xref: /linux/drivers/usb/gadget/udc/lpc32xx_udc.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * USB Gadget driver for LPC32xx
4  *
5  * Authors:
6  *    Kevin Wells <kevin.wells@nxp.com>
7  *    Mike James
8  *    Roland Stigge <stigge@antcom.de>
9  *
10  * Copyright (C) 2006 Philips Semiconductors
11  * Copyright (C) 2009 NXP Semiconductors
12  * Copyright (C) 2012 Roland Stigge
13  *
14  * Note: This driver is based on original work done by Mike James for
15  *       the LPC3180.
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/proc_fs.h>
28 #include <linux/slab.h>
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
31 #include <linux/usb/isp1301.h>
32 
33 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif
37 
38 #include <mach/hardware.h>
39 
40 /*
41  * USB device configuration structure
42  */
43 typedef void (*usc_chg_event)(int);
44 struct lpc32xx_usbd_cfg {
45 	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
46 	usc_chg_event conn_chgb; /* Connection change event (optional) */
47 	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
48 	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
49 };
50 
51 /*
52  * controller driver data structures
53  */
54 
55 /* 16 endpoints (not to be confused with 32 hardware endpoints) */
56 #define	NUM_ENDPOINTS	16
57 
58 /*
59  * IRQ indices make reading the code a little easier
60  */
61 #define IRQ_USB_LP	0
62 #define IRQ_USB_HP	1
63 #define IRQ_USB_DEVDMA	2
64 #define IRQ_USB_ATX	3
65 
66 #define EP_OUT 0 /* RX (from host) */
67 #define EP_IN 1 /* TX (to host) */
68 
69 /* Returns the interrupt mask for the selected hardware endpoint */
70 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
71 
72 #define EP_INT_TYPE 0
73 #define EP_ISO_TYPE 1
74 #define EP_BLK_TYPE 2
75 #define EP_CTL_TYPE 3
76 
77 /* EP0 states */
78 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */
79 #define DATA_IN        1 /* Expect dev->host transfer */
80 #define DATA_OUT       2 /* Expect host->dev transfer */
81 
82 /* DD (DMA Descriptor) structure, requires word alignment, this is already
83  * defined in the LPC32XX USB device header file, but this version is slightly
84  * modified to tag some work data with each DMA descriptor. */
85 struct lpc32xx_usbd_dd_gad {
86 	u32 dd_next_phy;
87 	u32 dd_setup;
88 	u32 dd_buffer_addr;
89 	u32 dd_status;
90 	u32 dd_iso_ps_mem_addr;
91 	u32 this_dma;
92 	u32 iso_status[6]; /* 5 spare */
93 	u32 dd_next_v;
94 };
95 
96 /*
97  * Logical endpoint structure
98  */
99 struct lpc32xx_ep {
100 	struct usb_ep		ep;
101 	struct list_head	queue;
102 	struct lpc32xx_udc	*udc;
103 
104 	u32			hwep_num_base; /* Physical hardware EP */
105 	u32			hwep_num; /* Maps to hardware endpoint */
106 	u32			maxpacket;
107 	u32			lep;
108 
109 	bool			is_in;
110 	bool			req_pending;
111 	u32			eptype;
112 
113 	u32                     totalints;
114 
115 	bool			wedge;
116 };
117 
118 enum atx_type {
119 	ISP1301,
120 	STOTG04,
121 };
122 
123 /*
124  * Common UDC structure
125  */
126 struct lpc32xx_udc {
127 	struct usb_gadget	gadget;
128 	struct usb_gadget_driver *driver;
129 	struct platform_device	*pdev;
130 	struct device		*dev;
131 	struct dentry		*pde;
132 	spinlock_t		lock;
133 	struct i2c_client	*isp1301_i2c_client;
134 
135 	/* Board and device specific */
136 	struct lpc32xx_usbd_cfg	*board;
137 	void __iomem		*udp_baseaddr;
138 	int			udp_irq[4];
139 	struct clk		*usb_slv_clk;
140 
141 	/* DMA support */
142 	u32			*udca_v_base;
143 	u32			udca_p_base;
144 	struct dma_pool		*dd_cache;
145 
146 	/* Common EP and control data */
147 	u32			enabled_devints;
148 	u32			enabled_hwepints;
149 	u32			dev_status;
150 	u32			realized_eps;
151 
152 	/* VBUS detection, pullup, and power flags */
153 	u8			vbus;
154 	u8			last_vbus;
155 	int			pullup;
156 	int			poweron;
157 	enum atx_type		atx;
158 
159 	/* Work queues related to I2C support */
160 	struct work_struct	pullup_job;
161 	struct work_struct	power_job;
162 
163 	/* USB device peripheral - various */
164 	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
165 	bool			enabled;
166 	bool			clocked;
167 	bool			suspended;
168 	int                     ep0state;
169 	atomic_t                enabled_ep_cnt;
170 	wait_queue_head_t       ep_disable_wait_queue;
171 };
172 
173 /*
174  * Endpoint request
175  */
176 struct lpc32xx_request {
177 	struct usb_request	req;
178 	struct list_head	queue;
179 	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
180 	bool			mapped;
181 	bool			send_zlp;
182 };
183 
184 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
185 {
186 	return container_of(g, struct lpc32xx_udc, gadget);
187 }
188 
189 #define ep_dbg(epp, fmt, arg...) \
190 	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
191 #define ep_err(epp, fmt, arg...) \
192 	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
193 #define ep_info(epp, fmt, arg...) \
194 	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
195 #define ep_warn(epp, fmt, arg...) \
196 	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
197 
198 #define UDCA_BUFF_SIZE (128)
199 
200 /**********************************************************************
201  * USB device controller register offsets
202  **********************************************************************/
203 
204 #define USBD_DEVINTST(x)	((x) + 0x200)
205 #define USBD_DEVINTEN(x)	((x) + 0x204)
206 #define USBD_DEVINTCLR(x)	((x) + 0x208)
207 #define USBD_DEVINTSET(x)	((x) + 0x20C)
208 #define USBD_CMDCODE(x)		((x) + 0x210)
209 #define USBD_CMDDATA(x)		((x) + 0x214)
210 #define USBD_RXDATA(x)		((x) + 0x218)
211 #define USBD_TXDATA(x)		((x) + 0x21C)
212 #define USBD_RXPLEN(x)		((x) + 0x220)
213 #define USBD_TXPLEN(x)		((x) + 0x224)
214 #define USBD_CTRL(x)		((x) + 0x228)
215 #define USBD_DEVINTPRI(x)	((x) + 0x22C)
216 #define USBD_EPINTST(x)		((x) + 0x230)
217 #define USBD_EPINTEN(x)		((x) + 0x234)
218 #define USBD_EPINTCLR(x)	((x) + 0x238)
219 #define USBD_EPINTSET(x)	((x) + 0x23C)
220 #define USBD_EPINTPRI(x)	((x) + 0x240)
221 #define USBD_REEP(x)		((x) + 0x244)
222 #define USBD_EPIND(x)		((x) + 0x248)
223 #define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
224 /* DMA support registers only below */
225 /* Set, clear, or get enabled state of the DMA request status. If
226  * enabled, an IN or OUT token will start a DMA transfer for the EP */
227 #define USBD_DMARST(x)		((x) + 0x250)
228 #define USBD_DMARCLR(x)		((x) + 0x254)
229 #define USBD_DMARSET(x)		((x) + 0x258)
230 /* DMA UDCA head pointer */
231 #define USBD_UDCAH(x)		((x) + 0x280)
232 /* EP DMA status, enable, and disable. This is used to specifically
233  * enabled or disable DMA for a specific EP */
234 #define USBD_EPDMAST(x)		((x) + 0x284)
235 #define USBD_EPDMAEN(x)		((x) + 0x288)
236 #define USBD_EPDMADIS(x)	((x) + 0x28C)
237 /* DMA master interrupts enable and pending interrupts */
238 #define USBD_DMAINTST(x)	((x) + 0x290)
239 #define USBD_DMAINTEN(x)	((x) + 0x294)
240 /* DMA end of transfer interrupt enable, disable, status */
241 #define USBD_EOTINTST(x)	((x) + 0x2A0)
242 #define USBD_EOTINTCLR(x)	((x) + 0x2A4)
243 #define USBD_EOTINTSET(x)	((x) + 0x2A8)
244 /* New DD request interrupt enable, disable, status */
245 #define USBD_NDDRTINTST(x)	((x) + 0x2AC)
246 #define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
247 #define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
248 /* DMA error interrupt enable, disable, status */
249 #define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
250 #define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
251 #define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
252 
253 /**********************************************************************
254  * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
255  * USBD_DEVINTPRI register definitions
256  **********************************************************************/
257 #define USBD_ERR_INT		(1 << 9)
258 #define USBD_EP_RLZED		(1 << 8)
259 #define USBD_TXENDPKT		(1 << 7)
260 #define USBD_RXENDPKT		(1 << 6)
261 #define USBD_CDFULL		(1 << 5)
262 #define USBD_CCEMPTY		(1 << 4)
263 #define USBD_DEV_STAT		(1 << 3)
264 #define USBD_EP_SLOW		(1 << 2)
265 #define USBD_EP_FAST		(1 << 1)
266 #define USBD_FRAME		(1 << 0)
267 
268 /**********************************************************************
269  * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
270  * USBD_EPINTPRI register definitions
271  **********************************************************************/
272 /* End point selection macro (RX) */
273 #define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
274 
275 /* End point selection macro (TX) */
276 #define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
277 
278 /**********************************************************************
279  * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
280  * USBD_EPDMAEN/USBD_EPDMADIS/
281  * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
282  * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
283  * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
284  * register definitions
285  **********************************************************************/
286 /* Endpoint selection macro */
287 #define USBD_EP_SEL(e)		(1 << (e))
288 
289 /**********************************************************************
290  * SBD_DMAINTST/USBD_DMAINTEN
291  **********************************************************************/
292 #define USBD_SYS_ERR_INT	(1 << 2)
293 #define USBD_NEW_DD_INT		(1 << 1)
294 #define USBD_EOT_INT		(1 << 0)
295 
296 /**********************************************************************
297  * USBD_RXPLEN register definitions
298  **********************************************************************/
299 #define USBD_PKT_RDY		(1 << 11)
300 #define USBD_DV			(1 << 10)
301 #define USBD_PK_LEN_MASK	0x3FF
302 
303 /**********************************************************************
304  * USBD_CTRL register definitions
305  **********************************************************************/
306 #define USBD_LOG_ENDPOINT(e)	((e) << 2)
307 #define USBD_WR_EN		(1 << 1)
308 #define USBD_RD_EN		(1 << 0)
309 
310 /**********************************************************************
311  * USBD_CMDCODE register definitions
312  **********************************************************************/
313 #define USBD_CMD_CODE(c)	((c) << 16)
314 #define USBD_CMD_PHASE(p)	((p) << 8)
315 
316 /**********************************************************************
317  * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
318  **********************************************************************/
319 #define USBD_DMAEP(e)		(1 << (e))
320 
321 /* DD (DMA Descriptor) structure, requires word alignment */
322 struct lpc32xx_usbd_dd {
323 	u32 *dd_next;
324 	u32 dd_setup;
325 	u32 dd_buffer_addr;
326 	u32 dd_status;
327 	u32 dd_iso_ps_mem_addr;
328 };
329 
330 /* dd_setup bit defines */
331 #define DD_SETUP_ATLE_DMA_MODE	0x01
332 #define DD_SETUP_NEXT_DD_VALID	0x04
333 #define DD_SETUP_ISO_EP		0x10
334 #define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
335 #define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
336 
337 /* dd_status bit defines */
338 #define DD_STATUS_DD_RETIRED	0x01
339 #define DD_STATUS_STS_MASK	0x1E
340 #define DD_STATUS_STS_NS	0x00 /* Not serviced */
341 #define DD_STATUS_STS_BS	0x02 /* Being serviced */
342 #define DD_STATUS_STS_NC	0x04 /* Normal completion */
343 #define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
344 #define DD_STATUS_STS_DOR	0x08 /* Data overrun */
345 #define DD_STATUS_STS_SE	0x12 /* System error */
346 #define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
347 #define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
348 #define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
349 #define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
350 #define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
351 
352 /*
353  *
354  * Protocol engine bits below
355  *
356  */
357 /* Device Interrupt Bit Definitions */
358 #define FRAME_INT		0x00000001
359 #define EP_FAST_INT		0x00000002
360 #define EP_SLOW_INT		0x00000004
361 #define DEV_STAT_INT		0x00000008
362 #define CCEMTY_INT		0x00000010
363 #define CDFULL_INT		0x00000020
364 #define RxENDPKT_INT		0x00000040
365 #define TxENDPKT_INT		0x00000080
366 #define EP_RLZED_INT		0x00000100
367 #define ERR_INT			0x00000200
368 
369 /* Rx & Tx Packet Length Definitions */
370 #define PKT_LNGTH_MASK		0x000003FF
371 #define PKT_DV			0x00000400
372 #define PKT_RDY			0x00000800
373 
374 /* USB Control Definitions */
375 #define CTRL_RD_EN		0x00000001
376 #define CTRL_WR_EN		0x00000002
377 
378 /* Command Codes */
379 #define CMD_SET_ADDR		0x00D00500
380 #define CMD_CFG_DEV		0x00D80500
381 #define CMD_SET_MODE		0x00F30500
382 #define CMD_RD_FRAME		0x00F50500
383 #define DAT_RD_FRAME		0x00F50200
384 #define CMD_RD_TEST		0x00FD0500
385 #define DAT_RD_TEST		0x00FD0200
386 #define CMD_SET_DEV_STAT	0x00FE0500
387 #define CMD_GET_DEV_STAT	0x00FE0500
388 #define DAT_GET_DEV_STAT	0x00FE0200
389 #define CMD_GET_ERR_CODE	0x00FF0500
390 #define DAT_GET_ERR_CODE	0x00FF0200
391 #define CMD_RD_ERR_STAT		0x00FB0500
392 #define DAT_RD_ERR_STAT		0x00FB0200
393 #define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
394 #define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
395 #define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
396 #define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
397 #define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
398 #define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
399 #define CMD_CLR_BUF		0x00F20500
400 #define DAT_CLR_BUF		0x00F20200
401 #define CMD_VALID_BUF		0x00FA0500
402 
403 /* Device Address Register Definitions */
404 #define DEV_ADDR_MASK		0x7F
405 #define DEV_EN			0x80
406 
407 /* Device Configure Register Definitions */
408 #define CONF_DVICE		0x01
409 
410 /* Device Mode Register Definitions */
411 #define AP_CLK			0x01
412 #define INAK_CI			0x02
413 #define INAK_CO			0x04
414 #define INAK_II			0x08
415 #define INAK_IO			0x10
416 #define INAK_BI			0x20
417 #define INAK_BO			0x40
418 
419 /* Device Status Register Definitions */
420 #define DEV_CON			0x01
421 #define DEV_CON_CH		0x02
422 #define DEV_SUS			0x04
423 #define DEV_SUS_CH		0x08
424 #define DEV_RST			0x10
425 
426 /* Error Code Register Definitions */
427 #define ERR_EC_MASK		0x0F
428 #define ERR_EA			0x10
429 
430 /* Error Status Register Definitions */
431 #define ERR_PID			0x01
432 #define ERR_UEPKT		0x02
433 #define ERR_DCRC		0x04
434 #define ERR_TIMOUT		0x08
435 #define ERR_EOP			0x10
436 #define ERR_B_OVRN		0x20
437 #define ERR_BTSTF		0x40
438 #define ERR_TGL			0x80
439 
440 /* Endpoint Select Register Definitions */
441 #define EP_SEL_F		0x01
442 #define EP_SEL_ST		0x02
443 #define EP_SEL_STP		0x04
444 #define EP_SEL_PO		0x08
445 #define EP_SEL_EPN		0x10
446 #define EP_SEL_B_1_FULL		0x20
447 #define EP_SEL_B_2_FULL		0x40
448 
449 /* Endpoint Status Register Definitions */
450 #define EP_STAT_ST		0x01
451 #define EP_STAT_DA		0x20
452 #define EP_STAT_RF_MO		0x40
453 #define EP_STAT_CND_ST		0x80
454 
455 /* Clear Buffer Register Definitions */
456 #define CLR_BUF_PO		0x01
457 
458 /* DMA Interrupt Bit Definitions */
459 #define EOT_INT			0x01
460 #define NDD_REQ_INT		0x02
461 #define SYS_ERR_INT		0x04
462 
463 #define	DRIVER_VERSION	"1.03"
464 static const char driver_name[] = "lpc32xx_udc";
465 
466 /*
467  *
468  * proc interface support
469  *
470  */
471 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
472 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
473 static const char debug_filename[] = "driver/udc";
474 
475 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
476 {
477 	struct lpc32xx_request *req;
478 
479 	seq_printf(s, "\n");
480 	seq_printf(s, "%12s, maxpacket %4d %3s",
481 			ep->ep.name, ep->ep.maxpacket,
482 			ep->is_in ? "in" : "out");
483 	seq_printf(s, " type %4s", epnames[ep->eptype]);
484 	seq_printf(s, " ints: %12d", ep->totalints);
485 
486 	if (list_empty(&ep->queue))
487 		seq_printf(s, "\t(queue empty)\n");
488 	else {
489 		list_for_each_entry(req, &ep->queue, queue) {
490 			u32 length = req->req.actual;
491 
492 			seq_printf(s, "\treq %p len %d/%d buf %p\n",
493 				   &req->req, length,
494 				   req->req.length, req->req.buf);
495 		}
496 	}
497 }
498 
499 static int proc_udc_show(struct seq_file *s, void *unused)
500 {
501 	struct lpc32xx_udc *udc = s->private;
502 	struct lpc32xx_ep *ep;
503 	unsigned long flags;
504 
505 	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
506 
507 	spin_lock_irqsave(&udc->lock, flags);
508 
509 	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
510 		   udc->vbus ? "present" : "off",
511 		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
512 		   "disabled",
513 		   udc->gadget.is_selfpowered ? "self" : "VBUS",
514 		   udc->suspended ? ", suspended" : "",
515 		   udc->driver ? udc->driver->driver.name : "(none)");
516 
517 	if (udc->enabled && udc->vbus) {
518 		proc_ep_show(s, &udc->ep[0]);
519 		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
520 			proc_ep_show(s, ep);
521 	}
522 
523 	spin_unlock_irqrestore(&udc->lock, flags);
524 
525 	return 0;
526 }
527 
528 static int proc_udc_open(struct inode *inode, struct file *file)
529 {
530 	return single_open(file, proc_udc_show, PDE_DATA(inode));
531 }
532 
533 static const struct file_operations proc_ops = {
534 	.owner		= THIS_MODULE,
535 	.open		= proc_udc_open,
536 	.read		= seq_read,
537 	.llseek		= seq_lseek,
538 	.release	= single_release,
539 };
540 
541 static void create_debug_file(struct lpc32xx_udc *udc)
542 {
543 	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
544 }
545 
546 static void remove_debug_file(struct lpc32xx_udc *udc)
547 {
548 	debugfs_remove(udc->pde);
549 }
550 
551 #else
552 static inline void create_debug_file(struct lpc32xx_udc *udc) {}
553 static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
554 #endif
555 
556 /* Primary initialization sequence for the ISP1301 transceiver */
557 static void isp1301_udc_configure(struct lpc32xx_udc *udc)
558 {
559 	u8 value;
560 	s32 vendor, product;
561 
562 	vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00);
563 	product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02);
564 
565 	if (vendor == 0x0483 && product == 0xa0c4)
566 		udc->atx = STOTG04;
567 
568 	/* LPC32XX only supports DAT_SE0 USB mode */
569 	/* This sequence is important */
570 
571 	/* Disable transparent UART mode first */
572 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
573 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
574 		MC1_UART_EN);
575 
576 	/* Set full speed and SE0 mode */
577 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
578 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
579 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
580 		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
581 
582 	/*
583 	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
584 	 */
585 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
586 		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
587 
588 	value = MC2_BI_DI;
589 	if (udc->atx != STOTG04)
590 		value |= MC2_SPD_SUSP_CTRL;
591 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
592 		ISP1301_I2C_MODE_CONTROL_2, value);
593 
594 	/* Driver VBUS_DRV high or low depending on board setup */
595 	if (udc->board->vbus_drv_pol != 0)
596 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
597 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
598 	else
599 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
600 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
601 			OTG1_VBUS_DRV);
602 
603 	/* Bi-directional mode with suspend control
604 	 * Enable both pulldowns for now - the pullup will be enable when VBUS
605 	 * is detected */
606 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
607 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
608 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
609 		ISP1301_I2C_OTG_CONTROL_1,
610 		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
611 
612 	/* Discharge VBUS (just in case) */
613 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
614 		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
615 	msleep(1);
616 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
617 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
618 		OTG1_VBUS_DISCHRG);
619 
620 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
621 		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
622 
623 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
624 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
625 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
626 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
627 
628 	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n", vendor);
629 	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
630 	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
631 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
632 
633 }
634 
635 /* Enables or disables the USB device pullup via the ISP1301 transceiver */
636 static void isp1301_pullup_set(struct lpc32xx_udc *udc)
637 {
638 	if (udc->pullup)
639 		/* Enable pullup for bus signalling */
640 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
641 			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
642 	else
643 		/* Enable pullup for bus signalling */
644 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
645 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
646 			OTG1_DP_PULLUP);
647 }
648 
649 static void pullup_work(struct work_struct *work)
650 {
651 	struct lpc32xx_udc *udc =
652 		container_of(work, struct lpc32xx_udc, pullup_job);
653 
654 	isp1301_pullup_set(udc);
655 }
656 
657 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
658 				  int block)
659 {
660 	if (en_pullup == udc->pullup)
661 		return;
662 
663 	udc->pullup = en_pullup;
664 	if (block)
665 		isp1301_pullup_set(udc);
666 	else
667 		/* defer slow i2c pull up setting */
668 		schedule_work(&udc->pullup_job);
669 }
670 
671 #ifdef CONFIG_PM
672 /* Powers up or down the ISP1301 transceiver */
673 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
674 {
675 	/* There is no "global power down" register for stotg04 */
676 	if (udc->atx == STOTG04)
677 		return;
678 
679 	if (enable != 0)
680 		/* Power up ISP1301 - this ISP1301 will automatically wakeup
681 		   when VBUS is detected */
682 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
683 			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
684 			MC2_GLOBAL_PWR_DN);
685 	else
686 		/* Power down ISP1301 */
687 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
688 			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
689 }
690 
691 static void power_work(struct work_struct *work)
692 {
693 	struct lpc32xx_udc *udc =
694 		container_of(work, struct lpc32xx_udc, power_job);
695 
696 	isp1301_set_powerstate(udc, udc->poweron);
697 }
698 #endif
699 
700 /*
701  *
702  * USB protocol engine command/data read/write helper functions
703  *
704  */
705 /* Issues a single command to the USB device state machine */
706 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
707 {
708 	u32 pass = 0;
709 	int to;
710 
711 	/* EP may lock on CLRI if this read isn't done */
712 	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
713 	(void) tmp;
714 
715 	while (pass == 0) {
716 		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
717 
718 		/* Write command code */
719 		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
720 		to = 10000;
721 		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
722 			 USBD_CCEMPTY) == 0) && (to > 0)) {
723 			to--;
724 		}
725 
726 		if (to > 0)
727 			pass = 1;
728 
729 		cpu_relax();
730 	}
731 }
732 
733 /* Issues 2 commands (or command and data) to the USB device state machine */
734 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
735 					   u32 data)
736 {
737 	udc_protocol_cmd_w(udc, cmd);
738 	udc_protocol_cmd_w(udc, data);
739 }
740 
741 /* Issues a single command to the USB device state machine and reads
742  * response data */
743 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
744 {
745 	u32 tmp;
746 	int to = 1000;
747 
748 	/* Write a command and read data from the protocol engine */
749 	writel((USBD_CDFULL | USBD_CCEMPTY),
750 		     USBD_DEVINTCLR(udc->udp_baseaddr));
751 
752 	/* Write command code */
753 	udc_protocol_cmd_w(udc, cmd);
754 
755 	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
756 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
757 	       && (to > 0))
758 		to--;
759 	if (!to)
760 		dev_dbg(udc->dev,
761 			"Protocol engine didn't receive response (CDFULL)\n");
762 
763 	return readl(USBD_CMDDATA(udc->udp_baseaddr));
764 }
765 
766 /*
767  *
768  * USB device interrupt mask support functions
769  *
770  */
771 /* Enable one or more USB device interrupts */
772 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
773 {
774 	udc->enabled_devints |= devmask;
775 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
776 }
777 
778 /* Disable one or more USB device interrupts */
779 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
780 {
781 	udc->enabled_devints &= ~mask;
782 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
783 }
784 
785 /* Clear one or more USB device interrupts */
786 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
787 {
788 	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
789 }
790 
791 /*
792  *
793  * Endpoint interrupt disable/enable functions
794  *
795  */
796 /* Enable one or more USB endpoint interrupts */
797 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
798 {
799 	udc->enabled_hwepints |= (1 << hwep);
800 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
801 }
802 
803 /* Disable one or more USB endpoint interrupts */
804 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
805 {
806 	udc->enabled_hwepints &= ~(1 << hwep);
807 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
808 }
809 
810 /* Clear one or more USB endpoint interrupts */
811 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
812 {
813 	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
814 }
815 
816 /* Enable DMA for the HW channel */
817 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
818 {
819 	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
820 }
821 
822 /* Disable DMA for the HW channel */
823 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
824 {
825 	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
826 }
827 
828 /*
829  *
830  * Endpoint realize/unrealize functions
831  *
832  */
833 /* Before an endpoint can be used, it needs to be realized
834  * in the USB protocol engine - this realizes the endpoint.
835  * The interrupt (FIFO or DMA) is not enabled with this function */
836 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
837 			     u32 maxpacket)
838 {
839 	int to = 1000;
840 
841 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
842 	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
843 	udc->realized_eps |= (1 << hwep);
844 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
845 	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
846 
847 	/* Wait until endpoint is realized in hardware */
848 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
849 		  USBD_EP_RLZED)) && (to > 0))
850 		to--;
851 	if (!to)
852 		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
853 
854 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
855 }
856 
857 /* Unrealize an EP */
858 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
859 {
860 	udc->realized_eps &= ~(1 << hwep);
861 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
862 }
863 
864 /*
865  *
866  * Endpoint support functions
867  *
868  */
869 /* Select and clear endpoint interrupt */
870 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
871 {
872 	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
873 	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
874 }
875 
876 /* Disables the endpoint in the USB protocol engine */
877 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
878 {
879 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
880 				DAT_WR_BYTE(EP_STAT_DA));
881 }
882 
883 /* Stalls the endpoint - endpoint will return STALL */
884 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
885 {
886 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
887 				DAT_WR_BYTE(EP_STAT_ST));
888 }
889 
890 /* Clear stall or reset endpoint */
891 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
892 {
893 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
894 				DAT_WR_BYTE(0));
895 }
896 
897 /* Select an endpoint for endpoint status, clear, validate */
898 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
899 {
900 	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
901 }
902 
903 /*
904  *
905  * Endpoint buffer management functions
906  *
907  */
908 /* Clear the current endpoint's buffer */
909 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
910 {
911 	udc_select_hwep(udc, hwep);
912 	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
913 }
914 
915 /* Validate the current endpoint's buffer */
916 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
917 {
918 	udc_select_hwep(udc, hwep);
919 	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
920 }
921 
922 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
923 {
924 	/* Clear EP interrupt */
925 	uda_clear_hwepint(udc, hwep);
926 	return udc_selep_clrint(udc, hwep);
927 }
928 
929 /*
930  *
931  * USB EP DMA support
932  *
933  */
934 /* Allocate a DMA Descriptor */
935 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
936 {
937 	dma_addr_t			dma;
938 	struct lpc32xx_usbd_dd_gad	*dd;
939 
940 	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
941 			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
942 	if (dd)
943 		dd->this_dma = dma;
944 
945 	return dd;
946 }
947 
948 /* Free a DMA Descriptor */
949 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
950 {
951 	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
952 }
953 
954 /*
955  *
956  * USB setup and shutdown functions
957  *
958  */
959 /* Enables or disables most of the USB system clocks when low power mode is
960  * needed. Clocks are typically started on a connection event, and disabled
961  * when a cable is disconnected */
962 static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
963 {
964 	if (enable != 0) {
965 		if (udc->clocked)
966 			return;
967 
968 		udc->clocked = 1;
969 		clk_prepare_enable(udc->usb_slv_clk);
970 	} else {
971 		if (!udc->clocked)
972 			return;
973 
974 		udc->clocked = 0;
975 		clk_disable_unprepare(udc->usb_slv_clk);
976 	}
977 }
978 
979 /* Set/reset USB device address */
980 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
981 {
982 	/* Address will be latched at the end of the status phase, or
983 	   latched immediately if function is called twice */
984 	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
985 				DAT_WR_BYTE(DEV_EN | addr));
986 }
987 
988 /* Setup up a IN request for DMA transfer - this consists of determining the
989  * list of DMA addresses for the transfer, allocating DMA Descriptors,
990  * installing the DD into the UDCA, and then enabling the DMA for that EP */
991 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
992 {
993 	struct lpc32xx_request *req;
994 	u32 hwep = ep->hwep_num;
995 
996 	ep->req_pending = 1;
997 
998 	/* There will always be a request waiting here */
999 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1000 
1001 	/* Place the DD Descriptor into the UDCA */
1002 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1003 
1004 	/* Enable DMA and interrupt for the HW EP */
1005 	udc_ep_dma_enable(udc, hwep);
1006 
1007 	/* Clear ZLP if last packet is not of MAXP size */
1008 	if (req->req.length % ep->ep.maxpacket)
1009 		req->send_zlp = 0;
1010 
1011 	return 0;
1012 }
1013 
1014 /* Setup up a OUT request for DMA transfer - this consists of determining the
1015  * list of DMA addresses for the transfer, allocating DMA Descriptors,
1016  * installing the DD into the UDCA, and then enabling the DMA for that EP */
1017 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1018 {
1019 	struct lpc32xx_request *req;
1020 	u32 hwep = ep->hwep_num;
1021 
1022 	ep->req_pending = 1;
1023 
1024 	/* There will always be a request waiting here */
1025 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1026 
1027 	/* Place the DD Descriptor into the UDCA */
1028 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1029 
1030 	/* Enable DMA and interrupt for the HW EP */
1031 	udc_ep_dma_enable(udc, hwep);
1032 	return 0;
1033 }
1034 
1035 static void udc_disable(struct lpc32xx_udc *udc)
1036 {
1037 	u32 i;
1038 
1039 	/* Disable device */
1040 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1041 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1042 
1043 	/* Disable all device interrupts (including EP0) */
1044 	uda_disable_devint(udc, 0x3FF);
1045 
1046 	/* Disable and reset all endpoint interrupts */
1047 	for (i = 0; i < 32; i++) {
1048 		uda_disable_hwepint(udc, i);
1049 		uda_clear_hwepint(udc, i);
1050 		udc_disable_hwep(udc, i);
1051 		udc_unrealize_hwep(udc, i);
1052 		udc->udca_v_base[i] = 0;
1053 
1054 		/* Disable and clear all interrupts and DMA */
1055 		udc_ep_dma_disable(udc, i);
1056 		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1057 		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1058 		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1059 		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1060 	}
1061 
1062 	/* Disable DMA interrupts */
1063 	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1064 
1065 	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1066 }
1067 
1068 static void udc_enable(struct lpc32xx_udc *udc)
1069 {
1070 	u32 i;
1071 	struct lpc32xx_ep *ep = &udc->ep[0];
1072 
1073 	/* Start with known state */
1074 	udc_disable(udc);
1075 
1076 	/* Enable device */
1077 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1078 
1079 	/* EP interrupts on high priority, FRAME interrupt on low priority */
1080 	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1081 	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1082 
1083 	/* Clear any pending device interrupts */
1084 	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1085 
1086 	/* Setup UDCA - not yet used (DMA) */
1087 	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1088 
1089 	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1090 	for (i = 0; i <= 1; i++) {
1091 		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1092 		uda_enable_hwepint(udc, i);
1093 		udc_select_hwep(udc, i);
1094 		udc_clrstall_hwep(udc, i);
1095 		udc_clr_buffer_hwep(udc, i);
1096 	}
1097 
1098 	/* Device interrupt setup */
1099 	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1100 			       USBD_EP_FAST));
1101 	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1102 				USBD_EP_FAST));
1103 
1104 	/* Set device address to 0 - called twice to force a latch in the USB
1105 	   engine without the need of a setup packet status closure */
1106 	udc_set_address(udc, 0);
1107 	udc_set_address(udc, 0);
1108 
1109 	/* Enable master DMA interrupts */
1110 	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1111 		     USBD_DMAINTEN(udc->udp_baseaddr));
1112 
1113 	udc->dev_status = 0;
1114 }
1115 
1116 /*
1117  *
1118  * USB device board specific events handled via callbacks
1119  *
1120  */
1121 /* Connection change event - notify board function of change */
1122 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1123 {
1124 	/* Just notify of a connection change event (optional) */
1125 	if (udc->board->conn_chgb != NULL)
1126 		udc->board->conn_chgb(conn);
1127 }
1128 
1129 /* Suspend/resume event - notify board function of change */
1130 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1131 {
1132 	/* Just notify of a Suspend/resume change event (optional) */
1133 	if (udc->board->susp_chgb != NULL)
1134 		udc->board->susp_chgb(conn);
1135 
1136 	if (conn)
1137 		udc->suspended = 0;
1138 	else
1139 		udc->suspended = 1;
1140 }
1141 
1142 /* Remote wakeup enable/disable - notify board function of change */
1143 static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1144 {
1145 	if (udc->board->rmwk_chgb != NULL)
1146 		udc->board->rmwk_chgb(udc->dev_status &
1147 				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1148 }
1149 
1150 /* Reads data from FIFO, adjusts for alignment and data size */
1151 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1152 {
1153 	int n, i, bl;
1154 	u16 *p16;
1155 	u32 *p32, tmp, cbytes;
1156 
1157 	/* Use optimal data transfer method based on source address and size */
1158 	switch (((u32) data) & 0x3) {
1159 	case 0: /* 32-bit aligned */
1160 		p32 = (u32 *) data;
1161 		cbytes = (bytes & ~0x3);
1162 
1163 		/* Copy 32-bit aligned data first */
1164 		for (n = 0; n < cbytes; n += 4)
1165 			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1166 
1167 		/* Handle any remaining bytes */
1168 		bl = bytes - cbytes;
1169 		if (bl) {
1170 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1171 			for (n = 0; n < bl; n++)
1172 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1173 
1174 		}
1175 		break;
1176 
1177 	case 1: /* 8-bit aligned */
1178 	case 3:
1179 		/* Each byte has to be handled independently */
1180 		for (n = 0; n < bytes; n += 4) {
1181 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1182 
1183 			bl = bytes - n;
1184 			if (bl > 3)
1185 				bl = 3;
1186 
1187 			for (i = 0; i < bl; i++)
1188 				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1189 		}
1190 		break;
1191 
1192 	case 2: /* 16-bit aligned */
1193 		p16 = (u16 *) data;
1194 		cbytes = (bytes & ~0x3);
1195 
1196 		/* Copy 32-bit sized objects first with 16-bit alignment */
1197 		for (n = 0; n < cbytes; n += 4) {
1198 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1199 			*p16++ = (u16)(tmp & 0xFFFF);
1200 			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1201 		}
1202 
1203 		/* Handle any remaining bytes */
1204 		bl = bytes - cbytes;
1205 		if (bl) {
1206 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1207 			for (n = 0; n < bl; n++)
1208 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1209 		}
1210 		break;
1211 	}
1212 }
1213 
1214 /* Read data from the FIFO for an endpoint. This function is for endpoints (such
1215  * as EP0) that don't use DMA. This function should only be called if a packet
1216  * is known to be ready to read for the endpoint. Note that the endpoint must
1217  * be selected in the protocol engine prior to this call. */
1218 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1219 			 u32 bytes)
1220 {
1221 	u32 tmpv;
1222 	int to = 1000;
1223 	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1224 
1225 	/* Setup read of endpoint */
1226 	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1227 
1228 	/* Wait until packet is ready */
1229 	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1230 		 PKT_RDY) == 0)	&& (to > 0))
1231 		to--;
1232 	if (!to)
1233 		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1234 
1235 	/* Mask out count */
1236 	tmp = tmpv & PKT_LNGTH_MASK;
1237 	if (bytes < tmp)
1238 		tmp = bytes;
1239 
1240 	if ((tmp > 0) && (data != NULL))
1241 		udc_pop_fifo(udc, (u8 *) data, tmp);
1242 
1243 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1244 
1245 	/* Clear the buffer */
1246 	udc_clr_buffer_hwep(udc, hwep);
1247 
1248 	return tmp;
1249 }
1250 
1251 /* Stuffs data into the FIFO, adjusts for alignment and data size */
1252 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1253 {
1254 	int n, i, bl;
1255 	u16 *p16;
1256 	u32 *p32, tmp, cbytes;
1257 
1258 	/* Use optimal data transfer method based on source address and size */
1259 	switch (((u32) data) & 0x3) {
1260 	case 0: /* 32-bit aligned */
1261 		p32 = (u32 *) data;
1262 		cbytes = (bytes & ~0x3);
1263 
1264 		/* Copy 32-bit aligned data first */
1265 		for (n = 0; n < cbytes; n += 4)
1266 			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1267 
1268 		/* Handle any remaining bytes */
1269 		bl = bytes - cbytes;
1270 		if (bl) {
1271 			tmp = 0;
1272 			for (n = 0; n < bl; n++)
1273 				tmp |= data[cbytes + n] << (n * 8);
1274 
1275 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1276 		}
1277 		break;
1278 
1279 	case 1: /* 8-bit aligned */
1280 	case 3:
1281 		/* Each byte has to be handled independently */
1282 		for (n = 0; n < bytes; n += 4) {
1283 			bl = bytes - n;
1284 			if (bl > 4)
1285 				bl = 4;
1286 
1287 			tmp = 0;
1288 			for (i = 0; i < bl; i++)
1289 				tmp |= data[n + i] << (i * 8);
1290 
1291 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1292 		}
1293 		break;
1294 
1295 	case 2: /* 16-bit aligned */
1296 		p16 = (u16 *) data;
1297 		cbytes = (bytes & ~0x3);
1298 
1299 		/* Copy 32-bit aligned data first */
1300 		for (n = 0; n < cbytes; n += 4) {
1301 			tmp = *p16++ & 0xFFFF;
1302 			tmp |= (*p16++ & 0xFFFF) << 16;
1303 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1304 		}
1305 
1306 		/* Handle any remaining bytes */
1307 		bl = bytes - cbytes;
1308 		if (bl) {
1309 			tmp = 0;
1310 			for (n = 0; n < bl; n++)
1311 				tmp |= data[cbytes + n] << (n * 8);
1312 
1313 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1314 		}
1315 		break;
1316 	}
1317 }
1318 
1319 /* Write data to the FIFO for an endpoint. This function is for endpoints (such
1320  * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1321  * protocol engine prior to this call. */
1322 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1323 			   u32 bytes)
1324 {
1325 	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1326 
1327 	if ((bytes > 0) && (data == NULL))
1328 		return;
1329 
1330 	/* Setup write of endpoint */
1331 	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1332 
1333 	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1334 
1335 	/* Need at least 1 byte to trigger TX */
1336 	if (bytes == 0)
1337 		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1338 	else
1339 		udc_stuff_fifo(udc, (u8 *) data, bytes);
1340 
1341 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1342 
1343 	udc_val_buffer_hwep(udc, hwep);
1344 }
1345 
1346 /* USB device reset - resets USB to a default state with just EP0
1347    enabled */
1348 static void uda_usb_reset(struct lpc32xx_udc *udc)
1349 {
1350 	u32 i = 0;
1351 	/* Re-init device controller and EP0 */
1352 	udc_enable(udc);
1353 	udc->gadget.speed = USB_SPEED_FULL;
1354 
1355 	for (i = 1; i < NUM_ENDPOINTS; i++) {
1356 		struct lpc32xx_ep *ep = &udc->ep[i];
1357 		ep->req_pending = 0;
1358 	}
1359 }
1360 
1361 /* Send a ZLP on EP0 */
1362 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1363 {
1364 	udc_write_hwep(udc, EP_IN, NULL, 0);
1365 }
1366 
1367 /* Get current frame number */
1368 static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1369 {
1370 	u16 flo, fhi;
1371 
1372 	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1373 	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1374 	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1375 
1376 	return (fhi << 8) | flo;
1377 }
1378 
1379 /* Set the device as configured - enables all endpoints */
1380 static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1381 {
1382 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1383 }
1384 
1385 /* Set the device as unconfigured - disables all endpoints */
1386 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1387 {
1388 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1389 }
1390 
1391 /* reinit == restore initial software state */
1392 static void udc_reinit(struct lpc32xx_udc *udc)
1393 {
1394 	u32 i;
1395 
1396 	INIT_LIST_HEAD(&udc->gadget.ep_list);
1397 	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1398 
1399 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1400 		struct lpc32xx_ep *ep = &udc->ep[i];
1401 
1402 		if (i != 0)
1403 			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1404 		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1405 		INIT_LIST_HEAD(&ep->queue);
1406 		ep->req_pending = 0;
1407 	}
1408 
1409 	udc->ep0state = WAIT_FOR_SETUP;
1410 }
1411 
1412 /* Must be called with lock */
1413 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1414 {
1415 	struct lpc32xx_udc *udc = ep->udc;
1416 
1417 	list_del_init(&req->queue);
1418 	if (req->req.status == -EINPROGRESS)
1419 		req->req.status = status;
1420 	else
1421 		status = req->req.status;
1422 
1423 	if (ep->lep) {
1424 		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1425 
1426 		/* Free DDs */
1427 		udc_dd_free(udc, req->dd_desc_ptr);
1428 	}
1429 
1430 	if (status && status != -ESHUTDOWN)
1431 		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1432 
1433 	ep->req_pending = 0;
1434 	spin_unlock(&udc->lock);
1435 	usb_gadget_giveback_request(&ep->ep, &req->req);
1436 	spin_lock(&udc->lock);
1437 }
1438 
1439 /* Must be called with lock */
1440 static void nuke(struct lpc32xx_ep *ep, int status)
1441 {
1442 	struct lpc32xx_request *req;
1443 
1444 	while (!list_empty(&ep->queue)) {
1445 		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1446 		done(ep, req, status);
1447 	}
1448 
1449 	if (status == -ESHUTDOWN) {
1450 		uda_disable_hwepint(ep->udc, ep->hwep_num);
1451 		udc_disable_hwep(ep->udc, ep->hwep_num);
1452 	}
1453 }
1454 
1455 /* IN endpoint 0 transfer */
1456 static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1457 {
1458 	struct lpc32xx_request *req;
1459 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1460 	u32 tsend, ts = 0;
1461 
1462 	if (list_empty(&ep0->queue))
1463 		/* Nothing to send */
1464 		return 0;
1465 	else
1466 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1467 				 queue);
1468 
1469 	tsend = ts = req->req.length - req->req.actual;
1470 	if (ts == 0) {
1471 		/* Send a ZLP */
1472 		udc_ep0_send_zlp(udc);
1473 		done(ep0, req, 0);
1474 		return 1;
1475 	} else if (ts > ep0->ep.maxpacket)
1476 		ts = ep0->ep.maxpacket; /* Just send what we can */
1477 
1478 	/* Write data to the EP0 FIFO and start transfer */
1479 	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1480 
1481 	/* Increment data pointer */
1482 	req->req.actual += ts;
1483 
1484 	if (tsend >= ep0->ep.maxpacket)
1485 		return 0; /* Stay in data transfer state */
1486 
1487 	/* Transfer request is complete */
1488 	udc->ep0state = WAIT_FOR_SETUP;
1489 	done(ep0, req, 0);
1490 	return 1;
1491 }
1492 
1493 /* OUT endpoint 0 transfer */
1494 static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1495 {
1496 	struct lpc32xx_request *req;
1497 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1498 	u32 tr, bufferspace;
1499 
1500 	if (list_empty(&ep0->queue))
1501 		return 0;
1502 	else
1503 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1504 				 queue);
1505 
1506 	if (req) {
1507 		if (req->req.length == 0) {
1508 			/* Just dequeue request */
1509 			done(ep0, req, 0);
1510 			udc->ep0state = WAIT_FOR_SETUP;
1511 			return 1;
1512 		}
1513 
1514 		/* Get data from FIFO */
1515 		bufferspace = req->req.length - req->req.actual;
1516 		if (bufferspace > ep0->ep.maxpacket)
1517 			bufferspace = ep0->ep.maxpacket;
1518 
1519 		/* Copy data to buffer */
1520 		prefetchw(req->req.buf + req->req.actual);
1521 		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1522 				   bufferspace);
1523 		req->req.actual += bufferspace;
1524 
1525 		if (tr < ep0->ep.maxpacket) {
1526 			/* This is the last packet */
1527 			done(ep0, req, 0);
1528 			udc->ep0state = WAIT_FOR_SETUP;
1529 			return 1;
1530 		}
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 /* Must be called with lock */
1537 static void stop_activity(struct lpc32xx_udc *udc)
1538 {
1539 	struct usb_gadget_driver *driver = udc->driver;
1540 	int i;
1541 
1542 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1543 		driver = NULL;
1544 
1545 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1546 	udc->suspended = 0;
1547 
1548 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1549 		struct lpc32xx_ep *ep = &udc->ep[i];
1550 		nuke(ep, -ESHUTDOWN);
1551 	}
1552 	if (driver) {
1553 		spin_unlock(&udc->lock);
1554 		driver->disconnect(&udc->gadget);
1555 		spin_lock(&udc->lock);
1556 	}
1557 
1558 	isp1301_pullup_enable(udc, 0, 0);
1559 	udc_disable(udc);
1560 	udc_reinit(udc);
1561 }
1562 
1563 /*
1564  * Activate or kill host pullup
1565  * Can be called with or without lock
1566  */
1567 static void pullup(struct lpc32xx_udc *udc, int is_on)
1568 {
1569 	if (!udc->clocked)
1570 		return;
1571 
1572 	if (!udc->enabled || !udc->vbus)
1573 		is_on = 0;
1574 
1575 	if (is_on != udc->pullup)
1576 		isp1301_pullup_enable(udc, is_on, 0);
1577 }
1578 
1579 /* Must be called without lock */
1580 static int lpc32xx_ep_disable(struct usb_ep *_ep)
1581 {
1582 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1583 	struct lpc32xx_udc *udc = ep->udc;
1584 	unsigned long	flags;
1585 
1586 	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1587 		return -EINVAL;
1588 	spin_lock_irqsave(&udc->lock, flags);
1589 
1590 	nuke(ep, -ESHUTDOWN);
1591 
1592 	/* Clear all DMA statuses for this EP */
1593 	udc_ep_dma_disable(udc, ep->hwep_num);
1594 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1595 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1596 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1597 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1598 
1599 	/* Remove the DD pointer in the UDCA */
1600 	udc->udca_v_base[ep->hwep_num] = 0;
1601 
1602 	/* Disable and reset endpoint and interrupt */
1603 	uda_clear_hwepint(udc, ep->hwep_num);
1604 	udc_unrealize_hwep(udc, ep->hwep_num);
1605 
1606 	ep->hwep_num = 0;
1607 
1608 	spin_unlock_irqrestore(&udc->lock, flags);
1609 
1610 	atomic_dec(&udc->enabled_ep_cnt);
1611 	wake_up(&udc->ep_disable_wait_queue);
1612 
1613 	return 0;
1614 }
1615 
1616 /* Must be called without lock */
1617 static int lpc32xx_ep_enable(struct usb_ep *_ep,
1618 			     const struct usb_endpoint_descriptor *desc)
1619 {
1620 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1621 	struct lpc32xx_udc *udc = ep->udc;
1622 	u16 maxpacket;
1623 	u32 tmp;
1624 	unsigned long flags;
1625 
1626 	/* Verify EP data */
1627 	if ((!_ep) || (!ep) || (!desc) ||
1628 	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1629 		dev_dbg(udc->dev, "bad ep or descriptor\n");
1630 		return -EINVAL;
1631 	}
1632 	maxpacket = usb_endpoint_maxp(desc);
1633 	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1634 		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1635 		return -EINVAL;
1636 	}
1637 
1638 	/* Don't touch EP0 */
1639 	if (ep->hwep_num_base == 0) {
1640 		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1641 		return -EINVAL;
1642 	}
1643 
1644 	/* Is driver ready? */
1645 	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1646 		dev_dbg(udc->dev, "bogus device state\n");
1647 		return -ESHUTDOWN;
1648 	}
1649 
1650 	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1651 	switch (tmp) {
1652 	case USB_ENDPOINT_XFER_CONTROL:
1653 		return -EINVAL;
1654 
1655 	case USB_ENDPOINT_XFER_INT:
1656 		if (maxpacket > ep->maxpacket) {
1657 			dev_dbg(udc->dev,
1658 				"Bad INT endpoint maxpacket %d\n", maxpacket);
1659 			return -EINVAL;
1660 		}
1661 		break;
1662 
1663 	case USB_ENDPOINT_XFER_BULK:
1664 		switch (maxpacket) {
1665 		case 8:
1666 		case 16:
1667 		case 32:
1668 		case 64:
1669 			break;
1670 
1671 		default:
1672 			dev_dbg(udc->dev,
1673 				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1674 			return -EINVAL;
1675 		}
1676 		break;
1677 
1678 	case USB_ENDPOINT_XFER_ISOC:
1679 		break;
1680 	}
1681 	spin_lock_irqsave(&udc->lock, flags);
1682 
1683 	/* Initialize endpoint to match the selected descriptor */
1684 	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1685 	ep->ep.maxpacket = maxpacket;
1686 
1687 	/* Map hardware endpoint from base and direction */
1688 	if (ep->is_in)
1689 		/* IN endpoints are offset 1 from the OUT endpoint */
1690 		ep->hwep_num = ep->hwep_num_base + EP_IN;
1691 	else
1692 		ep->hwep_num = ep->hwep_num_base;
1693 
1694 	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1695 	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1696 
1697 	/* Realize the endpoint, interrupt is enabled later when
1698 	 * buffers are queued, IN EPs will NAK until buffers are ready */
1699 	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1700 	udc_clr_buffer_hwep(udc, ep->hwep_num);
1701 	uda_disable_hwepint(udc, ep->hwep_num);
1702 	udc_clrstall_hwep(udc, ep->hwep_num);
1703 
1704 	/* Clear all DMA statuses for this EP */
1705 	udc_ep_dma_disable(udc, ep->hwep_num);
1706 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1707 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1708 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1709 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1710 
1711 	spin_unlock_irqrestore(&udc->lock, flags);
1712 
1713 	atomic_inc(&udc->enabled_ep_cnt);
1714 	return 0;
1715 }
1716 
1717 /*
1718  * Allocate a USB request list
1719  * Can be called with or without lock
1720  */
1721 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1722 						    gfp_t gfp_flags)
1723 {
1724 	struct lpc32xx_request *req;
1725 
1726 	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1727 	if (!req)
1728 		return NULL;
1729 
1730 	INIT_LIST_HEAD(&req->queue);
1731 	return &req->req;
1732 }
1733 
1734 /*
1735  * De-allocate a USB request list
1736  * Can be called with or without lock
1737  */
1738 static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1739 				    struct usb_request *_req)
1740 {
1741 	struct lpc32xx_request *req;
1742 
1743 	req = container_of(_req, struct lpc32xx_request, req);
1744 	BUG_ON(!list_empty(&req->queue));
1745 	kfree(req);
1746 }
1747 
1748 /* Must be called without lock */
1749 static int lpc32xx_ep_queue(struct usb_ep *_ep,
1750 			    struct usb_request *_req, gfp_t gfp_flags)
1751 {
1752 	struct lpc32xx_request *req;
1753 	struct lpc32xx_ep *ep;
1754 	struct lpc32xx_udc *udc;
1755 	unsigned long flags;
1756 	int status = 0;
1757 
1758 	req = container_of(_req, struct lpc32xx_request, req);
1759 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1760 
1761 	if (!_ep || !_req || !_req->complete || !_req->buf ||
1762 	    !list_empty(&req->queue))
1763 		return -EINVAL;
1764 
1765 	udc = ep->udc;
1766 
1767 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1768 		return -EPIPE;
1769 
1770 	if (ep->lep) {
1771 		struct lpc32xx_usbd_dd_gad *dd;
1772 
1773 		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1774 		if (status)
1775 			return status;
1776 
1777 		/* For the request, build a list of DDs */
1778 		dd = udc_dd_alloc(udc);
1779 		if (!dd) {
1780 			/* Error allocating DD */
1781 			return -ENOMEM;
1782 		}
1783 		req->dd_desc_ptr = dd;
1784 
1785 		/* Setup the DMA descriptor */
1786 		dd->dd_next_phy = dd->dd_next_v = 0;
1787 		dd->dd_buffer_addr = req->req.dma;
1788 		dd->dd_status = 0;
1789 
1790 		/* Special handling for ISO EPs */
1791 		if (ep->eptype == EP_ISO_TYPE) {
1792 			dd->dd_setup = DD_SETUP_ISO_EP |
1793 				DD_SETUP_PACKETLEN(0) |
1794 				DD_SETUP_DMALENBYTES(1);
1795 			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1796 			if (ep->is_in)
1797 				dd->iso_status[0] = req->req.length;
1798 			else
1799 				dd->iso_status[0] = 0;
1800 		} else
1801 			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1802 				DD_SETUP_DMALENBYTES(req->req.length);
1803 	}
1804 
1805 	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1806 	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1807 
1808 	spin_lock_irqsave(&udc->lock, flags);
1809 
1810 	_req->status = -EINPROGRESS;
1811 	_req->actual = 0;
1812 	req->send_zlp = _req->zero;
1813 
1814 	/* Kickstart empty queues */
1815 	if (list_empty(&ep->queue)) {
1816 		list_add_tail(&req->queue, &ep->queue);
1817 
1818 		if (ep->hwep_num_base == 0) {
1819 			/* Handle expected data direction */
1820 			if (ep->is_in) {
1821 				/* IN packet to host */
1822 				udc->ep0state = DATA_IN;
1823 				status = udc_ep0_in_req(udc);
1824 			} else {
1825 				/* OUT packet from host */
1826 				udc->ep0state = DATA_OUT;
1827 				status = udc_ep0_out_req(udc);
1828 			}
1829 		} else if (ep->is_in) {
1830 			/* IN packet to host and kick off transfer */
1831 			if (!ep->req_pending)
1832 				udc_ep_in_req_dma(udc, ep);
1833 		} else
1834 			/* OUT packet from host and kick off list */
1835 			if (!ep->req_pending)
1836 				udc_ep_out_req_dma(udc, ep);
1837 	} else
1838 		list_add_tail(&req->queue, &ep->queue);
1839 
1840 	spin_unlock_irqrestore(&udc->lock, flags);
1841 
1842 	return (status < 0) ? status : 0;
1843 }
1844 
1845 /* Must be called without lock */
1846 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1847 {
1848 	struct lpc32xx_ep *ep;
1849 	struct lpc32xx_request *req;
1850 	unsigned long flags;
1851 
1852 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1853 	if (!_ep || ep->hwep_num_base == 0)
1854 		return -EINVAL;
1855 
1856 	spin_lock_irqsave(&ep->udc->lock, flags);
1857 
1858 	/* make sure it's actually queued on this endpoint */
1859 	list_for_each_entry(req, &ep->queue, queue) {
1860 		if (&req->req == _req)
1861 			break;
1862 	}
1863 	if (&req->req != _req) {
1864 		spin_unlock_irqrestore(&ep->udc->lock, flags);
1865 		return -EINVAL;
1866 	}
1867 
1868 	done(ep, req, -ECONNRESET);
1869 
1870 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1871 
1872 	return 0;
1873 }
1874 
1875 /* Must be called without lock */
1876 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1877 {
1878 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1879 	struct lpc32xx_udc *udc = ep->udc;
1880 	unsigned long flags;
1881 
1882 	if ((!ep) || (ep->hwep_num <= 1))
1883 		return -EINVAL;
1884 
1885 	/* Don't halt an IN EP */
1886 	if (ep->is_in)
1887 		return -EAGAIN;
1888 
1889 	spin_lock_irqsave(&udc->lock, flags);
1890 
1891 	if (value == 1) {
1892 		/* stall */
1893 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1894 					DAT_WR_BYTE(EP_STAT_ST));
1895 	} else {
1896 		/* End stall */
1897 		ep->wedge = 0;
1898 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1899 					DAT_WR_BYTE(0));
1900 	}
1901 
1902 	spin_unlock_irqrestore(&udc->lock, flags);
1903 
1904 	return 0;
1905 }
1906 
1907 /* set the halt feature and ignores clear requests */
1908 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1909 {
1910 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1911 
1912 	if (!_ep || !ep->udc)
1913 		return -EINVAL;
1914 
1915 	ep->wedge = 1;
1916 
1917 	return usb_ep_set_halt(_ep);
1918 }
1919 
1920 static const struct usb_ep_ops lpc32xx_ep_ops = {
1921 	.enable		= lpc32xx_ep_enable,
1922 	.disable	= lpc32xx_ep_disable,
1923 	.alloc_request	= lpc32xx_ep_alloc_request,
1924 	.free_request	= lpc32xx_ep_free_request,
1925 	.queue		= lpc32xx_ep_queue,
1926 	.dequeue	= lpc32xx_ep_dequeue,
1927 	.set_halt	= lpc32xx_ep_set_halt,
1928 	.set_wedge	= lpc32xx_ep_set_wedge,
1929 };
1930 
1931 /* Send a ZLP on a non-0 IN EP */
1932 void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1933 {
1934 	/* Clear EP status */
1935 	udc_clearep_getsts(udc, ep->hwep_num);
1936 
1937 	/* Send ZLP via FIFO mechanism */
1938 	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1939 }
1940 
1941 /*
1942  * Handle EP completion for ZLP
1943  * This function will only be called when a delayed ZLP needs to be sent out
1944  * after a DMA transfer has filled both buffers.
1945  */
1946 void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1947 {
1948 	u32 epstatus;
1949 	struct lpc32xx_request *req;
1950 
1951 	if (ep->hwep_num <= 0)
1952 		return;
1953 
1954 	uda_clear_hwepint(udc, ep->hwep_num);
1955 
1956 	/* If this interrupt isn't enabled, return now */
1957 	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1958 		return;
1959 
1960 	/* Get endpoint status */
1961 	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1962 
1963 	/*
1964 	 * This should never happen, but protect against writing to the
1965 	 * buffer when full.
1966 	 */
1967 	if (epstatus & EP_SEL_F)
1968 		return;
1969 
1970 	if (ep->is_in) {
1971 		udc_send_in_zlp(udc, ep);
1972 		uda_disable_hwepint(udc, ep->hwep_num);
1973 	} else
1974 		return;
1975 
1976 	/* If there isn't a request waiting, something went wrong */
1977 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1978 	if (req) {
1979 		done(ep, req, 0);
1980 
1981 		/* Start another request if ready */
1982 		if (!list_empty(&ep->queue)) {
1983 			if (ep->is_in)
1984 				udc_ep_in_req_dma(udc, ep);
1985 			else
1986 				udc_ep_out_req_dma(udc, ep);
1987 		} else
1988 			ep->req_pending = 0;
1989 	}
1990 }
1991 
1992 
1993 /* DMA end of transfer completion */
1994 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1995 {
1996 	u32 status, epstatus;
1997 	struct lpc32xx_request *req;
1998 	struct lpc32xx_usbd_dd_gad *dd;
1999 
2000 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2001 	ep->totalints++;
2002 #endif
2003 
2004 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2005 	if (!req) {
2006 		ep_err(ep, "DMA interrupt on no req!\n");
2007 		return;
2008 	}
2009 	dd = req->dd_desc_ptr;
2010 
2011 	/* DMA descriptor should always be retired for this call */
2012 	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2013 		ep_warn(ep, "DMA descriptor did not retire\n");
2014 
2015 	/* Disable DMA */
2016 	udc_ep_dma_disable(udc, ep->hwep_num);
2017 	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2018 	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2019 
2020 	/* System error? */
2021 	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2022 	    (1 << ep->hwep_num)) {
2023 		writel((1 << ep->hwep_num),
2024 			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2025 		ep_err(ep, "AHB critical error!\n");
2026 		ep->req_pending = 0;
2027 
2028 		/* The error could have occurred on a packet of a multipacket
2029 		 * transfer, so recovering the transfer is not possible. Close
2030 		 * the request with an error */
2031 		done(ep, req, -ECONNABORTED);
2032 		return;
2033 	}
2034 
2035 	/* Handle the current DD's status */
2036 	status = dd->dd_status;
2037 	switch (status & DD_STATUS_STS_MASK) {
2038 	case DD_STATUS_STS_NS:
2039 		/* DD not serviced? This shouldn't happen! */
2040 		ep->req_pending = 0;
2041 		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2042 		       status);
2043 
2044 		done(ep, req, -ECONNABORTED);
2045 		return;
2046 
2047 	case DD_STATUS_STS_BS:
2048 		/* Interrupt only fires on EOT - This shouldn't happen! */
2049 		ep->req_pending = 0;
2050 		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2051 		       status);
2052 		done(ep, req, -ECONNABORTED);
2053 		return;
2054 
2055 	case DD_STATUS_STS_NC:
2056 	case DD_STATUS_STS_DUR:
2057 		/* Really just a short packet, not an underrun */
2058 		/* This is a good status and what we expect */
2059 		break;
2060 
2061 	default:
2062 		/* Data overrun, system error, or unknown */
2063 		ep->req_pending = 0;
2064 		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2065 		       status);
2066 		done(ep, req, -ECONNABORTED);
2067 		return;
2068 	}
2069 
2070 	/* ISO endpoints are handled differently */
2071 	if (ep->eptype == EP_ISO_TYPE) {
2072 		if (ep->is_in)
2073 			req->req.actual = req->req.length;
2074 		else
2075 			req->req.actual = dd->iso_status[0] & 0xFFFF;
2076 	} else
2077 		req->req.actual += DD_STATUS_CURDMACNT(status);
2078 
2079 	/* Send a ZLP if necessary. This will be done for non-int
2080 	 * packets which have a size that is a divisor of MAXP */
2081 	if (req->send_zlp) {
2082 		/*
2083 		 * If at least 1 buffer is available, send the ZLP now.
2084 		 * Otherwise, the ZLP send needs to be deferred until a
2085 		 * buffer is available.
2086 		 */
2087 		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2088 			udc_clearep_getsts(udc, ep->hwep_num);
2089 			uda_enable_hwepint(udc, ep->hwep_num);
2090 			epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2091 
2092 			/* Let the EP interrupt handle the ZLP */
2093 			return;
2094 		} else
2095 			udc_send_in_zlp(udc, ep);
2096 	}
2097 
2098 	/* Transfer request is complete */
2099 	done(ep, req, 0);
2100 
2101 	/* Start another request if ready */
2102 	udc_clearep_getsts(udc, ep->hwep_num);
2103 	if (!list_empty((&ep->queue))) {
2104 		if (ep->is_in)
2105 			udc_ep_in_req_dma(udc, ep);
2106 		else
2107 			udc_ep_out_req_dma(udc, ep);
2108 	} else
2109 		ep->req_pending = 0;
2110 
2111 }
2112 
2113 /*
2114  *
2115  * Endpoint 0 functions
2116  *
2117  */
2118 static void udc_handle_dev(struct lpc32xx_udc *udc)
2119 {
2120 	u32 tmp;
2121 
2122 	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2123 	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2124 
2125 	if (tmp & DEV_RST)
2126 		uda_usb_reset(udc);
2127 	else if (tmp & DEV_CON_CH)
2128 		uda_power_event(udc, (tmp & DEV_CON));
2129 	else if (tmp & DEV_SUS_CH) {
2130 		if (tmp & DEV_SUS) {
2131 			if (udc->vbus == 0)
2132 				stop_activity(udc);
2133 			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2134 				 udc->driver) {
2135 				/* Power down transceiver */
2136 				udc->poweron = 0;
2137 				schedule_work(&udc->pullup_job);
2138 				uda_resm_susp_event(udc, 1);
2139 			}
2140 		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2141 			   udc->driver && udc->vbus) {
2142 			uda_resm_susp_event(udc, 0);
2143 			/* Power up transceiver */
2144 			udc->poweron = 1;
2145 			schedule_work(&udc->pullup_job);
2146 		}
2147 	}
2148 }
2149 
2150 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2151 {
2152 	struct lpc32xx_ep *ep;
2153 	u32 ep0buff = 0, tmp;
2154 
2155 	switch (reqtype & USB_RECIP_MASK) {
2156 	case USB_RECIP_INTERFACE:
2157 		break; /* Not supported */
2158 
2159 	case USB_RECIP_DEVICE:
2160 		ep0buff = udc->gadget.is_selfpowered;
2161 		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2162 			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2163 		break;
2164 
2165 	case USB_RECIP_ENDPOINT:
2166 		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2167 		ep = &udc->ep[tmp];
2168 		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2169 			return -EOPNOTSUPP;
2170 
2171 		if (wIndex & USB_DIR_IN) {
2172 			if (!ep->is_in)
2173 				return -EOPNOTSUPP; /* Something's wrong */
2174 		} else if (ep->is_in)
2175 			return -EOPNOTSUPP; /* Not an IN endpoint */
2176 
2177 		/* Get status of the endpoint */
2178 		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2179 		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2180 
2181 		if (tmp & EP_SEL_ST)
2182 			ep0buff = (1 << USB_ENDPOINT_HALT);
2183 		else
2184 			ep0buff = 0;
2185 		break;
2186 
2187 	default:
2188 		break;
2189 	}
2190 
2191 	/* Return data */
2192 	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2193 
2194 	return 0;
2195 }
2196 
2197 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2198 {
2199 	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2200 	struct usb_ctrlrequest ctrlpkt;
2201 	int i, bytes;
2202 	u16 wIndex, wValue, wLength, reqtype, req, tmp;
2203 
2204 	/* Nuke previous transfers */
2205 	nuke(ep0, -EPROTO);
2206 
2207 	/* Get setup packet */
2208 	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2209 	if (bytes != 8) {
2210 		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2211 			bytes);
2212 		return;
2213 	}
2214 
2215 	/* Native endianness */
2216 	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2217 	wValue = le16_to_cpu(ctrlpkt.wValue);
2218 	wLength = le16_to_cpu(ctrlpkt.wLength);
2219 	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2220 
2221 	/* Set direction of EP0 */
2222 	if (likely(reqtype & USB_DIR_IN))
2223 		ep0->is_in = 1;
2224 	else
2225 		ep0->is_in = 0;
2226 
2227 	/* Handle SETUP packet */
2228 	req = le16_to_cpu(ctrlpkt.bRequest);
2229 	switch (req) {
2230 	case USB_REQ_CLEAR_FEATURE:
2231 	case USB_REQ_SET_FEATURE:
2232 		switch (reqtype) {
2233 		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2234 			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2235 				goto stall; /* Nothing else handled */
2236 
2237 			/* Tell board about event */
2238 			if (req == USB_REQ_CLEAR_FEATURE)
2239 				udc->dev_status &=
2240 					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2241 			else
2242 				udc->dev_status |=
2243 					(1 << USB_DEVICE_REMOTE_WAKEUP);
2244 			uda_remwkp_cgh(udc);
2245 			goto zlp_send;
2246 
2247 		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2248 			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2249 			if ((wValue != USB_ENDPOINT_HALT) ||
2250 			    (tmp >= NUM_ENDPOINTS))
2251 				break;
2252 
2253 			/* Find hardware endpoint from logical endpoint */
2254 			ep = &udc->ep[tmp];
2255 			tmp = ep->hwep_num;
2256 			if (tmp == 0)
2257 				break;
2258 
2259 			if (req == USB_REQ_SET_FEATURE)
2260 				udc_stall_hwep(udc, tmp);
2261 			else if (!ep->wedge)
2262 				udc_clrstall_hwep(udc, tmp);
2263 
2264 			goto zlp_send;
2265 
2266 		default:
2267 			break;
2268 		}
2269 
2270 
2271 	case USB_REQ_SET_ADDRESS:
2272 		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2273 			udc_set_address(udc, wValue);
2274 			goto zlp_send;
2275 		}
2276 		break;
2277 
2278 	case USB_REQ_GET_STATUS:
2279 		udc_get_status(udc, reqtype, wIndex);
2280 		return;
2281 
2282 	default:
2283 		break; /* Let GadgetFS handle the descriptor instead */
2284 	}
2285 
2286 	if (likely(udc->driver)) {
2287 		/* device-2-host (IN) or no data setup command, process
2288 		 * immediately */
2289 		spin_unlock(&udc->lock);
2290 		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2291 
2292 		spin_lock(&udc->lock);
2293 		if (req == USB_REQ_SET_CONFIGURATION) {
2294 			/* Configuration is set after endpoints are realized */
2295 			if (wValue) {
2296 				/* Set configuration */
2297 				udc_set_device_configured(udc);
2298 
2299 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2300 							DAT_WR_BYTE(AP_CLK |
2301 							INAK_BI | INAK_II));
2302 			} else {
2303 				/* Clear configuration */
2304 				udc_set_device_unconfigured(udc);
2305 
2306 				/* Disable NAK interrupts */
2307 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2308 							DAT_WR_BYTE(AP_CLK));
2309 			}
2310 		}
2311 
2312 		if (i < 0) {
2313 			/* setup processing failed, force stall */
2314 			dev_dbg(udc->dev,
2315 				"req %02x.%02x protocol STALL; stat %d\n",
2316 				reqtype, req, i);
2317 			udc->ep0state = WAIT_FOR_SETUP;
2318 			goto stall;
2319 		}
2320 	}
2321 
2322 	if (!ep0->is_in)
2323 		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2324 
2325 	return;
2326 
2327 stall:
2328 	udc_stall_hwep(udc, EP_IN);
2329 	return;
2330 
2331 zlp_send:
2332 	udc_ep0_send_zlp(udc);
2333 	return;
2334 }
2335 
2336 /* IN endpoint 0 transfer */
2337 static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2338 {
2339 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2340 	u32 epstatus;
2341 
2342 	/* Clear EP interrupt */
2343 	epstatus = udc_clearep_getsts(udc, EP_IN);
2344 
2345 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2346 	ep0->totalints++;
2347 #endif
2348 
2349 	/* Stalled? Clear stall and reset buffers */
2350 	if (epstatus & EP_SEL_ST) {
2351 		udc_clrstall_hwep(udc, EP_IN);
2352 		nuke(ep0, -ECONNABORTED);
2353 		udc->ep0state = WAIT_FOR_SETUP;
2354 		return;
2355 	}
2356 
2357 	/* Is a buffer available? */
2358 	if (!(epstatus & EP_SEL_F)) {
2359 		/* Handle based on current state */
2360 		if (udc->ep0state == DATA_IN)
2361 			udc_ep0_in_req(udc);
2362 		else {
2363 			/* Unknown state for EP0 oe end of DATA IN phase */
2364 			nuke(ep0, -ECONNABORTED);
2365 			udc->ep0state = WAIT_FOR_SETUP;
2366 		}
2367 	}
2368 }
2369 
2370 /* OUT endpoint 0 transfer */
2371 static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2372 {
2373 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2374 	u32 epstatus;
2375 
2376 	/* Clear EP interrupt */
2377 	epstatus = udc_clearep_getsts(udc, EP_OUT);
2378 
2379 
2380 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2381 	ep0->totalints++;
2382 #endif
2383 
2384 	/* Stalled? */
2385 	if (epstatus & EP_SEL_ST) {
2386 		udc_clrstall_hwep(udc, EP_OUT);
2387 		nuke(ep0, -ECONNABORTED);
2388 		udc->ep0state = WAIT_FOR_SETUP;
2389 		return;
2390 	}
2391 
2392 	/* A NAK may occur if a packet couldn't be received yet */
2393 	if (epstatus & EP_SEL_EPN)
2394 		return;
2395 	/* Setup packet incoming? */
2396 	if (epstatus & EP_SEL_STP) {
2397 		nuke(ep0, 0);
2398 		udc->ep0state = WAIT_FOR_SETUP;
2399 	}
2400 
2401 	/* Data available? */
2402 	if (epstatus & EP_SEL_F)
2403 		/* Handle based on current state */
2404 		switch (udc->ep0state) {
2405 		case WAIT_FOR_SETUP:
2406 			udc_handle_ep0_setup(udc);
2407 			break;
2408 
2409 		case DATA_OUT:
2410 			udc_ep0_out_req(udc);
2411 			break;
2412 
2413 		default:
2414 			/* Unknown state for EP0 */
2415 			nuke(ep0, -ECONNABORTED);
2416 			udc->ep0state = WAIT_FOR_SETUP;
2417 		}
2418 }
2419 
2420 /* Must be called without lock */
2421 static int lpc32xx_get_frame(struct usb_gadget *gadget)
2422 {
2423 	int frame;
2424 	unsigned long flags;
2425 	struct lpc32xx_udc *udc = to_udc(gadget);
2426 
2427 	if (!udc->clocked)
2428 		return -EINVAL;
2429 
2430 	spin_lock_irqsave(&udc->lock, flags);
2431 
2432 	frame = (int) udc_get_current_frame(udc);
2433 
2434 	spin_unlock_irqrestore(&udc->lock, flags);
2435 
2436 	return frame;
2437 }
2438 
2439 static int lpc32xx_wakeup(struct usb_gadget *gadget)
2440 {
2441 	return -ENOTSUPP;
2442 }
2443 
2444 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2445 {
2446 	gadget->is_selfpowered = (is_on != 0);
2447 
2448 	return 0;
2449 }
2450 
2451 /*
2452  * vbus is here!  turn everything on that's ready
2453  * Must be called without lock
2454  */
2455 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2456 {
2457 	unsigned long flags;
2458 	struct lpc32xx_udc *udc = to_udc(gadget);
2459 
2460 	spin_lock_irqsave(&udc->lock, flags);
2461 
2462 	/* Doesn't need lock */
2463 	if (udc->driver) {
2464 		udc_clk_set(udc, 1);
2465 		udc_enable(udc);
2466 		pullup(udc, is_active);
2467 	} else {
2468 		stop_activity(udc);
2469 		pullup(udc, 0);
2470 
2471 		spin_unlock_irqrestore(&udc->lock, flags);
2472 		/*
2473 		 *  Wait for all the endpoints to disable,
2474 		 *  before disabling clocks. Don't wait if
2475 		 *  endpoints are not enabled.
2476 		 */
2477 		if (atomic_read(&udc->enabled_ep_cnt))
2478 			wait_event_interruptible(udc->ep_disable_wait_queue,
2479 				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2480 
2481 		spin_lock_irqsave(&udc->lock, flags);
2482 
2483 		udc_clk_set(udc, 0);
2484 	}
2485 
2486 	spin_unlock_irqrestore(&udc->lock, flags);
2487 
2488 	return 0;
2489 }
2490 
2491 /* Can be called with or without lock */
2492 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2493 {
2494 	struct lpc32xx_udc *udc = to_udc(gadget);
2495 
2496 	/* Doesn't need lock */
2497 	pullup(udc, is_on);
2498 
2499 	return 0;
2500 }
2501 
2502 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2503 static int lpc32xx_stop(struct usb_gadget *);
2504 
2505 static const struct usb_gadget_ops lpc32xx_udc_ops = {
2506 	.get_frame		= lpc32xx_get_frame,
2507 	.wakeup			= lpc32xx_wakeup,
2508 	.set_selfpowered	= lpc32xx_set_selfpowered,
2509 	.vbus_session		= lpc32xx_vbus_session,
2510 	.pullup			= lpc32xx_pullup,
2511 	.udc_start		= lpc32xx_start,
2512 	.udc_stop		= lpc32xx_stop,
2513 };
2514 
2515 static void nop_release(struct device *dev)
2516 {
2517 	/* nothing to free */
2518 }
2519 
2520 static const struct lpc32xx_udc controller_template = {
2521 	.gadget = {
2522 		.ops	= &lpc32xx_udc_ops,
2523 		.name	= driver_name,
2524 		.dev	= {
2525 			.init_name = "gadget",
2526 			.release = nop_release,
2527 		}
2528 	},
2529 	.ep[0] = {
2530 		.ep = {
2531 			.name	= "ep0",
2532 			.ops	= &lpc32xx_ep_ops,
2533 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2534 					USB_EP_CAPS_DIR_ALL),
2535 		},
2536 		.maxpacket	= 64,
2537 		.hwep_num_base	= 0,
2538 		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2539 		.lep		= 0,
2540 		.eptype		= EP_CTL_TYPE,
2541 	},
2542 	.ep[1] = {
2543 		.ep = {
2544 			.name	= "ep1-int",
2545 			.ops	= &lpc32xx_ep_ops,
2546 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2547 					USB_EP_CAPS_DIR_ALL),
2548 		},
2549 		.maxpacket	= 64,
2550 		.hwep_num_base	= 2,
2551 		.hwep_num	= 0, /* 2 or 3, will be set later */
2552 		.lep		= 1,
2553 		.eptype		= EP_INT_TYPE,
2554 	},
2555 	.ep[2] = {
2556 		.ep = {
2557 			.name	= "ep2-bulk",
2558 			.ops	= &lpc32xx_ep_ops,
2559 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2560 					USB_EP_CAPS_DIR_ALL),
2561 		},
2562 		.maxpacket	= 64,
2563 		.hwep_num_base	= 4,
2564 		.hwep_num	= 0, /* 4 or 5, will be set later */
2565 		.lep		= 2,
2566 		.eptype		= EP_BLK_TYPE,
2567 	},
2568 	.ep[3] = {
2569 		.ep = {
2570 			.name	= "ep3-iso",
2571 			.ops	= &lpc32xx_ep_ops,
2572 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2573 					USB_EP_CAPS_DIR_ALL),
2574 		},
2575 		.maxpacket	= 1023,
2576 		.hwep_num_base	= 6,
2577 		.hwep_num	= 0, /* 6 or 7, will be set later */
2578 		.lep		= 3,
2579 		.eptype		= EP_ISO_TYPE,
2580 	},
2581 	.ep[4] = {
2582 		.ep = {
2583 			.name	= "ep4-int",
2584 			.ops	= &lpc32xx_ep_ops,
2585 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2586 					USB_EP_CAPS_DIR_ALL),
2587 		},
2588 		.maxpacket	= 64,
2589 		.hwep_num_base	= 8,
2590 		.hwep_num	= 0, /* 8 or 9, will be set later */
2591 		.lep		= 4,
2592 		.eptype		= EP_INT_TYPE,
2593 	},
2594 	.ep[5] = {
2595 		.ep = {
2596 			.name	= "ep5-bulk",
2597 			.ops	= &lpc32xx_ep_ops,
2598 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2599 					USB_EP_CAPS_DIR_ALL),
2600 		},
2601 		.maxpacket	= 64,
2602 		.hwep_num_base	= 10,
2603 		.hwep_num	= 0, /* 10 or 11, will be set later */
2604 		.lep		= 5,
2605 		.eptype		= EP_BLK_TYPE,
2606 	},
2607 	.ep[6] = {
2608 		.ep = {
2609 			.name	= "ep6-iso",
2610 			.ops	= &lpc32xx_ep_ops,
2611 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2612 					USB_EP_CAPS_DIR_ALL),
2613 		},
2614 		.maxpacket	= 1023,
2615 		.hwep_num_base	= 12,
2616 		.hwep_num	= 0, /* 12 or 13, will be set later */
2617 		.lep		= 6,
2618 		.eptype		= EP_ISO_TYPE,
2619 	},
2620 	.ep[7] = {
2621 		.ep = {
2622 			.name	= "ep7-int",
2623 			.ops	= &lpc32xx_ep_ops,
2624 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2625 					USB_EP_CAPS_DIR_ALL),
2626 		},
2627 		.maxpacket	= 64,
2628 		.hwep_num_base	= 14,
2629 		.hwep_num	= 0,
2630 		.lep		= 7,
2631 		.eptype		= EP_INT_TYPE,
2632 	},
2633 	.ep[8] = {
2634 		.ep = {
2635 			.name	= "ep8-bulk",
2636 			.ops	= &lpc32xx_ep_ops,
2637 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2638 					USB_EP_CAPS_DIR_ALL),
2639 		},
2640 		.maxpacket	= 64,
2641 		.hwep_num_base	= 16,
2642 		.hwep_num	= 0,
2643 		.lep		= 8,
2644 		.eptype		= EP_BLK_TYPE,
2645 	},
2646 	.ep[9] = {
2647 		.ep = {
2648 			.name	= "ep9-iso",
2649 			.ops	= &lpc32xx_ep_ops,
2650 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2651 					USB_EP_CAPS_DIR_ALL),
2652 		},
2653 		.maxpacket	= 1023,
2654 		.hwep_num_base	= 18,
2655 		.hwep_num	= 0,
2656 		.lep		= 9,
2657 		.eptype		= EP_ISO_TYPE,
2658 	},
2659 	.ep[10] = {
2660 		.ep = {
2661 			.name	= "ep10-int",
2662 			.ops	= &lpc32xx_ep_ops,
2663 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2664 					USB_EP_CAPS_DIR_ALL),
2665 		},
2666 		.maxpacket	= 64,
2667 		.hwep_num_base	= 20,
2668 		.hwep_num	= 0,
2669 		.lep		= 10,
2670 		.eptype		= EP_INT_TYPE,
2671 	},
2672 	.ep[11] = {
2673 		.ep = {
2674 			.name	= "ep11-bulk",
2675 			.ops	= &lpc32xx_ep_ops,
2676 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2677 					USB_EP_CAPS_DIR_ALL),
2678 		},
2679 		.maxpacket	= 64,
2680 		.hwep_num_base	= 22,
2681 		.hwep_num	= 0,
2682 		.lep		= 11,
2683 		.eptype		= EP_BLK_TYPE,
2684 	},
2685 	.ep[12] = {
2686 		.ep = {
2687 			.name	= "ep12-iso",
2688 			.ops	= &lpc32xx_ep_ops,
2689 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2690 					USB_EP_CAPS_DIR_ALL),
2691 		},
2692 		.maxpacket	= 1023,
2693 		.hwep_num_base	= 24,
2694 		.hwep_num	= 0,
2695 		.lep		= 12,
2696 		.eptype		= EP_ISO_TYPE,
2697 	},
2698 	.ep[13] = {
2699 		.ep = {
2700 			.name	= "ep13-int",
2701 			.ops	= &lpc32xx_ep_ops,
2702 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2703 					USB_EP_CAPS_DIR_ALL),
2704 		},
2705 		.maxpacket	= 64,
2706 		.hwep_num_base	= 26,
2707 		.hwep_num	= 0,
2708 		.lep		= 13,
2709 		.eptype		= EP_INT_TYPE,
2710 	},
2711 	.ep[14] = {
2712 		.ep = {
2713 			.name	= "ep14-bulk",
2714 			.ops	= &lpc32xx_ep_ops,
2715 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2716 					USB_EP_CAPS_DIR_ALL),
2717 		},
2718 		.maxpacket	= 64,
2719 		.hwep_num_base	= 28,
2720 		.hwep_num	= 0,
2721 		.lep		= 14,
2722 		.eptype		= EP_BLK_TYPE,
2723 	},
2724 	.ep[15] = {
2725 		.ep = {
2726 			.name	= "ep15-bulk",
2727 			.ops	= &lpc32xx_ep_ops,
2728 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2729 					USB_EP_CAPS_DIR_ALL),
2730 		},
2731 		.maxpacket	= 1023,
2732 		.hwep_num_base	= 30,
2733 		.hwep_num	= 0,
2734 		.lep		= 15,
2735 		.eptype		= EP_BLK_TYPE,
2736 	},
2737 };
2738 
2739 /* ISO and status interrupts */
2740 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2741 {
2742 	u32 tmp, devstat;
2743 	struct lpc32xx_udc *udc = _udc;
2744 
2745 	spin_lock(&udc->lock);
2746 
2747 	/* Read the device status register */
2748 	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2749 
2750 	devstat &= ~USBD_EP_FAST;
2751 	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2752 	devstat = devstat & udc->enabled_devints;
2753 
2754 	/* Device specific handling needed? */
2755 	if (devstat & USBD_DEV_STAT)
2756 		udc_handle_dev(udc);
2757 
2758 	/* Start of frame? (devstat & FRAME_INT):
2759 	 * The frame interrupt isn't really needed for ISO support,
2760 	 * as the driver will queue the necessary packets */
2761 
2762 	/* Error? */
2763 	if (devstat & ERR_INT) {
2764 		/* All types of errors, from cable removal during transfer to
2765 		 * misc protocol and bit errors. These are mostly for just info,
2766 		 * as the USB hardware will work around these. If these errors
2767 		 * happen alot, something is wrong. */
2768 		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2769 		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2770 		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2771 	}
2772 
2773 	spin_unlock(&udc->lock);
2774 
2775 	return IRQ_HANDLED;
2776 }
2777 
2778 /* EP interrupts */
2779 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2780 {
2781 	u32 tmp;
2782 	struct lpc32xx_udc *udc = _udc;
2783 
2784 	spin_lock(&udc->lock);
2785 
2786 	/* Read the device status register */
2787 	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2788 
2789 	/* Endpoints */
2790 	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2791 
2792 	/* Special handling for EP0 */
2793 	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2794 		/* Handle EP0 IN */
2795 		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2796 			udc_handle_ep0_in(udc);
2797 
2798 		/* Handle EP0 OUT */
2799 		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2800 			udc_handle_ep0_out(udc);
2801 	}
2802 
2803 	/* All other EPs */
2804 	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2805 		int i;
2806 
2807 		/* Handle other EP interrupts */
2808 		for (i = 1; i < NUM_ENDPOINTS; i++) {
2809 			if (tmp & (1 << udc->ep[i].hwep_num))
2810 				udc_handle_eps(udc, &udc->ep[i]);
2811 		}
2812 	}
2813 
2814 	spin_unlock(&udc->lock);
2815 
2816 	return IRQ_HANDLED;
2817 }
2818 
2819 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2820 {
2821 	struct lpc32xx_udc *udc = _udc;
2822 
2823 	int i;
2824 	u32 tmp;
2825 
2826 	spin_lock(&udc->lock);
2827 
2828 	/* Handle EP DMA EOT interrupts */
2829 	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2830 		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2831 		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2832 		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2833 	for (i = 1; i < NUM_ENDPOINTS; i++) {
2834 		if (tmp & (1 << udc->ep[i].hwep_num))
2835 			udc_handle_dma_ep(udc, &udc->ep[i]);
2836 	}
2837 
2838 	spin_unlock(&udc->lock);
2839 
2840 	return IRQ_HANDLED;
2841 }
2842 
2843 /*
2844  *
2845  * VBUS detection, pullup handler, and Gadget cable state notification
2846  *
2847  */
2848 static void vbus_work(struct lpc32xx_udc *udc)
2849 {
2850 	u8 value;
2851 
2852 	if (udc->enabled != 0) {
2853 		/* Discharge VBUS real quick */
2854 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2855 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2856 
2857 		/* Give VBUS some time (100mS) to discharge */
2858 		msleep(100);
2859 
2860 		/* Disable VBUS discharge resistor */
2861 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2862 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2863 			OTG1_VBUS_DISCHRG);
2864 
2865 		/* Clear interrupt */
2866 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2867 			ISP1301_I2C_INTERRUPT_LATCH |
2868 			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2869 
2870 		/* Get the VBUS status from the transceiver */
2871 		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2872 						 ISP1301_I2C_INTERRUPT_SOURCE);
2873 
2874 		/* VBUS on or off? */
2875 		if (value & INT_SESS_VLD)
2876 			udc->vbus = 1;
2877 		else
2878 			udc->vbus = 0;
2879 
2880 		/* VBUS changed? */
2881 		if (udc->last_vbus != udc->vbus) {
2882 			udc->last_vbus = udc->vbus;
2883 			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2884 		}
2885 	}
2886 }
2887 
2888 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2889 {
2890 	struct lpc32xx_udc *udc = _udc;
2891 
2892 	vbus_work(udc);
2893 
2894 	return IRQ_HANDLED;
2895 }
2896 
2897 static int lpc32xx_start(struct usb_gadget *gadget,
2898 			 struct usb_gadget_driver *driver)
2899 {
2900 	struct lpc32xx_udc *udc = to_udc(gadget);
2901 
2902 	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2903 		dev_err(udc->dev, "bad parameter.\n");
2904 		return -EINVAL;
2905 	}
2906 
2907 	if (udc->driver) {
2908 		dev_err(udc->dev, "UDC already has a gadget driver\n");
2909 		return -EBUSY;
2910 	}
2911 
2912 	udc->driver = driver;
2913 	udc->gadget.dev.of_node = udc->dev->of_node;
2914 	udc->enabled = 1;
2915 	udc->gadget.is_selfpowered = 1;
2916 	udc->vbus = 0;
2917 
2918 	/* Force VBUS process once to check for cable insertion */
2919 	udc->last_vbus = udc->vbus = 0;
2920 	vbus_work(udc);
2921 
2922 	/* enable interrupts */
2923 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2924 		ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
2925 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2926 		ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
2927 
2928 	return 0;
2929 }
2930 
2931 static int lpc32xx_stop(struct usb_gadget *gadget)
2932 {
2933 	struct lpc32xx_udc *udc = to_udc(gadget);
2934 
2935 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2936 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2937 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2938 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2939 
2940 	if (udc->clocked) {
2941 		spin_lock(&udc->lock);
2942 		stop_activity(udc);
2943 		spin_unlock(&udc->lock);
2944 
2945 		/*
2946 		 *  Wait for all the endpoints to disable,
2947 		 *  before disabling clocks. Don't wait if
2948 		 *  endpoints are not enabled.
2949 		 */
2950 		if (atomic_read(&udc->enabled_ep_cnt))
2951 			wait_event_interruptible(udc->ep_disable_wait_queue,
2952 				(atomic_read(&udc->enabled_ep_cnt) == 0));
2953 
2954 		spin_lock(&udc->lock);
2955 		udc_clk_set(udc, 0);
2956 		spin_unlock(&udc->lock);
2957 	}
2958 
2959 	udc->enabled = 0;
2960 	udc->driver = NULL;
2961 
2962 	return 0;
2963 }
2964 
2965 static void lpc32xx_udc_shutdown(struct platform_device *dev)
2966 {
2967 	/* Force disconnect on reboot */
2968 	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2969 
2970 	pullup(udc, 0);
2971 }
2972 
2973 /*
2974  * Callbacks to be overridden by options passed via OF (TODO)
2975  */
2976 
2977 static void lpc32xx_usbd_conn_chg(int conn)
2978 {
2979 	/* Do nothing, it might be nice to enable an LED
2980 	 * based on conn state being !0 */
2981 }
2982 
2983 static void lpc32xx_usbd_susp_chg(int susp)
2984 {
2985 	/* Device suspend if susp != 0 */
2986 }
2987 
2988 static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2989 {
2990 	/* Enable or disable USB remote wakeup */
2991 }
2992 
2993 struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2994 	.vbus_drv_pol = 0,
2995 	.conn_chgb = &lpc32xx_usbd_conn_chg,
2996 	.susp_chgb = &lpc32xx_usbd_susp_chg,
2997 	.rmwk_chgb = &lpc32xx_rmwkup_chg,
2998 };
2999 
3000 
3001 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
3002 
3003 static int lpc32xx_udc_probe(struct platform_device *pdev)
3004 {
3005 	struct device *dev = &pdev->dev;
3006 	struct lpc32xx_udc *udc;
3007 	int retval, i;
3008 	struct resource *res;
3009 	dma_addr_t dma_handle;
3010 	struct device_node *isp1301_node;
3011 
3012 	udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL);
3013 	if (!udc)
3014 		return -ENOMEM;
3015 
3016 	for (i = 0; i <= 15; i++)
3017 		udc->ep[i].udc = udc;
3018 	udc->gadget.ep0 = &udc->ep[0].ep;
3019 
3020 	/* init software state */
3021 	udc->gadget.dev.parent = dev;
3022 	udc->pdev = pdev;
3023 	udc->dev = &pdev->dev;
3024 	udc->enabled = 0;
3025 
3026 	if (pdev->dev.of_node) {
3027 		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3028 						"transceiver", 0);
3029 	} else {
3030 		isp1301_node = NULL;
3031 	}
3032 
3033 	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3034 	if (!udc->isp1301_i2c_client) {
3035 		return -EPROBE_DEFER;
3036 	}
3037 
3038 	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3039 		 udc->isp1301_i2c_client->addr);
3040 
3041 	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3042 	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3043 	if (retval)
3044 		return retval;
3045 
3046 	udc->board = &lpc32xx_usbddata;
3047 
3048 	/*
3049 	 * Resources are mapped as follows:
3050 	 *  IORESOURCE_MEM, base address and size of USB space
3051 	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3052 	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3053 	 *  IORESOURCE_IRQ, USB device interrupt number
3054 	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3055 	 */
3056 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3057 	if (!res)
3058 		return -ENXIO;
3059 
3060 	spin_lock_init(&udc->lock);
3061 
3062 	/* Get IRQs */
3063 	for (i = 0; i < 4; i++) {
3064 		udc->udp_irq[i] = platform_get_irq(pdev, i);
3065 		if (udc->udp_irq[i] < 0) {
3066 			dev_err(udc->dev,
3067 				"irq resource %d not available!\n", i);
3068 			return udc->udp_irq[i];
3069 		}
3070 	}
3071 
3072 	udc->udp_baseaddr = devm_ioremap_resource(dev, res);
3073 	if (!udc->udp_baseaddr) {
3074 		dev_err(udc->dev, "IO map failure\n");
3075 		return -ENOMEM;
3076 	}
3077 
3078 	/* Get USB device clock */
3079 	udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL);
3080 	if (IS_ERR(udc->usb_slv_clk)) {
3081 		dev_err(udc->dev, "failed to acquire USB device clock\n");
3082 		return PTR_ERR(udc->usb_slv_clk);
3083 	}
3084 
3085 	/* Enable USB device clock */
3086 	retval = clk_prepare_enable(udc->usb_slv_clk);
3087 	if (retval < 0) {
3088 		dev_err(udc->dev, "failed to start USB device clock\n");
3089 		return retval;
3090 	}
3091 
3092 	/* Setup deferred workqueue data */
3093 	udc->poweron = udc->pullup = 0;
3094 	INIT_WORK(&udc->pullup_job, pullup_work);
3095 #ifdef CONFIG_PM
3096 	INIT_WORK(&udc->power_job, power_work);
3097 #endif
3098 
3099 	/* All clocks are now on */
3100 	udc->clocked = 1;
3101 
3102 	isp1301_udc_configure(udc);
3103 	/* Allocate memory for the UDCA */
3104 	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3105 					      &dma_handle,
3106 					      (GFP_KERNEL | GFP_DMA));
3107 	if (!udc->udca_v_base) {
3108 		dev_err(udc->dev, "error getting UDCA region\n");
3109 		retval = -ENOMEM;
3110 		goto i2c_fail;
3111 	}
3112 	udc->udca_p_base = dma_handle;
3113 	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3114 		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3115 
3116 	/* Setup the DD DMA memory pool */
3117 	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3118 					sizeof(struct lpc32xx_usbd_dd_gad),
3119 					sizeof(u32), 0);
3120 	if (!udc->dd_cache) {
3121 		dev_err(udc->dev, "error getting DD DMA region\n");
3122 		retval = -ENOMEM;
3123 		goto dma_alloc_fail;
3124 	}
3125 
3126 	/* Clear USB peripheral and initialize gadget endpoints */
3127 	udc_disable(udc);
3128 	udc_reinit(udc);
3129 
3130 	/* Request IRQs - low and high priority USB device IRQs are routed to
3131 	 * the same handler, while the DMA interrupt is routed elsewhere */
3132 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP],
3133 				  lpc32xx_usb_lp_irq, 0, "udc_lp", udc);
3134 	if (retval < 0) {
3135 		dev_err(udc->dev, "LP request irq %d failed\n",
3136 			udc->udp_irq[IRQ_USB_LP]);
3137 		goto irq_req_fail;
3138 	}
3139 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP],
3140 				  lpc32xx_usb_hp_irq, 0, "udc_hp", udc);
3141 	if (retval < 0) {
3142 		dev_err(udc->dev, "HP request irq %d failed\n",
3143 			udc->udp_irq[IRQ_USB_HP]);
3144 		goto irq_req_fail;
3145 	}
3146 
3147 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA],
3148 				  lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3149 	if (retval < 0) {
3150 		dev_err(udc->dev, "DEV request irq %d failed\n",
3151 			udc->udp_irq[IRQ_USB_DEVDMA]);
3152 		goto irq_req_fail;
3153 	}
3154 
3155 	/* The transceiver interrupt is used for VBUS detection and will
3156 	   kick off the VBUS handler function */
3157 	retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL,
3158 					   lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
3159 					   "udc_otg", udc);
3160 	if (retval < 0) {
3161 		dev_err(udc->dev, "VBUS request irq %d failed\n",
3162 			udc->udp_irq[IRQ_USB_ATX]);
3163 		goto irq_req_fail;
3164 	}
3165 
3166 	/* Initialize wait queue */
3167 	init_waitqueue_head(&udc->ep_disable_wait_queue);
3168 	atomic_set(&udc->enabled_ep_cnt, 0);
3169 
3170 	retval = usb_add_gadget_udc(dev, &udc->gadget);
3171 	if (retval < 0)
3172 		goto add_gadget_fail;
3173 
3174 	dev_set_drvdata(dev, udc);
3175 	device_init_wakeup(dev, 1);
3176 	create_debug_file(udc);
3177 
3178 	/* Disable clocks for now */
3179 	udc_clk_set(udc, 0);
3180 
3181 	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3182 	return 0;
3183 
3184 add_gadget_fail:
3185 irq_req_fail:
3186 	dma_pool_destroy(udc->dd_cache);
3187 dma_alloc_fail:
3188 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3189 			  udc->udca_v_base, udc->udca_p_base);
3190 i2c_fail:
3191 	clk_disable_unprepare(udc->usb_slv_clk);
3192 	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3193 
3194 	return retval;
3195 }
3196 
3197 static int lpc32xx_udc_remove(struct platform_device *pdev)
3198 {
3199 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3200 
3201 	usb_del_gadget_udc(&udc->gadget);
3202 	if (udc->driver)
3203 		return -EBUSY;
3204 
3205 	udc_clk_set(udc, 1);
3206 	udc_disable(udc);
3207 	pullup(udc, 0);
3208 
3209 	device_init_wakeup(&pdev->dev, 0);
3210 	remove_debug_file(udc);
3211 
3212 	dma_pool_destroy(udc->dd_cache);
3213 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3214 			  udc->udca_v_base, udc->udca_p_base);
3215 
3216 	clk_disable_unprepare(udc->usb_slv_clk);
3217 
3218 	return 0;
3219 }
3220 
3221 #ifdef CONFIG_PM
3222 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3223 {
3224 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3225 
3226 	if (udc->clocked) {
3227 		/* Power down ISP */
3228 		udc->poweron = 0;
3229 		isp1301_set_powerstate(udc, 0);
3230 
3231 		/* Disable clocking */
3232 		udc_clk_set(udc, 0);
3233 
3234 		/* Keep clock flag on, so we know to re-enable clocks
3235 		   on resume */
3236 		udc->clocked = 1;
3237 
3238 		/* Kill global USB clock */
3239 		clk_disable_unprepare(udc->usb_slv_clk);
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 static int lpc32xx_udc_resume(struct platform_device *pdev)
3246 {
3247 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3248 
3249 	if (udc->clocked) {
3250 		/* Enable global USB clock */
3251 		clk_prepare_enable(udc->usb_slv_clk);
3252 
3253 		/* Enable clocking */
3254 		udc_clk_set(udc, 1);
3255 
3256 		/* ISP back to normal power mode */
3257 		udc->poweron = 1;
3258 		isp1301_set_powerstate(udc, 1);
3259 	}
3260 
3261 	return 0;
3262 }
3263 #else
3264 #define	lpc32xx_udc_suspend	NULL
3265 #define	lpc32xx_udc_resume	NULL
3266 #endif
3267 
3268 #ifdef CONFIG_OF
3269 static const struct of_device_id lpc32xx_udc_of_match[] = {
3270 	{ .compatible = "nxp,lpc3220-udc", },
3271 	{ },
3272 };
3273 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3274 #endif
3275 
3276 static struct platform_driver lpc32xx_udc_driver = {
3277 	.remove		= lpc32xx_udc_remove,
3278 	.shutdown	= lpc32xx_udc_shutdown,
3279 	.suspend	= lpc32xx_udc_suspend,
3280 	.resume		= lpc32xx_udc_resume,
3281 	.driver		= {
3282 		.name	= (char *) driver_name,
3283 		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3284 	},
3285 };
3286 
3287 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3288 
3289 MODULE_DESCRIPTION("LPC32XX udc driver");
3290 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3291 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3292 MODULE_LICENSE("GPL");
3293 MODULE_ALIAS("platform:lpc32xx_udc");
3294