1 /* 2 * USB Peripheral Controller driver for Aeroflex Gaisler GRUSBDC. 3 * 4 * 2013 (c) Aeroflex Gaisler AB 5 * 6 * This driver supports GRUSBDC USB Device Controller cores available in the 7 * GRLIB VHDL IP core library. 8 * 9 * Full documentation of the GRUSBDC core can be found here: 10 * http://www.gaisler.com/products/grlib/grip.pdf 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * Contributors: 18 * - Andreas Larsson <andreas@gaisler.com> 19 * - Marko Isomaki 20 */ 21 22 /* 23 * A GRUSBDC core can have up to 16 IN endpoints and 16 OUT endpoints each 24 * individually configurable to any of the four USB transfer types. This driver 25 * only supports cores in DMA mode. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/errno.h> 33 #include <linux/list.h> 34 #include <linux/interrupt.h> 35 #include <linux/device.h> 36 #include <linux/usb/ch9.h> 37 #include <linux/usb/gadget.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/dmapool.h> 40 #include <linux/debugfs.h> 41 #include <linux/seq_file.h> 42 #include <linux/of_platform.h> 43 #include <linux/of_irq.h> 44 #include <linux/of_address.h> 45 46 #include <asm/byteorder.h> 47 48 #include "gr_udc.h" 49 50 #define DRIVER_NAME "gr_udc" 51 #define DRIVER_DESC "Aeroflex Gaisler GRUSBDC USB Peripheral Controller" 52 53 static const char driver_name[] = DRIVER_NAME; 54 static const char driver_desc[] = DRIVER_DESC; 55 56 #define gr_read32(x) (ioread32be((x))) 57 #define gr_write32(x, v) (iowrite32be((v), (x))) 58 59 /* USB speed and corresponding string calculated from status register value */ 60 #define GR_SPEED(status) \ 61 ((status & GR_STATUS_SP) ? USB_SPEED_FULL : USB_SPEED_HIGH) 62 #define GR_SPEED_STR(status) usb_speed_string(GR_SPEED(status)) 63 64 /* Size of hardware buffer calculated from epctrl register value */ 65 #define GR_BUFFER_SIZE(epctrl) \ 66 ((((epctrl) & GR_EPCTRL_BUFSZ_MASK) >> GR_EPCTRL_BUFSZ_POS) * \ 67 GR_EPCTRL_BUFSZ_SCALER) 68 69 /* ---------------------------------------------------------------------- */ 70 /* Debug printout functionality */ 71 72 static const char * const gr_modestring[] = {"control", "iso", "bulk", "int"}; 73 74 static const char *gr_ep0state_string(enum gr_ep0state state) 75 { 76 static const char *const names[] = { 77 [GR_EP0_DISCONNECT] = "disconnect", 78 [GR_EP0_SETUP] = "setup", 79 [GR_EP0_IDATA] = "idata", 80 [GR_EP0_ODATA] = "odata", 81 [GR_EP0_ISTATUS] = "istatus", 82 [GR_EP0_OSTATUS] = "ostatus", 83 [GR_EP0_STALL] = "stall", 84 [GR_EP0_SUSPEND] = "suspend", 85 }; 86 87 if (state < 0 || state >= ARRAY_SIZE(names)) 88 return "UNKNOWN"; 89 90 return names[state]; 91 } 92 93 #ifdef VERBOSE_DEBUG 94 95 static void gr_dbgprint_request(const char *str, struct gr_ep *ep, 96 struct gr_request *req) 97 { 98 int buflen = ep->is_in ? req->req.length : req->req.actual; 99 int rowlen = 32; 100 int plen = min(rowlen, buflen); 101 102 dev_dbg(ep->dev->dev, "%s: 0x%p, %d bytes data%s:\n", str, req, buflen, 103 (buflen > plen ? " (truncated)" : "")); 104 print_hex_dump_debug(" ", DUMP_PREFIX_NONE, 105 rowlen, 4, req->req.buf, plen, false); 106 } 107 108 static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request, 109 u16 value, u16 index, u16 length) 110 { 111 dev_vdbg(dev->dev, "REQ: %02x.%02x v%04x i%04x l%04x\n", 112 type, request, value, index, length); 113 } 114 #else /* !VERBOSE_DEBUG */ 115 116 static void gr_dbgprint_request(const char *str, struct gr_ep *ep, 117 struct gr_request *req) {} 118 119 static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request, 120 u16 value, u16 index, u16 length) {} 121 122 #endif /* VERBOSE_DEBUG */ 123 124 /* ---------------------------------------------------------------------- */ 125 /* Debugfs functionality */ 126 127 #ifdef CONFIG_USB_GADGET_DEBUG_FS 128 129 static void gr_seq_ep_show(struct seq_file *seq, struct gr_ep *ep) 130 { 131 u32 epctrl = gr_read32(&ep->regs->epctrl); 132 u32 epstat = gr_read32(&ep->regs->epstat); 133 int mode = (epctrl & GR_EPCTRL_TT_MASK) >> GR_EPCTRL_TT_POS; 134 struct gr_request *req; 135 136 seq_printf(seq, "%s:\n", ep->ep.name); 137 seq_printf(seq, " mode = %s\n", gr_modestring[mode]); 138 seq_printf(seq, " halted: %d\n", !!(epctrl & GR_EPCTRL_EH)); 139 seq_printf(seq, " disabled: %d\n", !!(epctrl & GR_EPCTRL_ED)); 140 seq_printf(seq, " valid: %d\n", !!(epctrl & GR_EPCTRL_EV)); 141 seq_printf(seq, " dma_start = %d\n", ep->dma_start); 142 seq_printf(seq, " stopped = %d\n", ep->stopped); 143 seq_printf(seq, " wedged = %d\n", ep->wedged); 144 seq_printf(seq, " callback = %d\n", ep->callback); 145 seq_printf(seq, " maxpacket = %d\n", ep->ep.maxpacket); 146 seq_printf(seq, " maxpacket_limit = %d\n", ep->ep.maxpacket_limit); 147 seq_printf(seq, " bytes_per_buffer = %d\n", ep->bytes_per_buffer); 148 if (mode == 1 || mode == 3) 149 seq_printf(seq, " nt = %d\n", 150 (epctrl & GR_EPCTRL_NT_MASK) >> GR_EPCTRL_NT_POS); 151 152 seq_printf(seq, " Buffer 0: %s %s%d\n", 153 epstat & GR_EPSTAT_B0 ? "valid" : "invalid", 154 epstat & GR_EPSTAT_BS ? " " : "selected ", 155 (epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS); 156 seq_printf(seq, " Buffer 1: %s %s%d\n", 157 epstat & GR_EPSTAT_B1 ? "valid" : "invalid", 158 epstat & GR_EPSTAT_BS ? "selected " : " ", 159 (epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS); 160 161 if (list_empty(&ep->queue)) { 162 seq_puts(seq, " Queue: empty\n\n"); 163 return; 164 } 165 166 seq_puts(seq, " Queue:\n"); 167 list_for_each_entry(req, &ep->queue, queue) { 168 struct gr_dma_desc *desc; 169 struct gr_dma_desc *next; 170 171 seq_printf(seq, " 0x%p: 0x%p %d %d\n", req, 172 &req->req.buf, req->req.actual, req->req.length); 173 174 next = req->first_desc; 175 do { 176 desc = next; 177 next = desc->next_desc; 178 seq_printf(seq, " %c 0x%p (0x%08x): 0x%05x 0x%08x\n", 179 desc == req->curr_desc ? 'c' : ' ', 180 desc, desc->paddr, desc->ctrl, desc->data); 181 } while (desc != req->last_desc); 182 } 183 seq_puts(seq, "\n"); 184 } 185 186 187 static int gr_seq_show(struct seq_file *seq, void *v) 188 { 189 struct gr_udc *dev = seq->private; 190 u32 control = gr_read32(&dev->regs->control); 191 u32 status = gr_read32(&dev->regs->status); 192 struct gr_ep *ep; 193 194 seq_printf(seq, "usb state = %s\n", 195 usb_state_string(dev->gadget.state)); 196 seq_printf(seq, "address = %d\n", 197 (control & GR_CONTROL_UA_MASK) >> GR_CONTROL_UA_POS); 198 seq_printf(seq, "speed = %s\n", GR_SPEED_STR(status)); 199 seq_printf(seq, "ep0state = %s\n", gr_ep0state_string(dev->ep0state)); 200 seq_printf(seq, "irq_enabled = %d\n", dev->irq_enabled); 201 seq_printf(seq, "remote_wakeup = %d\n", dev->remote_wakeup); 202 seq_printf(seq, "test_mode = %d\n", dev->test_mode); 203 seq_puts(seq, "\n"); 204 205 list_for_each_entry(ep, &dev->ep_list, ep_list) 206 gr_seq_ep_show(seq, ep); 207 208 return 0; 209 } 210 211 static int gr_dfs_open(struct inode *inode, struct file *file) 212 { 213 return single_open(file, gr_seq_show, inode->i_private); 214 } 215 216 static const struct file_operations gr_dfs_fops = { 217 .owner = THIS_MODULE, 218 .open = gr_dfs_open, 219 .read = seq_read, 220 .llseek = seq_lseek, 221 .release = single_release, 222 }; 223 224 static void gr_dfs_create(struct gr_udc *dev) 225 { 226 const char *name = "gr_udc_state"; 227 228 dev->dfs_root = debugfs_create_dir(dev_name(dev->dev), NULL); 229 dev->dfs_state = debugfs_create_file(name, 0444, dev->dfs_root, dev, 230 &gr_dfs_fops); 231 } 232 233 static void gr_dfs_delete(struct gr_udc *dev) 234 { 235 /* Handles NULL and ERR pointers internally */ 236 debugfs_remove(dev->dfs_state); 237 debugfs_remove(dev->dfs_root); 238 } 239 240 #else /* !CONFIG_USB_GADGET_DEBUG_FS */ 241 242 static void gr_dfs_create(struct gr_udc *dev) {} 243 static void gr_dfs_delete(struct gr_udc *dev) {} 244 245 #endif /* CONFIG_USB_GADGET_DEBUG_FS */ 246 247 /* ---------------------------------------------------------------------- */ 248 /* DMA and request handling */ 249 250 /* Allocates a new struct gr_dma_desc, sets paddr and zeroes the rest */ 251 static struct gr_dma_desc *gr_alloc_dma_desc(struct gr_ep *ep, gfp_t gfp_flags) 252 { 253 dma_addr_t paddr; 254 struct gr_dma_desc *dma_desc; 255 256 dma_desc = dma_pool_zalloc(ep->dev->desc_pool, gfp_flags, &paddr); 257 if (!dma_desc) { 258 dev_err(ep->dev->dev, "Could not allocate from DMA pool\n"); 259 return NULL; 260 } 261 262 dma_desc->paddr = paddr; 263 264 return dma_desc; 265 } 266 267 static inline void gr_free_dma_desc(struct gr_udc *dev, 268 struct gr_dma_desc *desc) 269 { 270 dma_pool_free(dev->desc_pool, desc, (dma_addr_t)desc->paddr); 271 } 272 273 /* Frees the chain of struct gr_dma_desc for the given request */ 274 static void gr_free_dma_desc_chain(struct gr_udc *dev, struct gr_request *req) 275 { 276 struct gr_dma_desc *desc; 277 struct gr_dma_desc *next; 278 279 next = req->first_desc; 280 if (!next) 281 return; 282 283 do { 284 desc = next; 285 next = desc->next_desc; 286 gr_free_dma_desc(dev, desc); 287 } while (desc != req->last_desc); 288 289 req->first_desc = NULL; 290 req->curr_desc = NULL; 291 req->last_desc = NULL; 292 } 293 294 static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req); 295 296 /* 297 * Frees allocated resources and calls the appropriate completion function/setup 298 * package handler for a finished request. 299 * 300 * Must be called with dev->lock held and irqs disabled. 301 */ 302 static void gr_finish_request(struct gr_ep *ep, struct gr_request *req, 303 int status) 304 __releases(&dev->lock) 305 __acquires(&dev->lock) 306 { 307 struct gr_udc *dev; 308 309 list_del_init(&req->queue); 310 311 if (likely(req->req.status == -EINPROGRESS)) 312 req->req.status = status; 313 else 314 status = req->req.status; 315 316 dev = ep->dev; 317 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->is_in); 318 gr_free_dma_desc_chain(dev, req); 319 320 if (ep->is_in) { /* For OUT, req->req.actual gets updated bit by bit */ 321 req->req.actual = req->req.length; 322 } else if (req->oddlen && req->req.actual > req->evenlen) { 323 /* 324 * Copy to user buffer in this case where length was not evenly 325 * divisible by ep->ep.maxpacket and the last descriptor was 326 * actually used. 327 */ 328 char *buftail = ((char *)req->req.buf + req->evenlen); 329 330 memcpy(buftail, ep->tailbuf, req->oddlen); 331 332 if (req->req.actual > req->req.length) { 333 /* We got more data than was requested */ 334 dev_dbg(ep->dev->dev, "Overflow for ep %s\n", 335 ep->ep.name); 336 gr_dbgprint_request("OVFL", ep, req); 337 req->req.status = -EOVERFLOW; 338 } 339 } 340 341 if (!status) { 342 if (ep->is_in) 343 gr_dbgprint_request("SENT", ep, req); 344 else 345 gr_dbgprint_request("RECV", ep, req); 346 } 347 348 /* Prevent changes to ep->queue during callback */ 349 ep->callback = 1; 350 if (req == dev->ep0reqo && !status) { 351 if (req->setup) 352 gr_ep0_setup(dev, req); 353 else 354 dev_err(dev->dev, 355 "Unexpected non setup packet on ep0in\n"); 356 } else if (req->req.complete) { 357 spin_unlock(&dev->lock); 358 359 usb_gadget_giveback_request(&ep->ep, &req->req); 360 361 spin_lock(&dev->lock); 362 } 363 ep->callback = 0; 364 } 365 366 static struct usb_request *gr_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) 367 { 368 struct gr_request *req; 369 370 req = kzalloc(sizeof(*req), gfp_flags); 371 if (!req) 372 return NULL; 373 374 INIT_LIST_HEAD(&req->queue); 375 376 return &req->req; 377 } 378 379 /* 380 * Starts DMA for endpoint ep if there are requests in the queue. 381 * 382 * Must be called with dev->lock held and with !ep->stopped. 383 */ 384 static void gr_start_dma(struct gr_ep *ep) 385 { 386 struct gr_request *req; 387 u32 dmactrl; 388 389 if (list_empty(&ep->queue)) { 390 ep->dma_start = 0; 391 return; 392 } 393 394 req = list_first_entry(&ep->queue, struct gr_request, queue); 395 396 /* A descriptor should already have been allocated */ 397 BUG_ON(!req->curr_desc); 398 399 /* 400 * The DMA controller can not handle smaller OUT buffers than 401 * ep->ep.maxpacket. It could lead to buffer overruns if an unexpectedly 402 * long packet are received. Therefore an internal bounce buffer gets 403 * used when such a request gets enabled. 404 */ 405 if (!ep->is_in && req->oddlen) 406 req->last_desc->data = ep->tailbuf_paddr; 407 408 wmb(); /* Make sure all is settled before handing it over to DMA */ 409 410 /* Set the descriptor pointer in the hardware */ 411 gr_write32(&ep->regs->dmaaddr, req->curr_desc->paddr); 412 413 /* Announce available descriptors */ 414 dmactrl = gr_read32(&ep->regs->dmactrl); 415 gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_DA); 416 417 ep->dma_start = 1; 418 } 419 420 /* 421 * Finishes the first request in the ep's queue and, if available, starts the 422 * next request in queue. 423 * 424 * Must be called with dev->lock held, irqs disabled and with !ep->stopped. 425 */ 426 static void gr_dma_advance(struct gr_ep *ep, int status) 427 { 428 struct gr_request *req; 429 430 req = list_first_entry(&ep->queue, struct gr_request, queue); 431 gr_finish_request(ep, req, status); 432 gr_start_dma(ep); /* Regardless of ep->dma_start */ 433 } 434 435 /* 436 * Abort DMA for an endpoint. Sets the abort DMA bit which causes an ongoing DMA 437 * transfer to be canceled and clears GR_DMACTRL_DA. 438 * 439 * Must be called with dev->lock held. 440 */ 441 static void gr_abort_dma(struct gr_ep *ep) 442 { 443 u32 dmactrl; 444 445 dmactrl = gr_read32(&ep->regs->dmactrl); 446 gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_AD); 447 } 448 449 /* 450 * Allocates and sets up a struct gr_dma_desc and putting it on the descriptor 451 * chain. 452 * 453 * Size is not used for OUT endpoints. Hardware can not be instructed to handle 454 * smaller buffer than MAXPL in the OUT direction. 455 */ 456 static int gr_add_dma_desc(struct gr_ep *ep, struct gr_request *req, 457 dma_addr_t data, unsigned size, gfp_t gfp_flags) 458 { 459 struct gr_dma_desc *desc; 460 461 desc = gr_alloc_dma_desc(ep, gfp_flags); 462 if (!desc) 463 return -ENOMEM; 464 465 desc->data = data; 466 if (ep->is_in) 467 desc->ctrl = 468 (GR_DESC_IN_CTRL_LEN_MASK & size) | GR_DESC_IN_CTRL_EN; 469 else 470 desc->ctrl = GR_DESC_OUT_CTRL_IE; 471 472 if (!req->first_desc) { 473 req->first_desc = desc; 474 req->curr_desc = desc; 475 } else { 476 req->last_desc->next_desc = desc; 477 req->last_desc->next = desc->paddr; 478 req->last_desc->ctrl |= GR_DESC_OUT_CTRL_NX; 479 } 480 req->last_desc = desc; 481 482 return 0; 483 } 484 485 /* 486 * Sets up a chain of struct gr_dma_descriptors pointing to buffers that 487 * together covers req->req.length bytes of the buffer at DMA address 488 * req->req.dma for the OUT direction. 489 * 490 * The first descriptor in the chain is enabled, the rest disabled. The 491 * interrupt handler will later enable them one by one when needed so we can 492 * find out when the transfer is finished. For OUT endpoints, all descriptors 493 * therefore generate interrutps. 494 */ 495 static int gr_setup_out_desc_list(struct gr_ep *ep, struct gr_request *req, 496 gfp_t gfp_flags) 497 { 498 u16 bytes_left; /* Bytes left to provide descriptors for */ 499 u16 bytes_used; /* Bytes accommodated for */ 500 int ret = 0; 501 502 req->first_desc = NULL; /* Signals that no allocation is done yet */ 503 bytes_left = req->req.length; 504 bytes_used = 0; 505 while (bytes_left > 0) { 506 dma_addr_t start = req->req.dma + bytes_used; 507 u16 size = min(bytes_left, ep->bytes_per_buffer); 508 509 if (size < ep->bytes_per_buffer) { 510 /* Prepare using bounce buffer */ 511 req->evenlen = req->req.length - bytes_left; 512 req->oddlen = size; 513 } 514 515 ret = gr_add_dma_desc(ep, req, start, size, gfp_flags); 516 if (ret) 517 goto alloc_err; 518 519 bytes_left -= size; 520 bytes_used += size; 521 } 522 523 req->first_desc->ctrl |= GR_DESC_OUT_CTRL_EN; 524 525 return 0; 526 527 alloc_err: 528 gr_free_dma_desc_chain(ep->dev, req); 529 530 return ret; 531 } 532 533 /* 534 * Sets up a chain of struct gr_dma_descriptors pointing to buffers that 535 * together covers req->req.length bytes of the buffer at DMA address 536 * req->req.dma for the IN direction. 537 * 538 * When more data is provided than the maximum payload size, the hardware splits 539 * this up into several payloads automatically. Moreover, ep->bytes_per_buffer 540 * is always set to a multiple of the maximum payload (restricted to the valid 541 * number of maximum payloads during high bandwidth isochronous or interrupt 542 * transfers) 543 * 544 * All descriptors are enabled from the beginning and we only generate an 545 * interrupt for the last one indicating that the entire request has been pushed 546 * to hardware. 547 */ 548 static int gr_setup_in_desc_list(struct gr_ep *ep, struct gr_request *req, 549 gfp_t gfp_flags) 550 { 551 u16 bytes_left; /* Bytes left in req to provide descriptors for */ 552 u16 bytes_used; /* Bytes in req accommodated for */ 553 int ret = 0; 554 555 req->first_desc = NULL; /* Signals that no allocation is done yet */ 556 bytes_left = req->req.length; 557 bytes_used = 0; 558 do { /* Allow for zero length packets */ 559 dma_addr_t start = req->req.dma + bytes_used; 560 u16 size = min(bytes_left, ep->bytes_per_buffer); 561 562 ret = gr_add_dma_desc(ep, req, start, size, gfp_flags); 563 if (ret) 564 goto alloc_err; 565 566 bytes_left -= size; 567 bytes_used += size; 568 } while (bytes_left > 0); 569 570 /* 571 * Send an extra zero length packet to indicate that no more data is 572 * available when req->req.zero is set and the data length is even 573 * multiples of ep->ep.maxpacket. 574 */ 575 if (req->req.zero && (req->req.length % ep->ep.maxpacket == 0)) { 576 ret = gr_add_dma_desc(ep, req, 0, 0, gfp_flags); 577 if (ret) 578 goto alloc_err; 579 } 580 581 /* 582 * For IN packets we only want to know when the last packet has been 583 * transmitted (not just put into internal buffers). 584 */ 585 req->last_desc->ctrl |= GR_DESC_IN_CTRL_PI; 586 587 return 0; 588 589 alloc_err: 590 gr_free_dma_desc_chain(ep->dev, req); 591 592 return ret; 593 } 594 595 /* Must be called with dev->lock held */ 596 static int gr_queue(struct gr_ep *ep, struct gr_request *req, gfp_t gfp_flags) 597 { 598 struct gr_udc *dev = ep->dev; 599 int ret; 600 601 if (unlikely(!ep->ep.desc && ep->num != 0)) { 602 dev_err(dev->dev, "No ep descriptor for %s\n", ep->ep.name); 603 return -EINVAL; 604 } 605 606 if (unlikely(!req->req.buf || !list_empty(&req->queue))) { 607 dev_err(dev->dev, 608 "Invalid request for %s: buf=%p list_empty=%d\n", 609 ep->ep.name, req->req.buf, list_empty(&req->queue)); 610 return -EINVAL; 611 } 612 613 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 614 dev_err(dev->dev, "-ESHUTDOWN"); 615 return -ESHUTDOWN; 616 } 617 618 /* Can't touch registers when suspended */ 619 if (dev->ep0state == GR_EP0_SUSPEND) { 620 dev_err(dev->dev, "-EBUSY"); 621 return -EBUSY; 622 } 623 624 /* Set up DMA mapping in case the caller didn't */ 625 ret = usb_gadget_map_request(&dev->gadget, &req->req, ep->is_in); 626 if (ret) { 627 dev_err(dev->dev, "usb_gadget_map_request"); 628 return ret; 629 } 630 631 if (ep->is_in) 632 ret = gr_setup_in_desc_list(ep, req, gfp_flags); 633 else 634 ret = gr_setup_out_desc_list(ep, req, gfp_flags); 635 if (ret) 636 return ret; 637 638 req->req.status = -EINPROGRESS; 639 req->req.actual = 0; 640 list_add_tail(&req->queue, &ep->queue); 641 642 /* Start DMA if not started, otherwise interrupt handler handles it */ 643 if (!ep->dma_start && likely(!ep->stopped)) 644 gr_start_dma(ep); 645 646 return 0; 647 } 648 649 /* 650 * Queue a request from within the driver. 651 * 652 * Must be called with dev->lock held. 653 */ 654 static inline int gr_queue_int(struct gr_ep *ep, struct gr_request *req, 655 gfp_t gfp_flags) 656 { 657 if (ep->is_in) 658 gr_dbgprint_request("RESP", ep, req); 659 660 return gr_queue(ep, req, gfp_flags); 661 } 662 663 /* ---------------------------------------------------------------------- */ 664 /* General helper functions */ 665 666 /* 667 * Dequeue ALL requests. 668 * 669 * Must be called with dev->lock held and irqs disabled. 670 */ 671 static void gr_ep_nuke(struct gr_ep *ep) 672 { 673 struct gr_request *req; 674 675 ep->stopped = 1; 676 ep->dma_start = 0; 677 gr_abort_dma(ep); 678 679 while (!list_empty(&ep->queue)) { 680 req = list_first_entry(&ep->queue, struct gr_request, queue); 681 gr_finish_request(ep, req, -ESHUTDOWN); 682 } 683 } 684 685 /* 686 * Reset the hardware state of this endpoint. 687 * 688 * Must be called with dev->lock held. 689 */ 690 static void gr_ep_reset(struct gr_ep *ep) 691 { 692 gr_write32(&ep->regs->epctrl, 0); 693 gr_write32(&ep->regs->dmactrl, 0); 694 695 ep->ep.maxpacket = MAX_CTRL_PL_SIZE; 696 ep->ep.desc = NULL; 697 ep->stopped = 1; 698 ep->dma_start = 0; 699 } 700 701 /* 702 * Generate STALL on ep0in/out. 703 * 704 * Must be called with dev->lock held. 705 */ 706 static void gr_control_stall(struct gr_udc *dev) 707 { 708 u32 epctrl; 709 710 epctrl = gr_read32(&dev->epo[0].regs->epctrl); 711 gr_write32(&dev->epo[0].regs->epctrl, epctrl | GR_EPCTRL_CS); 712 epctrl = gr_read32(&dev->epi[0].regs->epctrl); 713 gr_write32(&dev->epi[0].regs->epctrl, epctrl | GR_EPCTRL_CS); 714 715 dev->ep0state = GR_EP0_STALL; 716 } 717 718 /* 719 * Halts, halts and wedges, or clears halt for an endpoint. 720 * 721 * Must be called with dev->lock held. 722 */ 723 static int gr_ep_halt_wedge(struct gr_ep *ep, int halt, int wedge, int fromhost) 724 { 725 u32 epctrl; 726 int retval = 0; 727 728 if (ep->num && !ep->ep.desc) 729 return -EINVAL; 730 731 if (ep->num && ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) 732 return -EOPNOTSUPP; 733 734 /* Never actually halt ep0, and therefore never clear halt for ep0 */ 735 if (!ep->num) { 736 if (halt && !fromhost) { 737 /* ep0 halt from gadget - generate protocol stall */ 738 gr_control_stall(ep->dev); 739 dev_dbg(ep->dev->dev, "EP: stall ep0\n"); 740 return 0; 741 } 742 return -EINVAL; 743 } 744 745 dev_dbg(ep->dev->dev, "EP: %s halt %s\n", 746 (halt ? (wedge ? "wedge" : "set") : "clear"), ep->ep.name); 747 748 epctrl = gr_read32(&ep->regs->epctrl); 749 if (halt) { 750 /* Set HALT */ 751 gr_write32(&ep->regs->epctrl, epctrl | GR_EPCTRL_EH); 752 ep->stopped = 1; 753 if (wedge) 754 ep->wedged = 1; 755 } else { 756 gr_write32(&ep->regs->epctrl, epctrl & ~GR_EPCTRL_EH); 757 ep->stopped = 0; 758 ep->wedged = 0; 759 760 /* Things might have been queued up in the meantime */ 761 if (!ep->dma_start) 762 gr_start_dma(ep); 763 } 764 765 return retval; 766 } 767 768 /* Must be called with dev->lock held */ 769 static inline void gr_set_ep0state(struct gr_udc *dev, enum gr_ep0state value) 770 { 771 if (dev->ep0state != value) 772 dev_vdbg(dev->dev, "STATE: ep0state=%s\n", 773 gr_ep0state_string(value)); 774 dev->ep0state = value; 775 } 776 777 /* 778 * Should only be called when endpoints can not generate interrupts. 779 * 780 * Must be called with dev->lock held. 781 */ 782 static void gr_disable_interrupts_and_pullup(struct gr_udc *dev) 783 { 784 gr_write32(&dev->regs->control, 0); 785 wmb(); /* Make sure that we do not deny one of our interrupts */ 786 dev->irq_enabled = 0; 787 } 788 789 /* 790 * Stop all device activity and disable data line pullup. 791 * 792 * Must be called with dev->lock held and irqs disabled. 793 */ 794 static void gr_stop_activity(struct gr_udc *dev) 795 { 796 struct gr_ep *ep; 797 798 list_for_each_entry(ep, &dev->ep_list, ep_list) 799 gr_ep_nuke(ep); 800 801 gr_disable_interrupts_and_pullup(dev); 802 803 gr_set_ep0state(dev, GR_EP0_DISCONNECT); 804 usb_gadget_set_state(&dev->gadget, USB_STATE_NOTATTACHED); 805 } 806 807 /* ---------------------------------------------------------------------- */ 808 /* ep0 setup packet handling */ 809 810 static void gr_ep0_testmode_complete(struct usb_ep *_ep, 811 struct usb_request *_req) 812 { 813 struct gr_ep *ep; 814 struct gr_udc *dev; 815 u32 control; 816 817 ep = container_of(_ep, struct gr_ep, ep); 818 dev = ep->dev; 819 820 spin_lock(&dev->lock); 821 822 control = gr_read32(&dev->regs->control); 823 control |= GR_CONTROL_TM | (dev->test_mode << GR_CONTROL_TS_POS); 824 gr_write32(&dev->regs->control, control); 825 826 spin_unlock(&dev->lock); 827 } 828 829 static void gr_ep0_dummy_complete(struct usb_ep *_ep, struct usb_request *_req) 830 { 831 /* Nothing needs to be done here */ 832 } 833 834 /* 835 * Queue a response on ep0in. 836 * 837 * Must be called with dev->lock held. 838 */ 839 static int gr_ep0_respond(struct gr_udc *dev, u8 *buf, int length, 840 void (*complete)(struct usb_ep *ep, 841 struct usb_request *req)) 842 { 843 u8 *reqbuf = dev->ep0reqi->req.buf; 844 int status; 845 int i; 846 847 for (i = 0; i < length; i++) 848 reqbuf[i] = buf[i]; 849 dev->ep0reqi->req.length = length; 850 dev->ep0reqi->req.complete = complete; 851 852 status = gr_queue_int(&dev->epi[0], dev->ep0reqi, GFP_ATOMIC); 853 if (status < 0) 854 dev_err(dev->dev, 855 "Could not queue ep0in setup response: %d\n", status); 856 857 return status; 858 } 859 860 /* 861 * Queue a 2 byte response on ep0in. 862 * 863 * Must be called with dev->lock held. 864 */ 865 static inline int gr_ep0_respond_u16(struct gr_udc *dev, u16 response) 866 { 867 __le16 le_response = cpu_to_le16(response); 868 869 return gr_ep0_respond(dev, (u8 *)&le_response, 2, 870 gr_ep0_dummy_complete); 871 } 872 873 /* 874 * Queue a ZLP response on ep0in. 875 * 876 * Must be called with dev->lock held. 877 */ 878 static inline int gr_ep0_respond_empty(struct gr_udc *dev) 879 { 880 return gr_ep0_respond(dev, NULL, 0, gr_ep0_dummy_complete); 881 } 882 883 /* 884 * This is run when a SET_ADDRESS request is received. First writes 885 * the new address to the control register which is updated internally 886 * when the next IN packet is ACKED. 887 * 888 * Must be called with dev->lock held. 889 */ 890 static void gr_set_address(struct gr_udc *dev, u8 address) 891 { 892 u32 control; 893 894 control = gr_read32(&dev->regs->control) & ~GR_CONTROL_UA_MASK; 895 control |= (address << GR_CONTROL_UA_POS) & GR_CONTROL_UA_MASK; 896 control |= GR_CONTROL_SU; 897 gr_write32(&dev->regs->control, control); 898 } 899 900 /* 901 * Returns negative for STALL, 0 for successful handling and positive for 902 * delegation. 903 * 904 * Must be called with dev->lock held. 905 */ 906 static int gr_device_request(struct gr_udc *dev, u8 type, u8 request, 907 u16 value, u16 index) 908 { 909 u16 response; 910 u8 test; 911 912 switch (request) { 913 case USB_REQ_SET_ADDRESS: 914 dev_dbg(dev->dev, "STATUS: address %d\n", value & 0xff); 915 gr_set_address(dev, value & 0xff); 916 if (value) 917 usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS); 918 else 919 usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT); 920 return gr_ep0_respond_empty(dev); 921 922 case USB_REQ_GET_STATUS: 923 /* Self powered | remote wakeup */ 924 response = 0x0001 | (dev->remote_wakeup ? 0x0002 : 0); 925 return gr_ep0_respond_u16(dev, response); 926 927 case USB_REQ_SET_FEATURE: 928 switch (value) { 929 case USB_DEVICE_REMOTE_WAKEUP: 930 /* Allow remote wakeup */ 931 dev->remote_wakeup = 1; 932 return gr_ep0_respond_empty(dev); 933 934 case USB_DEVICE_TEST_MODE: 935 /* The hardware does not support TEST_FORCE_EN */ 936 test = index >> 8; 937 if (test >= TEST_J && test <= TEST_PACKET) { 938 dev->test_mode = test; 939 return gr_ep0_respond(dev, NULL, 0, 940 gr_ep0_testmode_complete); 941 } 942 } 943 break; 944 945 case USB_REQ_CLEAR_FEATURE: 946 switch (value) { 947 case USB_DEVICE_REMOTE_WAKEUP: 948 /* Disallow remote wakeup */ 949 dev->remote_wakeup = 0; 950 return gr_ep0_respond_empty(dev); 951 } 952 break; 953 } 954 955 return 1; /* Delegate the rest */ 956 } 957 958 /* 959 * Returns negative for STALL, 0 for successful handling and positive for 960 * delegation. 961 * 962 * Must be called with dev->lock held. 963 */ 964 static int gr_interface_request(struct gr_udc *dev, u8 type, u8 request, 965 u16 value, u16 index) 966 { 967 if (dev->gadget.state != USB_STATE_CONFIGURED) 968 return -1; 969 970 /* 971 * Should return STALL for invalid interfaces, but udc driver does not 972 * know anything about that. However, many gadget drivers do not handle 973 * GET_STATUS so we need to take care of that. 974 */ 975 976 switch (request) { 977 case USB_REQ_GET_STATUS: 978 return gr_ep0_respond_u16(dev, 0x0000); 979 980 case USB_REQ_SET_FEATURE: 981 case USB_REQ_CLEAR_FEATURE: 982 /* 983 * No possible valid standard requests. Still let gadget drivers 984 * have a go at it. 985 */ 986 break; 987 } 988 989 return 1; /* Delegate the rest */ 990 } 991 992 /* 993 * Returns negative for STALL, 0 for successful handling and positive for 994 * delegation. 995 * 996 * Must be called with dev->lock held. 997 */ 998 static int gr_endpoint_request(struct gr_udc *dev, u8 type, u8 request, 999 u16 value, u16 index) 1000 { 1001 struct gr_ep *ep; 1002 int status; 1003 int halted; 1004 u8 epnum = index & USB_ENDPOINT_NUMBER_MASK; 1005 u8 is_in = index & USB_ENDPOINT_DIR_MASK; 1006 1007 if ((is_in && epnum >= dev->nepi) || (!is_in && epnum >= dev->nepo)) 1008 return -1; 1009 1010 if (dev->gadget.state != USB_STATE_CONFIGURED && epnum != 0) 1011 return -1; 1012 1013 ep = (is_in ? &dev->epi[epnum] : &dev->epo[epnum]); 1014 1015 switch (request) { 1016 case USB_REQ_GET_STATUS: 1017 halted = gr_read32(&ep->regs->epctrl) & GR_EPCTRL_EH; 1018 return gr_ep0_respond_u16(dev, halted ? 0x0001 : 0); 1019 1020 case USB_REQ_SET_FEATURE: 1021 switch (value) { 1022 case USB_ENDPOINT_HALT: 1023 status = gr_ep_halt_wedge(ep, 1, 0, 1); 1024 if (status >= 0) 1025 status = gr_ep0_respond_empty(dev); 1026 return status; 1027 } 1028 break; 1029 1030 case USB_REQ_CLEAR_FEATURE: 1031 switch (value) { 1032 case USB_ENDPOINT_HALT: 1033 if (ep->wedged) 1034 return -1; 1035 status = gr_ep_halt_wedge(ep, 0, 0, 1); 1036 if (status >= 0) 1037 status = gr_ep0_respond_empty(dev); 1038 return status; 1039 } 1040 break; 1041 } 1042 1043 return 1; /* Delegate the rest */ 1044 } 1045 1046 /* Must be called with dev->lock held */ 1047 static void gr_ep0out_requeue(struct gr_udc *dev) 1048 { 1049 int ret = gr_queue_int(&dev->epo[0], dev->ep0reqo, GFP_ATOMIC); 1050 1051 if (ret) 1052 dev_err(dev->dev, "Could not queue ep0out setup request: %d\n", 1053 ret); 1054 } 1055 1056 /* 1057 * The main function dealing with setup requests on ep0. 1058 * 1059 * Must be called with dev->lock held and irqs disabled 1060 */ 1061 static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req) 1062 __releases(&dev->lock) 1063 __acquires(&dev->lock) 1064 { 1065 union { 1066 struct usb_ctrlrequest ctrl; 1067 u8 raw[8]; 1068 u32 word[2]; 1069 } u; 1070 u8 type; 1071 u8 request; 1072 u16 value; 1073 u16 index; 1074 u16 length; 1075 int i; 1076 int status; 1077 1078 /* Restore from ep0 halt */ 1079 if (dev->ep0state == GR_EP0_STALL) { 1080 gr_set_ep0state(dev, GR_EP0_SETUP); 1081 if (!req->req.actual) 1082 goto out; 1083 } 1084 1085 if (dev->ep0state == GR_EP0_ISTATUS) { 1086 gr_set_ep0state(dev, GR_EP0_SETUP); 1087 if (req->req.actual > 0) 1088 dev_dbg(dev->dev, 1089 "Unexpected setup packet at state %s\n", 1090 gr_ep0state_string(GR_EP0_ISTATUS)); 1091 else 1092 goto out; /* Got expected ZLP */ 1093 } else if (dev->ep0state != GR_EP0_SETUP) { 1094 dev_info(dev->dev, 1095 "Unexpected ep0out request at state %s - stalling\n", 1096 gr_ep0state_string(dev->ep0state)); 1097 gr_control_stall(dev); 1098 gr_set_ep0state(dev, GR_EP0_SETUP); 1099 goto out; 1100 } else if (!req->req.actual) { 1101 dev_dbg(dev->dev, "Unexpected ZLP at state %s\n", 1102 gr_ep0state_string(dev->ep0state)); 1103 goto out; 1104 } 1105 1106 /* Handle SETUP packet */ 1107 for (i = 0; i < req->req.actual; i++) 1108 u.raw[i] = ((u8 *)req->req.buf)[i]; 1109 1110 type = u.ctrl.bRequestType; 1111 request = u.ctrl.bRequest; 1112 value = le16_to_cpu(u.ctrl.wValue); 1113 index = le16_to_cpu(u.ctrl.wIndex); 1114 length = le16_to_cpu(u.ctrl.wLength); 1115 1116 gr_dbgprint_devreq(dev, type, request, value, index, length); 1117 1118 /* Check for data stage */ 1119 if (length) { 1120 if (type & USB_DIR_IN) 1121 gr_set_ep0state(dev, GR_EP0_IDATA); 1122 else 1123 gr_set_ep0state(dev, GR_EP0_ODATA); 1124 } 1125 1126 status = 1; /* Positive status flags delegation */ 1127 if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1128 switch (type & USB_RECIP_MASK) { 1129 case USB_RECIP_DEVICE: 1130 status = gr_device_request(dev, type, request, 1131 value, index); 1132 break; 1133 case USB_RECIP_ENDPOINT: 1134 status = gr_endpoint_request(dev, type, request, 1135 value, index); 1136 break; 1137 case USB_RECIP_INTERFACE: 1138 status = gr_interface_request(dev, type, request, 1139 value, index); 1140 break; 1141 } 1142 } 1143 1144 if (status > 0) { 1145 spin_unlock(&dev->lock); 1146 1147 dev_vdbg(dev->dev, "DELEGATE\n"); 1148 status = dev->driver->setup(&dev->gadget, &u.ctrl); 1149 1150 spin_lock(&dev->lock); 1151 } 1152 1153 /* Generate STALL on both ep0out and ep0in if requested */ 1154 if (unlikely(status < 0)) { 1155 dev_vdbg(dev->dev, "STALL\n"); 1156 gr_control_stall(dev); 1157 } 1158 1159 if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD && 1160 request == USB_REQ_SET_CONFIGURATION) { 1161 if (!value) { 1162 dev_dbg(dev->dev, "STATUS: deconfigured\n"); 1163 usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS); 1164 } else if (status >= 0) { 1165 /* Not configured unless gadget OK:s it */ 1166 dev_dbg(dev->dev, "STATUS: configured: %d\n", value); 1167 usb_gadget_set_state(&dev->gadget, 1168 USB_STATE_CONFIGURED); 1169 } 1170 } 1171 1172 /* Get ready for next stage */ 1173 if (dev->ep0state == GR_EP0_ODATA) 1174 gr_set_ep0state(dev, GR_EP0_OSTATUS); 1175 else if (dev->ep0state == GR_EP0_IDATA) 1176 gr_set_ep0state(dev, GR_EP0_ISTATUS); 1177 else 1178 gr_set_ep0state(dev, GR_EP0_SETUP); 1179 1180 out: 1181 gr_ep0out_requeue(dev); 1182 } 1183 1184 /* ---------------------------------------------------------------------- */ 1185 /* VBUS and USB reset handling */ 1186 1187 /* Must be called with dev->lock held and irqs disabled */ 1188 static void gr_vbus_connected(struct gr_udc *dev, u32 status) 1189 { 1190 u32 control; 1191 1192 dev->gadget.speed = GR_SPEED(status); 1193 usb_gadget_set_state(&dev->gadget, USB_STATE_POWERED); 1194 1195 /* Turn on full interrupts and pullup */ 1196 control = (GR_CONTROL_SI | GR_CONTROL_UI | GR_CONTROL_VI | 1197 GR_CONTROL_SP | GR_CONTROL_EP); 1198 gr_write32(&dev->regs->control, control); 1199 } 1200 1201 /* Must be called with dev->lock held */ 1202 static void gr_enable_vbus_detect(struct gr_udc *dev) 1203 { 1204 u32 status; 1205 1206 dev->irq_enabled = 1; 1207 wmb(); /* Make sure we do not ignore an interrupt */ 1208 gr_write32(&dev->regs->control, GR_CONTROL_VI); 1209 1210 /* Take care of the case we are already plugged in at this point */ 1211 status = gr_read32(&dev->regs->status); 1212 if (status & GR_STATUS_VB) 1213 gr_vbus_connected(dev, status); 1214 } 1215 1216 /* Must be called with dev->lock held and irqs disabled */ 1217 static void gr_vbus_disconnected(struct gr_udc *dev) 1218 { 1219 gr_stop_activity(dev); 1220 1221 /* Report disconnect */ 1222 if (dev->driver && dev->driver->disconnect) { 1223 spin_unlock(&dev->lock); 1224 1225 dev->driver->disconnect(&dev->gadget); 1226 1227 spin_lock(&dev->lock); 1228 } 1229 1230 gr_enable_vbus_detect(dev); 1231 } 1232 1233 /* Must be called with dev->lock held and irqs disabled */ 1234 static void gr_udc_usbreset(struct gr_udc *dev, u32 status) 1235 { 1236 gr_set_address(dev, 0); 1237 gr_set_ep0state(dev, GR_EP0_SETUP); 1238 usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT); 1239 dev->gadget.speed = GR_SPEED(status); 1240 1241 gr_ep_nuke(&dev->epo[0]); 1242 gr_ep_nuke(&dev->epi[0]); 1243 dev->epo[0].stopped = 0; 1244 dev->epi[0].stopped = 0; 1245 gr_ep0out_requeue(dev); 1246 } 1247 1248 /* ---------------------------------------------------------------------- */ 1249 /* Irq handling */ 1250 1251 /* 1252 * Handles interrupts from in endpoints. Returns whether something was handled. 1253 * 1254 * Must be called with dev->lock held, irqs disabled and with !ep->stopped. 1255 */ 1256 static int gr_handle_in_ep(struct gr_ep *ep) 1257 { 1258 struct gr_request *req; 1259 1260 req = list_first_entry(&ep->queue, struct gr_request, queue); 1261 if (!req->last_desc) 1262 return 0; 1263 1264 if (ACCESS_ONCE(req->last_desc->ctrl) & GR_DESC_IN_CTRL_EN) 1265 return 0; /* Not put in hardware buffers yet */ 1266 1267 if (gr_read32(&ep->regs->epstat) & (GR_EPSTAT_B1 | GR_EPSTAT_B0)) 1268 return 0; /* Not transmitted yet, still in hardware buffers */ 1269 1270 /* Write complete */ 1271 gr_dma_advance(ep, 0); 1272 1273 return 1; 1274 } 1275 1276 /* 1277 * Handles interrupts from out endpoints. Returns whether something was handled. 1278 * 1279 * Must be called with dev->lock held, irqs disabled and with !ep->stopped. 1280 */ 1281 static int gr_handle_out_ep(struct gr_ep *ep) 1282 { 1283 u32 ep_dmactrl; 1284 u32 ctrl; 1285 u16 len; 1286 struct gr_request *req; 1287 struct gr_udc *dev = ep->dev; 1288 1289 req = list_first_entry(&ep->queue, struct gr_request, queue); 1290 if (!req->curr_desc) 1291 return 0; 1292 1293 ctrl = ACCESS_ONCE(req->curr_desc->ctrl); 1294 if (ctrl & GR_DESC_OUT_CTRL_EN) 1295 return 0; /* Not received yet */ 1296 1297 /* Read complete */ 1298 len = ctrl & GR_DESC_OUT_CTRL_LEN_MASK; 1299 req->req.actual += len; 1300 if (ctrl & GR_DESC_OUT_CTRL_SE) 1301 req->setup = 1; 1302 1303 if (len < ep->ep.maxpacket || req->req.actual >= req->req.length) { 1304 /* Short packet or >= expected size - we are done */ 1305 1306 if ((ep == &dev->epo[0]) && (dev->ep0state == GR_EP0_OSTATUS)) { 1307 /* 1308 * Send a status stage ZLP to ack the DATA stage in the 1309 * OUT direction. This needs to be done before 1310 * gr_dma_advance as that can lead to a call to 1311 * ep0_setup that can change dev->ep0state. 1312 */ 1313 gr_ep0_respond_empty(dev); 1314 gr_set_ep0state(dev, GR_EP0_SETUP); 1315 } 1316 1317 gr_dma_advance(ep, 0); 1318 } else { 1319 /* Not done yet. Enable the next descriptor to receive more. */ 1320 req->curr_desc = req->curr_desc->next_desc; 1321 req->curr_desc->ctrl |= GR_DESC_OUT_CTRL_EN; 1322 1323 ep_dmactrl = gr_read32(&ep->regs->dmactrl); 1324 gr_write32(&ep->regs->dmactrl, ep_dmactrl | GR_DMACTRL_DA); 1325 } 1326 1327 return 1; 1328 } 1329 1330 /* 1331 * Handle state changes. Returns whether something was handled. 1332 * 1333 * Must be called with dev->lock held and irqs disabled. 1334 */ 1335 static int gr_handle_state_changes(struct gr_udc *dev) 1336 { 1337 u32 status = gr_read32(&dev->regs->status); 1338 int handled = 0; 1339 int powstate = !(dev->gadget.state == USB_STATE_NOTATTACHED || 1340 dev->gadget.state == USB_STATE_ATTACHED); 1341 1342 /* VBUS valid detected */ 1343 if (!powstate && (status & GR_STATUS_VB)) { 1344 dev_dbg(dev->dev, "STATUS: vbus valid detected\n"); 1345 gr_vbus_connected(dev, status); 1346 handled = 1; 1347 } 1348 1349 /* Disconnect */ 1350 if (powstate && !(status & GR_STATUS_VB)) { 1351 dev_dbg(dev->dev, "STATUS: vbus invalid detected\n"); 1352 gr_vbus_disconnected(dev); 1353 handled = 1; 1354 } 1355 1356 /* USB reset detected */ 1357 if (status & GR_STATUS_UR) { 1358 dev_dbg(dev->dev, "STATUS: USB reset - speed is %s\n", 1359 GR_SPEED_STR(status)); 1360 gr_write32(&dev->regs->status, GR_STATUS_UR); 1361 gr_udc_usbreset(dev, status); 1362 handled = 1; 1363 } 1364 1365 /* Speed change */ 1366 if (dev->gadget.speed != GR_SPEED(status)) { 1367 dev_dbg(dev->dev, "STATUS: USB Speed change to %s\n", 1368 GR_SPEED_STR(status)); 1369 dev->gadget.speed = GR_SPEED(status); 1370 handled = 1; 1371 } 1372 1373 /* Going into suspend */ 1374 if ((dev->ep0state != GR_EP0_SUSPEND) && !(status & GR_STATUS_SU)) { 1375 dev_dbg(dev->dev, "STATUS: USB suspend\n"); 1376 gr_set_ep0state(dev, GR_EP0_SUSPEND); 1377 dev->suspended_from = dev->gadget.state; 1378 usb_gadget_set_state(&dev->gadget, USB_STATE_SUSPENDED); 1379 1380 if ((dev->gadget.speed != USB_SPEED_UNKNOWN) && 1381 dev->driver && dev->driver->suspend) { 1382 spin_unlock(&dev->lock); 1383 1384 dev->driver->suspend(&dev->gadget); 1385 1386 spin_lock(&dev->lock); 1387 } 1388 handled = 1; 1389 } 1390 1391 /* Coming out of suspend */ 1392 if ((dev->ep0state == GR_EP0_SUSPEND) && (status & GR_STATUS_SU)) { 1393 dev_dbg(dev->dev, "STATUS: USB resume\n"); 1394 if (dev->suspended_from == USB_STATE_POWERED) 1395 gr_set_ep0state(dev, GR_EP0_DISCONNECT); 1396 else 1397 gr_set_ep0state(dev, GR_EP0_SETUP); 1398 usb_gadget_set_state(&dev->gadget, dev->suspended_from); 1399 1400 if ((dev->gadget.speed != USB_SPEED_UNKNOWN) && 1401 dev->driver && dev->driver->resume) { 1402 spin_unlock(&dev->lock); 1403 1404 dev->driver->resume(&dev->gadget); 1405 1406 spin_lock(&dev->lock); 1407 } 1408 handled = 1; 1409 } 1410 1411 return handled; 1412 } 1413 1414 /* Non-interrupt context irq handler */ 1415 static irqreturn_t gr_irq_handler(int irq, void *_dev) 1416 { 1417 struct gr_udc *dev = _dev; 1418 struct gr_ep *ep; 1419 int handled = 0; 1420 int i; 1421 unsigned long flags; 1422 1423 spin_lock_irqsave(&dev->lock, flags); 1424 1425 if (!dev->irq_enabled) 1426 goto out; 1427 1428 /* 1429 * Check IN ep interrupts. We check these before the OUT eps because 1430 * some gadgets reuse the request that might already be currently 1431 * outstanding and needs to be completed (mainly setup requests). 1432 */ 1433 for (i = 0; i < dev->nepi; i++) { 1434 ep = &dev->epi[i]; 1435 if (!ep->stopped && !ep->callback && !list_empty(&ep->queue)) 1436 handled = gr_handle_in_ep(ep) || handled; 1437 } 1438 1439 /* Check OUT ep interrupts */ 1440 for (i = 0; i < dev->nepo; i++) { 1441 ep = &dev->epo[i]; 1442 if (!ep->stopped && !ep->callback && !list_empty(&ep->queue)) 1443 handled = gr_handle_out_ep(ep) || handled; 1444 } 1445 1446 /* Check status interrupts */ 1447 handled = gr_handle_state_changes(dev) || handled; 1448 1449 /* 1450 * Check AMBA DMA errors. Only check if we didn't find anything else to 1451 * handle because this shouldn't happen if we did everything right. 1452 */ 1453 if (!handled) { 1454 list_for_each_entry(ep, &dev->ep_list, ep_list) { 1455 if (gr_read32(&ep->regs->dmactrl) & GR_DMACTRL_AE) { 1456 dev_err(dev->dev, 1457 "AMBA Error occurred for %s\n", 1458 ep->ep.name); 1459 handled = 1; 1460 } 1461 } 1462 } 1463 1464 out: 1465 spin_unlock_irqrestore(&dev->lock, flags); 1466 1467 return handled ? IRQ_HANDLED : IRQ_NONE; 1468 } 1469 1470 /* Interrupt context irq handler */ 1471 static irqreturn_t gr_irq(int irq, void *_dev) 1472 { 1473 struct gr_udc *dev = _dev; 1474 1475 if (!dev->irq_enabled) 1476 return IRQ_NONE; 1477 1478 return IRQ_WAKE_THREAD; 1479 } 1480 1481 /* ---------------------------------------------------------------------- */ 1482 /* USB ep ops */ 1483 1484 /* Enable endpoint. Not for ep0in and ep0out that are handled separately. */ 1485 static int gr_ep_enable(struct usb_ep *_ep, 1486 const struct usb_endpoint_descriptor *desc) 1487 { 1488 struct gr_udc *dev; 1489 struct gr_ep *ep; 1490 u8 mode; 1491 u8 nt; 1492 u16 max; 1493 u16 buffer_size = 0; 1494 u32 epctrl; 1495 1496 ep = container_of(_ep, struct gr_ep, ep); 1497 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) 1498 return -EINVAL; 1499 1500 dev = ep->dev; 1501 1502 /* 'ep0' IN and OUT are reserved */ 1503 if (ep == &dev->epo[0] || ep == &dev->epi[0]) 1504 return -EINVAL; 1505 1506 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) 1507 return -ESHUTDOWN; 1508 1509 /* Make sure we are clear for enabling */ 1510 epctrl = gr_read32(&ep->regs->epctrl); 1511 if (epctrl & GR_EPCTRL_EV) 1512 return -EBUSY; 1513 1514 /* Check that directions match */ 1515 if (!ep->is_in != !usb_endpoint_dir_in(desc)) 1516 return -EINVAL; 1517 1518 /* Check ep num */ 1519 if ((!ep->is_in && ep->num >= dev->nepo) || 1520 (ep->is_in && ep->num >= dev->nepi)) 1521 return -EINVAL; 1522 1523 if (usb_endpoint_xfer_control(desc)) { 1524 mode = 0; 1525 } else if (usb_endpoint_xfer_isoc(desc)) { 1526 mode = 1; 1527 } else if (usb_endpoint_xfer_bulk(desc)) { 1528 mode = 2; 1529 } else if (usb_endpoint_xfer_int(desc)) { 1530 mode = 3; 1531 } else { 1532 dev_err(dev->dev, "Unknown transfer type for %s\n", 1533 ep->ep.name); 1534 return -EINVAL; 1535 } 1536 1537 /* 1538 * Bits 10-0 set the max payload. 12-11 set the number of 1539 * additional transactions. 1540 */ 1541 max = 0x7ff & usb_endpoint_maxp(desc); 1542 nt = 0x3 & (usb_endpoint_maxp(desc) >> 11); 1543 buffer_size = GR_BUFFER_SIZE(epctrl); 1544 if (nt && (mode == 0 || mode == 2)) { 1545 dev_err(dev->dev, 1546 "%s mode: multiple trans./microframe not valid\n", 1547 (mode == 2 ? "Bulk" : "Control")); 1548 return -EINVAL; 1549 } else if (nt == 0x3) { 1550 dev_err(dev->dev, 1551 "Invalid value 0x3 for additional trans./microframe\n"); 1552 return -EINVAL; 1553 } else if ((nt + 1) * max > buffer_size) { 1554 dev_err(dev->dev, "Hw buffer size %d < max payload %d * %d\n", 1555 buffer_size, (nt + 1), max); 1556 return -EINVAL; 1557 } else if (max == 0) { 1558 dev_err(dev->dev, "Max payload cannot be set to 0\n"); 1559 return -EINVAL; 1560 } else if (max > ep->ep.maxpacket_limit) { 1561 dev_err(dev->dev, "Requested max payload %d > limit %d\n", 1562 max, ep->ep.maxpacket_limit); 1563 return -EINVAL; 1564 } 1565 1566 spin_lock(&ep->dev->lock); 1567 1568 if (!ep->stopped) { 1569 spin_unlock(&ep->dev->lock); 1570 return -EBUSY; 1571 } 1572 1573 ep->stopped = 0; 1574 ep->wedged = 0; 1575 ep->ep.desc = desc; 1576 ep->ep.maxpacket = max; 1577 ep->dma_start = 0; 1578 1579 1580 if (nt) { 1581 /* 1582 * Maximum possible size of all payloads in one microframe 1583 * regardless of direction when using high-bandwidth mode. 1584 */ 1585 ep->bytes_per_buffer = (nt + 1) * max; 1586 } else if (ep->is_in) { 1587 /* 1588 * The biggest multiple of maximum packet size that fits into 1589 * the buffer. The hardware will split up into many packets in 1590 * the IN direction. 1591 */ 1592 ep->bytes_per_buffer = (buffer_size / max) * max; 1593 } else { 1594 /* 1595 * Only single packets will be placed the buffers in the OUT 1596 * direction. 1597 */ 1598 ep->bytes_per_buffer = max; 1599 } 1600 1601 epctrl = (max << GR_EPCTRL_MAXPL_POS) 1602 | (nt << GR_EPCTRL_NT_POS) 1603 | (mode << GR_EPCTRL_TT_POS) 1604 | GR_EPCTRL_EV; 1605 if (ep->is_in) 1606 epctrl |= GR_EPCTRL_PI; 1607 gr_write32(&ep->regs->epctrl, epctrl); 1608 1609 gr_write32(&ep->regs->dmactrl, GR_DMACTRL_IE | GR_DMACTRL_AI); 1610 1611 spin_unlock(&ep->dev->lock); 1612 1613 dev_dbg(ep->dev->dev, "EP: %s enabled - %s with %d bytes/buffer\n", 1614 ep->ep.name, gr_modestring[mode], ep->bytes_per_buffer); 1615 return 0; 1616 } 1617 1618 /* Disable endpoint. Not for ep0in and ep0out that are handled separately. */ 1619 static int gr_ep_disable(struct usb_ep *_ep) 1620 { 1621 struct gr_ep *ep; 1622 struct gr_udc *dev; 1623 unsigned long flags; 1624 1625 ep = container_of(_ep, struct gr_ep, ep); 1626 if (!_ep || !ep->ep.desc) 1627 return -ENODEV; 1628 1629 dev = ep->dev; 1630 1631 /* 'ep0' IN and OUT are reserved */ 1632 if (ep == &dev->epo[0] || ep == &dev->epi[0]) 1633 return -EINVAL; 1634 1635 if (dev->ep0state == GR_EP0_SUSPEND) 1636 return -EBUSY; 1637 1638 dev_dbg(ep->dev->dev, "EP: disable %s\n", ep->ep.name); 1639 1640 spin_lock_irqsave(&dev->lock, flags); 1641 1642 gr_ep_nuke(ep); 1643 gr_ep_reset(ep); 1644 ep->ep.desc = NULL; 1645 1646 spin_unlock_irqrestore(&dev->lock, flags); 1647 1648 return 0; 1649 } 1650 1651 /* 1652 * Frees a request, but not any DMA buffers associated with it 1653 * (gr_finish_request should already have taken care of that). 1654 */ 1655 static void gr_free_request(struct usb_ep *_ep, struct usb_request *_req) 1656 { 1657 struct gr_request *req; 1658 1659 if (!_ep || !_req) 1660 return; 1661 req = container_of(_req, struct gr_request, req); 1662 1663 /* Leads to memory leak */ 1664 WARN(!list_empty(&req->queue), 1665 "request not dequeued properly before freeing\n"); 1666 1667 kfree(req); 1668 } 1669 1670 /* Queue a request from the gadget */ 1671 static int gr_queue_ext(struct usb_ep *_ep, struct usb_request *_req, 1672 gfp_t gfp_flags) 1673 { 1674 struct gr_ep *ep; 1675 struct gr_request *req; 1676 struct gr_udc *dev; 1677 int ret; 1678 1679 if (unlikely(!_ep || !_req)) 1680 return -EINVAL; 1681 1682 ep = container_of(_ep, struct gr_ep, ep); 1683 req = container_of(_req, struct gr_request, req); 1684 dev = ep->dev; 1685 1686 spin_lock(&ep->dev->lock); 1687 1688 /* 1689 * The ep0 pointer in the gadget struct is used both for ep0in and 1690 * ep0out. In a data stage in the out direction ep0out needs to be used 1691 * instead of the default ep0in. Completion functions might use 1692 * driver_data, so that needs to be copied as well. 1693 */ 1694 if ((ep == &dev->epi[0]) && (dev->ep0state == GR_EP0_ODATA)) { 1695 ep = &dev->epo[0]; 1696 ep->ep.driver_data = dev->epi[0].ep.driver_data; 1697 } 1698 1699 if (ep->is_in) 1700 gr_dbgprint_request("EXTERN", ep, req); 1701 1702 ret = gr_queue(ep, req, GFP_ATOMIC); 1703 1704 spin_unlock(&ep->dev->lock); 1705 1706 return ret; 1707 } 1708 1709 /* Dequeue JUST ONE request */ 1710 static int gr_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1711 { 1712 struct gr_request *req; 1713 struct gr_ep *ep; 1714 struct gr_udc *dev; 1715 int ret = 0; 1716 unsigned long flags; 1717 1718 ep = container_of(_ep, struct gr_ep, ep); 1719 if (!_ep || !_req || (!ep->ep.desc && ep->num != 0)) 1720 return -EINVAL; 1721 dev = ep->dev; 1722 if (!dev->driver) 1723 return -ESHUTDOWN; 1724 1725 /* We can't touch (DMA) registers when suspended */ 1726 if (dev->ep0state == GR_EP0_SUSPEND) 1727 return -EBUSY; 1728 1729 spin_lock_irqsave(&dev->lock, flags); 1730 1731 /* Make sure it's actually queued on this endpoint */ 1732 list_for_each_entry(req, &ep->queue, queue) { 1733 if (&req->req == _req) 1734 break; 1735 } 1736 if (&req->req != _req) { 1737 ret = -EINVAL; 1738 goto out; 1739 } 1740 1741 if (list_first_entry(&ep->queue, struct gr_request, queue) == req) { 1742 /* This request is currently being processed */ 1743 gr_abort_dma(ep); 1744 if (ep->stopped) 1745 gr_finish_request(ep, req, -ECONNRESET); 1746 else 1747 gr_dma_advance(ep, -ECONNRESET); 1748 } else if (!list_empty(&req->queue)) { 1749 /* Not being processed - gr_finish_request dequeues it */ 1750 gr_finish_request(ep, req, -ECONNRESET); 1751 } else { 1752 ret = -EOPNOTSUPP; 1753 } 1754 1755 out: 1756 spin_unlock_irqrestore(&dev->lock, flags); 1757 1758 return ret; 1759 } 1760 1761 /* Helper for gr_set_halt and gr_set_wedge */ 1762 static int gr_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge) 1763 { 1764 int ret; 1765 struct gr_ep *ep; 1766 1767 if (!_ep) 1768 return -ENODEV; 1769 ep = container_of(_ep, struct gr_ep, ep); 1770 1771 spin_lock(&ep->dev->lock); 1772 1773 /* Halting an IN endpoint should fail if queue is not empty */ 1774 if (halt && ep->is_in && !list_empty(&ep->queue)) { 1775 ret = -EAGAIN; 1776 goto out; 1777 } 1778 1779 ret = gr_ep_halt_wedge(ep, halt, wedge, 0); 1780 1781 out: 1782 spin_unlock(&ep->dev->lock); 1783 1784 return ret; 1785 } 1786 1787 /* Halt endpoint */ 1788 static int gr_set_halt(struct usb_ep *_ep, int halt) 1789 { 1790 return gr_set_halt_wedge(_ep, halt, 0); 1791 } 1792 1793 /* Halt and wedge endpoint */ 1794 static int gr_set_wedge(struct usb_ep *_ep) 1795 { 1796 return gr_set_halt_wedge(_ep, 1, 1); 1797 } 1798 1799 /* 1800 * Return the total number of bytes currently stored in the internal buffers of 1801 * the endpoint. 1802 */ 1803 static int gr_fifo_status(struct usb_ep *_ep) 1804 { 1805 struct gr_ep *ep; 1806 u32 epstat; 1807 u32 bytes = 0; 1808 1809 if (!_ep) 1810 return -ENODEV; 1811 ep = container_of(_ep, struct gr_ep, ep); 1812 1813 epstat = gr_read32(&ep->regs->epstat); 1814 1815 if (epstat & GR_EPSTAT_B0) 1816 bytes += (epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS; 1817 if (epstat & GR_EPSTAT_B1) 1818 bytes += (epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS; 1819 1820 return bytes; 1821 } 1822 1823 1824 /* Empty data from internal buffers of an endpoint. */ 1825 static void gr_fifo_flush(struct usb_ep *_ep) 1826 { 1827 struct gr_ep *ep; 1828 u32 epctrl; 1829 1830 if (!_ep) 1831 return; 1832 ep = container_of(_ep, struct gr_ep, ep); 1833 dev_vdbg(ep->dev->dev, "EP: flush fifo %s\n", ep->ep.name); 1834 1835 spin_lock(&ep->dev->lock); 1836 1837 epctrl = gr_read32(&ep->regs->epctrl); 1838 epctrl |= GR_EPCTRL_CB; 1839 gr_write32(&ep->regs->epctrl, epctrl); 1840 1841 spin_unlock(&ep->dev->lock); 1842 } 1843 1844 static struct usb_ep_ops gr_ep_ops = { 1845 .enable = gr_ep_enable, 1846 .disable = gr_ep_disable, 1847 1848 .alloc_request = gr_alloc_request, 1849 .free_request = gr_free_request, 1850 1851 .queue = gr_queue_ext, 1852 .dequeue = gr_dequeue, 1853 1854 .set_halt = gr_set_halt, 1855 .set_wedge = gr_set_wedge, 1856 .fifo_status = gr_fifo_status, 1857 .fifo_flush = gr_fifo_flush, 1858 }; 1859 1860 /* ---------------------------------------------------------------------- */ 1861 /* USB Gadget ops */ 1862 1863 static int gr_get_frame(struct usb_gadget *_gadget) 1864 { 1865 struct gr_udc *dev; 1866 1867 if (!_gadget) 1868 return -ENODEV; 1869 dev = container_of(_gadget, struct gr_udc, gadget); 1870 return gr_read32(&dev->regs->status) & GR_STATUS_FN_MASK; 1871 } 1872 1873 static int gr_wakeup(struct usb_gadget *_gadget) 1874 { 1875 struct gr_udc *dev; 1876 1877 if (!_gadget) 1878 return -ENODEV; 1879 dev = container_of(_gadget, struct gr_udc, gadget); 1880 1881 /* Remote wakeup feature not enabled by host*/ 1882 if (!dev->remote_wakeup) 1883 return -EINVAL; 1884 1885 spin_lock(&dev->lock); 1886 1887 gr_write32(&dev->regs->control, 1888 gr_read32(&dev->regs->control) | GR_CONTROL_RW); 1889 1890 spin_unlock(&dev->lock); 1891 1892 return 0; 1893 } 1894 1895 static int gr_pullup(struct usb_gadget *_gadget, int is_on) 1896 { 1897 struct gr_udc *dev; 1898 u32 control; 1899 1900 if (!_gadget) 1901 return -ENODEV; 1902 dev = container_of(_gadget, struct gr_udc, gadget); 1903 1904 spin_lock(&dev->lock); 1905 1906 control = gr_read32(&dev->regs->control); 1907 if (is_on) 1908 control |= GR_CONTROL_EP; 1909 else 1910 control &= ~GR_CONTROL_EP; 1911 gr_write32(&dev->regs->control, control); 1912 1913 spin_unlock(&dev->lock); 1914 1915 return 0; 1916 } 1917 1918 static int gr_udc_start(struct usb_gadget *gadget, 1919 struct usb_gadget_driver *driver) 1920 { 1921 struct gr_udc *dev = to_gr_udc(gadget); 1922 1923 spin_lock(&dev->lock); 1924 1925 /* Hook up the driver */ 1926 driver->driver.bus = NULL; 1927 dev->driver = driver; 1928 1929 /* Get ready for host detection */ 1930 gr_enable_vbus_detect(dev); 1931 1932 spin_unlock(&dev->lock); 1933 1934 return 0; 1935 } 1936 1937 static int gr_udc_stop(struct usb_gadget *gadget) 1938 { 1939 struct gr_udc *dev = to_gr_udc(gadget); 1940 unsigned long flags; 1941 1942 spin_lock_irqsave(&dev->lock, flags); 1943 1944 dev->driver = NULL; 1945 gr_stop_activity(dev); 1946 1947 spin_unlock_irqrestore(&dev->lock, flags); 1948 1949 return 0; 1950 } 1951 1952 static const struct usb_gadget_ops gr_ops = { 1953 .get_frame = gr_get_frame, 1954 .wakeup = gr_wakeup, 1955 .pullup = gr_pullup, 1956 .udc_start = gr_udc_start, 1957 .udc_stop = gr_udc_stop, 1958 /* Other operations not supported */ 1959 }; 1960 1961 /* ---------------------------------------------------------------------- */ 1962 /* Module probe, removal and of-matching */ 1963 1964 static const char * const onames[] = { 1965 "ep0out", "ep1out", "ep2out", "ep3out", "ep4out", "ep5out", 1966 "ep6out", "ep7out", "ep8out", "ep9out", "ep10out", "ep11out", 1967 "ep12out", "ep13out", "ep14out", "ep15out" 1968 }; 1969 1970 static const char * const inames[] = { 1971 "ep0in", "ep1in", "ep2in", "ep3in", "ep4in", "ep5in", 1972 "ep6in", "ep7in", "ep8in", "ep9in", "ep10in", "ep11in", 1973 "ep12in", "ep13in", "ep14in", "ep15in" 1974 }; 1975 1976 /* Must be called with dev->lock held */ 1977 static int gr_ep_init(struct gr_udc *dev, int num, int is_in, u32 maxplimit) 1978 { 1979 struct gr_ep *ep; 1980 struct gr_request *req; 1981 struct usb_request *_req; 1982 void *buf; 1983 1984 if (is_in) { 1985 ep = &dev->epi[num]; 1986 ep->ep.name = inames[num]; 1987 ep->regs = &dev->regs->epi[num]; 1988 } else { 1989 ep = &dev->epo[num]; 1990 ep->ep.name = onames[num]; 1991 ep->regs = &dev->regs->epo[num]; 1992 } 1993 1994 gr_ep_reset(ep); 1995 ep->num = num; 1996 ep->is_in = is_in; 1997 ep->dev = dev; 1998 ep->ep.ops = &gr_ep_ops; 1999 INIT_LIST_HEAD(&ep->queue); 2000 2001 if (num == 0) { 2002 _req = gr_alloc_request(&ep->ep, GFP_ATOMIC); 2003 buf = devm_kzalloc(dev->dev, PAGE_SIZE, GFP_DMA | GFP_ATOMIC); 2004 if (!_req || !buf) { 2005 /* possible _req freed by gr_probe via gr_remove */ 2006 return -ENOMEM; 2007 } 2008 2009 req = container_of(_req, struct gr_request, req); 2010 req->req.buf = buf; 2011 req->req.length = MAX_CTRL_PL_SIZE; 2012 2013 if (is_in) 2014 dev->ep0reqi = req; /* Complete gets set as used */ 2015 else 2016 dev->ep0reqo = req; /* Completion treated separately */ 2017 2018 usb_ep_set_maxpacket_limit(&ep->ep, MAX_CTRL_PL_SIZE); 2019 ep->bytes_per_buffer = MAX_CTRL_PL_SIZE; 2020 2021 ep->ep.caps.type_control = true; 2022 } else { 2023 usb_ep_set_maxpacket_limit(&ep->ep, (u16)maxplimit); 2024 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list); 2025 2026 ep->ep.caps.type_iso = true; 2027 ep->ep.caps.type_bulk = true; 2028 ep->ep.caps.type_int = true; 2029 } 2030 list_add_tail(&ep->ep_list, &dev->ep_list); 2031 2032 if (is_in) 2033 ep->ep.caps.dir_in = true; 2034 else 2035 ep->ep.caps.dir_out = true; 2036 2037 ep->tailbuf = dma_alloc_coherent(dev->dev, ep->ep.maxpacket_limit, 2038 &ep->tailbuf_paddr, GFP_ATOMIC); 2039 if (!ep->tailbuf) 2040 return -ENOMEM; 2041 2042 return 0; 2043 } 2044 2045 /* Must be called with dev->lock held */ 2046 static int gr_udc_init(struct gr_udc *dev) 2047 { 2048 struct device_node *np = dev->dev->of_node; 2049 u32 epctrl_val; 2050 u32 dmactrl_val; 2051 int i; 2052 int ret = 0; 2053 u32 bufsize; 2054 2055 gr_set_address(dev, 0); 2056 2057 INIT_LIST_HEAD(&dev->gadget.ep_list); 2058 dev->gadget.speed = USB_SPEED_UNKNOWN; 2059 dev->gadget.ep0 = &dev->epi[0].ep; 2060 2061 INIT_LIST_HEAD(&dev->ep_list); 2062 gr_set_ep0state(dev, GR_EP0_DISCONNECT); 2063 2064 for (i = 0; i < dev->nepo; i++) { 2065 if (of_property_read_u32_index(np, "epobufsizes", i, &bufsize)) 2066 bufsize = 1024; 2067 ret = gr_ep_init(dev, i, 0, bufsize); 2068 if (ret) 2069 return ret; 2070 } 2071 2072 for (i = 0; i < dev->nepi; i++) { 2073 if (of_property_read_u32_index(np, "epibufsizes", i, &bufsize)) 2074 bufsize = 1024; 2075 ret = gr_ep_init(dev, i, 1, bufsize); 2076 if (ret) 2077 return ret; 2078 } 2079 2080 /* Must be disabled by default */ 2081 dev->remote_wakeup = 0; 2082 2083 /* Enable ep0out and ep0in */ 2084 epctrl_val = (MAX_CTRL_PL_SIZE << GR_EPCTRL_MAXPL_POS) | GR_EPCTRL_EV; 2085 dmactrl_val = GR_DMACTRL_IE | GR_DMACTRL_AI; 2086 gr_write32(&dev->epo[0].regs->epctrl, epctrl_val); 2087 gr_write32(&dev->epi[0].regs->epctrl, epctrl_val | GR_EPCTRL_PI); 2088 gr_write32(&dev->epo[0].regs->dmactrl, dmactrl_val); 2089 gr_write32(&dev->epi[0].regs->dmactrl, dmactrl_val); 2090 2091 return 0; 2092 } 2093 2094 static void gr_ep_remove(struct gr_udc *dev, int num, int is_in) 2095 { 2096 struct gr_ep *ep; 2097 2098 if (is_in) 2099 ep = &dev->epi[num]; 2100 else 2101 ep = &dev->epo[num]; 2102 2103 if (ep->tailbuf) 2104 dma_free_coherent(dev->dev, ep->ep.maxpacket_limit, 2105 ep->tailbuf, ep->tailbuf_paddr); 2106 } 2107 2108 static int gr_remove(struct platform_device *pdev) 2109 { 2110 struct gr_udc *dev = platform_get_drvdata(pdev); 2111 int i; 2112 2113 if (dev->added) 2114 usb_del_gadget_udc(&dev->gadget); /* Shuts everything down */ 2115 if (dev->driver) 2116 return -EBUSY; 2117 2118 gr_dfs_delete(dev); 2119 dma_pool_destroy(dev->desc_pool); 2120 platform_set_drvdata(pdev, NULL); 2121 2122 gr_free_request(&dev->epi[0].ep, &dev->ep0reqi->req); 2123 gr_free_request(&dev->epo[0].ep, &dev->ep0reqo->req); 2124 2125 for (i = 0; i < dev->nepo; i++) 2126 gr_ep_remove(dev, i, 0); 2127 for (i = 0; i < dev->nepi; i++) 2128 gr_ep_remove(dev, i, 1); 2129 2130 return 0; 2131 } 2132 static int gr_request_irq(struct gr_udc *dev, int irq) 2133 { 2134 return devm_request_threaded_irq(dev->dev, irq, gr_irq, gr_irq_handler, 2135 IRQF_SHARED, driver_name, dev); 2136 } 2137 2138 static int gr_probe(struct platform_device *pdev) 2139 { 2140 struct gr_udc *dev; 2141 struct resource *res; 2142 struct gr_regs __iomem *regs; 2143 int retval; 2144 u32 status; 2145 2146 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); 2147 if (!dev) 2148 return -ENOMEM; 2149 dev->dev = &pdev->dev; 2150 2151 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2152 regs = devm_ioremap_resource(dev->dev, res); 2153 if (IS_ERR(regs)) 2154 return PTR_ERR(regs); 2155 2156 dev->irq = platform_get_irq(pdev, 0); 2157 if (dev->irq <= 0) { 2158 dev_err(dev->dev, "No irq found\n"); 2159 return -ENODEV; 2160 } 2161 2162 /* Some core configurations has separate irqs for IN and OUT events */ 2163 dev->irqi = platform_get_irq(pdev, 1); 2164 if (dev->irqi > 0) { 2165 dev->irqo = platform_get_irq(pdev, 2); 2166 if (dev->irqo <= 0) { 2167 dev_err(dev->dev, "Found irqi but not irqo\n"); 2168 return -ENODEV; 2169 } 2170 } else { 2171 dev->irqi = 0; 2172 } 2173 2174 dev->gadget.name = driver_name; 2175 dev->gadget.max_speed = USB_SPEED_HIGH; 2176 dev->gadget.ops = &gr_ops; 2177 2178 spin_lock_init(&dev->lock); 2179 dev->regs = regs; 2180 2181 platform_set_drvdata(pdev, dev); 2182 2183 /* Determine number of endpoints and data interface mode */ 2184 status = gr_read32(&dev->regs->status); 2185 dev->nepi = ((status & GR_STATUS_NEPI_MASK) >> GR_STATUS_NEPI_POS) + 1; 2186 dev->nepo = ((status & GR_STATUS_NEPO_MASK) >> GR_STATUS_NEPO_POS) + 1; 2187 2188 if (!(status & GR_STATUS_DM)) { 2189 dev_err(dev->dev, "Slave mode cores are not supported\n"); 2190 return -ENODEV; 2191 } 2192 2193 /* --- Effects of the following calls might need explicit cleanup --- */ 2194 2195 /* Create DMA pool for descriptors */ 2196 dev->desc_pool = dma_pool_create("desc_pool", dev->dev, 2197 sizeof(struct gr_dma_desc), 4, 0); 2198 if (!dev->desc_pool) { 2199 dev_err(dev->dev, "Could not allocate DMA pool"); 2200 return -ENOMEM; 2201 } 2202 2203 spin_lock(&dev->lock); 2204 2205 /* Inside lock so that no gadget can use this udc until probe is done */ 2206 retval = usb_add_gadget_udc(dev->dev, &dev->gadget); 2207 if (retval) { 2208 dev_err(dev->dev, "Could not add gadget udc"); 2209 goto out; 2210 } 2211 dev->added = 1; 2212 2213 retval = gr_udc_init(dev); 2214 if (retval) 2215 goto out; 2216 2217 gr_dfs_create(dev); 2218 2219 /* Clear all interrupt enables that might be left on since last boot */ 2220 gr_disable_interrupts_and_pullup(dev); 2221 2222 retval = gr_request_irq(dev, dev->irq); 2223 if (retval) { 2224 dev_err(dev->dev, "Failed to request irq %d\n", dev->irq); 2225 goto out; 2226 } 2227 2228 if (dev->irqi) { 2229 retval = gr_request_irq(dev, dev->irqi); 2230 if (retval) { 2231 dev_err(dev->dev, "Failed to request irqi %d\n", 2232 dev->irqi); 2233 goto out; 2234 } 2235 retval = gr_request_irq(dev, dev->irqo); 2236 if (retval) { 2237 dev_err(dev->dev, "Failed to request irqo %d\n", 2238 dev->irqo); 2239 goto out; 2240 } 2241 } 2242 2243 if (dev->irqi) 2244 dev_info(dev->dev, "regs: %p, irqs %d, %d, %d\n", dev->regs, 2245 dev->irq, dev->irqi, dev->irqo); 2246 else 2247 dev_info(dev->dev, "regs: %p, irq %d\n", dev->regs, dev->irq); 2248 2249 out: 2250 spin_unlock(&dev->lock); 2251 2252 if (retval) 2253 gr_remove(pdev); 2254 2255 return retval; 2256 } 2257 2258 static const struct of_device_id gr_match[] = { 2259 {.name = "GAISLER_USBDC"}, 2260 {.name = "01_021"}, 2261 {}, 2262 }; 2263 MODULE_DEVICE_TABLE(of, gr_match); 2264 2265 static struct platform_driver gr_driver = { 2266 .driver = { 2267 .name = DRIVER_NAME, 2268 .of_match_table = gr_match, 2269 }, 2270 .probe = gr_probe, 2271 .remove = gr_remove, 2272 }; 2273 module_platform_driver(gr_driver); 2274 2275 MODULE_AUTHOR("Aeroflex Gaisler AB."); 2276 MODULE_DESCRIPTION(DRIVER_DESC); 2277 MODULE_LICENSE("GPL"); 2278