xref: /linux/drivers/usb/gadget/udc/core.c (revision cf4cebcec619d963fa7496018f03cb0ff00dc257)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #define pr_fmt(fmt)	"UDC core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/idr.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/workqueue.h>
20 
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb.h>
24 
25 #include "trace.h"
26 
27 static DEFINE_IDA(gadget_id_numbers);
28 
29 static const struct bus_type gadget_bus_type;
30 
31 /**
32  * struct usb_udc - describes one usb device controller
33  * @driver: the gadget driver pointer. For use by the class code
34  * @dev: the child device to the actual controller
35  * @gadget: the gadget. For use by the class code
36  * @list: for use by the udc class driver
37  * @vbus: for udcs who care about vbus status, this value is real vbus status;
38  * for udcs who do not care about vbus status, this value is always true
39  * @started: the UDC's started state. True if the UDC had started.
40  * @allow_connect: Indicates whether UDC is allowed to be pulled up.
41  * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or
42  * unbound.
43  * @vbus_work: work routine to handle VBUS status change notifications.
44  * @connect_lock: protects udc->started, gadget->connect,
45  * gadget->allow_connect and gadget->deactivate. The routines
46  * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(),
47  * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and
48  * usb_gadget_udc_stop_locked() are called with this lock held.
49  *
50  * This represents the internal data structure which is used by the UDC-class
51  * to hold information about udc driver and gadget together.
52  */
53 struct usb_udc {
54 	struct usb_gadget_driver	*driver;
55 	struct usb_gadget		*gadget;
56 	struct device			dev;
57 	struct list_head		list;
58 	bool				vbus;
59 	bool				started;
60 	bool				allow_connect;
61 	struct work_struct		vbus_work;
62 	struct mutex			connect_lock;
63 };
64 
65 static const struct class udc_class;
66 static LIST_HEAD(udc_list);
67 
68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */
69 static DEFINE_MUTEX(udc_lock);
70 
71 /* ------------------------------------------------------------------------- */
72 
73 /**
74  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
75  * @ep:the endpoint being configured
76  * @maxpacket_limit:value of maximum packet size limit
77  *
78  * This function should be used only in UDC drivers to initialize endpoint
79  * (usually in probe function).
80  */
81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
82 					      unsigned maxpacket_limit)
83 {
84 	ep->maxpacket_limit = maxpacket_limit;
85 	ep->maxpacket = maxpacket_limit;
86 
87 	trace_usb_ep_set_maxpacket_limit(ep, 0);
88 }
89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
90 
91 /**
92  * usb_ep_enable - configure endpoint, making it usable
93  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
94  *	drivers discover endpoints through the ep_list of a usb_gadget.
95  *
96  * When configurations are set, or when interface settings change, the driver
97  * will enable or disable the relevant endpoints.  while it is enabled, an
98  * endpoint may be used for i/o until the driver receives a disconnect() from
99  * the host or until the endpoint is disabled.
100  *
101  * the ep0 implementation (which calls this routine) must ensure that the
102  * hardware capabilities of each endpoint match the descriptor provided
103  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
104  * for interrupt transfers as well as bulk, but it likely couldn't be used
105  * for iso transfers or for endpoint 14.  some endpoints are fully
106  * configurable, with more generic names like "ep-a".  (remember that for
107  * USB, "in" means "towards the USB host".)
108  *
109  * This routine may be called in an atomic (interrupt) context.
110  *
111  * returns zero, or a negative error code.
112  */
113 int usb_ep_enable(struct usb_ep *ep)
114 {
115 	int ret = 0;
116 
117 	if (ep->enabled)
118 		goto out;
119 
120 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
121 	if (!ep->desc || usb_endpoint_maxp(ep->desc) == 0) {
122 		WARN_ONCE(1, "%s: ep%d (%s) has %s\n", __func__, ep->address, ep->name,
123 			  (!ep->desc) ? "NULL descriptor" : "maxpacket 0");
124 
125 		ret = -EINVAL;
126 		goto out;
127 	}
128 
129 	ret = ep->ops->enable(ep, ep->desc);
130 	if (ret)
131 		goto out;
132 
133 	ep->enabled = true;
134 
135 out:
136 	trace_usb_ep_enable(ep, ret);
137 
138 	return ret;
139 }
140 EXPORT_SYMBOL_GPL(usb_ep_enable);
141 
142 /**
143  * usb_ep_disable - endpoint is no longer usable
144  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
145  *
146  * no other task may be using this endpoint when this is called.
147  * any pending and uncompleted requests will complete with status
148  * indicating disconnect (-ESHUTDOWN) before this call returns.
149  * gadget drivers must call usb_ep_enable() again before queueing
150  * requests to the endpoint.
151  *
152  * This routine may be called in an atomic (interrupt) context.
153  *
154  * returns zero, or a negative error code.
155  */
156 int usb_ep_disable(struct usb_ep *ep)
157 {
158 	int ret = 0;
159 
160 	if (!ep->enabled)
161 		goto out;
162 
163 	ret = ep->ops->disable(ep);
164 	if (ret)
165 		goto out;
166 
167 	ep->enabled = false;
168 
169 out:
170 	trace_usb_ep_disable(ep, ret);
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(usb_ep_disable);
175 
176 /**
177  * usb_ep_alloc_request - allocate a request object to use with this endpoint
178  * @ep:the endpoint to be used with with the request
179  * @gfp_flags:GFP_* flags to use
180  *
181  * Request objects must be allocated with this call, since they normally
182  * need controller-specific setup and may even need endpoint-specific
183  * resources such as allocation of DMA descriptors.
184  * Requests may be submitted with usb_ep_queue(), and receive a single
185  * completion callback.  Free requests with usb_ep_free_request(), when
186  * they are no longer needed.
187  *
188  * Returns the request, or null if one could not be allocated.
189  */
190 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
191 						       gfp_t gfp_flags)
192 {
193 	struct usb_request *req = NULL;
194 
195 	req = ep->ops->alloc_request(ep, gfp_flags);
196 
197 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
198 
199 	return req;
200 }
201 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
202 
203 /**
204  * usb_ep_free_request - frees a request object
205  * @ep:the endpoint associated with the request
206  * @req:the request being freed
207  *
208  * Reverses the effect of usb_ep_alloc_request().
209  * Caller guarantees the request is not queued, and that it will
210  * no longer be requeued (or otherwise used).
211  */
212 void usb_ep_free_request(struct usb_ep *ep,
213 				       struct usb_request *req)
214 {
215 	trace_usb_ep_free_request(ep, req, 0);
216 	ep->ops->free_request(ep, req);
217 }
218 EXPORT_SYMBOL_GPL(usb_ep_free_request);
219 
220 /**
221  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
222  * @ep:the endpoint associated with the request
223  * @req:the request being submitted
224  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
225  *	pre-allocate all necessary memory with the request.
226  *
227  * This tells the device controller to perform the specified request through
228  * that endpoint (reading or writing a buffer).  When the request completes,
229  * including being canceled by usb_ep_dequeue(), the request's completion
230  * routine is called to return the request to the driver.  Any endpoint
231  * (except control endpoints like ep0) may have more than one transfer
232  * request queued; they complete in FIFO order.  Once a gadget driver
233  * submits a request, that request may not be examined or modified until it
234  * is given back to that driver through the completion callback.
235  *
236  * Each request is turned into one or more packets.  The controller driver
237  * never merges adjacent requests into the same packet.  OUT transfers
238  * will sometimes use data that's already buffered in the hardware.
239  * Drivers can rely on the fact that the first byte of the request's buffer
240  * always corresponds to the first byte of some USB packet, for both
241  * IN and OUT transfers.
242  *
243  * Bulk endpoints can queue any amount of data; the transfer is packetized
244  * automatically.  The last packet will be short if the request doesn't fill it
245  * out completely.  Zero length packets (ZLPs) should be avoided in portable
246  * protocols since not all usb hardware can successfully handle zero length
247  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
248  * the request 'zero' flag is set.)  Bulk endpoints may also be used
249  * for interrupt transfers; but the reverse is not true, and some endpoints
250  * won't support every interrupt transfer.  (Such as 768 byte packets.)
251  *
252  * Interrupt-only endpoints are less functional than bulk endpoints, for
253  * example by not supporting queueing or not handling buffers that are
254  * larger than the endpoint's maxpacket size.  They may also treat data
255  * toggle differently.
256  *
257  * Control endpoints ... after getting a setup() callback, the driver queues
258  * one response (even if it would be zero length).  That enables the
259  * status ack, after transferring data as specified in the response.  Setup
260  * functions may return negative error codes to generate protocol stalls.
261  * (Note that some USB device controllers disallow protocol stall responses
262  * in some cases.)  When control responses are deferred (the response is
263  * written after the setup callback returns), then usb_ep_set_halt() may be
264  * used on ep0 to trigger protocol stalls.  Depending on the controller,
265  * it may not be possible to trigger a status-stage protocol stall when the
266  * data stage is over, that is, from within the response's completion
267  * routine.
268  *
269  * For periodic endpoints, like interrupt or isochronous ones, the usb host
270  * arranges to poll once per interval, and the gadget driver usually will
271  * have queued some data to transfer at that time.
272  *
273  * Note that @req's ->complete() callback must never be called from
274  * within usb_ep_queue() as that can create deadlock situations.
275  *
276  * This routine may be called in interrupt context.
277  *
278  * Returns zero, or a negative error code.  Endpoints that are not enabled
279  * report errors; errors will also be
280  * reported when the usb peripheral is disconnected.
281  *
282  * If and only if @req is successfully queued (the return value is zero),
283  * @req->complete() will be called exactly once, when the Gadget core and
284  * UDC are finished with the request.  When the completion function is called,
285  * control of the request is returned to the device driver which submitted it.
286  * The completion handler may then immediately free or reuse @req.
287  */
288 int usb_ep_queue(struct usb_ep *ep,
289 			       struct usb_request *req, gfp_t gfp_flags)
290 {
291 	int ret = 0;
292 
293 	if (!ep->enabled && ep->address) {
294 		pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n",
295 				 ep->address, ep->name);
296 		ret = -ESHUTDOWN;
297 		goto out;
298 	}
299 
300 	ret = ep->ops->queue(ep, req, gfp_flags);
301 
302 out:
303 	trace_usb_ep_queue(ep, req, ret);
304 
305 	return ret;
306 }
307 EXPORT_SYMBOL_GPL(usb_ep_queue);
308 
309 /**
310  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
311  * @ep:the endpoint associated with the request
312  * @req:the request being canceled
313  *
314  * If the request is still active on the endpoint, it is dequeued and
315  * eventually its completion routine is called (with status -ECONNRESET);
316  * else a negative error code is returned.  This routine is asynchronous,
317  * that is, it may return before the completion routine runs.
318  *
319  * Note that some hardware can't clear out write fifos (to unlink the request
320  * at the head of the queue) except as part of disconnecting from usb. Such
321  * restrictions prevent drivers from supporting configuration changes,
322  * even to configuration zero (a "chapter 9" requirement).
323  *
324  * This routine may be called in interrupt context.
325  */
326 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
327 {
328 	int ret;
329 
330 	ret = ep->ops->dequeue(ep, req);
331 	trace_usb_ep_dequeue(ep, req, ret);
332 
333 	return ret;
334 }
335 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
336 
337 /**
338  * usb_ep_set_halt - sets the endpoint halt feature.
339  * @ep: the non-isochronous endpoint being stalled
340  *
341  * Use this to stall an endpoint, perhaps as an error report.
342  * Except for control endpoints,
343  * the endpoint stays halted (will not stream any data) until the host
344  * clears this feature; drivers may need to empty the endpoint's request
345  * queue first, to make sure no inappropriate transfers happen.
346  *
347  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
348  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
349  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
350  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
351  *
352  * This routine may be called in interrupt context.
353  *
354  * Returns zero, or a negative error code.  On success, this call sets
355  * underlying hardware state that blocks data transfers.
356  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
357  * transfer requests are still queued, or if the controller hardware
358  * (usually a FIFO) still holds bytes that the host hasn't collected.
359  */
360 int usb_ep_set_halt(struct usb_ep *ep)
361 {
362 	int ret;
363 
364 	ret = ep->ops->set_halt(ep, 1);
365 	trace_usb_ep_set_halt(ep, ret);
366 
367 	return ret;
368 }
369 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
370 
371 /**
372  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
373  * @ep:the bulk or interrupt endpoint being reset
374  *
375  * Use this when responding to the standard usb "set interface" request,
376  * for endpoints that aren't reconfigured, after clearing any other state
377  * in the endpoint's i/o queue.
378  *
379  * This routine may be called in interrupt context.
380  *
381  * Returns zero, or a negative error code.  On success, this call clears
382  * the underlying hardware state reflecting endpoint halt and data toggle.
383  * Note that some hardware can't support this request (like pxa2xx_udc),
384  * and accordingly can't correctly implement interface altsettings.
385  */
386 int usb_ep_clear_halt(struct usb_ep *ep)
387 {
388 	int ret;
389 
390 	ret = ep->ops->set_halt(ep, 0);
391 	trace_usb_ep_clear_halt(ep, ret);
392 
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
396 
397 /**
398  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
399  * @ep: the endpoint being wedged
400  *
401  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
402  * requests. If the gadget driver clears the halt status, it will
403  * automatically unwedge the endpoint.
404  *
405  * This routine may be called in interrupt context.
406  *
407  * Returns zero on success, else negative errno.
408  */
409 int usb_ep_set_wedge(struct usb_ep *ep)
410 {
411 	int ret;
412 
413 	if (ep->ops->set_wedge)
414 		ret = ep->ops->set_wedge(ep);
415 	else
416 		ret = ep->ops->set_halt(ep, 1);
417 
418 	trace_usb_ep_set_wedge(ep, ret);
419 
420 	return ret;
421 }
422 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
423 
424 /**
425  * usb_ep_fifo_status - returns number of bytes in fifo, or error
426  * @ep: the endpoint whose fifo status is being checked.
427  *
428  * FIFO endpoints may have "unclaimed data" in them in certain cases,
429  * such as after aborted transfers.  Hosts may not have collected all
430  * the IN data written by the gadget driver (and reported by a request
431  * completion).  The gadget driver may not have collected all the data
432  * written OUT to it by the host.  Drivers that need precise handling for
433  * fault reporting or recovery may need to use this call.
434  *
435  * This routine may be called in interrupt context.
436  *
437  * This returns the number of such bytes in the fifo, or a negative
438  * errno if the endpoint doesn't use a FIFO or doesn't support such
439  * precise handling.
440  */
441 int usb_ep_fifo_status(struct usb_ep *ep)
442 {
443 	int ret;
444 
445 	if (ep->ops->fifo_status)
446 		ret = ep->ops->fifo_status(ep);
447 	else
448 		ret = -EOPNOTSUPP;
449 
450 	trace_usb_ep_fifo_status(ep, ret);
451 
452 	return ret;
453 }
454 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
455 
456 /**
457  * usb_ep_fifo_flush - flushes contents of a fifo
458  * @ep: the endpoint whose fifo is being flushed.
459  *
460  * This call may be used to flush the "unclaimed data" that may exist in
461  * an endpoint fifo after abnormal transaction terminations.  The call
462  * must never be used except when endpoint is not being used for any
463  * protocol translation.
464  *
465  * This routine may be called in interrupt context.
466  */
467 void usb_ep_fifo_flush(struct usb_ep *ep)
468 {
469 	if (ep->ops->fifo_flush)
470 		ep->ops->fifo_flush(ep);
471 
472 	trace_usb_ep_fifo_flush(ep, 0);
473 }
474 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
475 
476 /* ------------------------------------------------------------------------- */
477 
478 /**
479  * usb_gadget_frame_number - returns the current frame number
480  * @gadget: controller that reports the frame number
481  *
482  * Returns the usb frame number, normally eleven bits from a SOF packet,
483  * or negative errno if this device doesn't support this capability.
484  */
485 int usb_gadget_frame_number(struct usb_gadget *gadget)
486 {
487 	int ret;
488 
489 	ret = gadget->ops->get_frame(gadget);
490 
491 	trace_usb_gadget_frame_number(gadget, ret);
492 
493 	return ret;
494 }
495 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
496 
497 /**
498  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
499  * @gadget: controller used to wake up the host
500  *
501  * Returns zero on success, else negative error code if the hardware
502  * doesn't support such attempts, or its support has not been enabled
503  * by the usb host.  Drivers must return device descriptors that report
504  * their ability to support this, or hosts won't enable it.
505  *
506  * This may also try to use SRP to wake the host and start enumeration,
507  * even if OTG isn't otherwise in use.  OTG devices may also start
508  * remote wakeup even when hosts don't explicitly enable it.
509  */
510 int usb_gadget_wakeup(struct usb_gadget *gadget)
511 {
512 	int ret = 0;
513 
514 	if (!gadget->ops->wakeup) {
515 		ret = -EOPNOTSUPP;
516 		goto out;
517 	}
518 
519 	ret = gadget->ops->wakeup(gadget);
520 
521 out:
522 	trace_usb_gadget_wakeup(gadget, ret);
523 
524 	return ret;
525 }
526 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
527 
528 /**
529  * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature.
530  * @gadget:the device being configured for remote wakeup
531  * @set:value to be configured.
532  *
533  * set to one to enable remote wakeup feature and zero to disable it.
534  *
535  * returns zero on success, else negative errno.
536  */
537 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
538 {
539 	int ret = 0;
540 
541 	if (!gadget->ops->set_remote_wakeup) {
542 		ret = -EOPNOTSUPP;
543 		goto out;
544 	}
545 
546 	ret = gadget->ops->set_remote_wakeup(gadget, set);
547 
548 out:
549 	trace_usb_gadget_set_remote_wakeup(gadget, ret);
550 
551 	return ret;
552 }
553 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup);
554 
555 /**
556  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
557  * @gadget:the device being declared as self-powered
558  *
559  * this affects the device status reported by the hardware driver
560  * to reflect that it now has a local power supply.
561  *
562  * returns zero on success, else negative errno.
563  */
564 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
565 {
566 	int ret = 0;
567 
568 	if (!gadget->ops->set_selfpowered) {
569 		ret = -EOPNOTSUPP;
570 		goto out;
571 	}
572 
573 	ret = gadget->ops->set_selfpowered(gadget, 1);
574 
575 out:
576 	trace_usb_gadget_set_selfpowered(gadget, ret);
577 
578 	return ret;
579 }
580 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
581 
582 /**
583  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
584  * @gadget:the device being declared as bus-powered
585  *
586  * this affects the device status reported by the hardware driver.
587  * some hardware may not support bus-powered operation, in which
588  * case this feature's value can never change.
589  *
590  * returns zero on success, else negative errno.
591  */
592 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
593 {
594 	int ret = 0;
595 
596 	if (!gadget->ops->set_selfpowered) {
597 		ret = -EOPNOTSUPP;
598 		goto out;
599 	}
600 
601 	ret = gadget->ops->set_selfpowered(gadget, 0);
602 
603 out:
604 	trace_usb_gadget_clear_selfpowered(gadget, ret);
605 
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
609 
610 /**
611  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
612  * @gadget:The device which now has VBUS power.
613  * Context: can sleep
614  *
615  * This call is used by a driver for an external transceiver (or GPIO)
616  * that detects a VBUS power session starting.  Common responses include
617  * resuming the controller, activating the D+ (or D-) pullup to let the
618  * host detect that a USB device is attached, and starting to draw power
619  * (8mA or possibly more, especially after SET_CONFIGURATION).
620  *
621  * Returns zero on success, else negative errno.
622  */
623 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
624 {
625 	int ret = 0;
626 
627 	if (!gadget->ops->vbus_session) {
628 		ret = -EOPNOTSUPP;
629 		goto out;
630 	}
631 
632 	ret = gadget->ops->vbus_session(gadget, 1);
633 
634 out:
635 	trace_usb_gadget_vbus_connect(gadget, ret);
636 
637 	return ret;
638 }
639 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
640 
641 /**
642  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
643  * @gadget:The device whose VBUS usage is being described
644  * @mA:How much current to draw, in milliAmperes.  This should be twice
645  *	the value listed in the configuration descriptor bMaxPower field.
646  *
647  * This call is used by gadget drivers during SET_CONFIGURATION calls,
648  * reporting how much power the device may consume.  For example, this
649  * could affect how quickly batteries are recharged.
650  *
651  * Returns zero on success, else negative errno.
652  */
653 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
654 {
655 	int ret = 0;
656 
657 	if (!gadget->ops->vbus_draw) {
658 		ret = -EOPNOTSUPP;
659 		goto out;
660 	}
661 
662 	ret = gadget->ops->vbus_draw(gadget, mA);
663 	if (!ret)
664 		gadget->mA = mA;
665 
666 out:
667 	trace_usb_gadget_vbus_draw(gadget, ret);
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
672 
673 /**
674  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
675  * @gadget:the device whose VBUS supply is being described
676  * Context: can sleep
677  *
678  * This call is used by a driver for an external transceiver (or GPIO)
679  * that detects a VBUS power session ending.  Common responses include
680  * reversing everything done in usb_gadget_vbus_connect().
681  *
682  * Returns zero on success, else negative errno.
683  */
684 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
685 {
686 	int ret = 0;
687 
688 	if (!gadget->ops->vbus_session) {
689 		ret = -EOPNOTSUPP;
690 		goto out;
691 	}
692 
693 	ret = gadget->ops->vbus_session(gadget, 0);
694 
695 out:
696 	trace_usb_gadget_vbus_disconnect(gadget, ret);
697 
698 	return ret;
699 }
700 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
701 
702 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
703 	__must_hold(&gadget->udc->connect_lock)
704 {
705 	int ret = 0;
706 
707 	if (!gadget->ops->pullup) {
708 		ret = -EOPNOTSUPP;
709 		goto out;
710 	}
711 
712 	if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) {
713 		/*
714 		 * If the gadget isn't usable (because it is deactivated,
715 		 * unbound, or not yet started), we only save the new state.
716 		 * The gadget will be connected automatically when it is
717 		 * activated/bound/started.
718 		 */
719 		gadget->connected = true;
720 		goto out;
721 	}
722 
723 	ret = gadget->ops->pullup(gadget, 1);
724 	if (!ret)
725 		gadget->connected = 1;
726 
727 out:
728 	trace_usb_gadget_connect(gadget, ret);
729 
730 	return ret;
731 }
732 
733 /**
734  * usb_gadget_connect - software-controlled connect to USB host
735  * @gadget:the peripheral being connected
736  *
737  * Enables the D+ (or potentially D-) pullup.  The host will start
738  * enumerating this gadget when the pullup is active and a VBUS session
739  * is active (the link is powered).
740  *
741  * Returns zero on success, else negative errno.
742  */
743 int usb_gadget_connect(struct usb_gadget *gadget)
744 {
745 	int ret;
746 
747 	mutex_lock(&gadget->udc->connect_lock);
748 	ret = usb_gadget_connect_locked(gadget);
749 	mutex_unlock(&gadget->udc->connect_lock);
750 
751 	return ret;
752 }
753 EXPORT_SYMBOL_GPL(usb_gadget_connect);
754 
755 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
756 	__must_hold(&gadget->udc->connect_lock)
757 {
758 	int ret = 0;
759 
760 	if (!gadget->ops->pullup) {
761 		ret = -EOPNOTSUPP;
762 		goto out;
763 	}
764 
765 	if (!gadget->connected)
766 		goto out;
767 
768 	if (gadget->deactivated || !gadget->udc->started) {
769 		/*
770 		 * If gadget is deactivated we only save new state.
771 		 * Gadget will stay disconnected after activation.
772 		 */
773 		gadget->connected = false;
774 		goto out;
775 	}
776 
777 	ret = gadget->ops->pullup(gadget, 0);
778 	if (!ret)
779 		gadget->connected = 0;
780 
781 	mutex_lock(&udc_lock);
782 	if (gadget->udc->driver)
783 		gadget->udc->driver->disconnect(gadget);
784 	mutex_unlock(&udc_lock);
785 
786 out:
787 	trace_usb_gadget_disconnect(gadget, ret);
788 
789 	return ret;
790 }
791 
792 /**
793  * usb_gadget_disconnect - software-controlled disconnect from USB host
794  * @gadget:the peripheral being disconnected
795  *
796  * Disables the D+ (or potentially D-) pullup, which the host may see
797  * as a disconnect (when a VBUS session is active).  Not all systems
798  * support software pullup controls.
799  *
800  * Following a successful disconnect, invoke the ->disconnect() callback
801  * for the current gadget driver so that UDC drivers don't need to.
802  *
803  * Returns zero on success, else negative errno.
804  */
805 int usb_gadget_disconnect(struct usb_gadget *gadget)
806 {
807 	int ret;
808 
809 	mutex_lock(&gadget->udc->connect_lock);
810 	ret = usb_gadget_disconnect_locked(gadget);
811 	mutex_unlock(&gadget->udc->connect_lock);
812 
813 	return ret;
814 }
815 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
816 
817 /**
818  * usb_gadget_deactivate - deactivate function which is not ready to work
819  * @gadget: the peripheral being deactivated
820  *
821  * This routine may be used during the gadget driver bind() call to prevent
822  * the peripheral from ever being visible to the USB host, unless later
823  * usb_gadget_activate() is called.  For example, user mode components may
824  * need to be activated before the system can talk to hosts.
825  *
826  * This routine may sleep; it must not be called in interrupt context
827  * (such as from within a gadget driver's disconnect() callback).
828  *
829  * Returns zero on success, else negative errno.
830  */
831 int usb_gadget_deactivate(struct usb_gadget *gadget)
832 {
833 	int ret = 0;
834 
835 	mutex_lock(&gadget->udc->connect_lock);
836 	if (gadget->deactivated)
837 		goto unlock;
838 
839 	if (gadget->connected) {
840 		ret = usb_gadget_disconnect_locked(gadget);
841 		if (ret)
842 			goto unlock;
843 
844 		/*
845 		 * If gadget was being connected before deactivation, we want
846 		 * to reconnect it in usb_gadget_activate().
847 		 */
848 		gadget->connected = true;
849 	}
850 	gadget->deactivated = true;
851 
852 unlock:
853 	mutex_unlock(&gadget->udc->connect_lock);
854 	trace_usb_gadget_deactivate(gadget, ret);
855 
856 	return ret;
857 }
858 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
859 
860 /**
861  * usb_gadget_activate - activate function which is not ready to work
862  * @gadget: the peripheral being activated
863  *
864  * This routine activates gadget which was previously deactivated with
865  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
866  *
867  * This routine may sleep; it must not be called in interrupt context.
868  *
869  * Returns zero on success, else negative errno.
870  */
871 int usb_gadget_activate(struct usb_gadget *gadget)
872 {
873 	int ret = 0;
874 
875 	mutex_lock(&gadget->udc->connect_lock);
876 	if (!gadget->deactivated)
877 		goto unlock;
878 
879 	gadget->deactivated = false;
880 
881 	/*
882 	 * If gadget has been connected before deactivation, or became connected
883 	 * while it was being deactivated, we call usb_gadget_connect().
884 	 */
885 	if (gadget->connected)
886 		ret = usb_gadget_connect_locked(gadget);
887 
888 unlock:
889 	mutex_unlock(&gadget->udc->connect_lock);
890 	trace_usb_gadget_activate(gadget, ret);
891 
892 	return ret;
893 }
894 EXPORT_SYMBOL_GPL(usb_gadget_activate);
895 
896 /* ------------------------------------------------------------------------- */
897 
898 #ifdef	CONFIG_HAS_DMA
899 
900 int usb_gadget_map_request_by_dev(struct device *dev,
901 		struct usb_request *req, int is_in)
902 {
903 	if (req->length == 0)
904 		return 0;
905 
906 	if (req->sg_was_mapped) {
907 		req->num_mapped_sgs = req->num_sgs;
908 		return 0;
909 	}
910 
911 	if (req->num_sgs) {
912 		int     mapped;
913 
914 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
915 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
916 		if (mapped == 0) {
917 			dev_err(dev, "failed to map SGs\n");
918 			return -EFAULT;
919 		}
920 
921 		req->num_mapped_sgs = mapped;
922 	} else {
923 		if (is_vmalloc_addr(req->buf)) {
924 			dev_err(dev, "buffer is not dma capable\n");
925 			return -EFAULT;
926 		} else if (object_is_on_stack(req->buf)) {
927 			dev_err(dev, "buffer is on stack\n");
928 			return -EFAULT;
929 		}
930 
931 		req->dma = dma_map_single(dev, req->buf, req->length,
932 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
933 
934 		if (dma_mapping_error(dev, req->dma)) {
935 			dev_err(dev, "failed to map buffer\n");
936 			return -EFAULT;
937 		}
938 
939 		req->dma_mapped = 1;
940 	}
941 
942 	return 0;
943 }
944 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
945 
946 int usb_gadget_map_request(struct usb_gadget *gadget,
947 		struct usb_request *req, int is_in)
948 {
949 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
950 }
951 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
952 
953 void usb_gadget_unmap_request_by_dev(struct device *dev,
954 		struct usb_request *req, int is_in)
955 {
956 	if (req->length == 0 || req->sg_was_mapped)
957 		return;
958 
959 	if (req->num_mapped_sgs) {
960 		dma_unmap_sg(dev, req->sg, req->num_sgs,
961 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
962 
963 		req->num_mapped_sgs = 0;
964 	} else if (req->dma_mapped) {
965 		dma_unmap_single(dev, req->dma, req->length,
966 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
967 		req->dma_mapped = 0;
968 	}
969 }
970 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
971 
972 void usb_gadget_unmap_request(struct usb_gadget *gadget,
973 		struct usb_request *req, int is_in)
974 {
975 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
976 }
977 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
978 
979 #endif	/* CONFIG_HAS_DMA */
980 
981 /* ------------------------------------------------------------------------- */
982 
983 /**
984  * usb_gadget_giveback_request - give the request back to the gadget layer
985  * @ep: the endpoint to be used with with the request
986  * @req: the request being given back
987  *
988  * This is called by device controller drivers in order to return the
989  * completed request back to the gadget layer.
990  */
991 void usb_gadget_giveback_request(struct usb_ep *ep,
992 		struct usb_request *req)
993 {
994 	if (likely(req->status == 0))
995 		usb_led_activity(USB_LED_EVENT_GADGET);
996 
997 	trace_usb_gadget_giveback_request(ep, req, 0);
998 
999 	req->complete(ep, req);
1000 }
1001 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
1002 
1003 /* ------------------------------------------------------------------------- */
1004 
1005 /**
1006  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
1007  *	in second parameter or NULL if searched endpoint not found
1008  * @g: controller to check for quirk
1009  * @name: name of searched endpoint
1010  */
1011 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
1012 {
1013 	struct usb_ep *ep;
1014 
1015 	gadget_for_each_ep(ep, g) {
1016 		if (!strcmp(ep->name, name))
1017 			return ep;
1018 	}
1019 
1020 	return NULL;
1021 }
1022 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
1023 
1024 /* ------------------------------------------------------------------------- */
1025 
1026 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1027 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1028 		struct usb_ss_ep_comp_descriptor *ep_comp)
1029 {
1030 	u8		type;
1031 	u16		max;
1032 	int		num_req_streams = 0;
1033 
1034 	/* endpoint already claimed? */
1035 	if (ep->claimed)
1036 		return 0;
1037 
1038 	type = usb_endpoint_type(desc);
1039 	max = usb_endpoint_maxp(desc);
1040 
1041 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1042 		return 0;
1043 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1044 		return 0;
1045 
1046 	if (max > ep->maxpacket_limit)
1047 		return 0;
1048 
1049 	/* "high bandwidth" works only at high speed */
1050 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1051 		return 0;
1052 
1053 	switch (type) {
1054 	case USB_ENDPOINT_XFER_CONTROL:
1055 		/* only support ep0 for portable CONTROL traffic */
1056 		return 0;
1057 	case USB_ENDPOINT_XFER_ISOC:
1058 		if (!ep->caps.type_iso)
1059 			return 0;
1060 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
1061 		if (!gadget_is_dualspeed(gadget) && max > 1023)
1062 			return 0;
1063 		break;
1064 	case USB_ENDPOINT_XFER_BULK:
1065 		if (!ep->caps.type_bulk)
1066 			return 0;
1067 		if (ep_comp && gadget_is_superspeed(gadget)) {
1068 			/* Get the number of required streams from the
1069 			 * EP companion descriptor and see if the EP
1070 			 * matches it
1071 			 */
1072 			num_req_streams = ep_comp->bmAttributes & 0x1f;
1073 			if (num_req_streams > ep->max_streams)
1074 				return 0;
1075 		}
1076 		break;
1077 	case USB_ENDPOINT_XFER_INT:
1078 		/* Bulk endpoints handle interrupt transfers,
1079 		 * except the toggle-quirky iso-synch kind
1080 		 */
1081 		if (!ep->caps.type_int && !ep->caps.type_bulk)
1082 			return 0;
1083 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1084 		if (!gadget_is_dualspeed(gadget) && max > 64)
1085 			return 0;
1086 		break;
1087 	}
1088 
1089 	return 1;
1090 }
1091 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1092 
1093 /**
1094  * usb_gadget_check_config - checks if the UDC can support the binded
1095  *	configuration
1096  * @gadget: controller to check the USB configuration
1097  *
1098  * Ensure that a UDC is able to support the requested resources by a
1099  * configuration, and that there are no resource limitations, such as
1100  * internal memory allocated to all requested endpoints.
1101  *
1102  * Returns zero on success, else a negative errno.
1103  */
1104 int usb_gadget_check_config(struct usb_gadget *gadget)
1105 {
1106 	if (gadget->ops->check_config)
1107 		return gadget->ops->check_config(gadget);
1108 	return 0;
1109 }
1110 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1111 
1112 /* ------------------------------------------------------------------------- */
1113 
1114 static void usb_gadget_state_work(struct work_struct *work)
1115 {
1116 	struct usb_gadget *gadget = work_to_gadget(work);
1117 	struct usb_udc *udc = gadget->udc;
1118 
1119 	if (udc)
1120 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1121 }
1122 
1123 void usb_gadget_set_state(struct usb_gadget *gadget,
1124 		enum usb_device_state state)
1125 {
1126 	gadget->state = state;
1127 	schedule_work(&gadget->work);
1128 }
1129 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1130 
1131 /* ------------------------------------------------------------------------- */
1132 
1133 /* Acquire connect_lock before calling this function. */
1134 static int usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock)
1135 {
1136 	if (udc->vbus)
1137 		return usb_gadget_connect_locked(udc->gadget);
1138 	else
1139 		return usb_gadget_disconnect_locked(udc->gadget);
1140 }
1141 
1142 static void vbus_event_work(struct work_struct *work)
1143 {
1144 	struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work);
1145 
1146 	mutex_lock(&udc->connect_lock);
1147 	usb_udc_connect_control_locked(udc);
1148 	mutex_unlock(&udc->connect_lock);
1149 }
1150 
1151 /**
1152  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1153  * connect or disconnect gadget
1154  * @gadget: The gadget which vbus change occurs
1155  * @status: The vbus status
1156  *
1157  * The udc driver calls it when it wants to connect or disconnect gadget
1158  * according to vbus status.
1159  *
1160  * This function can be invoked from interrupt context by irq handlers of
1161  * the gadget drivers, however, usb_udc_connect_control() has to run in
1162  * non-atomic context due to the following:
1163  * a. Some of the gadget driver implementations expect the ->pullup
1164  * callback to be invoked in non-atomic context.
1165  * b. usb_gadget_disconnect() acquires udc_lock which is a mutex.
1166  * Hence offload invocation of usb_udc_connect_control() to workqueue.
1167  */
1168 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1169 {
1170 	struct usb_udc *udc = gadget->udc;
1171 
1172 	if (udc) {
1173 		udc->vbus = status;
1174 		schedule_work(&udc->vbus_work);
1175 	}
1176 }
1177 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1178 
1179 /**
1180  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1181  * @gadget: The gadget which bus reset occurs
1182  * @driver: The gadget driver we want to notify
1183  *
1184  * If the udc driver has bus reset handler, it needs to call this when the bus
1185  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1186  * well as updates gadget state.
1187  */
1188 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1189 		struct usb_gadget_driver *driver)
1190 {
1191 	driver->reset(gadget);
1192 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1193 }
1194 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1195 
1196 /**
1197  * usb_gadget_udc_start_locked - tells usb device controller to start up
1198  * @udc: The UDC to be started
1199  *
1200  * This call is issued by the UDC Class driver when it's about
1201  * to register a gadget driver to the device controller, before
1202  * calling gadget driver's bind() method.
1203  *
1204  * It allows the controller to be powered off until strictly
1205  * necessary to have it powered on.
1206  *
1207  * Returns zero on success, else negative errno.
1208  *
1209  * Caller should acquire connect_lock before invoking this function.
1210  */
1211 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1212 	__must_hold(&udc->connect_lock)
1213 {
1214 	int ret;
1215 
1216 	if (udc->started) {
1217 		dev_err(&udc->dev, "UDC had already started\n");
1218 		return -EBUSY;
1219 	}
1220 
1221 	ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1222 	if (!ret)
1223 		udc->started = true;
1224 
1225 	return ret;
1226 }
1227 
1228 /**
1229  * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1230  * @udc: The UDC to be stopped
1231  *
1232  * This call is issued by the UDC Class driver after calling
1233  * gadget driver's unbind() method.
1234  *
1235  * The details are implementation specific, but it can go as
1236  * far as powering off UDC completely and disable its data
1237  * line pullups.
1238  *
1239  * Caller should acquire connect lock before invoking this function.
1240  */
1241 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1242 	__must_hold(&udc->connect_lock)
1243 {
1244 	if (!udc->started) {
1245 		dev_err(&udc->dev, "UDC had already stopped\n");
1246 		return;
1247 	}
1248 
1249 	udc->gadget->ops->udc_stop(udc->gadget);
1250 	udc->started = false;
1251 }
1252 
1253 /**
1254  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1255  *    current driver
1256  * @udc: The device we want to set maximum speed
1257  * @speed: The maximum speed to allowed to run
1258  *
1259  * This call is issued by the UDC Class driver before calling
1260  * usb_gadget_udc_start() in order to make sure that we don't try to
1261  * connect on speeds the gadget driver doesn't support.
1262  */
1263 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1264 					    enum usb_device_speed speed)
1265 {
1266 	struct usb_gadget *gadget = udc->gadget;
1267 	enum usb_device_speed s;
1268 
1269 	if (speed == USB_SPEED_UNKNOWN)
1270 		s = gadget->max_speed;
1271 	else
1272 		s = min(speed, gadget->max_speed);
1273 
1274 	if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1275 		gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1276 	else if (gadget->ops->udc_set_speed)
1277 		gadget->ops->udc_set_speed(gadget, s);
1278 }
1279 
1280 /**
1281  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1282  * @udc: The UDC which should enable async callbacks
1283  *
1284  * This routine is used when binding gadget drivers.  It undoes the effect
1285  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1286  * (if necessary) and resume issuing callbacks.
1287  *
1288  * This routine will always be called in process context.
1289  */
1290 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1291 {
1292 	struct usb_gadget *gadget = udc->gadget;
1293 
1294 	if (gadget->ops->udc_async_callbacks)
1295 		gadget->ops->udc_async_callbacks(gadget, true);
1296 }
1297 
1298 /**
1299  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1300  * @udc: The UDC which should disable async callbacks
1301  *
1302  * This routine is used when unbinding gadget drivers.  It prevents a race:
1303  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1304  * runs, so unless it is told to disable asynchronous callbacks, it might
1305  * issue a callback (such as ->disconnect) after the unbind has completed.
1306  *
1307  * After this function runs, the UDC driver must suppress all ->suspend,
1308  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1309  * until async callbacks are again enabled.  A simple-minded but effective
1310  * way to accomplish this is to tell the UDC hardware not to generate any
1311  * more IRQs.
1312  *
1313  * Request completion callbacks must still be issued.  However, it's okay
1314  * to defer them until the request is cancelled, since the pull-up will be
1315  * turned off during the time period when async callbacks are disabled.
1316  *
1317  * This routine will always be called in process context.
1318  */
1319 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1320 {
1321 	struct usb_gadget *gadget = udc->gadget;
1322 
1323 	if (gadget->ops->udc_async_callbacks)
1324 		gadget->ops->udc_async_callbacks(gadget, false);
1325 }
1326 
1327 /**
1328  * usb_udc_release - release the usb_udc struct
1329  * @dev: the dev member within usb_udc
1330  *
1331  * This is called by driver's core in order to free memory once the last
1332  * reference is released.
1333  */
1334 static void usb_udc_release(struct device *dev)
1335 {
1336 	struct usb_udc *udc;
1337 
1338 	udc = container_of(dev, struct usb_udc, dev);
1339 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1340 	kfree(udc);
1341 }
1342 
1343 static const struct attribute_group *usb_udc_attr_groups[];
1344 
1345 static void usb_udc_nop_release(struct device *dev)
1346 {
1347 	dev_vdbg(dev, "%s\n", __func__);
1348 }
1349 
1350 /**
1351  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1352  * @parent: the parent device to this udc. Usually the controller driver's
1353  * device.
1354  * @gadget: the gadget to be initialized.
1355  * @release: a gadget release function.
1356  */
1357 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1358 		void (*release)(struct device *dev))
1359 {
1360 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1361 	gadget->dev.parent = parent;
1362 
1363 	if (release)
1364 		gadget->dev.release = release;
1365 	else
1366 		gadget->dev.release = usb_udc_nop_release;
1367 
1368 	device_initialize(&gadget->dev);
1369 	gadget->dev.bus = &gadget_bus_type;
1370 }
1371 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1372 
1373 /**
1374  * usb_add_gadget - adds a new gadget to the udc class driver list
1375  * @gadget: the gadget to be added to the list.
1376  *
1377  * Returns zero on success, negative errno otherwise.
1378  * Does not do a final usb_put_gadget() if an error occurs.
1379  */
1380 int usb_add_gadget(struct usb_gadget *gadget)
1381 {
1382 	struct usb_udc		*udc;
1383 	int			ret = -ENOMEM;
1384 
1385 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1386 	if (!udc)
1387 		goto error;
1388 
1389 	device_initialize(&udc->dev);
1390 	udc->dev.release = usb_udc_release;
1391 	udc->dev.class = &udc_class;
1392 	udc->dev.groups = usb_udc_attr_groups;
1393 	udc->dev.parent = gadget->dev.parent;
1394 	ret = dev_set_name(&udc->dev, "%s",
1395 			kobject_name(&gadget->dev.parent->kobj));
1396 	if (ret)
1397 		goto err_put_udc;
1398 
1399 	udc->gadget = gadget;
1400 	gadget->udc = udc;
1401 	mutex_init(&udc->connect_lock);
1402 
1403 	udc->started = false;
1404 
1405 	mutex_lock(&udc_lock);
1406 	list_add_tail(&udc->list, &udc_list);
1407 	mutex_unlock(&udc_lock);
1408 	INIT_WORK(&udc->vbus_work, vbus_event_work);
1409 
1410 	ret = device_add(&udc->dev);
1411 	if (ret)
1412 		goto err_unlist_udc;
1413 
1414 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1415 	udc->vbus = true;
1416 
1417 	ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL);
1418 	if (ret < 0)
1419 		goto err_del_udc;
1420 	gadget->id_number = ret;
1421 	dev_set_name(&gadget->dev, "gadget.%d", ret);
1422 
1423 	ret = device_add(&gadget->dev);
1424 	if (ret)
1425 		goto err_free_id;
1426 
1427 	ret = sysfs_create_link(&udc->dev.kobj,
1428 				&gadget->dev.kobj, "gadget");
1429 	if (ret)
1430 		goto err_del_gadget;
1431 
1432 	return 0;
1433 
1434  err_del_gadget:
1435 	device_del(&gadget->dev);
1436 
1437  err_free_id:
1438 	ida_free(&gadget_id_numbers, gadget->id_number);
1439 
1440  err_del_udc:
1441 	flush_work(&gadget->work);
1442 	device_del(&udc->dev);
1443 
1444  err_unlist_udc:
1445 	mutex_lock(&udc_lock);
1446 	list_del(&udc->list);
1447 	mutex_unlock(&udc_lock);
1448 
1449  err_put_udc:
1450 	put_device(&udc->dev);
1451 
1452  error:
1453 	return ret;
1454 }
1455 EXPORT_SYMBOL_GPL(usb_add_gadget);
1456 
1457 /**
1458  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1459  * @parent: the parent device to this udc. Usually the controller driver's
1460  * device.
1461  * @gadget: the gadget to be added to the list.
1462  * @release: a gadget release function.
1463  *
1464  * Returns zero on success, negative errno otherwise.
1465  * Calls the gadget release function in the latter case.
1466  */
1467 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1468 		void (*release)(struct device *dev))
1469 {
1470 	int	ret;
1471 
1472 	usb_initialize_gadget(parent, gadget, release);
1473 	ret = usb_add_gadget(gadget);
1474 	if (ret)
1475 		usb_put_gadget(gadget);
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1479 
1480 /**
1481  * usb_get_gadget_udc_name - get the name of the first UDC controller
1482  * This functions returns the name of the first UDC controller in the system.
1483  * Please note that this interface is usefull only for legacy drivers which
1484  * assume that there is only one UDC controller in the system and they need to
1485  * get its name before initialization. There is no guarantee that the UDC
1486  * of the returned name will be still available, when gadget driver registers
1487  * itself.
1488  *
1489  * Returns pointer to string with UDC controller name on success, NULL
1490  * otherwise. Caller should kfree() returned string.
1491  */
1492 char *usb_get_gadget_udc_name(void)
1493 {
1494 	struct usb_udc *udc;
1495 	char *name = NULL;
1496 
1497 	/* For now we take the first available UDC */
1498 	mutex_lock(&udc_lock);
1499 	list_for_each_entry(udc, &udc_list, list) {
1500 		if (!udc->driver) {
1501 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1502 			break;
1503 		}
1504 	}
1505 	mutex_unlock(&udc_lock);
1506 	return name;
1507 }
1508 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1509 
1510 /**
1511  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1512  * @parent: the parent device to this udc. Usually the controller
1513  * driver's device.
1514  * @gadget: the gadget to be added to the list
1515  *
1516  * Returns zero on success, negative errno otherwise.
1517  */
1518 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1519 {
1520 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1521 }
1522 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1523 
1524 /**
1525  * usb_del_gadget - deletes a gadget and unregisters its udc
1526  * @gadget: the gadget to be deleted.
1527  *
1528  * This will unbind @gadget, if it is bound.
1529  * It will not do a final usb_put_gadget().
1530  */
1531 void usb_del_gadget(struct usb_gadget *gadget)
1532 {
1533 	struct usb_udc *udc = gadget->udc;
1534 
1535 	if (!udc)
1536 		return;
1537 
1538 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1539 
1540 	mutex_lock(&udc_lock);
1541 	list_del(&udc->list);
1542 	mutex_unlock(&udc_lock);
1543 
1544 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1545 	sysfs_remove_link(&udc->dev.kobj, "gadget");
1546 	flush_work(&gadget->work);
1547 	device_del(&gadget->dev);
1548 	ida_free(&gadget_id_numbers, gadget->id_number);
1549 	cancel_work_sync(&udc->vbus_work);
1550 	device_unregister(&udc->dev);
1551 }
1552 EXPORT_SYMBOL_GPL(usb_del_gadget);
1553 
1554 /**
1555  * usb_del_gadget_udc - unregisters a gadget
1556  * @gadget: the gadget to be unregistered.
1557  *
1558  * Calls usb_del_gadget() and does a final usb_put_gadget().
1559  */
1560 void usb_del_gadget_udc(struct usb_gadget *gadget)
1561 {
1562 	usb_del_gadget(gadget);
1563 	usb_put_gadget(gadget);
1564 }
1565 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1566 
1567 /* ------------------------------------------------------------------------- */
1568 
1569 static int gadget_match_driver(struct device *dev, const struct device_driver *drv)
1570 {
1571 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1572 	struct usb_udc *udc = gadget->udc;
1573 	struct usb_gadget_driver *driver = container_of(drv,
1574 			struct usb_gadget_driver, driver);
1575 
1576 	/* If the driver specifies a udc_name, it must match the UDC's name */
1577 	if (driver->udc_name &&
1578 			strcmp(driver->udc_name, dev_name(&udc->dev)) != 0)
1579 		return 0;
1580 
1581 	/* If the driver is already bound to a gadget, it doesn't match */
1582 	if (driver->is_bound)
1583 		return 0;
1584 
1585 	/* Otherwise any gadget driver matches any UDC */
1586 	return 1;
1587 }
1588 
1589 static int gadget_bind_driver(struct device *dev)
1590 {
1591 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1592 	struct usb_udc *udc = gadget->udc;
1593 	struct usb_gadget_driver *driver = container_of(dev->driver,
1594 			struct usb_gadget_driver, driver);
1595 	int ret = 0;
1596 
1597 	mutex_lock(&udc_lock);
1598 	if (driver->is_bound) {
1599 		mutex_unlock(&udc_lock);
1600 		return -ENXIO;		/* Driver binds to only one gadget */
1601 	}
1602 	driver->is_bound = true;
1603 	udc->driver = driver;
1604 	mutex_unlock(&udc_lock);
1605 
1606 	dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function);
1607 
1608 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1609 
1610 	ret = driver->bind(udc->gadget, driver);
1611 	if (ret)
1612 		goto err_bind;
1613 
1614 	mutex_lock(&udc->connect_lock);
1615 	ret = usb_gadget_udc_start_locked(udc);
1616 	if (ret) {
1617 		mutex_unlock(&udc->connect_lock);
1618 		goto err_start;
1619 	}
1620 	usb_gadget_enable_async_callbacks(udc);
1621 	udc->allow_connect = true;
1622 	ret = usb_udc_connect_control_locked(udc);
1623 	if (ret)
1624 		goto err_connect_control;
1625 
1626 	mutex_unlock(&udc->connect_lock);
1627 
1628 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1629 	return 0;
1630 
1631  err_connect_control:
1632 	udc->allow_connect = false;
1633 	usb_gadget_disable_async_callbacks(udc);
1634 	if (gadget->irq)
1635 		synchronize_irq(gadget->irq);
1636 	usb_gadget_udc_stop_locked(udc);
1637 	mutex_unlock(&udc->connect_lock);
1638 
1639  err_start:
1640 	driver->unbind(udc->gadget);
1641 
1642  err_bind:
1643 	if (ret != -EISNAM)
1644 		dev_err(&udc->dev, "failed to start %s: %d\n",
1645 			driver->function, ret);
1646 
1647 	mutex_lock(&udc_lock);
1648 	udc->driver = NULL;
1649 	driver->is_bound = false;
1650 	mutex_unlock(&udc_lock);
1651 
1652 	return ret;
1653 }
1654 
1655 static void gadget_unbind_driver(struct device *dev)
1656 {
1657 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1658 	struct usb_udc *udc = gadget->udc;
1659 	struct usb_gadget_driver *driver = udc->driver;
1660 
1661 	dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function);
1662 
1663 	udc->allow_connect = false;
1664 	cancel_work_sync(&udc->vbus_work);
1665 	mutex_lock(&udc->connect_lock);
1666 	usb_gadget_disconnect_locked(gadget);
1667 	usb_gadget_disable_async_callbacks(udc);
1668 	if (gadget->irq)
1669 		synchronize_irq(gadget->irq);
1670 	mutex_unlock(&udc->connect_lock);
1671 
1672 	udc->driver->unbind(gadget);
1673 
1674 	mutex_lock(&udc->connect_lock);
1675 	usb_gadget_udc_stop_locked(udc);
1676 	mutex_unlock(&udc->connect_lock);
1677 
1678 	mutex_lock(&udc_lock);
1679 	driver->is_bound = false;
1680 	udc->driver = NULL;
1681 	mutex_unlock(&udc_lock);
1682 
1683 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1684 }
1685 
1686 /* ------------------------------------------------------------------------- */
1687 
1688 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
1689 		struct module *owner, const char *mod_name)
1690 {
1691 	int ret;
1692 
1693 	if (!driver || !driver->bind || !driver->setup)
1694 		return -EINVAL;
1695 
1696 	driver->driver.bus = &gadget_bus_type;
1697 	driver->driver.owner = owner;
1698 	driver->driver.mod_name = mod_name;
1699 	ret = driver_register(&driver->driver);
1700 	if (ret) {
1701 		pr_warn("%s: driver registration failed: %d\n",
1702 				driver->function, ret);
1703 		return ret;
1704 	}
1705 
1706 	mutex_lock(&udc_lock);
1707 	if (!driver->is_bound) {
1708 		if (driver->match_existing_only) {
1709 			pr_warn("%s: couldn't find an available UDC or it's busy\n",
1710 					driver->function);
1711 			ret = -EBUSY;
1712 		} else {
1713 			pr_info("%s: couldn't find an available UDC\n",
1714 					driver->function);
1715 			ret = 0;
1716 		}
1717 	}
1718 	mutex_unlock(&udc_lock);
1719 
1720 	if (ret)
1721 		driver_unregister(&driver->driver);
1722 	return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner);
1725 
1726 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1727 {
1728 	if (!driver || !driver->unbind)
1729 		return -EINVAL;
1730 
1731 	driver_unregister(&driver->driver);
1732 	return 0;
1733 }
1734 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1735 
1736 /* ------------------------------------------------------------------------- */
1737 
1738 static ssize_t srp_store(struct device *dev,
1739 		struct device_attribute *attr, const char *buf, size_t n)
1740 {
1741 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1742 
1743 	if (sysfs_streq(buf, "1"))
1744 		usb_gadget_wakeup(udc->gadget);
1745 
1746 	return n;
1747 }
1748 static DEVICE_ATTR_WO(srp);
1749 
1750 static ssize_t soft_connect_store(struct device *dev,
1751 		struct device_attribute *attr, const char *buf, size_t n)
1752 {
1753 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1754 	ssize_t			ret;
1755 
1756 	device_lock(&udc->gadget->dev);
1757 	if (!udc->driver) {
1758 		dev_err(dev, "soft-connect without a gadget driver\n");
1759 		ret = -EOPNOTSUPP;
1760 		goto out;
1761 	}
1762 
1763 	if (sysfs_streq(buf, "connect")) {
1764 		mutex_lock(&udc->connect_lock);
1765 		usb_gadget_udc_start_locked(udc);
1766 		usb_gadget_connect_locked(udc->gadget);
1767 		mutex_unlock(&udc->connect_lock);
1768 	} else if (sysfs_streq(buf, "disconnect")) {
1769 		mutex_lock(&udc->connect_lock);
1770 		usb_gadget_disconnect_locked(udc->gadget);
1771 		usb_gadget_udc_stop_locked(udc);
1772 		mutex_unlock(&udc->connect_lock);
1773 	} else {
1774 		dev_err(dev, "unsupported command '%s'\n", buf);
1775 		ret = -EINVAL;
1776 		goto out;
1777 	}
1778 
1779 	ret = n;
1780 out:
1781 	device_unlock(&udc->gadget->dev);
1782 	return ret;
1783 }
1784 static DEVICE_ATTR_WO(soft_connect);
1785 
1786 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1787 			  char *buf)
1788 {
1789 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1790 	struct usb_gadget	*gadget = udc->gadget;
1791 
1792 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1793 }
1794 static DEVICE_ATTR_RO(state);
1795 
1796 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1797 			     char *buf)
1798 {
1799 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1800 	struct usb_gadget_driver *drv;
1801 	int			rc = 0;
1802 
1803 	mutex_lock(&udc_lock);
1804 	drv = udc->driver;
1805 	if (drv && drv->function)
1806 		rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1807 	mutex_unlock(&udc_lock);
1808 	return rc;
1809 }
1810 static DEVICE_ATTR_RO(function);
1811 
1812 #define USB_UDC_SPEED_ATTR(name, param)					\
1813 ssize_t name##_show(struct device *dev,					\
1814 		struct device_attribute *attr, char *buf)		\
1815 {									\
1816 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1817 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1818 			usb_speed_string(udc->gadget->param));		\
1819 }									\
1820 static DEVICE_ATTR_RO(name)
1821 
1822 static USB_UDC_SPEED_ATTR(current_speed, speed);
1823 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1824 
1825 #define USB_UDC_ATTR(name)					\
1826 ssize_t name##_show(struct device *dev,				\
1827 		struct device_attribute *attr, char *buf)	\
1828 {								\
1829 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1830 	struct usb_gadget	*gadget = udc->gadget;		\
1831 								\
1832 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1833 }								\
1834 static DEVICE_ATTR_RO(name)
1835 
1836 static USB_UDC_ATTR(is_otg);
1837 static USB_UDC_ATTR(is_a_peripheral);
1838 static USB_UDC_ATTR(b_hnp_enable);
1839 static USB_UDC_ATTR(a_hnp_support);
1840 static USB_UDC_ATTR(a_alt_hnp_support);
1841 static USB_UDC_ATTR(is_selfpowered);
1842 
1843 static struct attribute *usb_udc_attrs[] = {
1844 	&dev_attr_srp.attr,
1845 	&dev_attr_soft_connect.attr,
1846 	&dev_attr_state.attr,
1847 	&dev_attr_function.attr,
1848 	&dev_attr_current_speed.attr,
1849 	&dev_attr_maximum_speed.attr,
1850 
1851 	&dev_attr_is_otg.attr,
1852 	&dev_attr_is_a_peripheral.attr,
1853 	&dev_attr_b_hnp_enable.attr,
1854 	&dev_attr_a_hnp_support.attr,
1855 	&dev_attr_a_alt_hnp_support.attr,
1856 	&dev_attr_is_selfpowered.attr,
1857 	NULL,
1858 };
1859 
1860 static const struct attribute_group usb_udc_attr_group = {
1861 	.attrs = usb_udc_attrs,
1862 };
1863 
1864 static const struct attribute_group *usb_udc_attr_groups[] = {
1865 	&usb_udc_attr_group,
1866 	NULL,
1867 };
1868 
1869 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env)
1870 {
1871 	const struct usb_udc	*udc = container_of(dev, struct usb_udc, dev);
1872 	int			ret;
1873 
1874 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1875 	if (ret) {
1876 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1877 		return ret;
1878 	}
1879 
1880 	mutex_lock(&udc_lock);
1881 	if (udc->driver)
1882 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1883 				udc->driver->function);
1884 	mutex_unlock(&udc_lock);
1885 	if (ret) {
1886 		dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1887 		return ret;
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static const struct class udc_class = {
1894 	.name		= "udc",
1895 	.dev_uevent	= usb_udc_uevent,
1896 };
1897 
1898 static const struct bus_type gadget_bus_type = {
1899 	.name = "gadget",
1900 	.probe = gadget_bind_driver,
1901 	.remove = gadget_unbind_driver,
1902 	.match = gadget_match_driver,
1903 };
1904 
1905 static int __init usb_udc_init(void)
1906 {
1907 	int rc;
1908 
1909 	rc = class_register(&udc_class);
1910 	if (rc)
1911 		return rc;
1912 
1913 	rc = bus_register(&gadget_bus_type);
1914 	if (rc)
1915 		class_unregister(&udc_class);
1916 	return rc;
1917 }
1918 subsys_initcall(usb_udc_init);
1919 
1920 static void __exit usb_udc_exit(void)
1921 {
1922 	bus_unregister(&gadget_bus_type);
1923 	class_unregister(&udc_class);
1924 }
1925 module_exit(usb_udc_exit);
1926 
1927 MODULE_DESCRIPTION("UDC Framework");
1928 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1929 MODULE_LICENSE("GPL v2");
1930