1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/idr.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/workqueue.h> 20 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb.h> 24 25 #include "trace.h" 26 27 static DEFINE_IDA(gadget_id_numbers); 28 29 static const struct bus_type gadget_bus_type; 30 31 /** 32 * struct usb_udc - describes one usb device controller 33 * @driver: the gadget driver pointer. For use by the class code 34 * @dev: the child device to the actual controller 35 * @gadget: the gadget. For use by the class code 36 * @list: for use by the udc class driver 37 * @vbus: for udcs who care about vbus status, this value is real vbus status; 38 * for udcs who do not care about vbus status, this value is always true 39 * @started: the UDC's started state. True if the UDC had started. 40 * @allow_connect: Indicates whether UDC is allowed to be pulled up. 41 * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or 42 * unbound. 43 * @vbus_work: work routine to handle VBUS status change notifications. 44 * @connect_lock: protects udc->started, gadget->connect, 45 * gadget->allow_connect and gadget->deactivate. The routines 46 * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(), 47 * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and 48 * usb_gadget_udc_stop_locked() are called with this lock held. 49 * 50 * This represents the internal data structure which is used by the UDC-class 51 * to hold information about udc driver and gadget together. 52 */ 53 struct usb_udc { 54 struct usb_gadget_driver *driver; 55 struct usb_gadget *gadget; 56 struct device dev; 57 struct list_head list; 58 bool vbus; 59 bool started; 60 bool allow_connect; 61 struct work_struct vbus_work; 62 struct mutex connect_lock; 63 }; 64 65 static const struct class udc_class; 66 static LIST_HEAD(udc_list); 67 68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ 69 static DEFINE_MUTEX(udc_lock); 70 71 /* ------------------------------------------------------------------------- */ 72 73 /** 74 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 75 * @ep:the endpoint being configured 76 * @maxpacket_limit:value of maximum packet size limit 77 * 78 * This function should be used only in UDC drivers to initialize endpoint 79 * (usually in probe function). 80 */ 81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 82 unsigned maxpacket_limit) 83 { 84 ep->maxpacket_limit = maxpacket_limit; 85 ep->maxpacket = maxpacket_limit; 86 87 trace_usb_ep_set_maxpacket_limit(ep, 0); 88 } 89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 90 91 /** 92 * usb_ep_enable - configure endpoint, making it usable 93 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 94 * drivers discover endpoints through the ep_list of a usb_gadget. 95 * 96 * When configurations are set, or when interface settings change, the driver 97 * will enable or disable the relevant endpoints. while it is enabled, an 98 * endpoint may be used for i/o until the driver receives a disconnect() from 99 * the host or until the endpoint is disabled. 100 * 101 * the ep0 implementation (which calls this routine) must ensure that the 102 * hardware capabilities of each endpoint match the descriptor provided 103 * for it. for example, an endpoint named "ep2in-bulk" would be usable 104 * for interrupt transfers as well as bulk, but it likely couldn't be used 105 * for iso transfers or for endpoint 14. some endpoints are fully 106 * configurable, with more generic names like "ep-a". (remember that for 107 * USB, "in" means "towards the USB host".) 108 * 109 * This routine may be called in an atomic (interrupt) context. 110 * 111 * returns zero, or a negative error code. 112 */ 113 int usb_ep_enable(struct usb_ep *ep) 114 { 115 int ret = 0; 116 117 if (ep->enabled) 118 goto out; 119 120 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 121 if (usb_endpoint_maxp(ep->desc) == 0) { 122 /* 123 * We should log an error message here, but we can't call 124 * dev_err() because there's no way to find the gadget 125 * given only ep. 126 */ 127 ret = -EINVAL; 128 goto out; 129 } 130 131 ret = ep->ops->enable(ep, ep->desc); 132 if (ret) 133 goto out; 134 135 ep->enabled = true; 136 137 out: 138 trace_usb_ep_enable(ep, ret); 139 140 return ret; 141 } 142 EXPORT_SYMBOL_GPL(usb_ep_enable); 143 144 /** 145 * usb_ep_disable - endpoint is no longer usable 146 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 147 * 148 * no other task may be using this endpoint when this is called. 149 * any pending and uncompleted requests will complete with status 150 * indicating disconnect (-ESHUTDOWN) before this call returns. 151 * gadget drivers must call usb_ep_enable() again before queueing 152 * requests to the endpoint. 153 * 154 * This routine may be called in an atomic (interrupt) context. 155 * 156 * returns zero, or a negative error code. 157 */ 158 int usb_ep_disable(struct usb_ep *ep) 159 { 160 int ret = 0; 161 162 if (!ep->enabled) 163 goto out; 164 165 ret = ep->ops->disable(ep); 166 if (ret) 167 goto out; 168 169 ep->enabled = false; 170 171 out: 172 trace_usb_ep_disable(ep, ret); 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(usb_ep_disable); 177 178 /** 179 * usb_ep_alloc_request - allocate a request object to use with this endpoint 180 * @ep:the endpoint to be used with with the request 181 * @gfp_flags:GFP_* flags to use 182 * 183 * Request objects must be allocated with this call, since they normally 184 * need controller-specific setup and may even need endpoint-specific 185 * resources such as allocation of DMA descriptors. 186 * Requests may be submitted with usb_ep_queue(), and receive a single 187 * completion callback. Free requests with usb_ep_free_request(), when 188 * they are no longer needed. 189 * 190 * Returns the request, or null if one could not be allocated. 191 */ 192 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 193 gfp_t gfp_flags) 194 { 195 struct usb_request *req = NULL; 196 197 req = ep->ops->alloc_request(ep, gfp_flags); 198 199 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 200 201 return req; 202 } 203 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 204 205 /** 206 * usb_ep_free_request - frees a request object 207 * @ep:the endpoint associated with the request 208 * @req:the request being freed 209 * 210 * Reverses the effect of usb_ep_alloc_request(). 211 * Caller guarantees the request is not queued, and that it will 212 * no longer be requeued (or otherwise used). 213 */ 214 void usb_ep_free_request(struct usb_ep *ep, 215 struct usb_request *req) 216 { 217 trace_usb_ep_free_request(ep, req, 0); 218 ep->ops->free_request(ep, req); 219 } 220 EXPORT_SYMBOL_GPL(usb_ep_free_request); 221 222 /** 223 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 224 * @ep:the endpoint associated with the request 225 * @req:the request being submitted 226 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 227 * pre-allocate all necessary memory with the request. 228 * 229 * This tells the device controller to perform the specified request through 230 * that endpoint (reading or writing a buffer). When the request completes, 231 * including being canceled by usb_ep_dequeue(), the request's completion 232 * routine is called to return the request to the driver. Any endpoint 233 * (except control endpoints like ep0) may have more than one transfer 234 * request queued; they complete in FIFO order. Once a gadget driver 235 * submits a request, that request may not be examined or modified until it 236 * is given back to that driver through the completion callback. 237 * 238 * Each request is turned into one or more packets. The controller driver 239 * never merges adjacent requests into the same packet. OUT transfers 240 * will sometimes use data that's already buffered in the hardware. 241 * Drivers can rely on the fact that the first byte of the request's buffer 242 * always corresponds to the first byte of some USB packet, for both 243 * IN and OUT transfers. 244 * 245 * Bulk endpoints can queue any amount of data; the transfer is packetized 246 * automatically. The last packet will be short if the request doesn't fill it 247 * out completely. Zero length packets (ZLPs) should be avoided in portable 248 * protocols since not all usb hardware can successfully handle zero length 249 * packets. (ZLPs may be explicitly written, and may be implicitly written if 250 * the request 'zero' flag is set.) Bulk endpoints may also be used 251 * for interrupt transfers; but the reverse is not true, and some endpoints 252 * won't support every interrupt transfer. (Such as 768 byte packets.) 253 * 254 * Interrupt-only endpoints are less functional than bulk endpoints, for 255 * example by not supporting queueing or not handling buffers that are 256 * larger than the endpoint's maxpacket size. They may also treat data 257 * toggle differently. 258 * 259 * Control endpoints ... after getting a setup() callback, the driver queues 260 * one response (even if it would be zero length). That enables the 261 * status ack, after transferring data as specified in the response. Setup 262 * functions may return negative error codes to generate protocol stalls. 263 * (Note that some USB device controllers disallow protocol stall responses 264 * in some cases.) When control responses are deferred (the response is 265 * written after the setup callback returns), then usb_ep_set_halt() may be 266 * used on ep0 to trigger protocol stalls. Depending on the controller, 267 * it may not be possible to trigger a status-stage protocol stall when the 268 * data stage is over, that is, from within the response's completion 269 * routine. 270 * 271 * For periodic endpoints, like interrupt or isochronous ones, the usb host 272 * arranges to poll once per interval, and the gadget driver usually will 273 * have queued some data to transfer at that time. 274 * 275 * Note that @req's ->complete() callback must never be called from 276 * within usb_ep_queue() as that can create deadlock situations. 277 * 278 * This routine may be called in interrupt context. 279 * 280 * Returns zero, or a negative error code. Endpoints that are not enabled 281 * report errors; errors will also be 282 * reported when the usb peripheral is disconnected. 283 * 284 * If and only if @req is successfully queued (the return value is zero), 285 * @req->complete() will be called exactly once, when the Gadget core and 286 * UDC are finished with the request. When the completion function is called, 287 * control of the request is returned to the device driver which submitted it. 288 * The completion handler may then immediately free or reuse @req. 289 */ 290 int usb_ep_queue(struct usb_ep *ep, 291 struct usb_request *req, gfp_t gfp_flags) 292 { 293 int ret = 0; 294 295 if (!ep->enabled && ep->address) { 296 pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n", 297 ep->address, ep->name); 298 ret = -ESHUTDOWN; 299 goto out; 300 } 301 302 ret = ep->ops->queue(ep, req, gfp_flags); 303 304 out: 305 trace_usb_ep_queue(ep, req, ret); 306 307 return ret; 308 } 309 EXPORT_SYMBOL_GPL(usb_ep_queue); 310 311 /** 312 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 313 * @ep:the endpoint associated with the request 314 * @req:the request being canceled 315 * 316 * If the request is still active on the endpoint, it is dequeued and 317 * eventually its completion routine is called (with status -ECONNRESET); 318 * else a negative error code is returned. This routine is asynchronous, 319 * that is, it may return before the completion routine runs. 320 * 321 * Note that some hardware can't clear out write fifos (to unlink the request 322 * at the head of the queue) except as part of disconnecting from usb. Such 323 * restrictions prevent drivers from supporting configuration changes, 324 * even to configuration zero (a "chapter 9" requirement). 325 * 326 * This routine may be called in interrupt context. 327 */ 328 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 329 { 330 int ret; 331 332 ret = ep->ops->dequeue(ep, req); 333 trace_usb_ep_dequeue(ep, req, ret); 334 335 return ret; 336 } 337 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 338 339 /** 340 * usb_ep_set_halt - sets the endpoint halt feature. 341 * @ep: the non-isochronous endpoint being stalled 342 * 343 * Use this to stall an endpoint, perhaps as an error report. 344 * Except for control endpoints, 345 * the endpoint stays halted (will not stream any data) until the host 346 * clears this feature; drivers may need to empty the endpoint's request 347 * queue first, to make sure no inappropriate transfers happen. 348 * 349 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 350 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 351 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 352 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 353 * 354 * This routine may be called in interrupt context. 355 * 356 * Returns zero, or a negative error code. On success, this call sets 357 * underlying hardware state that blocks data transfers. 358 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 359 * transfer requests are still queued, or if the controller hardware 360 * (usually a FIFO) still holds bytes that the host hasn't collected. 361 */ 362 int usb_ep_set_halt(struct usb_ep *ep) 363 { 364 int ret; 365 366 ret = ep->ops->set_halt(ep, 1); 367 trace_usb_ep_set_halt(ep, ret); 368 369 return ret; 370 } 371 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 372 373 /** 374 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 375 * @ep:the bulk or interrupt endpoint being reset 376 * 377 * Use this when responding to the standard usb "set interface" request, 378 * for endpoints that aren't reconfigured, after clearing any other state 379 * in the endpoint's i/o queue. 380 * 381 * This routine may be called in interrupt context. 382 * 383 * Returns zero, or a negative error code. On success, this call clears 384 * the underlying hardware state reflecting endpoint halt and data toggle. 385 * Note that some hardware can't support this request (like pxa2xx_udc), 386 * and accordingly can't correctly implement interface altsettings. 387 */ 388 int usb_ep_clear_halt(struct usb_ep *ep) 389 { 390 int ret; 391 392 ret = ep->ops->set_halt(ep, 0); 393 trace_usb_ep_clear_halt(ep, ret); 394 395 return ret; 396 } 397 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 398 399 /** 400 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 401 * @ep: the endpoint being wedged 402 * 403 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 404 * requests. If the gadget driver clears the halt status, it will 405 * automatically unwedge the endpoint. 406 * 407 * This routine may be called in interrupt context. 408 * 409 * Returns zero on success, else negative errno. 410 */ 411 int usb_ep_set_wedge(struct usb_ep *ep) 412 { 413 int ret; 414 415 if (ep->ops->set_wedge) 416 ret = ep->ops->set_wedge(ep); 417 else 418 ret = ep->ops->set_halt(ep, 1); 419 420 trace_usb_ep_set_wedge(ep, ret); 421 422 return ret; 423 } 424 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 425 426 /** 427 * usb_ep_fifo_status - returns number of bytes in fifo, or error 428 * @ep: the endpoint whose fifo status is being checked. 429 * 430 * FIFO endpoints may have "unclaimed data" in them in certain cases, 431 * such as after aborted transfers. Hosts may not have collected all 432 * the IN data written by the gadget driver (and reported by a request 433 * completion). The gadget driver may not have collected all the data 434 * written OUT to it by the host. Drivers that need precise handling for 435 * fault reporting or recovery may need to use this call. 436 * 437 * This routine may be called in interrupt context. 438 * 439 * This returns the number of such bytes in the fifo, or a negative 440 * errno if the endpoint doesn't use a FIFO or doesn't support such 441 * precise handling. 442 */ 443 int usb_ep_fifo_status(struct usb_ep *ep) 444 { 445 int ret; 446 447 if (ep->ops->fifo_status) 448 ret = ep->ops->fifo_status(ep); 449 else 450 ret = -EOPNOTSUPP; 451 452 trace_usb_ep_fifo_status(ep, ret); 453 454 return ret; 455 } 456 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 457 458 /** 459 * usb_ep_fifo_flush - flushes contents of a fifo 460 * @ep: the endpoint whose fifo is being flushed. 461 * 462 * This call may be used to flush the "unclaimed data" that may exist in 463 * an endpoint fifo after abnormal transaction terminations. The call 464 * must never be used except when endpoint is not being used for any 465 * protocol translation. 466 * 467 * This routine may be called in interrupt context. 468 */ 469 void usb_ep_fifo_flush(struct usb_ep *ep) 470 { 471 if (ep->ops->fifo_flush) 472 ep->ops->fifo_flush(ep); 473 474 trace_usb_ep_fifo_flush(ep, 0); 475 } 476 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 477 478 /* ------------------------------------------------------------------------- */ 479 480 /** 481 * usb_gadget_frame_number - returns the current frame number 482 * @gadget: controller that reports the frame number 483 * 484 * Returns the usb frame number, normally eleven bits from a SOF packet, 485 * or negative errno if this device doesn't support this capability. 486 */ 487 int usb_gadget_frame_number(struct usb_gadget *gadget) 488 { 489 int ret; 490 491 ret = gadget->ops->get_frame(gadget); 492 493 trace_usb_gadget_frame_number(gadget, ret); 494 495 return ret; 496 } 497 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 498 499 /** 500 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 501 * @gadget: controller used to wake up the host 502 * 503 * Returns zero on success, else negative error code if the hardware 504 * doesn't support such attempts, or its support has not been enabled 505 * by the usb host. Drivers must return device descriptors that report 506 * their ability to support this, or hosts won't enable it. 507 * 508 * This may also try to use SRP to wake the host and start enumeration, 509 * even if OTG isn't otherwise in use. OTG devices may also start 510 * remote wakeup even when hosts don't explicitly enable it. 511 */ 512 int usb_gadget_wakeup(struct usb_gadget *gadget) 513 { 514 int ret = 0; 515 516 if (!gadget->ops->wakeup) { 517 ret = -EOPNOTSUPP; 518 goto out; 519 } 520 521 ret = gadget->ops->wakeup(gadget); 522 523 out: 524 trace_usb_gadget_wakeup(gadget, ret); 525 526 return ret; 527 } 528 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 529 530 /** 531 * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature. 532 * @gadget:the device being configured for remote wakeup 533 * @set:value to be configured. 534 * 535 * set to one to enable remote wakeup feature and zero to disable it. 536 * 537 * returns zero on success, else negative errno. 538 */ 539 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) 540 { 541 int ret = 0; 542 543 if (!gadget->ops->set_remote_wakeup) { 544 ret = -EOPNOTSUPP; 545 goto out; 546 } 547 548 ret = gadget->ops->set_remote_wakeup(gadget, set); 549 550 out: 551 trace_usb_gadget_set_remote_wakeup(gadget, ret); 552 553 return ret; 554 } 555 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup); 556 557 /** 558 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 559 * @gadget:the device being declared as self-powered 560 * 561 * this affects the device status reported by the hardware driver 562 * to reflect that it now has a local power supply. 563 * 564 * returns zero on success, else negative errno. 565 */ 566 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 567 { 568 int ret = 0; 569 570 if (!gadget->ops->set_selfpowered) { 571 ret = -EOPNOTSUPP; 572 goto out; 573 } 574 575 ret = gadget->ops->set_selfpowered(gadget, 1); 576 577 out: 578 trace_usb_gadget_set_selfpowered(gadget, ret); 579 580 return ret; 581 } 582 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 583 584 /** 585 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 586 * @gadget:the device being declared as bus-powered 587 * 588 * this affects the device status reported by the hardware driver. 589 * some hardware may not support bus-powered operation, in which 590 * case this feature's value can never change. 591 * 592 * returns zero on success, else negative errno. 593 */ 594 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 595 { 596 int ret = 0; 597 598 if (!gadget->ops->set_selfpowered) { 599 ret = -EOPNOTSUPP; 600 goto out; 601 } 602 603 ret = gadget->ops->set_selfpowered(gadget, 0); 604 605 out: 606 trace_usb_gadget_clear_selfpowered(gadget, ret); 607 608 return ret; 609 } 610 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 611 612 /** 613 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 614 * @gadget:The device which now has VBUS power. 615 * Context: can sleep 616 * 617 * This call is used by a driver for an external transceiver (or GPIO) 618 * that detects a VBUS power session starting. Common responses include 619 * resuming the controller, activating the D+ (or D-) pullup to let the 620 * host detect that a USB device is attached, and starting to draw power 621 * (8mA or possibly more, especially after SET_CONFIGURATION). 622 * 623 * Returns zero on success, else negative errno. 624 */ 625 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 626 { 627 int ret = 0; 628 629 if (!gadget->ops->vbus_session) { 630 ret = -EOPNOTSUPP; 631 goto out; 632 } 633 634 ret = gadget->ops->vbus_session(gadget, 1); 635 636 out: 637 trace_usb_gadget_vbus_connect(gadget, ret); 638 639 return ret; 640 } 641 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 642 643 /** 644 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 645 * @gadget:The device whose VBUS usage is being described 646 * @mA:How much current to draw, in milliAmperes. This should be twice 647 * the value listed in the configuration descriptor bMaxPower field. 648 * 649 * This call is used by gadget drivers during SET_CONFIGURATION calls, 650 * reporting how much power the device may consume. For example, this 651 * could affect how quickly batteries are recharged. 652 * 653 * Returns zero on success, else negative errno. 654 */ 655 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 656 { 657 int ret = 0; 658 659 if (!gadget->ops->vbus_draw) { 660 ret = -EOPNOTSUPP; 661 goto out; 662 } 663 664 ret = gadget->ops->vbus_draw(gadget, mA); 665 if (!ret) 666 gadget->mA = mA; 667 668 out: 669 trace_usb_gadget_vbus_draw(gadget, ret); 670 671 return ret; 672 } 673 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 674 675 /** 676 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 677 * @gadget:the device whose VBUS supply is being described 678 * Context: can sleep 679 * 680 * This call is used by a driver for an external transceiver (or GPIO) 681 * that detects a VBUS power session ending. Common responses include 682 * reversing everything done in usb_gadget_vbus_connect(). 683 * 684 * Returns zero on success, else negative errno. 685 */ 686 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 687 { 688 int ret = 0; 689 690 if (!gadget->ops->vbus_session) { 691 ret = -EOPNOTSUPP; 692 goto out; 693 } 694 695 ret = gadget->ops->vbus_session(gadget, 0); 696 697 out: 698 trace_usb_gadget_vbus_disconnect(gadget, ret); 699 700 return ret; 701 } 702 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 703 704 static int usb_gadget_connect_locked(struct usb_gadget *gadget) 705 __must_hold(&gadget->udc->connect_lock) 706 { 707 int ret = 0; 708 709 if (!gadget->ops->pullup) { 710 ret = -EOPNOTSUPP; 711 goto out; 712 } 713 714 if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) { 715 /* 716 * If the gadget isn't usable (because it is deactivated, 717 * unbound, or not yet started), we only save the new state. 718 * The gadget will be connected automatically when it is 719 * activated/bound/started. 720 */ 721 gadget->connected = true; 722 goto out; 723 } 724 725 ret = gadget->ops->pullup(gadget, 1); 726 if (!ret) 727 gadget->connected = 1; 728 729 out: 730 trace_usb_gadget_connect(gadget, ret); 731 732 return ret; 733 } 734 735 /** 736 * usb_gadget_connect - software-controlled connect to USB host 737 * @gadget:the peripheral being connected 738 * 739 * Enables the D+ (or potentially D-) pullup. The host will start 740 * enumerating this gadget when the pullup is active and a VBUS session 741 * is active (the link is powered). 742 * 743 * Returns zero on success, else negative errno. 744 */ 745 int usb_gadget_connect(struct usb_gadget *gadget) 746 { 747 int ret; 748 749 mutex_lock(&gadget->udc->connect_lock); 750 ret = usb_gadget_connect_locked(gadget); 751 mutex_unlock(&gadget->udc->connect_lock); 752 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(usb_gadget_connect); 756 757 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget) 758 __must_hold(&gadget->udc->connect_lock) 759 { 760 int ret = 0; 761 762 if (!gadget->ops->pullup) { 763 ret = -EOPNOTSUPP; 764 goto out; 765 } 766 767 if (!gadget->connected) 768 goto out; 769 770 if (gadget->deactivated || !gadget->udc->started) { 771 /* 772 * If gadget is deactivated we only save new state. 773 * Gadget will stay disconnected after activation. 774 */ 775 gadget->connected = false; 776 goto out; 777 } 778 779 ret = gadget->ops->pullup(gadget, 0); 780 if (!ret) 781 gadget->connected = 0; 782 783 mutex_lock(&udc_lock); 784 if (gadget->udc->driver) 785 gadget->udc->driver->disconnect(gadget); 786 mutex_unlock(&udc_lock); 787 788 out: 789 trace_usb_gadget_disconnect(gadget, ret); 790 791 return ret; 792 } 793 794 /** 795 * usb_gadget_disconnect - software-controlled disconnect from USB host 796 * @gadget:the peripheral being disconnected 797 * 798 * Disables the D+ (or potentially D-) pullup, which the host may see 799 * as a disconnect (when a VBUS session is active). Not all systems 800 * support software pullup controls. 801 * 802 * Following a successful disconnect, invoke the ->disconnect() callback 803 * for the current gadget driver so that UDC drivers don't need to. 804 * 805 * Returns zero on success, else negative errno. 806 */ 807 int usb_gadget_disconnect(struct usb_gadget *gadget) 808 { 809 int ret; 810 811 mutex_lock(&gadget->udc->connect_lock); 812 ret = usb_gadget_disconnect_locked(gadget); 813 mutex_unlock(&gadget->udc->connect_lock); 814 815 return ret; 816 } 817 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 818 819 /** 820 * usb_gadget_deactivate - deactivate function which is not ready to work 821 * @gadget: the peripheral being deactivated 822 * 823 * This routine may be used during the gadget driver bind() call to prevent 824 * the peripheral from ever being visible to the USB host, unless later 825 * usb_gadget_activate() is called. For example, user mode components may 826 * need to be activated before the system can talk to hosts. 827 * 828 * This routine may sleep; it must not be called in interrupt context 829 * (such as from within a gadget driver's disconnect() callback). 830 * 831 * Returns zero on success, else negative errno. 832 */ 833 int usb_gadget_deactivate(struct usb_gadget *gadget) 834 { 835 int ret = 0; 836 837 mutex_lock(&gadget->udc->connect_lock); 838 if (gadget->deactivated) 839 goto unlock; 840 841 if (gadget->connected) { 842 ret = usb_gadget_disconnect_locked(gadget); 843 if (ret) 844 goto unlock; 845 846 /* 847 * If gadget was being connected before deactivation, we want 848 * to reconnect it in usb_gadget_activate(). 849 */ 850 gadget->connected = true; 851 } 852 gadget->deactivated = true; 853 854 unlock: 855 mutex_unlock(&gadget->udc->connect_lock); 856 trace_usb_gadget_deactivate(gadget, ret); 857 858 return ret; 859 } 860 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 861 862 /** 863 * usb_gadget_activate - activate function which is not ready to work 864 * @gadget: the peripheral being activated 865 * 866 * This routine activates gadget which was previously deactivated with 867 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 868 * 869 * This routine may sleep; it must not be called in interrupt context. 870 * 871 * Returns zero on success, else negative errno. 872 */ 873 int usb_gadget_activate(struct usb_gadget *gadget) 874 { 875 int ret = 0; 876 877 mutex_lock(&gadget->udc->connect_lock); 878 if (!gadget->deactivated) 879 goto unlock; 880 881 gadget->deactivated = false; 882 883 /* 884 * If gadget has been connected before deactivation, or became connected 885 * while it was being deactivated, we call usb_gadget_connect(). 886 */ 887 if (gadget->connected) 888 ret = usb_gadget_connect_locked(gadget); 889 890 unlock: 891 mutex_unlock(&gadget->udc->connect_lock); 892 trace_usb_gadget_activate(gadget, ret); 893 894 return ret; 895 } 896 EXPORT_SYMBOL_GPL(usb_gadget_activate); 897 898 /* ------------------------------------------------------------------------- */ 899 900 #ifdef CONFIG_HAS_DMA 901 902 int usb_gadget_map_request_by_dev(struct device *dev, 903 struct usb_request *req, int is_in) 904 { 905 if (req->length == 0) 906 return 0; 907 908 if (req->sg_was_mapped) { 909 req->num_mapped_sgs = req->num_sgs; 910 return 0; 911 } 912 913 if (req->num_sgs) { 914 int mapped; 915 916 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 917 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 918 if (mapped == 0) { 919 dev_err(dev, "failed to map SGs\n"); 920 return -EFAULT; 921 } 922 923 req->num_mapped_sgs = mapped; 924 } else { 925 if (is_vmalloc_addr(req->buf)) { 926 dev_err(dev, "buffer is not dma capable\n"); 927 return -EFAULT; 928 } else if (object_is_on_stack(req->buf)) { 929 dev_err(dev, "buffer is on stack\n"); 930 return -EFAULT; 931 } 932 933 req->dma = dma_map_single(dev, req->buf, req->length, 934 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 935 936 if (dma_mapping_error(dev, req->dma)) { 937 dev_err(dev, "failed to map buffer\n"); 938 return -EFAULT; 939 } 940 941 req->dma_mapped = 1; 942 } 943 944 return 0; 945 } 946 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 947 948 int usb_gadget_map_request(struct usb_gadget *gadget, 949 struct usb_request *req, int is_in) 950 { 951 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 952 } 953 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 954 955 void usb_gadget_unmap_request_by_dev(struct device *dev, 956 struct usb_request *req, int is_in) 957 { 958 if (req->length == 0 || req->sg_was_mapped) 959 return; 960 961 if (req->num_mapped_sgs) { 962 dma_unmap_sg(dev, req->sg, req->num_sgs, 963 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 964 965 req->num_mapped_sgs = 0; 966 } else if (req->dma_mapped) { 967 dma_unmap_single(dev, req->dma, req->length, 968 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 969 req->dma_mapped = 0; 970 } 971 } 972 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 973 974 void usb_gadget_unmap_request(struct usb_gadget *gadget, 975 struct usb_request *req, int is_in) 976 { 977 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 978 } 979 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 980 981 #endif /* CONFIG_HAS_DMA */ 982 983 /* ------------------------------------------------------------------------- */ 984 985 /** 986 * usb_gadget_giveback_request - give the request back to the gadget layer 987 * @ep: the endpoint to be used with with the request 988 * @req: the request being given back 989 * 990 * This is called by device controller drivers in order to return the 991 * completed request back to the gadget layer. 992 */ 993 void usb_gadget_giveback_request(struct usb_ep *ep, 994 struct usb_request *req) 995 { 996 if (likely(req->status == 0)) 997 usb_led_activity(USB_LED_EVENT_GADGET); 998 999 trace_usb_gadget_giveback_request(ep, req, 0); 1000 1001 req->complete(ep, req); 1002 } 1003 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 1004 1005 /* ------------------------------------------------------------------------- */ 1006 1007 /** 1008 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 1009 * in second parameter or NULL if searched endpoint not found 1010 * @g: controller to check for quirk 1011 * @name: name of searched endpoint 1012 */ 1013 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 1014 { 1015 struct usb_ep *ep; 1016 1017 gadget_for_each_ep(ep, g) { 1018 if (!strcmp(ep->name, name)) 1019 return ep; 1020 } 1021 1022 return NULL; 1023 } 1024 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 1025 1026 /* ------------------------------------------------------------------------- */ 1027 1028 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 1029 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 1030 struct usb_ss_ep_comp_descriptor *ep_comp) 1031 { 1032 u8 type; 1033 u16 max; 1034 int num_req_streams = 0; 1035 1036 /* endpoint already claimed? */ 1037 if (ep->claimed) 1038 return 0; 1039 1040 type = usb_endpoint_type(desc); 1041 max = usb_endpoint_maxp(desc); 1042 1043 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 1044 return 0; 1045 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 1046 return 0; 1047 1048 if (max > ep->maxpacket_limit) 1049 return 0; 1050 1051 /* "high bandwidth" works only at high speed */ 1052 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 1053 return 0; 1054 1055 switch (type) { 1056 case USB_ENDPOINT_XFER_CONTROL: 1057 /* only support ep0 for portable CONTROL traffic */ 1058 return 0; 1059 case USB_ENDPOINT_XFER_ISOC: 1060 if (!ep->caps.type_iso) 1061 return 0; 1062 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 1063 if (!gadget_is_dualspeed(gadget) && max > 1023) 1064 return 0; 1065 break; 1066 case USB_ENDPOINT_XFER_BULK: 1067 if (!ep->caps.type_bulk) 1068 return 0; 1069 if (ep_comp && gadget_is_superspeed(gadget)) { 1070 /* Get the number of required streams from the 1071 * EP companion descriptor and see if the EP 1072 * matches it 1073 */ 1074 num_req_streams = ep_comp->bmAttributes & 0x1f; 1075 if (num_req_streams > ep->max_streams) 1076 return 0; 1077 } 1078 break; 1079 case USB_ENDPOINT_XFER_INT: 1080 /* Bulk endpoints handle interrupt transfers, 1081 * except the toggle-quirky iso-synch kind 1082 */ 1083 if (!ep->caps.type_int && !ep->caps.type_bulk) 1084 return 0; 1085 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 1086 if (!gadget_is_dualspeed(gadget) && max > 64) 1087 return 0; 1088 break; 1089 } 1090 1091 return 1; 1092 } 1093 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1094 1095 /** 1096 * usb_gadget_check_config - checks if the UDC can support the binded 1097 * configuration 1098 * @gadget: controller to check the USB configuration 1099 * 1100 * Ensure that a UDC is able to support the requested resources by a 1101 * configuration, and that there are no resource limitations, such as 1102 * internal memory allocated to all requested endpoints. 1103 * 1104 * Returns zero on success, else a negative errno. 1105 */ 1106 int usb_gadget_check_config(struct usb_gadget *gadget) 1107 { 1108 if (gadget->ops->check_config) 1109 return gadget->ops->check_config(gadget); 1110 return 0; 1111 } 1112 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1113 1114 /* ------------------------------------------------------------------------- */ 1115 1116 static void usb_gadget_state_work(struct work_struct *work) 1117 { 1118 struct usb_gadget *gadget = work_to_gadget(work); 1119 struct usb_udc *udc = gadget->udc; 1120 1121 if (udc) 1122 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1123 } 1124 1125 void usb_gadget_set_state(struct usb_gadget *gadget, 1126 enum usb_device_state state) 1127 { 1128 gadget->state = state; 1129 schedule_work(&gadget->work); 1130 } 1131 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1132 1133 /* ------------------------------------------------------------------------- */ 1134 1135 /* Acquire connect_lock before calling this function. */ 1136 static int usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock) 1137 { 1138 if (udc->vbus) 1139 return usb_gadget_connect_locked(udc->gadget); 1140 else 1141 return usb_gadget_disconnect_locked(udc->gadget); 1142 } 1143 1144 static void vbus_event_work(struct work_struct *work) 1145 { 1146 struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work); 1147 1148 mutex_lock(&udc->connect_lock); 1149 usb_udc_connect_control_locked(udc); 1150 mutex_unlock(&udc->connect_lock); 1151 } 1152 1153 /** 1154 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1155 * connect or disconnect gadget 1156 * @gadget: The gadget which vbus change occurs 1157 * @status: The vbus status 1158 * 1159 * The udc driver calls it when it wants to connect or disconnect gadget 1160 * according to vbus status. 1161 * 1162 * This function can be invoked from interrupt context by irq handlers of 1163 * the gadget drivers, however, usb_udc_connect_control() has to run in 1164 * non-atomic context due to the following: 1165 * a. Some of the gadget driver implementations expect the ->pullup 1166 * callback to be invoked in non-atomic context. 1167 * b. usb_gadget_disconnect() acquires udc_lock which is a mutex. 1168 * Hence offload invocation of usb_udc_connect_control() to workqueue. 1169 */ 1170 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1171 { 1172 struct usb_udc *udc = gadget->udc; 1173 1174 if (udc) { 1175 udc->vbus = status; 1176 schedule_work(&udc->vbus_work); 1177 } 1178 } 1179 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1180 1181 /** 1182 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1183 * @gadget: The gadget which bus reset occurs 1184 * @driver: The gadget driver we want to notify 1185 * 1186 * If the udc driver has bus reset handler, it needs to call this when the bus 1187 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1188 * well as updates gadget state. 1189 */ 1190 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1191 struct usb_gadget_driver *driver) 1192 { 1193 driver->reset(gadget); 1194 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1195 } 1196 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1197 1198 /** 1199 * usb_gadget_udc_start_locked - tells usb device controller to start up 1200 * @udc: The UDC to be started 1201 * 1202 * This call is issued by the UDC Class driver when it's about 1203 * to register a gadget driver to the device controller, before 1204 * calling gadget driver's bind() method. 1205 * 1206 * It allows the controller to be powered off until strictly 1207 * necessary to have it powered on. 1208 * 1209 * Returns zero on success, else negative errno. 1210 * 1211 * Caller should acquire connect_lock before invoking this function. 1212 */ 1213 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc) 1214 __must_hold(&udc->connect_lock) 1215 { 1216 int ret; 1217 1218 if (udc->started) { 1219 dev_err(&udc->dev, "UDC had already started\n"); 1220 return -EBUSY; 1221 } 1222 1223 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1224 if (!ret) 1225 udc->started = true; 1226 1227 return ret; 1228 } 1229 1230 /** 1231 * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore 1232 * @udc: The UDC to be stopped 1233 * 1234 * This call is issued by the UDC Class driver after calling 1235 * gadget driver's unbind() method. 1236 * 1237 * The details are implementation specific, but it can go as 1238 * far as powering off UDC completely and disable its data 1239 * line pullups. 1240 * 1241 * Caller should acquire connect lock before invoking this function. 1242 */ 1243 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc) 1244 __must_hold(&udc->connect_lock) 1245 { 1246 if (!udc->started) { 1247 dev_err(&udc->dev, "UDC had already stopped\n"); 1248 return; 1249 } 1250 1251 udc->gadget->ops->udc_stop(udc->gadget); 1252 udc->started = false; 1253 } 1254 1255 /** 1256 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1257 * current driver 1258 * @udc: The device we want to set maximum speed 1259 * @speed: The maximum speed to allowed to run 1260 * 1261 * This call is issued by the UDC Class driver before calling 1262 * usb_gadget_udc_start() in order to make sure that we don't try to 1263 * connect on speeds the gadget driver doesn't support. 1264 */ 1265 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1266 enum usb_device_speed speed) 1267 { 1268 struct usb_gadget *gadget = udc->gadget; 1269 enum usb_device_speed s; 1270 1271 if (speed == USB_SPEED_UNKNOWN) 1272 s = gadget->max_speed; 1273 else 1274 s = min(speed, gadget->max_speed); 1275 1276 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1277 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1278 else if (gadget->ops->udc_set_speed) 1279 gadget->ops->udc_set_speed(gadget, s); 1280 } 1281 1282 /** 1283 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1284 * @udc: The UDC which should enable async callbacks 1285 * 1286 * This routine is used when binding gadget drivers. It undoes the effect 1287 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1288 * (if necessary) and resume issuing callbacks. 1289 * 1290 * This routine will always be called in process context. 1291 */ 1292 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1293 { 1294 struct usb_gadget *gadget = udc->gadget; 1295 1296 if (gadget->ops->udc_async_callbacks) 1297 gadget->ops->udc_async_callbacks(gadget, true); 1298 } 1299 1300 /** 1301 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1302 * @udc: The UDC which should disable async callbacks 1303 * 1304 * This routine is used when unbinding gadget drivers. It prevents a race: 1305 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1306 * runs, so unless it is told to disable asynchronous callbacks, it might 1307 * issue a callback (such as ->disconnect) after the unbind has completed. 1308 * 1309 * After this function runs, the UDC driver must suppress all ->suspend, 1310 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1311 * until async callbacks are again enabled. A simple-minded but effective 1312 * way to accomplish this is to tell the UDC hardware not to generate any 1313 * more IRQs. 1314 * 1315 * Request completion callbacks must still be issued. However, it's okay 1316 * to defer them until the request is cancelled, since the pull-up will be 1317 * turned off during the time period when async callbacks are disabled. 1318 * 1319 * This routine will always be called in process context. 1320 */ 1321 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1322 { 1323 struct usb_gadget *gadget = udc->gadget; 1324 1325 if (gadget->ops->udc_async_callbacks) 1326 gadget->ops->udc_async_callbacks(gadget, false); 1327 } 1328 1329 /** 1330 * usb_udc_release - release the usb_udc struct 1331 * @dev: the dev member within usb_udc 1332 * 1333 * This is called by driver's core in order to free memory once the last 1334 * reference is released. 1335 */ 1336 static void usb_udc_release(struct device *dev) 1337 { 1338 struct usb_udc *udc; 1339 1340 udc = container_of(dev, struct usb_udc, dev); 1341 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1342 kfree(udc); 1343 } 1344 1345 static const struct attribute_group *usb_udc_attr_groups[]; 1346 1347 static void usb_udc_nop_release(struct device *dev) 1348 { 1349 dev_vdbg(dev, "%s\n", __func__); 1350 } 1351 1352 /** 1353 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1354 * @parent: the parent device to this udc. Usually the controller driver's 1355 * device. 1356 * @gadget: the gadget to be initialized. 1357 * @release: a gadget release function. 1358 */ 1359 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1360 void (*release)(struct device *dev)) 1361 { 1362 INIT_WORK(&gadget->work, usb_gadget_state_work); 1363 gadget->dev.parent = parent; 1364 1365 if (release) 1366 gadget->dev.release = release; 1367 else 1368 gadget->dev.release = usb_udc_nop_release; 1369 1370 device_initialize(&gadget->dev); 1371 gadget->dev.bus = &gadget_bus_type; 1372 } 1373 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1374 1375 /** 1376 * usb_add_gadget - adds a new gadget to the udc class driver list 1377 * @gadget: the gadget to be added to the list. 1378 * 1379 * Returns zero on success, negative errno otherwise. 1380 * Does not do a final usb_put_gadget() if an error occurs. 1381 */ 1382 int usb_add_gadget(struct usb_gadget *gadget) 1383 { 1384 struct usb_udc *udc; 1385 int ret = -ENOMEM; 1386 1387 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1388 if (!udc) 1389 goto error; 1390 1391 device_initialize(&udc->dev); 1392 udc->dev.release = usb_udc_release; 1393 udc->dev.class = &udc_class; 1394 udc->dev.groups = usb_udc_attr_groups; 1395 udc->dev.parent = gadget->dev.parent; 1396 ret = dev_set_name(&udc->dev, "%s", 1397 kobject_name(&gadget->dev.parent->kobj)); 1398 if (ret) 1399 goto err_put_udc; 1400 1401 udc->gadget = gadget; 1402 gadget->udc = udc; 1403 mutex_init(&udc->connect_lock); 1404 1405 udc->started = false; 1406 1407 mutex_lock(&udc_lock); 1408 list_add_tail(&udc->list, &udc_list); 1409 mutex_unlock(&udc_lock); 1410 INIT_WORK(&udc->vbus_work, vbus_event_work); 1411 1412 ret = device_add(&udc->dev); 1413 if (ret) 1414 goto err_unlist_udc; 1415 1416 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1417 udc->vbus = true; 1418 1419 ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); 1420 if (ret < 0) 1421 goto err_del_udc; 1422 gadget->id_number = ret; 1423 dev_set_name(&gadget->dev, "gadget.%d", ret); 1424 1425 ret = device_add(&gadget->dev); 1426 if (ret) 1427 goto err_free_id; 1428 1429 ret = sysfs_create_link(&udc->dev.kobj, 1430 &gadget->dev.kobj, "gadget"); 1431 if (ret) 1432 goto err_del_gadget; 1433 1434 return 0; 1435 1436 err_del_gadget: 1437 device_del(&gadget->dev); 1438 1439 err_free_id: 1440 ida_free(&gadget_id_numbers, gadget->id_number); 1441 1442 err_del_udc: 1443 flush_work(&gadget->work); 1444 device_del(&udc->dev); 1445 1446 err_unlist_udc: 1447 mutex_lock(&udc_lock); 1448 list_del(&udc->list); 1449 mutex_unlock(&udc_lock); 1450 1451 err_put_udc: 1452 put_device(&udc->dev); 1453 1454 error: 1455 return ret; 1456 } 1457 EXPORT_SYMBOL_GPL(usb_add_gadget); 1458 1459 /** 1460 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1461 * @parent: the parent device to this udc. Usually the controller driver's 1462 * device. 1463 * @gadget: the gadget to be added to the list. 1464 * @release: a gadget release function. 1465 * 1466 * Returns zero on success, negative errno otherwise. 1467 * Calls the gadget release function in the latter case. 1468 */ 1469 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1470 void (*release)(struct device *dev)) 1471 { 1472 int ret; 1473 1474 usb_initialize_gadget(parent, gadget, release); 1475 ret = usb_add_gadget(gadget); 1476 if (ret) 1477 usb_put_gadget(gadget); 1478 return ret; 1479 } 1480 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1481 1482 /** 1483 * usb_get_gadget_udc_name - get the name of the first UDC controller 1484 * This functions returns the name of the first UDC controller in the system. 1485 * Please note that this interface is usefull only for legacy drivers which 1486 * assume that there is only one UDC controller in the system and they need to 1487 * get its name before initialization. There is no guarantee that the UDC 1488 * of the returned name will be still available, when gadget driver registers 1489 * itself. 1490 * 1491 * Returns pointer to string with UDC controller name on success, NULL 1492 * otherwise. Caller should kfree() returned string. 1493 */ 1494 char *usb_get_gadget_udc_name(void) 1495 { 1496 struct usb_udc *udc; 1497 char *name = NULL; 1498 1499 /* For now we take the first available UDC */ 1500 mutex_lock(&udc_lock); 1501 list_for_each_entry(udc, &udc_list, list) { 1502 if (!udc->driver) { 1503 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1504 break; 1505 } 1506 } 1507 mutex_unlock(&udc_lock); 1508 return name; 1509 } 1510 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1511 1512 /** 1513 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1514 * @parent: the parent device to this udc. Usually the controller 1515 * driver's device. 1516 * @gadget: the gadget to be added to the list 1517 * 1518 * Returns zero on success, negative errno otherwise. 1519 */ 1520 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1521 { 1522 return usb_add_gadget_udc_release(parent, gadget, NULL); 1523 } 1524 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1525 1526 /** 1527 * usb_del_gadget - deletes a gadget and unregisters its udc 1528 * @gadget: the gadget to be deleted. 1529 * 1530 * This will unbind @gadget, if it is bound. 1531 * It will not do a final usb_put_gadget(). 1532 */ 1533 void usb_del_gadget(struct usb_gadget *gadget) 1534 { 1535 struct usb_udc *udc = gadget->udc; 1536 1537 if (!udc) 1538 return; 1539 1540 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1541 1542 mutex_lock(&udc_lock); 1543 list_del(&udc->list); 1544 mutex_unlock(&udc_lock); 1545 1546 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1547 sysfs_remove_link(&udc->dev.kobj, "gadget"); 1548 flush_work(&gadget->work); 1549 device_del(&gadget->dev); 1550 ida_free(&gadget_id_numbers, gadget->id_number); 1551 cancel_work_sync(&udc->vbus_work); 1552 device_unregister(&udc->dev); 1553 } 1554 EXPORT_SYMBOL_GPL(usb_del_gadget); 1555 1556 /** 1557 * usb_del_gadget_udc - unregisters a gadget 1558 * @gadget: the gadget to be unregistered. 1559 * 1560 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1561 */ 1562 void usb_del_gadget_udc(struct usb_gadget *gadget) 1563 { 1564 usb_del_gadget(gadget); 1565 usb_put_gadget(gadget); 1566 } 1567 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1568 1569 /* ------------------------------------------------------------------------- */ 1570 1571 static int gadget_match_driver(struct device *dev, struct device_driver *drv) 1572 { 1573 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1574 struct usb_udc *udc = gadget->udc; 1575 struct usb_gadget_driver *driver = container_of(drv, 1576 struct usb_gadget_driver, driver); 1577 1578 /* If the driver specifies a udc_name, it must match the UDC's name */ 1579 if (driver->udc_name && 1580 strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) 1581 return 0; 1582 1583 /* If the driver is already bound to a gadget, it doesn't match */ 1584 if (driver->is_bound) 1585 return 0; 1586 1587 /* Otherwise any gadget driver matches any UDC */ 1588 return 1; 1589 } 1590 1591 static int gadget_bind_driver(struct device *dev) 1592 { 1593 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1594 struct usb_udc *udc = gadget->udc; 1595 struct usb_gadget_driver *driver = container_of(dev->driver, 1596 struct usb_gadget_driver, driver); 1597 int ret = 0; 1598 1599 mutex_lock(&udc_lock); 1600 if (driver->is_bound) { 1601 mutex_unlock(&udc_lock); 1602 return -ENXIO; /* Driver binds to only one gadget */ 1603 } 1604 driver->is_bound = true; 1605 udc->driver = driver; 1606 mutex_unlock(&udc_lock); 1607 1608 dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); 1609 1610 usb_gadget_udc_set_speed(udc, driver->max_speed); 1611 1612 ret = driver->bind(udc->gadget, driver); 1613 if (ret) 1614 goto err_bind; 1615 1616 mutex_lock(&udc->connect_lock); 1617 ret = usb_gadget_udc_start_locked(udc); 1618 if (ret) { 1619 mutex_unlock(&udc->connect_lock); 1620 goto err_start; 1621 } 1622 usb_gadget_enable_async_callbacks(udc); 1623 udc->allow_connect = true; 1624 ret = usb_udc_connect_control_locked(udc); 1625 if (ret) 1626 goto err_connect_control; 1627 1628 mutex_unlock(&udc->connect_lock); 1629 1630 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1631 return 0; 1632 1633 err_connect_control: 1634 udc->allow_connect = false; 1635 usb_gadget_disable_async_callbacks(udc); 1636 if (gadget->irq) 1637 synchronize_irq(gadget->irq); 1638 usb_gadget_udc_stop_locked(udc); 1639 mutex_unlock(&udc->connect_lock); 1640 1641 err_start: 1642 driver->unbind(udc->gadget); 1643 1644 err_bind: 1645 if (ret != -EISNAM) 1646 dev_err(&udc->dev, "failed to start %s: %d\n", 1647 driver->function, ret); 1648 1649 mutex_lock(&udc_lock); 1650 udc->driver = NULL; 1651 driver->is_bound = false; 1652 mutex_unlock(&udc_lock); 1653 1654 return ret; 1655 } 1656 1657 static void gadget_unbind_driver(struct device *dev) 1658 { 1659 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1660 struct usb_udc *udc = gadget->udc; 1661 struct usb_gadget_driver *driver = udc->driver; 1662 1663 dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); 1664 1665 udc->allow_connect = false; 1666 cancel_work_sync(&udc->vbus_work); 1667 mutex_lock(&udc->connect_lock); 1668 usb_gadget_disconnect_locked(gadget); 1669 usb_gadget_disable_async_callbacks(udc); 1670 if (gadget->irq) 1671 synchronize_irq(gadget->irq); 1672 mutex_unlock(&udc->connect_lock); 1673 1674 udc->driver->unbind(gadget); 1675 1676 mutex_lock(&udc->connect_lock); 1677 usb_gadget_udc_stop_locked(udc); 1678 mutex_unlock(&udc->connect_lock); 1679 1680 mutex_lock(&udc_lock); 1681 driver->is_bound = false; 1682 udc->driver = NULL; 1683 mutex_unlock(&udc_lock); 1684 1685 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1686 } 1687 1688 /* ------------------------------------------------------------------------- */ 1689 1690 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 1691 struct module *owner, const char *mod_name) 1692 { 1693 int ret; 1694 1695 if (!driver || !driver->bind || !driver->setup) 1696 return -EINVAL; 1697 1698 driver->driver.bus = &gadget_bus_type; 1699 driver->driver.owner = owner; 1700 driver->driver.mod_name = mod_name; 1701 ret = driver_register(&driver->driver); 1702 if (ret) { 1703 pr_warn("%s: driver registration failed: %d\n", 1704 driver->function, ret); 1705 return ret; 1706 } 1707 1708 mutex_lock(&udc_lock); 1709 if (!driver->is_bound) { 1710 if (driver->match_existing_only) { 1711 pr_warn("%s: couldn't find an available UDC or it's busy\n", 1712 driver->function); 1713 ret = -EBUSY; 1714 } else { 1715 pr_info("%s: couldn't find an available UDC\n", 1716 driver->function); 1717 ret = 0; 1718 } 1719 } 1720 mutex_unlock(&udc_lock); 1721 1722 if (ret) 1723 driver_unregister(&driver->driver); 1724 return ret; 1725 } 1726 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); 1727 1728 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1729 { 1730 if (!driver || !driver->unbind) 1731 return -EINVAL; 1732 1733 driver_unregister(&driver->driver); 1734 return 0; 1735 } 1736 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1737 1738 /* ------------------------------------------------------------------------- */ 1739 1740 static ssize_t srp_store(struct device *dev, 1741 struct device_attribute *attr, const char *buf, size_t n) 1742 { 1743 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1744 1745 if (sysfs_streq(buf, "1")) 1746 usb_gadget_wakeup(udc->gadget); 1747 1748 return n; 1749 } 1750 static DEVICE_ATTR_WO(srp); 1751 1752 static ssize_t soft_connect_store(struct device *dev, 1753 struct device_attribute *attr, const char *buf, size_t n) 1754 { 1755 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1756 ssize_t ret; 1757 1758 device_lock(&udc->gadget->dev); 1759 if (!udc->driver) { 1760 dev_err(dev, "soft-connect without a gadget driver\n"); 1761 ret = -EOPNOTSUPP; 1762 goto out; 1763 } 1764 1765 if (sysfs_streq(buf, "connect")) { 1766 mutex_lock(&udc->connect_lock); 1767 usb_gadget_udc_start_locked(udc); 1768 usb_gadget_connect_locked(udc->gadget); 1769 mutex_unlock(&udc->connect_lock); 1770 } else if (sysfs_streq(buf, "disconnect")) { 1771 mutex_lock(&udc->connect_lock); 1772 usb_gadget_disconnect_locked(udc->gadget); 1773 usb_gadget_udc_stop_locked(udc); 1774 mutex_unlock(&udc->connect_lock); 1775 } else { 1776 dev_err(dev, "unsupported command '%s'\n", buf); 1777 ret = -EINVAL; 1778 goto out; 1779 } 1780 1781 ret = n; 1782 out: 1783 device_unlock(&udc->gadget->dev); 1784 return ret; 1785 } 1786 static DEVICE_ATTR_WO(soft_connect); 1787 1788 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1789 char *buf) 1790 { 1791 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1792 struct usb_gadget *gadget = udc->gadget; 1793 1794 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1795 } 1796 static DEVICE_ATTR_RO(state); 1797 1798 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1799 char *buf) 1800 { 1801 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1802 struct usb_gadget_driver *drv; 1803 int rc = 0; 1804 1805 mutex_lock(&udc_lock); 1806 drv = udc->driver; 1807 if (drv && drv->function) 1808 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1809 mutex_unlock(&udc_lock); 1810 return rc; 1811 } 1812 static DEVICE_ATTR_RO(function); 1813 1814 #define USB_UDC_SPEED_ATTR(name, param) \ 1815 ssize_t name##_show(struct device *dev, \ 1816 struct device_attribute *attr, char *buf) \ 1817 { \ 1818 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1819 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1820 usb_speed_string(udc->gadget->param)); \ 1821 } \ 1822 static DEVICE_ATTR_RO(name) 1823 1824 static USB_UDC_SPEED_ATTR(current_speed, speed); 1825 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1826 1827 #define USB_UDC_ATTR(name) \ 1828 ssize_t name##_show(struct device *dev, \ 1829 struct device_attribute *attr, char *buf) \ 1830 { \ 1831 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1832 struct usb_gadget *gadget = udc->gadget; \ 1833 \ 1834 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1835 } \ 1836 static DEVICE_ATTR_RO(name) 1837 1838 static USB_UDC_ATTR(is_otg); 1839 static USB_UDC_ATTR(is_a_peripheral); 1840 static USB_UDC_ATTR(b_hnp_enable); 1841 static USB_UDC_ATTR(a_hnp_support); 1842 static USB_UDC_ATTR(a_alt_hnp_support); 1843 static USB_UDC_ATTR(is_selfpowered); 1844 1845 static struct attribute *usb_udc_attrs[] = { 1846 &dev_attr_srp.attr, 1847 &dev_attr_soft_connect.attr, 1848 &dev_attr_state.attr, 1849 &dev_attr_function.attr, 1850 &dev_attr_current_speed.attr, 1851 &dev_attr_maximum_speed.attr, 1852 1853 &dev_attr_is_otg.attr, 1854 &dev_attr_is_a_peripheral.attr, 1855 &dev_attr_b_hnp_enable.attr, 1856 &dev_attr_a_hnp_support.attr, 1857 &dev_attr_a_alt_hnp_support.attr, 1858 &dev_attr_is_selfpowered.attr, 1859 NULL, 1860 }; 1861 1862 static const struct attribute_group usb_udc_attr_group = { 1863 .attrs = usb_udc_attrs, 1864 }; 1865 1866 static const struct attribute_group *usb_udc_attr_groups[] = { 1867 &usb_udc_attr_group, 1868 NULL, 1869 }; 1870 1871 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) 1872 { 1873 const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1874 int ret; 1875 1876 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1877 if (ret) { 1878 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1879 return ret; 1880 } 1881 1882 mutex_lock(&udc_lock); 1883 if (udc->driver) 1884 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1885 udc->driver->function); 1886 mutex_unlock(&udc_lock); 1887 if (ret) { 1888 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1889 return ret; 1890 } 1891 1892 return 0; 1893 } 1894 1895 static const struct class udc_class = { 1896 .name = "udc", 1897 .dev_uevent = usb_udc_uevent, 1898 }; 1899 1900 static const struct bus_type gadget_bus_type = { 1901 .name = "gadget", 1902 .probe = gadget_bind_driver, 1903 .remove = gadget_unbind_driver, 1904 .match = gadget_match_driver, 1905 }; 1906 1907 static int __init usb_udc_init(void) 1908 { 1909 int rc; 1910 1911 rc = class_register(&udc_class); 1912 if (rc) 1913 return rc; 1914 1915 rc = bus_register(&gadget_bus_type); 1916 if (rc) 1917 class_unregister(&udc_class); 1918 return rc; 1919 } 1920 subsys_initcall(usb_udc_init); 1921 1922 static void __exit usb_udc_exit(void) 1923 { 1924 bus_unregister(&gadget_bus_type); 1925 class_unregister(&udc_class); 1926 } 1927 module_exit(usb_udc_exit); 1928 1929 MODULE_DESCRIPTION("UDC Framework"); 1930 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1931 MODULE_LICENSE("GPL v2"); 1932