xref: /linux/drivers/usb/gadget/udc/core.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #define pr_fmt(fmt)	"UDC core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/idr.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/workqueue.h>
20 
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb.h>
24 
25 #include "trace.h"
26 
27 static DEFINE_IDA(gadget_id_numbers);
28 
29 static struct bus_type gadget_bus_type;
30 
31 /**
32  * struct usb_udc - describes one usb device controller
33  * @driver: the gadget driver pointer. For use by the class code
34  * @dev: the child device to the actual controller
35  * @gadget: the gadget. For use by the class code
36  * @list: for use by the udc class driver
37  * @vbus: for udcs who care about vbus status, this value is real vbus status;
38  * for udcs who do not care about vbus status, this value is always true
39  * @started: the UDC's started state. True if the UDC had started.
40  *
41  * This represents the internal data structure which is used by the UDC-class
42  * to hold information about udc driver and gadget together.
43  */
44 struct usb_udc {
45 	struct usb_gadget_driver	*driver;
46 	struct usb_gadget		*gadget;
47 	struct device			dev;
48 	struct list_head		list;
49 	bool				vbus;
50 	bool				started;
51 };
52 
53 static struct class *udc_class;
54 static LIST_HEAD(udc_list);
55 
56 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */
57 static DEFINE_MUTEX(udc_lock);
58 
59 /* ------------------------------------------------------------------------- */
60 
61 /**
62  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
63  * @ep:the endpoint being configured
64  * @maxpacket_limit:value of maximum packet size limit
65  *
66  * This function should be used only in UDC drivers to initialize endpoint
67  * (usually in probe function).
68  */
69 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
70 					      unsigned maxpacket_limit)
71 {
72 	ep->maxpacket_limit = maxpacket_limit;
73 	ep->maxpacket = maxpacket_limit;
74 
75 	trace_usb_ep_set_maxpacket_limit(ep, 0);
76 }
77 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
78 
79 /**
80  * usb_ep_enable - configure endpoint, making it usable
81  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
82  *	drivers discover endpoints through the ep_list of a usb_gadget.
83  *
84  * When configurations are set, or when interface settings change, the driver
85  * will enable or disable the relevant endpoints.  while it is enabled, an
86  * endpoint may be used for i/o until the driver receives a disconnect() from
87  * the host or until the endpoint is disabled.
88  *
89  * the ep0 implementation (which calls this routine) must ensure that the
90  * hardware capabilities of each endpoint match the descriptor provided
91  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
92  * for interrupt transfers as well as bulk, but it likely couldn't be used
93  * for iso transfers or for endpoint 14.  some endpoints are fully
94  * configurable, with more generic names like "ep-a".  (remember that for
95  * USB, "in" means "towards the USB host".)
96  *
97  * This routine may be called in an atomic (interrupt) context.
98  *
99  * returns zero, or a negative error code.
100  */
101 int usb_ep_enable(struct usb_ep *ep)
102 {
103 	int ret = 0;
104 
105 	if (ep->enabled)
106 		goto out;
107 
108 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
109 	if (usb_endpoint_maxp(ep->desc) == 0) {
110 		/*
111 		 * We should log an error message here, but we can't call
112 		 * dev_err() because there's no way to find the gadget
113 		 * given only ep.
114 		 */
115 		ret = -EINVAL;
116 		goto out;
117 	}
118 
119 	ret = ep->ops->enable(ep, ep->desc);
120 	if (ret)
121 		goto out;
122 
123 	ep->enabled = true;
124 
125 out:
126 	trace_usb_ep_enable(ep, ret);
127 
128 	return ret;
129 }
130 EXPORT_SYMBOL_GPL(usb_ep_enable);
131 
132 /**
133  * usb_ep_disable - endpoint is no longer usable
134  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
135  *
136  * no other task may be using this endpoint when this is called.
137  * any pending and uncompleted requests will complete with status
138  * indicating disconnect (-ESHUTDOWN) before this call returns.
139  * gadget drivers must call usb_ep_enable() again before queueing
140  * requests to the endpoint.
141  *
142  * This routine may be called in an atomic (interrupt) context.
143  *
144  * returns zero, or a negative error code.
145  */
146 int usb_ep_disable(struct usb_ep *ep)
147 {
148 	int ret = 0;
149 
150 	if (!ep->enabled)
151 		goto out;
152 
153 	ret = ep->ops->disable(ep);
154 	if (ret)
155 		goto out;
156 
157 	ep->enabled = false;
158 
159 out:
160 	trace_usb_ep_disable(ep, ret);
161 
162 	return ret;
163 }
164 EXPORT_SYMBOL_GPL(usb_ep_disable);
165 
166 /**
167  * usb_ep_alloc_request - allocate a request object to use with this endpoint
168  * @ep:the endpoint to be used with with the request
169  * @gfp_flags:GFP_* flags to use
170  *
171  * Request objects must be allocated with this call, since they normally
172  * need controller-specific setup and may even need endpoint-specific
173  * resources such as allocation of DMA descriptors.
174  * Requests may be submitted with usb_ep_queue(), and receive a single
175  * completion callback.  Free requests with usb_ep_free_request(), when
176  * they are no longer needed.
177  *
178  * Returns the request, or null if one could not be allocated.
179  */
180 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
181 						       gfp_t gfp_flags)
182 {
183 	struct usb_request *req = NULL;
184 
185 	req = ep->ops->alloc_request(ep, gfp_flags);
186 
187 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
188 
189 	return req;
190 }
191 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
192 
193 /**
194  * usb_ep_free_request - frees a request object
195  * @ep:the endpoint associated with the request
196  * @req:the request being freed
197  *
198  * Reverses the effect of usb_ep_alloc_request().
199  * Caller guarantees the request is not queued, and that it will
200  * no longer be requeued (or otherwise used).
201  */
202 void usb_ep_free_request(struct usb_ep *ep,
203 				       struct usb_request *req)
204 {
205 	trace_usb_ep_free_request(ep, req, 0);
206 	ep->ops->free_request(ep, req);
207 }
208 EXPORT_SYMBOL_GPL(usb_ep_free_request);
209 
210 /**
211  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
212  * @ep:the endpoint associated with the request
213  * @req:the request being submitted
214  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
215  *	pre-allocate all necessary memory with the request.
216  *
217  * This tells the device controller to perform the specified request through
218  * that endpoint (reading or writing a buffer).  When the request completes,
219  * including being canceled by usb_ep_dequeue(), the request's completion
220  * routine is called to return the request to the driver.  Any endpoint
221  * (except control endpoints like ep0) may have more than one transfer
222  * request queued; they complete in FIFO order.  Once a gadget driver
223  * submits a request, that request may not be examined or modified until it
224  * is given back to that driver through the completion callback.
225  *
226  * Each request is turned into one or more packets.  The controller driver
227  * never merges adjacent requests into the same packet.  OUT transfers
228  * will sometimes use data that's already buffered in the hardware.
229  * Drivers can rely on the fact that the first byte of the request's buffer
230  * always corresponds to the first byte of some USB packet, for both
231  * IN and OUT transfers.
232  *
233  * Bulk endpoints can queue any amount of data; the transfer is packetized
234  * automatically.  The last packet will be short if the request doesn't fill it
235  * out completely.  Zero length packets (ZLPs) should be avoided in portable
236  * protocols since not all usb hardware can successfully handle zero length
237  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
238  * the request 'zero' flag is set.)  Bulk endpoints may also be used
239  * for interrupt transfers; but the reverse is not true, and some endpoints
240  * won't support every interrupt transfer.  (Such as 768 byte packets.)
241  *
242  * Interrupt-only endpoints are less functional than bulk endpoints, for
243  * example by not supporting queueing or not handling buffers that are
244  * larger than the endpoint's maxpacket size.  They may also treat data
245  * toggle differently.
246  *
247  * Control endpoints ... after getting a setup() callback, the driver queues
248  * one response (even if it would be zero length).  That enables the
249  * status ack, after transferring data as specified in the response.  Setup
250  * functions may return negative error codes to generate protocol stalls.
251  * (Note that some USB device controllers disallow protocol stall responses
252  * in some cases.)  When control responses are deferred (the response is
253  * written after the setup callback returns), then usb_ep_set_halt() may be
254  * used on ep0 to trigger protocol stalls.  Depending on the controller,
255  * it may not be possible to trigger a status-stage protocol stall when the
256  * data stage is over, that is, from within the response's completion
257  * routine.
258  *
259  * For periodic endpoints, like interrupt or isochronous ones, the usb host
260  * arranges to poll once per interval, and the gadget driver usually will
261  * have queued some data to transfer at that time.
262  *
263  * Note that @req's ->complete() callback must never be called from
264  * within usb_ep_queue() as that can create deadlock situations.
265  *
266  * This routine may be called in interrupt context.
267  *
268  * Returns zero, or a negative error code.  Endpoints that are not enabled
269  * report errors; errors will also be
270  * reported when the usb peripheral is disconnected.
271  *
272  * If and only if @req is successfully queued (the return value is zero),
273  * @req->complete() will be called exactly once, when the Gadget core and
274  * UDC are finished with the request.  When the completion function is called,
275  * control of the request is returned to the device driver which submitted it.
276  * The completion handler may then immediately free or reuse @req.
277  */
278 int usb_ep_queue(struct usb_ep *ep,
279 			       struct usb_request *req, gfp_t gfp_flags)
280 {
281 	int ret = 0;
282 
283 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
284 		ret = -ESHUTDOWN;
285 		goto out;
286 	}
287 
288 	ret = ep->ops->queue(ep, req, gfp_flags);
289 
290 out:
291 	trace_usb_ep_queue(ep, req, ret);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL_GPL(usb_ep_queue);
296 
297 /**
298  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
299  * @ep:the endpoint associated with the request
300  * @req:the request being canceled
301  *
302  * If the request is still active on the endpoint, it is dequeued and
303  * eventually its completion routine is called (with status -ECONNRESET);
304  * else a negative error code is returned.  This routine is asynchronous,
305  * that is, it may return before the completion routine runs.
306  *
307  * Note that some hardware can't clear out write fifos (to unlink the request
308  * at the head of the queue) except as part of disconnecting from usb. Such
309  * restrictions prevent drivers from supporting configuration changes,
310  * even to configuration zero (a "chapter 9" requirement).
311  *
312  * This routine may be called in interrupt context.
313  */
314 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
315 {
316 	int ret;
317 
318 	ret = ep->ops->dequeue(ep, req);
319 	trace_usb_ep_dequeue(ep, req, ret);
320 
321 	return ret;
322 }
323 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
324 
325 /**
326  * usb_ep_set_halt - sets the endpoint halt feature.
327  * @ep: the non-isochronous endpoint being stalled
328  *
329  * Use this to stall an endpoint, perhaps as an error report.
330  * Except for control endpoints,
331  * the endpoint stays halted (will not stream any data) until the host
332  * clears this feature; drivers may need to empty the endpoint's request
333  * queue first, to make sure no inappropriate transfers happen.
334  *
335  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
336  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
337  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
338  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
339  *
340  * This routine may be called in interrupt context.
341  *
342  * Returns zero, or a negative error code.  On success, this call sets
343  * underlying hardware state that blocks data transfers.
344  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
345  * transfer requests are still queued, or if the controller hardware
346  * (usually a FIFO) still holds bytes that the host hasn't collected.
347  */
348 int usb_ep_set_halt(struct usb_ep *ep)
349 {
350 	int ret;
351 
352 	ret = ep->ops->set_halt(ep, 1);
353 	trace_usb_ep_set_halt(ep, ret);
354 
355 	return ret;
356 }
357 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
358 
359 /**
360  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
361  * @ep:the bulk or interrupt endpoint being reset
362  *
363  * Use this when responding to the standard usb "set interface" request,
364  * for endpoints that aren't reconfigured, after clearing any other state
365  * in the endpoint's i/o queue.
366  *
367  * This routine may be called in interrupt context.
368  *
369  * Returns zero, or a negative error code.  On success, this call clears
370  * the underlying hardware state reflecting endpoint halt and data toggle.
371  * Note that some hardware can't support this request (like pxa2xx_udc),
372  * and accordingly can't correctly implement interface altsettings.
373  */
374 int usb_ep_clear_halt(struct usb_ep *ep)
375 {
376 	int ret;
377 
378 	ret = ep->ops->set_halt(ep, 0);
379 	trace_usb_ep_clear_halt(ep, ret);
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
384 
385 /**
386  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
387  * @ep: the endpoint being wedged
388  *
389  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
390  * requests. If the gadget driver clears the halt status, it will
391  * automatically unwedge the endpoint.
392  *
393  * This routine may be called in interrupt context.
394  *
395  * Returns zero on success, else negative errno.
396  */
397 int usb_ep_set_wedge(struct usb_ep *ep)
398 {
399 	int ret;
400 
401 	if (ep->ops->set_wedge)
402 		ret = ep->ops->set_wedge(ep);
403 	else
404 		ret = ep->ops->set_halt(ep, 1);
405 
406 	trace_usb_ep_set_wedge(ep, ret);
407 
408 	return ret;
409 }
410 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
411 
412 /**
413  * usb_ep_fifo_status - returns number of bytes in fifo, or error
414  * @ep: the endpoint whose fifo status is being checked.
415  *
416  * FIFO endpoints may have "unclaimed data" in them in certain cases,
417  * such as after aborted transfers.  Hosts may not have collected all
418  * the IN data written by the gadget driver (and reported by a request
419  * completion).  The gadget driver may not have collected all the data
420  * written OUT to it by the host.  Drivers that need precise handling for
421  * fault reporting or recovery may need to use this call.
422  *
423  * This routine may be called in interrupt context.
424  *
425  * This returns the number of such bytes in the fifo, or a negative
426  * errno if the endpoint doesn't use a FIFO or doesn't support such
427  * precise handling.
428  */
429 int usb_ep_fifo_status(struct usb_ep *ep)
430 {
431 	int ret;
432 
433 	if (ep->ops->fifo_status)
434 		ret = ep->ops->fifo_status(ep);
435 	else
436 		ret = -EOPNOTSUPP;
437 
438 	trace_usb_ep_fifo_status(ep, ret);
439 
440 	return ret;
441 }
442 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
443 
444 /**
445  * usb_ep_fifo_flush - flushes contents of a fifo
446  * @ep: the endpoint whose fifo is being flushed.
447  *
448  * This call may be used to flush the "unclaimed data" that may exist in
449  * an endpoint fifo after abnormal transaction terminations.  The call
450  * must never be used except when endpoint is not being used for any
451  * protocol translation.
452  *
453  * This routine may be called in interrupt context.
454  */
455 void usb_ep_fifo_flush(struct usb_ep *ep)
456 {
457 	if (ep->ops->fifo_flush)
458 		ep->ops->fifo_flush(ep);
459 
460 	trace_usb_ep_fifo_flush(ep, 0);
461 }
462 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
463 
464 /* ------------------------------------------------------------------------- */
465 
466 /**
467  * usb_gadget_frame_number - returns the current frame number
468  * @gadget: controller that reports the frame number
469  *
470  * Returns the usb frame number, normally eleven bits from a SOF packet,
471  * or negative errno if this device doesn't support this capability.
472  */
473 int usb_gadget_frame_number(struct usb_gadget *gadget)
474 {
475 	int ret;
476 
477 	ret = gadget->ops->get_frame(gadget);
478 
479 	trace_usb_gadget_frame_number(gadget, ret);
480 
481 	return ret;
482 }
483 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
484 
485 /**
486  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
487  * @gadget: controller used to wake up the host
488  *
489  * Returns zero on success, else negative error code if the hardware
490  * doesn't support such attempts, or its support has not been enabled
491  * by the usb host.  Drivers must return device descriptors that report
492  * their ability to support this, or hosts won't enable it.
493  *
494  * This may also try to use SRP to wake the host and start enumeration,
495  * even if OTG isn't otherwise in use.  OTG devices may also start
496  * remote wakeup even when hosts don't explicitly enable it.
497  */
498 int usb_gadget_wakeup(struct usb_gadget *gadget)
499 {
500 	int ret = 0;
501 
502 	if (!gadget->ops->wakeup) {
503 		ret = -EOPNOTSUPP;
504 		goto out;
505 	}
506 
507 	ret = gadget->ops->wakeup(gadget);
508 
509 out:
510 	trace_usb_gadget_wakeup(gadget, ret);
511 
512 	return ret;
513 }
514 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
515 
516 /**
517  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
518  * @gadget:the device being declared as self-powered
519  *
520  * this affects the device status reported by the hardware driver
521  * to reflect that it now has a local power supply.
522  *
523  * returns zero on success, else negative errno.
524  */
525 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
526 {
527 	int ret = 0;
528 
529 	if (!gadget->ops->set_selfpowered) {
530 		ret = -EOPNOTSUPP;
531 		goto out;
532 	}
533 
534 	ret = gadget->ops->set_selfpowered(gadget, 1);
535 
536 out:
537 	trace_usb_gadget_set_selfpowered(gadget, ret);
538 
539 	return ret;
540 }
541 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
542 
543 /**
544  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
545  * @gadget:the device being declared as bus-powered
546  *
547  * this affects the device status reported by the hardware driver.
548  * some hardware may not support bus-powered operation, in which
549  * case this feature's value can never change.
550  *
551  * returns zero on success, else negative errno.
552  */
553 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
554 {
555 	int ret = 0;
556 
557 	if (!gadget->ops->set_selfpowered) {
558 		ret = -EOPNOTSUPP;
559 		goto out;
560 	}
561 
562 	ret = gadget->ops->set_selfpowered(gadget, 0);
563 
564 out:
565 	trace_usb_gadget_clear_selfpowered(gadget, ret);
566 
567 	return ret;
568 }
569 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
570 
571 /**
572  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
573  * @gadget:The device which now has VBUS power.
574  * Context: can sleep
575  *
576  * This call is used by a driver for an external transceiver (or GPIO)
577  * that detects a VBUS power session starting.  Common responses include
578  * resuming the controller, activating the D+ (or D-) pullup to let the
579  * host detect that a USB device is attached, and starting to draw power
580  * (8mA or possibly more, especially after SET_CONFIGURATION).
581  *
582  * Returns zero on success, else negative errno.
583  */
584 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
585 {
586 	int ret = 0;
587 
588 	if (!gadget->ops->vbus_session) {
589 		ret = -EOPNOTSUPP;
590 		goto out;
591 	}
592 
593 	ret = gadget->ops->vbus_session(gadget, 1);
594 
595 out:
596 	trace_usb_gadget_vbus_connect(gadget, ret);
597 
598 	return ret;
599 }
600 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
601 
602 /**
603  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
604  * @gadget:The device whose VBUS usage is being described
605  * @mA:How much current to draw, in milliAmperes.  This should be twice
606  *	the value listed in the configuration descriptor bMaxPower field.
607  *
608  * This call is used by gadget drivers during SET_CONFIGURATION calls,
609  * reporting how much power the device may consume.  For example, this
610  * could affect how quickly batteries are recharged.
611  *
612  * Returns zero on success, else negative errno.
613  */
614 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
615 {
616 	int ret = 0;
617 
618 	if (!gadget->ops->vbus_draw) {
619 		ret = -EOPNOTSUPP;
620 		goto out;
621 	}
622 
623 	ret = gadget->ops->vbus_draw(gadget, mA);
624 	if (!ret)
625 		gadget->mA = mA;
626 
627 out:
628 	trace_usb_gadget_vbus_draw(gadget, ret);
629 
630 	return ret;
631 }
632 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
633 
634 /**
635  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
636  * @gadget:the device whose VBUS supply is being described
637  * Context: can sleep
638  *
639  * This call is used by a driver for an external transceiver (or GPIO)
640  * that detects a VBUS power session ending.  Common responses include
641  * reversing everything done in usb_gadget_vbus_connect().
642  *
643  * Returns zero on success, else negative errno.
644  */
645 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
646 {
647 	int ret = 0;
648 
649 	if (!gadget->ops->vbus_session) {
650 		ret = -EOPNOTSUPP;
651 		goto out;
652 	}
653 
654 	ret = gadget->ops->vbus_session(gadget, 0);
655 
656 out:
657 	trace_usb_gadget_vbus_disconnect(gadget, ret);
658 
659 	return ret;
660 }
661 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
662 
663 /**
664  * usb_gadget_connect - software-controlled connect to USB host
665  * @gadget:the peripheral being connected
666  *
667  * Enables the D+ (or potentially D-) pullup.  The host will start
668  * enumerating this gadget when the pullup is active and a VBUS session
669  * is active (the link is powered).
670  *
671  * Returns zero on success, else negative errno.
672  */
673 int usb_gadget_connect(struct usb_gadget *gadget)
674 {
675 	int ret = 0;
676 
677 	if (!gadget->ops->pullup) {
678 		ret = -EOPNOTSUPP;
679 		goto out;
680 	}
681 
682 	if (gadget->deactivated) {
683 		/*
684 		 * If gadget is deactivated we only save new state.
685 		 * Gadget will be connected automatically after activation.
686 		 */
687 		gadget->connected = true;
688 		goto out;
689 	}
690 
691 	ret = gadget->ops->pullup(gadget, 1);
692 	if (!ret)
693 		gadget->connected = 1;
694 
695 out:
696 	trace_usb_gadget_connect(gadget, ret);
697 
698 	return ret;
699 }
700 EXPORT_SYMBOL_GPL(usb_gadget_connect);
701 
702 /**
703  * usb_gadget_disconnect - software-controlled disconnect from USB host
704  * @gadget:the peripheral being disconnected
705  *
706  * Disables the D+ (or potentially D-) pullup, which the host may see
707  * as a disconnect (when a VBUS session is active).  Not all systems
708  * support software pullup controls.
709  *
710  * Following a successful disconnect, invoke the ->disconnect() callback
711  * for the current gadget driver so that UDC drivers don't need to.
712  *
713  * Returns zero on success, else negative errno.
714  */
715 int usb_gadget_disconnect(struct usb_gadget *gadget)
716 {
717 	int ret = 0;
718 
719 	if (!gadget->ops->pullup) {
720 		ret = -EOPNOTSUPP;
721 		goto out;
722 	}
723 
724 	if (!gadget->connected)
725 		goto out;
726 
727 	if (gadget->deactivated) {
728 		/*
729 		 * If gadget is deactivated we only save new state.
730 		 * Gadget will stay disconnected after activation.
731 		 */
732 		gadget->connected = false;
733 		goto out;
734 	}
735 
736 	ret = gadget->ops->pullup(gadget, 0);
737 	if (!ret) {
738 		gadget->connected = 0;
739 		gadget->udc->driver->disconnect(gadget);
740 	}
741 
742 out:
743 	trace_usb_gadget_disconnect(gadget, ret);
744 
745 	return ret;
746 }
747 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
748 
749 /**
750  * usb_gadget_deactivate - deactivate function which is not ready to work
751  * @gadget: the peripheral being deactivated
752  *
753  * This routine may be used during the gadget driver bind() call to prevent
754  * the peripheral from ever being visible to the USB host, unless later
755  * usb_gadget_activate() is called.  For example, user mode components may
756  * need to be activated before the system can talk to hosts.
757  *
758  * Returns zero on success, else negative errno.
759  */
760 int usb_gadget_deactivate(struct usb_gadget *gadget)
761 {
762 	int ret = 0;
763 
764 	if (gadget->deactivated)
765 		goto out;
766 
767 	if (gadget->connected) {
768 		ret = usb_gadget_disconnect(gadget);
769 		if (ret)
770 			goto out;
771 
772 		/*
773 		 * If gadget was being connected before deactivation, we want
774 		 * to reconnect it in usb_gadget_activate().
775 		 */
776 		gadget->connected = true;
777 	}
778 	gadget->deactivated = true;
779 
780 out:
781 	trace_usb_gadget_deactivate(gadget, ret);
782 
783 	return ret;
784 }
785 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
786 
787 /**
788  * usb_gadget_activate - activate function which is not ready to work
789  * @gadget: the peripheral being activated
790  *
791  * This routine activates gadget which was previously deactivated with
792  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
793  *
794  * Returns zero on success, else negative errno.
795  */
796 int usb_gadget_activate(struct usb_gadget *gadget)
797 {
798 	int ret = 0;
799 
800 	if (!gadget->deactivated)
801 		goto out;
802 
803 	gadget->deactivated = false;
804 
805 	/*
806 	 * If gadget has been connected before deactivation, or became connected
807 	 * while it was being deactivated, we call usb_gadget_connect().
808 	 */
809 	if (gadget->connected)
810 		ret = usb_gadget_connect(gadget);
811 
812 out:
813 	trace_usb_gadget_activate(gadget, ret);
814 
815 	return ret;
816 }
817 EXPORT_SYMBOL_GPL(usb_gadget_activate);
818 
819 /* ------------------------------------------------------------------------- */
820 
821 #ifdef	CONFIG_HAS_DMA
822 
823 int usb_gadget_map_request_by_dev(struct device *dev,
824 		struct usb_request *req, int is_in)
825 {
826 	if (req->length == 0)
827 		return 0;
828 
829 	if (req->num_sgs) {
830 		int     mapped;
831 
832 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
833 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
834 		if (mapped == 0) {
835 			dev_err(dev, "failed to map SGs\n");
836 			return -EFAULT;
837 		}
838 
839 		req->num_mapped_sgs = mapped;
840 	} else {
841 		if (is_vmalloc_addr(req->buf)) {
842 			dev_err(dev, "buffer is not dma capable\n");
843 			return -EFAULT;
844 		} else if (object_is_on_stack(req->buf)) {
845 			dev_err(dev, "buffer is on stack\n");
846 			return -EFAULT;
847 		}
848 
849 		req->dma = dma_map_single(dev, req->buf, req->length,
850 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
851 
852 		if (dma_mapping_error(dev, req->dma)) {
853 			dev_err(dev, "failed to map buffer\n");
854 			return -EFAULT;
855 		}
856 
857 		req->dma_mapped = 1;
858 	}
859 
860 	return 0;
861 }
862 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
863 
864 int usb_gadget_map_request(struct usb_gadget *gadget,
865 		struct usb_request *req, int is_in)
866 {
867 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
868 }
869 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
870 
871 void usb_gadget_unmap_request_by_dev(struct device *dev,
872 		struct usb_request *req, int is_in)
873 {
874 	if (req->length == 0)
875 		return;
876 
877 	if (req->num_mapped_sgs) {
878 		dma_unmap_sg(dev, req->sg, req->num_sgs,
879 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
880 
881 		req->num_mapped_sgs = 0;
882 	} else if (req->dma_mapped) {
883 		dma_unmap_single(dev, req->dma, req->length,
884 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
885 		req->dma_mapped = 0;
886 	}
887 }
888 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
889 
890 void usb_gadget_unmap_request(struct usb_gadget *gadget,
891 		struct usb_request *req, int is_in)
892 {
893 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
894 }
895 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
896 
897 #endif	/* CONFIG_HAS_DMA */
898 
899 /* ------------------------------------------------------------------------- */
900 
901 /**
902  * usb_gadget_giveback_request - give the request back to the gadget layer
903  * @ep: the endpoint to be used with with the request
904  * @req: the request being given back
905  *
906  * This is called by device controller drivers in order to return the
907  * completed request back to the gadget layer.
908  */
909 void usb_gadget_giveback_request(struct usb_ep *ep,
910 		struct usb_request *req)
911 {
912 	if (likely(req->status == 0))
913 		usb_led_activity(USB_LED_EVENT_GADGET);
914 
915 	trace_usb_gadget_giveback_request(ep, req, 0);
916 
917 	req->complete(ep, req);
918 }
919 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
920 
921 /* ------------------------------------------------------------------------- */
922 
923 /**
924  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
925  *	in second parameter or NULL if searched endpoint not found
926  * @g: controller to check for quirk
927  * @name: name of searched endpoint
928  */
929 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
930 {
931 	struct usb_ep *ep;
932 
933 	gadget_for_each_ep(ep, g) {
934 		if (!strcmp(ep->name, name))
935 			return ep;
936 	}
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
941 
942 /* ------------------------------------------------------------------------- */
943 
944 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
945 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
946 		struct usb_ss_ep_comp_descriptor *ep_comp)
947 {
948 	u8		type;
949 	u16		max;
950 	int		num_req_streams = 0;
951 
952 	/* endpoint already claimed? */
953 	if (ep->claimed)
954 		return 0;
955 
956 	type = usb_endpoint_type(desc);
957 	max = usb_endpoint_maxp(desc);
958 
959 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
960 		return 0;
961 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
962 		return 0;
963 
964 	if (max > ep->maxpacket_limit)
965 		return 0;
966 
967 	/* "high bandwidth" works only at high speed */
968 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
969 		return 0;
970 
971 	switch (type) {
972 	case USB_ENDPOINT_XFER_CONTROL:
973 		/* only support ep0 for portable CONTROL traffic */
974 		return 0;
975 	case USB_ENDPOINT_XFER_ISOC:
976 		if (!ep->caps.type_iso)
977 			return 0;
978 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
979 		if (!gadget_is_dualspeed(gadget) && max > 1023)
980 			return 0;
981 		break;
982 	case USB_ENDPOINT_XFER_BULK:
983 		if (!ep->caps.type_bulk)
984 			return 0;
985 		if (ep_comp && gadget_is_superspeed(gadget)) {
986 			/* Get the number of required streams from the
987 			 * EP companion descriptor and see if the EP
988 			 * matches it
989 			 */
990 			num_req_streams = ep_comp->bmAttributes & 0x1f;
991 			if (num_req_streams > ep->max_streams)
992 				return 0;
993 		}
994 		break;
995 	case USB_ENDPOINT_XFER_INT:
996 		/* Bulk endpoints handle interrupt transfers,
997 		 * except the toggle-quirky iso-synch kind
998 		 */
999 		if (!ep->caps.type_int && !ep->caps.type_bulk)
1000 			return 0;
1001 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1002 		if (!gadget_is_dualspeed(gadget) && max > 64)
1003 			return 0;
1004 		break;
1005 	}
1006 
1007 	return 1;
1008 }
1009 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1010 
1011 /**
1012  * usb_gadget_check_config - checks if the UDC can support the binded
1013  *	configuration
1014  * @gadget: controller to check the USB configuration
1015  *
1016  * Ensure that a UDC is able to support the requested resources by a
1017  * configuration, and that there are no resource limitations, such as
1018  * internal memory allocated to all requested endpoints.
1019  *
1020  * Returns zero on success, else a negative errno.
1021  */
1022 int usb_gadget_check_config(struct usb_gadget *gadget)
1023 {
1024 	if (gadget->ops->check_config)
1025 		return gadget->ops->check_config(gadget);
1026 	return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1029 
1030 /* ------------------------------------------------------------------------- */
1031 
1032 static void usb_gadget_state_work(struct work_struct *work)
1033 {
1034 	struct usb_gadget *gadget = work_to_gadget(work);
1035 	struct usb_udc *udc = gadget->udc;
1036 
1037 	if (udc)
1038 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1039 }
1040 
1041 void usb_gadget_set_state(struct usb_gadget *gadget,
1042 		enum usb_device_state state)
1043 {
1044 	gadget->state = state;
1045 	schedule_work(&gadget->work);
1046 }
1047 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1048 
1049 /* ------------------------------------------------------------------------- */
1050 
1051 static void usb_udc_connect_control(struct usb_udc *udc)
1052 {
1053 	if (udc->vbus)
1054 		usb_gadget_connect(udc->gadget);
1055 	else
1056 		usb_gadget_disconnect(udc->gadget);
1057 }
1058 
1059 /**
1060  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1061  * connect or disconnect gadget
1062  * @gadget: The gadget which vbus change occurs
1063  * @status: The vbus status
1064  *
1065  * The udc driver calls it when it wants to connect or disconnect gadget
1066  * according to vbus status.
1067  */
1068 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1069 {
1070 	struct usb_udc *udc = gadget->udc;
1071 
1072 	if (udc) {
1073 		udc->vbus = status;
1074 		usb_udc_connect_control(udc);
1075 	}
1076 }
1077 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1078 
1079 /**
1080  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1081  * @gadget: The gadget which bus reset occurs
1082  * @driver: The gadget driver we want to notify
1083  *
1084  * If the udc driver has bus reset handler, it needs to call this when the bus
1085  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1086  * well as updates gadget state.
1087  */
1088 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1089 		struct usb_gadget_driver *driver)
1090 {
1091 	driver->reset(gadget);
1092 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1093 }
1094 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1095 
1096 /**
1097  * usb_gadget_udc_start - tells usb device controller to start up
1098  * @udc: The UDC to be started
1099  *
1100  * This call is issued by the UDC Class driver when it's about
1101  * to register a gadget driver to the device controller, before
1102  * calling gadget driver's bind() method.
1103  *
1104  * It allows the controller to be powered off until strictly
1105  * necessary to have it powered on.
1106  *
1107  * Returns zero on success, else negative errno.
1108  */
1109 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1110 {
1111 	int ret;
1112 
1113 	if (udc->started) {
1114 		dev_err(&udc->dev, "UDC had already started\n");
1115 		return -EBUSY;
1116 	}
1117 
1118 	ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1119 	if (!ret)
1120 		udc->started = true;
1121 
1122 	return ret;
1123 }
1124 
1125 /**
1126  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1127  * @udc: The UDC to be stopped
1128  *
1129  * This call is issued by the UDC Class driver after calling
1130  * gadget driver's unbind() method.
1131  *
1132  * The details are implementation specific, but it can go as
1133  * far as powering off UDC completely and disable its data
1134  * line pullups.
1135  */
1136 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1137 {
1138 	if (!udc->started) {
1139 		dev_err(&udc->dev, "UDC had already stopped\n");
1140 		return;
1141 	}
1142 
1143 	udc->gadget->ops->udc_stop(udc->gadget);
1144 	udc->started = false;
1145 }
1146 
1147 /**
1148  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1149  *    current driver
1150  * @udc: The device we want to set maximum speed
1151  * @speed: The maximum speed to allowed to run
1152  *
1153  * This call is issued by the UDC Class driver before calling
1154  * usb_gadget_udc_start() in order to make sure that we don't try to
1155  * connect on speeds the gadget driver doesn't support.
1156  */
1157 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1158 					    enum usb_device_speed speed)
1159 {
1160 	struct usb_gadget *gadget = udc->gadget;
1161 	enum usb_device_speed s;
1162 
1163 	if (speed == USB_SPEED_UNKNOWN)
1164 		s = gadget->max_speed;
1165 	else
1166 		s = min(speed, gadget->max_speed);
1167 
1168 	if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1169 		gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1170 	else if (gadget->ops->udc_set_speed)
1171 		gadget->ops->udc_set_speed(gadget, s);
1172 }
1173 
1174 /**
1175  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1176  * @udc: The UDC which should enable async callbacks
1177  *
1178  * This routine is used when binding gadget drivers.  It undoes the effect
1179  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1180  * (if necessary) and resume issuing callbacks.
1181  *
1182  * This routine will always be called in process context.
1183  */
1184 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1185 {
1186 	struct usb_gadget *gadget = udc->gadget;
1187 
1188 	if (gadget->ops->udc_async_callbacks)
1189 		gadget->ops->udc_async_callbacks(gadget, true);
1190 }
1191 
1192 /**
1193  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1194  * @udc: The UDC which should disable async callbacks
1195  *
1196  * This routine is used when unbinding gadget drivers.  It prevents a race:
1197  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1198  * runs, so unless it is told to disable asynchronous callbacks, it might
1199  * issue a callback (such as ->disconnect) after the unbind has completed.
1200  *
1201  * After this function runs, the UDC driver must suppress all ->suspend,
1202  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1203  * until async callbacks are again enabled.  A simple-minded but effective
1204  * way to accomplish this is to tell the UDC hardware not to generate any
1205  * more IRQs.
1206  *
1207  * Request completion callbacks must still be issued.  However, it's okay
1208  * to defer them until the request is cancelled, since the pull-up will be
1209  * turned off during the time period when async callbacks are disabled.
1210  *
1211  * This routine will always be called in process context.
1212  */
1213 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1214 {
1215 	struct usb_gadget *gadget = udc->gadget;
1216 
1217 	if (gadget->ops->udc_async_callbacks)
1218 		gadget->ops->udc_async_callbacks(gadget, false);
1219 }
1220 
1221 /**
1222  * usb_udc_release - release the usb_udc struct
1223  * @dev: the dev member within usb_udc
1224  *
1225  * This is called by driver's core in order to free memory once the last
1226  * reference is released.
1227  */
1228 static void usb_udc_release(struct device *dev)
1229 {
1230 	struct usb_udc *udc;
1231 
1232 	udc = container_of(dev, struct usb_udc, dev);
1233 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1234 	kfree(udc);
1235 }
1236 
1237 static const struct attribute_group *usb_udc_attr_groups[];
1238 
1239 static void usb_udc_nop_release(struct device *dev)
1240 {
1241 	dev_vdbg(dev, "%s\n", __func__);
1242 }
1243 
1244 /**
1245  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1246  * @parent: the parent device to this udc. Usually the controller driver's
1247  * device.
1248  * @gadget: the gadget to be initialized.
1249  * @release: a gadget release function.
1250  */
1251 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1252 		void (*release)(struct device *dev))
1253 {
1254 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1255 	gadget->dev.parent = parent;
1256 
1257 	if (release)
1258 		gadget->dev.release = release;
1259 	else
1260 		gadget->dev.release = usb_udc_nop_release;
1261 
1262 	device_initialize(&gadget->dev);
1263 	gadget->dev.bus = &gadget_bus_type;
1264 }
1265 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1266 
1267 /**
1268  * usb_add_gadget - adds a new gadget to the udc class driver list
1269  * @gadget: the gadget to be added to the list.
1270  *
1271  * Returns zero on success, negative errno otherwise.
1272  * Does not do a final usb_put_gadget() if an error occurs.
1273  */
1274 int usb_add_gadget(struct usb_gadget *gadget)
1275 {
1276 	struct usb_udc		*udc;
1277 	int			ret = -ENOMEM;
1278 
1279 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1280 	if (!udc)
1281 		goto error;
1282 
1283 	device_initialize(&udc->dev);
1284 	udc->dev.release = usb_udc_release;
1285 	udc->dev.class = udc_class;
1286 	udc->dev.groups = usb_udc_attr_groups;
1287 	udc->dev.parent = gadget->dev.parent;
1288 	ret = dev_set_name(&udc->dev, "%s",
1289 			kobject_name(&gadget->dev.parent->kobj));
1290 	if (ret)
1291 		goto err_put_udc;
1292 
1293 	udc->gadget = gadget;
1294 	gadget->udc = udc;
1295 
1296 	udc->started = false;
1297 
1298 	mutex_lock(&udc_lock);
1299 	list_add_tail(&udc->list, &udc_list);
1300 	mutex_unlock(&udc_lock);
1301 
1302 	ret = device_add(&udc->dev);
1303 	if (ret)
1304 		goto err_unlist_udc;
1305 
1306 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1307 	udc->vbus = true;
1308 
1309 	ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL);
1310 	if (ret < 0)
1311 		goto err_del_udc;
1312 	gadget->id_number = ret;
1313 	dev_set_name(&gadget->dev, "gadget.%d", ret);
1314 
1315 	ret = device_add(&gadget->dev);
1316 	if (ret)
1317 		goto err_free_id;
1318 
1319 	return 0;
1320 
1321  err_free_id:
1322 	ida_free(&gadget_id_numbers, gadget->id_number);
1323 
1324  err_del_udc:
1325 	flush_work(&gadget->work);
1326 	device_del(&udc->dev);
1327 
1328  err_unlist_udc:
1329 	mutex_lock(&udc_lock);
1330 	list_del(&udc->list);
1331 	mutex_unlock(&udc_lock);
1332 
1333  err_put_udc:
1334 	put_device(&udc->dev);
1335 
1336  error:
1337 	return ret;
1338 }
1339 EXPORT_SYMBOL_GPL(usb_add_gadget);
1340 
1341 /**
1342  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1343  * @parent: the parent device to this udc. Usually the controller driver's
1344  * device.
1345  * @gadget: the gadget to be added to the list.
1346  * @release: a gadget release function.
1347  *
1348  * Returns zero on success, negative errno otherwise.
1349  * Calls the gadget release function in the latter case.
1350  */
1351 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1352 		void (*release)(struct device *dev))
1353 {
1354 	int	ret;
1355 
1356 	usb_initialize_gadget(parent, gadget, release);
1357 	ret = usb_add_gadget(gadget);
1358 	if (ret)
1359 		usb_put_gadget(gadget);
1360 	return ret;
1361 }
1362 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1363 
1364 /**
1365  * usb_get_gadget_udc_name - get the name of the first UDC controller
1366  * This functions returns the name of the first UDC controller in the system.
1367  * Please note that this interface is usefull only for legacy drivers which
1368  * assume that there is only one UDC controller in the system and they need to
1369  * get its name before initialization. There is no guarantee that the UDC
1370  * of the returned name will be still available, when gadget driver registers
1371  * itself.
1372  *
1373  * Returns pointer to string with UDC controller name on success, NULL
1374  * otherwise. Caller should kfree() returned string.
1375  */
1376 char *usb_get_gadget_udc_name(void)
1377 {
1378 	struct usb_udc *udc;
1379 	char *name = NULL;
1380 
1381 	/* For now we take the first available UDC */
1382 	mutex_lock(&udc_lock);
1383 	list_for_each_entry(udc, &udc_list, list) {
1384 		if (!udc->driver) {
1385 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1386 			break;
1387 		}
1388 	}
1389 	mutex_unlock(&udc_lock);
1390 	return name;
1391 }
1392 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1393 
1394 /**
1395  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1396  * @parent: the parent device to this udc. Usually the controller
1397  * driver's device.
1398  * @gadget: the gadget to be added to the list
1399  *
1400  * Returns zero on success, negative errno otherwise.
1401  */
1402 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1403 {
1404 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1405 }
1406 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1407 
1408 /**
1409  * usb_del_gadget - deletes a gadget and unregisters its udc
1410  * @gadget: the gadget to be deleted.
1411  *
1412  * This will unbind @gadget, if it is bound.
1413  * It will not do a final usb_put_gadget().
1414  */
1415 void usb_del_gadget(struct usb_gadget *gadget)
1416 {
1417 	struct usb_udc *udc = gadget->udc;
1418 
1419 	if (!udc)
1420 		return;
1421 
1422 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1423 
1424 	mutex_lock(&udc_lock);
1425 	list_del(&udc->list);
1426 	mutex_unlock(&udc_lock);
1427 
1428 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1429 	flush_work(&gadget->work);
1430 	device_del(&gadget->dev);
1431 	ida_free(&gadget_id_numbers, gadget->id_number);
1432 	device_unregister(&udc->dev);
1433 }
1434 EXPORT_SYMBOL_GPL(usb_del_gadget);
1435 
1436 /**
1437  * usb_del_gadget_udc - unregisters a gadget
1438  * @gadget: the gadget to be unregistered.
1439  *
1440  * Calls usb_del_gadget() and does a final usb_put_gadget().
1441  */
1442 void usb_del_gadget_udc(struct usb_gadget *gadget)
1443 {
1444 	usb_del_gadget(gadget);
1445 	usb_put_gadget(gadget);
1446 }
1447 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1448 
1449 /* ------------------------------------------------------------------------- */
1450 
1451 static int gadget_match_driver(struct device *dev, struct device_driver *drv)
1452 {
1453 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1454 	struct usb_udc *udc = gadget->udc;
1455 	struct usb_gadget_driver *driver = container_of(drv,
1456 			struct usb_gadget_driver, driver);
1457 
1458 	/* If the driver specifies a udc_name, it must match the UDC's name */
1459 	if (driver->udc_name &&
1460 			strcmp(driver->udc_name, dev_name(&udc->dev)) != 0)
1461 		return 0;
1462 
1463 	/* If the driver is already bound to a gadget, it doesn't match */
1464 	if (driver->is_bound)
1465 		return 0;
1466 
1467 	/* Otherwise any gadget driver matches any UDC */
1468 	return 1;
1469 }
1470 
1471 static int gadget_bind_driver(struct device *dev)
1472 {
1473 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1474 	struct usb_udc *udc = gadget->udc;
1475 	struct usb_gadget_driver *driver = container_of(dev->driver,
1476 			struct usb_gadget_driver, driver);
1477 	int ret = 0;
1478 
1479 	mutex_lock(&udc_lock);
1480 	if (driver->is_bound) {
1481 		mutex_unlock(&udc_lock);
1482 		return -ENXIO;		/* Driver binds to only one gadget */
1483 	}
1484 	driver->is_bound = true;
1485 	udc->driver = driver;
1486 	mutex_unlock(&udc_lock);
1487 
1488 	dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function);
1489 
1490 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1491 
1492 	mutex_lock(&udc_lock);
1493 	ret = driver->bind(udc->gadget, driver);
1494 	if (ret)
1495 		goto err_bind;
1496 
1497 	ret = usb_gadget_udc_start(udc);
1498 	if (ret)
1499 		goto err_start;
1500 	usb_gadget_enable_async_callbacks(udc);
1501 	usb_udc_connect_control(udc);
1502 	mutex_unlock(&udc_lock);
1503 
1504 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1505 	return 0;
1506 
1507  err_start:
1508 	driver->unbind(udc->gadget);
1509 
1510  err_bind:
1511 	if (ret != -EISNAM)
1512 		dev_err(&udc->dev, "failed to start %s: %d\n",
1513 			driver->function, ret);
1514 
1515 	udc->driver = NULL;
1516 	driver->is_bound = false;
1517 	mutex_unlock(&udc_lock);
1518 
1519 	return ret;
1520 }
1521 
1522 static void gadget_unbind_driver(struct device *dev)
1523 {
1524 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1525 	struct usb_udc *udc = gadget->udc;
1526 	struct usb_gadget_driver *driver = udc->driver;
1527 
1528 	dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function);
1529 
1530 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1531 
1532 	mutex_lock(&udc_lock);
1533 	usb_gadget_disconnect(gadget);
1534 	usb_gadget_disable_async_callbacks(udc);
1535 	if (gadget->irq)
1536 		synchronize_irq(gadget->irq);
1537 	udc->driver->unbind(gadget);
1538 	usb_gadget_udc_stop(udc);
1539 
1540 	driver->is_bound = false;
1541 	udc->driver = NULL;
1542 	mutex_unlock(&udc_lock);
1543 }
1544 
1545 /* ------------------------------------------------------------------------- */
1546 
1547 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
1548 		struct module *owner, const char *mod_name)
1549 {
1550 	int ret;
1551 
1552 	if (!driver || !driver->bind || !driver->setup)
1553 		return -EINVAL;
1554 
1555 	driver->driver.bus = &gadget_bus_type;
1556 	driver->driver.owner = owner;
1557 	driver->driver.mod_name = mod_name;
1558 	ret = driver_register(&driver->driver);
1559 	if (ret) {
1560 		pr_warn("%s: driver registration failed: %d\n",
1561 				driver->function, ret);
1562 		return ret;
1563 	}
1564 
1565 	mutex_lock(&udc_lock);
1566 	if (!driver->is_bound) {
1567 		if (driver->match_existing_only) {
1568 			pr_warn("%s: couldn't find an available UDC or it's busy\n",
1569 					driver->function);
1570 			ret = -EBUSY;
1571 		} else {
1572 			pr_info("%s: couldn't find an available UDC\n",
1573 					driver->function);
1574 			ret = 0;
1575 		}
1576 	}
1577 	mutex_unlock(&udc_lock);
1578 
1579 	if (ret)
1580 		driver_unregister(&driver->driver);
1581 	return ret;
1582 }
1583 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner);
1584 
1585 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1586 {
1587 	if (!driver || !driver->unbind)
1588 		return -EINVAL;
1589 
1590 	driver_unregister(&driver->driver);
1591 	return 0;
1592 }
1593 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1594 
1595 /* ------------------------------------------------------------------------- */
1596 
1597 static ssize_t srp_store(struct device *dev,
1598 		struct device_attribute *attr, const char *buf, size_t n)
1599 {
1600 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1601 
1602 	if (sysfs_streq(buf, "1"))
1603 		usb_gadget_wakeup(udc->gadget);
1604 
1605 	return n;
1606 }
1607 static DEVICE_ATTR_WO(srp);
1608 
1609 static ssize_t soft_connect_store(struct device *dev,
1610 		struct device_attribute *attr, const char *buf, size_t n)
1611 {
1612 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1613 	ssize_t			ret;
1614 
1615 	mutex_lock(&udc_lock);
1616 	if (!udc->driver) {
1617 		dev_err(dev, "soft-connect without a gadget driver\n");
1618 		ret = -EOPNOTSUPP;
1619 		goto out;
1620 	}
1621 
1622 	if (sysfs_streq(buf, "connect")) {
1623 		usb_gadget_udc_start(udc);
1624 		usb_gadget_connect(udc->gadget);
1625 	} else if (sysfs_streq(buf, "disconnect")) {
1626 		usb_gadget_disconnect(udc->gadget);
1627 		usb_gadget_udc_stop(udc);
1628 	} else {
1629 		dev_err(dev, "unsupported command '%s'\n", buf);
1630 		ret = -EINVAL;
1631 		goto out;
1632 	}
1633 
1634 	ret = n;
1635 out:
1636 	mutex_unlock(&udc_lock);
1637 	return ret;
1638 }
1639 static DEVICE_ATTR_WO(soft_connect);
1640 
1641 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1642 			  char *buf)
1643 {
1644 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1645 	struct usb_gadget	*gadget = udc->gadget;
1646 
1647 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1648 }
1649 static DEVICE_ATTR_RO(state);
1650 
1651 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1652 			     char *buf)
1653 {
1654 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1655 	struct usb_gadget_driver *drv = udc->driver;
1656 
1657 	if (!drv || !drv->function)
1658 		return 0;
1659 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1660 }
1661 static DEVICE_ATTR_RO(function);
1662 
1663 #define USB_UDC_SPEED_ATTR(name, param)					\
1664 ssize_t name##_show(struct device *dev,					\
1665 		struct device_attribute *attr, char *buf)		\
1666 {									\
1667 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1668 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1669 			usb_speed_string(udc->gadget->param));		\
1670 }									\
1671 static DEVICE_ATTR_RO(name)
1672 
1673 static USB_UDC_SPEED_ATTR(current_speed, speed);
1674 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1675 
1676 #define USB_UDC_ATTR(name)					\
1677 ssize_t name##_show(struct device *dev,				\
1678 		struct device_attribute *attr, char *buf)	\
1679 {								\
1680 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1681 	struct usb_gadget	*gadget = udc->gadget;		\
1682 								\
1683 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1684 }								\
1685 static DEVICE_ATTR_RO(name)
1686 
1687 static USB_UDC_ATTR(is_otg);
1688 static USB_UDC_ATTR(is_a_peripheral);
1689 static USB_UDC_ATTR(b_hnp_enable);
1690 static USB_UDC_ATTR(a_hnp_support);
1691 static USB_UDC_ATTR(a_alt_hnp_support);
1692 static USB_UDC_ATTR(is_selfpowered);
1693 
1694 static struct attribute *usb_udc_attrs[] = {
1695 	&dev_attr_srp.attr,
1696 	&dev_attr_soft_connect.attr,
1697 	&dev_attr_state.attr,
1698 	&dev_attr_function.attr,
1699 	&dev_attr_current_speed.attr,
1700 	&dev_attr_maximum_speed.attr,
1701 
1702 	&dev_attr_is_otg.attr,
1703 	&dev_attr_is_a_peripheral.attr,
1704 	&dev_attr_b_hnp_enable.attr,
1705 	&dev_attr_a_hnp_support.attr,
1706 	&dev_attr_a_alt_hnp_support.attr,
1707 	&dev_attr_is_selfpowered.attr,
1708 	NULL,
1709 };
1710 
1711 static const struct attribute_group usb_udc_attr_group = {
1712 	.attrs = usb_udc_attrs,
1713 };
1714 
1715 static const struct attribute_group *usb_udc_attr_groups[] = {
1716 	&usb_udc_attr_group,
1717 	NULL,
1718 };
1719 
1720 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1721 {
1722 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1723 	int			ret;
1724 
1725 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1726 	if (ret) {
1727 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1728 		return ret;
1729 	}
1730 
1731 	if (udc->driver) {
1732 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1733 				udc->driver->function);
1734 		if (ret) {
1735 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1736 			return ret;
1737 		}
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 static struct bus_type gadget_bus_type = {
1744 	.name = "gadget",
1745 	.probe = gadget_bind_driver,
1746 	.remove = gadget_unbind_driver,
1747 	.match = gadget_match_driver,
1748 };
1749 
1750 static int __init usb_udc_init(void)
1751 {
1752 	int rc;
1753 
1754 	udc_class = class_create(THIS_MODULE, "udc");
1755 	if (IS_ERR(udc_class)) {
1756 		pr_err("failed to create udc class --> %ld\n",
1757 				PTR_ERR(udc_class));
1758 		return PTR_ERR(udc_class);
1759 	}
1760 
1761 	udc_class->dev_uevent = usb_udc_uevent;
1762 
1763 	rc = bus_register(&gadget_bus_type);
1764 	if (rc)
1765 		class_destroy(udc_class);
1766 	return rc;
1767 }
1768 subsys_initcall(usb_udc_init);
1769 
1770 static void __exit usb_udc_exit(void)
1771 {
1772 	bus_unregister(&gadget_bus_type);
1773 	class_destroy(udc_class);
1774 }
1775 module_exit(usb_udc_exit);
1776 
1777 MODULE_DESCRIPTION("UDC Framework");
1778 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1779 MODULE_LICENSE("GPL v2");
1780