1 /* 2 * USB Peripheral Controller driver for Aeroflex Gaisler GRUSBDC. 3 * 4 * 2013 (c) Aeroflex Gaisler AB 5 * 6 * This driver supports GRUSBDC USB Device Controller cores available in the 7 * GRLIB VHDL IP core library. 8 * 9 * Full documentation of the GRUSBDC core can be found here: 10 * http://www.gaisler.com/products/grlib/grip.pdf 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * Contributors: 18 * - Andreas Larsson <andreas@gaisler.com> 19 * - Marko Isomaki 20 */ 21 22 /* 23 * A GRUSBDC core can have up to 16 IN endpoints and 16 OUT endpoints each 24 * individually configurable to any of the four USB transfer types. This driver 25 * only supports cores in DMA mode. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/errno.h> 33 #include <linux/list.h> 34 #include <linux/interrupt.h> 35 #include <linux/device.h> 36 #include <linux/usb/ch9.h> 37 #include <linux/usb/gadget.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/dmapool.h> 40 #include <linux/debugfs.h> 41 #include <linux/seq_file.h> 42 #include <linux/of_platform.h> 43 #include <linux/of_irq.h> 44 #include <linux/of_address.h> 45 46 #include <asm/byteorder.h> 47 48 #include "gr_udc.h" 49 50 #define DRIVER_NAME "gr_udc" 51 #define DRIVER_DESC "Aeroflex Gaisler GRUSBDC USB Peripheral Controller" 52 53 static const char driver_name[] = DRIVER_NAME; 54 static const char driver_desc[] = DRIVER_DESC; 55 56 #define gr_read32(x) (ioread32be((x))) 57 #define gr_write32(x, v) (iowrite32be((v), (x))) 58 59 /* USB speed and corresponding string calculated from status register value */ 60 #define GR_SPEED(status) \ 61 ((status & GR_STATUS_SP) ? USB_SPEED_FULL : USB_SPEED_HIGH) 62 #define GR_SPEED_STR(status) usb_speed_string(GR_SPEED(status)) 63 64 /* Size of hardware buffer calculated from epctrl register value */ 65 #define GR_BUFFER_SIZE(epctrl) \ 66 ((((epctrl) & GR_EPCTRL_BUFSZ_MASK) >> GR_EPCTRL_BUFSZ_POS) * \ 67 GR_EPCTRL_BUFSZ_SCALER) 68 69 /* ---------------------------------------------------------------------- */ 70 /* Debug printout functionality */ 71 72 static const char * const gr_modestring[] = {"control", "iso", "bulk", "int"}; 73 74 static const char *gr_ep0state_string(enum gr_ep0state state) 75 { 76 static const char *const names[] = { 77 [GR_EP0_DISCONNECT] = "disconnect", 78 [GR_EP0_SETUP] = "setup", 79 [GR_EP0_IDATA] = "idata", 80 [GR_EP0_ODATA] = "odata", 81 [GR_EP0_ISTATUS] = "istatus", 82 [GR_EP0_OSTATUS] = "ostatus", 83 [GR_EP0_STALL] = "stall", 84 [GR_EP0_SUSPEND] = "suspend", 85 }; 86 87 if (state < 0 || state >= ARRAY_SIZE(names)) 88 return "UNKNOWN"; 89 90 return names[state]; 91 } 92 93 #ifdef VERBOSE_DEBUG 94 95 static void gr_dbgprint_request(const char *str, struct gr_ep *ep, 96 struct gr_request *req) 97 { 98 int buflen = ep->is_in ? req->req.length : req->req.actual; 99 int rowlen = 32; 100 int plen = min(rowlen, buflen); 101 102 dev_dbg(ep->dev->dev, "%s: 0x%p, %d bytes data%s:\n", str, req, buflen, 103 (buflen > plen ? " (truncated)" : "")); 104 print_hex_dump_debug(" ", DUMP_PREFIX_NONE, 105 rowlen, 4, req->req.buf, plen, false); 106 } 107 108 static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request, 109 u16 value, u16 index, u16 length) 110 { 111 dev_vdbg(dev->dev, "REQ: %02x.%02x v%04x i%04x l%04x\n", 112 type, request, value, index, length); 113 } 114 #else /* !VERBOSE_DEBUG */ 115 116 static void gr_dbgprint_request(const char *str, struct gr_ep *ep, 117 struct gr_request *req) {} 118 119 static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request, 120 u16 value, u16 index, u16 length) {} 121 122 #endif /* VERBOSE_DEBUG */ 123 124 /* ---------------------------------------------------------------------- */ 125 /* Debugfs functionality */ 126 127 #ifdef CONFIG_USB_GADGET_DEBUG_FS 128 129 static void gr_seq_ep_show(struct seq_file *seq, struct gr_ep *ep) 130 { 131 u32 epctrl = gr_read32(&ep->regs->epctrl); 132 u32 epstat = gr_read32(&ep->regs->epstat); 133 int mode = (epctrl & GR_EPCTRL_TT_MASK) >> GR_EPCTRL_TT_POS; 134 struct gr_request *req; 135 136 seq_printf(seq, "%s:\n", ep->ep.name); 137 seq_printf(seq, " mode = %s\n", gr_modestring[mode]); 138 seq_printf(seq, " halted: %d\n", !!(epctrl & GR_EPCTRL_EH)); 139 seq_printf(seq, " disabled: %d\n", !!(epctrl & GR_EPCTRL_ED)); 140 seq_printf(seq, " valid: %d\n", !!(epctrl & GR_EPCTRL_EV)); 141 seq_printf(seq, " dma_start = %d\n", ep->dma_start); 142 seq_printf(seq, " stopped = %d\n", ep->stopped); 143 seq_printf(seq, " wedged = %d\n", ep->wedged); 144 seq_printf(seq, " callback = %d\n", ep->callback); 145 seq_printf(seq, " maxpacket = %d\n", ep->ep.maxpacket); 146 seq_printf(seq, " maxpacket_limit = %d\n", ep->ep.maxpacket_limit); 147 seq_printf(seq, " bytes_per_buffer = %d\n", ep->bytes_per_buffer); 148 if (mode == 1 || mode == 3) 149 seq_printf(seq, " nt = %d\n", 150 (epctrl & GR_EPCTRL_NT_MASK) >> GR_EPCTRL_NT_POS); 151 152 seq_printf(seq, " Buffer 0: %s %s%d\n", 153 epstat & GR_EPSTAT_B0 ? "valid" : "invalid", 154 epstat & GR_EPSTAT_BS ? " " : "selected ", 155 (epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS); 156 seq_printf(seq, " Buffer 1: %s %s%d\n", 157 epstat & GR_EPSTAT_B1 ? "valid" : "invalid", 158 epstat & GR_EPSTAT_BS ? "selected " : " ", 159 (epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS); 160 161 if (list_empty(&ep->queue)) { 162 seq_puts(seq, " Queue: empty\n\n"); 163 return; 164 } 165 166 seq_puts(seq, " Queue:\n"); 167 list_for_each_entry(req, &ep->queue, queue) { 168 struct gr_dma_desc *desc; 169 struct gr_dma_desc *next; 170 171 seq_printf(seq, " 0x%p: 0x%p %d %d\n", req, 172 &req->req.buf, req->req.actual, req->req.length); 173 174 next = req->first_desc; 175 do { 176 desc = next; 177 next = desc->next_desc; 178 seq_printf(seq, " %c 0x%p (0x%08x): 0x%05x 0x%08x\n", 179 desc == req->curr_desc ? 'c' : ' ', 180 desc, desc->paddr, desc->ctrl, desc->data); 181 } while (desc != req->last_desc); 182 } 183 seq_puts(seq, "\n"); 184 } 185 186 187 static int gr_seq_show(struct seq_file *seq, void *v) 188 { 189 struct gr_udc *dev = seq->private; 190 u32 control = gr_read32(&dev->regs->control); 191 u32 status = gr_read32(&dev->regs->status); 192 struct gr_ep *ep; 193 194 seq_printf(seq, "usb state = %s\n", 195 usb_state_string(dev->gadget.state)); 196 seq_printf(seq, "address = %d\n", 197 (control & GR_CONTROL_UA_MASK) >> GR_CONTROL_UA_POS); 198 seq_printf(seq, "speed = %s\n", GR_SPEED_STR(status)); 199 seq_printf(seq, "ep0state = %s\n", gr_ep0state_string(dev->ep0state)); 200 seq_printf(seq, "irq_enabled = %d\n", dev->irq_enabled); 201 seq_printf(seq, "remote_wakeup = %d\n", dev->remote_wakeup); 202 seq_printf(seq, "test_mode = %d\n", dev->test_mode); 203 seq_puts(seq, "\n"); 204 205 list_for_each_entry(ep, &dev->ep_list, ep_list) 206 gr_seq_ep_show(seq, ep); 207 208 return 0; 209 } 210 211 static int gr_dfs_open(struct inode *inode, struct file *file) 212 { 213 return single_open(file, gr_seq_show, inode->i_private); 214 } 215 216 static const struct file_operations gr_dfs_fops = { 217 .owner = THIS_MODULE, 218 .open = gr_dfs_open, 219 .read = seq_read, 220 .llseek = seq_lseek, 221 .release = single_release, 222 }; 223 224 static void gr_dfs_create(struct gr_udc *dev) 225 { 226 const char *name = "gr_udc_state"; 227 228 dev->dfs_root = debugfs_create_dir(dev_name(dev->dev), NULL); 229 dev->dfs_state = debugfs_create_file(name, 0444, dev->dfs_root, dev, 230 &gr_dfs_fops); 231 } 232 233 static void gr_dfs_delete(struct gr_udc *dev) 234 { 235 /* Handles NULL and ERR pointers internally */ 236 debugfs_remove(dev->dfs_state); 237 debugfs_remove(dev->dfs_root); 238 } 239 240 #else /* !CONFIG_USB_GADGET_DEBUG_FS */ 241 242 static void gr_dfs_create(struct gr_udc *dev) {} 243 static void gr_dfs_delete(struct gr_udc *dev) {} 244 245 #endif /* CONFIG_USB_GADGET_DEBUG_FS */ 246 247 /* ---------------------------------------------------------------------- */ 248 /* DMA and request handling */ 249 250 /* Allocates a new struct gr_dma_desc, sets paddr and zeroes the rest */ 251 static struct gr_dma_desc *gr_alloc_dma_desc(struct gr_ep *ep, gfp_t gfp_flags) 252 { 253 dma_addr_t paddr; 254 struct gr_dma_desc *dma_desc; 255 256 dma_desc = dma_pool_alloc(ep->dev->desc_pool, gfp_flags, &paddr); 257 if (!dma_desc) { 258 dev_err(ep->dev->dev, "Could not allocate from DMA pool\n"); 259 return NULL; 260 } 261 262 memset(dma_desc, 0, sizeof(*dma_desc)); 263 dma_desc->paddr = paddr; 264 265 return dma_desc; 266 } 267 268 static inline void gr_free_dma_desc(struct gr_udc *dev, 269 struct gr_dma_desc *desc) 270 { 271 dma_pool_free(dev->desc_pool, desc, (dma_addr_t)desc->paddr); 272 } 273 274 /* Frees the chain of struct gr_dma_desc for the given request */ 275 static void gr_free_dma_desc_chain(struct gr_udc *dev, struct gr_request *req) 276 { 277 struct gr_dma_desc *desc; 278 struct gr_dma_desc *next; 279 280 next = req->first_desc; 281 if (!next) 282 return; 283 284 do { 285 desc = next; 286 next = desc->next_desc; 287 gr_free_dma_desc(dev, desc); 288 } while (desc != req->last_desc); 289 290 req->first_desc = NULL; 291 req->curr_desc = NULL; 292 req->last_desc = NULL; 293 } 294 295 static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req); 296 297 /* 298 * Frees allocated resources and calls the appropriate completion function/setup 299 * package handler for a finished request. 300 * 301 * Must be called with dev->lock held and irqs disabled. 302 */ 303 static void gr_finish_request(struct gr_ep *ep, struct gr_request *req, 304 int status) 305 __releases(&dev->lock) 306 __acquires(&dev->lock) 307 { 308 struct gr_udc *dev; 309 310 list_del_init(&req->queue); 311 312 if (likely(req->req.status == -EINPROGRESS)) 313 req->req.status = status; 314 else 315 status = req->req.status; 316 317 dev = ep->dev; 318 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->is_in); 319 gr_free_dma_desc_chain(dev, req); 320 321 if (ep->is_in) { /* For OUT, req->req.actual gets updated bit by bit */ 322 req->req.actual = req->req.length; 323 } else if (req->oddlen && req->req.actual > req->evenlen) { 324 /* 325 * Copy to user buffer in this case where length was not evenly 326 * divisible by ep->ep.maxpacket and the last descriptor was 327 * actually used. 328 */ 329 char *buftail = ((char *)req->req.buf + req->evenlen); 330 331 memcpy(buftail, ep->tailbuf, req->oddlen); 332 333 if (req->req.actual > req->req.length) { 334 /* We got more data than was requested */ 335 dev_dbg(ep->dev->dev, "Overflow for ep %s\n", 336 ep->ep.name); 337 gr_dbgprint_request("OVFL", ep, req); 338 req->req.status = -EOVERFLOW; 339 } 340 } 341 342 if (!status) { 343 if (ep->is_in) 344 gr_dbgprint_request("SENT", ep, req); 345 else 346 gr_dbgprint_request("RECV", ep, req); 347 } 348 349 /* Prevent changes to ep->queue during callback */ 350 ep->callback = 1; 351 if (req == dev->ep0reqo && !status) { 352 if (req->setup) 353 gr_ep0_setup(dev, req); 354 else 355 dev_err(dev->dev, 356 "Unexpected non setup packet on ep0in\n"); 357 } else if (req->req.complete) { 358 spin_unlock(&dev->lock); 359 360 usb_gadget_giveback_request(&ep->ep, &req->req); 361 362 spin_lock(&dev->lock); 363 } 364 ep->callback = 0; 365 } 366 367 static struct usb_request *gr_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) 368 { 369 struct gr_request *req; 370 371 req = kzalloc(sizeof(*req), gfp_flags); 372 if (!req) 373 return NULL; 374 375 INIT_LIST_HEAD(&req->queue); 376 377 return &req->req; 378 } 379 380 /* 381 * Starts DMA for endpoint ep if there are requests in the queue. 382 * 383 * Must be called with dev->lock held and with !ep->stopped. 384 */ 385 static void gr_start_dma(struct gr_ep *ep) 386 { 387 struct gr_request *req; 388 u32 dmactrl; 389 390 if (list_empty(&ep->queue)) { 391 ep->dma_start = 0; 392 return; 393 } 394 395 req = list_first_entry(&ep->queue, struct gr_request, queue); 396 397 /* A descriptor should already have been allocated */ 398 BUG_ON(!req->curr_desc); 399 400 /* 401 * The DMA controller can not handle smaller OUT buffers than 402 * ep->ep.maxpacket. It could lead to buffer overruns if an unexpectedly 403 * long packet are received. Therefore an internal bounce buffer gets 404 * used when such a request gets enabled. 405 */ 406 if (!ep->is_in && req->oddlen) 407 req->last_desc->data = ep->tailbuf_paddr; 408 409 wmb(); /* Make sure all is settled before handing it over to DMA */ 410 411 /* Set the descriptor pointer in the hardware */ 412 gr_write32(&ep->regs->dmaaddr, req->curr_desc->paddr); 413 414 /* Announce available descriptors */ 415 dmactrl = gr_read32(&ep->regs->dmactrl); 416 gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_DA); 417 418 ep->dma_start = 1; 419 } 420 421 /* 422 * Finishes the first request in the ep's queue and, if available, starts the 423 * next request in queue. 424 * 425 * Must be called with dev->lock held, irqs disabled and with !ep->stopped. 426 */ 427 static void gr_dma_advance(struct gr_ep *ep, int status) 428 { 429 struct gr_request *req; 430 431 req = list_first_entry(&ep->queue, struct gr_request, queue); 432 gr_finish_request(ep, req, status); 433 gr_start_dma(ep); /* Regardless of ep->dma_start */ 434 } 435 436 /* 437 * Abort DMA for an endpoint. Sets the abort DMA bit which causes an ongoing DMA 438 * transfer to be canceled and clears GR_DMACTRL_DA. 439 * 440 * Must be called with dev->lock held. 441 */ 442 static void gr_abort_dma(struct gr_ep *ep) 443 { 444 u32 dmactrl; 445 446 dmactrl = gr_read32(&ep->regs->dmactrl); 447 gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_AD); 448 } 449 450 /* 451 * Allocates and sets up a struct gr_dma_desc and putting it on the descriptor 452 * chain. 453 * 454 * Size is not used for OUT endpoints. Hardware can not be instructed to handle 455 * smaller buffer than MAXPL in the OUT direction. 456 */ 457 static int gr_add_dma_desc(struct gr_ep *ep, struct gr_request *req, 458 dma_addr_t data, unsigned size, gfp_t gfp_flags) 459 { 460 struct gr_dma_desc *desc; 461 462 desc = gr_alloc_dma_desc(ep, gfp_flags); 463 if (!desc) 464 return -ENOMEM; 465 466 desc->data = data; 467 if (ep->is_in) 468 desc->ctrl = 469 (GR_DESC_IN_CTRL_LEN_MASK & size) | GR_DESC_IN_CTRL_EN; 470 else 471 desc->ctrl = GR_DESC_OUT_CTRL_IE; 472 473 if (!req->first_desc) { 474 req->first_desc = desc; 475 req->curr_desc = desc; 476 } else { 477 req->last_desc->next_desc = desc; 478 req->last_desc->next = desc->paddr; 479 req->last_desc->ctrl |= GR_DESC_OUT_CTRL_NX; 480 } 481 req->last_desc = desc; 482 483 return 0; 484 } 485 486 /* 487 * Sets up a chain of struct gr_dma_descriptors pointing to buffers that 488 * together covers req->req.length bytes of the buffer at DMA address 489 * req->req.dma for the OUT direction. 490 * 491 * The first descriptor in the chain is enabled, the rest disabled. The 492 * interrupt handler will later enable them one by one when needed so we can 493 * find out when the transfer is finished. For OUT endpoints, all descriptors 494 * therefore generate interrutps. 495 */ 496 static int gr_setup_out_desc_list(struct gr_ep *ep, struct gr_request *req, 497 gfp_t gfp_flags) 498 { 499 u16 bytes_left; /* Bytes left to provide descriptors for */ 500 u16 bytes_used; /* Bytes accommodated for */ 501 int ret = 0; 502 503 req->first_desc = NULL; /* Signals that no allocation is done yet */ 504 bytes_left = req->req.length; 505 bytes_used = 0; 506 while (bytes_left > 0) { 507 dma_addr_t start = req->req.dma + bytes_used; 508 u16 size = min(bytes_left, ep->bytes_per_buffer); 509 510 if (size < ep->bytes_per_buffer) { 511 /* Prepare using bounce buffer */ 512 req->evenlen = req->req.length - bytes_left; 513 req->oddlen = size; 514 } 515 516 ret = gr_add_dma_desc(ep, req, start, size, gfp_flags); 517 if (ret) 518 goto alloc_err; 519 520 bytes_left -= size; 521 bytes_used += size; 522 } 523 524 req->first_desc->ctrl |= GR_DESC_OUT_CTRL_EN; 525 526 return 0; 527 528 alloc_err: 529 gr_free_dma_desc_chain(ep->dev, req); 530 531 return ret; 532 } 533 534 /* 535 * Sets up a chain of struct gr_dma_descriptors pointing to buffers that 536 * together covers req->req.length bytes of the buffer at DMA address 537 * req->req.dma for the IN direction. 538 * 539 * When more data is provided than the maximum payload size, the hardware splits 540 * this up into several payloads automatically. Moreover, ep->bytes_per_buffer 541 * is always set to a multiple of the maximum payload (restricted to the valid 542 * number of maximum payloads during high bandwidth isochronous or interrupt 543 * transfers) 544 * 545 * All descriptors are enabled from the beginning and we only generate an 546 * interrupt for the last one indicating that the entire request has been pushed 547 * to hardware. 548 */ 549 static int gr_setup_in_desc_list(struct gr_ep *ep, struct gr_request *req, 550 gfp_t gfp_flags) 551 { 552 u16 bytes_left; /* Bytes left in req to provide descriptors for */ 553 u16 bytes_used; /* Bytes in req accommodated for */ 554 int ret = 0; 555 556 req->first_desc = NULL; /* Signals that no allocation is done yet */ 557 bytes_left = req->req.length; 558 bytes_used = 0; 559 do { /* Allow for zero length packets */ 560 dma_addr_t start = req->req.dma + bytes_used; 561 u16 size = min(bytes_left, ep->bytes_per_buffer); 562 563 ret = gr_add_dma_desc(ep, req, start, size, gfp_flags); 564 if (ret) 565 goto alloc_err; 566 567 bytes_left -= size; 568 bytes_used += size; 569 } while (bytes_left > 0); 570 571 /* 572 * Send an extra zero length packet to indicate that no more data is 573 * available when req->req.zero is set and the data length is even 574 * multiples of ep->ep.maxpacket. 575 */ 576 if (req->req.zero && (req->req.length % ep->ep.maxpacket == 0)) { 577 ret = gr_add_dma_desc(ep, req, 0, 0, gfp_flags); 578 if (ret) 579 goto alloc_err; 580 } 581 582 /* 583 * For IN packets we only want to know when the last packet has been 584 * transmitted (not just put into internal buffers). 585 */ 586 req->last_desc->ctrl |= GR_DESC_IN_CTRL_PI; 587 588 return 0; 589 590 alloc_err: 591 gr_free_dma_desc_chain(ep->dev, req); 592 593 return ret; 594 } 595 596 /* Must be called with dev->lock held */ 597 static int gr_queue(struct gr_ep *ep, struct gr_request *req, gfp_t gfp_flags) 598 { 599 struct gr_udc *dev = ep->dev; 600 int ret; 601 602 if (unlikely(!ep->ep.desc && ep->num != 0)) { 603 dev_err(dev->dev, "No ep descriptor for %s\n", ep->ep.name); 604 return -EINVAL; 605 } 606 607 if (unlikely(!req->req.buf || !list_empty(&req->queue))) { 608 dev_err(dev->dev, 609 "Invalid request for %s: buf=%p list_empty=%d\n", 610 ep->ep.name, req->req.buf, list_empty(&req->queue)); 611 return -EINVAL; 612 } 613 614 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 615 dev_err(dev->dev, "-ESHUTDOWN"); 616 return -ESHUTDOWN; 617 } 618 619 /* Can't touch registers when suspended */ 620 if (dev->ep0state == GR_EP0_SUSPEND) { 621 dev_err(dev->dev, "-EBUSY"); 622 return -EBUSY; 623 } 624 625 /* Set up DMA mapping in case the caller didn't */ 626 ret = usb_gadget_map_request(&dev->gadget, &req->req, ep->is_in); 627 if (ret) { 628 dev_err(dev->dev, "usb_gadget_map_request"); 629 return ret; 630 } 631 632 if (ep->is_in) 633 ret = gr_setup_in_desc_list(ep, req, gfp_flags); 634 else 635 ret = gr_setup_out_desc_list(ep, req, gfp_flags); 636 if (ret) 637 return ret; 638 639 req->req.status = -EINPROGRESS; 640 req->req.actual = 0; 641 list_add_tail(&req->queue, &ep->queue); 642 643 /* Start DMA if not started, otherwise interrupt handler handles it */ 644 if (!ep->dma_start && likely(!ep->stopped)) 645 gr_start_dma(ep); 646 647 return 0; 648 } 649 650 /* 651 * Queue a request from within the driver. 652 * 653 * Must be called with dev->lock held. 654 */ 655 static inline int gr_queue_int(struct gr_ep *ep, struct gr_request *req, 656 gfp_t gfp_flags) 657 { 658 if (ep->is_in) 659 gr_dbgprint_request("RESP", ep, req); 660 661 return gr_queue(ep, req, gfp_flags); 662 } 663 664 /* ---------------------------------------------------------------------- */ 665 /* General helper functions */ 666 667 /* 668 * Dequeue ALL requests. 669 * 670 * Must be called with dev->lock held and irqs disabled. 671 */ 672 static void gr_ep_nuke(struct gr_ep *ep) 673 { 674 struct gr_request *req; 675 676 ep->stopped = 1; 677 ep->dma_start = 0; 678 gr_abort_dma(ep); 679 680 while (!list_empty(&ep->queue)) { 681 req = list_first_entry(&ep->queue, struct gr_request, queue); 682 gr_finish_request(ep, req, -ESHUTDOWN); 683 } 684 } 685 686 /* 687 * Reset the hardware state of this endpoint. 688 * 689 * Must be called with dev->lock held. 690 */ 691 static void gr_ep_reset(struct gr_ep *ep) 692 { 693 gr_write32(&ep->regs->epctrl, 0); 694 gr_write32(&ep->regs->dmactrl, 0); 695 696 ep->ep.maxpacket = MAX_CTRL_PL_SIZE; 697 ep->ep.desc = NULL; 698 ep->stopped = 1; 699 ep->dma_start = 0; 700 } 701 702 /* 703 * Generate STALL on ep0in/out. 704 * 705 * Must be called with dev->lock held. 706 */ 707 static void gr_control_stall(struct gr_udc *dev) 708 { 709 u32 epctrl; 710 711 epctrl = gr_read32(&dev->epo[0].regs->epctrl); 712 gr_write32(&dev->epo[0].regs->epctrl, epctrl | GR_EPCTRL_CS); 713 epctrl = gr_read32(&dev->epi[0].regs->epctrl); 714 gr_write32(&dev->epi[0].regs->epctrl, epctrl | GR_EPCTRL_CS); 715 716 dev->ep0state = GR_EP0_STALL; 717 } 718 719 /* 720 * Halts, halts and wedges, or clears halt for an endpoint. 721 * 722 * Must be called with dev->lock held. 723 */ 724 static int gr_ep_halt_wedge(struct gr_ep *ep, int halt, int wedge, int fromhost) 725 { 726 u32 epctrl; 727 int retval = 0; 728 729 if (ep->num && !ep->ep.desc) 730 return -EINVAL; 731 732 if (ep->num && ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) 733 return -EOPNOTSUPP; 734 735 /* Never actually halt ep0, and therefore never clear halt for ep0 */ 736 if (!ep->num) { 737 if (halt && !fromhost) { 738 /* ep0 halt from gadget - generate protocol stall */ 739 gr_control_stall(ep->dev); 740 dev_dbg(ep->dev->dev, "EP: stall ep0\n"); 741 return 0; 742 } 743 return -EINVAL; 744 } 745 746 dev_dbg(ep->dev->dev, "EP: %s halt %s\n", 747 (halt ? (wedge ? "wedge" : "set") : "clear"), ep->ep.name); 748 749 epctrl = gr_read32(&ep->regs->epctrl); 750 if (halt) { 751 /* Set HALT */ 752 gr_write32(&ep->regs->epctrl, epctrl | GR_EPCTRL_EH); 753 ep->stopped = 1; 754 if (wedge) 755 ep->wedged = 1; 756 } else { 757 gr_write32(&ep->regs->epctrl, epctrl & ~GR_EPCTRL_EH); 758 ep->stopped = 0; 759 ep->wedged = 0; 760 761 /* Things might have been queued up in the meantime */ 762 if (!ep->dma_start) 763 gr_start_dma(ep); 764 } 765 766 return retval; 767 } 768 769 /* Must be called with dev->lock held */ 770 static inline void gr_set_ep0state(struct gr_udc *dev, enum gr_ep0state value) 771 { 772 if (dev->ep0state != value) 773 dev_vdbg(dev->dev, "STATE: ep0state=%s\n", 774 gr_ep0state_string(value)); 775 dev->ep0state = value; 776 } 777 778 /* 779 * Should only be called when endpoints can not generate interrupts. 780 * 781 * Must be called with dev->lock held. 782 */ 783 static void gr_disable_interrupts_and_pullup(struct gr_udc *dev) 784 { 785 gr_write32(&dev->regs->control, 0); 786 wmb(); /* Make sure that we do not deny one of our interrupts */ 787 dev->irq_enabled = 0; 788 } 789 790 /* 791 * Stop all device activity and disable data line pullup. 792 * 793 * Must be called with dev->lock held and irqs disabled. 794 */ 795 static void gr_stop_activity(struct gr_udc *dev) 796 { 797 struct gr_ep *ep; 798 799 list_for_each_entry(ep, &dev->ep_list, ep_list) 800 gr_ep_nuke(ep); 801 802 gr_disable_interrupts_and_pullup(dev); 803 804 gr_set_ep0state(dev, GR_EP0_DISCONNECT); 805 usb_gadget_set_state(&dev->gadget, USB_STATE_NOTATTACHED); 806 } 807 808 /* ---------------------------------------------------------------------- */ 809 /* ep0 setup packet handling */ 810 811 static void gr_ep0_testmode_complete(struct usb_ep *_ep, 812 struct usb_request *_req) 813 { 814 struct gr_ep *ep; 815 struct gr_udc *dev; 816 u32 control; 817 818 ep = container_of(_ep, struct gr_ep, ep); 819 dev = ep->dev; 820 821 spin_lock(&dev->lock); 822 823 control = gr_read32(&dev->regs->control); 824 control |= GR_CONTROL_TM | (dev->test_mode << GR_CONTROL_TS_POS); 825 gr_write32(&dev->regs->control, control); 826 827 spin_unlock(&dev->lock); 828 } 829 830 static void gr_ep0_dummy_complete(struct usb_ep *_ep, struct usb_request *_req) 831 { 832 /* Nothing needs to be done here */ 833 } 834 835 /* 836 * Queue a response on ep0in. 837 * 838 * Must be called with dev->lock held. 839 */ 840 static int gr_ep0_respond(struct gr_udc *dev, u8 *buf, int length, 841 void (*complete)(struct usb_ep *ep, 842 struct usb_request *req)) 843 { 844 u8 *reqbuf = dev->ep0reqi->req.buf; 845 int status; 846 int i; 847 848 for (i = 0; i < length; i++) 849 reqbuf[i] = buf[i]; 850 dev->ep0reqi->req.length = length; 851 dev->ep0reqi->req.complete = complete; 852 853 status = gr_queue_int(&dev->epi[0], dev->ep0reqi, GFP_ATOMIC); 854 if (status < 0) 855 dev_err(dev->dev, 856 "Could not queue ep0in setup response: %d\n", status); 857 858 return status; 859 } 860 861 /* 862 * Queue a 2 byte response on ep0in. 863 * 864 * Must be called with dev->lock held. 865 */ 866 static inline int gr_ep0_respond_u16(struct gr_udc *dev, u16 response) 867 { 868 __le16 le_response = cpu_to_le16(response); 869 870 return gr_ep0_respond(dev, (u8 *)&le_response, 2, 871 gr_ep0_dummy_complete); 872 } 873 874 /* 875 * Queue a ZLP response on ep0in. 876 * 877 * Must be called with dev->lock held. 878 */ 879 static inline int gr_ep0_respond_empty(struct gr_udc *dev) 880 { 881 return gr_ep0_respond(dev, NULL, 0, gr_ep0_dummy_complete); 882 } 883 884 /* 885 * This is run when a SET_ADDRESS request is received. First writes 886 * the new address to the control register which is updated internally 887 * when the next IN packet is ACKED. 888 * 889 * Must be called with dev->lock held. 890 */ 891 static void gr_set_address(struct gr_udc *dev, u8 address) 892 { 893 u32 control; 894 895 control = gr_read32(&dev->regs->control) & ~GR_CONTROL_UA_MASK; 896 control |= (address << GR_CONTROL_UA_POS) & GR_CONTROL_UA_MASK; 897 control |= GR_CONTROL_SU; 898 gr_write32(&dev->regs->control, control); 899 } 900 901 /* 902 * Returns negative for STALL, 0 for successful handling and positive for 903 * delegation. 904 * 905 * Must be called with dev->lock held. 906 */ 907 static int gr_device_request(struct gr_udc *dev, u8 type, u8 request, 908 u16 value, u16 index) 909 { 910 u16 response; 911 u8 test; 912 913 switch (request) { 914 case USB_REQ_SET_ADDRESS: 915 dev_dbg(dev->dev, "STATUS: address %d\n", value & 0xff); 916 gr_set_address(dev, value & 0xff); 917 if (value) 918 usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS); 919 else 920 usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT); 921 return gr_ep0_respond_empty(dev); 922 923 case USB_REQ_GET_STATUS: 924 /* Self powered | remote wakeup */ 925 response = 0x0001 | (dev->remote_wakeup ? 0x0002 : 0); 926 return gr_ep0_respond_u16(dev, response); 927 928 case USB_REQ_SET_FEATURE: 929 switch (value) { 930 case USB_DEVICE_REMOTE_WAKEUP: 931 /* Allow remote wakeup */ 932 dev->remote_wakeup = 1; 933 return gr_ep0_respond_empty(dev); 934 935 case USB_DEVICE_TEST_MODE: 936 /* The hardware does not support TEST_FORCE_EN */ 937 test = index >> 8; 938 if (test >= TEST_J && test <= TEST_PACKET) { 939 dev->test_mode = test; 940 return gr_ep0_respond(dev, NULL, 0, 941 gr_ep0_testmode_complete); 942 } 943 } 944 break; 945 946 case USB_REQ_CLEAR_FEATURE: 947 switch (value) { 948 case USB_DEVICE_REMOTE_WAKEUP: 949 /* Disallow remote wakeup */ 950 dev->remote_wakeup = 0; 951 return gr_ep0_respond_empty(dev); 952 } 953 break; 954 } 955 956 return 1; /* Delegate the rest */ 957 } 958 959 /* 960 * Returns negative for STALL, 0 for successful handling and positive for 961 * delegation. 962 * 963 * Must be called with dev->lock held. 964 */ 965 static int gr_interface_request(struct gr_udc *dev, u8 type, u8 request, 966 u16 value, u16 index) 967 { 968 if (dev->gadget.state != USB_STATE_CONFIGURED) 969 return -1; 970 971 /* 972 * Should return STALL for invalid interfaces, but udc driver does not 973 * know anything about that. However, many gadget drivers do not handle 974 * GET_STATUS so we need to take care of that. 975 */ 976 977 switch (request) { 978 case USB_REQ_GET_STATUS: 979 return gr_ep0_respond_u16(dev, 0x0000); 980 981 case USB_REQ_SET_FEATURE: 982 case USB_REQ_CLEAR_FEATURE: 983 /* 984 * No possible valid standard requests. Still let gadget drivers 985 * have a go at it. 986 */ 987 break; 988 } 989 990 return 1; /* Delegate the rest */ 991 } 992 993 /* 994 * Returns negative for STALL, 0 for successful handling and positive for 995 * delegation. 996 * 997 * Must be called with dev->lock held. 998 */ 999 static int gr_endpoint_request(struct gr_udc *dev, u8 type, u8 request, 1000 u16 value, u16 index) 1001 { 1002 struct gr_ep *ep; 1003 int status; 1004 int halted; 1005 u8 epnum = index & USB_ENDPOINT_NUMBER_MASK; 1006 u8 is_in = index & USB_ENDPOINT_DIR_MASK; 1007 1008 if ((is_in && epnum >= dev->nepi) || (!is_in && epnum >= dev->nepo)) 1009 return -1; 1010 1011 if (dev->gadget.state != USB_STATE_CONFIGURED && epnum != 0) 1012 return -1; 1013 1014 ep = (is_in ? &dev->epi[epnum] : &dev->epo[epnum]); 1015 1016 switch (request) { 1017 case USB_REQ_GET_STATUS: 1018 halted = gr_read32(&ep->regs->epctrl) & GR_EPCTRL_EH; 1019 return gr_ep0_respond_u16(dev, halted ? 0x0001 : 0); 1020 1021 case USB_REQ_SET_FEATURE: 1022 switch (value) { 1023 case USB_ENDPOINT_HALT: 1024 status = gr_ep_halt_wedge(ep, 1, 0, 1); 1025 if (status >= 0) 1026 status = gr_ep0_respond_empty(dev); 1027 return status; 1028 } 1029 break; 1030 1031 case USB_REQ_CLEAR_FEATURE: 1032 switch (value) { 1033 case USB_ENDPOINT_HALT: 1034 if (ep->wedged) 1035 return -1; 1036 status = gr_ep_halt_wedge(ep, 0, 0, 1); 1037 if (status >= 0) 1038 status = gr_ep0_respond_empty(dev); 1039 return status; 1040 } 1041 break; 1042 } 1043 1044 return 1; /* Delegate the rest */ 1045 } 1046 1047 /* Must be called with dev->lock held */ 1048 static void gr_ep0out_requeue(struct gr_udc *dev) 1049 { 1050 int ret = gr_queue_int(&dev->epo[0], dev->ep0reqo, GFP_ATOMIC); 1051 1052 if (ret) 1053 dev_err(dev->dev, "Could not queue ep0out setup request: %d\n", 1054 ret); 1055 } 1056 1057 /* 1058 * The main function dealing with setup requests on ep0. 1059 * 1060 * Must be called with dev->lock held and irqs disabled 1061 */ 1062 static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req) 1063 __releases(&dev->lock) 1064 __acquires(&dev->lock) 1065 { 1066 union { 1067 struct usb_ctrlrequest ctrl; 1068 u8 raw[8]; 1069 u32 word[2]; 1070 } u; 1071 u8 type; 1072 u8 request; 1073 u16 value; 1074 u16 index; 1075 u16 length; 1076 int i; 1077 int status; 1078 1079 /* Restore from ep0 halt */ 1080 if (dev->ep0state == GR_EP0_STALL) { 1081 gr_set_ep0state(dev, GR_EP0_SETUP); 1082 if (!req->req.actual) 1083 goto out; 1084 } 1085 1086 if (dev->ep0state == GR_EP0_ISTATUS) { 1087 gr_set_ep0state(dev, GR_EP0_SETUP); 1088 if (req->req.actual > 0) 1089 dev_dbg(dev->dev, 1090 "Unexpected setup packet at state %s\n", 1091 gr_ep0state_string(GR_EP0_ISTATUS)); 1092 else 1093 goto out; /* Got expected ZLP */ 1094 } else if (dev->ep0state != GR_EP0_SETUP) { 1095 dev_info(dev->dev, 1096 "Unexpected ep0out request at state %s - stalling\n", 1097 gr_ep0state_string(dev->ep0state)); 1098 gr_control_stall(dev); 1099 gr_set_ep0state(dev, GR_EP0_SETUP); 1100 goto out; 1101 } else if (!req->req.actual) { 1102 dev_dbg(dev->dev, "Unexpected ZLP at state %s\n", 1103 gr_ep0state_string(dev->ep0state)); 1104 goto out; 1105 } 1106 1107 /* Handle SETUP packet */ 1108 for (i = 0; i < req->req.actual; i++) 1109 u.raw[i] = ((u8 *)req->req.buf)[i]; 1110 1111 type = u.ctrl.bRequestType; 1112 request = u.ctrl.bRequest; 1113 value = le16_to_cpu(u.ctrl.wValue); 1114 index = le16_to_cpu(u.ctrl.wIndex); 1115 length = le16_to_cpu(u.ctrl.wLength); 1116 1117 gr_dbgprint_devreq(dev, type, request, value, index, length); 1118 1119 /* Check for data stage */ 1120 if (length) { 1121 if (type & USB_DIR_IN) 1122 gr_set_ep0state(dev, GR_EP0_IDATA); 1123 else 1124 gr_set_ep0state(dev, GR_EP0_ODATA); 1125 } 1126 1127 status = 1; /* Positive status flags delegation */ 1128 if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1129 switch (type & USB_RECIP_MASK) { 1130 case USB_RECIP_DEVICE: 1131 status = gr_device_request(dev, type, request, 1132 value, index); 1133 break; 1134 case USB_RECIP_ENDPOINT: 1135 status = gr_endpoint_request(dev, type, request, 1136 value, index); 1137 break; 1138 case USB_RECIP_INTERFACE: 1139 status = gr_interface_request(dev, type, request, 1140 value, index); 1141 break; 1142 } 1143 } 1144 1145 if (status > 0) { 1146 spin_unlock(&dev->lock); 1147 1148 dev_vdbg(dev->dev, "DELEGATE\n"); 1149 status = dev->driver->setup(&dev->gadget, &u.ctrl); 1150 1151 spin_lock(&dev->lock); 1152 } 1153 1154 /* Generate STALL on both ep0out and ep0in if requested */ 1155 if (unlikely(status < 0)) { 1156 dev_vdbg(dev->dev, "STALL\n"); 1157 gr_control_stall(dev); 1158 } 1159 1160 if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD && 1161 request == USB_REQ_SET_CONFIGURATION) { 1162 if (!value) { 1163 dev_dbg(dev->dev, "STATUS: deconfigured\n"); 1164 usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS); 1165 } else if (status >= 0) { 1166 /* Not configured unless gadget OK:s it */ 1167 dev_dbg(dev->dev, "STATUS: configured: %d\n", value); 1168 usb_gadget_set_state(&dev->gadget, 1169 USB_STATE_CONFIGURED); 1170 } 1171 } 1172 1173 /* Get ready for next stage */ 1174 if (dev->ep0state == GR_EP0_ODATA) 1175 gr_set_ep0state(dev, GR_EP0_OSTATUS); 1176 else if (dev->ep0state == GR_EP0_IDATA) 1177 gr_set_ep0state(dev, GR_EP0_ISTATUS); 1178 else 1179 gr_set_ep0state(dev, GR_EP0_SETUP); 1180 1181 out: 1182 gr_ep0out_requeue(dev); 1183 } 1184 1185 /* ---------------------------------------------------------------------- */ 1186 /* VBUS and USB reset handling */ 1187 1188 /* Must be called with dev->lock held and irqs disabled */ 1189 static void gr_vbus_connected(struct gr_udc *dev, u32 status) 1190 { 1191 u32 control; 1192 1193 dev->gadget.speed = GR_SPEED(status); 1194 usb_gadget_set_state(&dev->gadget, USB_STATE_POWERED); 1195 1196 /* Turn on full interrupts and pullup */ 1197 control = (GR_CONTROL_SI | GR_CONTROL_UI | GR_CONTROL_VI | 1198 GR_CONTROL_SP | GR_CONTROL_EP); 1199 gr_write32(&dev->regs->control, control); 1200 } 1201 1202 /* Must be called with dev->lock held */ 1203 static void gr_enable_vbus_detect(struct gr_udc *dev) 1204 { 1205 u32 status; 1206 1207 dev->irq_enabled = 1; 1208 wmb(); /* Make sure we do not ignore an interrupt */ 1209 gr_write32(&dev->regs->control, GR_CONTROL_VI); 1210 1211 /* Take care of the case we are already plugged in at this point */ 1212 status = gr_read32(&dev->regs->status); 1213 if (status & GR_STATUS_VB) 1214 gr_vbus_connected(dev, status); 1215 } 1216 1217 /* Must be called with dev->lock held and irqs disabled */ 1218 static void gr_vbus_disconnected(struct gr_udc *dev) 1219 { 1220 gr_stop_activity(dev); 1221 1222 /* Report disconnect */ 1223 if (dev->driver && dev->driver->disconnect) { 1224 spin_unlock(&dev->lock); 1225 1226 dev->driver->disconnect(&dev->gadget); 1227 1228 spin_lock(&dev->lock); 1229 } 1230 1231 gr_enable_vbus_detect(dev); 1232 } 1233 1234 /* Must be called with dev->lock held and irqs disabled */ 1235 static void gr_udc_usbreset(struct gr_udc *dev, u32 status) 1236 { 1237 gr_set_address(dev, 0); 1238 gr_set_ep0state(dev, GR_EP0_SETUP); 1239 usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT); 1240 dev->gadget.speed = GR_SPEED(status); 1241 1242 gr_ep_nuke(&dev->epo[0]); 1243 gr_ep_nuke(&dev->epi[0]); 1244 dev->epo[0].stopped = 0; 1245 dev->epi[0].stopped = 0; 1246 gr_ep0out_requeue(dev); 1247 } 1248 1249 /* ---------------------------------------------------------------------- */ 1250 /* Irq handling */ 1251 1252 /* 1253 * Handles interrupts from in endpoints. Returns whether something was handled. 1254 * 1255 * Must be called with dev->lock held, irqs disabled and with !ep->stopped. 1256 */ 1257 static int gr_handle_in_ep(struct gr_ep *ep) 1258 { 1259 struct gr_request *req; 1260 1261 req = list_first_entry(&ep->queue, struct gr_request, queue); 1262 if (!req->last_desc) 1263 return 0; 1264 1265 if (ACCESS_ONCE(req->last_desc->ctrl) & GR_DESC_IN_CTRL_EN) 1266 return 0; /* Not put in hardware buffers yet */ 1267 1268 if (gr_read32(&ep->regs->epstat) & (GR_EPSTAT_B1 | GR_EPSTAT_B0)) 1269 return 0; /* Not transmitted yet, still in hardware buffers */ 1270 1271 /* Write complete */ 1272 gr_dma_advance(ep, 0); 1273 1274 return 1; 1275 } 1276 1277 /* 1278 * Handles interrupts from out endpoints. Returns whether something was handled. 1279 * 1280 * Must be called with dev->lock held, irqs disabled and with !ep->stopped. 1281 */ 1282 static int gr_handle_out_ep(struct gr_ep *ep) 1283 { 1284 u32 ep_dmactrl; 1285 u32 ctrl; 1286 u16 len; 1287 struct gr_request *req; 1288 struct gr_udc *dev = ep->dev; 1289 1290 req = list_first_entry(&ep->queue, struct gr_request, queue); 1291 if (!req->curr_desc) 1292 return 0; 1293 1294 ctrl = ACCESS_ONCE(req->curr_desc->ctrl); 1295 if (ctrl & GR_DESC_OUT_CTRL_EN) 1296 return 0; /* Not received yet */ 1297 1298 /* Read complete */ 1299 len = ctrl & GR_DESC_OUT_CTRL_LEN_MASK; 1300 req->req.actual += len; 1301 if (ctrl & GR_DESC_OUT_CTRL_SE) 1302 req->setup = 1; 1303 1304 if (len < ep->ep.maxpacket || req->req.actual >= req->req.length) { 1305 /* Short packet or >= expected size - we are done */ 1306 1307 if ((ep == &dev->epo[0]) && (dev->ep0state == GR_EP0_OSTATUS)) { 1308 /* 1309 * Send a status stage ZLP to ack the DATA stage in the 1310 * OUT direction. This needs to be done before 1311 * gr_dma_advance as that can lead to a call to 1312 * ep0_setup that can change dev->ep0state. 1313 */ 1314 gr_ep0_respond_empty(dev); 1315 gr_set_ep0state(dev, GR_EP0_SETUP); 1316 } 1317 1318 gr_dma_advance(ep, 0); 1319 } else { 1320 /* Not done yet. Enable the next descriptor to receive more. */ 1321 req->curr_desc = req->curr_desc->next_desc; 1322 req->curr_desc->ctrl |= GR_DESC_OUT_CTRL_EN; 1323 1324 ep_dmactrl = gr_read32(&ep->regs->dmactrl); 1325 gr_write32(&ep->regs->dmactrl, ep_dmactrl | GR_DMACTRL_DA); 1326 } 1327 1328 return 1; 1329 } 1330 1331 /* 1332 * Handle state changes. Returns whether something was handled. 1333 * 1334 * Must be called with dev->lock held and irqs disabled. 1335 */ 1336 static int gr_handle_state_changes(struct gr_udc *dev) 1337 { 1338 u32 status = gr_read32(&dev->regs->status); 1339 int handled = 0; 1340 int powstate = !(dev->gadget.state == USB_STATE_NOTATTACHED || 1341 dev->gadget.state == USB_STATE_ATTACHED); 1342 1343 /* VBUS valid detected */ 1344 if (!powstate && (status & GR_STATUS_VB)) { 1345 dev_dbg(dev->dev, "STATUS: vbus valid detected\n"); 1346 gr_vbus_connected(dev, status); 1347 handled = 1; 1348 } 1349 1350 /* Disconnect */ 1351 if (powstate && !(status & GR_STATUS_VB)) { 1352 dev_dbg(dev->dev, "STATUS: vbus invalid detected\n"); 1353 gr_vbus_disconnected(dev); 1354 handled = 1; 1355 } 1356 1357 /* USB reset detected */ 1358 if (status & GR_STATUS_UR) { 1359 dev_dbg(dev->dev, "STATUS: USB reset - speed is %s\n", 1360 GR_SPEED_STR(status)); 1361 gr_write32(&dev->regs->status, GR_STATUS_UR); 1362 gr_udc_usbreset(dev, status); 1363 handled = 1; 1364 } 1365 1366 /* Speed change */ 1367 if (dev->gadget.speed != GR_SPEED(status)) { 1368 dev_dbg(dev->dev, "STATUS: USB Speed change to %s\n", 1369 GR_SPEED_STR(status)); 1370 dev->gadget.speed = GR_SPEED(status); 1371 handled = 1; 1372 } 1373 1374 /* Going into suspend */ 1375 if ((dev->ep0state != GR_EP0_SUSPEND) && !(status & GR_STATUS_SU)) { 1376 dev_dbg(dev->dev, "STATUS: USB suspend\n"); 1377 gr_set_ep0state(dev, GR_EP0_SUSPEND); 1378 dev->suspended_from = dev->gadget.state; 1379 usb_gadget_set_state(&dev->gadget, USB_STATE_SUSPENDED); 1380 1381 if ((dev->gadget.speed != USB_SPEED_UNKNOWN) && 1382 dev->driver && dev->driver->suspend) { 1383 spin_unlock(&dev->lock); 1384 1385 dev->driver->suspend(&dev->gadget); 1386 1387 spin_lock(&dev->lock); 1388 } 1389 handled = 1; 1390 } 1391 1392 /* Coming out of suspend */ 1393 if ((dev->ep0state == GR_EP0_SUSPEND) && (status & GR_STATUS_SU)) { 1394 dev_dbg(dev->dev, "STATUS: USB resume\n"); 1395 if (dev->suspended_from == USB_STATE_POWERED) 1396 gr_set_ep0state(dev, GR_EP0_DISCONNECT); 1397 else 1398 gr_set_ep0state(dev, GR_EP0_SETUP); 1399 usb_gadget_set_state(&dev->gadget, dev->suspended_from); 1400 1401 if ((dev->gadget.speed != USB_SPEED_UNKNOWN) && 1402 dev->driver && dev->driver->resume) { 1403 spin_unlock(&dev->lock); 1404 1405 dev->driver->resume(&dev->gadget); 1406 1407 spin_lock(&dev->lock); 1408 } 1409 handled = 1; 1410 } 1411 1412 return handled; 1413 } 1414 1415 /* Non-interrupt context irq handler */ 1416 static irqreturn_t gr_irq_handler(int irq, void *_dev) 1417 { 1418 struct gr_udc *dev = _dev; 1419 struct gr_ep *ep; 1420 int handled = 0; 1421 int i; 1422 unsigned long flags; 1423 1424 spin_lock_irqsave(&dev->lock, flags); 1425 1426 if (!dev->irq_enabled) 1427 goto out; 1428 1429 /* 1430 * Check IN ep interrupts. We check these before the OUT eps because 1431 * some gadgets reuse the request that might already be currently 1432 * outstanding and needs to be completed (mainly setup requests). 1433 */ 1434 for (i = 0; i < dev->nepi; i++) { 1435 ep = &dev->epi[i]; 1436 if (!ep->stopped && !ep->callback && !list_empty(&ep->queue)) 1437 handled = gr_handle_in_ep(ep) || handled; 1438 } 1439 1440 /* Check OUT ep interrupts */ 1441 for (i = 0; i < dev->nepo; i++) { 1442 ep = &dev->epo[i]; 1443 if (!ep->stopped && !ep->callback && !list_empty(&ep->queue)) 1444 handled = gr_handle_out_ep(ep) || handled; 1445 } 1446 1447 /* Check status interrupts */ 1448 handled = gr_handle_state_changes(dev) || handled; 1449 1450 /* 1451 * Check AMBA DMA errors. Only check if we didn't find anything else to 1452 * handle because this shouldn't happen if we did everything right. 1453 */ 1454 if (!handled) { 1455 list_for_each_entry(ep, &dev->ep_list, ep_list) { 1456 if (gr_read32(&ep->regs->dmactrl) & GR_DMACTRL_AE) { 1457 dev_err(dev->dev, 1458 "AMBA Error occurred for %s\n", 1459 ep->ep.name); 1460 handled = 1; 1461 } 1462 } 1463 } 1464 1465 out: 1466 spin_unlock_irqrestore(&dev->lock, flags); 1467 1468 return handled ? IRQ_HANDLED : IRQ_NONE; 1469 } 1470 1471 /* Interrupt context irq handler */ 1472 static irqreturn_t gr_irq(int irq, void *_dev) 1473 { 1474 struct gr_udc *dev = _dev; 1475 1476 if (!dev->irq_enabled) 1477 return IRQ_NONE; 1478 1479 return IRQ_WAKE_THREAD; 1480 } 1481 1482 /* ---------------------------------------------------------------------- */ 1483 /* USB ep ops */ 1484 1485 /* Enable endpoint. Not for ep0in and ep0out that are handled separately. */ 1486 static int gr_ep_enable(struct usb_ep *_ep, 1487 const struct usb_endpoint_descriptor *desc) 1488 { 1489 struct gr_udc *dev; 1490 struct gr_ep *ep; 1491 u8 mode; 1492 u8 nt; 1493 u16 max; 1494 u16 buffer_size = 0; 1495 u32 epctrl; 1496 1497 ep = container_of(_ep, struct gr_ep, ep); 1498 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) 1499 return -EINVAL; 1500 1501 dev = ep->dev; 1502 1503 /* 'ep0' IN and OUT are reserved */ 1504 if (ep == &dev->epo[0] || ep == &dev->epi[0]) 1505 return -EINVAL; 1506 1507 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) 1508 return -ESHUTDOWN; 1509 1510 /* Make sure we are clear for enabling */ 1511 epctrl = gr_read32(&ep->regs->epctrl); 1512 if (epctrl & GR_EPCTRL_EV) 1513 return -EBUSY; 1514 1515 /* Check that directions match */ 1516 if (!ep->is_in != !usb_endpoint_dir_in(desc)) 1517 return -EINVAL; 1518 1519 /* Check ep num */ 1520 if ((!ep->is_in && ep->num >= dev->nepo) || 1521 (ep->is_in && ep->num >= dev->nepi)) 1522 return -EINVAL; 1523 1524 if (usb_endpoint_xfer_control(desc)) { 1525 mode = 0; 1526 } else if (usb_endpoint_xfer_isoc(desc)) { 1527 mode = 1; 1528 } else if (usb_endpoint_xfer_bulk(desc)) { 1529 mode = 2; 1530 } else if (usb_endpoint_xfer_int(desc)) { 1531 mode = 3; 1532 } else { 1533 dev_err(dev->dev, "Unknown transfer type for %s\n", 1534 ep->ep.name); 1535 return -EINVAL; 1536 } 1537 1538 /* 1539 * Bits 10-0 set the max payload. 12-11 set the number of 1540 * additional transactions. 1541 */ 1542 max = 0x7ff & usb_endpoint_maxp(desc); 1543 nt = 0x3 & (usb_endpoint_maxp(desc) >> 11); 1544 buffer_size = GR_BUFFER_SIZE(epctrl); 1545 if (nt && (mode == 0 || mode == 2)) { 1546 dev_err(dev->dev, 1547 "%s mode: multiple trans./microframe not valid\n", 1548 (mode == 2 ? "Bulk" : "Control")); 1549 return -EINVAL; 1550 } else if (nt == 0x3) { 1551 dev_err(dev->dev, 1552 "Invalid value 0x3 for additional trans./microframe\n"); 1553 return -EINVAL; 1554 } else if ((nt + 1) * max > buffer_size) { 1555 dev_err(dev->dev, "Hw buffer size %d < max payload %d * %d\n", 1556 buffer_size, (nt + 1), max); 1557 return -EINVAL; 1558 } else if (max == 0) { 1559 dev_err(dev->dev, "Max payload cannot be set to 0\n"); 1560 return -EINVAL; 1561 } else if (max > ep->ep.maxpacket_limit) { 1562 dev_err(dev->dev, "Requested max payload %d > limit %d\n", 1563 max, ep->ep.maxpacket_limit); 1564 return -EINVAL; 1565 } 1566 1567 spin_lock(&ep->dev->lock); 1568 1569 if (!ep->stopped) { 1570 spin_unlock(&ep->dev->lock); 1571 return -EBUSY; 1572 } 1573 1574 ep->stopped = 0; 1575 ep->wedged = 0; 1576 ep->ep.desc = desc; 1577 ep->ep.maxpacket = max; 1578 ep->dma_start = 0; 1579 1580 1581 if (nt) { 1582 /* 1583 * Maximum possible size of all payloads in one microframe 1584 * regardless of direction when using high-bandwidth mode. 1585 */ 1586 ep->bytes_per_buffer = (nt + 1) * max; 1587 } else if (ep->is_in) { 1588 /* 1589 * The biggest multiple of maximum packet size that fits into 1590 * the buffer. The hardware will split up into many packets in 1591 * the IN direction. 1592 */ 1593 ep->bytes_per_buffer = (buffer_size / max) * max; 1594 } else { 1595 /* 1596 * Only single packets will be placed the buffers in the OUT 1597 * direction. 1598 */ 1599 ep->bytes_per_buffer = max; 1600 } 1601 1602 epctrl = (max << GR_EPCTRL_MAXPL_POS) 1603 | (nt << GR_EPCTRL_NT_POS) 1604 | (mode << GR_EPCTRL_TT_POS) 1605 | GR_EPCTRL_EV; 1606 if (ep->is_in) 1607 epctrl |= GR_EPCTRL_PI; 1608 gr_write32(&ep->regs->epctrl, epctrl); 1609 1610 gr_write32(&ep->regs->dmactrl, GR_DMACTRL_IE | GR_DMACTRL_AI); 1611 1612 spin_unlock(&ep->dev->lock); 1613 1614 dev_dbg(ep->dev->dev, "EP: %s enabled - %s with %d bytes/buffer\n", 1615 ep->ep.name, gr_modestring[mode], ep->bytes_per_buffer); 1616 return 0; 1617 } 1618 1619 /* Disable endpoint. Not for ep0in and ep0out that are handled separately. */ 1620 static int gr_ep_disable(struct usb_ep *_ep) 1621 { 1622 struct gr_ep *ep; 1623 struct gr_udc *dev; 1624 unsigned long flags; 1625 1626 ep = container_of(_ep, struct gr_ep, ep); 1627 if (!_ep || !ep->ep.desc) 1628 return -ENODEV; 1629 1630 dev = ep->dev; 1631 1632 /* 'ep0' IN and OUT are reserved */ 1633 if (ep == &dev->epo[0] || ep == &dev->epi[0]) 1634 return -EINVAL; 1635 1636 if (dev->ep0state == GR_EP0_SUSPEND) 1637 return -EBUSY; 1638 1639 dev_dbg(ep->dev->dev, "EP: disable %s\n", ep->ep.name); 1640 1641 spin_lock_irqsave(&dev->lock, flags); 1642 1643 gr_ep_nuke(ep); 1644 gr_ep_reset(ep); 1645 ep->ep.desc = NULL; 1646 1647 spin_unlock_irqrestore(&dev->lock, flags); 1648 1649 return 0; 1650 } 1651 1652 /* 1653 * Frees a request, but not any DMA buffers associated with it 1654 * (gr_finish_request should already have taken care of that). 1655 */ 1656 static void gr_free_request(struct usb_ep *_ep, struct usb_request *_req) 1657 { 1658 struct gr_request *req; 1659 1660 if (!_ep || !_req) 1661 return; 1662 req = container_of(_req, struct gr_request, req); 1663 1664 /* Leads to memory leak */ 1665 WARN(!list_empty(&req->queue), 1666 "request not dequeued properly before freeing\n"); 1667 1668 kfree(req); 1669 } 1670 1671 /* Queue a request from the gadget */ 1672 static int gr_queue_ext(struct usb_ep *_ep, struct usb_request *_req, 1673 gfp_t gfp_flags) 1674 { 1675 struct gr_ep *ep; 1676 struct gr_request *req; 1677 struct gr_udc *dev; 1678 int ret; 1679 1680 if (unlikely(!_ep || !_req)) 1681 return -EINVAL; 1682 1683 ep = container_of(_ep, struct gr_ep, ep); 1684 req = container_of(_req, struct gr_request, req); 1685 dev = ep->dev; 1686 1687 spin_lock(&ep->dev->lock); 1688 1689 /* 1690 * The ep0 pointer in the gadget struct is used both for ep0in and 1691 * ep0out. In a data stage in the out direction ep0out needs to be used 1692 * instead of the default ep0in. Completion functions might use 1693 * driver_data, so that needs to be copied as well. 1694 */ 1695 if ((ep == &dev->epi[0]) && (dev->ep0state == GR_EP0_ODATA)) { 1696 ep = &dev->epo[0]; 1697 ep->ep.driver_data = dev->epi[0].ep.driver_data; 1698 } 1699 1700 if (ep->is_in) 1701 gr_dbgprint_request("EXTERN", ep, req); 1702 1703 ret = gr_queue(ep, req, GFP_ATOMIC); 1704 1705 spin_unlock(&ep->dev->lock); 1706 1707 return ret; 1708 } 1709 1710 /* Dequeue JUST ONE request */ 1711 static int gr_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1712 { 1713 struct gr_request *req; 1714 struct gr_ep *ep; 1715 struct gr_udc *dev; 1716 int ret = 0; 1717 unsigned long flags; 1718 1719 ep = container_of(_ep, struct gr_ep, ep); 1720 if (!_ep || !_req || (!ep->ep.desc && ep->num != 0)) 1721 return -EINVAL; 1722 dev = ep->dev; 1723 if (!dev->driver) 1724 return -ESHUTDOWN; 1725 1726 /* We can't touch (DMA) registers when suspended */ 1727 if (dev->ep0state == GR_EP0_SUSPEND) 1728 return -EBUSY; 1729 1730 spin_lock_irqsave(&dev->lock, flags); 1731 1732 /* Make sure it's actually queued on this endpoint */ 1733 list_for_each_entry(req, &ep->queue, queue) { 1734 if (&req->req == _req) 1735 break; 1736 } 1737 if (&req->req != _req) { 1738 ret = -EINVAL; 1739 goto out; 1740 } 1741 1742 if (list_first_entry(&ep->queue, struct gr_request, queue) == req) { 1743 /* This request is currently being processed */ 1744 gr_abort_dma(ep); 1745 if (ep->stopped) 1746 gr_finish_request(ep, req, -ECONNRESET); 1747 else 1748 gr_dma_advance(ep, -ECONNRESET); 1749 } else if (!list_empty(&req->queue)) { 1750 /* Not being processed - gr_finish_request dequeues it */ 1751 gr_finish_request(ep, req, -ECONNRESET); 1752 } else { 1753 ret = -EOPNOTSUPP; 1754 } 1755 1756 out: 1757 spin_unlock_irqrestore(&dev->lock, flags); 1758 1759 return ret; 1760 } 1761 1762 /* Helper for gr_set_halt and gr_set_wedge */ 1763 static int gr_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge) 1764 { 1765 int ret; 1766 struct gr_ep *ep; 1767 1768 if (!_ep) 1769 return -ENODEV; 1770 ep = container_of(_ep, struct gr_ep, ep); 1771 1772 spin_lock(&ep->dev->lock); 1773 1774 /* Halting an IN endpoint should fail if queue is not empty */ 1775 if (halt && ep->is_in && !list_empty(&ep->queue)) { 1776 ret = -EAGAIN; 1777 goto out; 1778 } 1779 1780 ret = gr_ep_halt_wedge(ep, halt, wedge, 0); 1781 1782 out: 1783 spin_unlock(&ep->dev->lock); 1784 1785 return ret; 1786 } 1787 1788 /* Halt endpoint */ 1789 static int gr_set_halt(struct usb_ep *_ep, int halt) 1790 { 1791 return gr_set_halt_wedge(_ep, halt, 0); 1792 } 1793 1794 /* Halt and wedge endpoint */ 1795 static int gr_set_wedge(struct usb_ep *_ep) 1796 { 1797 return gr_set_halt_wedge(_ep, 1, 1); 1798 } 1799 1800 /* 1801 * Return the total number of bytes currently stored in the internal buffers of 1802 * the endpoint. 1803 */ 1804 static int gr_fifo_status(struct usb_ep *_ep) 1805 { 1806 struct gr_ep *ep; 1807 u32 epstat; 1808 u32 bytes = 0; 1809 1810 if (!_ep) 1811 return -ENODEV; 1812 ep = container_of(_ep, struct gr_ep, ep); 1813 1814 epstat = gr_read32(&ep->regs->epstat); 1815 1816 if (epstat & GR_EPSTAT_B0) 1817 bytes += (epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS; 1818 if (epstat & GR_EPSTAT_B1) 1819 bytes += (epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS; 1820 1821 return bytes; 1822 } 1823 1824 1825 /* Empty data from internal buffers of an endpoint. */ 1826 static void gr_fifo_flush(struct usb_ep *_ep) 1827 { 1828 struct gr_ep *ep; 1829 u32 epctrl; 1830 1831 if (!_ep) 1832 return; 1833 ep = container_of(_ep, struct gr_ep, ep); 1834 dev_vdbg(ep->dev->dev, "EP: flush fifo %s\n", ep->ep.name); 1835 1836 spin_lock(&ep->dev->lock); 1837 1838 epctrl = gr_read32(&ep->regs->epctrl); 1839 epctrl |= GR_EPCTRL_CB; 1840 gr_write32(&ep->regs->epctrl, epctrl); 1841 1842 spin_unlock(&ep->dev->lock); 1843 } 1844 1845 static struct usb_ep_ops gr_ep_ops = { 1846 .enable = gr_ep_enable, 1847 .disable = gr_ep_disable, 1848 1849 .alloc_request = gr_alloc_request, 1850 .free_request = gr_free_request, 1851 1852 .queue = gr_queue_ext, 1853 .dequeue = gr_dequeue, 1854 1855 .set_halt = gr_set_halt, 1856 .set_wedge = gr_set_wedge, 1857 .fifo_status = gr_fifo_status, 1858 .fifo_flush = gr_fifo_flush, 1859 }; 1860 1861 /* ---------------------------------------------------------------------- */ 1862 /* USB Gadget ops */ 1863 1864 static int gr_get_frame(struct usb_gadget *_gadget) 1865 { 1866 struct gr_udc *dev; 1867 1868 if (!_gadget) 1869 return -ENODEV; 1870 dev = container_of(_gadget, struct gr_udc, gadget); 1871 return gr_read32(&dev->regs->status) & GR_STATUS_FN_MASK; 1872 } 1873 1874 static int gr_wakeup(struct usb_gadget *_gadget) 1875 { 1876 struct gr_udc *dev; 1877 1878 if (!_gadget) 1879 return -ENODEV; 1880 dev = container_of(_gadget, struct gr_udc, gadget); 1881 1882 /* Remote wakeup feature not enabled by host*/ 1883 if (!dev->remote_wakeup) 1884 return -EINVAL; 1885 1886 spin_lock(&dev->lock); 1887 1888 gr_write32(&dev->regs->control, 1889 gr_read32(&dev->regs->control) | GR_CONTROL_RW); 1890 1891 spin_unlock(&dev->lock); 1892 1893 return 0; 1894 } 1895 1896 static int gr_pullup(struct usb_gadget *_gadget, int is_on) 1897 { 1898 struct gr_udc *dev; 1899 u32 control; 1900 1901 if (!_gadget) 1902 return -ENODEV; 1903 dev = container_of(_gadget, struct gr_udc, gadget); 1904 1905 spin_lock(&dev->lock); 1906 1907 control = gr_read32(&dev->regs->control); 1908 if (is_on) 1909 control |= GR_CONTROL_EP; 1910 else 1911 control &= ~GR_CONTROL_EP; 1912 gr_write32(&dev->regs->control, control); 1913 1914 spin_unlock(&dev->lock); 1915 1916 return 0; 1917 } 1918 1919 static int gr_udc_start(struct usb_gadget *gadget, 1920 struct usb_gadget_driver *driver) 1921 { 1922 struct gr_udc *dev = to_gr_udc(gadget); 1923 1924 spin_lock(&dev->lock); 1925 1926 /* Hook up the driver */ 1927 driver->driver.bus = NULL; 1928 dev->driver = driver; 1929 1930 /* Get ready for host detection */ 1931 gr_enable_vbus_detect(dev); 1932 1933 spin_unlock(&dev->lock); 1934 1935 return 0; 1936 } 1937 1938 static int gr_udc_stop(struct usb_gadget *gadget) 1939 { 1940 struct gr_udc *dev = to_gr_udc(gadget); 1941 unsigned long flags; 1942 1943 spin_lock_irqsave(&dev->lock, flags); 1944 1945 dev->driver = NULL; 1946 gr_stop_activity(dev); 1947 1948 spin_unlock_irqrestore(&dev->lock, flags); 1949 1950 return 0; 1951 } 1952 1953 static const struct usb_gadget_ops gr_ops = { 1954 .get_frame = gr_get_frame, 1955 .wakeup = gr_wakeup, 1956 .pullup = gr_pullup, 1957 .udc_start = gr_udc_start, 1958 .udc_stop = gr_udc_stop, 1959 /* Other operations not supported */ 1960 }; 1961 1962 /* ---------------------------------------------------------------------- */ 1963 /* Module probe, removal and of-matching */ 1964 1965 static const char * const onames[] = { 1966 "ep0out", "ep1out", "ep2out", "ep3out", "ep4out", "ep5out", 1967 "ep6out", "ep7out", "ep8out", "ep9out", "ep10out", "ep11out", 1968 "ep12out", "ep13out", "ep14out", "ep15out" 1969 }; 1970 1971 static const char * const inames[] = { 1972 "ep0in", "ep1in", "ep2in", "ep3in", "ep4in", "ep5in", 1973 "ep6in", "ep7in", "ep8in", "ep9in", "ep10in", "ep11in", 1974 "ep12in", "ep13in", "ep14in", "ep15in" 1975 }; 1976 1977 /* Must be called with dev->lock held */ 1978 static int gr_ep_init(struct gr_udc *dev, int num, int is_in, u32 maxplimit) 1979 { 1980 struct gr_ep *ep; 1981 struct gr_request *req; 1982 struct usb_request *_req; 1983 void *buf; 1984 1985 if (is_in) { 1986 ep = &dev->epi[num]; 1987 ep->ep.name = inames[num]; 1988 ep->regs = &dev->regs->epi[num]; 1989 } else { 1990 ep = &dev->epo[num]; 1991 ep->ep.name = onames[num]; 1992 ep->regs = &dev->regs->epo[num]; 1993 } 1994 1995 gr_ep_reset(ep); 1996 ep->num = num; 1997 ep->is_in = is_in; 1998 ep->dev = dev; 1999 ep->ep.ops = &gr_ep_ops; 2000 INIT_LIST_HEAD(&ep->queue); 2001 2002 if (num == 0) { 2003 _req = gr_alloc_request(&ep->ep, GFP_ATOMIC); 2004 buf = devm_kzalloc(dev->dev, PAGE_SIZE, GFP_DMA | GFP_ATOMIC); 2005 if (!_req || !buf) { 2006 /* possible _req freed by gr_probe via gr_remove */ 2007 return -ENOMEM; 2008 } 2009 2010 req = container_of(_req, struct gr_request, req); 2011 req->req.buf = buf; 2012 req->req.length = MAX_CTRL_PL_SIZE; 2013 2014 if (is_in) 2015 dev->ep0reqi = req; /* Complete gets set as used */ 2016 else 2017 dev->ep0reqo = req; /* Completion treated separately */ 2018 2019 usb_ep_set_maxpacket_limit(&ep->ep, MAX_CTRL_PL_SIZE); 2020 ep->bytes_per_buffer = MAX_CTRL_PL_SIZE; 2021 } else { 2022 usb_ep_set_maxpacket_limit(&ep->ep, (u16)maxplimit); 2023 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list); 2024 } 2025 list_add_tail(&ep->ep_list, &dev->ep_list); 2026 2027 ep->tailbuf = dma_alloc_coherent(dev->dev, ep->ep.maxpacket_limit, 2028 &ep->tailbuf_paddr, GFP_ATOMIC); 2029 if (!ep->tailbuf) 2030 return -ENOMEM; 2031 2032 return 0; 2033 } 2034 2035 /* Must be called with dev->lock held */ 2036 static int gr_udc_init(struct gr_udc *dev) 2037 { 2038 struct device_node *np = dev->dev->of_node; 2039 u32 epctrl_val; 2040 u32 dmactrl_val; 2041 int i; 2042 int ret = 0; 2043 u32 bufsize; 2044 2045 gr_set_address(dev, 0); 2046 2047 INIT_LIST_HEAD(&dev->gadget.ep_list); 2048 dev->gadget.speed = USB_SPEED_UNKNOWN; 2049 dev->gadget.ep0 = &dev->epi[0].ep; 2050 2051 INIT_LIST_HEAD(&dev->ep_list); 2052 gr_set_ep0state(dev, GR_EP0_DISCONNECT); 2053 2054 for (i = 0; i < dev->nepo; i++) { 2055 if (of_property_read_u32_index(np, "epobufsizes", i, &bufsize)) 2056 bufsize = 1024; 2057 ret = gr_ep_init(dev, i, 0, bufsize); 2058 if (ret) 2059 return ret; 2060 } 2061 2062 for (i = 0; i < dev->nepi; i++) { 2063 if (of_property_read_u32_index(np, "epibufsizes", i, &bufsize)) 2064 bufsize = 1024; 2065 ret = gr_ep_init(dev, i, 1, bufsize); 2066 if (ret) 2067 return ret; 2068 } 2069 2070 /* Must be disabled by default */ 2071 dev->remote_wakeup = 0; 2072 2073 /* Enable ep0out and ep0in */ 2074 epctrl_val = (MAX_CTRL_PL_SIZE << GR_EPCTRL_MAXPL_POS) | GR_EPCTRL_EV; 2075 dmactrl_val = GR_DMACTRL_IE | GR_DMACTRL_AI; 2076 gr_write32(&dev->epo[0].regs->epctrl, epctrl_val); 2077 gr_write32(&dev->epi[0].regs->epctrl, epctrl_val | GR_EPCTRL_PI); 2078 gr_write32(&dev->epo[0].regs->dmactrl, dmactrl_val); 2079 gr_write32(&dev->epi[0].regs->dmactrl, dmactrl_val); 2080 2081 return 0; 2082 } 2083 2084 static void gr_ep_remove(struct gr_udc *dev, int num, int is_in) 2085 { 2086 struct gr_ep *ep; 2087 2088 if (is_in) 2089 ep = &dev->epi[num]; 2090 else 2091 ep = &dev->epo[num]; 2092 2093 if (ep->tailbuf) 2094 dma_free_coherent(dev->dev, ep->ep.maxpacket_limit, 2095 ep->tailbuf, ep->tailbuf_paddr); 2096 } 2097 2098 static int gr_remove(struct platform_device *pdev) 2099 { 2100 struct gr_udc *dev = platform_get_drvdata(pdev); 2101 int i; 2102 2103 if (dev->added) 2104 usb_del_gadget_udc(&dev->gadget); /* Shuts everything down */ 2105 if (dev->driver) 2106 return -EBUSY; 2107 2108 gr_dfs_delete(dev); 2109 if (dev->desc_pool) 2110 dma_pool_destroy(dev->desc_pool); 2111 platform_set_drvdata(pdev, NULL); 2112 2113 gr_free_request(&dev->epi[0].ep, &dev->ep0reqi->req); 2114 gr_free_request(&dev->epo[0].ep, &dev->ep0reqo->req); 2115 2116 for (i = 0; i < dev->nepo; i++) 2117 gr_ep_remove(dev, i, 0); 2118 for (i = 0; i < dev->nepi; i++) 2119 gr_ep_remove(dev, i, 1); 2120 2121 return 0; 2122 } 2123 static int gr_request_irq(struct gr_udc *dev, int irq) 2124 { 2125 return devm_request_threaded_irq(dev->dev, irq, gr_irq, gr_irq_handler, 2126 IRQF_SHARED, driver_name, dev); 2127 } 2128 2129 static int gr_probe(struct platform_device *pdev) 2130 { 2131 struct gr_udc *dev; 2132 struct resource *res; 2133 struct gr_regs __iomem *regs; 2134 int retval; 2135 u32 status; 2136 2137 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); 2138 if (!dev) 2139 return -ENOMEM; 2140 dev->dev = &pdev->dev; 2141 2142 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2143 regs = devm_ioremap_resource(dev->dev, res); 2144 if (IS_ERR(regs)) 2145 return PTR_ERR(regs); 2146 2147 dev->irq = platform_get_irq(pdev, 0); 2148 if (dev->irq <= 0) { 2149 dev_err(dev->dev, "No irq found\n"); 2150 return -ENODEV; 2151 } 2152 2153 /* Some core configurations has separate irqs for IN and OUT events */ 2154 dev->irqi = platform_get_irq(pdev, 1); 2155 if (dev->irqi > 0) { 2156 dev->irqo = platform_get_irq(pdev, 2); 2157 if (dev->irqo <= 0) { 2158 dev_err(dev->dev, "Found irqi but not irqo\n"); 2159 return -ENODEV; 2160 } 2161 } else { 2162 dev->irqi = 0; 2163 } 2164 2165 dev->gadget.name = driver_name; 2166 dev->gadget.max_speed = USB_SPEED_HIGH; 2167 dev->gadget.ops = &gr_ops; 2168 2169 spin_lock_init(&dev->lock); 2170 dev->regs = regs; 2171 2172 platform_set_drvdata(pdev, dev); 2173 2174 /* Determine number of endpoints and data interface mode */ 2175 status = gr_read32(&dev->regs->status); 2176 dev->nepi = ((status & GR_STATUS_NEPI_MASK) >> GR_STATUS_NEPI_POS) + 1; 2177 dev->nepo = ((status & GR_STATUS_NEPO_MASK) >> GR_STATUS_NEPO_POS) + 1; 2178 2179 if (!(status & GR_STATUS_DM)) { 2180 dev_err(dev->dev, "Slave mode cores are not supported\n"); 2181 return -ENODEV; 2182 } 2183 2184 /* --- Effects of the following calls might need explicit cleanup --- */ 2185 2186 /* Create DMA pool for descriptors */ 2187 dev->desc_pool = dma_pool_create("desc_pool", dev->dev, 2188 sizeof(struct gr_dma_desc), 4, 0); 2189 if (!dev->desc_pool) { 2190 dev_err(dev->dev, "Could not allocate DMA pool"); 2191 return -ENOMEM; 2192 } 2193 2194 spin_lock(&dev->lock); 2195 2196 /* Inside lock so that no gadget can use this udc until probe is done */ 2197 retval = usb_add_gadget_udc(dev->dev, &dev->gadget); 2198 if (retval) { 2199 dev_err(dev->dev, "Could not add gadget udc"); 2200 goto out; 2201 } 2202 dev->added = 1; 2203 2204 retval = gr_udc_init(dev); 2205 if (retval) 2206 goto out; 2207 2208 gr_dfs_create(dev); 2209 2210 /* Clear all interrupt enables that might be left on since last boot */ 2211 gr_disable_interrupts_and_pullup(dev); 2212 2213 retval = gr_request_irq(dev, dev->irq); 2214 if (retval) { 2215 dev_err(dev->dev, "Failed to request irq %d\n", dev->irq); 2216 goto out; 2217 } 2218 2219 if (dev->irqi) { 2220 retval = gr_request_irq(dev, dev->irqi); 2221 if (retval) { 2222 dev_err(dev->dev, "Failed to request irqi %d\n", 2223 dev->irqi); 2224 goto out; 2225 } 2226 retval = gr_request_irq(dev, dev->irqo); 2227 if (retval) { 2228 dev_err(dev->dev, "Failed to request irqo %d\n", 2229 dev->irqo); 2230 goto out; 2231 } 2232 } 2233 2234 if (dev->irqi) 2235 dev_info(dev->dev, "regs: %p, irqs %d, %d, %d\n", dev->regs, 2236 dev->irq, dev->irqi, dev->irqo); 2237 else 2238 dev_info(dev->dev, "regs: %p, irq %d\n", dev->regs, dev->irq); 2239 2240 out: 2241 spin_unlock(&dev->lock); 2242 2243 if (retval) 2244 gr_remove(pdev); 2245 2246 return retval; 2247 } 2248 2249 static const struct of_device_id gr_match[] = { 2250 {.name = "GAISLER_USBDC"}, 2251 {.name = "01_021"}, 2252 {}, 2253 }; 2254 MODULE_DEVICE_TABLE(of, gr_match); 2255 2256 static struct platform_driver gr_driver = { 2257 .driver = { 2258 .name = DRIVER_NAME, 2259 .of_match_table = gr_match, 2260 }, 2261 .probe = gr_probe, 2262 .remove = gr_remove, 2263 }; 2264 module_platform_driver(gr_driver); 2265 2266 MODULE_AUTHOR("Aeroflex Gaisler AB."); 2267 MODULE_DESCRIPTION(DRIVER_DESC); 2268 MODULE_LICENSE("GPL"); 2269