma_ep(udc, &udc->ep[i]);
2821 	}
2822 
2823 	spin_unlock(&udc->lock);
2824 
2825 	return IRQ_HANDLED;
2826 }
2827 
2828 /*
2829  *
2830  * VBUS detection, pullup handler, and Gadget cable state notification
2831  *
2832  */
2833 static void vbus_work(struct lpc32xx_udc *udc)
2834 {
2835 	u8 value;
2836 
2837 	if (udc->enabled != 0) {
2838 		/* Discharge VBUS real quick */
2839 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2840 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2841 
2842 		/* Give VBUS some time (100mS) to discharge */
2843 		msleep(100);
2844 
2845 		/* Disable VBUS discharge resistor */
2846 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2847 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2848 			OTG1_VBUS_DISCHRG);
2849 
2850 		/* Clear interrupt */
2851 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2852 			ISP1301_I2C_INTERRUPT_LATCH |
2853 			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2854 
2855 		/* Get the VBUS status from the transceiver */
2856 		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2857 						 ISP1301_I2C_INTERRUPT_SOURCE);
2858 
2859 		/* VBUS on or off? */
2860 		if (value & INT_SESS_VLD)
2861 			udc->vbus = 1;
2862 		else
2863 			udc->vbus = 0;
2864 
2865 		/* VBUS changed? */
2866 		if (udc->last_vbus != udc->vbus) {
2867 			udc->last_vbus = udc->vbus;
2868 			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2869 		}
2870 	}
2871 }
2872 
2873 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2874 {
2875 	struct lpc32xx_udc *udc = _udc;
2876 
2877 	vbus_work(udc);
2878 
2879 	return IRQ_HANDLED;
2880 }
2881 
2882 static int lpc32xx_start(struct usb_gadget *gadget,
2883 			 struct usb_gadget_driver *driver)
2884 {
2885 	struct lpc32xx_udc *udc = to_udc(gadget);
2886 
2887 	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2888 		dev_err(udc->dev, "bad parameter.\n");
2889 		return -EINVAL;
2890 	}
2891 
2892 	if (udc->driver) {
2893 		dev_err(udc->dev, "UDC already has a gadget driver\n");
2894 		return -EBUSY;
2895 	}
2896 
2897 	udc->driver = driver;
2898 	udc->gadget.dev.of_node = udc->dev->of_node;
2899 	udc->enabled = 1;
2900 	udc->gadget.is_selfpowered = 1;
2901 	udc->vbus = 0;
2902 
2903 	/* Force VBUS process once to check for cable insertion */
2904 	udc->last_vbus = udc->vbus = 0;
2905 	vbus_work(udc);
2906 
2907 	/* enable interrupts */
2908 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2909 		ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
2910 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2911 		ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
2912 
2913 	return 0;
2914 }
2915 
2916 static int lpc32xx_stop(struct usb_gadget *gadget)
2917 {
2918 	struct lpc32xx_udc *udc = to_udc(gadget);
2919 
2920 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2921 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2922 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2923 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2924 
2925 	if (udc->clocked) {
2926 		spin_lock(&udc->lock);
2927 		stop_activity(udc);
2928 		spin_unlock(&udc->lock);
2929 
2930 		/*
2931 		 *  Wait for all the endpoints to disable,
2932 		 *  before disabling clocks. Don't wait if
2933 		 *  endpoints are not enabled.
2934 		 */
2935 		if (atomic_read(&udc->enabled_ep_cnt))
2936 			wait_event_interruptible(udc->ep_disable_wait_queue,
2937 				(atomic_read(&udc->enabled_ep_cnt) == 0));
2938 
2939 		spin_lock(&udc->lock);
2940 		udc_clk_set(udc, 0);
2941 		spin_unlock(&udc->lock);
2942 	}
2943 
2944 	udc->enabled = 0;
2945 	udc->driver = NULL;
2946 
2947 	return 0;
2948 }
2949 
2950 static void lpc32xx_udc_shutdown(struct platform_device *dev)
2951 {
2952 	/* Force disconnect on reboot */
2953 	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2954 
2955 	pullup(udc, 0);
2956 }
2957 
2958 /*
2959  * Callbacks to be overridden by options passed via OF (TODO)
2960  */
2961 
2962 static void lpc32xx_usbd_conn_chg(int conn)
2963 {
2964 	/* Do nothing, it might be nice to enable an LED
2965 	 * based on conn state being !0 */
2966 }
2967 
2968 static void lpc32xx_usbd_susp_chg(int susp)
2969 {
2970 	/* Device suspend if susp != 0 */
2971 }
2972 
2973 static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2974 {
2975 	/* Enable or disable USB remote wakeup */
2976 }
2977 
2978 static struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2979 	.vbus_drv_pol = 0,
2980 	.conn_chgb = &lpc32xx_usbd_conn_chg,
2981 	.susp_chgb = &lpc32xx_usbd_susp_chg,
2982 	.rmwk_chgb = &lpc32xx_rmwkup_chg,
2983 };
2984 
2985 
2986 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
2987 
2988 static int lpc32xx_udc_probe(struct platform_device *pdev)
2989 {
2990 	struct device *dev = &pdev->dev;
2991 	struct lpc32xx_udc *udc;
2992 	int retval, i;
2993 	dma_addr_t dma_handle;
2994 	struct device_node *isp1301_node;
2995 
2996 	udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL);
2997 	if (!udc)
2998 		return -ENOMEM;
2999 
3000 	for (i = 0; i <= 15; i++)
3001 		udc->ep[i].udc = udc;
3002 	udc->gadget.ep0 = &udc->ep[0].ep;
3003 
3004 	/* init software state */
3005 	udc->gadget.dev.parent = dev;
3006 	udc->pdev = pdev;
3007 	udc->dev = &pdev->dev;
3008 	udc->enabled = 0;
3009 
3010 	if (pdev->dev.of_node) {
3011 		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3012 						"transceiver", 0);
3013 	} else {
3014 		isp1301_node = NULL;
3015 	}
3016 
3017 	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3018 	if (!udc->isp1301_i2c_client) {
3019 		return -EPROBE_DEFER;
3020 	}
3021 
3022 	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3023 		 udc->isp1301_i2c_client->addr);
3024 
3025 	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3026 	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3027 	if (retval)
3028 		return retval;
3029 
3030 	udc->board = &lpc32xx_usbddata;
3031 
3032 	/*
3033 	 * Resources are mapped as follows:
3034 	 *  IORESOURCE_MEM, base address and size of USB space
3035 	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3036 	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3037 	 *  IORESOURCE_IRQ, USB device interrupt number
3038 	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3039 	 */
3040 
3041 	spin_lock_init(&udc->lock);
3042 
3043 	/* Get IRQs */
3044 	for (i = 0; i < 4; i++) {
3045 		udc->udp_irq[i] = platform_get_irq(pdev, i);
3046 		if (udc->udp_irq[i] < 0)
3047 			return udc->udp_irq[i];
3048 	}
3049 
3050 	udc->udp_baseaddr = devm_platform_ioremap_resource(pdev, 0);
3051 	if (IS_ERR(udc->udp_baseaddr)) {
3052 		dev_err(udc->dev, "IO map failure\n");
3053 		return PTR_ERR(udc->udp_baseaddr);
3054 	}
3055 
3056 	/* Get USB device clock */
3057 	udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL);
3058 	if (IS_ERR(udc->usb_slv_clk)) {
3059 		dev_err(udc->dev, "failed to acquire USB device clock\n");
3060 		return PTR_ERR(udc->usb_slv_clk);
3061 	}
3062 
3063 	/* Enable USB device clock */
3064 	retval = clk_prepare_enable(udc->usb_slv_clk);
3065 	if (retval < 0) {
3066 		dev_err(udc->dev, "failed to start USB device clock\n");
3067 		return retval;
3068 	}
3069 
3070 	/* Setup deferred workqueue data */
3071 	udc->poweron = udc->pullup = 0;
3072 	INIT_WORK(&udc->pullup_job, pullup_work);
3073 #ifdef CONFIG_PM
3074 	INIT_WORK(&udc->power_job, power_work);
3075 #endif
3076 
3077 	/* All clocks are now on */
3078 	udc->clocked = 1;
3079 
3080 	isp1301_udc_configure(udc);
3081 	/* Allocate memory for the UDCA */
3082 	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3083 					      &dma_handle,
3084 					      (GFP_KERNEL | GFP_DMA));
3085 	if (!udc->udca_v_base) {
3086 		dev_err(udc->dev, "error getting UDCA region\n");
3087 		retval = -ENOMEM;
3088 		goto i2c_fail;
3089 	}
3090 	udc->udca_p_base = dma_handle;
3091 	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3092 		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3093 
3094 	/* Setup the DD DMA memory pool */
3095 	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3096 					sizeof(struct lpc32xx_usbd_dd_gad),
3097 					sizeof(u32), 0);
3098 	if (!udc->dd_cache) {
3099 		dev_err(udc->dev, "error getting DD DMA region\n");
3100 		retval = -ENOMEM;
3101 		goto dma_alloc_fail;
3102 	}
3103 
3104 	/* Clear USB peripheral and initialize gadget endpoints */
3105 	udc_disable(udc);
3106 	udc_reinit(udc);
3107 
3108 	/* Request IRQs - low and high priority USB device IRQs are routed to
3109 	 * the same handler, while the DMA interrupt is routed elsewhere */
3110 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP],
3111 				  lpc32xx_usb_lp_irq, 0, "udc_lp", udc);
3112 	if (retval < 0) {
3113 		dev_err(udc->dev, "LP request irq %d failed\n",
3114 			udc->udp_irq[IRQ_USB_LP]);
3115 		goto irq_req_fail;
3116 	}
3117 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP],
3118 				  lpc32xx_usb_hp_irq, 0, "udc_hp", udc);
3119 	if (retval < 0) {
3120 		dev_err(udc->dev, "HP request irq %d failed\n",
3121 			udc->udp_irq[IRQ_USB_HP]);
3122 		goto irq_req_fail;
3123 	}
3124 
3125 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA],
3126 				  lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3127 	if (retval < 0) {
3128 		dev_err(udc->dev, "DEV request irq %d failed\n",
3129 			udc->udp_irq[IRQ_USB_DEVDMA]);
3130 		goto irq_req_fail;
3131 	}
3132 
3133 	/* The transceiver interrupt is used for VBUS detection and will
3134 	   kick off the VBUS handler function */
3135 	retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL,
3136 					   lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
3137 					   "udc_otg", udc);
3138 	if (retval < 0) {
3139 		dev_err(udc->dev, "VBUS request irq %d failed\n",
3140 			udc->udp_irq[IRQ_USB_ATX]);
3141 		goto irq_req_fail;
3142 	}
3143 
3144 	/* Initialize wait queue */
3145 	init_waitqueue_head(&udc->ep_disable_wait_queue);
3146 	atomic_set(&udc->enabled_ep_cnt, 0);
3147 
3148 	retval = usb_add_gadget_udc(dev, &udc->gadget);
3149 	if (retval < 0)
3150 		goto add_gadget_fail;
3151 
3152 	dev_set_drvdata(dev, udc);
3153 	device_init_wakeup(dev, 1);
3154 	create_debug_file(udc);
3155 
3156 	/* Disable clocks for now */
3157 	udc_clk_set(udc, 0);
3158 
3159 	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3160 	return 0;
3161 
3162 add_gadget_fail:
3163 irq_req_fail:
3164 	dma_pool_destroy(udc->dd_cache);
3165 dma_alloc_fail:
3166 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3167 			  udc->udca_v_base, udc->udca_p_base);
3168 i2c_fail:
3169 	clk_disable_unprepare(udc->usb_slv_clk);
3170 	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3171 
3172 	return retval;
3173 }
3174 
3175 static int lpc32xx_udc_remove(struct platform_device *pdev)
3176 {
3177 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3178 
3179 	usb_del_gadget_udc(&udc->gadget);
3180 	if (udc->driver)
3181 		return -EBUSY;
3182 
3183 	udc_clk_set(udc, 1);
3184 	udc_disable(udc);
3185 	pullup(udc, 0);
3186 
3187 	device_init_wakeup(&pdev->dev, 0);
3188 	remove_debug_file(udc);
3189 
3190 	dma_pool_destroy(udc->dd_cache);
3191 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3192 			  udc->udca_v_base, udc->udca_p_base);
3193 
3194 	clk_disable_unprepare(udc->usb_slv_clk);
3195 
3196 	return 0;
3197 }
3198 
3199 #ifdef CONFIG_PM
3200 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3201 {
3202 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3203 
3204 	if (udc->clocked) {
3205 		/* Power down ISP */
3206 		udc->poweron = 0;
3207 		isp1301_set_powerstate(udc, 0);
3208 
3209 		/* Disable clocking */
3210 		udc_clk_set(udc, 0);
3211 
3212 		/* Keep clock flag on, so we know to re-enable clocks
3213 		   on resume */
3214 		udc->clocked = 1;
3215 
3216 		/* Kill global USB clock */
3217 		clk_disable_unprepare(udc->usb_slv_clk);
3218 	}
3219 
3220 	return 0;
3221 }
3222 
3223 static int lpc32xx_udc_resume(struct platform_device *pdev)
3224 {
3225 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3226 
3227 	if (udc->clocked) {
3228 		/* Enable global USB clock */
3229 		clk_prepare_enable(udc->usb_slv_clk);
3230 
3231 		/* Enable clocking */
3232 		udc_clk_set(udc, 1);
3233 
3234 		/* ISP back to normal power mode */
3235 		udc->poweron = 1;
3236 		isp1301_set_powerstate(udc, 1);
3237 	}
3238 
3239 	return 0;
3240 }
3241 #else
3242 #define	lpc32xx_udc_suspend	NULL
3243 #define	lpc32xx_udc_resume	NULL
3244 #endif
3245 
3246 #ifdef CONFIG_OF
3247 static const struct of_device_id lpc32xx_udc_of_match[] = {
3248 	{ .compatible = "nxp,lpc3220-udc", },
3249 	{ },
3250 };
3251 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3252 #endif
3253 
3254 static struct platform_driver lpc32xx_udc_driver = {
3255 	.remove		= lpc32xx_udc_remove,
3256 	.shutdown	= lpc32xx_udc_shutdown,
3257 	.suspend	= lpc32xx_udc_suspend,
3258 	.resume		= lpc32xx_udc_resume,
3259 	.driver		= {
3260 		.name	= driver_name,
3261 		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3262 	},
3263 };
3264 
3265 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3266 
3267 MODULE_DESCRIPTION("LPC32XX udc driver");
3268 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3269 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3270 MODULE_LICENSE("GPL");
3271 MODULE_ALIAS("platform:lpc32xx_udc");
3272