1 /* 2 * u_serial.c - utilities for USB gadget "serial port"/TTY support 3 * 4 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com) 5 * Copyright (C) 2008 David Brownell 6 * Copyright (C) 2008 by Nokia Corporation 7 * 8 * This code also borrows from usbserial.c, which is 9 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com) 10 * Copyright (C) 2000 Peter Berger (pberger@brimson.com) 11 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com) 12 * 13 * This software is distributed under the terms of the GNU General 14 * Public License ("GPL") as published by the Free Software Foundation, 15 * either version 2 of that License or (at your option) any later version. 16 */ 17 18 /* #define VERBOSE_DEBUG */ 19 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/delay.h> 25 #include <linux/tty.h> 26 #include <linux/tty_flip.h> 27 #include <linux/slab.h> 28 #include <linux/export.h> 29 #include <linux/module.h> 30 31 #include "u_serial.h" 32 33 34 /* 35 * This component encapsulates the TTY layer glue needed to provide basic 36 * "serial port" functionality through the USB gadget stack. Each such 37 * port is exposed through a /dev/ttyGS* node. 38 * 39 * After this module has been loaded, the individual TTY port can be requested 40 * (gserial_alloc_line()) and it will stay available until they are removed 41 * (gserial_free_line()). Each one may be connected to a USB function 42 * (gserial_connect), or disconnected (with gserial_disconnect) when the USB 43 * host issues a config change event. Data can only flow when the port is 44 * connected to the host. 45 * 46 * A given TTY port can be made available in multiple configurations. 47 * For example, each one might expose a ttyGS0 node which provides a 48 * login application. In one case that might use CDC ACM interface 0, 49 * while another configuration might use interface 3 for that. The 50 * work to handle that (including descriptor management) is not part 51 * of this component. 52 * 53 * Configurations may expose more than one TTY port. For example, if 54 * ttyGS0 provides login service, then ttyGS1 might provide dialer access 55 * for a telephone or fax link. And ttyGS2 might be something that just 56 * needs a simple byte stream interface for some messaging protocol that 57 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned. 58 * 59 * 60 * gserial is the lifecycle interface, used by USB functions 61 * gs_port is the I/O nexus, used by the tty driver 62 * tty_struct links to the tty/filesystem framework 63 * 64 * gserial <---> gs_port ... links will be null when the USB link is 65 * inactive; managed by gserial_{connect,disconnect}(). each gserial 66 * instance can wrap its own USB control protocol. 67 * gserial->ioport == usb_ep->driver_data ... gs_port 68 * gs_port->port_usb ... gserial 69 * 70 * gs_port <---> tty_struct ... links will be null when the TTY file 71 * isn't opened; managed by gs_open()/gs_close() 72 * gserial->port_tty ... tty_struct 73 * tty_struct->driver_data ... gserial 74 */ 75 76 /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the 77 * next layer of buffering. For TX that's a circular buffer; for RX 78 * consider it a NOP. A third layer is provided by the TTY code. 79 */ 80 #define QUEUE_SIZE 16 81 #define WRITE_BUF_SIZE 8192 /* TX only */ 82 83 /* circular buffer */ 84 struct gs_buf { 85 unsigned buf_size; 86 char *buf_buf; 87 char *buf_get; 88 char *buf_put; 89 }; 90 91 /* 92 * The port structure holds info for each port, one for each minor number 93 * (and thus for each /dev/ node). 94 */ 95 struct gs_port { 96 struct tty_port port; 97 spinlock_t port_lock; /* guard port_* access */ 98 99 struct gserial *port_usb; 100 101 bool openclose; /* open/close in progress */ 102 u8 port_num; 103 104 struct list_head read_pool; 105 int read_started; 106 int read_allocated; 107 struct list_head read_queue; 108 unsigned n_read; 109 struct tasklet_struct push; 110 111 struct list_head write_pool; 112 int write_started; 113 int write_allocated; 114 struct gs_buf port_write_buf; 115 wait_queue_head_t drain_wait; /* wait while writes drain */ 116 117 /* REVISIT this state ... */ 118 struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */ 119 }; 120 121 static struct portmaster { 122 struct mutex lock; /* protect open/close */ 123 struct gs_port *port; 124 } ports[MAX_U_SERIAL_PORTS]; 125 126 #define GS_CLOSE_TIMEOUT 15 /* seconds */ 127 128 129 130 #ifdef VERBOSE_DEBUG 131 #ifndef pr_vdebug 132 #define pr_vdebug(fmt, arg...) \ 133 pr_debug(fmt, ##arg) 134 #endif /* pr_vdebug */ 135 #else 136 #ifndef pr_vdebug 137 #define pr_vdebug(fmt, arg...) \ 138 ({ if (0) pr_debug(fmt, ##arg); }) 139 #endif /* pr_vdebug */ 140 #endif 141 142 /*-------------------------------------------------------------------------*/ 143 144 /* Circular Buffer */ 145 146 /* 147 * gs_buf_alloc 148 * 149 * Allocate a circular buffer and all associated memory. 150 */ 151 static int gs_buf_alloc(struct gs_buf *gb, unsigned size) 152 { 153 gb->buf_buf = kmalloc(size, GFP_KERNEL); 154 if (gb->buf_buf == NULL) 155 return -ENOMEM; 156 157 gb->buf_size = size; 158 gb->buf_put = gb->buf_buf; 159 gb->buf_get = gb->buf_buf; 160 161 return 0; 162 } 163 164 /* 165 * gs_buf_free 166 * 167 * Free the buffer and all associated memory. 168 */ 169 static void gs_buf_free(struct gs_buf *gb) 170 { 171 kfree(gb->buf_buf); 172 gb->buf_buf = NULL; 173 } 174 175 /* 176 * gs_buf_clear 177 * 178 * Clear out all data in the circular buffer. 179 */ 180 static void gs_buf_clear(struct gs_buf *gb) 181 { 182 gb->buf_get = gb->buf_put; 183 /* equivalent to a get of all data available */ 184 } 185 186 /* 187 * gs_buf_data_avail 188 * 189 * Return the number of bytes of data written into the circular 190 * buffer. 191 */ 192 static unsigned gs_buf_data_avail(struct gs_buf *gb) 193 { 194 return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size; 195 } 196 197 /* 198 * gs_buf_space_avail 199 * 200 * Return the number of bytes of space available in the circular 201 * buffer. 202 */ 203 static unsigned gs_buf_space_avail(struct gs_buf *gb) 204 { 205 return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size; 206 } 207 208 /* 209 * gs_buf_put 210 * 211 * Copy data data from a user buffer and put it into the circular buffer. 212 * Restrict to the amount of space available. 213 * 214 * Return the number of bytes copied. 215 */ 216 static unsigned 217 gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count) 218 { 219 unsigned len; 220 221 len = gs_buf_space_avail(gb); 222 if (count > len) 223 count = len; 224 225 if (count == 0) 226 return 0; 227 228 len = gb->buf_buf + gb->buf_size - gb->buf_put; 229 if (count > len) { 230 memcpy(gb->buf_put, buf, len); 231 memcpy(gb->buf_buf, buf+len, count - len); 232 gb->buf_put = gb->buf_buf + count - len; 233 } else { 234 memcpy(gb->buf_put, buf, count); 235 if (count < len) 236 gb->buf_put += count; 237 else /* count == len */ 238 gb->buf_put = gb->buf_buf; 239 } 240 241 return count; 242 } 243 244 /* 245 * gs_buf_get 246 * 247 * Get data from the circular buffer and copy to the given buffer. 248 * Restrict to the amount of data available. 249 * 250 * Return the number of bytes copied. 251 */ 252 static unsigned 253 gs_buf_get(struct gs_buf *gb, char *buf, unsigned count) 254 { 255 unsigned len; 256 257 len = gs_buf_data_avail(gb); 258 if (count > len) 259 count = len; 260 261 if (count == 0) 262 return 0; 263 264 len = gb->buf_buf + gb->buf_size - gb->buf_get; 265 if (count > len) { 266 memcpy(buf, gb->buf_get, len); 267 memcpy(buf+len, gb->buf_buf, count - len); 268 gb->buf_get = gb->buf_buf + count - len; 269 } else { 270 memcpy(buf, gb->buf_get, count); 271 if (count < len) 272 gb->buf_get += count; 273 else /* count == len */ 274 gb->buf_get = gb->buf_buf; 275 } 276 277 return count; 278 } 279 280 /*-------------------------------------------------------------------------*/ 281 282 /* I/O glue between TTY (upper) and USB function (lower) driver layers */ 283 284 /* 285 * gs_alloc_req 286 * 287 * Allocate a usb_request and its buffer. Returns a pointer to the 288 * usb_request or NULL if there is an error. 289 */ 290 struct usb_request * 291 gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags) 292 { 293 struct usb_request *req; 294 295 req = usb_ep_alloc_request(ep, kmalloc_flags); 296 297 if (req != NULL) { 298 req->length = len; 299 req->buf = kmalloc(len, kmalloc_flags); 300 if (req->buf == NULL) { 301 usb_ep_free_request(ep, req); 302 return NULL; 303 } 304 } 305 306 return req; 307 } 308 EXPORT_SYMBOL_GPL(gs_alloc_req); 309 310 /* 311 * gs_free_req 312 * 313 * Free a usb_request and its buffer. 314 */ 315 void gs_free_req(struct usb_ep *ep, struct usb_request *req) 316 { 317 kfree(req->buf); 318 usb_ep_free_request(ep, req); 319 } 320 EXPORT_SYMBOL_GPL(gs_free_req); 321 322 /* 323 * gs_send_packet 324 * 325 * If there is data to send, a packet is built in the given 326 * buffer and the size is returned. If there is no data to 327 * send, 0 is returned. 328 * 329 * Called with port_lock held. 330 */ 331 static unsigned 332 gs_send_packet(struct gs_port *port, char *packet, unsigned size) 333 { 334 unsigned len; 335 336 len = gs_buf_data_avail(&port->port_write_buf); 337 if (len < size) 338 size = len; 339 if (size != 0) 340 size = gs_buf_get(&port->port_write_buf, packet, size); 341 return size; 342 } 343 344 /* 345 * gs_start_tx 346 * 347 * This function finds available write requests, calls 348 * gs_send_packet to fill these packets with data, and 349 * continues until either there are no more write requests 350 * available or no more data to send. This function is 351 * run whenever data arrives or write requests are available. 352 * 353 * Context: caller owns port_lock; port_usb is non-null. 354 */ 355 static int gs_start_tx(struct gs_port *port) 356 /* 357 __releases(&port->port_lock) 358 __acquires(&port->port_lock) 359 */ 360 { 361 struct list_head *pool = &port->write_pool; 362 struct usb_ep *in = port->port_usb->in; 363 int status = 0; 364 bool do_tty_wake = false; 365 366 while (!list_empty(pool)) { 367 struct usb_request *req; 368 int len; 369 370 if (port->write_started >= QUEUE_SIZE) 371 break; 372 373 req = list_entry(pool->next, struct usb_request, list); 374 len = gs_send_packet(port, req->buf, in->maxpacket); 375 if (len == 0) { 376 wake_up_interruptible(&port->drain_wait); 377 break; 378 } 379 do_tty_wake = true; 380 381 req->length = len; 382 list_del(&req->list); 383 req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0); 384 385 pr_vdebug("ttyGS%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n", 386 port->port_num, len, *((u8 *)req->buf), 387 *((u8 *)req->buf+1), *((u8 *)req->buf+2)); 388 389 /* Drop lock while we call out of driver; completions 390 * could be issued while we do so. Disconnection may 391 * happen too; maybe immediately before we queue this! 392 * 393 * NOTE that we may keep sending data for a while after 394 * the TTY closed (dev->ioport->port_tty is NULL). 395 */ 396 spin_unlock(&port->port_lock); 397 status = usb_ep_queue(in, req, GFP_ATOMIC); 398 spin_lock(&port->port_lock); 399 400 if (status) { 401 pr_debug("%s: %s %s err %d\n", 402 __func__, "queue", in->name, status); 403 list_add(&req->list, pool); 404 break; 405 } 406 407 port->write_started++; 408 409 /* abort immediately after disconnect */ 410 if (!port->port_usb) 411 break; 412 } 413 414 if (do_tty_wake && port->port.tty) 415 tty_wakeup(port->port.tty); 416 return status; 417 } 418 419 /* 420 * Context: caller owns port_lock, and port_usb is set 421 */ 422 static unsigned gs_start_rx(struct gs_port *port) 423 /* 424 __releases(&port->port_lock) 425 __acquires(&port->port_lock) 426 */ 427 { 428 struct list_head *pool = &port->read_pool; 429 struct usb_ep *out = port->port_usb->out; 430 431 while (!list_empty(pool)) { 432 struct usb_request *req; 433 int status; 434 struct tty_struct *tty; 435 436 /* no more rx if closed */ 437 tty = port->port.tty; 438 if (!tty) 439 break; 440 441 if (port->read_started >= QUEUE_SIZE) 442 break; 443 444 req = list_entry(pool->next, struct usb_request, list); 445 list_del(&req->list); 446 req->length = out->maxpacket; 447 448 /* drop lock while we call out; the controller driver 449 * may need to call us back (e.g. for disconnect) 450 */ 451 spin_unlock(&port->port_lock); 452 status = usb_ep_queue(out, req, GFP_ATOMIC); 453 spin_lock(&port->port_lock); 454 455 if (status) { 456 pr_debug("%s: %s %s err %d\n", 457 __func__, "queue", out->name, status); 458 list_add(&req->list, pool); 459 break; 460 } 461 port->read_started++; 462 463 /* abort immediately after disconnect */ 464 if (!port->port_usb) 465 break; 466 } 467 return port->read_started; 468 } 469 470 /* 471 * RX tasklet takes data out of the RX queue and hands it up to the TTY 472 * layer until it refuses to take any more data (or is throttled back). 473 * Then it issues reads for any further data. 474 * 475 * If the RX queue becomes full enough that no usb_request is queued, 476 * the OUT endpoint may begin NAKing as soon as its FIFO fills up. 477 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two) 478 * can be buffered before the TTY layer's buffers (currently 64 KB). 479 */ 480 static void gs_rx_push(unsigned long _port) 481 { 482 struct gs_port *port = (void *)_port; 483 struct tty_struct *tty; 484 struct list_head *queue = &port->read_queue; 485 bool disconnect = false; 486 bool do_push = false; 487 488 /* hand any queued data to the tty */ 489 spin_lock_irq(&port->port_lock); 490 tty = port->port.tty; 491 while (!list_empty(queue)) { 492 struct usb_request *req; 493 494 req = list_first_entry(queue, struct usb_request, list); 495 496 /* leave data queued if tty was rx throttled */ 497 if (tty && test_bit(TTY_THROTTLED, &tty->flags)) 498 break; 499 500 switch (req->status) { 501 case -ESHUTDOWN: 502 disconnect = true; 503 pr_vdebug("ttyGS%d: shutdown\n", port->port_num); 504 break; 505 506 default: 507 /* presumably a transient fault */ 508 pr_warn("ttyGS%d: unexpected RX status %d\n", 509 port->port_num, req->status); 510 /* FALLTHROUGH */ 511 case 0: 512 /* normal completion */ 513 break; 514 } 515 516 /* push data to (open) tty */ 517 if (req->actual) { 518 char *packet = req->buf; 519 unsigned size = req->actual; 520 unsigned n; 521 int count; 522 523 /* we may have pushed part of this packet already... */ 524 n = port->n_read; 525 if (n) { 526 packet += n; 527 size -= n; 528 } 529 530 count = tty_insert_flip_string(&port->port, packet, 531 size); 532 if (count) 533 do_push = true; 534 if (count != size) { 535 /* stop pushing; TTY layer can't handle more */ 536 port->n_read += count; 537 pr_vdebug("ttyGS%d: rx block %d/%d\n", 538 port->port_num, count, req->actual); 539 break; 540 } 541 port->n_read = 0; 542 } 543 544 list_move(&req->list, &port->read_pool); 545 port->read_started--; 546 } 547 548 /* Push from tty to ldisc; this is handled by a workqueue, 549 * so we won't get callbacks and can hold port_lock 550 */ 551 if (do_push) 552 tty_flip_buffer_push(&port->port); 553 554 555 /* We want our data queue to become empty ASAP, keeping data 556 * in the tty and ldisc (not here). If we couldn't push any 557 * this time around, there may be trouble unless there's an 558 * implicit tty_unthrottle() call on its way... 559 * 560 * REVISIT we should probably add a timer to keep the tasklet 561 * from starving ... but it's not clear that case ever happens. 562 */ 563 if (!list_empty(queue) && tty) { 564 if (!test_bit(TTY_THROTTLED, &tty->flags)) { 565 if (do_push) 566 tasklet_schedule(&port->push); 567 else 568 pr_warn("ttyGS%d: RX not scheduled?\n", 569 port->port_num); 570 } 571 } 572 573 /* If we're still connected, refill the USB RX queue. */ 574 if (!disconnect && port->port_usb) 575 gs_start_rx(port); 576 577 spin_unlock_irq(&port->port_lock); 578 } 579 580 static void gs_read_complete(struct usb_ep *ep, struct usb_request *req) 581 { 582 struct gs_port *port = ep->driver_data; 583 584 /* Queue all received data until the tty layer is ready for it. */ 585 spin_lock(&port->port_lock); 586 list_add_tail(&req->list, &port->read_queue); 587 tasklet_schedule(&port->push); 588 spin_unlock(&port->port_lock); 589 } 590 591 static void gs_write_complete(struct usb_ep *ep, struct usb_request *req) 592 { 593 struct gs_port *port = ep->driver_data; 594 595 spin_lock(&port->port_lock); 596 list_add(&req->list, &port->write_pool); 597 port->write_started--; 598 599 switch (req->status) { 600 default: 601 /* presumably a transient fault */ 602 pr_warning("%s: unexpected %s status %d\n", 603 __func__, ep->name, req->status); 604 /* FALL THROUGH */ 605 case 0: 606 /* normal completion */ 607 gs_start_tx(port); 608 break; 609 610 case -ESHUTDOWN: 611 /* disconnect */ 612 pr_vdebug("%s: %s shutdown\n", __func__, ep->name); 613 break; 614 } 615 616 spin_unlock(&port->port_lock); 617 } 618 619 static void gs_free_requests(struct usb_ep *ep, struct list_head *head, 620 int *allocated) 621 { 622 struct usb_request *req; 623 624 while (!list_empty(head)) { 625 req = list_entry(head->next, struct usb_request, list); 626 list_del(&req->list); 627 gs_free_req(ep, req); 628 if (allocated) 629 (*allocated)--; 630 } 631 } 632 633 static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head, 634 void (*fn)(struct usb_ep *, struct usb_request *), 635 int *allocated) 636 { 637 int i; 638 struct usb_request *req; 639 int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE; 640 641 /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't 642 * do quite that many this time, don't fail ... we just won't 643 * be as speedy as we might otherwise be. 644 */ 645 for (i = 0; i < n; i++) { 646 req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC); 647 if (!req) 648 return list_empty(head) ? -ENOMEM : 0; 649 req->complete = fn; 650 list_add_tail(&req->list, head); 651 if (allocated) 652 (*allocated)++; 653 } 654 return 0; 655 } 656 657 /** 658 * gs_start_io - start USB I/O streams 659 * @dev: encapsulates endpoints to use 660 * Context: holding port_lock; port_tty and port_usb are non-null 661 * 662 * We only start I/O when something is connected to both sides of 663 * this port. If nothing is listening on the host side, we may 664 * be pointlessly filling up our TX buffers and FIFO. 665 */ 666 static int gs_start_io(struct gs_port *port) 667 { 668 struct list_head *head = &port->read_pool; 669 struct usb_ep *ep = port->port_usb->out; 670 int status; 671 unsigned started; 672 673 /* Allocate RX and TX I/O buffers. We can't easily do this much 674 * earlier (with GFP_KERNEL) because the requests are coupled to 675 * endpoints, as are the packet sizes we'll be using. Different 676 * configurations may use different endpoints with a given port; 677 * and high speed vs full speed changes packet sizes too. 678 */ 679 status = gs_alloc_requests(ep, head, gs_read_complete, 680 &port->read_allocated); 681 if (status) 682 return status; 683 684 status = gs_alloc_requests(port->port_usb->in, &port->write_pool, 685 gs_write_complete, &port->write_allocated); 686 if (status) { 687 gs_free_requests(ep, head, &port->read_allocated); 688 return status; 689 } 690 691 /* queue read requests */ 692 port->n_read = 0; 693 started = gs_start_rx(port); 694 695 /* unblock any pending writes into our circular buffer */ 696 if (started) { 697 tty_wakeup(port->port.tty); 698 } else { 699 gs_free_requests(ep, head, &port->read_allocated); 700 gs_free_requests(port->port_usb->in, &port->write_pool, 701 &port->write_allocated); 702 status = -EIO; 703 } 704 705 return status; 706 } 707 708 /*-------------------------------------------------------------------------*/ 709 710 /* TTY Driver */ 711 712 /* 713 * gs_open sets up the link between a gs_port and its associated TTY. 714 * That link is broken *only* by TTY close(), and all driver methods 715 * know that. 716 */ 717 static int gs_open(struct tty_struct *tty, struct file *file) 718 { 719 int port_num = tty->index; 720 struct gs_port *port; 721 int status; 722 723 do { 724 mutex_lock(&ports[port_num].lock); 725 port = ports[port_num].port; 726 if (!port) 727 status = -ENODEV; 728 else { 729 spin_lock_irq(&port->port_lock); 730 731 /* already open? Great. */ 732 if (port->port.count) { 733 status = 0; 734 port->port.count++; 735 736 /* currently opening/closing? wait ... */ 737 } else if (port->openclose) { 738 status = -EBUSY; 739 740 /* ... else we do the work */ 741 } else { 742 status = -EAGAIN; 743 port->openclose = true; 744 } 745 spin_unlock_irq(&port->port_lock); 746 } 747 mutex_unlock(&ports[port_num].lock); 748 749 switch (status) { 750 default: 751 /* fully handled */ 752 return status; 753 case -EAGAIN: 754 /* must do the work */ 755 break; 756 case -EBUSY: 757 /* wait for EAGAIN task to finish */ 758 msleep(1); 759 /* REVISIT could have a waitchannel here, if 760 * concurrent open performance is important 761 */ 762 break; 763 } 764 } while (status != -EAGAIN); 765 766 /* Do the "real open" */ 767 spin_lock_irq(&port->port_lock); 768 769 /* allocate circular buffer on first open */ 770 if (port->port_write_buf.buf_buf == NULL) { 771 772 spin_unlock_irq(&port->port_lock); 773 status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE); 774 spin_lock_irq(&port->port_lock); 775 776 if (status) { 777 pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n", 778 port->port_num, tty, file); 779 port->openclose = false; 780 goto exit_unlock_port; 781 } 782 } 783 784 /* REVISIT if REMOVED (ports[].port NULL), abort the open 785 * to let rmmod work faster (but this way isn't wrong). 786 */ 787 788 /* REVISIT maybe wait for "carrier detect" */ 789 790 tty->driver_data = port; 791 port->port.tty = tty; 792 793 port->port.count = 1; 794 port->openclose = false; 795 796 /* if connected, start the I/O stream */ 797 if (port->port_usb) { 798 struct gserial *gser = port->port_usb; 799 800 pr_debug("gs_open: start ttyGS%d\n", port->port_num); 801 gs_start_io(port); 802 803 if (gser->connect) 804 gser->connect(gser); 805 } 806 807 pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file); 808 809 status = 0; 810 811 exit_unlock_port: 812 spin_unlock_irq(&port->port_lock); 813 return status; 814 } 815 816 static int gs_writes_finished(struct gs_port *p) 817 { 818 int cond; 819 820 /* return true on disconnect or empty buffer */ 821 spin_lock_irq(&p->port_lock); 822 cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf); 823 spin_unlock_irq(&p->port_lock); 824 825 return cond; 826 } 827 828 static void gs_close(struct tty_struct *tty, struct file *file) 829 { 830 struct gs_port *port = tty->driver_data; 831 struct gserial *gser; 832 833 spin_lock_irq(&port->port_lock); 834 835 if (port->port.count != 1) { 836 if (port->port.count == 0) 837 WARN_ON(1); 838 else 839 --port->port.count; 840 goto exit; 841 } 842 843 pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file); 844 845 /* mark port as closing but in use; we can drop port lock 846 * and sleep if necessary 847 */ 848 port->openclose = true; 849 port->port.count = 0; 850 851 gser = port->port_usb; 852 if (gser && gser->disconnect) 853 gser->disconnect(gser); 854 855 /* wait for circular write buffer to drain, disconnect, or at 856 * most GS_CLOSE_TIMEOUT seconds; then discard the rest 857 */ 858 if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) { 859 spin_unlock_irq(&port->port_lock); 860 wait_event_interruptible_timeout(port->drain_wait, 861 gs_writes_finished(port), 862 GS_CLOSE_TIMEOUT * HZ); 863 spin_lock_irq(&port->port_lock); 864 gser = port->port_usb; 865 } 866 867 /* Iff we're disconnected, there can be no I/O in flight so it's 868 * ok to free the circular buffer; else just scrub it. And don't 869 * let the push tasklet fire again until we're re-opened. 870 */ 871 if (gser == NULL) 872 gs_buf_free(&port->port_write_buf); 873 else 874 gs_buf_clear(&port->port_write_buf); 875 876 tty->driver_data = NULL; 877 port->port.tty = NULL; 878 879 port->openclose = false; 880 881 pr_debug("gs_close: ttyGS%d (%p,%p) done!\n", 882 port->port_num, tty, file); 883 884 wake_up(&port->port.close_wait); 885 exit: 886 spin_unlock_irq(&port->port_lock); 887 } 888 889 static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count) 890 { 891 struct gs_port *port = tty->driver_data; 892 unsigned long flags; 893 int status; 894 895 pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n", 896 port->port_num, tty, count); 897 898 spin_lock_irqsave(&port->port_lock, flags); 899 if (count) 900 count = gs_buf_put(&port->port_write_buf, buf, count); 901 /* treat count == 0 as flush_chars() */ 902 if (port->port_usb) 903 status = gs_start_tx(port); 904 spin_unlock_irqrestore(&port->port_lock, flags); 905 906 return count; 907 } 908 909 static int gs_put_char(struct tty_struct *tty, unsigned char ch) 910 { 911 struct gs_port *port = tty->driver_data; 912 unsigned long flags; 913 int status; 914 915 pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %ps\n", 916 port->port_num, tty, ch, __builtin_return_address(0)); 917 918 spin_lock_irqsave(&port->port_lock, flags); 919 status = gs_buf_put(&port->port_write_buf, &ch, 1); 920 spin_unlock_irqrestore(&port->port_lock, flags); 921 922 return status; 923 } 924 925 static void gs_flush_chars(struct tty_struct *tty) 926 { 927 struct gs_port *port = tty->driver_data; 928 unsigned long flags; 929 930 pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty); 931 932 spin_lock_irqsave(&port->port_lock, flags); 933 if (port->port_usb) 934 gs_start_tx(port); 935 spin_unlock_irqrestore(&port->port_lock, flags); 936 } 937 938 static int gs_write_room(struct tty_struct *tty) 939 { 940 struct gs_port *port = tty->driver_data; 941 unsigned long flags; 942 int room = 0; 943 944 spin_lock_irqsave(&port->port_lock, flags); 945 if (port->port_usb) 946 room = gs_buf_space_avail(&port->port_write_buf); 947 spin_unlock_irqrestore(&port->port_lock, flags); 948 949 pr_vdebug("gs_write_room: (%d,%p) room=%d\n", 950 port->port_num, tty, room); 951 952 return room; 953 } 954 955 static int gs_chars_in_buffer(struct tty_struct *tty) 956 { 957 struct gs_port *port = tty->driver_data; 958 unsigned long flags; 959 int chars = 0; 960 961 spin_lock_irqsave(&port->port_lock, flags); 962 chars = gs_buf_data_avail(&port->port_write_buf); 963 spin_unlock_irqrestore(&port->port_lock, flags); 964 965 pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n", 966 port->port_num, tty, chars); 967 968 return chars; 969 } 970 971 /* undo side effects of setting TTY_THROTTLED */ 972 static void gs_unthrottle(struct tty_struct *tty) 973 { 974 struct gs_port *port = tty->driver_data; 975 unsigned long flags; 976 977 spin_lock_irqsave(&port->port_lock, flags); 978 if (port->port_usb) { 979 /* Kickstart read queue processing. We don't do xon/xoff, 980 * rts/cts, or other handshaking with the host, but if the 981 * read queue backs up enough we'll be NAKing OUT packets. 982 */ 983 tasklet_schedule(&port->push); 984 pr_vdebug("ttyGS%d: unthrottle\n", port->port_num); 985 } 986 spin_unlock_irqrestore(&port->port_lock, flags); 987 } 988 989 static int gs_break_ctl(struct tty_struct *tty, int duration) 990 { 991 struct gs_port *port = tty->driver_data; 992 int status = 0; 993 struct gserial *gser; 994 995 pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n", 996 port->port_num, duration); 997 998 spin_lock_irq(&port->port_lock); 999 gser = port->port_usb; 1000 if (gser && gser->send_break) 1001 status = gser->send_break(gser, duration); 1002 spin_unlock_irq(&port->port_lock); 1003 1004 return status; 1005 } 1006 1007 static const struct tty_operations gs_tty_ops = { 1008 .open = gs_open, 1009 .close = gs_close, 1010 .write = gs_write, 1011 .put_char = gs_put_char, 1012 .flush_chars = gs_flush_chars, 1013 .write_room = gs_write_room, 1014 .chars_in_buffer = gs_chars_in_buffer, 1015 .unthrottle = gs_unthrottle, 1016 .break_ctl = gs_break_ctl, 1017 }; 1018 1019 /*-------------------------------------------------------------------------*/ 1020 1021 static struct tty_driver *gs_tty_driver; 1022 1023 static int 1024 gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding) 1025 { 1026 struct gs_port *port; 1027 int ret = 0; 1028 1029 mutex_lock(&ports[port_num].lock); 1030 if (ports[port_num].port) { 1031 ret = -EBUSY; 1032 goto out; 1033 } 1034 1035 port = kzalloc(sizeof(struct gs_port), GFP_KERNEL); 1036 if (port == NULL) { 1037 ret = -ENOMEM; 1038 goto out; 1039 } 1040 1041 tty_port_init(&port->port); 1042 spin_lock_init(&port->port_lock); 1043 init_waitqueue_head(&port->drain_wait); 1044 1045 tasklet_init(&port->push, gs_rx_push, (unsigned long) port); 1046 1047 INIT_LIST_HEAD(&port->read_pool); 1048 INIT_LIST_HEAD(&port->read_queue); 1049 INIT_LIST_HEAD(&port->write_pool); 1050 1051 port->port_num = port_num; 1052 port->port_line_coding = *coding; 1053 1054 ports[port_num].port = port; 1055 out: 1056 mutex_unlock(&ports[port_num].lock); 1057 return ret; 1058 } 1059 1060 static int gs_closed(struct gs_port *port) 1061 { 1062 int cond; 1063 1064 spin_lock_irq(&port->port_lock); 1065 cond = (port->port.count == 0) && !port->openclose; 1066 spin_unlock_irq(&port->port_lock); 1067 return cond; 1068 } 1069 1070 static void gserial_free_port(struct gs_port *port) 1071 { 1072 tasklet_kill(&port->push); 1073 /* wait for old opens to finish */ 1074 wait_event(port->port.close_wait, gs_closed(port)); 1075 WARN_ON(port->port_usb != NULL); 1076 tty_port_destroy(&port->port); 1077 kfree(port); 1078 } 1079 1080 void gserial_free_line(unsigned char port_num) 1081 { 1082 struct gs_port *port; 1083 1084 mutex_lock(&ports[port_num].lock); 1085 if (WARN_ON(!ports[port_num].port)) { 1086 mutex_unlock(&ports[port_num].lock); 1087 return; 1088 } 1089 port = ports[port_num].port; 1090 ports[port_num].port = NULL; 1091 mutex_unlock(&ports[port_num].lock); 1092 1093 gserial_free_port(port); 1094 tty_unregister_device(gs_tty_driver, port_num); 1095 } 1096 EXPORT_SYMBOL_GPL(gserial_free_line); 1097 1098 int gserial_alloc_line(unsigned char *line_num) 1099 { 1100 struct usb_cdc_line_coding coding; 1101 struct device *tty_dev; 1102 int ret; 1103 int port_num; 1104 1105 coding.dwDTERate = cpu_to_le32(9600); 1106 coding.bCharFormat = 8; 1107 coding.bParityType = USB_CDC_NO_PARITY; 1108 coding.bDataBits = USB_CDC_1_STOP_BITS; 1109 1110 for (port_num = 0; port_num < MAX_U_SERIAL_PORTS; port_num++) { 1111 ret = gs_port_alloc(port_num, &coding); 1112 if (ret == -EBUSY) 1113 continue; 1114 if (ret) 1115 return ret; 1116 break; 1117 } 1118 if (ret) 1119 return ret; 1120 1121 /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */ 1122 1123 tty_dev = tty_port_register_device(&ports[port_num].port->port, 1124 gs_tty_driver, port_num, NULL); 1125 if (IS_ERR(tty_dev)) { 1126 struct gs_port *port; 1127 pr_err("%s: failed to register tty for port %d, err %ld\n", 1128 __func__, port_num, PTR_ERR(tty_dev)); 1129 1130 ret = PTR_ERR(tty_dev); 1131 port = ports[port_num].port; 1132 ports[port_num].port = NULL; 1133 gserial_free_port(port); 1134 goto err; 1135 } 1136 *line_num = port_num; 1137 err: 1138 return ret; 1139 } 1140 EXPORT_SYMBOL_GPL(gserial_alloc_line); 1141 1142 /** 1143 * gserial_connect - notify TTY I/O glue that USB link is active 1144 * @gser: the function, set up with endpoints and descriptors 1145 * @port_num: which port is active 1146 * Context: any (usually from irq) 1147 * 1148 * This is called activate endpoints and let the TTY layer know that 1149 * the connection is active ... not unlike "carrier detect". It won't 1150 * necessarily start I/O queues; unless the TTY is held open by any 1151 * task, there would be no point. However, the endpoints will be 1152 * activated so the USB host can perform I/O, subject to basic USB 1153 * hardware flow control. 1154 * 1155 * Caller needs to have set up the endpoints and USB function in @dev 1156 * before calling this, as well as the appropriate (speed-specific) 1157 * endpoint descriptors, and also have allocate @port_num by calling 1158 * @gserial_alloc_line(). 1159 * 1160 * Returns negative errno or zero. 1161 * On success, ep->driver_data will be overwritten. 1162 */ 1163 int gserial_connect(struct gserial *gser, u8 port_num) 1164 { 1165 struct gs_port *port; 1166 unsigned long flags; 1167 int status; 1168 1169 if (port_num >= MAX_U_SERIAL_PORTS) 1170 return -ENXIO; 1171 1172 port = ports[port_num].port; 1173 if (!port) { 1174 pr_err("serial line %d not allocated.\n", port_num); 1175 return -EINVAL; 1176 } 1177 if (port->port_usb) { 1178 pr_err("serial line %d is in use.\n", port_num); 1179 return -EBUSY; 1180 } 1181 1182 /* activate the endpoints */ 1183 status = usb_ep_enable(gser->in); 1184 if (status < 0) 1185 return status; 1186 gser->in->driver_data = port; 1187 1188 status = usb_ep_enable(gser->out); 1189 if (status < 0) 1190 goto fail_out; 1191 gser->out->driver_data = port; 1192 1193 /* then tell the tty glue that I/O can work */ 1194 spin_lock_irqsave(&port->port_lock, flags); 1195 gser->ioport = port; 1196 port->port_usb = gser; 1197 1198 /* REVISIT unclear how best to handle this state... 1199 * we don't really couple it with the Linux TTY. 1200 */ 1201 gser->port_line_coding = port->port_line_coding; 1202 1203 /* REVISIT if waiting on "carrier detect", signal. */ 1204 1205 /* if it's already open, start I/O ... and notify the serial 1206 * protocol about open/close status (connect/disconnect). 1207 */ 1208 if (port->port.count) { 1209 pr_debug("gserial_connect: start ttyGS%d\n", port->port_num); 1210 gs_start_io(port); 1211 if (gser->connect) 1212 gser->connect(gser); 1213 } else { 1214 if (gser->disconnect) 1215 gser->disconnect(gser); 1216 } 1217 1218 spin_unlock_irqrestore(&port->port_lock, flags); 1219 1220 return status; 1221 1222 fail_out: 1223 usb_ep_disable(gser->in); 1224 gser->in->driver_data = NULL; 1225 return status; 1226 } 1227 EXPORT_SYMBOL_GPL(gserial_connect); 1228 /** 1229 * gserial_disconnect - notify TTY I/O glue that USB link is inactive 1230 * @gser: the function, on which gserial_connect() was called 1231 * Context: any (usually from irq) 1232 * 1233 * This is called to deactivate endpoints and let the TTY layer know 1234 * that the connection went inactive ... not unlike "hangup". 1235 * 1236 * On return, the state is as if gserial_connect() had never been called; 1237 * there is no active USB I/O on these endpoints. 1238 */ 1239 void gserial_disconnect(struct gserial *gser) 1240 { 1241 struct gs_port *port = gser->ioport; 1242 unsigned long flags; 1243 1244 if (!port) 1245 return; 1246 1247 /* tell the TTY glue not to do I/O here any more */ 1248 spin_lock_irqsave(&port->port_lock, flags); 1249 1250 /* REVISIT as above: how best to track this? */ 1251 port->port_line_coding = gser->port_line_coding; 1252 1253 port->port_usb = NULL; 1254 gser->ioport = NULL; 1255 if (port->port.count > 0 || port->openclose) { 1256 wake_up_interruptible(&port->drain_wait); 1257 if (port->port.tty) 1258 tty_hangup(port->port.tty); 1259 } 1260 spin_unlock_irqrestore(&port->port_lock, flags); 1261 1262 /* disable endpoints, aborting down any active I/O */ 1263 usb_ep_disable(gser->out); 1264 gser->out->driver_data = NULL; 1265 1266 usb_ep_disable(gser->in); 1267 gser->in->driver_data = NULL; 1268 1269 /* finally, free any unused/unusable I/O buffers */ 1270 spin_lock_irqsave(&port->port_lock, flags); 1271 if (port->port.count == 0 && !port->openclose) 1272 gs_buf_free(&port->port_write_buf); 1273 gs_free_requests(gser->out, &port->read_pool, NULL); 1274 gs_free_requests(gser->out, &port->read_queue, NULL); 1275 gs_free_requests(gser->in, &port->write_pool, NULL); 1276 1277 port->read_allocated = port->read_started = 1278 port->write_allocated = port->write_started = 0; 1279 1280 spin_unlock_irqrestore(&port->port_lock, flags); 1281 } 1282 EXPORT_SYMBOL_GPL(gserial_disconnect); 1283 1284 static int userial_init(void) 1285 { 1286 unsigned i; 1287 int status; 1288 1289 gs_tty_driver = alloc_tty_driver(MAX_U_SERIAL_PORTS); 1290 if (!gs_tty_driver) 1291 return -ENOMEM; 1292 1293 gs_tty_driver->driver_name = "g_serial"; 1294 gs_tty_driver->name = "ttyGS"; 1295 /* uses dynamically assigned dev_t values */ 1296 1297 gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL; 1298 gs_tty_driver->subtype = SERIAL_TYPE_NORMAL; 1299 gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 1300 gs_tty_driver->init_termios = tty_std_termios; 1301 1302 /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on 1303 * MS-Windows. Otherwise, most of these flags shouldn't affect 1304 * anything unless we were to actually hook up to a serial line. 1305 */ 1306 gs_tty_driver->init_termios.c_cflag = 1307 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 1308 gs_tty_driver->init_termios.c_ispeed = 9600; 1309 gs_tty_driver->init_termios.c_ospeed = 9600; 1310 1311 tty_set_operations(gs_tty_driver, &gs_tty_ops); 1312 for (i = 0; i < MAX_U_SERIAL_PORTS; i++) 1313 mutex_init(&ports[i].lock); 1314 1315 /* export the driver ... */ 1316 status = tty_register_driver(gs_tty_driver); 1317 if (status) { 1318 pr_err("%s: cannot register, err %d\n", 1319 __func__, status); 1320 goto fail; 1321 } 1322 1323 pr_debug("%s: registered %d ttyGS* device%s\n", __func__, 1324 MAX_U_SERIAL_PORTS, 1325 (MAX_U_SERIAL_PORTS == 1) ? "" : "s"); 1326 1327 return status; 1328 fail: 1329 put_tty_driver(gs_tty_driver); 1330 gs_tty_driver = NULL; 1331 return status; 1332 } 1333 module_init(userial_init); 1334 1335 static void userial_cleanup(void) 1336 { 1337 tty_unregister_driver(gs_tty_driver); 1338 put_tty_driver(gs_tty_driver); 1339 gs_tty_driver = NULL; 1340 } 1341 module_exit(userial_cleanup); 1342 1343 MODULE_LICENSE("GPL"); 1344