1 /* 2 * u_serial.c - utilities for USB gadget "serial port"/TTY support 3 * 4 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com) 5 * Copyright (C) 2008 David Brownell 6 * Copyright (C) 2008 by Nokia Corporation 7 * 8 * This code also borrows from usbserial.c, which is 9 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com) 10 * Copyright (C) 2000 Peter Berger (pberger@brimson.com) 11 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com) 12 * 13 * This software is distributed under the terms of the GNU General 14 * Public License ("GPL") as published by the Free Software Foundation, 15 * either version 2 of that License or (at your option) any later version. 16 */ 17 18 /* #define VERBOSE_DEBUG */ 19 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/delay.h> 25 #include <linux/tty.h> 26 #include <linux/tty_flip.h> 27 #include <linux/slab.h> 28 #include <linux/export.h> 29 #include <linux/module.h> 30 31 #include "u_serial.h" 32 33 34 /* 35 * This component encapsulates the TTY layer glue needed to provide basic 36 * "serial port" functionality through the USB gadget stack. Each such 37 * port is exposed through a /dev/ttyGS* node. 38 * 39 * After this module has been loaded, the individual TTY port can be requested 40 * (gserial_alloc_line()) and it will stay available until they are removed 41 * (gserial_free_line()). Each one may be connected to a USB function 42 * (gserial_connect), or disconnected (with gserial_disconnect) when the USB 43 * host issues a config change event. Data can only flow when the port is 44 * connected to the host. 45 * 46 * A given TTY port can be made available in multiple configurations. 47 * For example, each one might expose a ttyGS0 node which provides a 48 * login application. In one case that might use CDC ACM interface 0, 49 * while another configuration might use interface 3 for that. The 50 * work to handle that (including descriptor management) is not part 51 * of this component. 52 * 53 * Configurations may expose more than one TTY port. For example, if 54 * ttyGS0 provides login service, then ttyGS1 might provide dialer access 55 * for a telephone or fax link. And ttyGS2 might be something that just 56 * needs a simple byte stream interface for some messaging protocol that 57 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned. 58 * 59 * 60 * gserial is the lifecycle interface, used by USB functions 61 * gs_port is the I/O nexus, used by the tty driver 62 * tty_struct links to the tty/filesystem framework 63 * 64 * gserial <---> gs_port ... links will be null when the USB link is 65 * inactive; managed by gserial_{connect,disconnect}(). each gserial 66 * instance can wrap its own USB control protocol. 67 * gserial->ioport == usb_ep->driver_data ... gs_port 68 * gs_port->port_usb ... gserial 69 * 70 * gs_port <---> tty_struct ... links will be null when the TTY file 71 * isn't opened; managed by gs_open()/gs_close() 72 * gserial->port_tty ... tty_struct 73 * tty_struct->driver_data ... gserial 74 */ 75 76 /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the 77 * next layer of buffering. For TX that's a circular buffer; for RX 78 * consider it a NOP. A third layer is provided by the TTY code. 79 */ 80 #define QUEUE_SIZE 16 81 #define WRITE_BUF_SIZE 8192 /* TX only */ 82 83 /* circular buffer */ 84 struct gs_buf { 85 unsigned buf_size; 86 char *buf_buf; 87 char *buf_get; 88 char *buf_put; 89 }; 90 91 /* 92 * The port structure holds info for each port, one for each minor number 93 * (and thus for each /dev/ node). 94 */ 95 struct gs_port { 96 struct tty_port port; 97 spinlock_t port_lock; /* guard port_* access */ 98 99 struct gserial *port_usb; 100 101 bool openclose; /* open/close in progress */ 102 u8 port_num; 103 104 struct list_head read_pool; 105 int read_started; 106 int read_allocated; 107 struct list_head read_queue; 108 unsigned n_read; 109 struct tasklet_struct push; 110 111 struct list_head write_pool; 112 int write_started; 113 int write_allocated; 114 struct gs_buf port_write_buf; 115 wait_queue_head_t drain_wait; /* wait while writes drain */ 116 bool write_busy; 117 118 /* REVISIT this state ... */ 119 struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */ 120 }; 121 122 static struct portmaster { 123 struct mutex lock; /* protect open/close */ 124 struct gs_port *port; 125 } ports[MAX_U_SERIAL_PORTS]; 126 127 #define GS_CLOSE_TIMEOUT 15 /* seconds */ 128 129 130 131 #ifdef VERBOSE_DEBUG 132 #ifndef pr_vdebug 133 #define pr_vdebug(fmt, arg...) \ 134 pr_debug(fmt, ##arg) 135 #endif /* pr_vdebug */ 136 #else 137 #ifndef pr_vdebug 138 #define pr_vdebug(fmt, arg...) \ 139 ({ if (0) pr_debug(fmt, ##arg); }) 140 #endif /* pr_vdebug */ 141 #endif 142 143 /*-------------------------------------------------------------------------*/ 144 145 /* Circular Buffer */ 146 147 /* 148 * gs_buf_alloc 149 * 150 * Allocate a circular buffer and all associated memory. 151 */ 152 static int gs_buf_alloc(struct gs_buf *gb, unsigned size) 153 { 154 gb->buf_buf = kmalloc(size, GFP_KERNEL); 155 if (gb->buf_buf == NULL) 156 return -ENOMEM; 157 158 gb->buf_size = size; 159 gb->buf_put = gb->buf_buf; 160 gb->buf_get = gb->buf_buf; 161 162 return 0; 163 } 164 165 /* 166 * gs_buf_free 167 * 168 * Free the buffer and all associated memory. 169 */ 170 static void gs_buf_free(struct gs_buf *gb) 171 { 172 kfree(gb->buf_buf); 173 gb->buf_buf = NULL; 174 } 175 176 /* 177 * gs_buf_clear 178 * 179 * Clear out all data in the circular buffer. 180 */ 181 static void gs_buf_clear(struct gs_buf *gb) 182 { 183 gb->buf_get = gb->buf_put; 184 /* equivalent to a get of all data available */ 185 } 186 187 /* 188 * gs_buf_data_avail 189 * 190 * Return the number of bytes of data written into the circular 191 * buffer. 192 */ 193 static unsigned gs_buf_data_avail(struct gs_buf *gb) 194 { 195 return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size; 196 } 197 198 /* 199 * gs_buf_space_avail 200 * 201 * Return the number of bytes of space available in the circular 202 * buffer. 203 */ 204 static unsigned gs_buf_space_avail(struct gs_buf *gb) 205 { 206 return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size; 207 } 208 209 /* 210 * gs_buf_put 211 * 212 * Copy data data from a user buffer and put it into the circular buffer. 213 * Restrict to the amount of space available. 214 * 215 * Return the number of bytes copied. 216 */ 217 static unsigned 218 gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count) 219 { 220 unsigned len; 221 222 len = gs_buf_space_avail(gb); 223 if (count > len) 224 count = len; 225 226 if (count == 0) 227 return 0; 228 229 len = gb->buf_buf + gb->buf_size - gb->buf_put; 230 if (count > len) { 231 memcpy(gb->buf_put, buf, len); 232 memcpy(gb->buf_buf, buf+len, count - len); 233 gb->buf_put = gb->buf_buf + count - len; 234 } else { 235 memcpy(gb->buf_put, buf, count); 236 if (count < len) 237 gb->buf_put += count; 238 else /* count == len */ 239 gb->buf_put = gb->buf_buf; 240 } 241 242 return count; 243 } 244 245 /* 246 * gs_buf_get 247 * 248 * Get data from the circular buffer and copy to the given buffer. 249 * Restrict to the amount of data available. 250 * 251 * Return the number of bytes copied. 252 */ 253 static unsigned 254 gs_buf_get(struct gs_buf *gb, char *buf, unsigned count) 255 { 256 unsigned len; 257 258 len = gs_buf_data_avail(gb); 259 if (count > len) 260 count = len; 261 262 if (count == 0) 263 return 0; 264 265 len = gb->buf_buf + gb->buf_size - gb->buf_get; 266 if (count > len) { 267 memcpy(buf, gb->buf_get, len); 268 memcpy(buf+len, gb->buf_buf, count - len); 269 gb->buf_get = gb->buf_buf + count - len; 270 } else { 271 memcpy(buf, gb->buf_get, count); 272 if (count < len) 273 gb->buf_get += count; 274 else /* count == len */ 275 gb->buf_get = gb->buf_buf; 276 } 277 278 return count; 279 } 280 281 /*-------------------------------------------------------------------------*/ 282 283 /* I/O glue between TTY (upper) and USB function (lower) driver layers */ 284 285 /* 286 * gs_alloc_req 287 * 288 * Allocate a usb_request and its buffer. Returns a pointer to the 289 * usb_request or NULL if there is an error. 290 */ 291 struct usb_request * 292 gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags) 293 { 294 struct usb_request *req; 295 296 req = usb_ep_alloc_request(ep, kmalloc_flags); 297 298 if (req != NULL) { 299 req->length = len; 300 req->buf = kmalloc(len, kmalloc_flags); 301 if (req->buf == NULL) { 302 usb_ep_free_request(ep, req); 303 return NULL; 304 } 305 } 306 307 return req; 308 } 309 EXPORT_SYMBOL_GPL(gs_alloc_req); 310 311 /* 312 * gs_free_req 313 * 314 * Free a usb_request and its buffer. 315 */ 316 void gs_free_req(struct usb_ep *ep, struct usb_request *req) 317 { 318 kfree(req->buf); 319 usb_ep_free_request(ep, req); 320 } 321 EXPORT_SYMBOL_GPL(gs_free_req); 322 323 /* 324 * gs_send_packet 325 * 326 * If there is data to send, a packet is built in the given 327 * buffer and the size is returned. If there is no data to 328 * send, 0 is returned. 329 * 330 * Called with port_lock held. 331 */ 332 static unsigned 333 gs_send_packet(struct gs_port *port, char *packet, unsigned size) 334 { 335 unsigned len; 336 337 len = gs_buf_data_avail(&port->port_write_buf); 338 if (len < size) 339 size = len; 340 if (size != 0) 341 size = gs_buf_get(&port->port_write_buf, packet, size); 342 return size; 343 } 344 345 /* 346 * gs_start_tx 347 * 348 * This function finds available write requests, calls 349 * gs_send_packet to fill these packets with data, and 350 * continues until either there are no more write requests 351 * available or no more data to send. This function is 352 * run whenever data arrives or write requests are available. 353 * 354 * Context: caller owns port_lock; port_usb is non-null. 355 */ 356 static int gs_start_tx(struct gs_port *port) 357 /* 358 __releases(&port->port_lock) 359 __acquires(&port->port_lock) 360 */ 361 { 362 struct list_head *pool = &port->write_pool; 363 struct usb_ep *in = port->port_usb->in; 364 int status = 0; 365 bool do_tty_wake = false; 366 367 while (!port->write_busy && !list_empty(pool)) { 368 struct usb_request *req; 369 int len; 370 371 if (port->write_started >= QUEUE_SIZE) 372 break; 373 374 req = list_entry(pool->next, struct usb_request, list); 375 len = gs_send_packet(port, req->buf, in->maxpacket); 376 if (len == 0) { 377 wake_up_interruptible(&port->drain_wait); 378 break; 379 } 380 do_tty_wake = true; 381 382 req->length = len; 383 list_del(&req->list); 384 req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0); 385 386 pr_vdebug("ttyGS%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n", 387 port->port_num, len, *((u8 *)req->buf), 388 *((u8 *)req->buf+1), *((u8 *)req->buf+2)); 389 390 /* Drop lock while we call out of driver; completions 391 * could be issued while we do so. Disconnection may 392 * happen too; maybe immediately before we queue this! 393 * 394 * NOTE that we may keep sending data for a while after 395 * the TTY closed (dev->ioport->port_tty is NULL). 396 */ 397 port->write_busy = true; 398 spin_unlock(&port->port_lock); 399 status = usb_ep_queue(in, req, GFP_ATOMIC); 400 spin_lock(&port->port_lock); 401 port->write_busy = false; 402 403 if (status) { 404 pr_debug("%s: %s %s err %d\n", 405 __func__, "queue", in->name, status); 406 list_add(&req->list, pool); 407 break; 408 } 409 410 port->write_started++; 411 412 /* abort immediately after disconnect */ 413 if (!port->port_usb) 414 break; 415 } 416 417 if (do_tty_wake && port->port.tty) 418 tty_wakeup(port->port.tty); 419 return status; 420 } 421 422 /* 423 * Context: caller owns port_lock, and port_usb is set 424 */ 425 static unsigned gs_start_rx(struct gs_port *port) 426 /* 427 __releases(&port->port_lock) 428 __acquires(&port->port_lock) 429 */ 430 { 431 struct list_head *pool = &port->read_pool; 432 struct usb_ep *out = port->port_usb->out; 433 434 while (!list_empty(pool)) { 435 struct usb_request *req; 436 int status; 437 struct tty_struct *tty; 438 439 /* no more rx if closed */ 440 tty = port->port.tty; 441 if (!tty) 442 break; 443 444 if (port->read_started >= QUEUE_SIZE) 445 break; 446 447 req = list_entry(pool->next, struct usb_request, list); 448 list_del(&req->list); 449 req->length = out->maxpacket; 450 451 /* drop lock while we call out; the controller driver 452 * may need to call us back (e.g. for disconnect) 453 */ 454 spin_unlock(&port->port_lock); 455 status = usb_ep_queue(out, req, GFP_ATOMIC); 456 spin_lock(&port->port_lock); 457 458 if (status) { 459 pr_debug("%s: %s %s err %d\n", 460 __func__, "queue", out->name, status); 461 list_add(&req->list, pool); 462 break; 463 } 464 port->read_started++; 465 466 /* abort immediately after disconnect */ 467 if (!port->port_usb) 468 break; 469 } 470 return port->read_started; 471 } 472 473 /* 474 * RX tasklet takes data out of the RX queue and hands it up to the TTY 475 * layer until it refuses to take any more data (or is throttled back). 476 * Then it issues reads for any further data. 477 * 478 * If the RX queue becomes full enough that no usb_request is queued, 479 * the OUT endpoint may begin NAKing as soon as its FIFO fills up. 480 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two) 481 * can be buffered before the TTY layer's buffers (currently 64 KB). 482 */ 483 static void gs_rx_push(unsigned long _port) 484 { 485 struct gs_port *port = (void *)_port; 486 struct tty_struct *tty; 487 struct list_head *queue = &port->read_queue; 488 bool disconnect = false; 489 bool do_push = false; 490 491 /* hand any queued data to the tty */ 492 spin_lock_irq(&port->port_lock); 493 tty = port->port.tty; 494 while (!list_empty(queue)) { 495 struct usb_request *req; 496 497 req = list_first_entry(queue, struct usb_request, list); 498 499 /* leave data queued if tty was rx throttled */ 500 if (tty && test_bit(TTY_THROTTLED, &tty->flags)) 501 break; 502 503 switch (req->status) { 504 case -ESHUTDOWN: 505 disconnect = true; 506 pr_vdebug("ttyGS%d: shutdown\n", port->port_num); 507 break; 508 509 default: 510 /* presumably a transient fault */ 511 pr_warn("ttyGS%d: unexpected RX status %d\n", 512 port->port_num, req->status); 513 /* FALLTHROUGH */ 514 case 0: 515 /* normal completion */ 516 break; 517 } 518 519 /* push data to (open) tty */ 520 if (req->actual) { 521 char *packet = req->buf; 522 unsigned size = req->actual; 523 unsigned n; 524 int count; 525 526 /* we may have pushed part of this packet already... */ 527 n = port->n_read; 528 if (n) { 529 packet += n; 530 size -= n; 531 } 532 533 count = tty_insert_flip_string(&port->port, packet, 534 size); 535 if (count) 536 do_push = true; 537 if (count != size) { 538 /* stop pushing; TTY layer can't handle more */ 539 port->n_read += count; 540 pr_vdebug("ttyGS%d: rx block %d/%d\n", 541 port->port_num, count, req->actual); 542 break; 543 } 544 port->n_read = 0; 545 } 546 547 list_move(&req->list, &port->read_pool); 548 port->read_started--; 549 } 550 551 /* Push from tty to ldisc; this is handled by a workqueue, 552 * so we won't get callbacks and can hold port_lock 553 */ 554 if (do_push) 555 tty_flip_buffer_push(&port->port); 556 557 558 /* We want our data queue to become empty ASAP, keeping data 559 * in the tty and ldisc (not here). If we couldn't push any 560 * this time around, there may be trouble unless there's an 561 * implicit tty_unthrottle() call on its way... 562 * 563 * REVISIT we should probably add a timer to keep the tasklet 564 * from starving ... but it's not clear that case ever happens. 565 */ 566 if (!list_empty(queue) && tty) { 567 if (!test_bit(TTY_THROTTLED, &tty->flags)) { 568 if (do_push) 569 tasklet_schedule(&port->push); 570 else 571 pr_warn("ttyGS%d: RX not scheduled?\n", 572 port->port_num); 573 } 574 } 575 576 /* If we're still connected, refill the USB RX queue. */ 577 if (!disconnect && port->port_usb) 578 gs_start_rx(port); 579 580 spin_unlock_irq(&port->port_lock); 581 } 582 583 static void gs_read_complete(struct usb_ep *ep, struct usb_request *req) 584 { 585 struct gs_port *port = ep->driver_data; 586 587 /* Queue all received data until the tty layer is ready for it. */ 588 spin_lock(&port->port_lock); 589 list_add_tail(&req->list, &port->read_queue); 590 tasklet_schedule(&port->push); 591 spin_unlock(&port->port_lock); 592 } 593 594 static void gs_write_complete(struct usb_ep *ep, struct usb_request *req) 595 { 596 struct gs_port *port = ep->driver_data; 597 598 spin_lock(&port->port_lock); 599 list_add(&req->list, &port->write_pool); 600 port->write_started--; 601 602 switch (req->status) { 603 default: 604 /* presumably a transient fault */ 605 pr_warning("%s: unexpected %s status %d\n", 606 __func__, ep->name, req->status); 607 /* FALL THROUGH */ 608 case 0: 609 /* normal completion */ 610 gs_start_tx(port); 611 break; 612 613 case -ESHUTDOWN: 614 /* disconnect */ 615 pr_vdebug("%s: %s shutdown\n", __func__, ep->name); 616 break; 617 } 618 619 spin_unlock(&port->port_lock); 620 } 621 622 static void gs_free_requests(struct usb_ep *ep, struct list_head *head, 623 int *allocated) 624 { 625 struct usb_request *req; 626 627 while (!list_empty(head)) { 628 req = list_entry(head->next, struct usb_request, list); 629 list_del(&req->list); 630 gs_free_req(ep, req); 631 if (allocated) 632 (*allocated)--; 633 } 634 } 635 636 static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head, 637 void (*fn)(struct usb_ep *, struct usb_request *), 638 int *allocated) 639 { 640 int i; 641 struct usb_request *req; 642 int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE; 643 644 /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't 645 * do quite that many this time, don't fail ... we just won't 646 * be as speedy as we might otherwise be. 647 */ 648 for (i = 0; i < n; i++) { 649 req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC); 650 if (!req) 651 return list_empty(head) ? -ENOMEM : 0; 652 req->complete = fn; 653 list_add_tail(&req->list, head); 654 if (allocated) 655 (*allocated)++; 656 } 657 return 0; 658 } 659 660 /** 661 * gs_start_io - start USB I/O streams 662 * @dev: encapsulates endpoints to use 663 * Context: holding port_lock; port_tty and port_usb are non-null 664 * 665 * We only start I/O when something is connected to both sides of 666 * this port. If nothing is listening on the host side, we may 667 * be pointlessly filling up our TX buffers and FIFO. 668 */ 669 static int gs_start_io(struct gs_port *port) 670 { 671 struct list_head *head = &port->read_pool; 672 struct usb_ep *ep = port->port_usb->out; 673 int status; 674 unsigned started; 675 676 /* Allocate RX and TX I/O buffers. We can't easily do this much 677 * earlier (with GFP_KERNEL) because the requests are coupled to 678 * endpoints, as are the packet sizes we'll be using. Different 679 * configurations may use different endpoints with a given port; 680 * and high speed vs full speed changes packet sizes too. 681 */ 682 status = gs_alloc_requests(ep, head, gs_read_complete, 683 &port->read_allocated); 684 if (status) 685 return status; 686 687 status = gs_alloc_requests(port->port_usb->in, &port->write_pool, 688 gs_write_complete, &port->write_allocated); 689 if (status) { 690 gs_free_requests(ep, head, &port->read_allocated); 691 return status; 692 } 693 694 /* queue read requests */ 695 port->n_read = 0; 696 started = gs_start_rx(port); 697 698 /* unblock any pending writes into our circular buffer */ 699 if (started) { 700 tty_wakeup(port->port.tty); 701 } else { 702 gs_free_requests(ep, head, &port->read_allocated); 703 gs_free_requests(port->port_usb->in, &port->write_pool, 704 &port->write_allocated); 705 status = -EIO; 706 } 707 708 return status; 709 } 710 711 /*-------------------------------------------------------------------------*/ 712 713 /* TTY Driver */ 714 715 /* 716 * gs_open sets up the link between a gs_port and its associated TTY. 717 * That link is broken *only* by TTY close(), and all driver methods 718 * know that. 719 */ 720 static int gs_open(struct tty_struct *tty, struct file *file) 721 { 722 int port_num = tty->index; 723 struct gs_port *port; 724 int status; 725 726 do { 727 mutex_lock(&ports[port_num].lock); 728 port = ports[port_num].port; 729 if (!port) 730 status = -ENODEV; 731 else { 732 spin_lock_irq(&port->port_lock); 733 734 /* already open? Great. */ 735 if (port->port.count) { 736 status = 0; 737 port->port.count++; 738 739 /* currently opening/closing? wait ... */ 740 } else if (port->openclose) { 741 status = -EBUSY; 742 743 /* ... else we do the work */ 744 } else { 745 status = -EAGAIN; 746 port->openclose = true; 747 } 748 spin_unlock_irq(&port->port_lock); 749 } 750 mutex_unlock(&ports[port_num].lock); 751 752 switch (status) { 753 default: 754 /* fully handled */ 755 return status; 756 case -EAGAIN: 757 /* must do the work */ 758 break; 759 case -EBUSY: 760 /* wait for EAGAIN task to finish */ 761 msleep(1); 762 /* REVISIT could have a waitchannel here, if 763 * concurrent open performance is important 764 */ 765 break; 766 } 767 } while (status != -EAGAIN); 768 769 /* Do the "real open" */ 770 spin_lock_irq(&port->port_lock); 771 772 /* allocate circular buffer on first open */ 773 if (port->port_write_buf.buf_buf == NULL) { 774 775 spin_unlock_irq(&port->port_lock); 776 status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE); 777 spin_lock_irq(&port->port_lock); 778 779 if (status) { 780 pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n", 781 port->port_num, tty, file); 782 port->openclose = false; 783 goto exit_unlock_port; 784 } 785 } 786 787 /* REVISIT if REMOVED (ports[].port NULL), abort the open 788 * to let rmmod work faster (but this way isn't wrong). 789 */ 790 791 /* REVISIT maybe wait for "carrier detect" */ 792 793 tty->driver_data = port; 794 port->port.tty = tty; 795 796 port->port.count = 1; 797 port->openclose = false; 798 799 /* if connected, start the I/O stream */ 800 if (port->port_usb) { 801 struct gserial *gser = port->port_usb; 802 803 pr_debug("gs_open: start ttyGS%d\n", port->port_num); 804 gs_start_io(port); 805 806 if (gser->connect) 807 gser->connect(gser); 808 } 809 810 pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file); 811 812 status = 0; 813 814 exit_unlock_port: 815 spin_unlock_irq(&port->port_lock); 816 return status; 817 } 818 819 static int gs_writes_finished(struct gs_port *p) 820 { 821 int cond; 822 823 /* return true on disconnect or empty buffer */ 824 spin_lock_irq(&p->port_lock); 825 cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf); 826 spin_unlock_irq(&p->port_lock); 827 828 return cond; 829 } 830 831 static void gs_close(struct tty_struct *tty, struct file *file) 832 { 833 struct gs_port *port = tty->driver_data; 834 struct gserial *gser; 835 836 spin_lock_irq(&port->port_lock); 837 838 if (port->port.count != 1) { 839 if (port->port.count == 0) 840 WARN_ON(1); 841 else 842 --port->port.count; 843 goto exit; 844 } 845 846 pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file); 847 848 /* mark port as closing but in use; we can drop port lock 849 * and sleep if necessary 850 */ 851 port->openclose = true; 852 port->port.count = 0; 853 854 gser = port->port_usb; 855 if (gser && gser->disconnect) 856 gser->disconnect(gser); 857 858 /* wait for circular write buffer to drain, disconnect, or at 859 * most GS_CLOSE_TIMEOUT seconds; then discard the rest 860 */ 861 if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) { 862 spin_unlock_irq(&port->port_lock); 863 wait_event_interruptible_timeout(port->drain_wait, 864 gs_writes_finished(port), 865 GS_CLOSE_TIMEOUT * HZ); 866 spin_lock_irq(&port->port_lock); 867 gser = port->port_usb; 868 } 869 870 /* Iff we're disconnected, there can be no I/O in flight so it's 871 * ok to free the circular buffer; else just scrub it. And don't 872 * let the push tasklet fire again until we're re-opened. 873 */ 874 if (gser == NULL) 875 gs_buf_free(&port->port_write_buf); 876 else 877 gs_buf_clear(&port->port_write_buf); 878 879 port->port.tty = NULL; 880 881 port->openclose = false; 882 883 pr_debug("gs_close: ttyGS%d (%p,%p) done!\n", 884 port->port_num, tty, file); 885 886 wake_up(&port->port.close_wait); 887 exit: 888 spin_unlock_irq(&port->port_lock); 889 } 890 891 static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count) 892 { 893 struct gs_port *port = tty->driver_data; 894 unsigned long flags; 895 int status; 896 897 pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n", 898 port->port_num, tty, count); 899 900 spin_lock_irqsave(&port->port_lock, flags); 901 if (count) 902 count = gs_buf_put(&port->port_write_buf, buf, count); 903 /* treat count == 0 as flush_chars() */ 904 if (port->port_usb) 905 status = gs_start_tx(port); 906 spin_unlock_irqrestore(&port->port_lock, flags); 907 908 return count; 909 } 910 911 static int gs_put_char(struct tty_struct *tty, unsigned char ch) 912 { 913 struct gs_port *port = tty->driver_data; 914 unsigned long flags; 915 int status; 916 917 pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %ps\n", 918 port->port_num, tty, ch, __builtin_return_address(0)); 919 920 spin_lock_irqsave(&port->port_lock, flags); 921 status = gs_buf_put(&port->port_write_buf, &ch, 1); 922 spin_unlock_irqrestore(&port->port_lock, flags); 923 924 return status; 925 } 926 927 static void gs_flush_chars(struct tty_struct *tty) 928 { 929 struct gs_port *port = tty->driver_data; 930 unsigned long flags; 931 932 pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty); 933 934 spin_lock_irqsave(&port->port_lock, flags); 935 if (port->port_usb) 936 gs_start_tx(port); 937 spin_unlock_irqrestore(&port->port_lock, flags); 938 } 939 940 static int gs_write_room(struct tty_struct *tty) 941 { 942 struct gs_port *port = tty->driver_data; 943 unsigned long flags; 944 int room = 0; 945 946 spin_lock_irqsave(&port->port_lock, flags); 947 if (port->port_usb) 948 room = gs_buf_space_avail(&port->port_write_buf); 949 spin_unlock_irqrestore(&port->port_lock, flags); 950 951 pr_vdebug("gs_write_room: (%d,%p) room=%d\n", 952 port->port_num, tty, room); 953 954 return room; 955 } 956 957 static int gs_chars_in_buffer(struct tty_struct *tty) 958 { 959 struct gs_port *port = tty->driver_data; 960 unsigned long flags; 961 int chars = 0; 962 963 spin_lock_irqsave(&port->port_lock, flags); 964 chars = gs_buf_data_avail(&port->port_write_buf); 965 spin_unlock_irqrestore(&port->port_lock, flags); 966 967 pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n", 968 port->port_num, tty, chars); 969 970 return chars; 971 } 972 973 /* undo side effects of setting TTY_THROTTLED */ 974 static void gs_unthrottle(struct tty_struct *tty) 975 { 976 struct gs_port *port = tty->driver_data; 977 unsigned long flags; 978 979 spin_lock_irqsave(&port->port_lock, flags); 980 if (port->port_usb) { 981 /* Kickstart read queue processing. We don't do xon/xoff, 982 * rts/cts, or other handshaking with the host, but if the 983 * read queue backs up enough we'll be NAKing OUT packets. 984 */ 985 tasklet_schedule(&port->push); 986 pr_vdebug("ttyGS%d: unthrottle\n", port->port_num); 987 } 988 spin_unlock_irqrestore(&port->port_lock, flags); 989 } 990 991 static int gs_break_ctl(struct tty_struct *tty, int duration) 992 { 993 struct gs_port *port = tty->driver_data; 994 int status = 0; 995 struct gserial *gser; 996 997 pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n", 998 port->port_num, duration); 999 1000 spin_lock_irq(&port->port_lock); 1001 gser = port->port_usb; 1002 if (gser && gser->send_break) 1003 status = gser->send_break(gser, duration); 1004 spin_unlock_irq(&port->port_lock); 1005 1006 return status; 1007 } 1008 1009 static const struct tty_operations gs_tty_ops = { 1010 .open = gs_open, 1011 .close = gs_close, 1012 .write = gs_write, 1013 .put_char = gs_put_char, 1014 .flush_chars = gs_flush_chars, 1015 .write_room = gs_write_room, 1016 .chars_in_buffer = gs_chars_in_buffer, 1017 .unthrottle = gs_unthrottle, 1018 .break_ctl = gs_break_ctl, 1019 }; 1020 1021 /*-------------------------------------------------------------------------*/ 1022 1023 static struct tty_driver *gs_tty_driver; 1024 1025 static int 1026 gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding) 1027 { 1028 struct gs_port *port; 1029 int ret = 0; 1030 1031 mutex_lock(&ports[port_num].lock); 1032 if (ports[port_num].port) { 1033 ret = -EBUSY; 1034 goto out; 1035 } 1036 1037 port = kzalloc(sizeof(struct gs_port), GFP_KERNEL); 1038 if (port == NULL) { 1039 ret = -ENOMEM; 1040 goto out; 1041 } 1042 1043 tty_port_init(&port->port); 1044 spin_lock_init(&port->port_lock); 1045 init_waitqueue_head(&port->drain_wait); 1046 1047 tasklet_init(&port->push, gs_rx_push, (unsigned long) port); 1048 1049 INIT_LIST_HEAD(&port->read_pool); 1050 INIT_LIST_HEAD(&port->read_queue); 1051 INIT_LIST_HEAD(&port->write_pool); 1052 1053 port->port_num = port_num; 1054 port->port_line_coding = *coding; 1055 1056 ports[port_num].port = port; 1057 out: 1058 mutex_unlock(&ports[port_num].lock); 1059 return ret; 1060 } 1061 1062 static int gs_closed(struct gs_port *port) 1063 { 1064 int cond; 1065 1066 spin_lock_irq(&port->port_lock); 1067 cond = (port->port.count == 0) && !port->openclose; 1068 spin_unlock_irq(&port->port_lock); 1069 return cond; 1070 } 1071 1072 static void gserial_free_port(struct gs_port *port) 1073 { 1074 tasklet_kill(&port->push); 1075 /* wait for old opens to finish */ 1076 wait_event(port->port.close_wait, gs_closed(port)); 1077 WARN_ON(port->port_usb != NULL); 1078 tty_port_destroy(&port->port); 1079 kfree(port); 1080 } 1081 1082 void gserial_free_line(unsigned char port_num) 1083 { 1084 struct gs_port *port; 1085 1086 mutex_lock(&ports[port_num].lock); 1087 if (WARN_ON(!ports[port_num].port)) { 1088 mutex_unlock(&ports[port_num].lock); 1089 return; 1090 } 1091 port = ports[port_num].port; 1092 ports[port_num].port = NULL; 1093 mutex_unlock(&ports[port_num].lock); 1094 1095 gserial_free_port(port); 1096 tty_unregister_device(gs_tty_driver, port_num); 1097 } 1098 EXPORT_SYMBOL_GPL(gserial_free_line); 1099 1100 int gserial_alloc_line(unsigned char *line_num) 1101 { 1102 struct usb_cdc_line_coding coding; 1103 struct device *tty_dev; 1104 int ret; 1105 int port_num; 1106 1107 coding.dwDTERate = cpu_to_le32(9600); 1108 coding.bCharFormat = 8; 1109 coding.bParityType = USB_CDC_NO_PARITY; 1110 coding.bDataBits = USB_CDC_1_STOP_BITS; 1111 1112 for (port_num = 0; port_num < MAX_U_SERIAL_PORTS; port_num++) { 1113 ret = gs_port_alloc(port_num, &coding); 1114 if (ret == -EBUSY) 1115 continue; 1116 if (ret) 1117 return ret; 1118 break; 1119 } 1120 if (ret) 1121 return ret; 1122 1123 /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */ 1124 1125 tty_dev = tty_port_register_device(&ports[port_num].port->port, 1126 gs_tty_driver, port_num, NULL); 1127 if (IS_ERR(tty_dev)) { 1128 struct gs_port *port; 1129 pr_err("%s: failed to register tty for port %d, err %ld\n", 1130 __func__, port_num, PTR_ERR(tty_dev)); 1131 1132 ret = PTR_ERR(tty_dev); 1133 port = ports[port_num].port; 1134 ports[port_num].port = NULL; 1135 gserial_free_port(port); 1136 goto err; 1137 } 1138 *line_num = port_num; 1139 err: 1140 return ret; 1141 } 1142 EXPORT_SYMBOL_GPL(gserial_alloc_line); 1143 1144 /** 1145 * gserial_connect - notify TTY I/O glue that USB link is active 1146 * @gser: the function, set up with endpoints and descriptors 1147 * @port_num: which port is active 1148 * Context: any (usually from irq) 1149 * 1150 * This is called activate endpoints and let the TTY layer know that 1151 * the connection is active ... not unlike "carrier detect". It won't 1152 * necessarily start I/O queues; unless the TTY is held open by any 1153 * task, there would be no point. However, the endpoints will be 1154 * activated so the USB host can perform I/O, subject to basic USB 1155 * hardware flow control. 1156 * 1157 * Caller needs to have set up the endpoints and USB function in @dev 1158 * before calling this, as well as the appropriate (speed-specific) 1159 * endpoint descriptors, and also have allocate @port_num by calling 1160 * @gserial_alloc_line(). 1161 * 1162 * Returns negative errno or zero. 1163 * On success, ep->driver_data will be overwritten. 1164 */ 1165 int gserial_connect(struct gserial *gser, u8 port_num) 1166 { 1167 struct gs_port *port; 1168 unsigned long flags; 1169 int status; 1170 1171 if (port_num >= MAX_U_SERIAL_PORTS) 1172 return -ENXIO; 1173 1174 port = ports[port_num].port; 1175 if (!port) { 1176 pr_err("serial line %d not allocated.\n", port_num); 1177 return -EINVAL; 1178 } 1179 if (port->port_usb) { 1180 pr_err("serial line %d is in use.\n", port_num); 1181 return -EBUSY; 1182 } 1183 1184 /* activate the endpoints */ 1185 status = usb_ep_enable(gser->in); 1186 if (status < 0) 1187 return status; 1188 gser->in->driver_data = port; 1189 1190 status = usb_ep_enable(gser->out); 1191 if (status < 0) 1192 goto fail_out; 1193 gser->out->driver_data = port; 1194 1195 /* then tell the tty glue that I/O can work */ 1196 spin_lock_irqsave(&port->port_lock, flags); 1197 gser->ioport = port; 1198 port->port_usb = gser; 1199 1200 /* REVISIT unclear how best to handle this state... 1201 * we don't really couple it with the Linux TTY. 1202 */ 1203 gser->port_line_coding = port->port_line_coding; 1204 1205 /* REVISIT if waiting on "carrier detect", signal. */ 1206 1207 /* if it's already open, start I/O ... and notify the serial 1208 * protocol about open/close status (connect/disconnect). 1209 */ 1210 if (port->port.count) { 1211 pr_debug("gserial_connect: start ttyGS%d\n", port->port_num); 1212 gs_start_io(port); 1213 if (gser->connect) 1214 gser->connect(gser); 1215 } else { 1216 if (gser->disconnect) 1217 gser->disconnect(gser); 1218 } 1219 1220 spin_unlock_irqrestore(&port->port_lock, flags); 1221 1222 return status; 1223 1224 fail_out: 1225 usb_ep_disable(gser->in); 1226 return status; 1227 } 1228 EXPORT_SYMBOL_GPL(gserial_connect); 1229 /** 1230 * gserial_disconnect - notify TTY I/O glue that USB link is inactive 1231 * @gser: the function, on which gserial_connect() was called 1232 * Context: any (usually from irq) 1233 * 1234 * This is called to deactivate endpoints and let the TTY layer know 1235 * that the connection went inactive ... not unlike "hangup". 1236 * 1237 * On return, the state is as if gserial_connect() had never been called; 1238 * there is no active USB I/O on these endpoints. 1239 */ 1240 void gserial_disconnect(struct gserial *gser) 1241 { 1242 struct gs_port *port = gser->ioport; 1243 unsigned long flags; 1244 1245 if (!port) 1246 return; 1247 1248 /* tell the TTY glue not to do I/O here any more */ 1249 spin_lock_irqsave(&port->port_lock, flags); 1250 1251 /* REVISIT as above: how best to track this? */ 1252 port->port_line_coding = gser->port_line_coding; 1253 1254 port->port_usb = NULL; 1255 gser->ioport = NULL; 1256 if (port->port.count > 0 || port->openclose) { 1257 wake_up_interruptible(&port->drain_wait); 1258 if (port->port.tty) 1259 tty_hangup(port->port.tty); 1260 } 1261 spin_unlock_irqrestore(&port->port_lock, flags); 1262 1263 /* disable endpoints, aborting down any active I/O */ 1264 usb_ep_disable(gser->out); 1265 usb_ep_disable(gser->in); 1266 1267 /* finally, free any unused/unusable I/O buffers */ 1268 spin_lock_irqsave(&port->port_lock, flags); 1269 if (port->port.count == 0 && !port->openclose) 1270 gs_buf_free(&port->port_write_buf); 1271 gs_free_requests(gser->out, &port->read_pool, NULL); 1272 gs_free_requests(gser->out, &port->read_queue, NULL); 1273 gs_free_requests(gser->in, &port->write_pool, NULL); 1274 1275 port->read_allocated = port->read_started = 1276 port->write_allocated = port->write_started = 0; 1277 1278 spin_unlock_irqrestore(&port->port_lock, flags); 1279 } 1280 EXPORT_SYMBOL_GPL(gserial_disconnect); 1281 1282 static int userial_init(void) 1283 { 1284 unsigned i; 1285 int status; 1286 1287 gs_tty_driver = alloc_tty_driver(MAX_U_SERIAL_PORTS); 1288 if (!gs_tty_driver) 1289 return -ENOMEM; 1290 1291 gs_tty_driver->driver_name = "g_serial"; 1292 gs_tty_driver->name = "ttyGS"; 1293 /* uses dynamically assigned dev_t values */ 1294 1295 gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL; 1296 gs_tty_driver->subtype = SERIAL_TYPE_NORMAL; 1297 gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; 1298 gs_tty_driver->init_termios = tty_std_termios; 1299 1300 /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on 1301 * MS-Windows. Otherwise, most of these flags shouldn't affect 1302 * anything unless we were to actually hook up to a serial line. 1303 */ 1304 gs_tty_driver->init_termios.c_cflag = 1305 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 1306 gs_tty_driver->init_termios.c_ispeed = 9600; 1307 gs_tty_driver->init_termios.c_ospeed = 9600; 1308 1309 tty_set_operations(gs_tty_driver, &gs_tty_ops); 1310 for (i = 0; i < MAX_U_SERIAL_PORTS; i++) 1311 mutex_init(&ports[i].lock); 1312 1313 /* export the driver ... */ 1314 status = tty_register_driver(gs_tty_driver); 1315 if (status) { 1316 pr_err("%s: cannot register, err %d\n", 1317 __func__, status); 1318 goto fail; 1319 } 1320 1321 pr_debug("%s: registered %d ttyGS* device%s\n", __func__, 1322 MAX_U_SERIAL_PORTS, 1323 (MAX_U_SERIAL_PORTS == 1) ? "" : "s"); 1324 1325 return status; 1326 fail: 1327 put_tty_driver(gs_tty_driver); 1328 gs_tty_driver = NULL; 1329 return status; 1330 } 1331 module_init(userial_init); 1332 1333 static void userial_cleanup(void) 1334 { 1335 tty_unregister_driver(gs_tty_driver); 1336 put_tty_driver(gs_tty_driver); 1337 gs_tty_driver = NULL; 1338 } 1339 module_exit(userial_cleanup); 1340 1341 MODULE_LICENSE("GPL"); 1342