1 /* 2 * u_serial.c - utilities for USB gadget "serial port"/TTY support 3 * 4 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com) 5 * Copyright (C) 2008 David Brownell 6 * Copyright (C) 2008 by Nokia Corporation 7 * 8 * This code also borrows from usbserial.c, which is 9 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com) 10 * Copyright (C) 2000 Peter Berger (pberger@brimson.com) 11 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com) 12 * 13 * This software is distributed under the terms of the GNU General 14 * Public License ("GPL") as published by the Free Software Foundation, 15 * either version 2 of that License or (at your option) any later version. 16 */ 17 18 /* #define VERBOSE_DEBUG */ 19 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/delay.h> 25 #include <linux/tty.h> 26 #include <linux/tty_flip.h> 27 #include <linux/slab.h> 28 #include <linux/export.h> 29 #include <linux/module.h> 30 31 #include "u_serial.h" 32 33 34 /* 35 * This component encapsulates the TTY layer glue needed to provide basic 36 * "serial port" functionality through the USB gadget stack. Each such 37 * port is exposed through a /dev/ttyGS* node. 38 * 39 * After this module has been loaded, the individual TTY port can be requested 40 * (gserial_alloc_line()) and it will stay available until they are removed 41 * (gserial_free_line()). Each one may be connected to a USB function 42 * (gserial_connect), or disconnected (with gserial_disconnect) when the USB 43 * host issues a config change event. Data can only flow when the port is 44 * connected to the host. 45 * 46 * A given TTY port can be made available in multiple configurations. 47 * For example, each one might expose a ttyGS0 node which provides a 48 * login application. In one case that might use CDC ACM interface 0, 49 * while another configuration might use interface 3 for that. The 50 * work to handle that (including descriptor management) is not part 51 * of this component. 52 * 53 * Configurations may expose more than one TTY port. For example, if 54 * ttyGS0 provides login service, then ttyGS1 might provide dialer access 55 * for a telephone or fax link. And ttyGS2 might be something that just 56 * needs a simple byte stream interface for some messaging protocol that 57 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned. 58 * 59 * 60 * gserial is the lifecycle interface, used by USB functions 61 * gs_port is the I/O nexus, used by the tty driver 62 * tty_struct links to the tty/filesystem framework 63 * 64 * gserial <---> gs_port ... links will be null when the USB link is 65 * inactive; managed by gserial_{connect,disconnect}(). each gserial 66 * instance can wrap its own USB control protocol. 67 * gserial->ioport == usb_ep->driver_data ... gs_port 68 * gs_port->port_usb ... gserial 69 * 70 * gs_port <---> tty_struct ... links will be null when the TTY file 71 * isn't opened; managed by gs_open()/gs_close() 72 * gserial->port_tty ... tty_struct 73 * tty_struct->driver_data ... gserial 74 */ 75 76 /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the 77 * next layer of buffering. For TX that's a circular buffer; for RX 78 * consider it a NOP. A third layer is provided by the TTY code. 79 */ 80 #define QUEUE_SIZE 16 81 #define WRITE_BUF_SIZE 8192 /* TX only */ 82 83 /* circular buffer */ 84 struct gs_buf { 85 unsigned buf_size; 86 char *buf_buf; 87 char *buf_get; 88 char *buf_put; 89 }; 90 91 /* 92 * The port structure holds info for each port, one for each minor number 93 * (and thus for each /dev/ node). 94 */ 95 struct gs_port { 96 struct tty_port port; 97 spinlock_t port_lock; /* guard port_* access */ 98 99 struct gserial *port_usb; 100 101 bool openclose; /* open/close in progress */ 102 u8 port_num; 103 104 struct list_head read_pool; 105 int read_started; 106 int read_allocated; 107 struct list_head read_queue; 108 unsigned n_read; 109 struct tasklet_struct push; 110 111 struct list_head write_pool; 112 int write_started; 113 int write_allocated; 114 struct gs_buf port_write_buf; 115 wait_queue_head_t drain_wait; /* wait while writes drain */ 116 bool write_busy; 117 wait_queue_head_t close_wait; 118 119 /* REVISIT this state ... */ 120 struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */ 121 }; 122 123 static struct portmaster { 124 struct mutex lock; /* protect open/close */ 125 struct gs_port *port; 126 } ports[MAX_U_SERIAL_PORTS]; 127 128 #define GS_CLOSE_TIMEOUT 15 /* seconds */ 129 130 131 132 #ifdef VERBOSE_DEBUG 133 #ifndef pr_vdebug 134 #define pr_vdebug(fmt, arg...) \ 135 pr_debug(fmt, ##arg) 136 #endif /* pr_vdebug */ 137 #else 138 #ifndef pr_vdebug 139 #define pr_vdebug(fmt, arg...) \ 140 ({ if (0) pr_debug(fmt, ##arg); }) 141 #endif /* pr_vdebug */ 142 #endif 143 144 /*-------------------------------------------------------------------------*/ 145 146 /* Circular Buffer */ 147 148 /* 149 * gs_buf_alloc 150 * 151 * Allocate a circular buffer and all associated memory. 152 */ 153 static int gs_buf_alloc(struct gs_buf *gb, unsigned size) 154 { 155 gb->buf_buf = kmalloc(size, GFP_KERNEL); 156 if (gb->buf_buf == NULL) 157 return -ENOMEM; 158 159 gb->buf_size = size; 160 gb->buf_put = gb->buf_buf; 161 gb->buf_get = gb->buf_buf; 162 163 return 0; 164 } 165 166 /* 167 * gs_buf_free 168 * 169 * Free the buffer and all associated memory. 170 */ 171 static void gs_buf_free(struct gs_buf *gb) 172 { 173 kfree(gb->buf_buf); 174 gb->buf_buf = NULL; 175 } 176 177 /* 178 * gs_buf_clear 179 * 180 * Clear out all data in the circular buffer. 181 */ 182 static void gs_buf_clear(struct gs_buf *gb) 183 { 184 gb->buf_get = gb->buf_put; 185 /* equivalent to a get of all data available */ 186 } 187 188 /* 189 * gs_buf_data_avail 190 * 191 * Return the number of bytes of data written into the circular 192 * buffer. 193 */ 194 static unsigned gs_buf_data_avail(struct gs_buf *gb) 195 { 196 return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size; 197 } 198 199 /* 200 * gs_buf_space_avail 201 * 202 * Return the number of bytes of space available in the circular 203 * buffer. 204 */ 205 static unsigned gs_buf_space_avail(struct gs_buf *gb) 206 { 207 return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size; 208 } 209 210 /* 211 * gs_buf_put 212 * 213 * Copy data data from a user buffer and put it into the circular buffer. 214 * Restrict to the amount of space available. 215 * 216 * Return the number of bytes copied. 217 */ 218 static unsigned 219 gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count) 220 { 221 unsigned len; 222 223 len = gs_buf_space_avail(gb); 224 if (count > len) 225 count = len; 226 227 if (count == 0) 228 return 0; 229 230 len = gb->buf_buf + gb->buf_size - gb->buf_put; 231 if (count > len) { 232 memcpy(gb->buf_put, buf, len); 233 memcpy(gb->buf_buf, buf+len, count - len); 234 gb->buf_put = gb->buf_buf + count - len; 235 } else { 236 memcpy(gb->buf_put, buf, count); 237 if (count < len) 238 gb->buf_put += count; 239 else /* count == len */ 240 gb->buf_put = gb->buf_buf; 241 } 242 243 return count; 244 } 245 246 /* 247 * gs_buf_get 248 * 249 * Get data from the circular buffer and copy to the given buffer. 250 * Restrict to the amount of data available. 251 * 252 * Return the number of bytes copied. 253 */ 254 static unsigned 255 gs_buf_get(struct gs_buf *gb, char *buf, unsigned count) 256 { 257 unsigned len; 258 259 len = gs_buf_data_avail(gb); 260 if (count > len) 261 count = len; 262 263 if (count == 0) 264 return 0; 265 266 len = gb->buf_buf + gb->buf_size - gb->buf_get; 267 if (count > len) { 268 memcpy(buf, gb->buf_get, len); 269 memcpy(buf+len, gb->buf_buf, count - len); 270 gb->buf_get = gb->buf_buf + count - len; 271 } else { 272 memcpy(buf, gb->buf_get, count); 273 if (count < len) 274 gb->buf_get += count; 275 else /* count == len */ 276 gb->buf_get = gb->buf_buf; 277 } 278 279 return count; 280 } 281 282 /*-------------------------------------------------------------------------*/ 283 284 /* I/O glue between TTY (upper) and USB function (lower) driver layers */ 285 286 /* 287 * gs_alloc_req 288 * 289 * Allocate a usb_request and its buffer. Returns a pointer to the 290 * usb_request or NULL if there is an error. 291 */ 292 struct usb_request * 293 gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags) 294 { 295 struct usb_request *req; 296 297 req = usb_ep_alloc_request(ep, kmalloc_flags); 298 299 if (req != NULL) { 300 req->length = len; 301 req->buf = kmalloc(len, kmalloc_flags); 302 if (req->buf == NULL) { 303 usb_ep_free_request(ep, req); 304 return NULL; 305 } 306 } 307 308 return req; 309 } 310 EXPORT_SYMBOL_GPL(gs_alloc_req); 311 312 /* 313 * gs_free_req 314 * 315 * Free a usb_request and its buffer. 316 */ 317 void gs_free_req(struct usb_ep *ep, struct usb_request *req) 318 { 319 kfree(req->buf); 320 usb_ep_free_request(ep, req); 321 } 322 EXPORT_SYMBOL_GPL(gs_free_req); 323 324 /* 325 * gs_send_packet 326 * 327 * If there is data to send, a packet is built in the given 328 * buffer and the size is returned. If there is no data to 329 * send, 0 is returned. 330 * 331 * Called with port_lock held. 332 */ 333 static unsigned 334 gs_send_packet(struct gs_port *port, char *packet, unsigned size) 335 { 336 unsigned len; 337 338 len = gs_buf_data_avail(&port->port_write_buf); 339 if (len < size) 340 size = len; 341 if (size != 0) 342 size = gs_buf_get(&port->port_write_buf, packet, size); 343 return size; 344 } 345 346 /* 347 * gs_start_tx 348 * 349 * This function finds available write requests, calls 350 * gs_send_packet to fill these packets with data, and 351 * continues until either there are no more write requests 352 * available or no more data to send. This function is 353 * run whenever data arrives or write requests are available. 354 * 355 * Context: caller owns port_lock; port_usb is non-null. 356 */ 357 static int gs_start_tx(struct gs_port *port) 358 /* 359 __releases(&port->port_lock) 360 __acquires(&port->port_lock) 361 */ 362 { 363 struct list_head *pool = &port->write_pool; 364 struct usb_ep *in = port->port_usb->in; 365 int status = 0; 366 bool do_tty_wake = false; 367 368 while (!port->write_busy && !list_empty(pool)) { 369 struct usb_request *req; 370 int len; 371 372 if (port->write_started >= QUEUE_SIZE) 373 break; 374 375 req = list_entry(pool->next, struct usb_request, list); 376 len = gs_send_packet(port, req->buf, in->maxpacket); 377 if (len == 0) { 378 wake_up_interruptible(&port->drain_wait); 379 break; 380 } 381 do_tty_wake = true; 382 383 req->length = len; 384 list_del(&req->list); 385 req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0); 386 387 pr_vdebug("ttyGS%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n", 388 port->port_num, len, *((u8 *)req->buf), 389 *((u8 *)req->buf+1), *((u8 *)req->buf+2)); 390 391 /* Drop lock while we call out of driver; completions 392 * could be issued while we do so. Disconnection may 393 * happen too; maybe immediately before we queue this! 394 * 395 * NOTE that we may keep sending data for a while after 396 * the TTY closed (dev->ioport->port_tty is NULL). 397 */ 398 port->write_busy = true; 399 spin_unlock(&port->port_lock); 400 status = usb_ep_queue(in, req, GFP_ATOMIC); 401 spin_lock(&port->port_lock); 402 port->write_busy = false; 403 404 if (status) { 405 pr_debug("%s: %s %s err %d\n", 406 __func__, "queue", in->name, status); 407 list_add(&req->list, pool); 408 break; 409 } 410 411 port->write_started++; 412 413 /* abort immediately after disconnect */ 414 if (!port->port_usb) 415 break; 416 } 417 418 if (do_tty_wake && port->port.tty) 419 tty_wakeup(port->port.tty); 420 return status; 421 } 422 423 /* 424 * Context: caller owns port_lock, and port_usb is set 425 */ 426 static unsigned gs_start_rx(struct gs_port *port) 427 /* 428 __releases(&port->port_lock) 429 __acquires(&port->port_lock) 430 */ 431 { 432 struct list_head *pool = &port->read_pool; 433 struct usb_ep *out = port->port_usb->out; 434 435 while (!list_empty(pool)) { 436 struct usb_request *req; 437 int status; 438 struct tty_struct *tty; 439 440 /* no more rx if closed */ 441 tty = port->port.tty; 442 if (!tty) 443 break; 444 445 if (port->read_started >= QUEUE_SIZE) 446 break; 447 448 req = list_entry(pool->next, struct usb_request, list); 449 list_del(&req->list); 450 req->length = out->maxpacket; 451 452 /* drop lock while we call out; the controller driver 453 * may need to call us back (e.g. for disconnect) 454 */ 455 spin_unlock(&port->port_lock); 456 status = usb_ep_queue(out, req, GFP_ATOMIC); 457 spin_lock(&port->port_lock); 458 459 if (status) { 460 pr_debug("%s: %s %s err %d\n", 461 __func__, "queue", out->name, status); 462 list_add(&req->list, pool); 463 break; 464 } 465 port->read_started++; 466 467 /* abort immediately after disconnect */ 468 if (!port->port_usb) 469 break; 470 } 471 return port->read_started; 472 } 473 474 /* 475 * RX tasklet takes data out of the RX queue and hands it up to the TTY 476 * layer until it refuses to take any more data (or is throttled back). 477 * Then it issues reads for any further data. 478 * 479 * If the RX queue becomes full enough that no usb_request is queued, 480 * the OUT endpoint may begin NAKing as soon as its FIFO fills up. 481 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two) 482 * can be buffered before the TTY layer's buffers (currently 64 KB). 483 */ 484 static void gs_rx_push(unsigned long _port) 485 { 486 struct gs_port *port = (void *)_port; 487 struct tty_struct *tty; 488 struct list_head *queue = &port->read_queue; 489 bool disconnect = false; 490 bool do_push = false; 491 492 /* hand any queued data to the tty */ 493 spin_lock_irq(&port->port_lock); 494 tty = port->port.tty; 495 while (!list_empty(queue)) { 496 struct usb_request *req; 497 498 req = list_first_entry(queue, struct usb_request, list); 499 500 /* leave data queued if tty was rx throttled */ 501 if (tty && test_bit(TTY_THROTTLED, &tty->flags)) 502 break; 503 504 switch (req->status) { 505 case -ESHUTDOWN: 506 disconnect = true; 507 pr_vdebug("ttyGS%d: shutdown\n", port->port_num); 508 break; 509 510 default: 511 /* presumably a transient fault */ 512 pr_warn("ttyGS%d: unexpected RX status %d\n", 513 port->port_num, req->status); 514 /* FALLTHROUGH */ 515 case 0: 516 /* normal completion */ 517 break; 518 } 519 520 /* push data to (open) tty */ 521 if (req->actual) { 522 char *packet = req->buf; 523 unsigned size = req->actual; 524 unsigned n; 525 int count; 526 527 /* we may have pushed part of this packet already... */ 528 n = port->n_read; 529 if (n) { 530 packet += n; 531 size -= n; 532 } 533 534 count = tty_insert_flip_string(&port->port, packet, 535 size); 536 if (count) 537 do_push = true; 538 if (count != size) { 539 /* stop pushing; TTY layer can't handle more */ 540 port->n_read += count; 541 pr_vdebug("ttyGS%d: rx block %d/%d\n", 542 port->port_num, count, req->actual); 543 break; 544 } 545 port->n_read = 0; 546 } 547 548 list_move(&req->list, &port->read_pool); 549 port->read_started--; 550 } 551 552 /* Push from tty to ldisc; this is handled by a workqueue, 553 * so we won't get callbacks and can hold port_lock 554 */ 555 if (do_push) 556 tty_flip_buffer_push(&port->port); 557 558 559 /* We want our data queue to become empty ASAP, keeping data 560 * in the tty and ldisc (not here). If we couldn't push any 561 * this time around, there may be trouble unless there's an 562 * implicit tty_unthrottle() call on its way... 563 * 564 * REVISIT we should probably add a timer to keep the tasklet 565 * from starving ... but it's not clear that case ever happens. 566 */ 567 if (!list_empty(queue) && tty) { 568 if (!test_bit(TTY_THROTTLED, &tty->flags)) { 569 if (do_push) 570 tasklet_schedule(&port->push); 571 else 572 pr_warn("ttyGS%d: RX not scheduled?\n", 573 port->port_num); 574 } 575 } 576 577 /* If we're still connected, refill the USB RX queue. */ 578 if (!disconnect && port->port_usb) 579 gs_start_rx(port); 580 581 spin_unlock_irq(&port->port_lock); 582 } 583 584 static void gs_read_complete(struct usb_ep *ep, struct usb_request *req) 585 { 586 struct gs_port *port = ep->driver_data; 587 588 /* Queue all received data until the tty layer is ready for it. */ 589 spin_lock(&port->port_lock); 590 list_add_tail(&req->list, &port->read_queue); 591 tasklet_schedule(&port->push); 592 spin_unlock(&port->port_lock); 593 } 594 595 static void gs_write_complete(struct usb_ep *ep, struct usb_request *req) 596 { 597 struct gs_port *port = ep->driver_data; 598 599 spin_lock(&port->port_lock); 600 list_add(&req->list, &port->write_pool); 601 port->write_started--; 602 603 switch (req->status) { 604 default: 605 /* presumably a transient fault */ 606 pr_warning("%s: unexpected %s status %d\n", 607 __func__, ep->name, req->status); 608 /* FALL THROUGH */ 609 case 0: 610 /* normal completion */ 611 gs_start_tx(port); 612 break; 613 614 case -ESHUTDOWN: 615 /* disconnect */ 616 pr_vdebug("%s: %s shutdown\n", __func__, ep->name); 617 break; 618 } 619 620 spin_unlock(&port->port_lock); 621 } 622 623 static void gs_free_requests(struct usb_ep *ep, struct list_head *head, 624 int *allocated) 625 { 626 struct usb_request *req; 627 628 while (!list_empty(head)) { 629 req = list_entry(head->next, struct usb_request, list); 630 list_del(&req->list); 631 gs_free_req(ep, req); 632 if (allocated) 633 (*allocated)--; 634 } 635 } 636 637 static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head, 638 void (*fn)(struct usb_ep *, struct usb_request *), 639 int *allocated) 640 { 641 int i; 642 struct usb_request *req; 643 int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE; 644 645 /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't 646 * do quite that many this time, don't fail ... we just won't 647 * be as speedy as we might otherwise be. 648 */ 649 for (i = 0; i < n; i++) { 650 req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC); 651 if (!req) 652 return list_empty(head) ? -ENOMEM : 0; 653 req->complete = fn; 654 list_add_tail(&req->list, head); 655 if (allocated) 656 (*allocated)++; 657 } 658 return 0; 659 } 660 661 /** 662 * gs_start_io - start USB I/O streams 663 * @dev: encapsulates endpoints to use 664 * Context: holding port_lock; port_tty and port_usb are non-null 665 * 666 * We only start I/O when something is connected to both sides of 667 * this port. If nothing is listening on the host side, we may 668 * be pointlessly filling up our TX buffers and FIFO. 669 */ 670 static int gs_start_io(struct gs_port *port) 671 { 672 struct list_head *head = &port->read_pool; 673 struct usb_ep *ep = port->port_usb->out; 674 int status; 675 unsigned started; 676 677 /* Allocate RX and TX I/O buffers. We can't easily do this much 678 * earlier (with GFP_KERNEL) because the requests are coupled to 679 * endpoints, as are the packet sizes we'll be using. Different 680 * configurations may use different endpoints with a given port; 681 * and high speed vs full speed changes packet sizes too. 682 */ 683 status = gs_alloc_requests(ep, head, gs_read_complete, 684 &port->read_allocated); 685 if (status) 686 return status; 687 688 status = gs_alloc_requests(port->port_usb->in, &port->write_pool, 689 gs_write_complete, &port->write_allocated); 690 if (status) { 691 gs_free_requests(ep, head, &port->read_allocated); 692 return status; 693 } 694 695 /* queue read requests */ 696 port->n_read = 0; 697 started = gs_start_rx(port); 698 699 /* unblock any pending writes into our circular buffer */ 700 if (started) { 701 tty_wakeup(port->port.tty); 702 } else { 703 gs_free_requests(ep, head, &port->read_allocated); 704 gs_free_requests(port->port_usb->in, &port->write_pool, 705 &port->write_allocated); 706 status = -EIO; 707 } 708 709 return status; 710 } 711 712 /*-------------------------------------------------------------------------*/ 713 714 /* TTY Driver */ 715 716 /* 717 * gs_open sets up the link between a gs_port and its associated TTY. 718 * That link is broken *only* by TTY close(), and all driver methods 719 * know that. 720 */ 721 static int gs_open(struct tty_struct *tty, struct file *file) 722 { 723 int port_num = tty->index; 724 struct gs_port *port; 725 int status; 726 727 do { 728 mutex_lock(&ports[port_num].lock); 729 port = ports[port_num].port; 730 if (!port) 731 status = -ENODEV; 732 else { 733 spin_lock_irq(&port->port_lock); 734 735 /* already open? Great. */ 736 if (port->port.count) { 737 status = 0; 738 port->port.count++; 739 740 /* currently opening/closing? wait ... */ 741 } else if (port->openclose) { 742 status = -EBUSY; 743 744 /* ... else we do the work */ 745 } else { 746 status = -EAGAIN; 747 port->openclose = true; 748 } 749 spin_unlock_irq(&port->port_lock); 750 } 751 mutex_unlock(&ports[port_num].lock); 752 753 switch (status) { 754 default: 755 /* fully handled */ 756 return status; 757 case -EAGAIN: 758 /* must do the work */ 759 break; 760 case -EBUSY: 761 /* wait for EAGAIN task to finish */ 762 msleep(1); 763 /* REVISIT could have a waitchannel here, if 764 * concurrent open performance is important 765 */ 766 break; 767 } 768 } while (status != -EAGAIN); 769 770 /* Do the "real open" */ 771 spin_lock_irq(&port->port_lock); 772 773 /* allocate circular buffer on first open */ 774 if (port->port_write_buf.buf_buf == NULL) { 775 776 spin_unlock_irq(&port->port_lock); 777 status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE); 778 spin_lock_irq(&port->port_lock); 779 780 if (status) { 781 pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n", 782 port->port_num, tty, file); 783 port->openclose = false; 784 goto exit_unlock_port; 785 } 786 } 787 788 /* REVISIT if REMOVED (ports[].port NULL), abort the open 789 * to let rmmod work faster (but this way isn't wrong). 790 */ 791 792 /* REVISIT maybe wait for "carrier detect" */ 793 794 tty->driver_data = port; 795 port->port.tty = tty; 796 797 port->port.count = 1; 798 port->openclose = false; 799 800 /* if connected, start the I/O stream */ 801 if (port->port_usb) { 802 struct gserial *gser = port->port_usb; 803 804 pr_debug("gs_open: start ttyGS%d\n", port->port_num); 805 gs_start_io(port); 806 807 if (gser->connect) 808 gser->connect(gser); 809 } 810 811 pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file); 812 813 status = 0; 814 815 exit_unlock_port: 816 spin_unlock_irq(&port->port_lock); 817 return status; 818 } 819 820 static int gs_writes_finished(struct gs_port *p) 821 { 822 int cond; 823 824 /* return true on disconnect or empty buffer */ 825 spin_lock_irq(&p->port_lock); 826 cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf); 827 spin_unlock_irq(&p->port_lock); 828 829 return cond; 830 } 831 832 static void gs_close(struct tty_struct *tty, struct file *file) 833 { 834 struct gs_port *port = tty->driver_data; 835 struct gserial *gser; 836 837 spin_lock_irq(&port->port_lock); 838 839 if (port->port.count != 1) { 840 if (port->port.count == 0) 841 WARN_ON(1); 842 else 843 --port->port.count; 844 goto exit; 845 } 846 847 pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file); 848 849 /* mark port as closing but in use; we can drop port lock 850 * and sleep if necessary 851 */ 852 port->openclose = true; 853 port->port.count = 0; 854 855 gser = port->port_usb; 856 if (gser && gser->disconnect) 857 gser->disconnect(gser); 858 859 /* wait for circular write buffer to drain, disconnect, or at 860 * most GS_CLOSE_TIMEOUT seconds; then discard the rest 861 */ 862 if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) { 863 spin_unlock_irq(&port->port_lock); 864 wait_event_interruptible_timeout(port->drain_wait, 865 gs_writes_finished(port), 866 GS_CLOSE_TIMEOUT * HZ); 867 spin_lock_irq(&port->port_lock); 868 gser = port->port_usb; 869 } 870 871 /* Iff we're disconnected, there can be no I/O in flight so it's 872 * ok to free the circular buffer; else just scrub it. And don't 873 * let the push tasklet fire again until we're re-opened. 874 */ 875 if (gser == NULL) 876 gs_buf_free(&port->port_write_buf); 877 else 878 gs_buf_clear(&port->port_write_buf); 879 880 tty->driver_data = NULL; 881 port->port.tty = NULL; 882 883 port->openclose = false; 884 885 pr_debug("gs_close: ttyGS%d (%p,%p) done!\n", 886 port->port_num, tty, file); 887 888 wake_up(&port->close_wait); 889 exit: 890 spin_unlock_irq(&port->port_lock); 891 } 892 893 static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count) 894 { 895 struct gs_port *port = tty->driver_data; 896 unsigned long flags; 897 int status; 898 899 pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n", 900 port->port_num, tty, count); 901 902 spin_lock_irqsave(&port->port_lock, flags); 903 if (count) 904 count = gs_buf_put(&port->port_write_buf, buf, count); 905 /* treat count == 0 as flush_chars() */ 906 if (port->port_usb) 907 status = gs_start_tx(port); 908 spin_unlock_irqrestore(&port->port_lock, flags); 909 910 return count; 911 } 912 913 static int gs_put_char(struct tty_struct *tty, unsigned char ch) 914 { 915 struct gs_port *port = tty->driver_data; 916 unsigned long flags; 917 int status; 918 919 pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %ps\n", 920 port->port_num, tty, ch, __builtin_return_address(0)); 921 922 spin_lock_irqsave(&port->port_lock, flags); 923 status = gs_buf_put(&port->port_write_buf, &ch, 1); 924 spin_unlock_irqrestore(&port->port_lock, flags); 925 926 return status; 927 } 928 929 static void gs_flush_chars(struct tty_struct *tty) 930 { 931 struct gs_port *port = tty->driver_data; 932 unsigned long flags; 933 934 pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty); 935 936 spin_lock_irqsave(&port->port_lock, flags); 937 if (port->port_usb) 938 gs_start_tx(port); 939 spin_unlock_irqrestore(&port->port_lock, flags); 940 } 941 942 static int gs_write_room(struct tty_struct *tty) 943 { 944 struct gs_port *port = tty->driver_data; 945 unsigned long flags; 946 int room = 0; 947 948 spin_lock_irqsave(&port->port_lock, flags); 949 if (port->port_usb) 950 room = gs_buf_space_avail(&port->port_write_buf); 951 spin_unlock_irqrestore(&port->port_lock, flags); 952 953 pr_vdebug("gs_write_room: (%d,%p) room=%d\n", 954 port->port_num, tty, room); 955 956 return room; 957 } 958 959 static int gs_chars_in_buffer(struct tty_struct *tty) 960 { 961 struct gs_port *port = tty->driver_data; 962 unsigned long flags; 963 int chars = 0; 964 965 spin_lock_irqsave(&port->port_lock, flags); 966 chars = gs_buf_data_avail(&port->port_write_buf); 967 spin_unlock_irqrestore(&port->port_lock, flags); 968 969 pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n", 970 port->port_num, tty, chars); 971 972 return chars; 973 } 974 975 /* undo side effects of setting TTY_THROTTLED */ 976 static void gs_unthrottle(struct tty_struct *tty) 977 { 978 struct gs_port *port = tty->driver_data; 979 unsigned long flags; 980 981 spin_lock_irqsave(&port->port_lock, flags); 982 if (port->port_usb) { 983 /* Kickstart read queue processing. We don't do xon/xoff, 984 * rts/cts, or other handshaking with the host, but if the 985 * read queue backs up enough we'll be NAKing OUT packets. 986 */ 987 tasklet_schedule(&port->push); 988 pr_vdebug("ttyGS%d: unthrottle\n", port->port_num); 989 } 990 spin_unlock_irqrestore(&port->port_lock, flags); 991 } 992 993 static int gs_break_ctl(struct tty_struct *tty, int duration) 994 { 995 struct gs_port *port = tty->driver_data; 996 int status = 0; 997 struct gserial *gser; 998 999 pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n", 1000 port->port_num, duration); 1001 1002 spin_lock_irq(&port->port_lock); 1003 gser = port->port_usb; 1004 if (gser && gser->send_break) 1005 status = gser->send_break(gser, duration); 1006 spin_unlock_irq(&port->port_lock); 1007 1008 return status; 1009 } 1010 1011 static const struct tty_operations gs_tty_ops = { 1012 .open = gs_open, 1013 .close = gs_close, 1014 .write = gs_write, 1015 .put_char = gs_put_char, 1016 .flush_chars = gs_flush_chars, 1017 .write_room = gs_write_room, 1018 .chars_in_buffer = gs_chars_in_buffer, 1019 .unthrottle = gs_unthrottle, 1020 .break_ctl = gs_break_ctl, 1021 }; 1022 1023 /*-------------------------------------------------------------------------*/ 1024 1025 static struct tty_driver *gs_tty_driver; 1026 1027 static int 1028 gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding) 1029 { 1030 struct gs_port *port; 1031 int ret = 0; 1032 1033 mutex_lock(&ports[port_num].lock); 1034 if (ports[port_num].port) { 1035 ret = -EBUSY; 1036 goto out; 1037 } 1038 1039 port = kzalloc(sizeof(struct gs_port), GFP_KERNEL); 1040 if (port == NULL) { 1041 ret = -ENOMEM; 1042 goto out; 1043 } 1044 1045 tty_port_init(&port->port); 1046 spin_lock_init(&port->port_lock); 1047 init_waitqueue_head(&port->drain_wait); 1048 init_waitqueue_head(&port->close_wait); 1049 1050 tasklet_init(&port->push, gs_rx_push, (unsigned long) port); 1051 1052 INIT_LIST_HEAD(&port->read_pool); 1053 INIT_LIST_HEAD(&port->read_queue); 1054 INIT_LIST_HEAD(&port->write_pool); 1055 1056 port->port_num = port_num; 1057 port->port_line_coding = *coding; 1058 1059 ports[port_num].port = port; 1060 out: 1061 mutex_unlock(&ports[port_num].lock); 1062 return ret; 1063 } 1064 1065 static int gs_closed(struct gs_port *port) 1066 { 1067 int cond; 1068 1069 spin_lock_irq(&port->port_lock); 1070 cond = (port->port.count == 0) && !port->openclose; 1071 spin_unlock_irq(&port->port_lock); 1072 return cond; 1073 } 1074 1075 static void gserial_free_port(struct gs_port *port) 1076 { 1077 tasklet_kill(&port->push); 1078 /* wait for old opens to finish */ 1079 wait_event(port->close_wait, gs_closed(port)); 1080 WARN_ON(port->port_usb != NULL); 1081 tty_port_destroy(&port->port); 1082 kfree(port); 1083 } 1084 1085 void gserial_free_line(unsigned char port_num) 1086 { 1087 struct gs_port *port; 1088 1089 mutex_lock(&ports[port_num].lock); 1090 if (WARN_ON(!ports[port_num].port)) { 1091 mutex_unlock(&ports[port_num].lock); 1092 return; 1093 } 1094 port = ports[port_num].port; 1095 ports[port_num].port = NULL; 1096 mutex_unlock(&ports[port_num].lock); 1097 1098 gserial_free_port(port); 1099 tty_unregister_device(gs_tty_driver, port_num); 1100 } 1101 EXPORT_SYMBOL_GPL(gserial_free_line); 1102 1103 int gserial_alloc_line(unsigned char *line_num) 1104 { 1105 struct usb_cdc_line_coding coding; 1106 struct device *tty_dev; 1107 int ret; 1108 int port_num; 1109 1110 coding.dwDTERate = cpu_to_le32(9600); 1111 coding.bCharFormat = 8; 1112 coding.bParityType = USB_CDC_NO_PARITY; 1113 coding.bDataBits = USB_CDC_1_STOP_BITS; 1114 1115 for (port_num = 0; port_num < MAX_U_SERIAL_PORTS; port_num++) { 1116 ret = gs_port_alloc(port_num, &coding); 1117 if (ret == -EBUSY) 1118 continue; 1119 if (ret) 1120 return ret; 1121 break; 1122 } 1123 if (ret) 1124 return ret; 1125 1126 /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */ 1127 1128 tty_dev = tty_port_register_device(&ports[port_num].port->port, 1129 gs_tty_driver, port_num, NULL); 1130 if (IS_ERR(tty_dev)) { 1131 struct gs_port *port; 1132 pr_err("%s: failed to register tty for port %d, err %ld\n", 1133 __func__, port_num, PTR_ERR(tty_dev)); 1134 1135 ret = PTR_ERR(tty_dev); 1136 port = ports[port_num].port; 1137 ports[port_num].port = NULL; 1138 gserial_free_port(port); 1139 goto err; 1140 } 1141 *line_num = port_num; 1142 err: 1143 return ret; 1144 } 1145 EXPORT_SYMBOL_GPL(gserial_alloc_line); 1146 1147 /** 1148 * gserial_connect - notify TTY I/O glue that USB link is active 1149 * @gser: the function, set up with endpoints and descriptors 1150 * @port_num: which port is active 1151 * Context: any (usually from irq) 1152 * 1153 * This is called activate endpoints and let the TTY layer know that 1154 * the connection is active ... not unlike "carrier detect". It won't 1155 * necessarily start I/O queues; unless the TTY is held open by any 1156 * task, there would be no point. However, the endpoints will be 1157 * activated so the USB host can perform I/O, subject to basic USB 1158 * hardware flow control. 1159 * 1160 * Caller needs to have set up the endpoints and USB function in @dev 1161 * before calling this, as well as the appropriate (speed-specific) 1162 * endpoint descriptors, and also have allocate @port_num by calling 1163 * @gserial_alloc_line(). 1164 * 1165 * Returns negative errno or zero. 1166 * On success, ep->driver_data will be overwritten. 1167 */ 1168 int gserial_connect(struct gserial *gser, u8 port_num) 1169 { 1170 struct gs_port *port; 1171 unsigned long flags; 1172 int status; 1173 1174 if (port_num >= MAX_U_SERIAL_PORTS) 1175 return -ENXIO; 1176 1177 port = ports[port_num].port; 1178 if (!port) { 1179 pr_err("serial line %d not allocated.\n", port_num); 1180 return -EINVAL; 1181 } 1182 if (port->port_usb) { 1183 pr_err("serial line %d is in use.\n", port_num); 1184 return -EBUSY; 1185 } 1186 1187 /* activate the endpoints */ 1188 status = usb_ep_enable(gser->in); 1189 if (status < 0) 1190 return status; 1191 gser->in->driver_data = port; 1192 1193 status = usb_ep_enable(gser->out); 1194 if (status < 0) 1195 goto fail_out; 1196 gser->out->driver_data = port; 1197 1198 /* then tell the tty glue that I/O can work */ 1199 spin_lock_irqsave(&port->port_lock, flags); 1200 gser->ioport = port; 1201 port->port_usb = gser; 1202 1203 /* REVISIT unclear how best to handle this state... 1204 * we don't really couple it with the Linux TTY. 1205 */ 1206 gser->port_line_coding = port->port_line_coding; 1207 1208 /* REVISIT if waiting on "carrier detect", signal. */ 1209 1210 /* if it's already open, start I/O ... and notify the serial 1211 * protocol about open/close status (connect/disconnect). 1212 */ 1213 if (port->port.count) { 1214 pr_debug("gserial_connect: start ttyGS%d\n", port->port_num); 1215 gs_start_io(port); 1216 if (gser->connect) 1217 gser->connect(gser); 1218 } else { 1219 if (gser->disconnect) 1220 gser->disconnect(gser); 1221 } 1222 1223 spin_unlock_irqrestore(&port->port_lock, flags); 1224 1225 return status; 1226 1227 fail_out: 1228 usb_ep_disable(gser->in); 1229 gser->in->driver_data = NULL; 1230 return status; 1231 } 1232 EXPORT_SYMBOL_GPL(gserial_connect); 1233 /** 1234 * gserial_disconnect - notify TTY I/O glue that USB link is inactive 1235 * @gser: the function, on which gserial_connect() was called 1236 * Context: any (usually from irq) 1237 * 1238 * This is called to deactivate endpoints and let the TTY layer know 1239 * that the connection went inactive ... not unlike "hangup". 1240 * 1241 * On return, the state is as if gserial_connect() had never been called; 1242 * there is no active USB I/O on these endpoints. 1243 */ 1244 void gserial_disconnect(struct gserial *gser) 1245 { 1246 struct gs_port *port = gser->ioport; 1247 unsigned long flags; 1248 1249 if (!port) 1250 return; 1251 1252 /* tell the TTY glue not to do I/O here any more */ 1253 spin_lock_irqsave(&port->port_lock, flags); 1254 1255 /* REVISIT as above: how best to track this? */ 1256 port->port_line_coding = gser->port_line_coding; 1257 1258 port->port_usb = NULL; 1259 gser->ioport = NULL; 1260 if (port->port.count > 0 || port->openclose) { 1261 wake_up_interruptible(&port->drain_wait); 1262 if (port->port.tty) 1263 tty_hangup(port->port.tty); 1264 } 1265 spin_unlock_irqrestore(&port->port_lock, flags); 1266 1267 /* disable endpoints, aborting down any active I/O */ 1268 usb_ep_disable(gser->out); 1269 gser->out->driver_data = NULL; 1270 1271 usb_ep_disable(gser->in); 1272 gser->in->driver_data = NULL; 1273 1274 /* finally, free any unused/unusable I/O buffers */ 1275 spin_lock_irqsave(&port->port_lock, flags); 1276 if (port->port.count == 0 && !port->openclose) 1277 gs_buf_free(&port->port_write_buf); 1278 gs_free_requests(gser->out, &port->read_pool, NULL); 1279 gs_free_requests(gser->out, &port->read_queue, NULL); 1280 gs_free_requests(gser->in, &port->write_pool, NULL); 1281 1282 port->read_allocated = port->read_started = 1283 port->write_allocated = port->write_started = 0; 1284 1285 spin_unlock_irqrestore(&port->port_lock, flags); 1286 } 1287 EXPORT_SYMBOL_GPL(gserial_disconnect); 1288 1289 static int userial_init(void) 1290 { 1291 unsigned i; 1292 int status; 1293 1294 gs_tty_driver = alloc_tty_driver(MAX_U_SERIAL_PORTS); 1295 if (!gs_tty_driver) 1296 return -ENOMEM; 1297 1298 gs_tty_driver->driver_name = "g_serial"; 1299 gs_tty_driver->name = "ttyGS"; 1300 /* uses dynamically assigned dev_t values */ 1301 1302 gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL; 1303 gs_tty_driver->subtype = SERIAL_TYPE_NORMAL; 1304 gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 1305 gs_tty_driver->init_termios = tty_std_termios; 1306 1307 /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on 1308 * MS-Windows. Otherwise, most of these flags shouldn't affect 1309 * anything unless we were to actually hook up to a serial line. 1310 */ 1311 gs_tty_driver->init_termios.c_cflag = 1312 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 1313 gs_tty_driver->init_termios.c_ispeed = 9600; 1314 gs_tty_driver->init_termios.c_ospeed = 9600; 1315 1316 tty_set_operations(gs_tty_driver, &gs_tty_ops); 1317 for (i = 0; i < MAX_U_SERIAL_PORTS; i++) 1318 mutex_init(&ports[i].lock); 1319 1320 /* export the driver ... */ 1321 status = tty_register_driver(gs_tty_driver); 1322 if (status) { 1323 pr_err("%s: cannot register, err %d\n", 1324 __func__, status); 1325 goto fail; 1326 } 1327 1328 pr_debug("%s: registered %d ttyGS* device%s\n", __func__, 1329 MAX_U_SERIAL_PORTS, 1330 (MAX_U_SERIAL_PORTS == 1) ? "" : "s"); 1331 1332 return status; 1333 fail: 1334 put_tty_driver(gs_tty_driver); 1335 gs_tty_driver = NULL; 1336 return status; 1337 } 1338 module_init(userial_init); 1339 1340 static void userial_cleanup(void) 1341 { 1342 tty_unregister_driver(gs_tty_driver); 1343 put_tty_driver(gs_tty_driver); 1344 gs_tty_driver = NULL; 1345 } 1346 module_exit(userial_cleanup); 1347 1348 MODULE_LICENSE("GPL"); 1349