1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * u_serial.c - utilities for USB gadget "serial port"/TTY support 4 * 5 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com) 6 * Copyright (C) 2008 David Brownell 7 * Copyright (C) 2008 by Nokia Corporation 8 * 9 * This code also borrows from usbserial.c, which is 10 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com) 11 * Copyright (C) 2000 Peter Berger (pberger@brimson.com) 12 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com) 13 */ 14 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/kernel.h> 18 #include <linux/sched.h> 19 #include <linux/interrupt.h> 20 #include <linux/device.h> 21 #include <linux/delay.h> 22 #include <linux/tty.h> 23 #include <linux/tty_flip.h> 24 #include <linux/slab.h> 25 #include <linux/export.h> 26 #include <linux/module.h> 27 #include <linux/console.h> 28 #include <linux/kthread.h> 29 30 #include "u_serial.h" 31 32 33 /* 34 * This component encapsulates the TTY layer glue needed to provide basic 35 * "serial port" functionality through the USB gadget stack. Each such 36 * port is exposed through a /dev/ttyGS* node. 37 * 38 * After this module has been loaded, the individual TTY port can be requested 39 * (gserial_alloc_line()) and it will stay available until they are removed 40 * (gserial_free_line()). Each one may be connected to a USB function 41 * (gserial_connect), or disconnected (with gserial_disconnect) when the USB 42 * host issues a config change event. Data can only flow when the port is 43 * connected to the host. 44 * 45 * A given TTY port can be made available in multiple configurations. 46 * For example, each one might expose a ttyGS0 node which provides a 47 * login application. In one case that might use CDC ACM interface 0, 48 * while another configuration might use interface 3 for that. The 49 * work to handle that (including descriptor management) is not part 50 * of this component. 51 * 52 * Configurations may expose more than one TTY port. For example, if 53 * ttyGS0 provides login service, then ttyGS1 might provide dialer access 54 * for a telephone or fax link. And ttyGS2 might be something that just 55 * needs a simple byte stream interface for some messaging protocol that 56 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned. 57 * 58 * 59 * gserial is the lifecycle interface, used by USB functions 60 * gs_port is the I/O nexus, used by the tty driver 61 * tty_struct links to the tty/filesystem framework 62 * 63 * gserial <---> gs_port ... links will be null when the USB link is 64 * inactive; managed by gserial_{connect,disconnect}(). each gserial 65 * instance can wrap its own USB control protocol. 66 * gserial->ioport == usb_ep->driver_data ... gs_port 67 * gs_port->port_usb ... gserial 68 * 69 * gs_port <---> tty_struct ... links will be null when the TTY file 70 * isn't opened; managed by gs_open()/gs_close() 71 * gserial->port_tty ... tty_struct 72 * tty_struct->driver_data ... gserial 73 */ 74 75 /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the 76 * next layer of buffering. For TX that's a circular buffer; for RX 77 * consider it a NOP. A third layer is provided by the TTY code. 78 */ 79 #define QUEUE_SIZE 16 80 #define WRITE_BUF_SIZE 8192 /* TX only */ 81 #define GS_CONSOLE_BUF_SIZE 8192 82 83 /* circular buffer */ 84 struct gs_buf { 85 unsigned buf_size; 86 char *buf_buf; 87 char *buf_get; 88 char *buf_put; 89 }; 90 91 /* console info */ 92 struct gscons_info { 93 struct gs_port *port; 94 struct task_struct *console_thread; 95 struct gs_buf con_buf; 96 /* protect the buf and busy flag */ 97 spinlock_t con_lock; 98 int req_busy; 99 struct usb_request *console_req; 100 }; 101 102 /* 103 * The port structure holds info for each port, one for each minor number 104 * (and thus for each /dev/ node). 105 */ 106 struct gs_port { 107 struct tty_port port; 108 spinlock_t port_lock; /* guard port_* access */ 109 110 struct gserial *port_usb; 111 112 bool openclose; /* open/close in progress */ 113 u8 port_num; 114 115 struct list_head read_pool; 116 int read_started; 117 int read_allocated; 118 struct list_head read_queue; 119 unsigned n_read; 120 struct tasklet_struct push; 121 122 struct list_head write_pool; 123 int write_started; 124 int write_allocated; 125 struct gs_buf port_write_buf; 126 wait_queue_head_t drain_wait; /* wait while writes drain */ 127 bool write_busy; 128 wait_queue_head_t close_wait; 129 130 /* REVISIT this state ... */ 131 struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */ 132 }; 133 134 static struct portmaster { 135 struct mutex lock; /* protect open/close */ 136 struct gs_port *port; 137 } ports[MAX_U_SERIAL_PORTS]; 138 139 #define GS_CLOSE_TIMEOUT 15 /* seconds */ 140 141 142 143 #ifdef VERBOSE_DEBUG 144 #ifndef pr_vdebug 145 #define pr_vdebug(fmt, arg...) \ 146 pr_debug(fmt, ##arg) 147 #endif /* pr_vdebug */ 148 #else 149 #ifndef pr_vdebug 150 #define pr_vdebug(fmt, arg...) \ 151 ({ if (0) pr_debug(fmt, ##arg); }) 152 #endif /* pr_vdebug */ 153 #endif 154 155 /*-------------------------------------------------------------------------*/ 156 157 /* Circular Buffer */ 158 159 /* 160 * gs_buf_alloc 161 * 162 * Allocate a circular buffer and all associated memory. 163 */ 164 static int gs_buf_alloc(struct gs_buf *gb, unsigned size) 165 { 166 gb->buf_buf = kmalloc(size, GFP_KERNEL); 167 if (gb->buf_buf == NULL) 168 return -ENOMEM; 169 170 gb->buf_size = size; 171 gb->buf_put = gb->buf_buf; 172 gb->buf_get = gb->buf_buf; 173 174 return 0; 175 } 176 177 /* 178 * gs_buf_free 179 * 180 * Free the buffer and all associated memory. 181 */ 182 static void gs_buf_free(struct gs_buf *gb) 183 { 184 kfree(gb->buf_buf); 185 gb->buf_buf = NULL; 186 } 187 188 /* 189 * gs_buf_clear 190 * 191 * Clear out all data in the circular buffer. 192 */ 193 static void gs_buf_clear(struct gs_buf *gb) 194 { 195 gb->buf_get = gb->buf_put; 196 /* equivalent to a get of all data available */ 197 } 198 199 /* 200 * gs_buf_data_avail 201 * 202 * Return the number of bytes of data written into the circular 203 * buffer. 204 */ 205 static unsigned gs_buf_data_avail(struct gs_buf *gb) 206 { 207 return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size; 208 } 209 210 /* 211 * gs_buf_space_avail 212 * 213 * Return the number of bytes of space available in the circular 214 * buffer. 215 */ 216 static unsigned gs_buf_space_avail(struct gs_buf *gb) 217 { 218 return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size; 219 } 220 221 /* 222 * gs_buf_put 223 * 224 * Copy data data from a user buffer and put it into the circular buffer. 225 * Restrict to the amount of space available. 226 * 227 * Return the number of bytes copied. 228 */ 229 static unsigned 230 gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count) 231 { 232 unsigned len; 233 234 len = gs_buf_space_avail(gb); 235 if (count > len) 236 count = len; 237 238 if (count == 0) 239 return 0; 240 241 len = gb->buf_buf + gb->buf_size - gb->buf_put; 242 if (count > len) { 243 memcpy(gb->buf_put, buf, len); 244 memcpy(gb->buf_buf, buf+len, count - len); 245 gb->buf_put = gb->buf_buf + count - len; 246 } else { 247 memcpy(gb->buf_put, buf, count); 248 if (count < len) 249 gb->buf_put += count; 250 else /* count == len */ 251 gb->buf_put = gb->buf_buf; 252 } 253 254 return count; 255 } 256 257 /* 258 * gs_buf_get 259 * 260 * Get data from the circular buffer and copy to the given buffer. 261 * Restrict to the amount of data available. 262 * 263 * Return the number of bytes copied. 264 */ 265 static unsigned 266 gs_buf_get(struct gs_buf *gb, char *buf, unsigned count) 267 { 268 unsigned len; 269 270 len = gs_buf_data_avail(gb); 271 if (count > len) 272 count = len; 273 274 if (count == 0) 275 return 0; 276 277 len = gb->buf_buf + gb->buf_size - gb->buf_get; 278 if (count > len) { 279 memcpy(buf, gb->buf_get, len); 280 memcpy(buf+len, gb->buf_buf, count - len); 281 gb->buf_get = gb->buf_buf + count - len; 282 } else { 283 memcpy(buf, gb->buf_get, count); 284 if (count < len) 285 gb->buf_get += count; 286 else /* count == len */ 287 gb->buf_get = gb->buf_buf; 288 } 289 290 return count; 291 } 292 293 /*-------------------------------------------------------------------------*/ 294 295 /* I/O glue between TTY (upper) and USB function (lower) driver layers */ 296 297 /* 298 * gs_alloc_req 299 * 300 * Allocate a usb_request and its buffer. Returns a pointer to the 301 * usb_request or NULL if there is an error. 302 */ 303 struct usb_request * 304 gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags) 305 { 306 struct usb_request *req; 307 308 req = usb_ep_alloc_request(ep, kmalloc_flags); 309 310 if (req != NULL) { 311 req->length = len; 312 req->buf = kmalloc(len, kmalloc_flags); 313 if (req->buf == NULL) { 314 usb_ep_free_request(ep, req); 315 return NULL; 316 } 317 } 318 319 return req; 320 } 321 EXPORT_SYMBOL_GPL(gs_alloc_req); 322 323 /* 324 * gs_free_req 325 * 326 * Free a usb_request and its buffer. 327 */ 328 void gs_free_req(struct usb_ep *ep, struct usb_request *req) 329 { 330 kfree(req->buf); 331 usb_ep_free_request(ep, req); 332 } 333 EXPORT_SYMBOL_GPL(gs_free_req); 334 335 /* 336 * gs_send_packet 337 * 338 * If there is data to send, a packet is built in the given 339 * buffer and the size is returned. If there is no data to 340 * send, 0 is returned. 341 * 342 * Called with port_lock held. 343 */ 344 static unsigned 345 gs_send_packet(struct gs_port *port, char *packet, unsigned size) 346 { 347 unsigned len; 348 349 len = gs_buf_data_avail(&port->port_write_buf); 350 if (len < size) 351 size = len; 352 if (size != 0) 353 size = gs_buf_get(&port->port_write_buf, packet, size); 354 return size; 355 } 356 357 /* 358 * gs_start_tx 359 * 360 * This function finds available write requests, calls 361 * gs_send_packet to fill these packets with data, and 362 * continues until either there are no more write requests 363 * available or no more data to send. This function is 364 * run whenever data arrives or write requests are available. 365 * 366 * Context: caller owns port_lock; port_usb is non-null. 367 */ 368 static int gs_start_tx(struct gs_port *port) 369 /* 370 __releases(&port->port_lock) 371 __acquires(&port->port_lock) 372 */ 373 { 374 struct list_head *pool = &port->write_pool; 375 struct usb_ep *in; 376 int status = 0; 377 bool do_tty_wake = false; 378 379 if (!port->port_usb) 380 return status; 381 382 in = port->port_usb->in; 383 384 while (!port->write_busy && !list_empty(pool)) { 385 struct usb_request *req; 386 int len; 387 388 if (port->write_started >= QUEUE_SIZE) 389 break; 390 391 req = list_entry(pool->next, struct usb_request, list); 392 len = gs_send_packet(port, req->buf, in->maxpacket); 393 if (len == 0) { 394 wake_up_interruptible(&port->drain_wait); 395 break; 396 } 397 do_tty_wake = true; 398 399 req->length = len; 400 list_del(&req->list); 401 req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0); 402 403 pr_vdebug("ttyGS%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n", 404 port->port_num, len, *((u8 *)req->buf), 405 *((u8 *)req->buf+1), *((u8 *)req->buf+2)); 406 407 /* Drop lock while we call out of driver; completions 408 * could be issued while we do so. Disconnection may 409 * happen too; maybe immediately before we queue this! 410 * 411 * NOTE that we may keep sending data for a while after 412 * the TTY closed (dev->ioport->port_tty is NULL). 413 */ 414 port->write_busy = true; 415 spin_unlock(&port->port_lock); 416 status = usb_ep_queue(in, req, GFP_ATOMIC); 417 spin_lock(&port->port_lock); 418 port->write_busy = false; 419 420 if (status) { 421 pr_debug("%s: %s %s err %d\n", 422 __func__, "queue", in->name, status); 423 list_add(&req->list, pool); 424 break; 425 } 426 427 port->write_started++; 428 429 /* abort immediately after disconnect */ 430 if (!port->port_usb) 431 break; 432 } 433 434 if (do_tty_wake && port->port.tty) 435 tty_wakeup(port->port.tty); 436 return status; 437 } 438 439 /* 440 * Context: caller owns port_lock, and port_usb is set 441 */ 442 static unsigned gs_start_rx(struct gs_port *port) 443 /* 444 __releases(&port->port_lock) 445 __acquires(&port->port_lock) 446 */ 447 { 448 struct list_head *pool = &port->read_pool; 449 struct usb_ep *out = port->port_usb->out; 450 451 while (!list_empty(pool)) { 452 struct usb_request *req; 453 int status; 454 struct tty_struct *tty; 455 456 /* no more rx if closed */ 457 tty = port->port.tty; 458 if (!tty) 459 break; 460 461 if (port->read_started >= QUEUE_SIZE) 462 break; 463 464 req = list_entry(pool->next, struct usb_request, list); 465 list_del(&req->list); 466 req->length = out->maxpacket; 467 468 /* drop lock while we call out; the controller driver 469 * may need to call us back (e.g. for disconnect) 470 */ 471 spin_unlock(&port->port_lock); 472 status = usb_ep_queue(out, req, GFP_ATOMIC); 473 spin_lock(&port->port_lock); 474 475 if (status) { 476 pr_debug("%s: %s %s err %d\n", 477 __func__, "queue", out->name, status); 478 list_add(&req->list, pool); 479 break; 480 } 481 port->read_started++; 482 483 /* abort immediately after disconnect */ 484 if (!port->port_usb) 485 break; 486 } 487 return port->read_started; 488 } 489 490 /* 491 * RX tasklet takes data out of the RX queue and hands it up to the TTY 492 * layer until it refuses to take any more data (or is throttled back). 493 * Then it issues reads for any further data. 494 * 495 * If the RX queue becomes full enough that no usb_request is queued, 496 * the OUT endpoint may begin NAKing as soon as its FIFO fills up. 497 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two) 498 * can be buffered before the TTY layer's buffers (currently 64 KB). 499 */ 500 static void gs_rx_push(unsigned long _port) 501 { 502 struct gs_port *port = (void *)_port; 503 struct tty_struct *tty; 504 struct list_head *queue = &port->read_queue; 505 bool disconnect = false; 506 bool do_push = false; 507 508 /* hand any queued data to the tty */ 509 spin_lock_irq(&port->port_lock); 510 tty = port->port.tty; 511 while (!list_empty(queue)) { 512 struct usb_request *req; 513 514 req = list_first_entry(queue, struct usb_request, list); 515 516 /* leave data queued if tty was rx throttled */ 517 if (tty && tty_throttled(tty)) 518 break; 519 520 switch (req->status) { 521 case -ESHUTDOWN: 522 disconnect = true; 523 pr_vdebug("ttyGS%d: shutdown\n", port->port_num); 524 break; 525 526 default: 527 /* presumably a transient fault */ 528 pr_warn("ttyGS%d: unexpected RX status %d\n", 529 port->port_num, req->status); 530 /* FALLTHROUGH */ 531 case 0: 532 /* normal completion */ 533 break; 534 } 535 536 /* push data to (open) tty */ 537 if (req->actual && tty) { 538 char *packet = req->buf; 539 unsigned size = req->actual; 540 unsigned n; 541 int count; 542 543 /* we may have pushed part of this packet already... */ 544 n = port->n_read; 545 if (n) { 546 packet += n; 547 size -= n; 548 } 549 550 count = tty_insert_flip_string(&port->port, packet, 551 size); 552 if (count) 553 do_push = true; 554 if (count != size) { 555 /* stop pushing; TTY layer can't handle more */ 556 port->n_read += count; 557 pr_vdebug("ttyGS%d: rx block %d/%d\n", 558 port->port_num, count, req->actual); 559 break; 560 } 561 port->n_read = 0; 562 } 563 564 list_move(&req->list, &port->read_pool); 565 port->read_started--; 566 } 567 568 /* Push from tty to ldisc; this is handled by a workqueue, 569 * so we won't get callbacks and can hold port_lock 570 */ 571 if (do_push) 572 tty_flip_buffer_push(&port->port); 573 574 575 /* We want our data queue to become empty ASAP, keeping data 576 * in the tty and ldisc (not here). If we couldn't push any 577 * this time around, there may be trouble unless there's an 578 * implicit tty_unthrottle() call on its way... 579 * 580 * REVISIT we should probably add a timer to keep the tasklet 581 * from starving ... but it's not clear that case ever happens. 582 */ 583 if (!list_empty(queue) && tty) { 584 if (!tty_throttled(tty)) { 585 if (do_push) 586 tasklet_schedule(&port->push); 587 else 588 pr_warn("ttyGS%d: RX not scheduled?\n", 589 port->port_num); 590 } 591 } 592 593 /* If we're still connected, refill the USB RX queue. */ 594 if (!disconnect && port->port_usb) 595 gs_start_rx(port); 596 597 spin_unlock_irq(&port->port_lock); 598 } 599 600 static void gs_read_complete(struct usb_ep *ep, struct usb_request *req) 601 { 602 struct gs_port *port = ep->driver_data; 603 604 /* Queue all received data until the tty layer is ready for it. */ 605 spin_lock(&port->port_lock); 606 list_add_tail(&req->list, &port->read_queue); 607 tasklet_schedule(&port->push); 608 spin_unlock(&port->port_lock); 609 } 610 611 static void gs_write_complete(struct usb_ep *ep, struct usb_request *req) 612 { 613 struct gs_port *port = ep->driver_data; 614 615 spin_lock(&port->port_lock); 616 list_add(&req->list, &port->write_pool); 617 port->write_started--; 618 619 switch (req->status) { 620 default: 621 /* presumably a transient fault */ 622 pr_warn("%s: unexpected %s status %d\n", 623 __func__, ep->name, req->status); 624 /* FALL THROUGH */ 625 case 0: 626 /* normal completion */ 627 gs_start_tx(port); 628 break; 629 630 case -ESHUTDOWN: 631 /* disconnect */ 632 pr_vdebug("%s: %s shutdown\n", __func__, ep->name); 633 break; 634 } 635 636 spin_unlock(&port->port_lock); 637 } 638 639 static void gs_free_requests(struct usb_ep *ep, struct list_head *head, 640 int *allocated) 641 { 642 struct usb_request *req; 643 644 while (!list_empty(head)) { 645 req = list_entry(head->next, struct usb_request, list); 646 list_del(&req->list); 647 gs_free_req(ep, req); 648 if (allocated) 649 (*allocated)--; 650 } 651 } 652 653 static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head, 654 void (*fn)(struct usb_ep *, struct usb_request *), 655 int *allocated) 656 { 657 int i; 658 struct usb_request *req; 659 int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE; 660 661 /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't 662 * do quite that many this time, don't fail ... we just won't 663 * be as speedy as we might otherwise be. 664 */ 665 for (i = 0; i < n; i++) { 666 req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC); 667 if (!req) 668 return list_empty(head) ? -ENOMEM : 0; 669 req->complete = fn; 670 list_add_tail(&req->list, head); 671 if (allocated) 672 (*allocated)++; 673 } 674 return 0; 675 } 676 677 /** 678 * gs_start_io - start USB I/O streams 679 * @dev: encapsulates endpoints to use 680 * Context: holding port_lock; port_tty and port_usb are non-null 681 * 682 * We only start I/O when something is connected to both sides of 683 * this port. If nothing is listening on the host side, we may 684 * be pointlessly filling up our TX buffers and FIFO. 685 */ 686 static int gs_start_io(struct gs_port *port) 687 { 688 struct list_head *head = &port->read_pool; 689 struct usb_ep *ep = port->port_usb->out; 690 int status; 691 unsigned started; 692 693 /* Allocate RX and TX I/O buffers. We can't easily do this much 694 * earlier (with GFP_KERNEL) because the requests are coupled to 695 * endpoints, as are the packet sizes we'll be using. Different 696 * configurations may use different endpoints with a given port; 697 * and high speed vs full speed changes packet sizes too. 698 */ 699 status = gs_alloc_requests(ep, head, gs_read_complete, 700 &port->read_allocated); 701 if (status) 702 return status; 703 704 status = gs_alloc_requests(port->port_usb->in, &port->write_pool, 705 gs_write_complete, &port->write_allocated); 706 if (status) { 707 gs_free_requests(ep, head, &port->read_allocated); 708 return status; 709 } 710 711 /* queue read requests */ 712 port->n_read = 0; 713 started = gs_start_rx(port); 714 715 /* unblock any pending writes into our circular buffer */ 716 if (started) { 717 tty_wakeup(port->port.tty); 718 } else { 719 gs_free_requests(ep, head, &port->read_allocated); 720 gs_free_requests(port->port_usb->in, &port->write_pool, 721 &port->write_allocated); 722 status = -EIO; 723 } 724 725 return status; 726 } 727 728 /*-------------------------------------------------------------------------*/ 729 730 /* TTY Driver */ 731 732 /* 733 * gs_open sets up the link between a gs_port and its associated TTY. 734 * That link is broken *only* by TTY close(), and all driver methods 735 * know that. 736 */ 737 static int gs_open(struct tty_struct *tty, struct file *file) 738 { 739 int port_num = tty->index; 740 struct gs_port *port; 741 int status; 742 743 do { 744 mutex_lock(&ports[port_num].lock); 745 port = ports[port_num].port; 746 if (!port) 747 status = -ENODEV; 748 else { 749 spin_lock_irq(&port->port_lock); 750 751 /* already open? Great. */ 752 if (port->port.count) { 753 status = 0; 754 port->port.count++; 755 756 /* currently opening/closing? wait ... */ 757 } else if (port->openclose) { 758 status = -EBUSY; 759 760 /* ... else we do the work */ 761 } else { 762 status = -EAGAIN; 763 port->openclose = true; 764 } 765 spin_unlock_irq(&port->port_lock); 766 } 767 mutex_unlock(&ports[port_num].lock); 768 769 switch (status) { 770 default: 771 /* fully handled */ 772 return status; 773 case -EAGAIN: 774 /* must do the work */ 775 break; 776 case -EBUSY: 777 /* wait for EAGAIN task to finish */ 778 msleep(1); 779 /* REVISIT could have a waitchannel here, if 780 * concurrent open performance is important 781 */ 782 break; 783 } 784 } while (status != -EAGAIN); 785 786 /* Do the "real open" */ 787 spin_lock_irq(&port->port_lock); 788 789 /* allocate circular buffer on first open */ 790 if (port->port_write_buf.buf_buf == NULL) { 791 792 spin_unlock_irq(&port->port_lock); 793 status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE); 794 spin_lock_irq(&port->port_lock); 795 796 if (status) { 797 pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n", 798 port->port_num, tty, file); 799 port->openclose = false; 800 goto exit_unlock_port; 801 } 802 } 803 804 /* REVISIT if REMOVED (ports[].port NULL), abort the open 805 * to let rmmod work faster (but this way isn't wrong). 806 */ 807 808 /* REVISIT maybe wait for "carrier detect" */ 809 810 tty->driver_data = port; 811 port->port.tty = tty; 812 813 port->port.count = 1; 814 port->openclose = false; 815 816 /* if connected, start the I/O stream */ 817 if (port->port_usb) { 818 struct gserial *gser = port->port_usb; 819 820 pr_debug("gs_open: start ttyGS%d\n", port->port_num); 821 gs_start_io(port); 822 823 if (gser->connect) 824 gser->connect(gser); 825 } 826 827 pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file); 828 829 status = 0; 830 831 exit_unlock_port: 832 spin_unlock_irq(&port->port_lock); 833 return status; 834 } 835 836 static int gs_writes_finished(struct gs_port *p) 837 { 838 int cond; 839 840 /* return true on disconnect or empty buffer */ 841 spin_lock_irq(&p->port_lock); 842 cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf); 843 spin_unlock_irq(&p->port_lock); 844 845 return cond; 846 } 847 848 static void gs_close(struct tty_struct *tty, struct file *file) 849 { 850 struct gs_port *port = tty->driver_data; 851 struct gserial *gser; 852 853 spin_lock_irq(&port->port_lock); 854 855 if (port->port.count != 1) { 856 if (port->port.count == 0) 857 WARN_ON(1); 858 else 859 --port->port.count; 860 goto exit; 861 } 862 863 pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file); 864 865 /* mark port as closing but in use; we can drop port lock 866 * and sleep if necessary 867 */ 868 port->openclose = true; 869 port->port.count = 0; 870 871 gser = port->port_usb; 872 if (gser && gser->disconnect) 873 gser->disconnect(gser); 874 875 /* wait for circular write buffer to drain, disconnect, or at 876 * most GS_CLOSE_TIMEOUT seconds; then discard the rest 877 */ 878 if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) { 879 spin_unlock_irq(&port->port_lock); 880 wait_event_interruptible_timeout(port->drain_wait, 881 gs_writes_finished(port), 882 GS_CLOSE_TIMEOUT * HZ); 883 spin_lock_irq(&port->port_lock); 884 gser = port->port_usb; 885 } 886 887 /* Iff we're disconnected, there can be no I/O in flight so it's 888 * ok to free the circular buffer; else just scrub it. And don't 889 * let the push tasklet fire again until we're re-opened. 890 */ 891 if (gser == NULL) 892 gs_buf_free(&port->port_write_buf); 893 else 894 gs_buf_clear(&port->port_write_buf); 895 896 port->port.tty = NULL; 897 898 port->openclose = false; 899 900 pr_debug("gs_close: ttyGS%d (%p,%p) done!\n", 901 port->port_num, tty, file); 902 903 wake_up(&port->close_wait); 904 exit: 905 spin_unlock_irq(&port->port_lock); 906 } 907 908 static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count) 909 { 910 struct gs_port *port = tty->driver_data; 911 unsigned long flags; 912 913 pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n", 914 port->port_num, tty, count); 915 916 spin_lock_irqsave(&port->port_lock, flags); 917 if (count) 918 count = gs_buf_put(&port->port_write_buf, buf, count); 919 /* treat count == 0 as flush_chars() */ 920 if (port->port_usb) 921 gs_start_tx(port); 922 spin_unlock_irqrestore(&port->port_lock, flags); 923 924 return count; 925 } 926 927 static int gs_put_char(struct tty_struct *tty, unsigned char ch) 928 { 929 struct gs_port *port = tty->driver_data; 930 unsigned long flags; 931 int status; 932 933 pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %ps\n", 934 port->port_num, tty, ch, __builtin_return_address(0)); 935 936 spin_lock_irqsave(&port->port_lock, flags); 937 status = gs_buf_put(&port->port_write_buf, &ch, 1); 938 spin_unlock_irqrestore(&port->port_lock, flags); 939 940 return status; 941 } 942 943 static void gs_flush_chars(struct tty_struct *tty) 944 { 945 struct gs_port *port = tty->driver_data; 946 unsigned long flags; 947 948 pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty); 949 950 spin_lock_irqsave(&port->port_lock, flags); 951 if (port->port_usb) 952 gs_start_tx(port); 953 spin_unlock_irqrestore(&port->port_lock, flags); 954 } 955 956 static int gs_write_room(struct tty_struct *tty) 957 { 958 struct gs_port *port = tty->driver_data; 959 unsigned long flags; 960 int room = 0; 961 962 spin_lock_irqsave(&port->port_lock, flags); 963 if (port->port_usb) 964 room = gs_buf_space_avail(&port->port_write_buf); 965 spin_unlock_irqrestore(&port->port_lock, flags); 966 967 pr_vdebug("gs_write_room: (%d,%p) room=%d\n", 968 port->port_num, tty, room); 969 970 return room; 971 } 972 973 static int gs_chars_in_buffer(struct tty_struct *tty) 974 { 975 struct gs_port *port = tty->driver_data; 976 unsigned long flags; 977 int chars = 0; 978 979 spin_lock_irqsave(&port->port_lock, flags); 980 chars = gs_buf_data_avail(&port->port_write_buf); 981 spin_unlock_irqrestore(&port->port_lock, flags); 982 983 pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n", 984 port->port_num, tty, chars); 985 986 return chars; 987 } 988 989 /* undo side effects of setting TTY_THROTTLED */ 990 static void gs_unthrottle(struct tty_struct *tty) 991 { 992 struct gs_port *port = tty->driver_data; 993 unsigned long flags; 994 995 spin_lock_irqsave(&port->port_lock, flags); 996 if (port->port_usb) { 997 /* Kickstart read queue processing. We don't do xon/xoff, 998 * rts/cts, or other handshaking with the host, but if the 999 * read queue backs up enough we'll be NAKing OUT packets. 1000 */ 1001 tasklet_schedule(&port->push); 1002 pr_vdebug("ttyGS%d: unthrottle\n", port->port_num); 1003 } 1004 spin_unlock_irqrestore(&port->port_lock, flags); 1005 } 1006 1007 static int gs_break_ctl(struct tty_struct *tty, int duration) 1008 { 1009 struct gs_port *port = tty->driver_data; 1010 int status = 0; 1011 struct gserial *gser; 1012 1013 pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n", 1014 port->port_num, duration); 1015 1016 spin_lock_irq(&port->port_lock); 1017 gser = port->port_usb; 1018 if (gser && gser->send_break) 1019 status = gser->send_break(gser, duration); 1020 spin_unlock_irq(&port->port_lock); 1021 1022 return status; 1023 } 1024 1025 static const struct tty_operations gs_tty_ops = { 1026 .open = gs_open, 1027 .close = gs_close, 1028 .write = gs_write, 1029 .put_char = gs_put_char, 1030 .flush_chars = gs_flush_chars, 1031 .write_room = gs_write_room, 1032 .chars_in_buffer = gs_chars_in_buffer, 1033 .unthrottle = gs_unthrottle, 1034 .break_ctl = gs_break_ctl, 1035 }; 1036 1037 /*-------------------------------------------------------------------------*/ 1038 1039 static struct tty_driver *gs_tty_driver; 1040 1041 #ifdef CONFIG_U_SERIAL_CONSOLE 1042 1043 static struct gscons_info gscons_info; 1044 static struct console gserial_cons; 1045 1046 static struct usb_request *gs_request_new(struct usb_ep *ep) 1047 { 1048 struct usb_request *req = usb_ep_alloc_request(ep, GFP_ATOMIC); 1049 if (!req) 1050 return NULL; 1051 1052 req->buf = kmalloc(ep->maxpacket, GFP_ATOMIC); 1053 if (!req->buf) { 1054 usb_ep_free_request(ep, req); 1055 return NULL; 1056 } 1057 1058 return req; 1059 } 1060 1061 static void gs_request_free(struct usb_request *req, struct usb_ep *ep) 1062 { 1063 if (!req) 1064 return; 1065 1066 kfree(req->buf); 1067 usb_ep_free_request(ep, req); 1068 } 1069 1070 static void gs_complete_out(struct usb_ep *ep, struct usb_request *req) 1071 { 1072 struct gscons_info *info = &gscons_info; 1073 1074 switch (req->status) { 1075 default: 1076 pr_warn("%s: unexpected %s status %d\n", 1077 __func__, ep->name, req->status); 1078 /* fall through */ 1079 case 0: 1080 /* normal completion */ 1081 spin_lock(&info->con_lock); 1082 info->req_busy = 0; 1083 spin_unlock(&info->con_lock); 1084 1085 wake_up_process(info->console_thread); 1086 break; 1087 case -ESHUTDOWN: 1088 /* disconnect */ 1089 pr_vdebug("%s: %s shutdown\n", __func__, ep->name); 1090 break; 1091 } 1092 } 1093 1094 static int gs_console_connect(int port_num) 1095 { 1096 struct gscons_info *info = &gscons_info; 1097 struct gs_port *port; 1098 struct usb_ep *ep; 1099 1100 if (port_num != gserial_cons.index) { 1101 pr_err("%s: port num [%d] is not support console\n", 1102 __func__, port_num); 1103 return -ENXIO; 1104 } 1105 1106 port = ports[port_num].port; 1107 ep = port->port_usb->in; 1108 if (!info->console_req) { 1109 info->console_req = gs_request_new(ep); 1110 if (!info->console_req) 1111 return -ENOMEM; 1112 info->console_req->complete = gs_complete_out; 1113 } 1114 1115 info->port = port; 1116 spin_lock(&info->con_lock); 1117 info->req_busy = 0; 1118 spin_unlock(&info->con_lock); 1119 pr_vdebug("port[%d] console connect!\n", port_num); 1120 return 0; 1121 } 1122 1123 static void gs_console_disconnect(struct usb_ep *ep) 1124 { 1125 struct gscons_info *info = &gscons_info; 1126 struct usb_request *req = info->console_req; 1127 1128 gs_request_free(req, ep); 1129 info->console_req = NULL; 1130 } 1131 1132 static int gs_console_thread(void *data) 1133 { 1134 struct gscons_info *info = &gscons_info; 1135 struct gs_port *port; 1136 struct usb_request *req; 1137 struct usb_ep *ep; 1138 int xfer, ret, count, size; 1139 1140 do { 1141 port = info->port; 1142 set_current_state(TASK_INTERRUPTIBLE); 1143 if (!port || !port->port_usb 1144 || !port->port_usb->in || !info->console_req) 1145 goto sched; 1146 1147 req = info->console_req; 1148 ep = port->port_usb->in; 1149 1150 spin_lock_irq(&info->con_lock); 1151 count = gs_buf_data_avail(&info->con_buf); 1152 size = ep->maxpacket; 1153 1154 if (count > 0 && !info->req_busy) { 1155 set_current_state(TASK_RUNNING); 1156 if (count < size) 1157 size = count; 1158 1159 xfer = gs_buf_get(&info->con_buf, req->buf, size); 1160 req->length = xfer; 1161 1162 spin_unlock(&info->con_lock); 1163 ret = usb_ep_queue(ep, req, GFP_ATOMIC); 1164 spin_lock(&info->con_lock); 1165 if (ret < 0) 1166 info->req_busy = 0; 1167 else 1168 info->req_busy = 1; 1169 1170 spin_unlock_irq(&info->con_lock); 1171 } else { 1172 spin_unlock_irq(&info->con_lock); 1173 sched: 1174 if (kthread_should_stop()) { 1175 set_current_state(TASK_RUNNING); 1176 break; 1177 } 1178 schedule(); 1179 } 1180 } while (1); 1181 1182 return 0; 1183 } 1184 1185 static int gs_console_setup(struct console *co, char *options) 1186 { 1187 struct gscons_info *info = &gscons_info; 1188 int status; 1189 1190 info->port = NULL; 1191 info->console_req = NULL; 1192 info->req_busy = 0; 1193 spin_lock_init(&info->con_lock); 1194 1195 status = gs_buf_alloc(&info->con_buf, GS_CONSOLE_BUF_SIZE); 1196 if (status) { 1197 pr_err("%s: allocate console buffer failed\n", __func__); 1198 return status; 1199 } 1200 1201 info->console_thread = kthread_create(gs_console_thread, 1202 co, "gs_console"); 1203 if (IS_ERR(info->console_thread)) { 1204 pr_err("%s: cannot create console thread\n", __func__); 1205 gs_buf_free(&info->con_buf); 1206 return PTR_ERR(info->console_thread); 1207 } 1208 wake_up_process(info->console_thread); 1209 1210 return 0; 1211 } 1212 1213 static void gs_console_write(struct console *co, 1214 const char *buf, unsigned count) 1215 { 1216 struct gscons_info *info = &gscons_info; 1217 unsigned long flags; 1218 1219 spin_lock_irqsave(&info->con_lock, flags); 1220 gs_buf_put(&info->con_buf, buf, count); 1221 spin_unlock_irqrestore(&info->con_lock, flags); 1222 1223 wake_up_process(info->console_thread); 1224 } 1225 1226 static struct tty_driver *gs_console_device(struct console *co, int *index) 1227 { 1228 struct tty_driver **p = (struct tty_driver **)co->data; 1229 1230 if (!*p) 1231 return NULL; 1232 1233 *index = co->index; 1234 return *p; 1235 } 1236 1237 static struct console gserial_cons = { 1238 .name = "ttyGS", 1239 .write = gs_console_write, 1240 .device = gs_console_device, 1241 .setup = gs_console_setup, 1242 .flags = CON_PRINTBUFFER, 1243 .index = -1, 1244 .data = &gs_tty_driver, 1245 }; 1246 1247 static void gserial_console_init(void) 1248 { 1249 register_console(&gserial_cons); 1250 } 1251 1252 static void gserial_console_exit(void) 1253 { 1254 struct gscons_info *info = &gscons_info; 1255 1256 unregister_console(&gserial_cons); 1257 if (!IS_ERR_OR_NULL(info->console_thread)) 1258 kthread_stop(info->console_thread); 1259 gs_buf_free(&info->con_buf); 1260 } 1261 1262 #else 1263 1264 static int gs_console_connect(int port_num) 1265 { 1266 return 0; 1267 } 1268 1269 static void gs_console_disconnect(struct usb_ep *ep) 1270 { 1271 } 1272 1273 static void gserial_console_init(void) 1274 { 1275 } 1276 1277 static void gserial_console_exit(void) 1278 { 1279 } 1280 1281 #endif 1282 1283 static int 1284 gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding) 1285 { 1286 struct gs_port *port; 1287 int ret = 0; 1288 1289 mutex_lock(&ports[port_num].lock); 1290 if (ports[port_num].port) { 1291 ret = -EBUSY; 1292 goto out; 1293 } 1294 1295 port = kzalloc(sizeof(struct gs_port), GFP_KERNEL); 1296 if (port == NULL) { 1297 ret = -ENOMEM; 1298 goto out; 1299 } 1300 1301 tty_port_init(&port->port); 1302 spin_lock_init(&port->port_lock); 1303 init_waitqueue_head(&port->drain_wait); 1304 init_waitqueue_head(&port->close_wait); 1305 1306 tasklet_init(&port->push, gs_rx_push, (unsigned long) port); 1307 1308 INIT_LIST_HEAD(&port->read_pool); 1309 INIT_LIST_HEAD(&port->read_queue); 1310 INIT_LIST_HEAD(&port->write_pool); 1311 1312 port->port_num = port_num; 1313 port->port_line_coding = *coding; 1314 1315 ports[port_num].port = port; 1316 out: 1317 mutex_unlock(&ports[port_num].lock); 1318 return ret; 1319 } 1320 1321 static int gs_closed(struct gs_port *port) 1322 { 1323 int cond; 1324 1325 spin_lock_irq(&port->port_lock); 1326 cond = (port->port.count == 0) && !port->openclose; 1327 spin_unlock_irq(&port->port_lock); 1328 return cond; 1329 } 1330 1331 static void gserial_free_port(struct gs_port *port) 1332 { 1333 tasklet_kill(&port->push); 1334 /* wait for old opens to finish */ 1335 wait_event(port->close_wait, gs_closed(port)); 1336 WARN_ON(port->port_usb != NULL); 1337 tty_port_destroy(&port->port); 1338 kfree(port); 1339 } 1340 1341 void gserial_free_line(unsigned char port_num) 1342 { 1343 struct gs_port *port; 1344 1345 mutex_lock(&ports[port_num].lock); 1346 if (WARN_ON(!ports[port_num].port)) { 1347 mutex_unlock(&ports[port_num].lock); 1348 return; 1349 } 1350 port = ports[port_num].port; 1351 ports[port_num].port = NULL; 1352 mutex_unlock(&ports[port_num].lock); 1353 1354 gserial_free_port(port); 1355 tty_unregister_device(gs_tty_driver, port_num); 1356 gserial_console_exit(); 1357 } 1358 EXPORT_SYMBOL_GPL(gserial_free_line); 1359 1360 int gserial_alloc_line(unsigned char *line_num) 1361 { 1362 struct usb_cdc_line_coding coding; 1363 struct device *tty_dev; 1364 int ret; 1365 int port_num; 1366 1367 coding.dwDTERate = cpu_to_le32(9600); 1368 coding.bCharFormat = 8; 1369 coding.bParityType = USB_CDC_NO_PARITY; 1370 coding.bDataBits = USB_CDC_1_STOP_BITS; 1371 1372 for (port_num = 0; port_num < MAX_U_SERIAL_PORTS; port_num++) { 1373 ret = gs_port_alloc(port_num, &coding); 1374 if (ret == -EBUSY) 1375 continue; 1376 if (ret) 1377 return ret; 1378 break; 1379 } 1380 if (ret) 1381 return ret; 1382 1383 /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */ 1384 1385 tty_dev = tty_port_register_device(&ports[port_num].port->port, 1386 gs_tty_driver, port_num, NULL); 1387 if (IS_ERR(tty_dev)) { 1388 struct gs_port *port; 1389 pr_err("%s: failed to register tty for port %d, err %ld\n", 1390 __func__, port_num, PTR_ERR(tty_dev)); 1391 1392 ret = PTR_ERR(tty_dev); 1393 port = ports[port_num].port; 1394 ports[port_num].port = NULL; 1395 gserial_free_port(port); 1396 goto err; 1397 } 1398 *line_num = port_num; 1399 gserial_console_init(); 1400 err: 1401 return ret; 1402 } 1403 EXPORT_SYMBOL_GPL(gserial_alloc_line); 1404 1405 /** 1406 * gserial_connect - notify TTY I/O glue that USB link is active 1407 * @gser: the function, set up with endpoints and descriptors 1408 * @port_num: which port is active 1409 * Context: any (usually from irq) 1410 * 1411 * This is called activate endpoints and let the TTY layer know that 1412 * the connection is active ... not unlike "carrier detect". It won't 1413 * necessarily start I/O queues; unless the TTY is held open by any 1414 * task, there would be no point. However, the endpoints will be 1415 * activated so the USB host can perform I/O, subject to basic USB 1416 * hardware flow control. 1417 * 1418 * Caller needs to have set up the endpoints and USB function in @dev 1419 * before calling this, as well as the appropriate (speed-specific) 1420 * endpoint descriptors, and also have allocate @port_num by calling 1421 * @gserial_alloc_line(). 1422 * 1423 * Returns negative errno or zero. 1424 * On success, ep->driver_data will be overwritten. 1425 */ 1426 int gserial_connect(struct gserial *gser, u8 port_num) 1427 { 1428 struct gs_port *port; 1429 unsigned long flags; 1430 int status; 1431 1432 if (port_num >= MAX_U_SERIAL_PORTS) 1433 return -ENXIO; 1434 1435 port = ports[port_num].port; 1436 if (!port) { 1437 pr_err("serial line %d not allocated.\n", port_num); 1438 return -EINVAL; 1439 } 1440 if (port->port_usb) { 1441 pr_err("serial line %d is in use.\n", port_num); 1442 return -EBUSY; 1443 } 1444 1445 /* activate the endpoints */ 1446 status = usb_ep_enable(gser->in); 1447 if (status < 0) 1448 return status; 1449 gser->in->driver_data = port; 1450 1451 status = usb_ep_enable(gser->out); 1452 if (status < 0) 1453 goto fail_out; 1454 gser->out->driver_data = port; 1455 1456 /* then tell the tty glue that I/O can work */ 1457 spin_lock_irqsave(&port->port_lock, flags); 1458 gser->ioport = port; 1459 port->port_usb = gser; 1460 1461 /* REVISIT unclear how best to handle this state... 1462 * we don't really couple it with the Linux TTY. 1463 */ 1464 gser->port_line_coding = port->port_line_coding; 1465 1466 /* REVISIT if waiting on "carrier detect", signal. */ 1467 1468 /* if it's already open, start I/O ... and notify the serial 1469 * protocol about open/close status (connect/disconnect). 1470 */ 1471 if (port->port.count) { 1472 pr_debug("gserial_connect: start ttyGS%d\n", port->port_num); 1473 gs_start_io(port); 1474 if (gser->connect) 1475 gser->connect(gser); 1476 } else { 1477 if (gser->disconnect) 1478 gser->disconnect(gser); 1479 } 1480 1481 status = gs_console_connect(port_num); 1482 spin_unlock_irqrestore(&port->port_lock, flags); 1483 1484 return status; 1485 1486 fail_out: 1487 usb_ep_disable(gser->in); 1488 return status; 1489 } 1490 EXPORT_SYMBOL_GPL(gserial_connect); 1491 /** 1492 * gserial_disconnect - notify TTY I/O glue that USB link is inactive 1493 * @gser: the function, on which gserial_connect() was called 1494 * Context: any (usually from irq) 1495 * 1496 * This is called to deactivate endpoints and let the TTY layer know 1497 * that the connection went inactive ... not unlike "hangup". 1498 * 1499 * On return, the state is as if gserial_connect() had never been called; 1500 * there is no active USB I/O on these endpoints. 1501 */ 1502 void gserial_disconnect(struct gserial *gser) 1503 { 1504 struct gs_port *port = gser->ioport; 1505 unsigned long flags; 1506 1507 if (!port) 1508 return; 1509 1510 /* tell the TTY glue not to do I/O here any more */ 1511 spin_lock_irqsave(&port->port_lock, flags); 1512 1513 /* REVISIT as above: how best to track this? */ 1514 port->port_line_coding = gser->port_line_coding; 1515 1516 port->port_usb = NULL; 1517 gser->ioport = NULL; 1518 if (port->port.count > 0 || port->openclose) { 1519 wake_up_interruptible(&port->drain_wait); 1520 if (port->port.tty) 1521 tty_hangup(port->port.tty); 1522 } 1523 spin_unlock_irqrestore(&port->port_lock, flags); 1524 1525 /* disable endpoints, aborting down any active I/O */ 1526 usb_ep_disable(gser->out); 1527 usb_ep_disable(gser->in); 1528 1529 /* finally, free any unused/unusable I/O buffers */ 1530 spin_lock_irqsave(&port->port_lock, flags); 1531 if (port->port.count == 0 && !port->openclose) 1532 gs_buf_free(&port->port_write_buf); 1533 gs_free_requests(gser->out, &port->read_pool, NULL); 1534 gs_free_requests(gser->out, &port->read_queue, NULL); 1535 gs_free_requests(gser->in, &port->write_pool, NULL); 1536 1537 port->read_allocated = port->read_started = 1538 port->write_allocated = port->write_started = 0; 1539 1540 gs_console_disconnect(gser->in); 1541 spin_unlock_irqrestore(&port->port_lock, flags); 1542 } 1543 EXPORT_SYMBOL_GPL(gserial_disconnect); 1544 1545 static int userial_init(void) 1546 { 1547 unsigned i; 1548 int status; 1549 1550 gs_tty_driver = alloc_tty_driver(MAX_U_SERIAL_PORTS); 1551 if (!gs_tty_driver) 1552 return -ENOMEM; 1553 1554 gs_tty_driver->driver_name = "g_serial"; 1555 gs_tty_driver->name = "ttyGS"; 1556 /* uses dynamically assigned dev_t values */ 1557 1558 gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL; 1559 gs_tty_driver->subtype = SERIAL_TYPE_NORMAL; 1560 gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 1561 gs_tty_driver->init_termios = tty_std_termios; 1562 1563 /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on 1564 * MS-Windows. Otherwise, most of these flags shouldn't affect 1565 * anything unless we were to actually hook up to a serial line. 1566 */ 1567 gs_tty_driver->init_termios.c_cflag = 1568 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 1569 gs_tty_driver->init_termios.c_ispeed = 9600; 1570 gs_tty_driver->init_termios.c_ospeed = 9600; 1571 1572 tty_set_operations(gs_tty_driver, &gs_tty_ops); 1573 for (i = 0; i < MAX_U_SERIAL_PORTS; i++) 1574 mutex_init(&ports[i].lock); 1575 1576 /* export the driver ... */ 1577 status = tty_register_driver(gs_tty_driver); 1578 if (status) { 1579 pr_err("%s: cannot register, err %d\n", 1580 __func__, status); 1581 goto fail; 1582 } 1583 1584 pr_debug("%s: registered %d ttyGS* device%s\n", __func__, 1585 MAX_U_SERIAL_PORTS, 1586 (MAX_U_SERIAL_PORTS == 1) ? "" : "s"); 1587 1588 return status; 1589 fail: 1590 put_tty_driver(gs_tty_driver); 1591 gs_tty_driver = NULL; 1592 return status; 1593 } 1594 module_init(userial_init); 1595 1596 static void userial_cleanup(void) 1597 { 1598 tty_unregister_driver(gs_tty_driver); 1599 put_tty_driver(gs_tty_driver); 1600 gs_tty_driver = NULL; 1601 } 1602 module_exit(userial_cleanup); 1603 1604 MODULE_LICENSE("GPL"); 1605