1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/idr.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/workqueue.h> 20 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb.h> 24 25 #include "trace.h" 26 27 static DEFINE_IDA(gadget_id_numbers); 28 29 static const struct bus_type gadget_bus_type; 30 31 /** 32 * struct usb_udc - describes one usb device controller 33 * @driver: the gadget driver pointer. For use by the class code 34 * @dev: the child device to the actual controller 35 * @gadget: the gadget. For use by the class code 36 * @list: for use by the udc class driver 37 * @vbus: for udcs who care about vbus status, this value is real vbus status; 38 * for udcs who do not care about vbus status, this value is always true 39 * @started: the UDC's started state. True if the UDC had started. 40 * @allow_connect: Indicates whether UDC is allowed to be pulled up. 41 * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or 42 * unbound. 43 * @vbus_work: work routine to handle VBUS status change notifications. 44 * @connect_lock: protects udc->started, gadget->connect, 45 * gadget->allow_connect and gadget->deactivate. The routines 46 * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(), 47 * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and 48 * usb_gadget_udc_stop_locked() are called with this lock held. 49 * 50 * This represents the internal data structure which is used by the UDC-class 51 * to hold information about udc driver and gadget together. 52 */ 53 struct usb_udc { 54 struct usb_gadget_driver *driver; 55 struct usb_gadget *gadget; 56 struct device dev; 57 struct list_head list; 58 bool vbus; 59 bool started; 60 bool allow_connect; 61 struct work_struct vbus_work; 62 struct mutex connect_lock; 63 }; 64 65 static const struct class udc_class; 66 static LIST_HEAD(udc_list); 67 68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ 69 static DEFINE_MUTEX(udc_lock); 70 71 /* ------------------------------------------------------------------------- */ 72 73 /** 74 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 75 * @ep:the endpoint being configured 76 * @maxpacket_limit:value of maximum packet size limit 77 * 78 * This function should be used only in UDC drivers to initialize endpoint 79 * (usually in probe function). 80 */ 81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 82 unsigned maxpacket_limit) 83 { 84 ep->maxpacket_limit = maxpacket_limit; 85 ep->maxpacket = maxpacket_limit; 86 87 trace_usb_ep_set_maxpacket_limit(ep, 0); 88 } 89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 90 91 /** 92 * usb_ep_enable - configure endpoint, making it usable 93 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 94 * drivers discover endpoints through the ep_list of a usb_gadget. 95 * 96 * When configurations are set, or when interface settings change, the driver 97 * will enable or disable the relevant endpoints. while it is enabled, an 98 * endpoint may be used for i/o until the driver receives a disconnect() from 99 * the host or until the endpoint is disabled. 100 * 101 * the ep0 implementation (which calls this routine) must ensure that the 102 * hardware capabilities of each endpoint match the descriptor provided 103 * for it. for example, an endpoint named "ep2in-bulk" would be usable 104 * for interrupt transfers as well as bulk, but it likely couldn't be used 105 * for iso transfers or for endpoint 14. some endpoints are fully 106 * configurable, with more generic names like "ep-a". (remember that for 107 * USB, "in" means "towards the USB host".) 108 * 109 * This routine may be called in an atomic (interrupt) context. 110 * 111 * returns zero, or a negative error code. 112 */ 113 int usb_ep_enable(struct usb_ep *ep) 114 { 115 int ret = 0; 116 117 if (ep->enabled) 118 goto out; 119 120 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 121 if (!ep->desc || usb_endpoint_maxp(ep->desc) == 0) { 122 WARN_ONCE(1, "%s: ep%d (%s) has %s\n", __func__, ep->address, ep->name, 123 (!ep->desc) ? "NULL descriptor" : "maxpacket 0"); 124 125 ret = -EINVAL; 126 goto out; 127 } 128 129 ret = ep->ops->enable(ep, ep->desc); 130 if (ret) 131 goto out; 132 133 ep->enabled = true; 134 135 out: 136 trace_usb_ep_enable(ep, ret); 137 138 return ret; 139 } 140 EXPORT_SYMBOL_GPL(usb_ep_enable); 141 142 /** 143 * usb_ep_disable - endpoint is no longer usable 144 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 145 * 146 * no other task may be using this endpoint when this is called. 147 * any pending and uncompleted requests will complete with status 148 * indicating disconnect (-ESHUTDOWN) before this call returns. 149 * gadget drivers must call usb_ep_enable() again before queueing 150 * requests to the endpoint. 151 * 152 * This routine may be called in an atomic (interrupt) context. 153 * 154 * returns zero, or a negative error code. 155 */ 156 int usb_ep_disable(struct usb_ep *ep) 157 { 158 int ret = 0; 159 160 if (!ep->enabled) 161 goto out; 162 163 ret = ep->ops->disable(ep); 164 if (ret) 165 goto out; 166 167 ep->enabled = false; 168 169 out: 170 trace_usb_ep_disable(ep, ret); 171 172 return ret; 173 } 174 EXPORT_SYMBOL_GPL(usb_ep_disable); 175 176 /** 177 * usb_ep_alloc_request - allocate a request object to use with this endpoint 178 * @ep:the endpoint to be used with with the request 179 * @gfp_flags:GFP_* flags to use 180 * 181 * Request objects must be allocated with this call, since they normally 182 * need controller-specific setup and may even need endpoint-specific 183 * resources such as allocation of DMA descriptors. 184 * Requests may be submitted with usb_ep_queue(), and receive a single 185 * completion callback. Free requests with usb_ep_free_request(), when 186 * they are no longer needed. 187 * 188 * Returns the request, or null if one could not be allocated. 189 */ 190 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 191 gfp_t gfp_flags) 192 { 193 struct usb_request *req = NULL; 194 195 req = ep->ops->alloc_request(ep, gfp_flags); 196 197 if (req) 198 req->ep = ep; 199 200 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 201 202 return req; 203 } 204 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 205 206 /** 207 * usb_ep_free_request - frees a request object 208 * @ep:the endpoint associated with the request 209 * @req:the request being freed 210 * 211 * Reverses the effect of usb_ep_alloc_request(). 212 * Caller guarantees the request is not queued, and that it will 213 * no longer be requeued (or otherwise used). 214 */ 215 void usb_ep_free_request(struct usb_ep *ep, 216 struct usb_request *req) 217 { 218 trace_usb_ep_free_request(ep, req, 0); 219 ep->ops->free_request(ep, req); 220 } 221 EXPORT_SYMBOL_GPL(usb_ep_free_request); 222 223 /** 224 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 225 * @ep:the endpoint associated with the request 226 * @req:the request being submitted 227 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 228 * pre-allocate all necessary memory with the request. 229 * 230 * This tells the device controller to perform the specified request through 231 * that endpoint (reading or writing a buffer). When the request completes, 232 * including being canceled by usb_ep_dequeue(), the request's completion 233 * routine is called to return the request to the driver. Any endpoint 234 * (except control endpoints like ep0) may have more than one transfer 235 * request queued; they complete in FIFO order. Once a gadget driver 236 * submits a request, that request may not be examined or modified until it 237 * is given back to that driver through the completion callback. 238 * 239 * Each request is turned into one or more packets. The controller driver 240 * never merges adjacent requests into the same packet. OUT transfers 241 * will sometimes use data that's already buffered in the hardware. 242 * Drivers can rely on the fact that the first byte of the request's buffer 243 * always corresponds to the first byte of some USB packet, for both 244 * IN and OUT transfers. 245 * 246 * Bulk endpoints can queue any amount of data; the transfer is packetized 247 * automatically. The last packet will be short if the request doesn't fill it 248 * out completely. Zero length packets (ZLPs) should be avoided in portable 249 * protocols since not all usb hardware can successfully handle zero length 250 * packets. (ZLPs may be explicitly written, and may be implicitly written if 251 * the request 'zero' flag is set.) Bulk endpoints may also be used 252 * for interrupt transfers; but the reverse is not true, and some endpoints 253 * won't support every interrupt transfer. (Such as 768 byte packets.) 254 * 255 * Interrupt-only endpoints are less functional than bulk endpoints, for 256 * example by not supporting queueing or not handling buffers that are 257 * larger than the endpoint's maxpacket size. They may also treat data 258 * toggle differently. 259 * 260 * Control endpoints ... after getting a setup() callback, the driver queues 261 * one response (even if it would be zero length). That enables the 262 * status ack, after transferring data as specified in the response. Setup 263 * functions may return negative error codes to generate protocol stalls. 264 * (Note that some USB device controllers disallow protocol stall responses 265 * in some cases.) When control responses are deferred (the response is 266 * written after the setup callback returns), then usb_ep_set_halt() may be 267 * used on ep0 to trigger protocol stalls. Depending on the controller, 268 * it may not be possible to trigger a status-stage protocol stall when the 269 * data stage is over, that is, from within the response's completion 270 * routine. 271 * 272 * For periodic endpoints, like interrupt or isochronous ones, the usb host 273 * arranges to poll once per interval, and the gadget driver usually will 274 * have queued some data to transfer at that time. 275 * 276 * Note that @req's ->complete() callback must never be called from 277 * within usb_ep_queue() as that can create deadlock situations. 278 * 279 * This routine may be called in interrupt context. 280 * 281 * Returns zero, or a negative error code. Endpoints that are not enabled 282 * report errors; errors will also be 283 * reported when the usb peripheral is disconnected. 284 * 285 * If and only if @req is successfully queued (the return value is zero), 286 * @req->complete() will be called exactly once, when the Gadget core and 287 * UDC are finished with the request. When the completion function is called, 288 * control of the request is returned to the device driver which submitted it. 289 * The completion handler may then immediately free or reuse @req. 290 */ 291 int usb_ep_queue(struct usb_ep *ep, 292 struct usb_request *req, gfp_t gfp_flags) 293 { 294 int ret = 0; 295 296 if (!ep->enabled && ep->address) { 297 pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n", 298 ep->address, ep->name); 299 ret = -ESHUTDOWN; 300 goto out; 301 } 302 303 ret = ep->ops->queue(ep, req, gfp_flags); 304 305 out: 306 trace_usb_ep_queue(ep, req, ret); 307 308 return ret; 309 } 310 EXPORT_SYMBOL_GPL(usb_ep_queue); 311 312 /** 313 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 314 * @ep:the endpoint associated with the request 315 * @req:the request being canceled 316 * 317 * If the request is still active on the endpoint, it is dequeued and 318 * eventually its completion routine is called (with status -ECONNRESET); 319 * else a negative error code is returned. This routine is asynchronous, 320 * that is, it may return before the completion routine runs. 321 * 322 * Note that some hardware can't clear out write fifos (to unlink the request 323 * at the head of the queue) except as part of disconnecting from usb. Such 324 * restrictions prevent drivers from supporting configuration changes, 325 * even to configuration zero (a "chapter 9" requirement). 326 * 327 * This routine may be called in interrupt context. 328 */ 329 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 330 { 331 int ret; 332 333 ret = ep->ops->dequeue(ep, req); 334 trace_usb_ep_dequeue(ep, req, ret); 335 336 return ret; 337 } 338 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 339 340 /** 341 * usb_ep_set_halt - sets the endpoint halt feature. 342 * @ep: the non-isochronous endpoint being stalled 343 * 344 * Use this to stall an endpoint, perhaps as an error report. 345 * Except for control endpoints, 346 * the endpoint stays halted (will not stream any data) until the host 347 * clears this feature; drivers may need to empty the endpoint's request 348 * queue first, to make sure no inappropriate transfers happen. 349 * 350 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 351 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 352 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 353 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 354 * 355 * This routine may be called in interrupt context. 356 * 357 * Returns zero, or a negative error code. On success, this call sets 358 * underlying hardware state that blocks data transfers. 359 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 360 * transfer requests are still queued, or if the controller hardware 361 * (usually a FIFO) still holds bytes that the host hasn't collected. 362 */ 363 int usb_ep_set_halt(struct usb_ep *ep) 364 { 365 int ret; 366 367 ret = ep->ops->set_halt(ep, 1); 368 trace_usb_ep_set_halt(ep, ret); 369 370 return ret; 371 } 372 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 373 374 /** 375 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 376 * @ep:the bulk or interrupt endpoint being reset 377 * 378 * Use this when responding to the standard usb "set interface" request, 379 * for endpoints that aren't reconfigured, after clearing any other state 380 * in the endpoint's i/o queue. 381 * 382 * This routine may be called in interrupt context. 383 * 384 * Returns zero, or a negative error code. On success, this call clears 385 * the underlying hardware state reflecting endpoint halt and data toggle. 386 * Note that some hardware can't support this request (like pxa2xx_udc), 387 * and accordingly can't correctly implement interface altsettings. 388 */ 389 int usb_ep_clear_halt(struct usb_ep *ep) 390 { 391 int ret; 392 393 ret = ep->ops->set_halt(ep, 0); 394 trace_usb_ep_clear_halt(ep, ret); 395 396 return ret; 397 } 398 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 399 400 /** 401 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 402 * @ep: the endpoint being wedged 403 * 404 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 405 * requests. If the gadget driver clears the halt status, it will 406 * automatically unwedge the endpoint. 407 * 408 * This routine may be called in interrupt context. 409 * 410 * Returns zero on success, else negative errno. 411 */ 412 int usb_ep_set_wedge(struct usb_ep *ep) 413 { 414 int ret; 415 416 if (ep->ops->set_wedge) 417 ret = ep->ops->set_wedge(ep); 418 else 419 ret = ep->ops->set_halt(ep, 1); 420 421 trace_usb_ep_set_wedge(ep, ret); 422 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 426 427 /** 428 * usb_ep_fifo_status - returns number of bytes in fifo, or error 429 * @ep: the endpoint whose fifo status is being checked. 430 * 431 * FIFO endpoints may have "unclaimed data" in them in certain cases, 432 * such as after aborted transfers. Hosts may not have collected all 433 * the IN data written by the gadget driver (and reported by a request 434 * completion). The gadget driver may not have collected all the data 435 * written OUT to it by the host. Drivers that need precise handling for 436 * fault reporting or recovery may need to use this call. 437 * 438 * This routine may be called in interrupt context. 439 * 440 * This returns the number of such bytes in the fifo, or a negative 441 * errno if the endpoint doesn't use a FIFO or doesn't support such 442 * precise handling. 443 */ 444 int usb_ep_fifo_status(struct usb_ep *ep) 445 { 446 int ret; 447 448 if (ep->ops->fifo_status) 449 ret = ep->ops->fifo_status(ep); 450 else 451 ret = -EOPNOTSUPP; 452 453 trace_usb_ep_fifo_status(ep, ret); 454 455 return ret; 456 } 457 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 458 459 /** 460 * usb_ep_fifo_flush - flushes contents of a fifo 461 * @ep: the endpoint whose fifo is being flushed. 462 * 463 * This call may be used to flush the "unclaimed data" that may exist in 464 * an endpoint fifo after abnormal transaction terminations. The call 465 * must never be used except when endpoint is not being used for any 466 * protocol translation. 467 * 468 * This routine may be called in interrupt context. 469 */ 470 void usb_ep_fifo_flush(struct usb_ep *ep) 471 { 472 if (ep->ops->fifo_flush) 473 ep->ops->fifo_flush(ep); 474 475 trace_usb_ep_fifo_flush(ep, 0); 476 } 477 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 478 479 /* ------------------------------------------------------------------------- */ 480 481 /** 482 * usb_gadget_frame_number - returns the current frame number 483 * @gadget: controller that reports the frame number 484 * 485 * Returns the usb frame number, normally eleven bits from a SOF packet, 486 * or negative errno if this device doesn't support this capability. 487 */ 488 int usb_gadget_frame_number(struct usb_gadget *gadget) 489 { 490 int ret; 491 492 ret = gadget->ops->get_frame(gadget); 493 494 trace_usb_gadget_frame_number(gadget, ret); 495 496 return ret; 497 } 498 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 499 500 /** 501 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 502 * @gadget: controller used to wake up the host 503 * 504 * Returns zero on success, else negative error code if the hardware 505 * doesn't support such attempts, or its support has not been enabled 506 * by the usb host. Drivers must return device descriptors that report 507 * their ability to support this, or hosts won't enable it. 508 * 509 * This may also try to use SRP to wake the host and start enumeration, 510 * even if OTG isn't otherwise in use. OTG devices may also start 511 * remote wakeup even when hosts don't explicitly enable it. 512 */ 513 int usb_gadget_wakeup(struct usb_gadget *gadget) 514 { 515 int ret = 0; 516 517 if (!gadget->ops->wakeup) { 518 ret = -EOPNOTSUPP; 519 goto out; 520 } 521 522 ret = gadget->ops->wakeup(gadget); 523 524 out: 525 trace_usb_gadget_wakeup(gadget, ret); 526 527 return ret; 528 } 529 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 530 531 /** 532 * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature. 533 * @gadget:the device being configured for remote wakeup 534 * @set:value to be configured. 535 * 536 * set to one to enable remote wakeup feature and zero to disable it. 537 * 538 * returns zero on success, else negative errno. 539 */ 540 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) 541 { 542 int ret = 0; 543 544 if (!gadget->ops->set_remote_wakeup) { 545 ret = -EOPNOTSUPP; 546 goto out; 547 } 548 549 ret = gadget->ops->set_remote_wakeup(gadget, set); 550 551 out: 552 trace_usb_gadget_set_remote_wakeup(gadget, ret); 553 554 return ret; 555 } 556 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup); 557 558 /** 559 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 560 * @gadget:the device being declared as self-powered 561 * 562 * this affects the device status reported by the hardware driver 563 * to reflect that it now has a local power supply. 564 * 565 * returns zero on success, else negative errno. 566 */ 567 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 568 { 569 int ret = 0; 570 571 if (!gadget->ops->set_selfpowered) { 572 ret = -EOPNOTSUPP; 573 goto out; 574 } 575 576 ret = gadget->ops->set_selfpowered(gadget, 1); 577 578 out: 579 trace_usb_gadget_set_selfpowered(gadget, ret); 580 581 return ret; 582 } 583 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 584 585 /** 586 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 587 * @gadget:the device being declared as bus-powered 588 * 589 * this affects the device status reported by the hardware driver. 590 * some hardware may not support bus-powered operation, in which 591 * case this feature's value can never change. 592 * 593 * returns zero on success, else negative errno. 594 */ 595 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 596 { 597 int ret = 0; 598 599 if (!gadget->ops->set_selfpowered) { 600 ret = -EOPNOTSUPP; 601 goto out; 602 } 603 604 ret = gadget->ops->set_selfpowered(gadget, 0); 605 606 out: 607 trace_usb_gadget_clear_selfpowered(gadget, ret); 608 609 return ret; 610 } 611 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 612 613 /** 614 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 615 * @gadget:The device which now has VBUS power. 616 * Context: can sleep 617 * 618 * This call is used by a driver for an external transceiver (or GPIO) 619 * that detects a VBUS power session starting. Common responses include 620 * resuming the controller, activating the D+ (or D-) pullup to let the 621 * host detect that a USB device is attached, and starting to draw power 622 * (8mA or possibly more, especially after SET_CONFIGURATION). 623 * 624 * Returns zero on success, else negative errno. 625 */ 626 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 627 { 628 int ret = 0; 629 630 if (!gadget->ops->vbus_session) { 631 ret = -EOPNOTSUPP; 632 goto out; 633 } 634 635 ret = gadget->ops->vbus_session(gadget, 1); 636 637 out: 638 trace_usb_gadget_vbus_connect(gadget, ret); 639 640 return ret; 641 } 642 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 643 644 /** 645 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 646 * @gadget:The device whose VBUS usage is being described 647 * @mA:How much current to draw, in milliAmperes. This should be twice 648 * the value listed in the configuration descriptor bMaxPower field. 649 * 650 * This call is used by gadget drivers during SET_CONFIGURATION calls, 651 * reporting how much power the device may consume. For example, this 652 * could affect how quickly batteries are recharged. 653 * 654 * Returns zero on success, else negative errno. 655 */ 656 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 657 { 658 int ret = 0; 659 660 if (!gadget->ops->vbus_draw) { 661 ret = -EOPNOTSUPP; 662 goto out; 663 } 664 665 ret = gadget->ops->vbus_draw(gadget, mA); 666 if (!ret) 667 gadget->mA = mA; 668 669 out: 670 trace_usb_gadget_vbus_draw(gadget, ret); 671 672 return ret; 673 } 674 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 675 676 /** 677 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 678 * @gadget:the device whose VBUS supply is being described 679 * Context: can sleep 680 * 681 * This call is used by a driver for an external transceiver (or GPIO) 682 * that detects a VBUS power session ending. Common responses include 683 * reversing everything done in usb_gadget_vbus_connect(). 684 * 685 * Returns zero on success, else negative errno. 686 */ 687 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 688 { 689 int ret = 0; 690 691 if (!gadget->ops->vbus_session) { 692 ret = -EOPNOTSUPP; 693 goto out; 694 } 695 696 ret = gadget->ops->vbus_session(gadget, 0); 697 698 out: 699 trace_usb_gadget_vbus_disconnect(gadget, ret); 700 701 return ret; 702 } 703 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 704 705 static int usb_gadget_connect_locked(struct usb_gadget *gadget) 706 __must_hold(&gadget->udc->connect_lock) 707 { 708 int ret = 0; 709 710 if (!gadget->ops->pullup) { 711 ret = -EOPNOTSUPP; 712 goto out; 713 } 714 715 if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) { 716 /* 717 * If the gadget isn't usable (because it is deactivated, 718 * unbound, or not yet started), we only save the new state. 719 * The gadget will be connected automatically when it is 720 * activated/bound/started. 721 */ 722 gadget->connected = true; 723 goto out; 724 } 725 726 ret = gadget->ops->pullup(gadget, 1); 727 if (!ret) 728 gadget->connected = 1; 729 730 out: 731 trace_usb_gadget_connect(gadget, ret); 732 733 return ret; 734 } 735 736 /** 737 * usb_gadget_connect - software-controlled connect to USB host 738 * @gadget:the peripheral being connected 739 * 740 * Enables the D+ (or potentially D-) pullup. The host will start 741 * enumerating this gadget when the pullup is active and a VBUS session 742 * is active (the link is powered). 743 * 744 * Returns zero on success, else negative errno. 745 */ 746 int usb_gadget_connect(struct usb_gadget *gadget) 747 { 748 int ret; 749 750 mutex_lock(&gadget->udc->connect_lock); 751 ret = usb_gadget_connect_locked(gadget); 752 mutex_unlock(&gadget->udc->connect_lock); 753 754 return ret; 755 } 756 EXPORT_SYMBOL_GPL(usb_gadget_connect); 757 758 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget) 759 __must_hold(&gadget->udc->connect_lock) 760 { 761 int ret = 0; 762 763 if (!gadget->ops->pullup) { 764 ret = -EOPNOTSUPP; 765 goto out; 766 } 767 768 if (!gadget->connected) 769 goto out; 770 771 if (gadget->deactivated || !gadget->udc->started) { 772 /* 773 * If gadget is deactivated we only save new state. 774 * Gadget will stay disconnected after activation. 775 */ 776 gadget->connected = false; 777 goto out; 778 } 779 780 ret = gadget->ops->pullup(gadget, 0); 781 if (!ret) 782 gadget->connected = 0; 783 784 mutex_lock(&udc_lock); 785 if (gadget->udc->driver) 786 gadget->udc->driver->disconnect(gadget); 787 mutex_unlock(&udc_lock); 788 789 out: 790 trace_usb_gadget_disconnect(gadget, ret); 791 792 return ret; 793 } 794 795 /** 796 * usb_gadget_disconnect - software-controlled disconnect from USB host 797 * @gadget:the peripheral being disconnected 798 * 799 * Disables the D+ (or potentially D-) pullup, which the host may see 800 * as a disconnect (when a VBUS session is active). Not all systems 801 * support software pullup controls. 802 * 803 * Following a successful disconnect, invoke the ->disconnect() callback 804 * for the current gadget driver so that UDC drivers don't need to. 805 * 806 * Returns zero on success, else negative errno. 807 */ 808 int usb_gadget_disconnect(struct usb_gadget *gadget) 809 { 810 int ret; 811 812 mutex_lock(&gadget->udc->connect_lock); 813 ret = usb_gadget_disconnect_locked(gadget); 814 mutex_unlock(&gadget->udc->connect_lock); 815 816 return ret; 817 } 818 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 819 820 /** 821 * usb_gadget_deactivate - deactivate function which is not ready to work 822 * @gadget: the peripheral being deactivated 823 * 824 * This routine may be used during the gadget driver bind() call to prevent 825 * the peripheral from ever being visible to the USB host, unless later 826 * usb_gadget_activate() is called. For example, user mode components may 827 * need to be activated before the system can talk to hosts. 828 * 829 * This routine may sleep; it must not be called in interrupt context 830 * (such as from within a gadget driver's disconnect() callback). 831 * 832 * Returns zero on success, else negative errno. 833 */ 834 int usb_gadget_deactivate(struct usb_gadget *gadget) 835 { 836 int ret = 0; 837 838 mutex_lock(&gadget->udc->connect_lock); 839 if (gadget->deactivated) 840 goto unlock; 841 842 if (gadget->connected) { 843 ret = usb_gadget_disconnect_locked(gadget); 844 if (ret) 845 goto unlock; 846 847 /* 848 * If gadget was being connected before deactivation, we want 849 * to reconnect it in usb_gadget_activate(). 850 */ 851 gadget->connected = true; 852 } 853 gadget->deactivated = true; 854 855 unlock: 856 mutex_unlock(&gadget->udc->connect_lock); 857 trace_usb_gadget_deactivate(gadget, ret); 858 859 return ret; 860 } 861 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 862 863 /** 864 * usb_gadget_activate - activate function which is not ready to work 865 * @gadget: the peripheral being activated 866 * 867 * This routine activates gadget which was previously deactivated with 868 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 869 * 870 * This routine may sleep; it must not be called in interrupt context. 871 * 872 * Returns zero on success, else negative errno. 873 */ 874 int usb_gadget_activate(struct usb_gadget *gadget) 875 { 876 int ret = 0; 877 878 mutex_lock(&gadget->udc->connect_lock); 879 if (!gadget->deactivated) 880 goto unlock; 881 882 gadget->deactivated = false; 883 884 /* 885 * If gadget has been connected before deactivation, or became connected 886 * while it was being deactivated, we call usb_gadget_connect(). 887 */ 888 if (gadget->connected) 889 ret = usb_gadget_connect_locked(gadget); 890 891 unlock: 892 mutex_unlock(&gadget->udc->connect_lock); 893 trace_usb_gadget_activate(gadget, ret); 894 895 return ret; 896 } 897 EXPORT_SYMBOL_GPL(usb_gadget_activate); 898 899 /* ------------------------------------------------------------------------- */ 900 901 #ifdef CONFIG_HAS_DMA 902 903 int usb_gadget_map_request_by_dev(struct device *dev, 904 struct usb_request *req, int is_in) 905 { 906 if (req->length == 0) 907 return 0; 908 909 if (req->sg_was_mapped) { 910 req->num_mapped_sgs = req->num_sgs; 911 return 0; 912 } 913 914 if (req->num_sgs) { 915 int mapped; 916 917 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 918 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 919 if (mapped == 0) { 920 dev_err(dev, "failed to map SGs\n"); 921 return -EFAULT; 922 } 923 924 req->num_mapped_sgs = mapped; 925 } else { 926 if (is_vmalloc_addr(req->buf)) { 927 dev_err(dev, "buffer is not dma capable\n"); 928 return -EFAULT; 929 } else if (object_is_on_stack(req->buf)) { 930 dev_err(dev, "buffer is on stack\n"); 931 return -EFAULT; 932 } 933 934 req->dma = dma_map_single(dev, req->buf, req->length, 935 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 936 937 if (dma_mapping_error(dev, req->dma)) { 938 dev_err(dev, "failed to map buffer\n"); 939 return -EFAULT; 940 } 941 942 req->dma_mapped = 1; 943 } 944 945 return 0; 946 } 947 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 948 949 int usb_gadget_map_request(struct usb_gadget *gadget, 950 struct usb_request *req, int is_in) 951 { 952 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 953 } 954 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 955 956 void usb_gadget_unmap_request_by_dev(struct device *dev, 957 struct usb_request *req, int is_in) 958 { 959 if (req->length == 0 || req->sg_was_mapped) 960 return; 961 962 if (req->num_mapped_sgs) { 963 dma_unmap_sg(dev, req->sg, req->num_sgs, 964 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 965 966 req->num_mapped_sgs = 0; 967 } else if (req->dma_mapped) { 968 dma_unmap_single(dev, req->dma, req->length, 969 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 970 req->dma_mapped = 0; 971 } 972 } 973 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 974 975 void usb_gadget_unmap_request(struct usb_gadget *gadget, 976 struct usb_request *req, int is_in) 977 { 978 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 979 } 980 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 981 982 #endif /* CONFIG_HAS_DMA */ 983 984 /* ------------------------------------------------------------------------- */ 985 986 /** 987 * usb_gadget_giveback_request - give the request back to the gadget layer 988 * @ep: the endpoint to be used with with the request 989 * @req: the request being given back 990 * 991 * This is called by device controller drivers in order to return the 992 * completed request back to the gadget layer. 993 */ 994 void usb_gadget_giveback_request(struct usb_ep *ep, 995 struct usb_request *req) 996 { 997 if (likely(req->status == 0)) 998 usb_led_activity(USB_LED_EVENT_GADGET); 999 1000 trace_usb_gadget_giveback_request(ep, req, 0); 1001 1002 req->complete(ep, req); 1003 } 1004 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 1005 1006 /* ------------------------------------------------------------------------- */ 1007 1008 /** 1009 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 1010 * in second parameter or NULL if searched endpoint not found 1011 * @g: controller to check for quirk 1012 * @name: name of searched endpoint 1013 */ 1014 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 1015 { 1016 struct usb_ep *ep; 1017 1018 gadget_for_each_ep(ep, g) { 1019 if (!strcmp(ep->name, name)) 1020 return ep; 1021 } 1022 1023 return NULL; 1024 } 1025 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 1026 1027 /* ------------------------------------------------------------------------- */ 1028 1029 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 1030 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 1031 struct usb_ss_ep_comp_descriptor *ep_comp) 1032 { 1033 u8 type; 1034 u16 max; 1035 int num_req_streams = 0; 1036 1037 /* endpoint already claimed? */ 1038 if (ep->claimed) 1039 return 0; 1040 1041 type = usb_endpoint_type(desc); 1042 max = usb_endpoint_maxp(desc); 1043 1044 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 1045 return 0; 1046 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 1047 return 0; 1048 1049 if (max > ep->maxpacket_limit) 1050 return 0; 1051 1052 /* "high bandwidth" works only at high speed */ 1053 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 1054 return 0; 1055 1056 switch (type) { 1057 case USB_ENDPOINT_XFER_CONTROL: 1058 /* only support ep0 for portable CONTROL traffic */ 1059 return 0; 1060 case USB_ENDPOINT_XFER_ISOC: 1061 if (!ep->caps.type_iso) 1062 return 0; 1063 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 1064 if (!gadget_is_dualspeed(gadget) && max > 1023) 1065 return 0; 1066 break; 1067 case USB_ENDPOINT_XFER_BULK: 1068 if (!ep->caps.type_bulk) 1069 return 0; 1070 if (ep_comp && gadget_is_superspeed(gadget)) { 1071 /* Get the number of required streams from the 1072 * EP companion descriptor and see if the EP 1073 * matches it 1074 */ 1075 num_req_streams = ep_comp->bmAttributes & 0x1f; 1076 if (num_req_streams > ep->max_streams) 1077 return 0; 1078 } 1079 break; 1080 case USB_ENDPOINT_XFER_INT: 1081 /* Bulk endpoints handle interrupt transfers, 1082 * except the toggle-quirky iso-synch kind 1083 */ 1084 if (!ep->caps.type_int && !ep->caps.type_bulk) 1085 return 0; 1086 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 1087 if (!gadget_is_dualspeed(gadget) && max > 64) 1088 return 0; 1089 break; 1090 } 1091 1092 return 1; 1093 } 1094 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1095 1096 /** 1097 * usb_gadget_check_config - checks if the UDC can support the binded 1098 * configuration 1099 * @gadget: controller to check the USB configuration 1100 * 1101 * Ensure that a UDC is able to support the requested resources by a 1102 * configuration, and that there are no resource limitations, such as 1103 * internal memory allocated to all requested endpoints. 1104 * 1105 * Returns zero on success, else a negative errno. 1106 */ 1107 int usb_gadget_check_config(struct usb_gadget *gadget) 1108 { 1109 if (gadget->ops->check_config) 1110 return gadget->ops->check_config(gadget); 1111 return 0; 1112 } 1113 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1114 1115 /* ------------------------------------------------------------------------- */ 1116 1117 static void usb_gadget_state_work(struct work_struct *work) 1118 { 1119 struct usb_gadget *gadget = work_to_gadget(work); 1120 struct usb_udc *udc = gadget->udc; 1121 1122 if (udc) 1123 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1124 } 1125 1126 void usb_gadget_set_state(struct usb_gadget *gadget, 1127 enum usb_device_state state) 1128 { 1129 gadget->state = state; 1130 schedule_work(&gadget->work); 1131 trace_usb_gadget_set_state(gadget, 0); 1132 } 1133 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1134 1135 /* ------------------------------------------------------------------------- */ 1136 1137 /* Acquire connect_lock before calling this function. */ 1138 static int usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock) 1139 { 1140 if (udc->vbus) 1141 return usb_gadget_connect_locked(udc->gadget); 1142 else 1143 return usb_gadget_disconnect_locked(udc->gadget); 1144 } 1145 1146 static void vbus_event_work(struct work_struct *work) 1147 { 1148 struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work); 1149 1150 mutex_lock(&udc->connect_lock); 1151 usb_udc_connect_control_locked(udc); 1152 mutex_unlock(&udc->connect_lock); 1153 } 1154 1155 /** 1156 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1157 * connect or disconnect gadget 1158 * @gadget: The gadget which vbus change occurs 1159 * @status: The vbus status 1160 * 1161 * The udc driver calls it when it wants to connect or disconnect gadget 1162 * according to vbus status. 1163 * 1164 * This function can be invoked from interrupt context by irq handlers of 1165 * the gadget drivers, however, usb_udc_connect_control() has to run in 1166 * non-atomic context due to the following: 1167 * a. Some of the gadget driver implementations expect the ->pullup 1168 * callback to be invoked in non-atomic context. 1169 * b. usb_gadget_disconnect() acquires udc_lock which is a mutex. 1170 * Hence offload invocation of usb_udc_connect_control() to workqueue. 1171 */ 1172 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1173 { 1174 struct usb_udc *udc = gadget->udc; 1175 1176 if (udc) { 1177 udc->vbus = status; 1178 schedule_work(&udc->vbus_work); 1179 } 1180 } 1181 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1182 1183 /** 1184 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1185 * @gadget: The gadget which bus reset occurs 1186 * @driver: The gadget driver we want to notify 1187 * 1188 * If the udc driver has bus reset handler, it needs to call this when the bus 1189 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1190 * well as updates gadget state. 1191 */ 1192 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1193 struct usb_gadget_driver *driver) 1194 { 1195 driver->reset(gadget); 1196 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1197 } 1198 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1199 1200 /** 1201 * usb_gadget_udc_start_locked - tells usb device controller to start up 1202 * @udc: The UDC to be started 1203 * 1204 * This call is issued by the UDC Class driver when it's about 1205 * to register a gadget driver to the device controller, before 1206 * calling gadget driver's bind() method. 1207 * 1208 * It allows the controller to be powered off until strictly 1209 * necessary to have it powered on. 1210 * 1211 * Returns zero on success, else negative errno. 1212 * 1213 * Caller should acquire connect_lock before invoking this function. 1214 */ 1215 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc) 1216 __must_hold(&udc->connect_lock) 1217 { 1218 int ret; 1219 1220 if (udc->started) { 1221 dev_err(&udc->dev, "UDC had already started\n"); 1222 return -EBUSY; 1223 } 1224 1225 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1226 if (!ret) 1227 udc->started = true; 1228 1229 return ret; 1230 } 1231 1232 /** 1233 * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore 1234 * @udc: The UDC to be stopped 1235 * 1236 * This call is issued by the UDC Class driver after calling 1237 * gadget driver's unbind() method. 1238 * 1239 * The details are implementation specific, but it can go as 1240 * far as powering off UDC completely and disable its data 1241 * line pullups. 1242 * 1243 * Caller should acquire connect lock before invoking this function. 1244 */ 1245 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc) 1246 __must_hold(&udc->connect_lock) 1247 { 1248 if (!udc->started) { 1249 dev_err(&udc->dev, "UDC had already stopped\n"); 1250 return; 1251 } 1252 1253 udc->gadget->ops->udc_stop(udc->gadget); 1254 udc->started = false; 1255 } 1256 1257 /** 1258 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1259 * current driver 1260 * @udc: The device we want to set maximum speed 1261 * @speed: The maximum speed to allowed to run 1262 * 1263 * This call is issued by the UDC Class driver before calling 1264 * usb_gadget_udc_start() in order to make sure that we don't try to 1265 * connect on speeds the gadget driver doesn't support. 1266 */ 1267 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1268 enum usb_device_speed speed) 1269 { 1270 struct usb_gadget *gadget = udc->gadget; 1271 enum usb_device_speed s; 1272 1273 if (speed == USB_SPEED_UNKNOWN) 1274 s = gadget->max_speed; 1275 else 1276 s = min(speed, gadget->max_speed); 1277 1278 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1279 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1280 else if (gadget->ops->udc_set_speed) 1281 gadget->ops->udc_set_speed(gadget, s); 1282 } 1283 1284 /** 1285 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1286 * @udc: The UDC which should enable async callbacks 1287 * 1288 * This routine is used when binding gadget drivers. It undoes the effect 1289 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1290 * (if necessary) and resume issuing callbacks. 1291 * 1292 * This routine will always be called in process context. 1293 */ 1294 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1295 { 1296 struct usb_gadget *gadget = udc->gadget; 1297 1298 if (gadget->ops->udc_async_callbacks) 1299 gadget->ops->udc_async_callbacks(gadget, true); 1300 } 1301 1302 /** 1303 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1304 * @udc: The UDC which should disable async callbacks 1305 * 1306 * This routine is used when unbinding gadget drivers. It prevents a race: 1307 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1308 * runs, so unless it is told to disable asynchronous callbacks, it might 1309 * issue a callback (such as ->disconnect) after the unbind has completed. 1310 * 1311 * After this function runs, the UDC driver must suppress all ->suspend, 1312 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1313 * until async callbacks are again enabled. A simple-minded but effective 1314 * way to accomplish this is to tell the UDC hardware not to generate any 1315 * more IRQs. 1316 * 1317 * Request completion callbacks must still be issued. However, it's okay 1318 * to defer them until the request is cancelled, since the pull-up will be 1319 * turned off during the time period when async callbacks are disabled. 1320 * 1321 * This routine will always be called in process context. 1322 */ 1323 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1324 { 1325 struct usb_gadget *gadget = udc->gadget; 1326 1327 if (gadget->ops->udc_async_callbacks) 1328 gadget->ops->udc_async_callbacks(gadget, false); 1329 } 1330 1331 /** 1332 * usb_udc_release - release the usb_udc struct 1333 * @dev: the dev member within usb_udc 1334 * 1335 * This is called by driver's core in order to free memory once the last 1336 * reference is released. 1337 */ 1338 static void usb_udc_release(struct device *dev) 1339 { 1340 struct usb_udc *udc; 1341 1342 udc = container_of(dev, struct usb_udc, dev); 1343 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1344 kfree(udc); 1345 } 1346 1347 static const struct attribute_group *usb_udc_attr_groups[]; 1348 1349 static void usb_udc_nop_release(struct device *dev) 1350 { 1351 dev_vdbg(dev, "%s\n", __func__); 1352 } 1353 1354 /** 1355 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1356 * @parent: the parent device to this udc. Usually the controller driver's 1357 * device. 1358 * @gadget: the gadget to be initialized. 1359 * @release: a gadget release function. 1360 */ 1361 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1362 void (*release)(struct device *dev)) 1363 { 1364 INIT_WORK(&gadget->work, usb_gadget_state_work); 1365 gadget->dev.parent = parent; 1366 1367 if (release) 1368 gadget->dev.release = release; 1369 else 1370 gadget->dev.release = usb_udc_nop_release; 1371 1372 device_initialize(&gadget->dev); 1373 gadget->dev.bus = &gadget_bus_type; 1374 } 1375 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1376 1377 /** 1378 * usb_add_gadget - adds a new gadget to the udc class driver list 1379 * @gadget: the gadget to be added to the list. 1380 * 1381 * Returns zero on success, negative errno otherwise. 1382 * Does not do a final usb_put_gadget() if an error occurs. 1383 */ 1384 int usb_add_gadget(struct usb_gadget *gadget) 1385 { 1386 struct usb_udc *udc; 1387 int ret = -ENOMEM; 1388 1389 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1390 if (!udc) 1391 goto error; 1392 1393 device_initialize(&udc->dev); 1394 udc->dev.release = usb_udc_release; 1395 udc->dev.class = &udc_class; 1396 udc->dev.groups = usb_udc_attr_groups; 1397 udc->dev.parent = gadget->dev.parent; 1398 ret = dev_set_name(&udc->dev, "%s", 1399 kobject_name(&gadget->dev.parent->kobj)); 1400 if (ret) 1401 goto err_put_udc; 1402 1403 udc->gadget = gadget; 1404 gadget->udc = udc; 1405 mutex_init(&udc->connect_lock); 1406 1407 udc->started = false; 1408 1409 mutex_lock(&udc_lock); 1410 list_add_tail(&udc->list, &udc_list); 1411 mutex_unlock(&udc_lock); 1412 INIT_WORK(&udc->vbus_work, vbus_event_work); 1413 1414 ret = device_add(&udc->dev); 1415 if (ret) 1416 goto err_unlist_udc; 1417 1418 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1419 udc->vbus = true; 1420 1421 ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); 1422 if (ret < 0) 1423 goto err_del_udc; 1424 gadget->id_number = ret; 1425 dev_set_name(&gadget->dev, "gadget.%d", ret); 1426 1427 ret = device_add(&gadget->dev); 1428 if (ret) 1429 goto err_free_id; 1430 1431 ret = sysfs_create_link(&udc->dev.kobj, 1432 &gadget->dev.kobj, "gadget"); 1433 if (ret) 1434 goto err_del_gadget; 1435 1436 return 0; 1437 1438 err_del_gadget: 1439 device_del(&gadget->dev); 1440 1441 err_free_id: 1442 ida_free(&gadget_id_numbers, gadget->id_number); 1443 1444 err_del_udc: 1445 flush_work(&gadget->work); 1446 device_del(&udc->dev); 1447 1448 err_unlist_udc: 1449 mutex_lock(&udc_lock); 1450 list_del(&udc->list); 1451 mutex_unlock(&udc_lock); 1452 1453 err_put_udc: 1454 put_device(&udc->dev); 1455 1456 error: 1457 return ret; 1458 } 1459 EXPORT_SYMBOL_GPL(usb_add_gadget); 1460 1461 /** 1462 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1463 * @parent: the parent device to this udc. Usually the controller driver's 1464 * device. 1465 * @gadget: the gadget to be added to the list. 1466 * @release: a gadget release function. 1467 * 1468 * Returns zero on success, negative errno otherwise. 1469 * Calls the gadget release function in the latter case. 1470 */ 1471 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1472 void (*release)(struct device *dev)) 1473 { 1474 int ret; 1475 1476 usb_initialize_gadget(parent, gadget, release); 1477 ret = usb_add_gadget(gadget); 1478 if (ret) 1479 usb_put_gadget(gadget); 1480 return ret; 1481 } 1482 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1483 1484 /** 1485 * usb_get_gadget_udc_name - get the name of the first UDC controller 1486 * This functions returns the name of the first UDC controller in the system. 1487 * Please note that this interface is usefull only for legacy drivers which 1488 * assume that there is only one UDC controller in the system and they need to 1489 * get its name before initialization. There is no guarantee that the UDC 1490 * of the returned name will be still available, when gadget driver registers 1491 * itself. 1492 * 1493 * Returns pointer to string with UDC controller name on success, NULL 1494 * otherwise. Caller should kfree() returned string. 1495 */ 1496 char *usb_get_gadget_udc_name(void) 1497 { 1498 struct usb_udc *udc; 1499 char *name = NULL; 1500 1501 /* For now we take the first available UDC */ 1502 mutex_lock(&udc_lock); 1503 list_for_each_entry(udc, &udc_list, list) { 1504 if (!udc->driver) { 1505 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1506 break; 1507 } 1508 } 1509 mutex_unlock(&udc_lock); 1510 return name; 1511 } 1512 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1513 1514 /** 1515 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1516 * @parent: the parent device to this udc. Usually the controller 1517 * driver's device. 1518 * @gadget: the gadget to be added to the list 1519 * 1520 * Returns zero on success, negative errno otherwise. 1521 */ 1522 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1523 { 1524 return usb_add_gadget_udc_release(parent, gadget, NULL); 1525 } 1526 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1527 1528 /** 1529 * usb_del_gadget - deletes a gadget and unregisters its udc 1530 * @gadget: the gadget to be deleted. 1531 * 1532 * This will unbind @gadget, if it is bound. 1533 * It will not do a final usb_put_gadget(). 1534 */ 1535 void usb_del_gadget(struct usb_gadget *gadget) 1536 { 1537 struct usb_udc *udc = gadget->udc; 1538 1539 if (!udc) 1540 return; 1541 1542 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1543 1544 mutex_lock(&udc_lock); 1545 list_del(&udc->list); 1546 mutex_unlock(&udc_lock); 1547 1548 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1549 sysfs_remove_link(&udc->dev.kobj, "gadget"); 1550 device_del(&gadget->dev); 1551 flush_work(&gadget->work); 1552 ida_free(&gadget_id_numbers, gadget->id_number); 1553 cancel_work_sync(&udc->vbus_work); 1554 device_unregister(&udc->dev); 1555 } 1556 EXPORT_SYMBOL_GPL(usb_del_gadget); 1557 1558 /** 1559 * usb_del_gadget_udc - unregisters a gadget 1560 * @gadget: the gadget to be unregistered. 1561 * 1562 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1563 */ 1564 void usb_del_gadget_udc(struct usb_gadget *gadget) 1565 { 1566 usb_del_gadget(gadget); 1567 usb_put_gadget(gadget); 1568 } 1569 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1570 1571 /* ------------------------------------------------------------------------- */ 1572 1573 static int gadget_match_driver(struct device *dev, const struct device_driver *drv) 1574 { 1575 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1576 struct usb_udc *udc = gadget->udc; 1577 const struct usb_gadget_driver *driver = container_of(drv, 1578 struct usb_gadget_driver, driver); 1579 1580 /* If the driver specifies a udc_name, it must match the UDC's name */ 1581 if (driver->udc_name && 1582 strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) 1583 return 0; 1584 1585 /* If the driver is already bound to a gadget, it doesn't match */ 1586 if (driver->is_bound) 1587 return 0; 1588 1589 /* Otherwise any gadget driver matches any UDC */ 1590 return 1; 1591 } 1592 1593 static int gadget_bind_driver(struct device *dev) 1594 { 1595 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1596 struct usb_udc *udc = gadget->udc; 1597 struct usb_gadget_driver *driver = container_of(dev->driver, 1598 struct usb_gadget_driver, driver); 1599 int ret = 0; 1600 1601 mutex_lock(&udc_lock); 1602 if (driver->is_bound) { 1603 mutex_unlock(&udc_lock); 1604 return -ENXIO; /* Driver binds to only one gadget */ 1605 } 1606 driver->is_bound = true; 1607 udc->driver = driver; 1608 mutex_unlock(&udc_lock); 1609 1610 dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); 1611 1612 usb_gadget_udc_set_speed(udc, driver->max_speed); 1613 1614 ret = driver->bind(udc->gadget, driver); 1615 if (ret) 1616 goto err_bind; 1617 1618 mutex_lock(&udc->connect_lock); 1619 ret = usb_gadget_udc_start_locked(udc); 1620 if (ret) { 1621 mutex_unlock(&udc->connect_lock); 1622 goto err_start; 1623 } 1624 usb_gadget_enable_async_callbacks(udc); 1625 udc->allow_connect = true; 1626 ret = usb_udc_connect_control_locked(udc); 1627 if (ret) 1628 goto err_connect_control; 1629 1630 mutex_unlock(&udc->connect_lock); 1631 1632 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1633 return 0; 1634 1635 err_connect_control: 1636 udc->allow_connect = false; 1637 usb_gadget_disable_async_callbacks(udc); 1638 if (gadget->irq) 1639 synchronize_irq(gadget->irq); 1640 usb_gadget_udc_stop_locked(udc); 1641 mutex_unlock(&udc->connect_lock); 1642 1643 err_start: 1644 driver->unbind(udc->gadget); 1645 1646 err_bind: 1647 if (ret != -EISNAM) 1648 dev_err(&udc->dev, "failed to start %s: %d\n", 1649 driver->function, ret); 1650 1651 mutex_lock(&udc_lock); 1652 udc->driver = NULL; 1653 driver->is_bound = false; 1654 mutex_unlock(&udc_lock); 1655 1656 return ret; 1657 } 1658 1659 static void gadget_unbind_driver(struct device *dev) 1660 { 1661 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1662 struct usb_udc *udc = gadget->udc; 1663 struct usb_gadget_driver *driver = udc->driver; 1664 1665 dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); 1666 1667 udc->allow_connect = false; 1668 cancel_work_sync(&udc->vbus_work); 1669 mutex_lock(&udc->connect_lock); 1670 usb_gadget_disconnect_locked(gadget); 1671 usb_gadget_disable_async_callbacks(udc); 1672 if (gadget->irq) 1673 synchronize_irq(gadget->irq); 1674 mutex_unlock(&udc->connect_lock); 1675 1676 udc->driver->unbind(gadget); 1677 1678 mutex_lock(&udc->connect_lock); 1679 usb_gadget_udc_stop_locked(udc); 1680 mutex_unlock(&udc->connect_lock); 1681 1682 mutex_lock(&udc_lock); 1683 driver->is_bound = false; 1684 udc->driver = NULL; 1685 mutex_unlock(&udc_lock); 1686 1687 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1688 } 1689 1690 /* ------------------------------------------------------------------------- */ 1691 1692 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 1693 struct module *owner, const char *mod_name) 1694 { 1695 int ret; 1696 1697 if (!driver || !driver->bind || !driver->setup) 1698 return -EINVAL; 1699 1700 driver->driver.bus = &gadget_bus_type; 1701 driver->driver.owner = owner; 1702 driver->driver.mod_name = mod_name; 1703 driver->driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 1704 ret = driver_register(&driver->driver); 1705 if (ret) { 1706 pr_warn("%s: driver registration failed: %d\n", 1707 driver->function, ret); 1708 return ret; 1709 } 1710 1711 mutex_lock(&udc_lock); 1712 if (!driver->is_bound) { 1713 if (driver->match_existing_only) { 1714 pr_warn("%s: couldn't find an available UDC or it's busy\n", 1715 driver->function); 1716 ret = -EBUSY; 1717 } else { 1718 pr_info("%s: couldn't find an available UDC\n", 1719 driver->function); 1720 ret = 0; 1721 } 1722 } 1723 mutex_unlock(&udc_lock); 1724 1725 if (ret) 1726 driver_unregister(&driver->driver); 1727 return ret; 1728 } 1729 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); 1730 1731 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1732 { 1733 if (!driver || !driver->unbind) 1734 return -EINVAL; 1735 1736 driver_unregister(&driver->driver); 1737 return 0; 1738 } 1739 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1740 1741 /* ------------------------------------------------------------------------- */ 1742 1743 static ssize_t srp_store(struct device *dev, 1744 struct device_attribute *attr, const char *buf, size_t n) 1745 { 1746 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1747 1748 if (sysfs_streq(buf, "1")) 1749 usb_gadget_wakeup(udc->gadget); 1750 1751 return n; 1752 } 1753 static DEVICE_ATTR_WO(srp); 1754 1755 static ssize_t soft_connect_store(struct device *dev, 1756 struct device_attribute *attr, const char *buf, size_t n) 1757 { 1758 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1759 ssize_t ret; 1760 1761 device_lock(&udc->gadget->dev); 1762 if (!udc->driver) { 1763 dev_err(dev, "soft-connect without a gadget driver\n"); 1764 ret = -EOPNOTSUPP; 1765 goto out; 1766 } 1767 1768 if (sysfs_streq(buf, "connect")) { 1769 mutex_lock(&udc->connect_lock); 1770 usb_gadget_udc_start_locked(udc); 1771 usb_gadget_connect_locked(udc->gadget); 1772 mutex_unlock(&udc->connect_lock); 1773 } else if (sysfs_streq(buf, "disconnect")) { 1774 mutex_lock(&udc->connect_lock); 1775 usb_gadget_disconnect_locked(udc->gadget); 1776 usb_gadget_udc_stop_locked(udc); 1777 mutex_unlock(&udc->connect_lock); 1778 } else { 1779 dev_err(dev, "unsupported command '%s'\n", buf); 1780 ret = -EINVAL; 1781 goto out; 1782 } 1783 1784 ret = n; 1785 out: 1786 device_unlock(&udc->gadget->dev); 1787 return ret; 1788 } 1789 static DEVICE_ATTR_WO(soft_connect); 1790 1791 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1792 char *buf) 1793 { 1794 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1795 struct usb_gadget *gadget = udc->gadget; 1796 1797 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1798 } 1799 static DEVICE_ATTR_RO(state); 1800 1801 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1802 char *buf) 1803 { 1804 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1805 struct usb_gadget_driver *drv; 1806 int rc = 0; 1807 1808 mutex_lock(&udc_lock); 1809 drv = udc->driver; 1810 if (drv && drv->function) 1811 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1812 mutex_unlock(&udc_lock); 1813 return rc; 1814 } 1815 static DEVICE_ATTR_RO(function); 1816 1817 #define USB_UDC_SPEED_ATTR(name, param) \ 1818 ssize_t name##_show(struct device *dev, \ 1819 struct device_attribute *attr, char *buf) \ 1820 { \ 1821 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1822 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1823 usb_speed_string(udc->gadget->param)); \ 1824 } \ 1825 static DEVICE_ATTR_RO(name) 1826 1827 static USB_UDC_SPEED_ATTR(current_speed, speed); 1828 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1829 1830 #define USB_UDC_ATTR(name) \ 1831 ssize_t name##_show(struct device *dev, \ 1832 struct device_attribute *attr, char *buf) \ 1833 { \ 1834 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1835 struct usb_gadget *gadget = udc->gadget; \ 1836 \ 1837 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1838 } \ 1839 static DEVICE_ATTR_RO(name) 1840 1841 static USB_UDC_ATTR(is_otg); 1842 static USB_UDC_ATTR(is_a_peripheral); 1843 static USB_UDC_ATTR(b_hnp_enable); 1844 static USB_UDC_ATTR(a_hnp_support); 1845 static USB_UDC_ATTR(a_alt_hnp_support); 1846 static USB_UDC_ATTR(is_selfpowered); 1847 1848 static struct attribute *usb_udc_attrs[] = { 1849 &dev_attr_srp.attr, 1850 &dev_attr_soft_connect.attr, 1851 &dev_attr_state.attr, 1852 &dev_attr_function.attr, 1853 &dev_attr_current_speed.attr, 1854 &dev_attr_maximum_speed.attr, 1855 1856 &dev_attr_is_otg.attr, 1857 &dev_attr_is_a_peripheral.attr, 1858 &dev_attr_b_hnp_enable.attr, 1859 &dev_attr_a_hnp_support.attr, 1860 &dev_attr_a_alt_hnp_support.attr, 1861 &dev_attr_is_selfpowered.attr, 1862 NULL, 1863 }; 1864 1865 static const struct attribute_group usb_udc_attr_group = { 1866 .attrs = usb_udc_attrs, 1867 }; 1868 1869 static const struct attribute_group *usb_udc_attr_groups[] = { 1870 &usb_udc_attr_group, 1871 NULL, 1872 }; 1873 1874 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) 1875 { 1876 const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1877 int ret; 1878 1879 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1880 if (ret) { 1881 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1882 return ret; 1883 } 1884 1885 mutex_lock(&udc_lock); 1886 if (udc->driver) 1887 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1888 udc->driver->function); 1889 mutex_unlock(&udc_lock); 1890 if (ret) { 1891 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1892 return ret; 1893 } 1894 1895 return 0; 1896 } 1897 1898 static const struct class udc_class = { 1899 .name = "udc", 1900 .dev_uevent = usb_udc_uevent, 1901 }; 1902 1903 static const struct bus_type gadget_bus_type = { 1904 .name = "gadget", 1905 .probe = gadget_bind_driver, 1906 .remove = gadget_unbind_driver, 1907 .match = gadget_match_driver, 1908 }; 1909 1910 static int __init usb_udc_init(void) 1911 { 1912 int rc; 1913 1914 rc = class_register(&udc_class); 1915 if (rc) 1916 return rc; 1917 1918 rc = bus_register(&gadget_bus_type); 1919 if (rc) 1920 class_unregister(&udc_class); 1921 return rc; 1922 } 1923 subsys_initcall(usb_udc_init); 1924 1925 static void __exit usb_udc_exit(void) 1926 { 1927 bus_unregister(&gadget_bus_type); 1928 class_unregister(&udc_class); 1929 } 1930 module_exit(usb_udc_exit); 1931 1932 MODULE_DESCRIPTION("UDC Framework"); 1933 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1934 MODULE_LICENSE("GPL v2"); 1935