1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/err.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/usb/ch9.h> 21 #include <linux/usb/gadget.h> 22 #include <linux/usb.h> 23 24 #include "trace.h" 25 26 /** 27 * struct usb_udc - describes one usb device controller 28 * @driver: the gadget driver pointer. For use by the class code 29 * @dev: the child device to the actual controller 30 * @gadget: the gadget. For use by the class code 31 * @list: for use by the udc class driver 32 * @vbus: for udcs who care about vbus status, this value is real vbus status; 33 * for udcs who do not care about vbus status, this value is always true 34 * @started: the UDC's started state. True if the UDC had started. 35 * 36 * This represents the internal data structure which is used by the UDC-class 37 * to hold information about udc driver and gadget together. 38 */ 39 struct usb_udc { 40 struct usb_gadget_driver *driver; 41 struct usb_gadget *gadget; 42 struct device dev; 43 struct list_head list; 44 bool vbus; 45 bool started; 46 }; 47 48 static struct class *udc_class; 49 static LIST_HEAD(udc_list); 50 static LIST_HEAD(gadget_driver_pending_list); 51 static DEFINE_MUTEX(udc_lock); 52 53 static int udc_bind_to_driver(struct usb_udc *udc, 54 struct usb_gadget_driver *driver); 55 56 /* ------------------------------------------------------------------------- */ 57 58 /** 59 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 60 * @ep:the endpoint being configured 61 * @maxpacket_limit:value of maximum packet size limit 62 * 63 * This function should be used only in UDC drivers to initialize endpoint 64 * (usually in probe function). 65 */ 66 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 67 unsigned maxpacket_limit) 68 { 69 ep->maxpacket_limit = maxpacket_limit; 70 ep->maxpacket = maxpacket_limit; 71 72 trace_usb_ep_set_maxpacket_limit(ep, 0); 73 } 74 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 75 76 /** 77 * usb_ep_enable - configure endpoint, making it usable 78 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 79 * drivers discover endpoints through the ep_list of a usb_gadget. 80 * 81 * When configurations are set, or when interface settings change, the driver 82 * will enable or disable the relevant endpoints. while it is enabled, an 83 * endpoint may be used for i/o until the driver receives a disconnect() from 84 * the host or until the endpoint is disabled. 85 * 86 * the ep0 implementation (which calls this routine) must ensure that the 87 * hardware capabilities of each endpoint match the descriptor provided 88 * for it. for example, an endpoint named "ep2in-bulk" would be usable 89 * for interrupt transfers as well as bulk, but it likely couldn't be used 90 * for iso transfers or for endpoint 14. some endpoints are fully 91 * configurable, with more generic names like "ep-a". (remember that for 92 * USB, "in" means "towards the USB host".) 93 * 94 * This routine may be called in an atomic (interrupt) context. 95 * 96 * returns zero, or a negative error code. 97 */ 98 int usb_ep_enable(struct usb_ep *ep) 99 { 100 int ret = 0; 101 102 if (ep->enabled) 103 goto out; 104 105 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 106 if (usb_endpoint_maxp(ep->desc) == 0) { 107 /* 108 * We should log an error message here, but we can't call 109 * dev_err() because there's no way to find the gadget 110 * given only ep. 111 */ 112 ret = -EINVAL; 113 goto out; 114 } 115 116 ret = ep->ops->enable(ep, ep->desc); 117 if (ret) 118 goto out; 119 120 ep->enabled = true; 121 122 out: 123 trace_usb_ep_enable(ep, ret); 124 125 return ret; 126 } 127 EXPORT_SYMBOL_GPL(usb_ep_enable); 128 129 /** 130 * usb_ep_disable - endpoint is no longer usable 131 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 132 * 133 * no other task may be using this endpoint when this is called. 134 * any pending and uncompleted requests will complete with status 135 * indicating disconnect (-ESHUTDOWN) before this call returns. 136 * gadget drivers must call usb_ep_enable() again before queueing 137 * requests to the endpoint. 138 * 139 * This routine may be called in an atomic (interrupt) context. 140 * 141 * returns zero, or a negative error code. 142 */ 143 int usb_ep_disable(struct usb_ep *ep) 144 { 145 int ret = 0; 146 147 if (!ep->enabled) 148 goto out; 149 150 ret = ep->ops->disable(ep); 151 if (ret) 152 goto out; 153 154 ep->enabled = false; 155 156 out: 157 trace_usb_ep_disable(ep, ret); 158 159 return ret; 160 } 161 EXPORT_SYMBOL_GPL(usb_ep_disable); 162 163 /** 164 * usb_ep_alloc_request - allocate a request object to use with this endpoint 165 * @ep:the endpoint to be used with with the request 166 * @gfp_flags:GFP_* flags to use 167 * 168 * Request objects must be allocated with this call, since they normally 169 * need controller-specific setup and may even need endpoint-specific 170 * resources such as allocation of DMA descriptors. 171 * Requests may be submitted with usb_ep_queue(), and receive a single 172 * completion callback. Free requests with usb_ep_free_request(), when 173 * they are no longer needed. 174 * 175 * Returns the request, or null if one could not be allocated. 176 */ 177 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 178 gfp_t gfp_flags) 179 { 180 struct usb_request *req = NULL; 181 182 req = ep->ops->alloc_request(ep, gfp_flags); 183 184 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 185 186 return req; 187 } 188 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 189 190 /** 191 * usb_ep_free_request - frees a request object 192 * @ep:the endpoint associated with the request 193 * @req:the request being freed 194 * 195 * Reverses the effect of usb_ep_alloc_request(). 196 * Caller guarantees the request is not queued, and that it will 197 * no longer be requeued (or otherwise used). 198 */ 199 void usb_ep_free_request(struct usb_ep *ep, 200 struct usb_request *req) 201 { 202 trace_usb_ep_free_request(ep, req, 0); 203 ep->ops->free_request(ep, req); 204 } 205 EXPORT_SYMBOL_GPL(usb_ep_free_request); 206 207 /** 208 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 209 * @ep:the endpoint associated with the request 210 * @req:the request being submitted 211 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 212 * pre-allocate all necessary memory with the request. 213 * 214 * This tells the device controller to perform the specified request through 215 * that endpoint (reading or writing a buffer). When the request completes, 216 * including being canceled by usb_ep_dequeue(), the request's completion 217 * routine is called to return the request to the driver. Any endpoint 218 * (except control endpoints like ep0) may have more than one transfer 219 * request queued; they complete in FIFO order. Once a gadget driver 220 * submits a request, that request may not be examined or modified until it 221 * is given back to that driver through the completion callback. 222 * 223 * Each request is turned into one or more packets. The controller driver 224 * never merges adjacent requests into the same packet. OUT transfers 225 * will sometimes use data that's already buffered in the hardware. 226 * Drivers can rely on the fact that the first byte of the request's buffer 227 * always corresponds to the first byte of some USB packet, for both 228 * IN and OUT transfers. 229 * 230 * Bulk endpoints can queue any amount of data; the transfer is packetized 231 * automatically. The last packet will be short if the request doesn't fill it 232 * out completely. Zero length packets (ZLPs) should be avoided in portable 233 * protocols since not all usb hardware can successfully handle zero length 234 * packets. (ZLPs may be explicitly written, and may be implicitly written if 235 * the request 'zero' flag is set.) Bulk endpoints may also be used 236 * for interrupt transfers; but the reverse is not true, and some endpoints 237 * won't support every interrupt transfer. (Such as 768 byte packets.) 238 * 239 * Interrupt-only endpoints are less functional than bulk endpoints, for 240 * example by not supporting queueing or not handling buffers that are 241 * larger than the endpoint's maxpacket size. They may also treat data 242 * toggle differently. 243 * 244 * Control endpoints ... after getting a setup() callback, the driver queues 245 * one response (even if it would be zero length). That enables the 246 * status ack, after transferring data as specified in the response. Setup 247 * functions may return negative error codes to generate protocol stalls. 248 * (Note that some USB device controllers disallow protocol stall responses 249 * in some cases.) When control responses are deferred (the response is 250 * written after the setup callback returns), then usb_ep_set_halt() may be 251 * used on ep0 to trigger protocol stalls. Depending on the controller, 252 * it may not be possible to trigger a status-stage protocol stall when the 253 * data stage is over, that is, from within the response's completion 254 * routine. 255 * 256 * For periodic endpoints, like interrupt or isochronous ones, the usb host 257 * arranges to poll once per interval, and the gadget driver usually will 258 * have queued some data to transfer at that time. 259 * 260 * Note that @req's ->complete() callback must never be called from 261 * within usb_ep_queue() as that can create deadlock situations. 262 * 263 * This routine may be called in interrupt context. 264 * 265 * Returns zero, or a negative error code. Endpoints that are not enabled 266 * report errors; errors will also be 267 * reported when the usb peripheral is disconnected. 268 * 269 * If and only if @req is successfully queued (the return value is zero), 270 * @req->complete() will be called exactly once, when the Gadget core and 271 * UDC are finished with the request. When the completion function is called, 272 * control of the request is returned to the device driver which submitted it. 273 * The completion handler may then immediately free or reuse @req. 274 */ 275 int usb_ep_queue(struct usb_ep *ep, 276 struct usb_request *req, gfp_t gfp_flags) 277 { 278 int ret = 0; 279 280 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 281 ret = -ESHUTDOWN; 282 goto out; 283 } 284 285 ret = ep->ops->queue(ep, req, gfp_flags); 286 287 out: 288 trace_usb_ep_queue(ep, req, ret); 289 290 return ret; 291 } 292 EXPORT_SYMBOL_GPL(usb_ep_queue); 293 294 /** 295 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 296 * @ep:the endpoint associated with the request 297 * @req:the request being canceled 298 * 299 * If the request is still active on the endpoint, it is dequeued and 300 * eventually its completion routine is called (with status -ECONNRESET); 301 * else a negative error code is returned. This routine is asynchronous, 302 * that is, it may return before the completion routine runs. 303 * 304 * Note that some hardware can't clear out write fifos (to unlink the request 305 * at the head of the queue) except as part of disconnecting from usb. Such 306 * restrictions prevent drivers from supporting configuration changes, 307 * even to configuration zero (a "chapter 9" requirement). 308 * 309 * This routine may be called in interrupt context. 310 */ 311 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 312 { 313 int ret; 314 315 ret = ep->ops->dequeue(ep, req); 316 trace_usb_ep_dequeue(ep, req, ret); 317 318 return ret; 319 } 320 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 321 322 /** 323 * usb_ep_set_halt - sets the endpoint halt feature. 324 * @ep: the non-isochronous endpoint being stalled 325 * 326 * Use this to stall an endpoint, perhaps as an error report. 327 * Except for control endpoints, 328 * the endpoint stays halted (will not stream any data) until the host 329 * clears this feature; drivers may need to empty the endpoint's request 330 * queue first, to make sure no inappropriate transfers happen. 331 * 332 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 333 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 334 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 335 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 336 * 337 * This routine may be called in interrupt context. 338 * 339 * Returns zero, or a negative error code. On success, this call sets 340 * underlying hardware state that blocks data transfers. 341 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 342 * transfer requests are still queued, or if the controller hardware 343 * (usually a FIFO) still holds bytes that the host hasn't collected. 344 */ 345 int usb_ep_set_halt(struct usb_ep *ep) 346 { 347 int ret; 348 349 ret = ep->ops->set_halt(ep, 1); 350 trace_usb_ep_set_halt(ep, ret); 351 352 return ret; 353 } 354 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 355 356 /** 357 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 358 * @ep:the bulk or interrupt endpoint being reset 359 * 360 * Use this when responding to the standard usb "set interface" request, 361 * for endpoints that aren't reconfigured, after clearing any other state 362 * in the endpoint's i/o queue. 363 * 364 * This routine may be called in interrupt context. 365 * 366 * Returns zero, or a negative error code. On success, this call clears 367 * the underlying hardware state reflecting endpoint halt and data toggle. 368 * Note that some hardware can't support this request (like pxa2xx_udc), 369 * and accordingly can't correctly implement interface altsettings. 370 */ 371 int usb_ep_clear_halt(struct usb_ep *ep) 372 { 373 int ret; 374 375 ret = ep->ops->set_halt(ep, 0); 376 trace_usb_ep_clear_halt(ep, ret); 377 378 return ret; 379 } 380 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 381 382 /** 383 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 384 * @ep: the endpoint being wedged 385 * 386 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 387 * requests. If the gadget driver clears the halt status, it will 388 * automatically unwedge the endpoint. 389 * 390 * This routine may be called in interrupt context. 391 * 392 * Returns zero on success, else negative errno. 393 */ 394 int usb_ep_set_wedge(struct usb_ep *ep) 395 { 396 int ret; 397 398 if (ep->ops->set_wedge) 399 ret = ep->ops->set_wedge(ep); 400 else 401 ret = ep->ops->set_halt(ep, 1); 402 403 trace_usb_ep_set_wedge(ep, ret); 404 405 return ret; 406 } 407 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 408 409 /** 410 * usb_ep_fifo_status - returns number of bytes in fifo, or error 411 * @ep: the endpoint whose fifo status is being checked. 412 * 413 * FIFO endpoints may have "unclaimed data" in them in certain cases, 414 * such as after aborted transfers. Hosts may not have collected all 415 * the IN data written by the gadget driver (and reported by a request 416 * completion). The gadget driver may not have collected all the data 417 * written OUT to it by the host. Drivers that need precise handling for 418 * fault reporting or recovery may need to use this call. 419 * 420 * This routine may be called in interrupt context. 421 * 422 * This returns the number of such bytes in the fifo, or a negative 423 * errno if the endpoint doesn't use a FIFO or doesn't support such 424 * precise handling. 425 */ 426 int usb_ep_fifo_status(struct usb_ep *ep) 427 { 428 int ret; 429 430 if (ep->ops->fifo_status) 431 ret = ep->ops->fifo_status(ep); 432 else 433 ret = -EOPNOTSUPP; 434 435 trace_usb_ep_fifo_status(ep, ret); 436 437 return ret; 438 } 439 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 440 441 /** 442 * usb_ep_fifo_flush - flushes contents of a fifo 443 * @ep: the endpoint whose fifo is being flushed. 444 * 445 * This call may be used to flush the "unclaimed data" that may exist in 446 * an endpoint fifo after abnormal transaction terminations. The call 447 * must never be used except when endpoint is not being used for any 448 * protocol translation. 449 * 450 * This routine may be called in interrupt context. 451 */ 452 void usb_ep_fifo_flush(struct usb_ep *ep) 453 { 454 if (ep->ops->fifo_flush) 455 ep->ops->fifo_flush(ep); 456 457 trace_usb_ep_fifo_flush(ep, 0); 458 } 459 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 460 461 /* ------------------------------------------------------------------------- */ 462 463 /** 464 * usb_gadget_frame_number - returns the current frame number 465 * @gadget: controller that reports the frame number 466 * 467 * Returns the usb frame number, normally eleven bits from a SOF packet, 468 * or negative errno if this device doesn't support this capability. 469 */ 470 int usb_gadget_frame_number(struct usb_gadget *gadget) 471 { 472 int ret; 473 474 ret = gadget->ops->get_frame(gadget); 475 476 trace_usb_gadget_frame_number(gadget, ret); 477 478 return ret; 479 } 480 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 481 482 /** 483 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 484 * @gadget: controller used to wake up the host 485 * 486 * Returns zero on success, else negative error code if the hardware 487 * doesn't support such attempts, or its support has not been enabled 488 * by the usb host. Drivers must return device descriptors that report 489 * their ability to support this, or hosts won't enable it. 490 * 491 * This may also try to use SRP to wake the host and start enumeration, 492 * even if OTG isn't otherwise in use. OTG devices may also start 493 * remote wakeup even when hosts don't explicitly enable it. 494 */ 495 int usb_gadget_wakeup(struct usb_gadget *gadget) 496 { 497 int ret = 0; 498 499 if (!gadget->ops->wakeup) { 500 ret = -EOPNOTSUPP; 501 goto out; 502 } 503 504 ret = gadget->ops->wakeup(gadget); 505 506 out: 507 trace_usb_gadget_wakeup(gadget, ret); 508 509 return ret; 510 } 511 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 512 513 /** 514 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 515 * @gadget:the device being declared as self-powered 516 * 517 * this affects the device status reported by the hardware driver 518 * to reflect that it now has a local power supply. 519 * 520 * returns zero on success, else negative errno. 521 */ 522 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 523 { 524 int ret = 0; 525 526 if (!gadget->ops->set_selfpowered) { 527 ret = -EOPNOTSUPP; 528 goto out; 529 } 530 531 ret = gadget->ops->set_selfpowered(gadget, 1); 532 533 out: 534 trace_usb_gadget_set_selfpowered(gadget, ret); 535 536 return ret; 537 } 538 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 539 540 /** 541 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 542 * @gadget:the device being declared as bus-powered 543 * 544 * this affects the device status reported by the hardware driver. 545 * some hardware may not support bus-powered operation, in which 546 * case this feature's value can never change. 547 * 548 * returns zero on success, else negative errno. 549 */ 550 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 551 { 552 int ret = 0; 553 554 if (!gadget->ops->set_selfpowered) { 555 ret = -EOPNOTSUPP; 556 goto out; 557 } 558 559 ret = gadget->ops->set_selfpowered(gadget, 0); 560 561 out: 562 trace_usb_gadget_clear_selfpowered(gadget, ret); 563 564 return ret; 565 } 566 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 567 568 /** 569 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 570 * @gadget:The device which now has VBUS power. 571 * Context: can sleep 572 * 573 * This call is used by a driver for an external transceiver (or GPIO) 574 * that detects a VBUS power session starting. Common responses include 575 * resuming the controller, activating the D+ (or D-) pullup to let the 576 * host detect that a USB device is attached, and starting to draw power 577 * (8mA or possibly more, especially after SET_CONFIGURATION). 578 * 579 * Returns zero on success, else negative errno. 580 */ 581 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 582 { 583 int ret = 0; 584 585 if (!gadget->ops->vbus_session) { 586 ret = -EOPNOTSUPP; 587 goto out; 588 } 589 590 ret = gadget->ops->vbus_session(gadget, 1); 591 592 out: 593 trace_usb_gadget_vbus_connect(gadget, ret); 594 595 return ret; 596 } 597 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 598 599 /** 600 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 601 * @gadget:The device whose VBUS usage is being described 602 * @mA:How much current to draw, in milliAmperes. This should be twice 603 * the value listed in the configuration descriptor bMaxPower field. 604 * 605 * This call is used by gadget drivers during SET_CONFIGURATION calls, 606 * reporting how much power the device may consume. For example, this 607 * could affect how quickly batteries are recharged. 608 * 609 * Returns zero on success, else negative errno. 610 */ 611 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 612 { 613 int ret = 0; 614 615 if (!gadget->ops->vbus_draw) { 616 ret = -EOPNOTSUPP; 617 goto out; 618 } 619 620 ret = gadget->ops->vbus_draw(gadget, mA); 621 if (!ret) 622 gadget->mA = mA; 623 624 out: 625 trace_usb_gadget_vbus_draw(gadget, ret); 626 627 return ret; 628 } 629 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 630 631 /** 632 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 633 * @gadget:the device whose VBUS supply is being described 634 * Context: can sleep 635 * 636 * This call is used by a driver for an external transceiver (or GPIO) 637 * that detects a VBUS power session ending. Common responses include 638 * reversing everything done in usb_gadget_vbus_connect(). 639 * 640 * Returns zero on success, else negative errno. 641 */ 642 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 643 { 644 int ret = 0; 645 646 if (!gadget->ops->vbus_session) { 647 ret = -EOPNOTSUPP; 648 goto out; 649 } 650 651 ret = gadget->ops->vbus_session(gadget, 0); 652 653 out: 654 trace_usb_gadget_vbus_disconnect(gadget, ret); 655 656 return ret; 657 } 658 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 659 660 /** 661 * usb_gadget_connect - software-controlled connect to USB host 662 * @gadget:the peripheral being connected 663 * 664 * Enables the D+ (or potentially D-) pullup. The host will start 665 * enumerating this gadget when the pullup is active and a VBUS session 666 * is active (the link is powered). 667 * 668 * Returns zero on success, else negative errno. 669 */ 670 int usb_gadget_connect(struct usb_gadget *gadget) 671 { 672 int ret = 0; 673 674 if (!gadget->ops->pullup) { 675 ret = -EOPNOTSUPP; 676 goto out; 677 } 678 679 if (gadget->deactivated) { 680 /* 681 * If gadget is deactivated we only save new state. 682 * Gadget will be connected automatically after activation. 683 */ 684 gadget->connected = true; 685 goto out; 686 } 687 688 ret = gadget->ops->pullup(gadget, 1); 689 if (!ret) 690 gadget->connected = 1; 691 692 out: 693 trace_usb_gadget_connect(gadget, ret); 694 695 return ret; 696 } 697 EXPORT_SYMBOL_GPL(usb_gadget_connect); 698 699 /** 700 * usb_gadget_disconnect - software-controlled disconnect from USB host 701 * @gadget:the peripheral being disconnected 702 * 703 * Disables the D+ (or potentially D-) pullup, which the host may see 704 * as a disconnect (when a VBUS session is active). Not all systems 705 * support software pullup controls. 706 * 707 * Following a successful disconnect, invoke the ->disconnect() callback 708 * for the current gadget driver so that UDC drivers don't need to. 709 * 710 * Returns zero on success, else negative errno. 711 */ 712 int usb_gadget_disconnect(struct usb_gadget *gadget) 713 { 714 int ret = 0; 715 716 if (!gadget->ops->pullup) { 717 ret = -EOPNOTSUPP; 718 goto out; 719 } 720 721 if (!gadget->connected) 722 goto out; 723 724 if (gadget->deactivated) { 725 /* 726 * If gadget is deactivated we only save new state. 727 * Gadget will stay disconnected after activation. 728 */ 729 gadget->connected = false; 730 goto out; 731 } 732 733 ret = gadget->ops->pullup(gadget, 0); 734 if (!ret) { 735 gadget->connected = 0; 736 gadget->udc->driver->disconnect(gadget); 737 } 738 739 out: 740 trace_usb_gadget_disconnect(gadget, ret); 741 742 return ret; 743 } 744 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 745 746 /** 747 * usb_gadget_deactivate - deactivate function which is not ready to work 748 * @gadget: the peripheral being deactivated 749 * 750 * This routine may be used during the gadget driver bind() call to prevent 751 * the peripheral from ever being visible to the USB host, unless later 752 * usb_gadget_activate() is called. For example, user mode components may 753 * need to be activated before the system can talk to hosts. 754 * 755 * Returns zero on success, else negative errno. 756 */ 757 int usb_gadget_deactivate(struct usb_gadget *gadget) 758 { 759 int ret = 0; 760 761 if (gadget->deactivated) 762 goto out; 763 764 if (gadget->connected) { 765 ret = usb_gadget_disconnect(gadget); 766 if (ret) 767 goto out; 768 769 /* 770 * If gadget was being connected before deactivation, we want 771 * to reconnect it in usb_gadget_activate(). 772 */ 773 gadget->connected = true; 774 } 775 gadget->deactivated = true; 776 777 out: 778 trace_usb_gadget_deactivate(gadget, ret); 779 780 return ret; 781 } 782 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 783 784 /** 785 * usb_gadget_activate - activate function which is not ready to work 786 * @gadget: the peripheral being activated 787 * 788 * This routine activates gadget which was previously deactivated with 789 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 790 * 791 * Returns zero on success, else negative errno. 792 */ 793 int usb_gadget_activate(struct usb_gadget *gadget) 794 { 795 int ret = 0; 796 797 if (!gadget->deactivated) 798 goto out; 799 800 gadget->deactivated = false; 801 802 /* 803 * If gadget has been connected before deactivation, or became connected 804 * while it was being deactivated, we call usb_gadget_connect(). 805 */ 806 if (gadget->connected) 807 ret = usb_gadget_connect(gadget); 808 809 out: 810 trace_usb_gadget_activate(gadget, ret); 811 812 return ret; 813 } 814 EXPORT_SYMBOL_GPL(usb_gadget_activate); 815 816 /* ------------------------------------------------------------------------- */ 817 818 #ifdef CONFIG_HAS_DMA 819 820 int usb_gadget_map_request_by_dev(struct device *dev, 821 struct usb_request *req, int is_in) 822 { 823 if (req->length == 0) 824 return 0; 825 826 if (req->num_sgs) { 827 int mapped; 828 829 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 830 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 831 if (mapped == 0) { 832 dev_err(dev, "failed to map SGs\n"); 833 return -EFAULT; 834 } 835 836 req->num_mapped_sgs = mapped; 837 } else { 838 if (is_vmalloc_addr(req->buf)) { 839 dev_err(dev, "buffer is not dma capable\n"); 840 return -EFAULT; 841 } else if (object_is_on_stack(req->buf)) { 842 dev_err(dev, "buffer is on stack\n"); 843 return -EFAULT; 844 } 845 846 req->dma = dma_map_single(dev, req->buf, req->length, 847 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 848 849 if (dma_mapping_error(dev, req->dma)) { 850 dev_err(dev, "failed to map buffer\n"); 851 return -EFAULT; 852 } 853 854 req->dma_mapped = 1; 855 } 856 857 return 0; 858 } 859 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 860 861 int usb_gadget_map_request(struct usb_gadget *gadget, 862 struct usb_request *req, int is_in) 863 { 864 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 865 } 866 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 867 868 void usb_gadget_unmap_request_by_dev(struct device *dev, 869 struct usb_request *req, int is_in) 870 { 871 if (req->length == 0) 872 return; 873 874 if (req->num_mapped_sgs) { 875 dma_unmap_sg(dev, req->sg, req->num_sgs, 876 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 877 878 req->num_mapped_sgs = 0; 879 } else if (req->dma_mapped) { 880 dma_unmap_single(dev, req->dma, req->length, 881 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 882 req->dma_mapped = 0; 883 } 884 } 885 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 886 887 void usb_gadget_unmap_request(struct usb_gadget *gadget, 888 struct usb_request *req, int is_in) 889 { 890 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 891 } 892 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 893 894 #endif /* CONFIG_HAS_DMA */ 895 896 /* ------------------------------------------------------------------------- */ 897 898 /** 899 * usb_gadget_giveback_request - give the request back to the gadget layer 900 * @ep: the endpoint to be used with with the request 901 * @req: the request being given back 902 * 903 * This is called by device controller drivers in order to return the 904 * completed request back to the gadget layer. 905 */ 906 void usb_gadget_giveback_request(struct usb_ep *ep, 907 struct usb_request *req) 908 { 909 if (likely(req->status == 0)) 910 usb_led_activity(USB_LED_EVENT_GADGET); 911 912 trace_usb_gadget_giveback_request(ep, req, 0); 913 914 req->complete(ep, req); 915 } 916 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 917 918 /* ------------------------------------------------------------------------- */ 919 920 /** 921 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 922 * in second parameter or NULL if searched endpoint not found 923 * @g: controller to check for quirk 924 * @name: name of searched endpoint 925 */ 926 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 927 { 928 struct usb_ep *ep; 929 930 gadget_for_each_ep(ep, g) { 931 if (!strcmp(ep->name, name)) 932 return ep; 933 } 934 935 return NULL; 936 } 937 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 938 939 /* ------------------------------------------------------------------------- */ 940 941 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 942 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 943 struct usb_ss_ep_comp_descriptor *ep_comp) 944 { 945 u8 type; 946 u16 max; 947 int num_req_streams = 0; 948 949 /* endpoint already claimed? */ 950 if (ep->claimed) 951 return 0; 952 953 type = usb_endpoint_type(desc); 954 max = usb_endpoint_maxp(desc); 955 956 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 957 return 0; 958 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 959 return 0; 960 961 if (max > ep->maxpacket_limit) 962 return 0; 963 964 /* "high bandwidth" works only at high speed */ 965 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 966 return 0; 967 968 switch (type) { 969 case USB_ENDPOINT_XFER_CONTROL: 970 /* only support ep0 for portable CONTROL traffic */ 971 return 0; 972 case USB_ENDPOINT_XFER_ISOC: 973 if (!ep->caps.type_iso) 974 return 0; 975 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 976 if (!gadget_is_dualspeed(gadget) && max > 1023) 977 return 0; 978 break; 979 case USB_ENDPOINT_XFER_BULK: 980 if (!ep->caps.type_bulk) 981 return 0; 982 if (ep_comp && gadget_is_superspeed(gadget)) { 983 /* Get the number of required streams from the 984 * EP companion descriptor and see if the EP 985 * matches it 986 */ 987 num_req_streams = ep_comp->bmAttributes & 0x1f; 988 if (num_req_streams > ep->max_streams) 989 return 0; 990 } 991 break; 992 case USB_ENDPOINT_XFER_INT: 993 /* Bulk endpoints handle interrupt transfers, 994 * except the toggle-quirky iso-synch kind 995 */ 996 if (!ep->caps.type_int && !ep->caps.type_bulk) 997 return 0; 998 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 999 if (!gadget_is_dualspeed(gadget) && max > 64) 1000 return 0; 1001 break; 1002 } 1003 1004 return 1; 1005 } 1006 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1007 1008 /** 1009 * usb_gadget_check_config - checks if the UDC can support the binded 1010 * configuration 1011 * @gadget: controller to check the USB configuration 1012 * 1013 * Ensure that a UDC is able to support the requested resources by a 1014 * configuration, and that there are no resource limitations, such as 1015 * internal memory allocated to all requested endpoints. 1016 * 1017 * Returns zero on success, else a negative errno. 1018 */ 1019 int usb_gadget_check_config(struct usb_gadget *gadget) 1020 { 1021 if (gadget->ops->check_config) 1022 return gadget->ops->check_config(gadget); 1023 return 0; 1024 } 1025 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1026 1027 /* ------------------------------------------------------------------------- */ 1028 1029 static void usb_gadget_state_work(struct work_struct *work) 1030 { 1031 struct usb_gadget *gadget = work_to_gadget(work); 1032 struct usb_udc *udc = gadget->udc; 1033 1034 if (udc) 1035 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1036 } 1037 1038 void usb_gadget_set_state(struct usb_gadget *gadget, 1039 enum usb_device_state state) 1040 { 1041 gadget->state = state; 1042 schedule_work(&gadget->work); 1043 } 1044 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1045 1046 /* ------------------------------------------------------------------------- */ 1047 1048 static void usb_udc_connect_control(struct usb_udc *udc) 1049 { 1050 if (udc->vbus) 1051 usb_gadget_connect(udc->gadget); 1052 else 1053 usb_gadget_disconnect(udc->gadget); 1054 } 1055 1056 /** 1057 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1058 * connect or disconnect gadget 1059 * @gadget: The gadget which vbus change occurs 1060 * @status: The vbus status 1061 * 1062 * The udc driver calls it when it wants to connect or disconnect gadget 1063 * according to vbus status. 1064 */ 1065 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1066 { 1067 struct usb_udc *udc = gadget->udc; 1068 1069 if (udc) { 1070 udc->vbus = status; 1071 usb_udc_connect_control(udc); 1072 } 1073 } 1074 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1075 1076 /** 1077 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1078 * @gadget: The gadget which bus reset occurs 1079 * @driver: The gadget driver we want to notify 1080 * 1081 * If the udc driver has bus reset handler, it needs to call this when the bus 1082 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1083 * well as updates gadget state. 1084 */ 1085 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1086 struct usb_gadget_driver *driver) 1087 { 1088 driver->reset(gadget); 1089 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1090 } 1091 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1092 1093 /** 1094 * usb_gadget_udc_start - tells usb device controller to start up 1095 * @udc: The UDC to be started 1096 * 1097 * This call is issued by the UDC Class driver when it's about 1098 * to register a gadget driver to the device controller, before 1099 * calling gadget driver's bind() method. 1100 * 1101 * It allows the controller to be powered off until strictly 1102 * necessary to have it powered on. 1103 * 1104 * Returns zero on success, else negative errno. 1105 */ 1106 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1107 { 1108 int ret; 1109 1110 if (udc->started) { 1111 dev_err(&udc->dev, "UDC had already started\n"); 1112 return -EBUSY; 1113 } 1114 1115 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1116 if (!ret) 1117 udc->started = true; 1118 1119 return ret; 1120 } 1121 1122 /** 1123 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1124 * @udc: The UDC to be stopped 1125 * 1126 * This call is issued by the UDC Class driver after calling 1127 * gadget driver's unbind() method. 1128 * 1129 * The details are implementation specific, but it can go as 1130 * far as powering off UDC completely and disable its data 1131 * line pullups. 1132 */ 1133 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1134 { 1135 if (!udc->started) { 1136 dev_err(&udc->dev, "UDC had already stopped\n"); 1137 return; 1138 } 1139 1140 udc->gadget->ops->udc_stop(udc->gadget); 1141 udc->started = false; 1142 } 1143 1144 /** 1145 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1146 * current driver 1147 * @udc: The device we want to set maximum speed 1148 * @speed: The maximum speed to allowed to run 1149 * 1150 * This call is issued by the UDC Class driver before calling 1151 * usb_gadget_udc_start() in order to make sure that we don't try to 1152 * connect on speeds the gadget driver doesn't support. 1153 */ 1154 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1155 enum usb_device_speed speed) 1156 { 1157 struct usb_gadget *gadget = udc->gadget; 1158 enum usb_device_speed s; 1159 1160 if (speed == USB_SPEED_UNKNOWN) 1161 s = gadget->max_speed; 1162 else 1163 s = min(speed, gadget->max_speed); 1164 1165 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1166 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1167 else if (gadget->ops->udc_set_speed) 1168 gadget->ops->udc_set_speed(gadget, s); 1169 } 1170 1171 /** 1172 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1173 * @udc: The UDC which should enable async callbacks 1174 * 1175 * This routine is used when binding gadget drivers. It undoes the effect 1176 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1177 * (if necessary) and resume issuing callbacks. 1178 * 1179 * This routine will always be called in process context. 1180 */ 1181 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1182 { 1183 struct usb_gadget *gadget = udc->gadget; 1184 1185 if (gadget->ops->udc_async_callbacks) 1186 gadget->ops->udc_async_callbacks(gadget, true); 1187 } 1188 1189 /** 1190 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1191 * @udc: The UDC which should disable async callbacks 1192 * 1193 * This routine is used when unbinding gadget drivers. It prevents a race: 1194 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1195 * runs, so unless it is told to disable asynchronous callbacks, it might 1196 * issue a callback (such as ->disconnect) after the unbind has completed. 1197 * 1198 * After this function runs, the UDC driver must suppress all ->suspend, 1199 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1200 * until async callbacks are again enabled. A simple-minded but effective 1201 * way to accomplish this is to tell the UDC hardware not to generate any 1202 * more IRQs. 1203 * 1204 * Request completion callbacks must still be issued. However, it's okay 1205 * to defer them until the request is cancelled, since the pull-up will be 1206 * turned off during the time period when async callbacks are disabled. 1207 * 1208 * This routine will always be called in process context. 1209 */ 1210 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1211 { 1212 struct usb_gadget *gadget = udc->gadget; 1213 1214 if (gadget->ops->udc_async_callbacks) 1215 gadget->ops->udc_async_callbacks(gadget, false); 1216 } 1217 1218 /** 1219 * usb_udc_release - release the usb_udc struct 1220 * @dev: the dev member within usb_udc 1221 * 1222 * This is called by driver's core in order to free memory once the last 1223 * reference is released. 1224 */ 1225 static void usb_udc_release(struct device *dev) 1226 { 1227 struct usb_udc *udc; 1228 1229 udc = container_of(dev, struct usb_udc, dev); 1230 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1231 kfree(udc); 1232 } 1233 1234 static const struct attribute_group *usb_udc_attr_groups[]; 1235 1236 static void usb_udc_nop_release(struct device *dev) 1237 { 1238 dev_vdbg(dev, "%s\n", __func__); 1239 } 1240 1241 /* should be called with udc_lock held */ 1242 static int check_pending_gadget_drivers(struct usb_udc *udc) 1243 { 1244 struct usb_gadget_driver *driver; 1245 int ret = 0; 1246 1247 list_for_each_entry(driver, &gadget_driver_pending_list, pending) 1248 if (!driver->udc_name || strcmp(driver->udc_name, 1249 dev_name(&udc->dev)) == 0) { 1250 ret = udc_bind_to_driver(udc, driver); 1251 if (ret != -EPROBE_DEFER) 1252 list_del_init(&driver->pending); 1253 break; 1254 } 1255 1256 return ret; 1257 } 1258 1259 /** 1260 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1261 * @parent: the parent device to this udc. Usually the controller driver's 1262 * device. 1263 * @gadget: the gadget to be initialized. 1264 * @release: a gadget release function. 1265 * 1266 * Returns zero on success, negative errno otherwise. 1267 * Calls the gadget release function in the latter case. 1268 */ 1269 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1270 void (*release)(struct device *dev)) 1271 { 1272 dev_set_name(&gadget->dev, "gadget"); 1273 INIT_WORK(&gadget->work, usb_gadget_state_work); 1274 gadget->dev.parent = parent; 1275 1276 if (release) 1277 gadget->dev.release = release; 1278 else 1279 gadget->dev.release = usb_udc_nop_release; 1280 1281 device_initialize(&gadget->dev); 1282 } 1283 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1284 1285 /** 1286 * usb_add_gadget - adds a new gadget to the udc class driver list 1287 * @gadget: the gadget to be added to the list. 1288 * 1289 * Returns zero on success, negative errno otherwise. 1290 * Does not do a final usb_put_gadget() if an error occurs. 1291 */ 1292 int usb_add_gadget(struct usb_gadget *gadget) 1293 { 1294 struct usb_udc *udc; 1295 int ret = -ENOMEM; 1296 1297 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1298 if (!udc) 1299 goto error; 1300 1301 device_initialize(&udc->dev); 1302 udc->dev.release = usb_udc_release; 1303 udc->dev.class = udc_class; 1304 udc->dev.groups = usb_udc_attr_groups; 1305 udc->dev.parent = gadget->dev.parent; 1306 ret = dev_set_name(&udc->dev, "%s", 1307 kobject_name(&gadget->dev.parent->kobj)); 1308 if (ret) 1309 goto err_put_udc; 1310 1311 ret = device_add(&gadget->dev); 1312 if (ret) 1313 goto err_put_udc; 1314 1315 udc->gadget = gadget; 1316 gadget->udc = udc; 1317 1318 udc->started = false; 1319 1320 mutex_lock(&udc_lock); 1321 list_add_tail(&udc->list, &udc_list); 1322 1323 ret = device_add(&udc->dev); 1324 if (ret) 1325 goto err_unlist_udc; 1326 1327 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1328 udc->vbus = true; 1329 1330 /* pick up one of pending gadget drivers */ 1331 ret = check_pending_gadget_drivers(udc); 1332 if (ret) 1333 goto err_del_udc; 1334 1335 mutex_unlock(&udc_lock); 1336 1337 return 0; 1338 1339 err_del_udc: 1340 flush_work(&gadget->work); 1341 device_del(&udc->dev); 1342 1343 err_unlist_udc: 1344 list_del(&udc->list); 1345 mutex_unlock(&udc_lock); 1346 1347 device_del(&gadget->dev); 1348 1349 err_put_udc: 1350 put_device(&udc->dev); 1351 1352 error: 1353 return ret; 1354 } 1355 EXPORT_SYMBOL_GPL(usb_add_gadget); 1356 1357 /** 1358 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1359 * @parent: the parent device to this udc. Usually the controller driver's 1360 * device. 1361 * @gadget: the gadget to be added to the list. 1362 * @release: a gadget release function. 1363 * 1364 * Returns zero on success, negative errno otherwise. 1365 * Calls the gadget release function in the latter case. 1366 */ 1367 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1368 void (*release)(struct device *dev)) 1369 { 1370 int ret; 1371 1372 usb_initialize_gadget(parent, gadget, release); 1373 ret = usb_add_gadget(gadget); 1374 if (ret) 1375 usb_put_gadget(gadget); 1376 return ret; 1377 } 1378 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1379 1380 /** 1381 * usb_get_gadget_udc_name - get the name of the first UDC controller 1382 * This functions returns the name of the first UDC controller in the system. 1383 * Please note that this interface is usefull only for legacy drivers which 1384 * assume that there is only one UDC controller in the system and they need to 1385 * get its name before initialization. There is no guarantee that the UDC 1386 * of the returned name will be still available, when gadget driver registers 1387 * itself. 1388 * 1389 * Returns pointer to string with UDC controller name on success, NULL 1390 * otherwise. Caller should kfree() returned string. 1391 */ 1392 char *usb_get_gadget_udc_name(void) 1393 { 1394 struct usb_udc *udc; 1395 char *name = NULL; 1396 1397 /* For now we take the first available UDC */ 1398 mutex_lock(&udc_lock); 1399 list_for_each_entry(udc, &udc_list, list) { 1400 if (!udc->driver) { 1401 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1402 break; 1403 } 1404 } 1405 mutex_unlock(&udc_lock); 1406 return name; 1407 } 1408 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1409 1410 /** 1411 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1412 * @parent: the parent device to this udc. Usually the controller 1413 * driver's device. 1414 * @gadget: the gadget to be added to the list 1415 * 1416 * Returns zero on success, negative errno otherwise. 1417 */ 1418 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1419 { 1420 return usb_add_gadget_udc_release(parent, gadget, NULL); 1421 } 1422 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1423 1424 static void usb_gadget_remove_driver(struct usb_udc *udc) 1425 { 1426 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", 1427 udc->driver->function); 1428 1429 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1430 1431 usb_gadget_disconnect(udc->gadget); 1432 usb_gadget_disable_async_callbacks(udc); 1433 if (udc->gadget->irq) 1434 synchronize_irq(udc->gadget->irq); 1435 udc->driver->unbind(udc->gadget); 1436 usb_gadget_udc_stop(udc); 1437 1438 udc->driver = NULL; 1439 udc->gadget->dev.driver = NULL; 1440 } 1441 1442 /** 1443 * usb_del_gadget - deletes @udc from udc_list 1444 * @gadget: the gadget to be removed. 1445 * 1446 * This will call usb_gadget_unregister_driver() if 1447 * the @udc is still busy. 1448 * It will not do a final usb_put_gadget(). 1449 */ 1450 void usb_del_gadget(struct usb_gadget *gadget) 1451 { 1452 struct usb_udc *udc = gadget->udc; 1453 1454 if (!udc) 1455 return; 1456 1457 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1458 1459 mutex_lock(&udc_lock); 1460 list_del(&udc->list); 1461 1462 if (udc->driver) { 1463 struct usb_gadget_driver *driver = udc->driver; 1464 1465 usb_gadget_remove_driver(udc); 1466 list_add(&driver->pending, &gadget_driver_pending_list); 1467 } 1468 mutex_unlock(&udc_lock); 1469 1470 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1471 flush_work(&gadget->work); 1472 device_unregister(&udc->dev); 1473 device_del(&gadget->dev); 1474 } 1475 EXPORT_SYMBOL_GPL(usb_del_gadget); 1476 1477 /** 1478 * usb_del_gadget_udc - deletes @udc from udc_list 1479 * @gadget: the gadget to be removed. 1480 * 1481 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1482 */ 1483 void usb_del_gadget_udc(struct usb_gadget *gadget) 1484 { 1485 usb_del_gadget(gadget); 1486 usb_put_gadget(gadget); 1487 } 1488 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1489 1490 /* ------------------------------------------------------------------------- */ 1491 1492 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) 1493 { 1494 int ret; 1495 1496 dev_dbg(&udc->dev, "registering UDC driver [%s]\n", 1497 driver->function); 1498 1499 udc->driver = driver; 1500 udc->gadget->dev.driver = &driver->driver; 1501 1502 usb_gadget_udc_set_speed(udc, driver->max_speed); 1503 1504 ret = driver->bind(udc->gadget, driver); 1505 if (ret) 1506 goto err1; 1507 ret = usb_gadget_udc_start(udc); 1508 if (ret) { 1509 driver->unbind(udc->gadget); 1510 goto err1; 1511 } 1512 usb_gadget_enable_async_callbacks(udc); 1513 usb_udc_connect_control(udc); 1514 1515 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1516 return 0; 1517 err1: 1518 if (ret != -EISNAM) 1519 dev_err(&udc->dev, "failed to start %s: %d\n", 1520 udc->driver->function, ret); 1521 udc->driver = NULL; 1522 udc->gadget->dev.driver = NULL; 1523 return ret; 1524 } 1525 1526 int usb_gadget_probe_driver(struct usb_gadget_driver *driver) 1527 { 1528 struct usb_udc *udc = NULL, *iter; 1529 int ret = -ENODEV; 1530 1531 if (!driver || !driver->bind || !driver->setup) 1532 return -EINVAL; 1533 1534 mutex_lock(&udc_lock); 1535 if (driver->udc_name) { 1536 list_for_each_entry(iter, &udc_list, list) { 1537 ret = strcmp(driver->udc_name, dev_name(&iter->dev)); 1538 if (ret) 1539 continue; 1540 udc = iter; 1541 break; 1542 } 1543 if (ret) 1544 ret = -ENODEV; 1545 else if (udc->driver) 1546 ret = -EBUSY; 1547 else 1548 goto found; 1549 } else { 1550 list_for_each_entry(iter, &udc_list, list) { 1551 /* For now we take the first one */ 1552 if (iter->driver) 1553 continue; 1554 udc = iter; 1555 goto found; 1556 } 1557 } 1558 1559 if (!driver->match_existing_only) { 1560 list_add_tail(&driver->pending, &gadget_driver_pending_list); 1561 pr_info("couldn't find an available UDC - added [%s] to list of pending drivers\n", 1562 driver->function); 1563 ret = 0; 1564 } 1565 1566 mutex_unlock(&udc_lock); 1567 if (ret) 1568 pr_warn("couldn't find an available UDC or it's busy: %d\n", ret); 1569 return ret; 1570 found: 1571 ret = udc_bind_to_driver(udc, driver); 1572 mutex_unlock(&udc_lock); 1573 return ret; 1574 } 1575 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); 1576 1577 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1578 { 1579 struct usb_udc *udc = NULL; 1580 int ret = -ENODEV; 1581 1582 if (!driver || !driver->unbind) 1583 return -EINVAL; 1584 1585 mutex_lock(&udc_lock); 1586 list_for_each_entry(udc, &udc_list, list) { 1587 if (udc->driver == driver) { 1588 usb_gadget_remove_driver(udc); 1589 usb_gadget_set_state(udc->gadget, 1590 USB_STATE_NOTATTACHED); 1591 1592 /* Maybe there is someone waiting for this UDC? */ 1593 check_pending_gadget_drivers(udc); 1594 /* 1595 * For now we ignore bind errors as probably it's 1596 * not a valid reason to fail other's gadget unbind 1597 */ 1598 ret = 0; 1599 break; 1600 } 1601 } 1602 1603 if (ret) { 1604 list_del(&driver->pending); 1605 ret = 0; 1606 } 1607 mutex_unlock(&udc_lock); 1608 return ret; 1609 } 1610 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1611 1612 /* ------------------------------------------------------------------------- */ 1613 1614 static ssize_t srp_store(struct device *dev, 1615 struct device_attribute *attr, const char *buf, size_t n) 1616 { 1617 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1618 1619 if (sysfs_streq(buf, "1")) 1620 usb_gadget_wakeup(udc->gadget); 1621 1622 return n; 1623 } 1624 static DEVICE_ATTR_WO(srp); 1625 1626 static ssize_t soft_connect_store(struct device *dev, 1627 struct device_attribute *attr, const char *buf, size_t n) 1628 { 1629 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1630 ssize_t ret; 1631 1632 mutex_lock(&udc_lock); 1633 if (!udc->driver) { 1634 dev_err(dev, "soft-connect without a gadget driver\n"); 1635 ret = -EOPNOTSUPP; 1636 goto out; 1637 } 1638 1639 if (sysfs_streq(buf, "connect")) { 1640 usb_gadget_udc_start(udc); 1641 usb_gadget_connect(udc->gadget); 1642 } else if (sysfs_streq(buf, "disconnect")) { 1643 usb_gadget_disconnect(udc->gadget); 1644 usb_gadget_udc_stop(udc); 1645 } else { 1646 dev_err(dev, "unsupported command '%s'\n", buf); 1647 ret = -EINVAL; 1648 goto out; 1649 } 1650 1651 ret = n; 1652 out: 1653 mutex_unlock(&udc_lock); 1654 return ret; 1655 } 1656 static DEVICE_ATTR_WO(soft_connect); 1657 1658 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1659 char *buf) 1660 { 1661 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1662 struct usb_gadget *gadget = udc->gadget; 1663 1664 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1665 } 1666 static DEVICE_ATTR_RO(state); 1667 1668 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1669 char *buf) 1670 { 1671 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1672 struct usb_gadget_driver *drv = udc->driver; 1673 1674 if (!drv || !drv->function) 1675 return 0; 1676 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1677 } 1678 static DEVICE_ATTR_RO(function); 1679 1680 #define USB_UDC_SPEED_ATTR(name, param) \ 1681 ssize_t name##_show(struct device *dev, \ 1682 struct device_attribute *attr, char *buf) \ 1683 { \ 1684 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1685 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1686 usb_speed_string(udc->gadget->param)); \ 1687 } \ 1688 static DEVICE_ATTR_RO(name) 1689 1690 static USB_UDC_SPEED_ATTR(current_speed, speed); 1691 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1692 1693 #define USB_UDC_ATTR(name) \ 1694 ssize_t name##_show(struct device *dev, \ 1695 struct device_attribute *attr, char *buf) \ 1696 { \ 1697 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1698 struct usb_gadget *gadget = udc->gadget; \ 1699 \ 1700 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1701 } \ 1702 static DEVICE_ATTR_RO(name) 1703 1704 static USB_UDC_ATTR(is_otg); 1705 static USB_UDC_ATTR(is_a_peripheral); 1706 static USB_UDC_ATTR(b_hnp_enable); 1707 static USB_UDC_ATTR(a_hnp_support); 1708 static USB_UDC_ATTR(a_alt_hnp_support); 1709 static USB_UDC_ATTR(is_selfpowered); 1710 1711 static struct attribute *usb_udc_attrs[] = { 1712 &dev_attr_srp.attr, 1713 &dev_attr_soft_connect.attr, 1714 &dev_attr_state.attr, 1715 &dev_attr_function.attr, 1716 &dev_attr_current_speed.attr, 1717 &dev_attr_maximum_speed.attr, 1718 1719 &dev_attr_is_otg.attr, 1720 &dev_attr_is_a_peripheral.attr, 1721 &dev_attr_b_hnp_enable.attr, 1722 &dev_attr_a_hnp_support.attr, 1723 &dev_attr_a_alt_hnp_support.attr, 1724 &dev_attr_is_selfpowered.attr, 1725 NULL, 1726 }; 1727 1728 static const struct attribute_group usb_udc_attr_group = { 1729 .attrs = usb_udc_attrs, 1730 }; 1731 1732 static const struct attribute_group *usb_udc_attr_groups[] = { 1733 &usb_udc_attr_group, 1734 NULL, 1735 }; 1736 1737 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) 1738 { 1739 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1740 int ret; 1741 1742 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1743 if (ret) { 1744 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1745 return ret; 1746 } 1747 1748 if (udc->driver) { 1749 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1750 udc->driver->function); 1751 if (ret) { 1752 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1753 return ret; 1754 } 1755 } 1756 1757 return 0; 1758 } 1759 1760 static int __init usb_udc_init(void) 1761 { 1762 udc_class = class_create(THIS_MODULE, "udc"); 1763 if (IS_ERR(udc_class)) { 1764 pr_err("failed to create udc class --> %ld\n", 1765 PTR_ERR(udc_class)); 1766 return PTR_ERR(udc_class); 1767 } 1768 1769 udc_class->dev_uevent = usb_udc_uevent; 1770 return 0; 1771 } 1772 subsys_initcall(usb_udc_init); 1773 1774 static void __exit usb_udc_exit(void) 1775 { 1776 class_destroy(udc_class); 1777 } 1778 module_exit(usb_udc_exit); 1779 1780 MODULE_DESCRIPTION("UDC Framework"); 1781 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1782 MODULE_LICENSE("GPL v2"); 1783