xref: /linux/drivers/usb/gadget/udc/core.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #define pr_fmt(fmt)	"UDC core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/idr.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/workqueue.h>
20 
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb.h>
24 
25 #include "trace.h"
26 
27 static DEFINE_IDA(gadget_id_numbers);
28 
29 static const struct bus_type gadget_bus_type;
30 
31 /**
32  * struct usb_udc - describes one usb device controller
33  * @driver: the gadget driver pointer. For use by the class code
34  * @dev: the child device to the actual controller
35  * @gadget: the gadget. For use by the class code
36  * @list: for use by the udc class driver
37  * @vbus: for udcs who care about vbus status, this value is real vbus status;
38  * for udcs who do not care about vbus status, this value is always true
39  * @started: the UDC's started state. True if the UDC had started.
40  * @allow_connect: Indicates whether UDC is allowed to be pulled up.
41  * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or
42  * unbound.
43  * @vbus_work: work routine to handle VBUS status change notifications.
44  * @connect_lock: protects udc->started, gadget->connect,
45  * gadget->allow_connect and gadget->deactivate. The routines
46  * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(),
47  * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and
48  * usb_gadget_udc_stop_locked() are called with this lock held.
49  *
50  * This represents the internal data structure which is used by the UDC-class
51  * to hold information about udc driver and gadget together.
52  */
53 struct usb_udc {
54 	struct usb_gadget_driver	*driver;
55 	struct usb_gadget		*gadget;
56 	struct device			dev;
57 	struct list_head		list;
58 	bool				vbus;
59 	bool				started;
60 	bool				allow_connect;
61 	struct work_struct		vbus_work;
62 	struct mutex			connect_lock;
63 };
64 
65 static const struct class udc_class;
66 static LIST_HEAD(udc_list);
67 
68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */
69 static DEFINE_MUTEX(udc_lock);
70 
71 /* ------------------------------------------------------------------------- */
72 
73 /**
74  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
75  * @ep:the endpoint being configured
76  * @maxpacket_limit:value of maximum packet size limit
77  *
78  * This function should be used only in UDC drivers to initialize endpoint
79  * (usually in probe function).
80  */
81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
82 					      unsigned maxpacket_limit)
83 {
84 	ep->maxpacket_limit = maxpacket_limit;
85 	ep->maxpacket = maxpacket_limit;
86 
87 	trace_usb_ep_set_maxpacket_limit(ep, 0);
88 }
89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
90 
91 /**
92  * usb_ep_enable - configure endpoint, making it usable
93  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
94  *	drivers discover endpoints through the ep_list of a usb_gadget.
95  *
96  * When configurations are set, or when interface settings change, the driver
97  * will enable or disable the relevant endpoints.  while it is enabled, an
98  * endpoint may be used for i/o until the driver receives a disconnect() from
99  * the host or until the endpoint is disabled.
100  *
101  * the ep0 implementation (which calls this routine) must ensure that the
102  * hardware capabilities of each endpoint match the descriptor provided
103  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
104  * for interrupt transfers as well as bulk, but it likely couldn't be used
105  * for iso transfers or for endpoint 14.  some endpoints are fully
106  * configurable, with more generic names like "ep-a".  (remember that for
107  * USB, "in" means "towards the USB host".)
108  *
109  * This routine may be called in an atomic (interrupt) context.
110  *
111  * returns zero, or a negative error code.
112  */
113 int usb_ep_enable(struct usb_ep *ep)
114 {
115 	int ret = 0;
116 
117 	if (ep->enabled)
118 		goto out;
119 
120 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
121 	if (!ep->desc || usb_endpoint_maxp(ep->desc) == 0) {
122 		WARN_ONCE(1, "%s: ep%d (%s) has %s\n", __func__, ep->address, ep->name,
123 			  (!ep->desc) ? "NULL descriptor" : "maxpacket 0");
124 
125 		ret = -EINVAL;
126 		goto out;
127 	}
128 
129 	ret = ep->ops->enable(ep, ep->desc);
130 	if (ret)
131 		goto out;
132 
133 	ep->enabled = true;
134 
135 out:
136 	trace_usb_ep_enable(ep, ret);
137 
138 	return ret;
139 }
140 EXPORT_SYMBOL_GPL(usb_ep_enable);
141 
142 /**
143  * usb_ep_disable - endpoint is no longer usable
144  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
145  *
146  * no other task may be using this endpoint when this is called.
147  * any pending and uncompleted requests will complete with status
148  * indicating disconnect (-ESHUTDOWN) before this call returns.
149  * gadget drivers must call usb_ep_enable() again before queueing
150  * requests to the endpoint.
151  *
152  * This routine may be called in an atomic (interrupt) context.
153  *
154  * returns zero, or a negative error code.
155  */
156 int usb_ep_disable(struct usb_ep *ep)
157 {
158 	int ret = 0;
159 
160 	if (!ep->enabled)
161 		goto out;
162 
163 	ret = ep->ops->disable(ep);
164 	if (ret)
165 		goto out;
166 
167 	ep->enabled = false;
168 
169 out:
170 	trace_usb_ep_disable(ep, ret);
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(usb_ep_disable);
175 
176 /**
177  * usb_ep_alloc_request - allocate a request object to use with this endpoint
178  * @ep:the endpoint to be used with with the request
179  * @gfp_flags:GFP_* flags to use
180  *
181  * Request objects must be allocated with this call, since they normally
182  * need controller-specific setup and may even need endpoint-specific
183  * resources such as allocation of DMA descriptors.
184  * Requests may be submitted with usb_ep_queue(), and receive a single
185  * completion callback.  Free requests with usb_ep_free_request(), when
186  * they are no longer needed.
187  *
188  * Returns the request, or null if one could not be allocated.
189  */
190 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
191 						       gfp_t gfp_flags)
192 {
193 	struct usb_request *req = NULL;
194 
195 	req = ep->ops->alloc_request(ep, gfp_flags);
196 
197 	if (req)
198 		req->ep = ep;
199 
200 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
201 
202 	return req;
203 }
204 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
205 
206 /**
207  * usb_ep_free_request - frees a request object
208  * @ep:the endpoint associated with the request
209  * @req:the request being freed
210  *
211  * Reverses the effect of usb_ep_alloc_request().
212  * Caller guarantees the request is not queued, and that it will
213  * no longer be requeued (or otherwise used).
214  */
215 void usb_ep_free_request(struct usb_ep *ep,
216 				       struct usb_request *req)
217 {
218 	trace_usb_ep_free_request(ep, req, 0);
219 	ep->ops->free_request(ep, req);
220 }
221 EXPORT_SYMBOL_GPL(usb_ep_free_request);
222 
223 /**
224  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
225  * @ep:the endpoint associated with the request
226  * @req:the request being submitted
227  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
228  *	pre-allocate all necessary memory with the request.
229  *
230  * This tells the device controller to perform the specified request through
231  * that endpoint (reading or writing a buffer).  When the request completes,
232  * including being canceled by usb_ep_dequeue(), the request's completion
233  * routine is called to return the request to the driver.  Any endpoint
234  * (except control endpoints like ep0) may have more than one transfer
235  * request queued; they complete in FIFO order.  Once a gadget driver
236  * submits a request, that request may not be examined or modified until it
237  * is given back to that driver through the completion callback.
238  *
239  * Each request is turned into one or more packets.  The controller driver
240  * never merges adjacent requests into the same packet.  OUT transfers
241  * will sometimes use data that's already buffered in the hardware.
242  * Drivers can rely on the fact that the first byte of the request's buffer
243  * always corresponds to the first byte of some USB packet, for both
244  * IN and OUT transfers.
245  *
246  * Bulk endpoints can queue any amount of data; the transfer is packetized
247  * automatically.  The last packet will be short if the request doesn't fill it
248  * out completely.  Zero length packets (ZLPs) should be avoided in portable
249  * protocols since not all usb hardware can successfully handle zero length
250  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
251  * the request 'zero' flag is set.)  Bulk endpoints may also be used
252  * for interrupt transfers; but the reverse is not true, and some endpoints
253  * won't support every interrupt transfer.  (Such as 768 byte packets.)
254  *
255  * Interrupt-only endpoints are less functional than bulk endpoints, for
256  * example by not supporting queueing or not handling buffers that are
257  * larger than the endpoint's maxpacket size.  They may also treat data
258  * toggle differently.
259  *
260  * Control endpoints ... after getting a setup() callback, the driver queues
261  * one response (even if it would be zero length).  That enables the
262  * status ack, after transferring data as specified in the response.  Setup
263  * functions may return negative error codes to generate protocol stalls.
264  * (Note that some USB device controllers disallow protocol stall responses
265  * in some cases.)  When control responses are deferred (the response is
266  * written after the setup callback returns), then usb_ep_set_halt() may be
267  * used on ep0 to trigger protocol stalls.  Depending on the controller,
268  * it may not be possible to trigger a status-stage protocol stall when the
269  * data stage is over, that is, from within the response's completion
270  * routine.
271  *
272  * For periodic endpoints, like interrupt or isochronous ones, the usb host
273  * arranges to poll once per interval, and the gadget driver usually will
274  * have queued some data to transfer at that time.
275  *
276  * Note that @req's ->complete() callback must never be called from
277  * within usb_ep_queue() as that can create deadlock situations.
278  *
279  * This routine may be called in interrupt context.
280  *
281  * Returns zero, or a negative error code.  Endpoints that are not enabled
282  * report errors; errors will also be
283  * reported when the usb peripheral is disconnected.
284  *
285  * If and only if @req is successfully queued (the return value is zero),
286  * @req->complete() will be called exactly once, when the Gadget core and
287  * UDC are finished with the request.  When the completion function is called,
288  * control of the request is returned to the device driver which submitted it.
289  * The completion handler may then immediately free or reuse @req.
290  */
291 int usb_ep_queue(struct usb_ep *ep,
292 			       struct usb_request *req, gfp_t gfp_flags)
293 {
294 	int ret = 0;
295 
296 	if (!ep->enabled && ep->address) {
297 		pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n",
298 				 ep->address, ep->name);
299 		ret = -ESHUTDOWN;
300 		goto out;
301 	}
302 
303 	ret = ep->ops->queue(ep, req, gfp_flags);
304 
305 out:
306 	trace_usb_ep_queue(ep, req, ret);
307 
308 	return ret;
309 }
310 EXPORT_SYMBOL_GPL(usb_ep_queue);
311 
312 /**
313  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
314  * @ep:the endpoint associated with the request
315  * @req:the request being canceled
316  *
317  * If the request is still active on the endpoint, it is dequeued and
318  * eventually its completion routine is called (with status -ECONNRESET);
319  * else a negative error code is returned.  This routine is asynchronous,
320  * that is, it may return before the completion routine runs.
321  *
322  * Note that some hardware can't clear out write fifos (to unlink the request
323  * at the head of the queue) except as part of disconnecting from usb. Such
324  * restrictions prevent drivers from supporting configuration changes,
325  * even to configuration zero (a "chapter 9" requirement).
326  *
327  * This routine may be called in interrupt context.
328  */
329 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
330 {
331 	int ret;
332 
333 	ret = ep->ops->dequeue(ep, req);
334 	trace_usb_ep_dequeue(ep, req, ret);
335 
336 	return ret;
337 }
338 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
339 
340 /**
341  * usb_ep_set_halt - sets the endpoint halt feature.
342  * @ep: the non-isochronous endpoint being stalled
343  *
344  * Use this to stall an endpoint, perhaps as an error report.
345  * Except for control endpoints,
346  * the endpoint stays halted (will not stream any data) until the host
347  * clears this feature; drivers may need to empty the endpoint's request
348  * queue first, to make sure no inappropriate transfers happen.
349  *
350  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
351  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
352  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
353  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
354  *
355  * This routine may be called in interrupt context.
356  *
357  * Returns zero, or a negative error code.  On success, this call sets
358  * underlying hardware state that blocks data transfers.
359  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
360  * transfer requests are still queued, or if the controller hardware
361  * (usually a FIFO) still holds bytes that the host hasn't collected.
362  */
363 int usb_ep_set_halt(struct usb_ep *ep)
364 {
365 	int ret;
366 
367 	ret = ep->ops->set_halt(ep, 1);
368 	trace_usb_ep_set_halt(ep, ret);
369 
370 	return ret;
371 }
372 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
373 
374 /**
375  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
376  * @ep:the bulk or interrupt endpoint being reset
377  *
378  * Use this when responding to the standard usb "set interface" request,
379  * for endpoints that aren't reconfigured, after clearing any other state
380  * in the endpoint's i/o queue.
381  *
382  * This routine may be called in interrupt context.
383  *
384  * Returns zero, or a negative error code.  On success, this call clears
385  * the underlying hardware state reflecting endpoint halt and data toggle.
386  * Note that some hardware can't support this request (like pxa2xx_udc),
387  * and accordingly can't correctly implement interface altsettings.
388  */
389 int usb_ep_clear_halt(struct usb_ep *ep)
390 {
391 	int ret;
392 
393 	ret = ep->ops->set_halt(ep, 0);
394 	trace_usb_ep_clear_halt(ep, ret);
395 
396 	return ret;
397 }
398 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
399 
400 /**
401  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
402  * @ep: the endpoint being wedged
403  *
404  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
405  * requests. If the gadget driver clears the halt status, it will
406  * automatically unwedge the endpoint.
407  *
408  * This routine may be called in interrupt context.
409  *
410  * Returns zero on success, else negative errno.
411  */
412 int usb_ep_set_wedge(struct usb_ep *ep)
413 {
414 	int ret;
415 
416 	if (ep->ops->set_wedge)
417 		ret = ep->ops->set_wedge(ep);
418 	else
419 		ret = ep->ops->set_halt(ep, 1);
420 
421 	trace_usb_ep_set_wedge(ep, ret);
422 
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
426 
427 /**
428  * usb_ep_fifo_status - returns number of bytes in fifo, or error
429  * @ep: the endpoint whose fifo status is being checked.
430  *
431  * FIFO endpoints may have "unclaimed data" in them in certain cases,
432  * such as after aborted transfers.  Hosts may not have collected all
433  * the IN data written by the gadget driver (and reported by a request
434  * completion).  The gadget driver may not have collected all the data
435  * written OUT to it by the host.  Drivers that need precise handling for
436  * fault reporting or recovery may need to use this call.
437  *
438  * This routine may be called in interrupt context.
439  *
440  * This returns the number of such bytes in the fifo, or a negative
441  * errno if the endpoint doesn't use a FIFO or doesn't support such
442  * precise handling.
443  */
444 int usb_ep_fifo_status(struct usb_ep *ep)
445 {
446 	int ret;
447 
448 	if (ep->ops->fifo_status)
449 		ret = ep->ops->fifo_status(ep);
450 	else
451 		ret = -EOPNOTSUPP;
452 
453 	trace_usb_ep_fifo_status(ep, ret);
454 
455 	return ret;
456 }
457 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
458 
459 /**
460  * usb_ep_fifo_flush - flushes contents of a fifo
461  * @ep: the endpoint whose fifo is being flushed.
462  *
463  * This call may be used to flush the "unclaimed data" that may exist in
464  * an endpoint fifo after abnormal transaction terminations.  The call
465  * must never be used except when endpoint is not being used for any
466  * protocol translation.
467  *
468  * This routine may be called in interrupt context.
469  */
470 void usb_ep_fifo_flush(struct usb_ep *ep)
471 {
472 	if (ep->ops->fifo_flush)
473 		ep->ops->fifo_flush(ep);
474 
475 	trace_usb_ep_fifo_flush(ep, 0);
476 }
477 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
478 
479 /* ------------------------------------------------------------------------- */
480 
481 /**
482  * usb_gadget_frame_number - returns the current frame number
483  * @gadget: controller that reports the frame number
484  *
485  * Returns the usb frame number, normally eleven bits from a SOF packet,
486  * or negative errno if this device doesn't support this capability.
487  */
488 int usb_gadget_frame_number(struct usb_gadget *gadget)
489 {
490 	int ret;
491 
492 	ret = gadget->ops->get_frame(gadget);
493 
494 	trace_usb_gadget_frame_number(gadget, ret);
495 
496 	return ret;
497 }
498 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
499 
500 /**
501  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
502  * @gadget: controller used to wake up the host
503  *
504  * Returns zero on success, else negative error code if the hardware
505  * doesn't support such attempts, or its support has not been enabled
506  * by the usb host.  Drivers must return device descriptors that report
507  * their ability to support this, or hosts won't enable it.
508  *
509  * This may also try to use SRP to wake the host and start enumeration,
510  * even if OTG isn't otherwise in use.  OTG devices may also start
511  * remote wakeup even when hosts don't explicitly enable it.
512  */
513 int usb_gadget_wakeup(struct usb_gadget *gadget)
514 {
515 	int ret = 0;
516 
517 	if (!gadget->ops->wakeup) {
518 		ret = -EOPNOTSUPP;
519 		goto out;
520 	}
521 
522 	ret = gadget->ops->wakeup(gadget);
523 
524 out:
525 	trace_usb_gadget_wakeup(gadget, ret);
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
530 
531 /**
532  * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature.
533  * @gadget:the device being configured for remote wakeup
534  * @set:value to be configured.
535  *
536  * set to one to enable remote wakeup feature and zero to disable it.
537  *
538  * returns zero on success, else negative errno.
539  */
540 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
541 {
542 	int ret = 0;
543 
544 	if (!gadget->ops->set_remote_wakeup) {
545 		ret = -EOPNOTSUPP;
546 		goto out;
547 	}
548 
549 	ret = gadget->ops->set_remote_wakeup(gadget, set);
550 
551 out:
552 	trace_usb_gadget_set_remote_wakeup(gadget, ret);
553 
554 	return ret;
555 }
556 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup);
557 
558 /**
559  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
560  * @gadget:the device being declared as self-powered
561  *
562  * this affects the device status reported by the hardware driver
563  * to reflect that it now has a local power supply.
564  *
565  * returns zero on success, else negative errno.
566  */
567 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
568 {
569 	int ret = 0;
570 
571 	if (!gadget->ops->set_selfpowered) {
572 		ret = -EOPNOTSUPP;
573 		goto out;
574 	}
575 
576 	ret = gadget->ops->set_selfpowered(gadget, 1);
577 
578 out:
579 	trace_usb_gadget_set_selfpowered(gadget, ret);
580 
581 	return ret;
582 }
583 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
584 
585 /**
586  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
587  * @gadget:the device being declared as bus-powered
588  *
589  * this affects the device status reported by the hardware driver.
590  * some hardware may not support bus-powered operation, in which
591  * case this feature's value can never change.
592  *
593  * returns zero on success, else negative errno.
594  */
595 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
596 {
597 	int ret = 0;
598 
599 	if (!gadget->ops->set_selfpowered) {
600 		ret = -EOPNOTSUPP;
601 		goto out;
602 	}
603 
604 	ret = gadget->ops->set_selfpowered(gadget, 0);
605 
606 out:
607 	trace_usb_gadget_clear_selfpowered(gadget, ret);
608 
609 	return ret;
610 }
611 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
612 
613 /**
614  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
615  * @gadget:The device which now has VBUS power.
616  * Context: can sleep
617  *
618  * This call is used by a driver for an external transceiver (or GPIO)
619  * that detects a VBUS power session starting.  Common responses include
620  * resuming the controller, activating the D+ (or D-) pullup to let the
621  * host detect that a USB device is attached, and starting to draw power
622  * (8mA or possibly more, especially after SET_CONFIGURATION).
623  *
624  * Returns zero on success, else negative errno.
625  */
626 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
627 {
628 	int ret = 0;
629 
630 	if (!gadget->ops->vbus_session) {
631 		ret = -EOPNOTSUPP;
632 		goto out;
633 	}
634 
635 	ret = gadget->ops->vbus_session(gadget, 1);
636 
637 out:
638 	trace_usb_gadget_vbus_connect(gadget, ret);
639 
640 	return ret;
641 }
642 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
643 
644 /**
645  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
646  * @gadget:The device whose VBUS usage is being described
647  * @mA:How much current to draw, in milliAmperes.  This should be twice
648  *	the value listed in the configuration descriptor bMaxPower field.
649  *
650  * This call is used by gadget drivers during SET_CONFIGURATION calls,
651  * reporting how much power the device may consume.  For example, this
652  * could affect how quickly batteries are recharged.
653  *
654  * Returns zero on success, else negative errno.
655  */
656 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
657 {
658 	int ret = 0;
659 
660 	if (!gadget->ops->vbus_draw) {
661 		ret = -EOPNOTSUPP;
662 		goto out;
663 	}
664 
665 	ret = gadget->ops->vbus_draw(gadget, mA);
666 	if (!ret)
667 		gadget->mA = mA;
668 
669 out:
670 	trace_usb_gadget_vbus_draw(gadget, ret);
671 
672 	return ret;
673 }
674 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
675 
676 /**
677  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
678  * @gadget:the device whose VBUS supply is being described
679  * Context: can sleep
680  *
681  * This call is used by a driver for an external transceiver (or GPIO)
682  * that detects a VBUS power session ending.  Common responses include
683  * reversing everything done in usb_gadget_vbus_connect().
684  *
685  * Returns zero on success, else negative errno.
686  */
687 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
688 {
689 	int ret = 0;
690 
691 	if (!gadget->ops->vbus_session) {
692 		ret = -EOPNOTSUPP;
693 		goto out;
694 	}
695 
696 	ret = gadget->ops->vbus_session(gadget, 0);
697 
698 out:
699 	trace_usb_gadget_vbus_disconnect(gadget, ret);
700 
701 	return ret;
702 }
703 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
704 
705 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
706 	__must_hold(&gadget->udc->connect_lock)
707 {
708 	int ret = 0;
709 
710 	if (!gadget->ops->pullup) {
711 		ret = -EOPNOTSUPP;
712 		goto out;
713 	}
714 
715 	if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) {
716 		/*
717 		 * If the gadget isn't usable (because it is deactivated,
718 		 * unbound, or not yet started), we only save the new state.
719 		 * The gadget will be connected automatically when it is
720 		 * activated/bound/started.
721 		 */
722 		gadget->connected = true;
723 		goto out;
724 	}
725 
726 	ret = gadget->ops->pullup(gadget, 1);
727 	if (!ret)
728 		gadget->connected = 1;
729 
730 out:
731 	trace_usb_gadget_connect(gadget, ret);
732 
733 	return ret;
734 }
735 
736 /**
737  * usb_gadget_connect - software-controlled connect to USB host
738  * @gadget:the peripheral being connected
739  *
740  * Enables the D+ (or potentially D-) pullup.  The host will start
741  * enumerating this gadget when the pullup is active and a VBUS session
742  * is active (the link is powered).
743  *
744  * Returns zero on success, else negative errno.
745  */
746 int usb_gadget_connect(struct usb_gadget *gadget)
747 {
748 	int ret;
749 
750 	mutex_lock(&gadget->udc->connect_lock);
751 	ret = usb_gadget_connect_locked(gadget);
752 	mutex_unlock(&gadget->udc->connect_lock);
753 
754 	return ret;
755 }
756 EXPORT_SYMBOL_GPL(usb_gadget_connect);
757 
758 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
759 	__must_hold(&gadget->udc->connect_lock)
760 {
761 	int ret = 0;
762 
763 	if (!gadget->ops->pullup) {
764 		ret = -EOPNOTSUPP;
765 		goto out;
766 	}
767 
768 	if (!gadget->connected)
769 		goto out;
770 
771 	if (gadget->deactivated || !gadget->udc->started) {
772 		/*
773 		 * If gadget is deactivated we only save new state.
774 		 * Gadget will stay disconnected after activation.
775 		 */
776 		gadget->connected = false;
777 		goto out;
778 	}
779 
780 	ret = gadget->ops->pullup(gadget, 0);
781 	if (!ret)
782 		gadget->connected = 0;
783 
784 	mutex_lock(&udc_lock);
785 	if (gadget->udc->driver)
786 		gadget->udc->driver->disconnect(gadget);
787 	mutex_unlock(&udc_lock);
788 
789 out:
790 	trace_usb_gadget_disconnect(gadget, ret);
791 
792 	return ret;
793 }
794 
795 /**
796  * usb_gadget_disconnect - software-controlled disconnect from USB host
797  * @gadget:the peripheral being disconnected
798  *
799  * Disables the D+ (or potentially D-) pullup, which the host may see
800  * as a disconnect (when a VBUS session is active).  Not all systems
801  * support software pullup controls.
802  *
803  * Following a successful disconnect, invoke the ->disconnect() callback
804  * for the current gadget driver so that UDC drivers don't need to.
805  *
806  * Returns zero on success, else negative errno.
807  */
808 int usb_gadget_disconnect(struct usb_gadget *gadget)
809 {
810 	int ret;
811 
812 	mutex_lock(&gadget->udc->connect_lock);
813 	ret = usb_gadget_disconnect_locked(gadget);
814 	mutex_unlock(&gadget->udc->connect_lock);
815 
816 	return ret;
817 }
818 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
819 
820 /**
821  * usb_gadget_deactivate - deactivate function which is not ready to work
822  * @gadget: the peripheral being deactivated
823  *
824  * This routine may be used during the gadget driver bind() call to prevent
825  * the peripheral from ever being visible to the USB host, unless later
826  * usb_gadget_activate() is called.  For example, user mode components may
827  * need to be activated before the system can talk to hosts.
828  *
829  * This routine may sleep; it must not be called in interrupt context
830  * (such as from within a gadget driver's disconnect() callback).
831  *
832  * Returns zero on success, else negative errno.
833  */
834 int usb_gadget_deactivate(struct usb_gadget *gadget)
835 {
836 	int ret = 0;
837 
838 	mutex_lock(&gadget->udc->connect_lock);
839 	if (gadget->deactivated)
840 		goto unlock;
841 
842 	if (gadget->connected) {
843 		ret = usb_gadget_disconnect_locked(gadget);
844 		if (ret)
845 			goto unlock;
846 
847 		/*
848 		 * If gadget was being connected before deactivation, we want
849 		 * to reconnect it in usb_gadget_activate().
850 		 */
851 		gadget->connected = true;
852 	}
853 	gadget->deactivated = true;
854 
855 unlock:
856 	mutex_unlock(&gadget->udc->connect_lock);
857 	trace_usb_gadget_deactivate(gadget, ret);
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
862 
863 /**
864  * usb_gadget_activate - activate function which is not ready to work
865  * @gadget: the peripheral being activated
866  *
867  * This routine activates gadget which was previously deactivated with
868  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
869  *
870  * This routine may sleep; it must not be called in interrupt context.
871  *
872  * Returns zero on success, else negative errno.
873  */
874 int usb_gadget_activate(struct usb_gadget *gadget)
875 {
876 	int ret = 0;
877 
878 	mutex_lock(&gadget->udc->connect_lock);
879 	if (!gadget->deactivated)
880 		goto unlock;
881 
882 	gadget->deactivated = false;
883 
884 	/*
885 	 * If gadget has been connected before deactivation, or became connected
886 	 * while it was being deactivated, we call usb_gadget_connect().
887 	 */
888 	if (gadget->connected)
889 		ret = usb_gadget_connect_locked(gadget);
890 
891 unlock:
892 	mutex_unlock(&gadget->udc->connect_lock);
893 	trace_usb_gadget_activate(gadget, ret);
894 
895 	return ret;
896 }
897 EXPORT_SYMBOL_GPL(usb_gadget_activate);
898 
899 /* ------------------------------------------------------------------------- */
900 
901 #ifdef	CONFIG_HAS_DMA
902 
903 int usb_gadget_map_request_by_dev(struct device *dev,
904 		struct usb_request *req, int is_in)
905 {
906 	if (req->length == 0)
907 		return 0;
908 
909 	if (req->sg_was_mapped) {
910 		req->num_mapped_sgs = req->num_sgs;
911 		return 0;
912 	}
913 
914 	if (req->num_sgs) {
915 		int     mapped;
916 
917 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
918 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
919 		if (mapped == 0) {
920 			dev_err(dev, "failed to map SGs\n");
921 			return -EFAULT;
922 		}
923 
924 		req->num_mapped_sgs = mapped;
925 	} else {
926 		if (is_vmalloc_addr(req->buf)) {
927 			dev_err(dev, "buffer is not dma capable\n");
928 			return -EFAULT;
929 		} else if (object_is_on_stack(req->buf)) {
930 			dev_err(dev, "buffer is on stack\n");
931 			return -EFAULT;
932 		}
933 
934 		req->dma = dma_map_single(dev, req->buf, req->length,
935 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
936 
937 		if (dma_mapping_error(dev, req->dma)) {
938 			dev_err(dev, "failed to map buffer\n");
939 			return -EFAULT;
940 		}
941 
942 		req->dma_mapped = 1;
943 	}
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
948 
949 int usb_gadget_map_request(struct usb_gadget *gadget,
950 		struct usb_request *req, int is_in)
951 {
952 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
953 }
954 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
955 
956 void usb_gadget_unmap_request_by_dev(struct device *dev,
957 		struct usb_request *req, int is_in)
958 {
959 	if (req->length == 0 || req->sg_was_mapped)
960 		return;
961 
962 	if (req->num_mapped_sgs) {
963 		dma_unmap_sg(dev, req->sg, req->num_sgs,
964 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
965 
966 		req->num_mapped_sgs = 0;
967 	} else if (req->dma_mapped) {
968 		dma_unmap_single(dev, req->dma, req->length,
969 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
970 		req->dma_mapped = 0;
971 	}
972 }
973 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
974 
975 void usb_gadget_unmap_request(struct usb_gadget *gadget,
976 		struct usb_request *req, int is_in)
977 {
978 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
979 }
980 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
981 
982 #endif	/* CONFIG_HAS_DMA */
983 
984 /* ------------------------------------------------------------------------- */
985 
986 /**
987  * usb_gadget_giveback_request - give the request back to the gadget layer
988  * @ep: the endpoint to be used with with the request
989  * @req: the request being given back
990  *
991  * This is called by device controller drivers in order to return the
992  * completed request back to the gadget layer.
993  */
994 void usb_gadget_giveback_request(struct usb_ep *ep,
995 		struct usb_request *req)
996 {
997 	if (likely(req->status == 0))
998 		usb_led_activity(USB_LED_EVENT_GADGET);
999 
1000 	trace_usb_gadget_giveback_request(ep, req, 0);
1001 
1002 	req->complete(ep, req);
1003 }
1004 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
1005 
1006 /* ------------------------------------------------------------------------- */
1007 
1008 /**
1009  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
1010  *	in second parameter or NULL if searched endpoint not found
1011  * @g: controller to check for quirk
1012  * @name: name of searched endpoint
1013  */
1014 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
1015 {
1016 	struct usb_ep *ep;
1017 
1018 	gadget_for_each_ep(ep, g) {
1019 		if (!strcmp(ep->name, name))
1020 			return ep;
1021 	}
1022 
1023 	return NULL;
1024 }
1025 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
1026 
1027 /* ------------------------------------------------------------------------- */
1028 
1029 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1030 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1031 		struct usb_ss_ep_comp_descriptor *ep_comp)
1032 {
1033 	u8		type;
1034 	u16		max;
1035 	int		num_req_streams = 0;
1036 
1037 	/* endpoint already claimed? */
1038 	if (ep->claimed)
1039 		return 0;
1040 
1041 	type = usb_endpoint_type(desc);
1042 	max = usb_endpoint_maxp(desc);
1043 
1044 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1045 		return 0;
1046 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1047 		return 0;
1048 
1049 	if (max > ep->maxpacket_limit)
1050 		return 0;
1051 
1052 	/* "high bandwidth" works only at high speed */
1053 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1054 		return 0;
1055 
1056 	switch (type) {
1057 	case USB_ENDPOINT_XFER_CONTROL:
1058 		/* only support ep0 for portable CONTROL traffic */
1059 		return 0;
1060 	case USB_ENDPOINT_XFER_ISOC:
1061 		if (!ep->caps.type_iso)
1062 			return 0;
1063 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
1064 		if (!gadget_is_dualspeed(gadget) && max > 1023)
1065 			return 0;
1066 		break;
1067 	case USB_ENDPOINT_XFER_BULK:
1068 		if (!ep->caps.type_bulk)
1069 			return 0;
1070 		if (ep_comp && gadget_is_superspeed(gadget)) {
1071 			/* Get the number of required streams from the
1072 			 * EP companion descriptor and see if the EP
1073 			 * matches it
1074 			 */
1075 			num_req_streams = ep_comp->bmAttributes & 0x1f;
1076 			if (num_req_streams > ep->max_streams)
1077 				return 0;
1078 		}
1079 		break;
1080 	case USB_ENDPOINT_XFER_INT:
1081 		/* Bulk endpoints handle interrupt transfers,
1082 		 * except the toggle-quirky iso-synch kind
1083 		 */
1084 		if (!ep->caps.type_int && !ep->caps.type_bulk)
1085 			return 0;
1086 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1087 		if (!gadget_is_dualspeed(gadget) && max > 64)
1088 			return 0;
1089 		break;
1090 	}
1091 
1092 	return 1;
1093 }
1094 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1095 
1096 /**
1097  * usb_gadget_check_config - checks if the UDC can support the binded
1098  *	configuration
1099  * @gadget: controller to check the USB configuration
1100  *
1101  * Ensure that a UDC is able to support the requested resources by a
1102  * configuration, and that there are no resource limitations, such as
1103  * internal memory allocated to all requested endpoints.
1104  *
1105  * Returns zero on success, else a negative errno.
1106  */
1107 int usb_gadget_check_config(struct usb_gadget *gadget)
1108 {
1109 	if (gadget->ops->check_config)
1110 		return gadget->ops->check_config(gadget);
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1114 
1115 /* ------------------------------------------------------------------------- */
1116 
1117 static void usb_gadget_state_work(struct work_struct *work)
1118 {
1119 	struct usb_gadget *gadget = work_to_gadget(work);
1120 	struct usb_udc *udc = gadget->udc;
1121 
1122 	if (udc)
1123 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1124 }
1125 
1126 void usb_gadget_set_state(struct usb_gadget *gadget,
1127 		enum usb_device_state state)
1128 {
1129 	gadget->state = state;
1130 	schedule_work(&gadget->work);
1131 	trace_usb_gadget_set_state(gadget, 0);
1132 }
1133 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1134 
1135 /* ------------------------------------------------------------------------- */
1136 
1137 /* Acquire connect_lock before calling this function. */
1138 static int usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock)
1139 {
1140 	if (udc->vbus)
1141 		return usb_gadget_connect_locked(udc->gadget);
1142 	else
1143 		return usb_gadget_disconnect_locked(udc->gadget);
1144 }
1145 
1146 static void vbus_event_work(struct work_struct *work)
1147 {
1148 	struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work);
1149 
1150 	mutex_lock(&udc->connect_lock);
1151 	usb_udc_connect_control_locked(udc);
1152 	mutex_unlock(&udc->connect_lock);
1153 }
1154 
1155 /**
1156  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1157  * connect or disconnect gadget
1158  * @gadget: The gadget which vbus change occurs
1159  * @status: The vbus status
1160  *
1161  * The udc driver calls it when it wants to connect or disconnect gadget
1162  * according to vbus status.
1163  *
1164  * This function can be invoked from interrupt context by irq handlers of
1165  * the gadget drivers, however, usb_udc_connect_control() has to run in
1166  * non-atomic context due to the following:
1167  * a. Some of the gadget driver implementations expect the ->pullup
1168  * callback to be invoked in non-atomic context.
1169  * b. usb_gadget_disconnect() acquires udc_lock which is a mutex.
1170  * Hence offload invocation of usb_udc_connect_control() to workqueue.
1171  */
1172 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1173 {
1174 	struct usb_udc *udc = gadget->udc;
1175 
1176 	if (udc) {
1177 		udc->vbus = status;
1178 		schedule_work(&udc->vbus_work);
1179 	}
1180 }
1181 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1182 
1183 /**
1184  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1185  * @gadget: The gadget which bus reset occurs
1186  * @driver: The gadget driver we want to notify
1187  *
1188  * If the udc driver has bus reset handler, it needs to call this when the bus
1189  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1190  * well as updates gadget state.
1191  */
1192 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1193 		struct usb_gadget_driver *driver)
1194 {
1195 	driver->reset(gadget);
1196 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1197 }
1198 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1199 
1200 /**
1201  * usb_gadget_udc_start_locked - tells usb device controller to start up
1202  * @udc: The UDC to be started
1203  *
1204  * This call is issued by the UDC Class driver when it's about
1205  * to register a gadget driver to the device controller, before
1206  * calling gadget driver's bind() method.
1207  *
1208  * It allows the controller to be powered off until strictly
1209  * necessary to have it powered on.
1210  *
1211  * Returns zero on success, else negative errno.
1212  *
1213  * Caller should acquire connect_lock before invoking this function.
1214  */
1215 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1216 	__must_hold(&udc->connect_lock)
1217 {
1218 	int ret;
1219 
1220 	if (udc->started) {
1221 		dev_err(&udc->dev, "UDC had already started\n");
1222 		return -EBUSY;
1223 	}
1224 
1225 	ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1226 	if (!ret)
1227 		udc->started = true;
1228 
1229 	return ret;
1230 }
1231 
1232 /**
1233  * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1234  * @udc: The UDC to be stopped
1235  *
1236  * This call is issued by the UDC Class driver after calling
1237  * gadget driver's unbind() method.
1238  *
1239  * The details are implementation specific, but it can go as
1240  * far as powering off UDC completely and disable its data
1241  * line pullups.
1242  *
1243  * Caller should acquire connect lock before invoking this function.
1244  */
1245 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1246 	__must_hold(&udc->connect_lock)
1247 {
1248 	if (!udc->started) {
1249 		dev_err(&udc->dev, "UDC had already stopped\n");
1250 		return;
1251 	}
1252 
1253 	udc->gadget->ops->udc_stop(udc->gadget);
1254 	udc->started = false;
1255 }
1256 
1257 /**
1258  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1259  *    current driver
1260  * @udc: The device we want to set maximum speed
1261  * @speed: The maximum speed to allowed to run
1262  *
1263  * This call is issued by the UDC Class driver before calling
1264  * usb_gadget_udc_start() in order to make sure that we don't try to
1265  * connect on speeds the gadget driver doesn't support.
1266  */
1267 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1268 					    enum usb_device_speed speed)
1269 {
1270 	struct usb_gadget *gadget = udc->gadget;
1271 	enum usb_device_speed s;
1272 
1273 	if (speed == USB_SPEED_UNKNOWN)
1274 		s = gadget->max_speed;
1275 	else
1276 		s = min(speed, gadget->max_speed);
1277 
1278 	if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1279 		gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1280 	else if (gadget->ops->udc_set_speed)
1281 		gadget->ops->udc_set_speed(gadget, s);
1282 }
1283 
1284 /**
1285  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1286  * @udc: The UDC which should enable async callbacks
1287  *
1288  * This routine is used when binding gadget drivers.  It undoes the effect
1289  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1290  * (if necessary) and resume issuing callbacks.
1291  *
1292  * This routine will always be called in process context.
1293  */
1294 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1295 {
1296 	struct usb_gadget *gadget = udc->gadget;
1297 
1298 	if (gadget->ops->udc_async_callbacks)
1299 		gadget->ops->udc_async_callbacks(gadget, true);
1300 }
1301 
1302 /**
1303  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1304  * @udc: The UDC which should disable async callbacks
1305  *
1306  * This routine is used when unbinding gadget drivers.  It prevents a race:
1307  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1308  * runs, so unless it is told to disable asynchronous callbacks, it might
1309  * issue a callback (such as ->disconnect) after the unbind has completed.
1310  *
1311  * After this function runs, the UDC driver must suppress all ->suspend,
1312  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1313  * until async callbacks are again enabled.  A simple-minded but effective
1314  * way to accomplish this is to tell the UDC hardware not to generate any
1315  * more IRQs.
1316  *
1317  * Request completion callbacks must still be issued.  However, it's okay
1318  * to defer them until the request is cancelled, since the pull-up will be
1319  * turned off during the time period when async callbacks are disabled.
1320  *
1321  * This routine will always be called in process context.
1322  */
1323 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1324 {
1325 	struct usb_gadget *gadget = udc->gadget;
1326 
1327 	if (gadget->ops->udc_async_callbacks)
1328 		gadget->ops->udc_async_callbacks(gadget, false);
1329 }
1330 
1331 /**
1332  * usb_udc_release - release the usb_udc struct
1333  * @dev: the dev member within usb_udc
1334  *
1335  * This is called by driver's core in order to free memory once the last
1336  * reference is released.
1337  */
1338 static void usb_udc_release(struct device *dev)
1339 {
1340 	struct usb_udc *udc;
1341 
1342 	udc = container_of(dev, struct usb_udc, dev);
1343 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1344 	kfree(udc);
1345 }
1346 
1347 static const struct attribute_group *usb_udc_attr_groups[];
1348 
1349 static void usb_udc_nop_release(struct device *dev)
1350 {
1351 	dev_vdbg(dev, "%s\n", __func__);
1352 }
1353 
1354 /**
1355  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1356  * @parent: the parent device to this udc. Usually the controller driver's
1357  * device.
1358  * @gadget: the gadget to be initialized.
1359  * @release: a gadget release function.
1360  */
1361 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1362 		void (*release)(struct device *dev))
1363 {
1364 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1365 	gadget->dev.parent = parent;
1366 
1367 	if (release)
1368 		gadget->dev.release = release;
1369 	else
1370 		gadget->dev.release = usb_udc_nop_release;
1371 
1372 	device_initialize(&gadget->dev);
1373 	gadget->dev.bus = &gadget_bus_type;
1374 }
1375 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1376 
1377 /**
1378  * usb_add_gadget - adds a new gadget to the udc class driver list
1379  * @gadget: the gadget to be added to the list.
1380  *
1381  * Returns zero on success, negative errno otherwise.
1382  * Does not do a final usb_put_gadget() if an error occurs.
1383  */
1384 int usb_add_gadget(struct usb_gadget *gadget)
1385 {
1386 	struct usb_udc		*udc;
1387 	int			ret = -ENOMEM;
1388 
1389 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1390 	if (!udc)
1391 		goto error;
1392 
1393 	device_initialize(&udc->dev);
1394 	udc->dev.release = usb_udc_release;
1395 	udc->dev.class = &udc_class;
1396 	udc->dev.groups = usb_udc_attr_groups;
1397 	udc->dev.parent = gadget->dev.parent;
1398 	ret = dev_set_name(&udc->dev, "%s",
1399 			kobject_name(&gadget->dev.parent->kobj));
1400 	if (ret)
1401 		goto err_put_udc;
1402 
1403 	udc->gadget = gadget;
1404 	gadget->udc = udc;
1405 	mutex_init(&udc->connect_lock);
1406 
1407 	udc->started = false;
1408 
1409 	mutex_lock(&udc_lock);
1410 	list_add_tail(&udc->list, &udc_list);
1411 	mutex_unlock(&udc_lock);
1412 	INIT_WORK(&udc->vbus_work, vbus_event_work);
1413 
1414 	ret = device_add(&udc->dev);
1415 	if (ret)
1416 		goto err_unlist_udc;
1417 
1418 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1419 	udc->vbus = true;
1420 
1421 	ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL);
1422 	if (ret < 0)
1423 		goto err_del_udc;
1424 	gadget->id_number = ret;
1425 	dev_set_name(&gadget->dev, "gadget.%d", ret);
1426 
1427 	ret = device_add(&gadget->dev);
1428 	if (ret)
1429 		goto err_free_id;
1430 
1431 	ret = sysfs_create_link(&udc->dev.kobj,
1432 				&gadget->dev.kobj, "gadget");
1433 	if (ret)
1434 		goto err_del_gadget;
1435 
1436 	return 0;
1437 
1438  err_del_gadget:
1439 	device_del(&gadget->dev);
1440 
1441  err_free_id:
1442 	ida_free(&gadget_id_numbers, gadget->id_number);
1443 
1444  err_del_udc:
1445 	flush_work(&gadget->work);
1446 	device_del(&udc->dev);
1447 
1448  err_unlist_udc:
1449 	mutex_lock(&udc_lock);
1450 	list_del(&udc->list);
1451 	mutex_unlock(&udc_lock);
1452 
1453  err_put_udc:
1454 	put_device(&udc->dev);
1455 
1456  error:
1457 	return ret;
1458 }
1459 EXPORT_SYMBOL_GPL(usb_add_gadget);
1460 
1461 /**
1462  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1463  * @parent: the parent device to this udc. Usually the controller driver's
1464  * device.
1465  * @gadget: the gadget to be added to the list.
1466  * @release: a gadget release function.
1467  *
1468  * Returns zero on success, negative errno otherwise.
1469  * Calls the gadget release function in the latter case.
1470  */
1471 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1472 		void (*release)(struct device *dev))
1473 {
1474 	int	ret;
1475 
1476 	usb_initialize_gadget(parent, gadget, release);
1477 	ret = usb_add_gadget(gadget);
1478 	if (ret)
1479 		usb_put_gadget(gadget);
1480 	return ret;
1481 }
1482 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1483 
1484 /**
1485  * usb_get_gadget_udc_name - get the name of the first UDC controller
1486  * This functions returns the name of the first UDC controller in the system.
1487  * Please note that this interface is usefull only for legacy drivers which
1488  * assume that there is only one UDC controller in the system and they need to
1489  * get its name before initialization. There is no guarantee that the UDC
1490  * of the returned name will be still available, when gadget driver registers
1491  * itself.
1492  *
1493  * Returns pointer to string with UDC controller name on success, NULL
1494  * otherwise. Caller should kfree() returned string.
1495  */
1496 char *usb_get_gadget_udc_name(void)
1497 {
1498 	struct usb_udc *udc;
1499 	char *name = NULL;
1500 
1501 	/* For now we take the first available UDC */
1502 	mutex_lock(&udc_lock);
1503 	list_for_each_entry(udc, &udc_list, list) {
1504 		if (!udc->driver) {
1505 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1506 			break;
1507 		}
1508 	}
1509 	mutex_unlock(&udc_lock);
1510 	return name;
1511 }
1512 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1513 
1514 /**
1515  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1516  * @parent: the parent device to this udc. Usually the controller
1517  * driver's device.
1518  * @gadget: the gadget to be added to the list
1519  *
1520  * Returns zero on success, negative errno otherwise.
1521  */
1522 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1523 {
1524 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1525 }
1526 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1527 
1528 /**
1529  * usb_del_gadget - deletes a gadget and unregisters its udc
1530  * @gadget: the gadget to be deleted.
1531  *
1532  * This will unbind @gadget, if it is bound.
1533  * It will not do a final usb_put_gadget().
1534  */
1535 void usb_del_gadget(struct usb_gadget *gadget)
1536 {
1537 	struct usb_udc *udc = gadget->udc;
1538 
1539 	if (!udc)
1540 		return;
1541 
1542 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1543 
1544 	mutex_lock(&udc_lock);
1545 	list_del(&udc->list);
1546 	mutex_unlock(&udc_lock);
1547 
1548 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1549 	sysfs_remove_link(&udc->dev.kobj, "gadget");
1550 	device_del(&gadget->dev);
1551 	flush_work(&gadget->work);
1552 	ida_free(&gadget_id_numbers, gadget->id_number);
1553 	cancel_work_sync(&udc->vbus_work);
1554 	device_unregister(&udc->dev);
1555 }
1556 EXPORT_SYMBOL_GPL(usb_del_gadget);
1557 
1558 /**
1559  * usb_del_gadget_udc - unregisters a gadget
1560  * @gadget: the gadget to be unregistered.
1561  *
1562  * Calls usb_del_gadget() and does a final usb_put_gadget().
1563  */
1564 void usb_del_gadget_udc(struct usb_gadget *gadget)
1565 {
1566 	usb_del_gadget(gadget);
1567 	usb_put_gadget(gadget);
1568 }
1569 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1570 
1571 /* ------------------------------------------------------------------------- */
1572 
1573 static int gadget_match_driver(struct device *dev, const struct device_driver *drv)
1574 {
1575 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1576 	struct usb_udc *udc = gadget->udc;
1577 	const struct usb_gadget_driver *driver = container_of(drv,
1578 			struct usb_gadget_driver, driver);
1579 
1580 	/* If the driver specifies a udc_name, it must match the UDC's name */
1581 	if (driver->udc_name &&
1582 			strcmp(driver->udc_name, dev_name(&udc->dev)) != 0)
1583 		return 0;
1584 
1585 	/* If the driver is already bound to a gadget, it doesn't match */
1586 	if (driver->is_bound)
1587 		return 0;
1588 
1589 	/* Otherwise any gadget driver matches any UDC */
1590 	return 1;
1591 }
1592 
1593 static int gadget_bind_driver(struct device *dev)
1594 {
1595 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1596 	struct usb_udc *udc = gadget->udc;
1597 	struct usb_gadget_driver *driver = container_of(dev->driver,
1598 			struct usb_gadget_driver, driver);
1599 	int ret = 0;
1600 
1601 	mutex_lock(&udc_lock);
1602 	if (driver->is_bound) {
1603 		mutex_unlock(&udc_lock);
1604 		return -ENXIO;		/* Driver binds to only one gadget */
1605 	}
1606 	driver->is_bound = true;
1607 	udc->driver = driver;
1608 	mutex_unlock(&udc_lock);
1609 
1610 	dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function);
1611 
1612 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1613 
1614 	ret = driver->bind(udc->gadget, driver);
1615 	if (ret)
1616 		goto err_bind;
1617 
1618 	mutex_lock(&udc->connect_lock);
1619 	ret = usb_gadget_udc_start_locked(udc);
1620 	if (ret) {
1621 		mutex_unlock(&udc->connect_lock);
1622 		goto err_start;
1623 	}
1624 	usb_gadget_enable_async_callbacks(udc);
1625 	udc->allow_connect = true;
1626 	ret = usb_udc_connect_control_locked(udc);
1627 	if (ret)
1628 		goto err_connect_control;
1629 
1630 	mutex_unlock(&udc->connect_lock);
1631 
1632 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1633 	return 0;
1634 
1635  err_connect_control:
1636 	udc->allow_connect = false;
1637 	usb_gadget_disable_async_callbacks(udc);
1638 	if (gadget->irq)
1639 		synchronize_irq(gadget->irq);
1640 	usb_gadget_udc_stop_locked(udc);
1641 	mutex_unlock(&udc->connect_lock);
1642 
1643  err_start:
1644 	driver->unbind(udc->gadget);
1645 
1646  err_bind:
1647 	if (ret != -EISNAM)
1648 		dev_err(&udc->dev, "failed to start %s: %d\n",
1649 			driver->function, ret);
1650 
1651 	mutex_lock(&udc_lock);
1652 	udc->driver = NULL;
1653 	driver->is_bound = false;
1654 	mutex_unlock(&udc_lock);
1655 
1656 	return ret;
1657 }
1658 
1659 static void gadget_unbind_driver(struct device *dev)
1660 {
1661 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1662 	struct usb_udc *udc = gadget->udc;
1663 	struct usb_gadget_driver *driver = udc->driver;
1664 
1665 	dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function);
1666 
1667 	udc->allow_connect = false;
1668 	cancel_work_sync(&udc->vbus_work);
1669 	mutex_lock(&udc->connect_lock);
1670 	usb_gadget_disconnect_locked(gadget);
1671 	usb_gadget_disable_async_callbacks(udc);
1672 	if (gadget->irq)
1673 		synchronize_irq(gadget->irq);
1674 	mutex_unlock(&udc->connect_lock);
1675 
1676 	udc->driver->unbind(gadget);
1677 
1678 	mutex_lock(&udc->connect_lock);
1679 	usb_gadget_udc_stop_locked(udc);
1680 	mutex_unlock(&udc->connect_lock);
1681 
1682 	mutex_lock(&udc_lock);
1683 	driver->is_bound = false;
1684 	udc->driver = NULL;
1685 	mutex_unlock(&udc_lock);
1686 
1687 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1688 }
1689 
1690 /* ------------------------------------------------------------------------- */
1691 
1692 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
1693 		struct module *owner, const char *mod_name)
1694 {
1695 	int ret;
1696 
1697 	if (!driver || !driver->bind || !driver->setup)
1698 		return -EINVAL;
1699 
1700 	driver->driver.bus = &gadget_bus_type;
1701 	driver->driver.owner = owner;
1702 	driver->driver.mod_name = mod_name;
1703 	driver->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
1704 	ret = driver_register(&driver->driver);
1705 	if (ret) {
1706 		pr_warn("%s: driver registration failed: %d\n",
1707 				driver->function, ret);
1708 		return ret;
1709 	}
1710 
1711 	mutex_lock(&udc_lock);
1712 	if (!driver->is_bound) {
1713 		if (driver->match_existing_only) {
1714 			pr_warn("%s: couldn't find an available UDC or it's busy\n",
1715 					driver->function);
1716 			ret = -EBUSY;
1717 		} else {
1718 			pr_info("%s: couldn't find an available UDC\n",
1719 					driver->function);
1720 			ret = 0;
1721 		}
1722 	}
1723 	mutex_unlock(&udc_lock);
1724 
1725 	if (ret)
1726 		driver_unregister(&driver->driver);
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner);
1730 
1731 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1732 {
1733 	if (!driver || !driver->unbind)
1734 		return -EINVAL;
1735 
1736 	driver_unregister(&driver->driver);
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1740 
1741 /* ------------------------------------------------------------------------- */
1742 
1743 static ssize_t srp_store(struct device *dev,
1744 		struct device_attribute *attr, const char *buf, size_t n)
1745 {
1746 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1747 
1748 	if (sysfs_streq(buf, "1"))
1749 		usb_gadget_wakeup(udc->gadget);
1750 
1751 	return n;
1752 }
1753 static DEVICE_ATTR_WO(srp);
1754 
1755 static ssize_t soft_connect_store(struct device *dev,
1756 		struct device_attribute *attr, const char *buf, size_t n)
1757 {
1758 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1759 	ssize_t			ret;
1760 
1761 	device_lock(&udc->gadget->dev);
1762 	if (!udc->driver) {
1763 		dev_err(dev, "soft-connect without a gadget driver\n");
1764 		ret = -EOPNOTSUPP;
1765 		goto out;
1766 	}
1767 
1768 	if (sysfs_streq(buf, "connect")) {
1769 		mutex_lock(&udc->connect_lock);
1770 		usb_gadget_udc_start_locked(udc);
1771 		usb_gadget_connect_locked(udc->gadget);
1772 		mutex_unlock(&udc->connect_lock);
1773 	} else if (sysfs_streq(buf, "disconnect")) {
1774 		mutex_lock(&udc->connect_lock);
1775 		usb_gadget_disconnect_locked(udc->gadget);
1776 		usb_gadget_udc_stop_locked(udc);
1777 		mutex_unlock(&udc->connect_lock);
1778 	} else {
1779 		dev_err(dev, "unsupported command '%s'\n", buf);
1780 		ret = -EINVAL;
1781 		goto out;
1782 	}
1783 
1784 	ret = n;
1785 out:
1786 	device_unlock(&udc->gadget->dev);
1787 	return ret;
1788 }
1789 static DEVICE_ATTR_WO(soft_connect);
1790 
1791 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1792 			  char *buf)
1793 {
1794 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1795 	struct usb_gadget	*gadget = udc->gadget;
1796 
1797 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1798 }
1799 static DEVICE_ATTR_RO(state);
1800 
1801 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1802 			     char *buf)
1803 {
1804 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1805 	struct usb_gadget_driver *drv;
1806 	int			rc = 0;
1807 
1808 	mutex_lock(&udc_lock);
1809 	drv = udc->driver;
1810 	if (drv && drv->function)
1811 		rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1812 	mutex_unlock(&udc_lock);
1813 	return rc;
1814 }
1815 static DEVICE_ATTR_RO(function);
1816 
1817 #define USB_UDC_SPEED_ATTR(name, param)					\
1818 ssize_t name##_show(struct device *dev,					\
1819 		struct device_attribute *attr, char *buf)		\
1820 {									\
1821 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1822 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1823 			usb_speed_string(udc->gadget->param));		\
1824 }									\
1825 static DEVICE_ATTR_RO(name)
1826 
1827 static USB_UDC_SPEED_ATTR(current_speed, speed);
1828 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1829 
1830 #define USB_UDC_ATTR(name)					\
1831 ssize_t name##_show(struct device *dev,				\
1832 		struct device_attribute *attr, char *buf)	\
1833 {								\
1834 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1835 	struct usb_gadget	*gadget = udc->gadget;		\
1836 								\
1837 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1838 }								\
1839 static DEVICE_ATTR_RO(name)
1840 
1841 static USB_UDC_ATTR(is_otg);
1842 static USB_UDC_ATTR(is_a_peripheral);
1843 static USB_UDC_ATTR(b_hnp_enable);
1844 static USB_UDC_ATTR(a_hnp_support);
1845 static USB_UDC_ATTR(a_alt_hnp_support);
1846 static USB_UDC_ATTR(is_selfpowered);
1847 
1848 static struct attribute *usb_udc_attrs[] = {
1849 	&dev_attr_srp.attr,
1850 	&dev_attr_soft_connect.attr,
1851 	&dev_attr_state.attr,
1852 	&dev_attr_function.attr,
1853 	&dev_attr_current_speed.attr,
1854 	&dev_attr_maximum_speed.attr,
1855 
1856 	&dev_attr_is_otg.attr,
1857 	&dev_attr_is_a_peripheral.attr,
1858 	&dev_attr_b_hnp_enable.attr,
1859 	&dev_attr_a_hnp_support.attr,
1860 	&dev_attr_a_alt_hnp_support.attr,
1861 	&dev_attr_is_selfpowered.attr,
1862 	NULL,
1863 };
1864 
1865 static const struct attribute_group usb_udc_attr_group = {
1866 	.attrs = usb_udc_attrs,
1867 };
1868 
1869 static const struct attribute_group *usb_udc_attr_groups[] = {
1870 	&usb_udc_attr_group,
1871 	NULL,
1872 };
1873 
1874 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env)
1875 {
1876 	const struct usb_udc	*udc = container_of(dev, struct usb_udc, dev);
1877 	int			ret;
1878 
1879 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1880 	if (ret) {
1881 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1882 		return ret;
1883 	}
1884 
1885 	mutex_lock(&udc_lock);
1886 	if (udc->driver)
1887 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1888 				udc->driver->function);
1889 	mutex_unlock(&udc_lock);
1890 	if (ret) {
1891 		dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1892 		return ret;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 static const struct class udc_class = {
1899 	.name		= "udc",
1900 	.dev_uevent	= usb_udc_uevent,
1901 };
1902 
1903 static const struct bus_type gadget_bus_type = {
1904 	.name = "gadget",
1905 	.probe = gadget_bind_driver,
1906 	.remove = gadget_unbind_driver,
1907 	.match = gadget_match_driver,
1908 };
1909 
1910 static int __init usb_udc_init(void)
1911 {
1912 	int rc;
1913 
1914 	rc = class_register(&udc_class);
1915 	if (rc)
1916 		return rc;
1917 
1918 	rc = bus_register(&gadget_bus_type);
1919 	if (rc)
1920 		class_unregister(&udc_class);
1921 	return rc;
1922 }
1923 subsys_initcall(usb_udc_init);
1924 
1925 static void __exit usb_udc_exit(void)
1926 {
1927 	bus_unregister(&gadget_bus_type);
1928 	class_unregister(&udc_class);
1929 }
1930 module_exit(usb_udc_exit);
1931 
1932 MODULE_DESCRIPTION("UDC Framework");
1933 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1934 MODULE_LICENSE("GPL v2");
1935