1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #define pr_fmt(fmt) "UDC core: " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/idr.h> 16 #include <linux/err.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/sched/task_stack.h> 19 #include <linux/workqueue.h> 20 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <linux/usb.h> 24 25 #include "trace.h" 26 27 static DEFINE_IDA(gadget_id_numbers); 28 29 static const struct bus_type gadget_bus_type; 30 31 /** 32 * struct usb_udc - describes one usb device controller 33 * @driver: the gadget driver pointer. For use by the class code 34 * @dev: the child device to the actual controller 35 * @gadget: the gadget. For use by the class code 36 * @list: for use by the udc class driver 37 * @vbus: for udcs who care about vbus status, this value is real vbus status; 38 * for udcs who do not care about vbus status, this value is always true 39 * @started: the UDC's started state. True if the UDC had started. 40 * @allow_connect: Indicates whether UDC is allowed to be pulled up. 41 * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or 42 * unbound. 43 * @vbus_work: work routine to handle VBUS status change notifications. 44 * @connect_lock: protects udc->started, gadget->connect, 45 * gadget->allow_connect and gadget->deactivate. The routines 46 * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(), 47 * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and 48 * usb_gadget_udc_stop_locked() are called with this lock held. 49 * 50 * This represents the internal data structure which is used by the UDC-class 51 * to hold information about udc driver and gadget together. 52 */ 53 struct usb_udc { 54 struct usb_gadget_driver *driver; 55 struct usb_gadget *gadget; 56 struct device dev; 57 struct list_head list; 58 bool vbus; 59 bool started; 60 bool allow_connect; 61 struct work_struct vbus_work; 62 struct mutex connect_lock; 63 }; 64 65 static const struct class udc_class; 66 static LIST_HEAD(udc_list); 67 68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */ 69 static DEFINE_MUTEX(udc_lock); 70 71 /* ------------------------------------------------------------------------- */ 72 73 /** 74 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 75 * @ep:the endpoint being configured 76 * @maxpacket_limit:value of maximum packet size limit 77 * 78 * This function should be used only in UDC drivers to initialize endpoint 79 * (usually in probe function). 80 */ 81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 82 unsigned maxpacket_limit) 83 { 84 ep->maxpacket_limit = maxpacket_limit; 85 ep->maxpacket = maxpacket_limit; 86 87 trace_usb_ep_set_maxpacket_limit(ep, 0); 88 } 89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 90 91 /** 92 * usb_ep_enable - configure endpoint, making it usable 93 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 94 * drivers discover endpoints through the ep_list of a usb_gadget. 95 * 96 * When configurations are set, or when interface settings change, the driver 97 * will enable or disable the relevant endpoints. while it is enabled, an 98 * endpoint may be used for i/o until the driver receives a disconnect() from 99 * the host or until the endpoint is disabled. 100 * 101 * the ep0 implementation (which calls this routine) must ensure that the 102 * hardware capabilities of each endpoint match the descriptor provided 103 * for it. for example, an endpoint named "ep2in-bulk" would be usable 104 * for interrupt transfers as well as bulk, but it likely couldn't be used 105 * for iso transfers or for endpoint 14. some endpoints are fully 106 * configurable, with more generic names like "ep-a". (remember that for 107 * USB, "in" means "towards the USB host".) 108 * 109 * This routine may be called in an atomic (interrupt) context. 110 * 111 * returns zero, or a negative error code. 112 */ 113 int usb_ep_enable(struct usb_ep *ep) 114 { 115 int ret = 0; 116 117 if (ep->enabled) 118 goto out; 119 120 /* UDC drivers can't handle endpoints with maxpacket size 0 */ 121 if (usb_endpoint_maxp(ep->desc) == 0) { 122 /* 123 * We should log an error message here, but we can't call 124 * dev_err() because there's no way to find the gadget 125 * given only ep. 126 */ 127 ret = -EINVAL; 128 goto out; 129 } 130 131 ret = ep->ops->enable(ep, ep->desc); 132 if (ret) 133 goto out; 134 135 ep->enabled = true; 136 137 out: 138 trace_usb_ep_enable(ep, ret); 139 140 return ret; 141 } 142 EXPORT_SYMBOL_GPL(usb_ep_enable); 143 144 /** 145 * usb_ep_disable - endpoint is no longer usable 146 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 147 * 148 * no other task may be using this endpoint when this is called. 149 * any pending and uncompleted requests will complete with status 150 * indicating disconnect (-ESHUTDOWN) before this call returns. 151 * gadget drivers must call usb_ep_enable() again before queueing 152 * requests to the endpoint. 153 * 154 * This routine may be called in an atomic (interrupt) context. 155 * 156 * returns zero, or a negative error code. 157 */ 158 int usb_ep_disable(struct usb_ep *ep) 159 { 160 int ret = 0; 161 162 if (!ep->enabled) 163 goto out; 164 165 ret = ep->ops->disable(ep); 166 if (ret) 167 goto out; 168 169 ep->enabled = false; 170 171 out: 172 trace_usb_ep_disable(ep, ret); 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(usb_ep_disable); 177 178 /** 179 * usb_ep_alloc_request - allocate a request object to use with this endpoint 180 * @ep:the endpoint to be used with with the request 181 * @gfp_flags:GFP_* flags to use 182 * 183 * Request objects must be allocated with this call, since they normally 184 * need controller-specific setup and may even need endpoint-specific 185 * resources such as allocation of DMA descriptors. 186 * Requests may be submitted with usb_ep_queue(), and receive a single 187 * completion callback. Free requests with usb_ep_free_request(), when 188 * they are no longer needed. 189 * 190 * Returns the request, or null if one could not be allocated. 191 */ 192 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 193 gfp_t gfp_flags) 194 { 195 struct usb_request *req = NULL; 196 197 req = ep->ops->alloc_request(ep, gfp_flags); 198 199 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 200 201 return req; 202 } 203 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 204 205 /** 206 * usb_ep_free_request - frees a request object 207 * @ep:the endpoint associated with the request 208 * @req:the request being freed 209 * 210 * Reverses the effect of usb_ep_alloc_request(). 211 * Caller guarantees the request is not queued, and that it will 212 * no longer be requeued (or otherwise used). 213 */ 214 void usb_ep_free_request(struct usb_ep *ep, 215 struct usb_request *req) 216 { 217 trace_usb_ep_free_request(ep, req, 0); 218 ep->ops->free_request(ep, req); 219 } 220 EXPORT_SYMBOL_GPL(usb_ep_free_request); 221 222 /** 223 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 224 * @ep:the endpoint associated with the request 225 * @req:the request being submitted 226 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 227 * pre-allocate all necessary memory with the request. 228 * 229 * This tells the device controller to perform the specified request through 230 * that endpoint (reading or writing a buffer). When the request completes, 231 * including being canceled by usb_ep_dequeue(), the request's completion 232 * routine is called to return the request to the driver. Any endpoint 233 * (except control endpoints like ep0) may have more than one transfer 234 * request queued; they complete in FIFO order. Once a gadget driver 235 * submits a request, that request may not be examined or modified until it 236 * is given back to that driver through the completion callback. 237 * 238 * Each request is turned into one or more packets. The controller driver 239 * never merges adjacent requests into the same packet. OUT transfers 240 * will sometimes use data that's already buffered in the hardware. 241 * Drivers can rely on the fact that the first byte of the request's buffer 242 * always corresponds to the first byte of some USB packet, for both 243 * IN and OUT transfers. 244 * 245 * Bulk endpoints can queue any amount of data; the transfer is packetized 246 * automatically. The last packet will be short if the request doesn't fill it 247 * out completely. Zero length packets (ZLPs) should be avoided in portable 248 * protocols since not all usb hardware can successfully handle zero length 249 * packets. (ZLPs may be explicitly written, and may be implicitly written if 250 * the request 'zero' flag is set.) Bulk endpoints may also be used 251 * for interrupt transfers; but the reverse is not true, and some endpoints 252 * won't support every interrupt transfer. (Such as 768 byte packets.) 253 * 254 * Interrupt-only endpoints are less functional than bulk endpoints, for 255 * example by not supporting queueing or not handling buffers that are 256 * larger than the endpoint's maxpacket size. They may also treat data 257 * toggle differently. 258 * 259 * Control endpoints ... after getting a setup() callback, the driver queues 260 * one response (even if it would be zero length). That enables the 261 * status ack, after transferring data as specified in the response. Setup 262 * functions may return negative error codes to generate protocol stalls. 263 * (Note that some USB device controllers disallow protocol stall responses 264 * in some cases.) When control responses are deferred (the response is 265 * written after the setup callback returns), then usb_ep_set_halt() may be 266 * used on ep0 to trigger protocol stalls. Depending on the controller, 267 * it may not be possible to trigger a status-stage protocol stall when the 268 * data stage is over, that is, from within the response's completion 269 * routine. 270 * 271 * For periodic endpoints, like interrupt or isochronous ones, the usb host 272 * arranges to poll once per interval, and the gadget driver usually will 273 * have queued some data to transfer at that time. 274 * 275 * Note that @req's ->complete() callback must never be called from 276 * within usb_ep_queue() as that can create deadlock situations. 277 * 278 * This routine may be called in interrupt context. 279 * 280 * Returns zero, or a negative error code. Endpoints that are not enabled 281 * report errors; errors will also be 282 * reported when the usb peripheral is disconnected. 283 * 284 * If and only if @req is successfully queued (the return value is zero), 285 * @req->complete() will be called exactly once, when the Gadget core and 286 * UDC are finished with the request. When the completion function is called, 287 * control of the request is returned to the device driver which submitted it. 288 * The completion handler may then immediately free or reuse @req. 289 */ 290 int usb_ep_queue(struct usb_ep *ep, 291 struct usb_request *req, gfp_t gfp_flags) 292 { 293 int ret = 0; 294 295 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 296 ret = -ESHUTDOWN; 297 goto out; 298 } 299 300 ret = ep->ops->queue(ep, req, gfp_flags); 301 302 out: 303 trace_usb_ep_queue(ep, req, ret); 304 305 return ret; 306 } 307 EXPORT_SYMBOL_GPL(usb_ep_queue); 308 309 /** 310 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 311 * @ep:the endpoint associated with the request 312 * @req:the request being canceled 313 * 314 * If the request is still active on the endpoint, it is dequeued and 315 * eventually its completion routine is called (with status -ECONNRESET); 316 * else a negative error code is returned. This routine is asynchronous, 317 * that is, it may return before the completion routine runs. 318 * 319 * Note that some hardware can't clear out write fifos (to unlink the request 320 * at the head of the queue) except as part of disconnecting from usb. Such 321 * restrictions prevent drivers from supporting configuration changes, 322 * even to configuration zero (a "chapter 9" requirement). 323 * 324 * This routine may be called in interrupt context. 325 */ 326 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 327 { 328 int ret; 329 330 ret = ep->ops->dequeue(ep, req); 331 trace_usb_ep_dequeue(ep, req, ret); 332 333 return ret; 334 } 335 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 336 337 /** 338 * usb_ep_set_halt - sets the endpoint halt feature. 339 * @ep: the non-isochronous endpoint being stalled 340 * 341 * Use this to stall an endpoint, perhaps as an error report. 342 * Except for control endpoints, 343 * the endpoint stays halted (will not stream any data) until the host 344 * clears this feature; drivers may need to empty the endpoint's request 345 * queue first, to make sure no inappropriate transfers happen. 346 * 347 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 348 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 349 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 350 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 351 * 352 * This routine may be called in interrupt context. 353 * 354 * Returns zero, or a negative error code. On success, this call sets 355 * underlying hardware state that blocks data transfers. 356 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 357 * transfer requests are still queued, or if the controller hardware 358 * (usually a FIFO) still holds bytes that the host hasn't collected. 359 */ 360 int usb_ep_set_halt(struct usb_ep *ep) 361 { 362 int ret; 363 364 ret = ep->ops->set_halt(ep, 1); 365 trace_usb_ep_set_halt(ep, ret); 366 367 return ret; 368 } 369 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 370 371 /** 372 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 373 * @ep:the bulk or interrupt endpoint being reset 374 * 375 * Use this when responding to the standard usb "set interface" request, 376 * for endpoints that aren't reconfigured, after clearing any other state 377 * in the endpoint's i/o queue. 378 * 379 * This routine may be called in interrupt context. 380 * 381 * Returns zero, or a negative error code. On success, this call clears 382 * the underlying hardware state reflecting endpoint halt and data toggle. 383 * Note that some hardware can't support this request (like pxa2xx_udc), 384 * and accordingly can't correctly implement interface altsettings. 385 */ 386 int usb_ep_clear_halt(struct usb_ep *ep) 387 { 388 int ret; 389 390 ret = ep->ops->set_halt(ep, 0); 391 trace_usb_ep_clear_halt(ep, ret); 392 393 return ret; 394 } 395 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 396 397 /** 398 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 399 * @ep: the endpoint being wedged 400 * 401 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 402 * requests. If the gadget driver clears the halt status, it will 403 * automatically unwedge the endpoint. 404 * 405 * This routine may be called in interrupt context. 406 * 407 * Returns zero on success, else negative errno. 408 */ 409 int usb_ep_set_wedge(struct usb_ep *ep) 410 { 411 int ret; 412 413 if (ep->ops->set_wedge) 414 ret = ep->ops->set_wedge(ep); 415 else 416 ret = ep->ops->set_halt(ep, 1); 417 418 trace_usb_ep_set_wedge(ep, ret); 419 420 return ret; 421 } 422 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 423 424 /** 425 * usb_ep_fifo_status - returns number of bytes in fifo, or error 426 * @ep: the endpoint whose fifo status is being checked. 427 * 428 * FIFO endpoints may have "unclaimed data" in them in certain cases, 429 * such as after aborted transfers. Hosts may not have collected all 430 * the IN data written by the gadget driver (and reported by a request 431 * completion). The gadget driver may not have collected all the data 432 * written OUT to it by the host. Drivers that need precise handling for 433 * fault reporting or recovery may need to use this call. 434 * 435 * This routine may be called in interrupt context. 436 * 437 * This returns the number of such bytes in the fifo, or a negative 438 * errno if the endpoint doesn't use a FIFO or doesn't support such 439 * precise handling. 440 */ 441 int usb_ep_fifo_status(struct usb_ep *ep) 442 { 443 int ret; 444 445 if (ep->ops->fifo_status) 446 ret = ep->ops->fifo_status(ep); 447 else 448 ret = -EOPNOTSUPP; 449 450 trace_usb_ep_fifo_status(ep, ret); 451 452 return ret; 453 } 454 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 455 456 /** 457 * usb_ep_fifo_flush - flushes contents of a fifo 458 * @ep: the endpoint whose fifo is being flushed. 459 * 460 * This call may be used to flush the "unclaimed data" that may exist in 461 * an endpoint fifo after abnormal transaction terminations. The call 462 * must never be used except when endpoint is not being used for any 463 * protocol translation. 464 * 465 * This routine may be called in interrupt context. 466 */ 467 void usb_ep_fifo_flush(struct usb_ep *ep) 468 { 469 if (ep->ops->fifo_flush) 470 ep->ops->fifo_flush(ep); 471 472 trace_usb_ep_fifo_flush(ep, 0); 473 } 474 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 475 476 /* ------------------------------------------------------------------------- */ 477 478 /** 479 * usb_gadget_frame_number - returns the current frame number 480 * @gadget: controller that reports the frame number 481 * 482 * Returns the usb frame number, normally eleven bits from a SOF packet, 483 * or negative errno if this device doesn't support this capability. 484 */ 485 int usb_gadget_frame_number(struct usb_gadget *gadget) 486 { 487 int ret; 488 489 ret = gadget->ops->get_frame(gadget); 490 491 trace_usb_gadget_frame_number(gadget, ret); 492 493 return ret; 494 } 495 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 496 497 /** 498 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 499 * @gadget: controller used to wake up the host 500 * 501 * Returns zero on success, else negative error code if the hardware 502 * doesn't support such attempts, or its support has not been enabled 503 * by the usb host. Drivers must return device descriptors that report 504 * their ability to support this, or hosts won't enable it. 505 * 506 * This may also try to use SRP to wake the host and start enumeration, 507 * even if OTG isn't otherwise in use. OTG devices may also start 508 * remote wakeup even when hosts don't explicitly enable it. 509 */ 510 int usb_gadget_wakeup(struct usb_gadget *gadget) 511 { 512 int ret = 0; 513 514 if (!gadget->ops->wakeup) { 515 ret = -EOPNOTSUPP; 516 goto out; 517 } 518 519 ret = gadget->ops->wakeup(gadget); 520 521 out: 522 trace_usb_gadget_wakeup(gadget, ret); 523 524 return ret; 525 } 526 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 527 528 /** 529 * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature. 530 * @gadget:the device being configured for remote wakeup 531 * @set:value to be configured. 532 * 533 * set to one to enable remote wakeup feature and zero to disable it. 534 * 535 * returns zero on success, else negative errno. 536 */ 537 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) 538 { 539 int ret = 0; 540 541 if (!gadget->ops->set_remote_wakeup) { 542 ret = -EOPNOTSUPP; 543 goto out; 544 } 545 546 ret = gadget->ops->set_remote_wakeup(gadget, set); 547 548 out: 549 trace_usb_gadget_set_remote_wakeup(gadget, ret); 550 551 return ret; 552 } 553 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup); 554 555 /** 556 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 557 * @gadget:the device being declared as self-powered 558 * 559 * this affects the device status reported by the hardware driver 560 * to reflect that it now has a local power supply. 561 * 562 * returns zero on success, else negative errno. 563 */ 564 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 565 { 566 int ret = 0; 567 568 if (!gadget->ops->set_selfpowered) { 569 ret = -EOPNOTSUPP; 570 goto out; 571 } 572 573 ret = gadget->ops->set_selfpowered(gadget, 1); 574 575 out: 576 trace_usb_gadget_set_selfpowered(gadget, ret); 577 578 return ret; 579 } 580 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 581 582 /** 583 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 584 * @gadget:the device being declared as bus-powered 585 * 586 * this affects the device status reported by the hardware driver. 587 * some hardware may not support bus-powered operation, in which 588 * case this feature's value can never change. 589 * 590 * returns zero on success, else negative errno. 591 */ 592 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 593 { 594 int ret = 0; 595 596 if (!gadget->ops->set_selfpowered) { 597 ret = -EOPNOTSUPP; 598 goto out; 599 } 600 601 ret = gadget->ops->set_selfpowered(gadget, 0); 602 603 out: 604 trace_usb_gadget_clear_selfpowered(gadget, ret); 605 606 return ret; 607 } 608 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 609 610 /** 611 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 612 * @gadget:The device which now has VBUS power. 613 * Context: can sleep 614 * 615 * This call is used by a driver for an external transceiver (or GPIO) 616 * that detects a VBUS power session starting. Common responses include 617 * resuming the controller, activating the D+ (or D-) pullup to let the 618 * host detect that a USB device is attached, and starting to draw power 619 * (8mA or possibly more, especially after SET_CONFIGURATION). 620 * 621 * Returns zero on success, else negative errno. 622 */ 623 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 624 { 625 int ret = 0; 626 627 if (!gadget->ops->vbus_session) { 628 ret = -EOPNOTSUPP; 629 goto out; 630 } 631 632 ret = gadget->ops->vbus_session(gadget, 1); 633 634 out: 635 trace_usb_gadget_vbus_connect(gadget, ret); 636 637 return ret; 638 } 639 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 640 641 /** 642 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 643 * @gadget:The device whose VBUS usage is being described 644 * @mA:How much current to draw, in milliAmperes. This should be twice 645 * the value listed in the configuration descriptor bMaxPower field. 646 * 647 * This call is used by gadget drivers during SET_CONFIGURATION calls, 648 * reporting how much power the device may consume. For example, this 649 * could affect how quickly batteries are recharged. 650 * 651 * Returns zero on success, else negative errno. 652 */ 653 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 654 { 655 int ret = 0; 656 657 if (!gadget->ops->vbus_draw) { 658 ret = -EOPNOTSUPP; 659 goto out; 660 } 661 662 ret = gadget->ops->vbus_draw(gadget, mA); 663 if (!ret) 664 gadget->mA = mA; 665 666 out: 667 trace_usb_gadget_vbus_draw(gadget, ret); 668 669 return ret; 670 } 671 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 672 673 /** 674 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 675 * @gadget:the device whose VBUS supply is being described 676 * Context: can sleep 677 * 678 * This call is used by a driver for an external transceiver (or GPIO) 679 * that detects a VBUS power session ending. Common responses include 680 * reversing everything done in usb_gadget_vbus_connect(). 681 * 682 * Returns zero on success, else negative errno. 683 */ 684 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 685 { 686 int ret = 0; 687 688 if (!gadget->ops->vbus_session) { 689 ret = -EOPNOTSUPP; 690 goto out; 691 } 692 693 ret = gadget->ops->vbus_session(gadget, 0); 694 695 out: 696 trace_usb_gadget_vbus_disconnect(gadget, ret); 697 698 return ret; 699 } 700 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 701 702 static int usb_gadget_connect_locked(struct usb_gadget *gadget) 703 __must_hold(&gadget->udc->connect_lock) 704 { 705 int ret = 0; 706 707 if (!gadget->ops->pullup) { 708 ret = -EOPNOTSUPP; 709 goto out; 710 } 711 712 if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) { 713 /* 714 * If the gadget isn't usable (because it is deactivated, 715 * unbound, or not yet started), we only save the new state. 716 * The gadget will be connected automatically when it is 717 * activated/bound/started. 718 */ 719 gadget->connected = true; 720 goto out; 721 } 722 723 ret = gadget->ops->pullup(gadget, 1); 724 if (!ret) 725 gadget->connected = 1; 726 727 out: 728 trace_usb_gadget_connect(gadget, ret); 729 730 return ret; 731 } 732 733 /** 734 * usb_gadget_connect - software-controlled connect to USB host 735 * @gadget:the peripheral being connected 736 * 737 * Enables the D+ (or potentially D-) pullup. The host will start 738 * enumerating this gadget when the pullup is active and a VBUS session 739 * is active (the link is powered). 740 * 741 * Returns zero on success, else negative errno. 742 */ 743 int usb_gadget_connect(struct usb_gadget *gadget) 744 { 745 int ret; 746 747 mutex_lock(&gadget->udc->connect_lock); 748 ret = usb_gadget_connect_locked(gadget); 749 mutex_unlock(&gadget->udc->connect_lock); 750 751 return ret; 752 } 753 EXPORT_SYMBOL_GPL(usb_gadget_connect); 754 755 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget) 756 __must_hold(&gadget->udc->connect_lock) 757 { 758 int ret = 0; 759 760 if (!gadget->ops->pullup) { 761 ret = -EOPNOTSUPP; 762 goto out; 763 } 764 765 if (!gadget->connected) 766 goto out; 767 768 if (gadget->deactivated || !gadget->udc->started) { 769 /* 770 * If gadget is deactivated we only save new state. 771 * Gadget will stay disconnected after activation. 772 */ 773 gadget->connected = false; 774 goto out; 775 } 776 777 ret = gadget->ops->pullup(gadget, 0); 778 if (!ret) 779 gadget->connected = 0; 780 781 mutex_lock(&udc_lock); 782 if (gadget->udc->driver) 783 gadget->udc->driver->disconnect(gadget); 784 mutex_unlock(&udc_lock); 785 786 out: 787 trace_usb_gadget_disconnect(gadget, ret); 788 789 return ret; 790 } 791 792 /** 793 * usb_gadget_disconnect - software-controlled disconnect from USB host 794 * @gadget:the peripheral being disconnected 795 * 796 * Disables the D+ (or potentially D-) pullup, which the host may see 797 * as a disconnect (when a VBUS session is active). Not all systems 798 * support software pullup controls. 799 * 800 * Following a successful disconnect, invoke the ->disconnect() callback 801 * for the current gadget driver so that UDC drivers don't need to. 802 * 803 * Returns zero on success, else negative errno. 804 */ 805 int usb_gadget_disconnect(struct usb_gadget *gadget) 806 { 807 int ret; 808 809 mutex_lock(&gadget->udc->connect_lock); 810 ret = usb_gadget_disconnect_locked(gadget); 811 mutex_unlock(&gadget->udc->connect_lock); 812 813 return ret; 814 } 815 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 816 817 /** 818 * usb_gadget_deactivate - deactivate function which is not ready to work 819 * @gadget: the peripheral being deactivated 820 * 821 * This routine may be used during the gadget driver bind() call to prevent 822 * the peripheral from ever being visible to the USB host, unless later 823 * usb_gadget_activate() is called. For example, user mode components may 824 * need to be activated before the system can talk to hosts. 825 * 826 * This routine may sleep; it must not be called in interrupt context 827 * (such as from within a gadget driver's disconnect() callback). 828 * 829 * Returns zero on success, else negative errno. 830 */ 831 int usb_gadget_deactivate(struct usb_gadget *gadget) 832 { 833 int ret = 0; 834 835 mutex_lock(&gadget->udc->connect_lock); 836 if (gadget->deactivated) 837 goto unlock; 838 839 if (gadget->connected) { 840 ret = usb_gadget_disconnect_locked(gadget); 841 if (ret) 842 goto unlock; 843 844 /* 845 * If gadget was being connected before deactivation, we want 846 * to reconnect it in usb_gadget_activate(). 847 */ 848 gadget->connected = true; 849 } 850 gadget->deactivated = true; 851 852 unlock: 853 mutex_unlock(&gadget->udc->connect_lock); 854 trace_usb_gadget_deactivate(gadget, ret); 855 856 return ret; 857 } 858 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 859 860 /** 861 * usb_gadget_activate - activate function which is not ready to work 862 * @gadget: the peripheral being activated 863 * 864 * This routine activates gadget which was previously deactivated with 865 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 866 * 867 * This routine may sleep; it must not be called in interrupt context. 868 * 869 * Returns zero on success, else negative errno. 870 */ 871 int usb_gadget_activate(struct usb_gadget *gadget) 872 { 873 int ret = 0; 874 875 mutex_lock(&gadget->udc->connect_lock); 876 if (!gadget->deactivated) 877 goto unlock; 878 879 gadget->deactivated = false; 880 881 /* 882 * If gadget has been connected before deactivation, or became connected 883 * while it was being deactivated, we call usb_gadget_connect(). 884 */ 885 if (gadget->connected) 886 ret = usb_gadget_connect_locked(gadget); 887 888 unlock: 889 mutex_unlock(&gadget->udc->connect_lock); 890 trace_usb_gadget_activate(gadget, ret); 891 892 return ret; 893 } 894 EXPORT_SYMBOL_GPL(usb_gadget_activate); 895 896 /* ------------------------------------------------------------------------- */ 897 898 #ifdef CONFIG_HAS_DMA 899 900 int usb_gadget_map_request_by_dev(struct device *dev, 901 struct usb_request *req, int is_in) 902 { 903 if (req->length == 0) 904 return 0; 905 906 if (req->sg_was_mapped) { 907 req->num_mapped_sgs = req->num_sgs; 908 return 0; 909 } 910 911 if (req->num_sgs) { 912 int mapped; 913 914 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 915 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 916 if (mapped == 0) { 917 dev_err(dev, "failed to map SGs\n"); 918 return -EFAULT; 919 } 920 921 req->num_mapped_sgs = mapped; 922 } else { 923 if (is_vmalloc_addr(req->buf)) { 924 dev_err(dev, "buffer is not dma capable\n"); 925 return -EFAULT; 926 } else if (object_is_on_stack(req->buf)) { 927 dev_err(dev, "buffer is on stack\n"); 928 return -EFAULT; 929 } 930 931 req->dma = dma_map_single(dev, req->buf, req->length, 932 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 933 934 if (dma_mapping_error(dev, req->dma)) { 935 dev_err(dev, "failed to map buffer\n"); 936 return -EFAULT; 937 } 938 939 req->dma_mapped = 1; 940 } 941 942 return 0; 943 } 944 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 945 946 int usb_gadget_map_request(struct usb_gadget *gadget, 947 struct usb_request *req, int is_in) 948 { 949 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 950 } 951 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 952 953 void usb_gadget_unmap_request_by_dev(struct device *dev, 954 struct usb_request *req, int is_in) 955 { 956 if (req->length == 0 || req->sg_was_mapped) 957 return; 958 959 if (req->num_mapped_sgs) { 960 dma_unmap_sg(dev, req->sg, req->num_sgs, 961 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 962 963 req->num_mapped_sgs = 0; 964 } else if (req->dma_mapped) { 965 dma_unmap_single(dev, req->dma, req->length, 966 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 967 req->dma_mapped = 0; 968 } 969 } 970 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 971 972 void usb_gadget_unmap_request(struct usb_gadget *gadget, 973 struct usb_request *req, int is_in) 974 { 975 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 976 } 977 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 978 979 #endif /* CONFIG_HAS_DMA */ 980 981 /* ------------------------------------------------------------------------- */ 982 983 /** 984 * usb_gadget_giveback_request - give the request back to the gadget layer 985 * @ep: the endpoint to be used with with the request 986 * @req: the request being given back 987 * 988 * This is called by device controller drivers in order to return the 989 * completed request back to the gadget layer. 990 */ 991 void usb_gadget_giveback_request(struct usb_ep *ep, 992 struct usb_request *req) 993 { 994 if (likely(req->status == 0)) 995 usb_led_activity(USB_LED_EVENT_GADGET); 996 997 trace_usb_gadget_giveback_request(ep, req, 0); 998 999 req->complete(ep, req); 1000 } 1001 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 1002 1003 /* ------------------------------------------------------------------------- */ 1004 1005 /** 1006 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 1007 * in second parameter or NULL if searched endpoint not found 1008 * @g: controller to check for quirk 1009 * @name: name of searched endpoint 1010 */ 1011 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 1012 { 1013 struct usb_ep *ep; 1014 1015 gadget_for_each_ep(ep, g) { 1016 if (!strcmp(ep->name, name)) 1017 return ep; 1018 } 1019 1020 return NULL; 1021 } 1022 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 1023 1024 /* ------------------------------------------------------------------------- */ 1025 1026 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 1027 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 1028 struct usb_ss_ep_comp_descriptor *ep_comp) 1029 { 1030 u8 type; 1031 u16 max; 1032 int num_req_streams = 0; 1033 1034 /* endpoint already claimed? */ 1035 if (ep->claimed) 1036 return 0; 1037 1038 type = usb_endpoint_type(desc); 1039 max = usb_endpoint_maxp(desc); 1040 1041 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 1042 return 0; 1043 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 1044 return 0; 1045 1046 if (max > ep->maxpacket_limit) 1047 return 0; 1048 1049 /* "high bandwidth" works only at high speed */ 1050 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 1051 return 0; 1052 1053 switch (type) { 1054 case USB_ENDPOINT_XFER_CONTROL: 1055 /* only support ep0 for portable CONTROL traffic */ 1056 return 0; 1057 case USB_ENDPOINT_XFER_ISOC: 1058 if (!ep->caps.type_iso) 1059 return 0; 1060 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 1061 if (!gadget_is_dualspeed(gadget) && max > 1023) 1062 return 0; 1063 break; 1064 case USB_ENDPOINT_XFER_BULK: 1065 if (!ep->caps.type_bulk) 1066 return 0; 1067 if (ep_comp && gadget_is_superspeed(gadget)) { 1068 /* Get the number of required streams from the 1069 * EP companion descriptor and see if the EP 1070 * matches it 1071 */ 1072 num_req_streams = ep_comp->bmAttributes & 0x1f; 1073 if (num_req_streams > ep->max_streams) 1074 return 0; 1075 } 1076 break; 1077 case USB_ENDPOINT_XFER_INT: 1078 /* Bulk endpoints handle interrupt transfers, 1079 * except the toggle-quirky iso-synch kind 1080 */ 1081 if (!ep->caps.type_int && !ep->caps.type_bulk) 1082 return 0; 1083 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 1084 if (!gadget_is_dualspeed(gadget) && max > 64) 1085 return 0; 1086 break; 1087 } 1088 1089 return 1; 1090 } 1091 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 1092 1093 /** 1094 * usb_gadget_check_config - checks if the UDC can support the binded 1095 * configuration 1096 * @gadget: controller to check the USB configuration 1097 * 1098 * Ensure that a UDC is able to support the requested resources by a 1099 * configuration, and that there are no resource limitations, such as 1100 * internal memory allocated to all requested endpoints. 1101 * 1102 * Returns zero on success, else a negative errno. 1103 */ 1104 int usb_gadget_check_config(struct usb_gadget *gadget) 1105 { 1106 if (gadget->ops->check_config) 1107 return gadget->ops->check_config(gadget); 1108 return 0; 1109 } 1110 EXPORT_SYMBOL_GPL(usb_gadget_check_config); 1111 1112 /* ------------------------------------------------------------------------- */ 1113 1114 static void usb_gadget_state_work(struct work_struct *work) 1115 { 1116 struct usb_gadget *gadget = work_to_gadget(work); 1117 struct usb_udc *udc = gadget->udc; 1118 1119 if (udc) 1120 sysfs_notify(&udc->dev.kobj, NULL, "state"); 1121 } 1122 1123 void usb_gadget_set_state(struct usb_gadget *gadget, 1124 enum usb_device_state state) 1125 { 1126 gadget->state = state; 1127 schedule_work(&gadget->work); 1128 } 1129 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 1130 1131 /* ------------------------------------------------------------------------- */ 1132 1133 /* Acquire connect_lock before calling this function. */ 1134 static int usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock) 1135 { 1136 if (udc->vbus) 1137 return usb_gadget_connect_locked(udc->gadget); 1138 else 1139 return usb_gadget_disconnect_locked(udc->gadget); 1140 } 1141 1142 static void vbus_event_work(struct work_struct *work) 1143 { 1144 struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work); 1145 1146 mutex_lock(&udc->connect_lock); 1147 usb_udc_connect_control_locked(udc); 1148 mutex_unlock(&udc->connect_lock); 1149 } 1150 1151 /** 1152 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 1153 * connect or disconnect gadget 1154 * @gadget: The gadget which vbus change occurs 1155 * @status: The vbus status 1156 * 1157 * The udc driver calls it when it wants to connect or disconnect gadget 1158 * according to vbus status. 1159 * 1160 * This function can be invoked from interrupt context by irq handlers of 1161 * the gadget drivers, however, usb_udc_connect_control() has to run in 1162 * non-atomic context due to the following: 1163 * a. Some of the gadget driver implementations expect the ->pullup 1164 * callback to be invoked in non-atomic context. 1165 * b. usb_gadget_disconnect() acquires udc_lock which is a mutex. 1166 * Hence offload invocation of usb_udc_connect_control() to workqueue. 1167 */ 1168 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 1169 { 1170 struct usb_udc *udc = gadget->udc; 1171 1172 if (udc) { 1173 udc->vbus = status; 1174 schedule_work(&udc->vbus_work); 1175 } 1176 } 1177 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1178 1179 /** 1180 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1181 * @gadget: The gadget which bus reset occurs 1182 * @driver: The gadget driver we want to notify 1183 * 1184 * If the udc driver has bus reset handler, it needs to call this when the bus 1185 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1186 * well as updates gadget state. 1187 */ 1188 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1189 struct usb_gadget_driver *driver) 1190 { 1191 driver->reset(gadget); 1192 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1193 } 1194 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1195 1196 /** 1197 * usb_gadget_udc_start_locked - tells usb device controller to start up 1198 * @udc: The UDC to be started 1199 * 1200 * This call is issued by the UDC Class driver when it's about 1201 * to register a gadget driver to the device controller, before 1202 * calling gadget driver's bind() method. 1203 * 1204 * It allows the controller to be powered off until strictly 1205 * necessary to have it powered on. 1206 * 1207 * Returns zero on success, else negative errno. 1208 * 1209 * Caller should acquire connect_lock before invoking this function. 1210 */ 1211 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc) 1212 __must_hold(&udc->connect_lock) 1213 { 1214 int ret; 1215 1216 if (udc->started) { 1217 dev_err(&udc->dev, "UDC had already started\n"); 1218 return -EBUSY; 1219 } 1220 1221 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1222 if (!ret) 1223 udc->started = true; 1224 1225 return ret; 1226 } 1227 1228 /** 1229 * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore 1230 * @udc: The UDC to be stopped 1231 * 1232 * This call is issued by the UDC Class driver after calling 1233 * gadget driver's unbind() method. 1234 * 1235 * The details are implementation specific, but it can go as 1236 * far as powering off UDC completely and disable its data 1237 * line pullups. 1238 * 1239 * Caller should acquire connect lock before invoking this function. 1240 */ 1241 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc) 1242 __must_hold(&udc->connect_lock) 1243 { 1244 if (!udc->started) { 1245 dev_err(&udc->dev, "UDC had already stopped\n"); 1246 return; 1247 } 1248 1249 udc->gadget->ops->udc_stop(udc->gadget); 1250 udc->started = false; 1251 } 1252 1253 /** 1254 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1255 * current driver 1256 * @udc: The device we want to set maximum speed 1257 * @speed: The maximum speed to allowed to run 1258 * 1259 * This call is issued by the UDC Class driver before calling 1260 * usb_gadget_udc_start() in order to make sure that we don't try to 1261 * connect on speeds the gadget driver doesn't support. 1262 */ 1263 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1264 enum usb_device_speed speed) 1265 { 1266 struct usb_gadget *gadget = udc->gadget; 1267 enum usb_device_speed s; 1268 1269 if (speed == USB_SPEED_UNKNOWN) 1270 s = gadget->max_speed; 1271 else 1272 s = min(speed, gadget->max_speed); 1273 1274 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate) 1275 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate); 1276 else if (gadget->ops->udc_set_speed) 1277 gadget->ops->udc_set_speed(gadget, s); 1278 } 1279 1280 /** 1281 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks 1282 * @udc: The UDC which should enable async callbacks 1283 * 1284 * This routine is used when binding gadget drivers. It undoes the effect 1285 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs 1286 * (if necessary) and resume issuing callbacks. 1287 * 1288 * This routine will always be called in process context. 1289 */ 1290 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc) 1291 { 1292 struct usb_gadget *gadget = udc->gadget; 1293 1294 if (gadget->ops->udc_async_callbacks) 1295 gadget->ops->udc_async_callbacks(gadget, true); 1296 } 1297 1298 /** 1299 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks 1300 * @udc: The UDC which should disable async callbacks 1301 * 1302 * This routine is used when unbinding gadget drivers. It prevents a race: 1303 * The UDC driver doesn't know when the gadget driver's ->unbind callback 1304 * runs, so unless it is told to disable asynchronous callbacks, it might 1305 * issue a callback (such as ->disconnect) after the unbind has completed. 1306 * 1307 * After this function runs, the UDC driver must suppress all ->suspend, 1308 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver 1309 * until async callbacks are again enabled. A simple-minded but effective 1310 * way to accomplish this is to tell the UDC hardware not to generate any 1311 * more IRQs. 1312 * 1313 * Request completion callbacks must still be issued. However, it's okay 1314 * to defer them until the request is cancelled, since the pull-up will be 1315 * turned off during the time period when async callbacks are disabled. 1316 * 1317 * This routine will always be called in process context. 1318 */ 1319 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc) 1320 { 1321 struct usb_gadget *gadget = udc->gadget; 1322 1323 if (gadget->ops->udc_async_callbacks) 1324 gadget->ops->udc_async_callbacks(gadget, false); 1325 } 1326 1327 /** 1328 * usb_udc_release - release the usb_udc struct 1329 * @dev: the dev member within usb_udc 1330 * 1331 * This is called by driver's core in order to free memory once the last 1332 * reference is released. 1333 */ 1334 static void usb_udc_release(struct device *dev) 1335 { 1336 struct usb_udc *udc; 1337 1338 udc = container_of(dev, struct usb_udc, dev); 1339 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1340 kfree(udc); 1341 } 1342 1343 static const struct attribute_group *usb_udc_attr_groups[]; 1344 1345 static void usb_udc_nop_release(struct device *dev) 1346 { 1347 dev_vdbg(dev, "%s\n", __func__); 1348 } 1349 1350 /** 1351 * usb_initialize_gadget - initialize a gadget and its embedded struct device 1352 * @parent: the parent device to this udc. Usually the controller driver's 1353 * device. 1354 * @gadget: the gadget to be initialized. 1355 * @release: a gadget release function. 1356 */ 1357 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget, 1358 void (*release)(struct device *dev)) 1359 { 1360 INIT_WORK(&gadget->work, usb_gadget_state_work); 1361 gadget->dev.parent = parent; 1362 1363 if (release) 1364 gadget->dev.release = release; 1365 else 1366 gadget->dev.release = usb_udc_nop_release; 1367 1368 device_initialize(&gadget->dev); 1369 gadget->dev.bus = &gadget_bus_type; 1370 } 1371 EXPORT_SYMBOL_GPL(usb_initialize_gadget); 1372 1373 /** 1374 * usb_add_gadget - adds a new gadget to the udc class driver list 1375 * @gadget: the gadget to be added to the list. 1376 * 1377 * Returns zero on success, negative errno otherwise. 1378 * Does not do a final usb_put_gadget() if an error occurs. 1379 */ 1380 int usb_add_gadget(struct usb_gadget *gadget) 1381 { 1382 struct usb_udc *udc; 1383 int ret = -ENOMEM; 1384 1385 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1386 if (!udc) 1387 goto error; 1388 1389 device_initialize(&udc->dev); 1390 udc->dev.release = usb_udc_release; 1391 udc->dev.class = &udc_class; 1392 udc->dev.groups = usb_udc_attr_groups; 1393 udc->dev.parent = gadget->dev.parent; 1394 ret = dev_set_name(&udc->dev, "%s", 1395 kobject_name(&gadget->dev.parent->kobj)); 1396 if (ret) 1397 goto err_put_udc; 1398 1399 udc->gadget = gadget; 1400 gadget->udc = udc; 1401 mutex_init(&udc->connect_lock); 1402 1403 udc->started = false; 1404 1405 mutex_lock(&udc_lock); 1406 list_add_tail(&udc->list, &udc_list); 1407 mutex_unlock(&udc_lock); 1408 INIT_WORK(&udc->vbus_work, vbus_event_work); 1409 1410 ret = device_add(&udc->dev); 1411 if (ret) 1412 goto err_unlist_udc; 1413 1414 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1415 udc->vbus = true; 1416 1417 ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL); 1418 if (ret < 0) 1419 goto err_del_udc; 1420 gadget->id_number = ret; 1421 dev_set_name(&gadget->dev, "gadget.%d", ret); 1422 1423 ret = device_add(&gadget->dev); 1424 if (ret) 1425 goto err_free_id; 1426 1427 return 0; 1428 1429 err_free_id: 1430 ida_free(&gadget_id_numbers, gadget->id_number); 1431 1432 err_del_udc: 1433 flush_work(&gadget->work); 1434 device_del(&udc->dev); 1435 1436 err_unlist_udc: 1437 mutex_lock(&udc_lock); 1438 list_del(&udc->list); 1439 mutex_unlock(&udc_lock); 1440 1441 err_put_udc: 1442 put_device(&udc->dev); 1443 1444 error: 1445 return ret; 1446 } 1447 EXPORT_SYMBOL_GPL(usb_add_gadget); 1448 1449 /** 1450 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1451 * @parent: the parent device to this udc. Usually the controller driver's 1452 * device. 1453 * @gadget: the gadget to be added to the list. 1454 * @release: a gadget release function. 1455 * 1456 * Returns zero on success, negative errno otherwise. 1457 * Calls the gadget release function in the latter case. 1458 */ 1459 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1460 void (*release)(struct device *dev)) 1461 { 1462 int ret; 1463 1464 usb_initialize_gadget(parent, gadget, release); 1465 ret = usb_add_gadget(gadget); 1466 if (ret) 1467 usb_put_gadget(gadget); 1468 return ret; 1469 } 1470 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1471 1472 /** 1473 * usb_get_gadget_udc_name - get the name of the first UDC controller 1474 * This functions returns the name of the first UDC controller in the system. 1475 * Please note that this interface is usefull only for legacy drivers which 1476 * assume that there is only one UDC controller in the system and they need to 1477 * get its name before initialization. There is no guarantee that the UDC 1478 * of the returned name will be still available, when gadget driver registers 1479 * itself. 1480 * 1481 * Returns pointer to string with UDC controller name on success, NULL 1482 * otherwise. Caller should kfree() returned string. 1483 */ 1484 char *usb_get_gadget_udc_name(void) 1485 { 1486 struct usb_udc *udc; 1487 char *name = NULL; 1488 1489 /* For now we take the first available UDC */ 1490 mutex_lock(&udc_lock); 1491 list_for_each_entry(udc, &udc_list, list) { 1492 if (!udc->driver) { 1493 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1494 break; 1495 } 1496 } 1497 mutex_unlock(&udc_lock); 1498 return name; 1499 } 1500 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1501 1502 /** 1503 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1504 * @parent: the parent device to this udc. Usually the controller 1505 * driver's device. 1506 * @gadget: the gadget to be added to the list 1507 * 1508 * Returns zero on success, negative errno otherwise. 1509 */ 1510 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1511 { 1512 return usb_add_gadget_udc_release(parent, gadget, NULL); 1513 } 1514 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1515 1516 /** 1517 * usb_del_gadget - deletes a gadget and unregisters its udc 1518 * @gadget: the gadget to be deleted. 1519 * 1520 * This will unbind @gadget, if it is bound. 1521 * It will not do a final usb_put_gadget(). 1522 */ 1523 void usb_del_gadget(struct usb_gadget *gadget) 1524 { 1525 struct usb_udc *udc = gadget->udc; 1526 1527 if (!udc) 1528 return; 1529 1530 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1531 1532 mutex_lock(&udc_lock); 1533 list_del(&udc->list); 1534 mutex_unlock(&udc_lock); 1535 1536 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1537 flush_work(&gadget->work); 1538 device_del(&gadget->dev); 1539 ida_free(&gadget_id_numbers, gadget->id_number); 1540 cancel_work_sync(&udc->vbus_work); 1541 device_unregister(&udc->dev); 1542 } 1543 EXPORT_SYMBOL_GPL(usb_del_gadget); 1544 1545 /** 1546 * usb_del_gadget_udc - unregisters a gadget 1547 * @gadget: the gadget to be unregistered. 1548 * 1549 * Calls usb_del_gadget() and does a final usb_put_gadget(). 1550 */ 1551 void usb_del_gadget_udc(struct usb_gadget *gadget) 1552 { 1553 usb_del_gadget(gadget); 1554 usb_put_gadget(gadget); 1555 } 1556 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1557 1558 /* ------------------------------------------------------------------------- */ 1559 1560 static int gadget_match_driver(struct device *dev, struct device_driver *drv) 1561 { 1562 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1563 struct usb_udc *udc = gadget->udc; 1564 struct usb_gadget_driver *driver = container_of(drv, 1565 struct usb_gadget_driver, driver); 1566 1567 /* If the driver specifies a udc_name, it must match the UDC's name */ 1568 if (driver->udc_name && 1569 strcmp(driver->udc_name, dev_name(&udc->dev)) != 0) 1570 return 0; 1571 1572 /* If the driver is already bound to a gadget, it doesn't match */ 1573 if (driver->is_bound) 1574 return 0; 1575 1576 /* Otherwise any gadget driver matches any UDC */ 1577 return 1; 1578 } 1579 1580 static int gadget_bind_driver(struct device *dev) 1581 { 1582 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1583 struct usb_udc *udc = gadget->udc; 1584 struct usb_gadget_driver *driver = container_of(dev->driver, 1585 struct usb_gadget_driver, driver); 1586 int ret = 0; 1587 1588 mutex_lock(&udc_lock); 1589 if (driver->is_bound) { 1590 mutex_unlock(&udc_lock); 1591 return -ENXIO; /* Driver binds to only one gadget */ 1592 } 1593 driver->is_bound = true; 1594 udc->driver = driver; 1595 mutex_unlock(&udc_lock); 1596 1597 dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function); 1598 1599 usb_gadget_udc_set_speed(udc, driver->max_speed); 1600 1601 ret = driver->bind(udc->gadget, driver); 1602 if (ret) 1603 goto err_bind; 1604 1605 mutex_lock(&udc->connect_lock); 1606 ret = usb_gadget_udc_start_locked(udc); 1607 if (ret) { 1608 mutex_unlock(&udc->connect_lock); 1609 goto err_start; 1610 } 1611 usb_gadget_enable_async_callbacks(udc); 1612 udc->allow_connect = true; 1613 ret = usb_udc_connect_control_locked(udc); 1614 if (ret) 1615 goto err_connect_control; 1616 1617 mutex_unlock(&udc->connect_lock); 1618 1619 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1620 return 0; 1621 1622 err_connect_control: 1623 udc->allow_connect = false; 1624 usb_gadget_disable_async_callbacks(udc); 1625 if (gadget->irq) 1626 synchronize_irq(gadget->irq); 1627 usb_gadget_udc_stop_locked(udc); 1628 mutex_unlock(&udc->connect_lock); 1629 1630 err_start: 1631 driver->unbind(udc->gadget); 1632 1633 err_bind: 1634 if (ret != -EISNAM) 1635 dev_err(&udc->dev, "failed to start %s: %d\n", 1636 driver->function, ret); 1637 1638 mutex_lock(&udc_lock); 1639 udc->driver = NULL; 1640 driver->is_bound = false; 1641 mutex_unlock(&udc_lock); 1642 1643 return ret; 1644 } 1645 1646 static void gadget_unbind_driver(struct device *dev) 1647 { 1648 struct usb_gadget *gadget = dev_to_usb_gadget(dev); 1649 struct usb_udc *udc = gadget->udc; 1650 struct usb_gadget_driver *driver = udc->driver; 1651 1652 dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function); 1653 1654 udc->allow_connect = false; 1655 cancel_work_sync(&udc->vbus_work); 1656 mutex_lock(&udc->connect_lock); 1657 usb_gadget_disconnect_locked(gadget); 1658 usb_gadget_disable_async_callbacks(udc); 1659 if (gadget->irq) 1660 synchronize_irq(gadget->irq); 1661 mutex_unlock(&udc->connect_lock); 1662 1663 udc->driver->unbind(gadget); 1664 1665 mutex_lock(&udc->connect_lock); 1666 usb_gadget_udc_stop_locked(udc); 1667 mutex_unlock(&udc->connect_lock); 1668 1669 mutex_lock(&udc_lock); 1670 driver->is_bound = false; 1671 udc->driver = NULL; 1672 mutex_unlock(&udc_lock); 1673 1674 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1675 } 1676 1677 /* ------------------------------------------------------------------------- */ 1678 1679 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 1680 struct module *owner, const char *mod_name) 1681 { 1682 int ret; 1683 1684 if (!driver || !driver->bind || !driver->setup) 1685 return -EINVAL; 1686 1687 driver->driver.bus = &gadget_bus_type; 1688 driver->driver.owner = owner; 1689 driver->driver.mod_name = mod_name; 1690 ret = driver_register(&driver->driver); 1691 if (ret) { 1692 pr_warn("%s: driver registration failed: %d\n", 1693 driver->function, ret); 1694 return ret; 1695 } 1696 1697 mutex_lock(&udc_lock); 1698 if (!driver->is_bound) { 1699 if (driver->match_existing_only) { 1700 pr_warn("%s: couldn't find an available UDC or it's busy\n", 1701 driver->function); 1702 ret = -EBUSY; 1703 } else { 1704 pr_info("%s: couldn't find an available UDC\n", 1705 driver->function); 1706 ret = 0; 1707 } 1708 } 1709 mutex_unlock(&udc_lock); 1710 1711 if (ret) 1712 driver_unregister(&driver->driver); 1713 return ret; 1714 } 1715 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner); 1716 1717 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1718 { 1719 if (!driver || !driver->unbind) 1720 return -EINVAL; 1721 1722 driver_unregister(&driver->driver); 1723 return 0; 1724 } 1725 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1726 1727 /* ------------------------------------------------------------------------- */ 1728 1729 static ssize_t srp_store(struct device *dev, 1730 struct device_attribute *attr, const char *buf, size_t n) 1731 { 1732 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1733 1734 if (sysfs_streq(buf, "1")) 1735 usb_gadget_wakeup(udc->gadget); 1736 1737 return n; 1738 } 1739 static DEVICE_ATTR_WO(srp); 1740 1741 static ssize_t soft_connect_store(struct device *dev, 1742 struct device_attribute *attr, const char *buf, size_t n) 1743 { 1744 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1745 ssize_t ret; 1746 1747 device_lock(&udc->gadget->dev); 1748 if (!udc->driver) { 1749 dev_err(dev, "soft-connect without a gadget driver\n"); 1750 ret = -EOPNOTSUPP; 1751 goto out; 1752 } 1753 1754 if (sysfs_streq(buf, "connect")) { 1755 mutex_lock(&udc->connect_lock); 1756 usb_gadget_udc_start_locked(udc); 1757 usb_gadget_connect_locked(udc->gadget); 1758 mutex_unlock(&udc->connect_lock); 1759 } else if (sysfs_streq(buf, "disconnect")) { 1760 mutex_lock(&udc->connect_lock); 1761 usb_gadget_disconnect_locked(udc->gadget); 1762 usb_gadget_udc_stop_locked(udc); 1763 mutex_unlock(&udc->connect_lock); 1764 } else { 1765 dev_err(dev, "unsupported command '%s'\n", buf); 1766 ret = -EINVAL; 1767 goto out; 1768 } 1769 1770 ret = n; 1771 out: 1772 device_unlock(&udc->gadget->dev); 1773 return ret; 1774 } 1775 static DEVICE_ATTR_WO(soft_connect); 1776 1777 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1778 char *buf) 1779 { 1780 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1781 struct usb_gadget *gadget = udc->gadget; 1782 1783 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1784 } 1785 static DEVICE_ATTR_RO(state); 1786 1787 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1788 char *buf) 1789 { 1790 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1791 struct usb_gadget_driver *drv; 1792 int rc = 0; 1793 1794 mutex_lock(&udc_lock); 1795 drv = udc->driver; 1796 if (drv && drv->function) 1797 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1798 mutex_unlock(&udc_lock); 1799 return rc; 1800 } 1801 static DEVICE_ATTR_RO(function); 1802 1803 #define USB_UDC_SPEED_ATTR(name, param) \ 1804 ssize_t name##_show(struct device *dev, \ 1805 struct device_attribute *attr, char *buf) \ 1806 { \ 1807 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1808 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1809 usb_speed_string(udc->gadget->param)); \ 1810 } \ 1811 static DEVICE_ATTR_RO(name) 1812 1813 static USB_UDC_SPEED_ATTR(current_speed, speed); 1814 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1815 1816 #define USB_UDC_ATTR(name) \ 1817 ssize_t name##_show(struct device *dev, \ 1818 struct device_attribute *attr, char *buf) \ 1819 { \ 1820 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1821 struct usb_gadget *gadget = udc->gadget; \ 1822 \ 1823 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1824 } \ 1825 static DEVICE_ATTR_RO(name) 1826 1827 static USB_UDC_ATTR(is_otg); 1828 static USB_UDC_ATTR(is_a_peripheral); 1829 static USB_UDC_ATTR(b_hnp_enable); 1830 static USB_UDC_ATTR(a_hnp_support); 1831 static USB_UDC_ATTR(a_alt_hnp_support); 1832 static USB_UDC_ATTR(is_selfpowered); 1833 1834 static struct attribute *usb_udc_attrs[] = { 1835 &dev_attr_srp.attr, 1836 &dev_attr_soft_connect.attr, 1837 &dev_attr_state.attr, 1838 &dev_attr_function.attr, 1839 &dev_attr_current_speed.attr, 1840 &dev_attr_maximum_speed.attr, 1841 1842 &dev_attr_is_otg.attr, 1843 &dev_attr_is_a_peripheral.attr, 1844 &dev_attr_b_hnp_enable.attr, 1845 &dev_attr_a_hnp_support.attr, 1846 &dev_attr_a_alt_hnp_support.attr, 1847 &dev_attr_is_selfpowered.attr, 1848 NULL, 1849 }; 1850 1851 static const struct attribute_group usb_udc_attr_group = { 1852 .attrs = usb_udc_attrs, 1853 }; 1854 1855 static const struct attribute_group *usb_udc_attr_groups[] = { 1856 &usb_udc_attr_group, 1857 NULL, 1858 }; 1859 1860 static int usb_udc_uevent(const struct device *dev, struct kobj_uevent_env *env) 1861 { 1862 const struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1863 int ret; 1864 1865 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1866 if (ret) { 1867 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1868 return ret; 1869 } 1870 1871 mutex_lock(&udc_lock); 1872 if (udc->driver) 1873 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1874 udc->driver->function); 1875 mutex_unlock(&udc_lock); 1876 if (ret) { 1877 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1878 return ret; 1879 } 1880 1881 return 0; 1882 } 1883 1884 static const struct class udc_class = { 1885 .name = "udc", 1886 .dev_uevent = usb_udc_uevent, 1887 }; 1888 1889 static const struct bus_type gadget_bus_type = { 1890 .name = "gadget", 1891 .probe = gadget_bind_driver, 1892 .remove = gadget_unbind_driver, 1893 .match = gadget_match_driver, 1894 }; 1895 1896 static int __init usb_udc_init(void) 1897 { 1898 int rc; 1899 1900 rc = class_register(&udc_class); 1901 if (rc) 1902 return rc; 1903 1904 rc = bus_register(&gadget_bus_type); 1905 if (rc) 1906 class_unregister(&udc_class); 1907 return rc; 1908 } 1909 subsys_initcall(usb_udc_init); 1910 1911 static void __exit usb_udc_exit(void) 1912 { 1913 bus_unregister(&gadget_bus_type); 1914 class_unregister(&udc_class); 1915 } 1916 module_exit(usb_udc_exit); 1917 1918 MODULE_DESCRIPTION("UDC Framework"); 1919 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1920 MODULE_LICENSE("GPL v2"); 1921