1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_midi.c -- USB MIDI class function driver 4 * 5 * Copyright (C) 2006 Thumtronics Pty Ltd. 6 * Developed for Thumtronics by Grey Innovation 7 * Ben Williamson <ben.williamson@greyinnovation.com> 8 * 9 * Rewritten for the composite framework 10 * Copyright (C) 2011 Daniel Mack <zonque@gmail.com> 11 * 12 * Based on drivers/usb/gadget/f_audio.c, 13 * Copyright (C) 2008 Bryan Wu <cooloney@kernel.org> 14 * Copyright (C) 2008 Analog Devices, Inc 15 * 16 * and drivers/usb/gadget/midi.c, 17 * Copyright (C) 2006 Thumtronics Pty Ltd. 18 * Ben Williamson <ben.williamson@greyinnovation.com> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/slab.h> 24 #include <linux/device.h> 25 #include <linux/kfifo.h> 26 #include <linux/spinlock.h> 27 28 #include <sound/core.h> 29 #include <sound/initval.h> 30 #include <sound/rawmidi.h> 31 32 #include <linux/usb/ch9.h> 33 #include <linux/usb/gadget.h> 34 #include <linux/usb/audio.h> 35 #include <linux/usb/midi.h> 36 37 #include "u_f.h" 38 #include "u_midi.h" 39 40 MODULE_AUTHOR("Ben Williamson"); 41 MODULE_LICENSE("GPL v2"); 42 43 static const char f_midi_shortname[] = "f_midi"; 44 static const char f_midi_longname[] = "MIDI Gadget"; 45 46 /* 47 * We can only handle 16 cables on one single endpoint, as cable numbers are 48 * stored in 4-bit fields. And as the interface currently only holds one 49 * single endpoint, this is the maximum number of ports we can allow. 50 */ 51 #define MAX_PORTS 16 52 53 /* MIDI message states */ 54 enum { 55 STATE_INITIAL = 0, /* pseudo state */ 56 STATE_1PARAM, 57 STATE_2PARAM_1, 58 STATE_2PARAM_2, 59 STATE_SYSEX_0, 60 STATE_SYSEX_1, 61 STATE_SYSEX_2, 62 STATE_REAL_TIME, 63 STATE_FINISHED, /* pseudo state */ 64 }; 65 66 /* 67 * This is a gadget, and the IN/OUT naming is from the host's perspective. 68 * USB -> OUT endpoint -> rawmidi 69 * USB <- IN endpoint <- rawmidi 70 */ 71 struct gmidi_in_port { 72 struct snd_rawmidi_substream *substream; 73 int active; 74 uint8_t cable; 75 uint8_t state; 76 uint8_t data[2]; 77 }; 78 79 struct f_midi { 80 struct usb_function func; 81 struct usb_gadget *gadget; 82 struct usb_ep *in_ep, *out_ep; 83 struct snd_card *card; 84 struct snd_rawmidi *rmidi; 85 u8 ms_id; 86 87 struct snd_rawmidi_substream *out_substream[MAX_PORTS]; 88 89 unsigned long out_triggered; 90 struct work_struct work; 91 unsigned int in_ports; 92 unsigned int out_ports; 93 int index; 94 char *id; 95 unsigned int buflen, qlen; 96 /* This fifo is used as a buffer ring for pre-allocated IN usb_requests */ 97 DECLARE_KFIFO_PTR(in_req_fifo, struct usb_request *); 98 spinlock_t transmit_lock; 99 unsigned int in_last_port; 100 unsigned char free_ref; 101 102 struct gmidi_in_port in_ports_array[] __counted_by(in_ports); 103 }; 104 105 static inline struct f_midi *func_to_midi(struct usb_function *f) 106 { 107 return container_of(f, struct f_midi, func); 108 } 109 110 static void f_midi_transmit(struct f_midi *midi); 111 static void f_midi_rmidi_free(struct snd_rawmidi *rmidi); 112 static void f_midi_free_inst(struct usb_function_instance *f); 113 114 DECLARE_UAC_AC_HEADER_DESCRIPTOR(1); 115 DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(1); 116 DECLARE_USB_MS_ENDPOINT_DESCRIPTOR(16); 117 118 /* B.3.1 Standard AC Interface Descriptor */ 119 static struct usb_interface_descriptor ac_interface_desc = { 120 .bLength = USB_DT_INTERFACE_SIZE, 121 .bDescriptorType = USB_DT_INTERFACE, 122 /* .bInterfaceNumber = DYNAMIC */ 123 /* .bNumEndpoints = DYNAMIC */ 124 .bInterfaceClass = USB_CLASS_AUDIO, 125 .bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL, 126 /* .iInterface = DYNAMIC */ 127 }; 128 129 /* B.3.2 Class-Specific AC Interface Descriptor */ 130 static struct uac1_ac_header_descriptor_1 ac_header_desc = { 131 .bLength = UAC_DT_AC_HEADER_SIZE(1), 132 .bDescriptorType = USB_DT_CS_INTERFACE, 133 .bDescriptorSubtype = USB_MS_HEADER, 134 .bcdADC = cpu_to_le16(0x0100), 135 .wTotalLength = cpu_to_le16(UAC_DT_AC_HEADER_SIZE(1)), 136 .bInCollection = 1, 137 /* .baInterfaceNr = DYNAMIC */ 138 }; 139 140 /* B.4.1 Standard MS Interface Descriptor */ 141 static struct usb_interface_descriptor ms_interface_desc = { 142 .bLength = USB_DT_INTERFACE_SIZE, 143 .bDescriptorType = USB_DT_INTERFACE, 144 /* .bInterfaceNumber = DYNAMIC */ 145 .bNumEndpoints = 2, 146 .bInterfaceClass = USB_CLASS_AUDIO, 147 .bInterfaceSubClass = USB_SUBCLASS_MIDISTREAMING, 148 /* .iInterface = DYNAMIC */ 149 }; 150 151 /* B.4.2 Class-Specific MS Interface Descriptor */ 152 static struct usb_ms_header_descriptor ms_header_desc = { 153 .bLength = USB_DT_MS_HEADER_SIZE, 154 .bDescriptorType = USB_DT_CS_INTERFACE, 155 .bDescriptorSubtype = USB_MS_HEADER, 156 .bcdMSC = cpu_to_le16(0x0100), 157 /* .wTotalLength = DYNAMIC */ 158 }; 159 160 /* B.5.1 Standard Bulk OUT Endpoint Descriptor */ 161 static struct usb_endpoint_descriptor bulk_out_desc = { 162 .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, 163 .bDescriptorType = USB_DT_ENDPOINT, 164 .bEndpointAddress = USB_DIR_OUT, 165 .bmAttributes = USB_ENDPOINT_XFER_BULK, 166 }; 167 168 static struct usb_ss_ep_comp_descriptor bulk_out_ss_comp_desc = { 169 .bLength = sizeof(bulk_out_ss_comp_desc), 170 .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, 171 /* .bMaxBurst = 0, */ 172 /* .bmAttributes = 0, */ 173 }; 174 175 /* B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor */ 176 static struct usb_ms_endpoint_descriptor_16 ms_out_desc = { 177 /* .bLength = DYNAMIC */ 178 .bDescriptorType = USB_DT_CS_ENDPOINT, 179 .bDescriptorSubtype = USB_MS_GENERAL, 180 /* .bNumEmbMIDIJack = DYNAMIC */ 181 /* .baAssocJackID = DYNAMIC */ 182 }; 183 184 /* B.6.1 Standard Bulk IN Endpoint Descriptor */ 185 static struct usb_endpoint_descriptor bulk_in_desc = { 186 .bLength = USB_DT_ENDPOINT_AUDIO_SIZE, 187 .bDescriptorType = USB_DT_ENDPOINT, 188 .bEndpointAddress = USB_DIR_IN, 189 .bmAttributes = USB_ENDPOINT_XFER_BULK, 190 }; 191 192 static struct usb_ss_ep_comp_descriptor bulk_in_ss_comp_desc = { 193 .bLength = sizeof(bulk_in_ss_comp_desc), 194 .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, 195 /* .bMaxBurst = 0, */ 196 /* .bmAttributes = 0, */ 197 }; 198 199 /* B.6.2 Class-specific MS Bulk IN Endpoint Descriptor */ 200 static struct usb_ms_endpoint_descriptor_16 ms_in_desc = { 201 /* .bLength = DYNAMIC */ 202 .bDescriptorType = USB_DT_CS_ENDPOINT, 203 .bDescriptorSubtype = USB_MS_GENERAL, 204 /* .bNumEmbMIDIJack = DYNAMIC */ 205 /* .baAssocJackID = DYNAMIC */ 206 }; 207 208 /* string IDs are assigned dynamically */ 209 210 #define STRING_FUNC_IDX 0 211 212 static struct usb_string midi_string_defs[] = { 213 [STRING_FUNC_IDX].s = "MIDI function", 214 { } /* end of list */ 215 }; 216 217 static struct usb_gadget_strings midi_stringtab = { 218 .language = 0x0409, /* en-us */ 219 .strings = midi_string_defs, 220 }; 221 222 static struct usb_gadget_strings *midi_strings[] = { 223 &midi_stringtab, 224 NULL, 225 }; 226 227 static inline struct usb_request *midi_alloc_ep_req(struct usb_ep *ep, 228 unsigned length) 229 { 230 return alloc_ep_req(ep, length); 231 } 232 233 static const uint8_t f_midi_cin_length[] = { 234 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 235 }; 236 237 /* 238 * Receives a chunk of MIDI data. 239 */ 240 static void f_midi_read_data(struct usb_ep *ep, int cable, 241 uint8_t *data, int length) 242 { 243 struct f_midi *midi = ep->driver_data; 244 struct snd_rawmidi_substream *substream = midi->out_substream[cable]; 245 246 if (!substream) 247 /* Nobody is listening - throw it on the floor. */ 248 return; 249 250 if (!test_bit(cable, &midi->out_triggered)) 251 return; 252 253 snd_rawmidi_receive(substream, data, length); 254 } 255 256 static void f_midi_handle_out_data(struct usb_ep *ep, struct usb_request *req) 257 { 258 unsigned int i; 259 u8 *buf = req->buf; 260 261 for (i = 0; i + 3 < req->actual; i += 4) 262 if (buf[i] != 0) { 263 int cable = buf[i] >> 4; 264 int length = f_midi_cin_length[buf[i] & 0x0f]; 265 f_midi_read_data(ep, cable, &buf[i + 1], length); 266 } 267 } 268 269 static void 270 f_midi_complete(struct usb_ep *ep, struct usb_request *req) 271 { 272 struct f_midi *midi = ep->driver_data; 273 struct usb_composite_dev *cdev = midi->func.config->cdev; 274 int status = req->status; 275 276 switch (status) { 277 case 0: /* normal completion */ 278 if (ep == midi->out_ep) { 279 /* We received stuff. req is queued again, below */ 280 f_midi_handle_out_data(ep, req); 281 } else if (ep == midi->in_ep) { 282 /* Our transmit completed. See if there's more to go. 283 * f_midi_transmit eats req, don't queue it again. */ 284 req->length = 0; 285 f_midi_transmit(midi); 286 return; 287 } 288 break; 289 290 /* this endpoint is normally active while we're configured */ 291 case -ECONNABORTED: /* hardware forced ep reset */ 292 case -ECONNRESET: /* request dequeued */ 293 case -ESHUTDOWN: /* disconnect from host */ 294 VDBG(cdev, "%s gone (%d), %d/%d\n", ep->name, status, 295 req->actual, req->length); 296 if (ep == midi->out_ep) { 297 f_midi_handle_out_data(ep, req); 298 /* We don't need to free IN requests because it's handled 299 * by the midi->in_req_fifo. */ 300 free_ep_req(ep, req); 301 } 302 return; 303 304 case -EOVERFLOW: /* buffer overrun on read means that 305 * we didn't provide a big enough buffer. 306 */ 307 default: 308 DBG(cdev, "%s complete --> %d, %d/%d\n", ep->name, 309 status, req->actual, req->length); 310 break; 311 case -EREMOTEIO: /* short read */ 312 break; 313 } 314 315 status = usb_ep_queue(ep, req, GFP_ATOMIC); 316 if (status) { 317 ERROR(cdev, "kill %s: resubmit %d bytes --> %d\n", 318 ep->name, req->length, status); 319 usb_ep_set_halt(ep); 320 /* FIXME recover later ... somehow */ 321 } 322 } 323 324 static void f_midi_drop_out_substreams(struct f_midi *midi) 325 { 326 unsigned int i; 327 328 for (i = 0; i < midi->in_ports; i++) { 329 struct gmidi_in_port *port = midi->in_ports_array + i; 330 struct snd_rawmidi_substream *substream = port->substream; 331 332 if (port->active && substream) 333 snd_rawmidi_drop_output(substream); 334 } 335 } 336 337 static int f_midi_start_ep(struct f_midi *midi, 338 struct usb_function *f, 339 struct usb_ep *ep) 340 { 341 int err; 342 struct usb_composite_dev *cdev = f->config->cdev; 343 344 usb_ep_disable(ep); 345 346 err = config_ep_by_speed(midi->gadget, f, ep); 347 if (err) { 348 ERROR(cdev, "can't configure %s: %d\n", ep->name, err); 349 return err; 350 } 351 352 err = usb_ep_enable(ep); 353 if (err) { 354 ERROR(cdev, "can't start %s: %d\n", ep->name, err); 355 return err; 356 } 357 358 ep->driver_data = midi; 359 360 return 0; 361 } 362 363 static int f_midi_set_alt(struct usb_function *f, unsigned intf, unsigned alt) 364 { 365 struct f_midi *midi = func_to_midi(f); 366 unsigned i; 367 int err; 368 369 /* we only set alt for MIDIStreaming interface */ 370 if (intf != midi->ms_id) 371 return 0; 372 373 err = f_midi_start_ep(midi, f, midi->in_ep); 374 if (err) 375 return err; 376 377 err = f_midi_start_ep(midi, f, midi->out_ep); 378 if (err) 379 return err; 380 381 /* pre-allocate write usb requests to use on f_midi_transmit. */ 382 while (kfifo_avail(&midi->in_req_fifo)) { 383 struct usb_request *req = 384 midi_alloc_ep_req(midi->in_ep, midi->buflen); 385 386 if (req == NULL) 387 return -ENOMEM; 388 389 req->length = 0; 390 req->complete = f_midi_complete; 391 392 kfifo_put(&midi->in_req_fifo, req); 393 } 394 395 /* allocate a bunch of read buffers and queue them all at once. */ 396 for (i = 0; i < midi->qlen && err == 0; i++) { 397 struct usb_request *req = 398 midi_alloc_ep_req(midi->out_ep, midi->buflen); 399 400 if (req == NULL) 401 return -ENOMEM; 402 403 req->complete = f_midi_complete; 404 err = usb_ep_queue(midi->out_ep, req, GFP_ATOMIC); 405 if (err) { 406 ERROR(midi, "%s: couldn't enqueue request: %d\n", 407 midi->out_ep->name, err); 408 if (req->buf != NULL) 409 free_ep_req(midi->out_ep, req); 410 return err; 411 } 412 } 413 414 return 0; 415 } 416 417 static void f_midi_disable(struct usb_function *f) 418 { 419 struct f_midi *midi = func_to_midi(f); 420 struct usb_composite_dev *cdev = f->config->cdev; 421 struct usb_request *req = NULL; 422 423 DBG(cdev, "disable\n"); 424 425 /* 426 * just disable endpoints, forcing completion of pending i/o. 427 * all our completion handlers free their requests in this case. 428 */ 429 usb_ep_disable(midi->in_ep); 430 usb_ep_disable(midi->out_ep); 431 432 /* release IN requests */ 433 while (kfifo_get(&midi->in_req_fifo, &req)) 434 free_ep_req(midi->in_ep, req); 435 436 f_midi_drop_out_substreams(midi); 437 } 438 439 static int f_midi_snd_free(struct snd_device *device) 440 { 441 return 0; 442 } 443 444 /* 445 * Converts MIDI commands to USB MIDI packets. 446 */ 447 static void f_midi_transmit_byte(struct usb_request *req, 448 struct gmidi_in_port *port, uint8_t b) 449 { 450 uint8_t p[4] = { port->cable << 4, 0, 0, 0 }; 451 uint8_t next_state = STATE_INITIAL; 452 453 switch (b) { 454 case 0xf8 ... 0xff: 455 /* System Real-Time Messages */ 456 p[0] |= 0x0f; 457 p[1] = b; 458 next_state = port->state; 459 port->state = STATE_REAL_TIME; 460 break; 461 462 case 0xf7: 463 /* End of SysEx */ 464 switch (port->state) { 465 case STATE_SYSEX_0: 466 p[0] |= 0x05; 467 p[1] = 0xf7; 468 next_state = STATE_FINISHED; 469 break; 470 case STATE_SYSEX_1: 471 p[0] |= 0x06; 472 p[1] = port->data[0]; 473 p[2] = 0xf7; 474 next_state = STATE_FINISHED; 475 break; 476 case STATE_SYSEX_2: 477 p[0] |= 0x07; 478 p[1] = port->data[0]; 479 p[2] = port->data[1]; 480 p[3] = 0xf7; 481 next_state = STATE_FINISHED; 482 break; 483 default: 484 /* Ignore byte */ 485 next_state = port->state; 486 port->state = STATE_INITIAL; 487 } 488 break; 489 490 case 0xf0 ... 0xf6: 491 /* System Common Messages */ 492 port->data[0] = port->data[1] = 0; 493 port->state = STATE_INITIAL; 494 switch (b) { 495 case 0xf0: 496 port->data[0] = b; 497 port->data[1] = 0; 498 next_state = STATE_SYSEX_1; 499 break; 500 case 0xf1: 501 case 0xf3: 502 port->data[0] = b; 503 next_state = STATE_1PARAM; 504 break; 505 case 0xf2: 506 port->data[0] = b; 507 next_state = STATE_2PARAM_1; 508 break; 509 case 0xf4: 510 case 0xf5: 511 next_state = STATE_INITIAL; 512 break; 513 case 0xf6: 514 p[0] |= 0x05; 515 p[1] = 0xf6; 516 next_state = STATE_FINISHED; 517 break; 518 } 519 break; 520 521 case 0x80 ... 0xef: 522 /* 523 * Channel Voice Messages, Channel Mode Messages 524 * and Control Change Messages. 525 */ 526 port->data[0] = b; 527 port->data[1] = 0; 528 port->state = STATE_INITIAL; 529 if (b >= 0xc0 && b <= 0xdf) 530 next_state = STATE_1PARAM; 531 else 532 next_state = STATE_2PARAM_1; 533 break; 534 535 case 0x00 ... 0x7f: 536 /* Message parameters */ 537 switch (port->state) { 538 case STATE_1PARAM: 539 if (port->data[0] < 0xf0) 540 p[0] |= port->data[0] >> 4; 541 else 542 p[0] |= 0x02; 543 544 p[1] = port->data[0]; 545 p[2] = b; 546 /* This is to allow Running State Messages */ 547 next_state = STATE_1PARAM; 548 break; 549 case STATE_2PARAM_1: 550 port->data[1] = b; 551 next_state = STATE_2PARAM_2; 552 break; 553 case STATE_2PARAM_2: 554 if (port->data[0] < 0xf0) 555 p[0] |= port->data[0] >> 4; 556 else 557 p[0] |= 0x03; 558 559 p[1] = port->data[0]; 560 p[2] = port->data[1]; 561 p[3] = b; 562 /* This is to allow Running State Messages */ 563 next_state = STATE_2PARAM_1; 564 break; 565 case STATE_SYSEX_0: 566 port->data[0] = b; 567 next_state = STATE_SYSEX_1; 568 break; 569 case STATE_SYSEX_1: 570 port->data[1] = b; 571 next_state = STATE_SYSEX_2; 572 break; 573 case STATE_SYSEX_2: 574 p[0] |= 0x04; 575 p[1] = port->data[0]; 576 p[2] = port->data[1]; 577 p[3] = b; 578 next_state = STATE_SYSEX_0; 579 break; 580 } 581 break; 582 } 583 584 /* States where we have to write into the USB request */ 585 if (next_state == STATE_FINISHED || 586 port->state == STATE_SYSEX_2 || 587 port->state == STATE_1PARAM || 588 port->state == STATE_2PARAM_2 || 589 port->state == STATE_REAL_TIME) { 590 591 unsigned int length = req->length; 592 u8 *buf = (u8 *)req->buf + length; 593 594 memcpy(buf, p, sizeof(p)); 595 req->length = length + sizeof(p); 596 597 if (next_state == STATE_FINISHED) { 598 next_state = STATE_INITIAL; 599 port->data[0] = port->data[1] = 0; 600 } 601 } 602 603 port->state = next_state; 604 } 605 606 static int f_midi_do_transmit(struct f_midi *midi, struct usb_ep *ep) 607 { 608 struct usb_request *req = NULL; 609 unsigned int len, i; 610 bool active = false; 611 int err; 612 613 /* 614 * We peek the request in order to reuse it if it fails to enqueue on 615 * its endpoint 616 */ 617 len = kfifo_peek(&midi->in_req_fifo, &req); 618 if (len != 1) { 619 ERROR(midi, "%s: Couldn't get usb request\n", __func__); 620 return -1; 621 } 622 623 /* 624 * If buffer overrun, then we ignore this transmission. 625 * IMPORTANT: This will cause the user-space rawmidi device to block 626 * until a) usb requests have been completed or b) snd_rawmidi_write() 627 * times out. 628 */ 629 if (req->length > 0) 630 return 0; 631 632 for (i = midi->in_last_port; i < midi->in_ports; ++i) { 633 struct gmidi_in_port *port = midi->in_ports_array + i; 634 struct snd_rawmidi_substream *substream = port->substream; 635 636 if (!port->active || !substream) 637 continue; 638 639 while (req->length + 3 < midi->buflen) { 640 uint8_t b; 641 642 if (snd_rawmidi_transmit(substream, &b, 1) != 1) { 643 port->active = 0; 644 break; 645 } 646 f_midi_transmit_byte(req, port, b); 647 } 648 649 active = !!port->active; 650 if (active) 651 break; 652 } 653 midi->in_last_port = active ? i : 0; 654 655 if (req->length <= 0) 656 goto done; 657 658 err = usb_ep_queue(ep, req, GFP_ATOMIC); 659 if (err < 0) { 660 ERROR(midi, "%s failed to queue req: %d\n", 661 midi->in_ep->name, err); 662 req->length = 0; /* Re-use request next time. */ 663 } else { 664 /* Upon success, put request at the back of the queue. */ 665 kfifo_skip(&midi->in_req_fifo); 666 kfifo_put(&midi->in_req_fifo, req); 667 } 668 669 done: 670 return active; 671 } 672 673 static void f_midi_transmit(struct f_midi *midi) 674 { 675 struct usb_ep *ep = midi->in_ep; 676 int ret; 677 unsigned long flags; 678 679 /* We only care about USB requests if IN endpoint is enabled */ 680 if (!ep || !ep->enabled) 681 goto drop_out; 682 683 spin_lock_irqsave(&midi->transmit_lock, flags); 684 685 do { 686 ret = f_midi_do_transmit(midi, ep); 687 if (ret < 0) { 688 spin_unlock_irqrestore(&midi->transmit_lock, flags); 689 goto drop_out; 690 } 691 } while (ret); 692 693 spin_unlock_irqrestore(&midi->transmit_lock, flags); 694 695 return; 696 697 drop_out: 698 f_midi_drop_out_substreams(midi); 699 } 700 701 static void f_midi_in_work(struct work_struct *work) 702 { 703 struct f_midi *midi; 704 705 midi = container_of(work, struct f_midi, work); 706 f_midi_transmit(midi); 707 } 708 709 static int f_midi_in_open(struct snd_rawmidi_substream *substream) 710 { 711 struct f_midi *midi = substream->rmidi->private_data; 712 struct gmidi_in_port *port; 713 714 if (substream->number >= midi->in_ports) 715 return -EINVAL; 716 717 VDBG(midi, "%s()\n", __func__); 718 port = midi->in_ports_array + substream->number; 719 port->substream = substream; 720 port->state = STATE_INITIAL; 721 return 0; 722 } 723 724 static int f_midi_in_close(struct snd_rawmidi_substream *substream) 725 { 726 struct f_midi *midi = substream->rmidi->private_data; 727 728 VDBG(midi, "%s()\n", __func__); 729 return 0; 730 } 731 732 static void f_midi_in_trigger(struct snd_rawmidi_substream *substream, int up) 733 { 734 struct f_midi *midi = substream->rmidi->private_data; 735 736 if (substream->number >= midi->in_ports) 737 return; 738 739 VDBG(midi, "%s() %d\n", __func__, up); 740 midi->in_ports_array[substream->number].active = up; 741 if (up) 742 queue_work(system_highpri_wq, &midi->work); 743 } 744 745 static int f_midi_out_open(struct snd_rawmidi_substream *substream) 746 { 747 struct f_midi *midi = substream->rmidi->private_data; 748 749 if (substream->number >= MAX_PORTS) 750 return -EINVAL; 751 752 VDBG(midi, "%s()\n", __func__); 753 midi->out_substream[substream->number] = substream; 754 return 0; 755 } 756 757 static int f_midi_out_close(struct snd_rawmidi_substream *substream) 758 { 759 struct f_midi *midi = substream->rmidi->private_data; 760 761 VDBG(midi, "%s()\n", __func__); 762 return 0; 763 } 764 765 static void f_midi_out_trigger(struct snd_rawmidi_substream *substream, int up) 766 { 767 struct f_midi *midi = substream->rmidi->private_data; 768 769 VDBG(midi, "%s()\n", __func__); 770 771 if (up) 772 set_bit(substream->number, &midi->out_triggered); 773 else 774 clear_bit(substream->number, &midi->out_triggered); 775 } 776 777 static const struct snd_rawmidi_ops gmidi_in_ops = { 778 .open = f_midi_in_open, 779 .close = f_midi_in_close, 780 .trigger = f_midi_in_trigger, 781 }; 782 783 static const struct snd_rawmidi_ops gmidi_out_ops = { 784 .open = f_midi_out_open, 785 .close = f_midi_out_close, 786 .trigger = f_midi_out_trigger 787 }; 788 789 static inline void f_midi_unregister_card(struct f_midi *midi) 790 { 791 if (midi->card) { 792 snd_card_free(midi->card); 793 midi->card = NULL; 794 } 795 } 796 797 /* register as a sound "card" */ 798 static int f_midi_register_card(struct f_midi *midi) 799 { 800 struct snd_card *card; 801 struct snd_rawmidi *rmidi; 802 int err; 803 static struct snd_device_ops ops = { 804 .dev_free = f_midi_snd_free, 805 }; 806 807 err = snd_card_new(&midi->gadget->dev, midi->index, midi->id, 808 THIS_MODULE, 0, &card); 809 if (err < 0) { 810 ERROR(midi, "snd_card_new() failed\n"); 811 goto fail; 812 } 813 midi->card = card; 814 815 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, midi, &ops); 816 if (err < 0) { 817 ERROR(midi, "snd_device_new() failed: error %d\n", err); 818 goto fail; 819 } 820 821 strcpy(card->driver, f_midi_longname); 822 strcpy(card->longname, f_midi_longname); 823 strcpy(card->shortname, f_midi_shortname); 824 825 /* Set up rawmidi */ 826 snd_component_add(card, "MIDI"); 827 err = snd_rawmidi_new(card, card->longname, 0, 828 midi->out_ports, midi->in_ports, &rmidi); 829 if (err < 0) { 830 ERROR(midi, "snd_rawmidi_new() failed: error %d\n", err); 831 goto fail; 832 } 833 midi->rmidi = rmidi; 834 midi->in_last_port = 0; 835 strcpy(rmidi->name, card->shortname); 836 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 837 SNDRV_RAWMIDI_INFO_INPUT | 838 SNDRV_RAWMIDI_INFO_DUPLEX; 839 rmidi->private_data = midi; 840 rmidi->private_free = f_midi_rmidi_free; 841 midi->free_ref++; 842 843 /* 844 * Yes, rawmidi OUTPUT = USB IN, and rawmidi INPUT = USB OUT. 845 * It's an upside-down world being a gadget. 846 */ 847 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &gmidi_in_ops); 848 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &gmidi_out_ops); 849 850 /* register it - we're ready to go */ 851 err = snd_card_register(card); 852 if (err < 0) { 853 ERROR(midi, "snd_card_register() failed\n"); 854 goto fail; 855 } 856 857 VDBG(midi, "%s() finished ok\n", __func__); 858 return 0; 859 860 fail: 861 f_midi_unregister_card(midi); 862 return err; 863 } 864 865 /* MIDI function driver setup/binding */ 866 867 static int f_midi_bind(struct usb_configuration *c, struct usb_function *f) 868 { 869 struct usb_descriptor_header **midi_function; 870 struct usb_midi_in_jack_descriptor jack_in_ext_desc[MAX_PORTS]; 871 struct usb_midi_in_jack_descriptor jack_in_emb_desc[MAX_PORTS]; 872 struct usb_midi_out_jack_descriptor_1 jack_out_ext_desc[MAX_PORTS]; 873 struct usb_midi_out_jack_descriptor_1 jack_out_emb_desc[MAX_PORTS]; 874 struct usb_composite_dev *cdev = c->cdev; 875 struct f_midi *midi = func_to_midi(f); 876 struct usb_string *us; 877 int status, n, jack = 1, i = 0, endpoint_descriptor_index = 0; 878 879 midi->gadget = cdev->gadget; 880 INIT_WORK(&midi->work, f_midi_in_work); 881 status = f_midi_register_card(midi); 882 if (status < 0) 883 goto fail_register; 884 885 /* maybe allocate device-global string ID */ 886 us = usb_gstrings_attach(c->cdev, midi_strings, 887 ARRAY_SIZE(midi_string_defs)); 888 if (IS_ERR(us)) { 889 status = PTR_ERR(us); 890 goto fail; 891 } 892 ac_interface_desc.iInterface = us[STRING_FUNC_IDX].id; 893 894 /* We have two interfaces, AudioControl and MIDIStreaming */ 895 status = usb_interface_id(c, f); 896 if (status < 0) 897 goto fail; 898 ac_interface_desc.bInterfaceNumber = status; 899 900 status = usb_interface_id(c, f); 901 if (status < 0) 902 goto fail; 903 ms_interface_desc.bInterfaceNumber = status; 904 ac_header_desc.baInterfaceNr[0] = status; 905 midi->ms_id = status; 906 907 status = -ENODEV; 908 909 /* allocate instance-specific endpoints */ 910 midi->in_ep = usb_ep_autoconfig(cdev->gadget, &bulk_in_desc); 911 if (!midi->in_ep) 912 goto fail; 913 914 midi->out_ep = usb_ep_autoconfig(cdev->gadget, &bulk_out_desc); 915 if (!midi->out_ep) 916 goto fail; 917 918 /* allocate temporary function list */ 919 midi_function = kcalloc((MAX_PORTS * 4) + 11, sizeof(*midi_function), 920 GFP_KERNEL); 921 if (!midi_function) { 922 status = -ENOMEM; 923 goto fail; 924 } 925 926 /* 927 * construct the function's descriptor set. As the number of 928 * input and output MIDI ports is configurable, we have to do 929 * it that way. 930 */ 931 932 /* add the headers - these are always the same */ 933 midi_function[i++] = (struct usb_descriptor_header *) &ac_interface_desc; 934 midi_function[i++] = (struct usb_descriptor_header *) &ac_header_desc; 935 midi_function[i++] = (struct usb_descriptor_header *) &ms_interface_desc; 936 937 /* calculate the header's wTotalLength */ 938 n = USB_DT_MS_HEADER_SIZE 939 + (midi->in_ports + midi->out_ports) * 940 (USB_DT_MIDI_IN_SIZE + USB_DT_MIDI_OUT_SIZE(1)); 941 ms_header_desc.wTotalLength = cpu_to_le16(n); 942 943 midi_function[i++] = (struct usb_descriptor_header *) &ms_header_desc; 944 945 /* configure the external IN jacks, each linked to an embedded OUT jack */ 946 for (n = 0; n < midi->in_ports; n++) { 947 struct usb_midi_in_jack_descriptor *in_ext = &jack_in_ext_desc[n]; 948 struct usb_midi_out_jack_descriptor_1 *out_emb = &jack_out_emb_desc[n]; 949 950 in_ext->bLength = USB_DT_MIDI_IN_SIZE; 951 in_ext->bDescriptorType = USB_DT_CS_INTERFACE; 952 in_ext->bDescriptorSubtype = USB_MS_MIDI_IN_JACK; 953 in_ext->bJackType = USB_MS_EXTERNAL; 954 in_ext->bJackID = jack++; 955 in_ext->iJack = 0; 956 midi_function[i++] = (struct usb_descriptor_header *) in_ext; 957 958 out_emb->bLength = USB_DT_MIDI_OUT_SIZE(1); 959 out_emb->bDescriptorType = USB_DT_CS_INTERFACE; 960 out_emb->bDescriptorSubtype = USB_MS_MIDI_OUT_JACK; 961 out_emb->bJackType = USB_MS_EMBEDDED; 962 out_emb->bJackID = jack++; 963 out_emb->bNrInputPins = 1; 964 out_emb->pins[0].baSourcePin = 1; 965 out_emb->pins[0].baSourceID = in_ext->bJackID; 966 out_emb->iJack = 0; 967 midi_function[i++] = (struct usb_descriptor_header *) out_emb; 968 969 /* link it to the endpoint */ 970 ms_in_desc.baAssocJackID[n] = out_emb->bJackID; 971 } 972 973 /* configure the external OUT jacks, each linked to an embedded IN jack */ 974 for (n = 0; n < midi->out_ports; n++) { 975 struct usb_midi_in_jack_descriptor *in_emb = &jack_in_emb_desc[n]; 976 struct usb_midi_out_jack_descriptor_1 *out_ext = &jack_out_ext_desc[n]; 977 978 in_emb->bLength = USB_DT_MIDI_IN_SIZE; 979 in_emb->bDescriptorType = USB_DT_CS_INTERFACE; 980 in_emb->bDescriptorSubtype = USB_MS_MIDI_IN_JACK; 981 in_emb->bJackType = USB_MS_EMBEDDED; 982 in_emb->bJackID = jack++; 983 in_emb->iJack = 0; 984 midi_function[i++] = (struct usb_descriptor_header *) in_emb; 985 986 out_ext->bLength = USB_DT_MIDI_OUT_SIZE(1); 987 out_ext->bDescriptorType = USB_DT_CS_INTERFACE; 988 out_ext->bDescriptorSubtype = USB_MS_MIDI_OUT_JACK; 989 out_ext->bJackType = USB_MS_EXTERNAL; 990 out_ext->bJackID = jack++; 991 out_ext->bNrInputPins = 1; 992 out_ext->iJack = 0; 993 out_ext->pins[0].baSourceID = in_emb->bJackID; 994 out_ext->pins[0].baSourcePin = 1; 995 midi_function[i++] = (struct usb_descriptor_header *) out_ext; 996 997 /* link it to the endpoint */ 998 ms_out_desc.baAssocJackID[n] = in_emb->bJackID; 999 } 1000 1001 /* configure the endpoint descriptors ... */ 1002 ms_out_desc.bLength = USB_DT_MS_ENDPOINT_SIZE(midi->in_ports); 1003 ms_out_desc.bNumEmbMIDIJack = midi->in_ports; 1004 1005 ms_in_desc.bLength = USB_DT_MS_ENDPOINT_SIZE(midi->out_ports); 1006 ms_in_desc.bNumEmbMIDIJack = midi->out_ports; 1007 1008 /* ... and add them to the list */ 1009 endpoint_descriptor_index = i; 1010 midi_function[i++] = (struct usb_descriptor_header *) &bulk_out_desc; 1011 midi_function[i++] = (struct usb_descriptor_header *) &ms_out_desc; 1012 midi_function[i++] = (struct usb_descriptor_header *) &bulk_in_desc; 1013 midi_function[i++] = (struct usb_descriptor_header *) &ms_in_desc; 1014 midi_function[i++] = NULL; 1015 1016 /* 1017 * support all relevant hardware speeds... we expect that when 1018 * hardware is dual speed, all bulk-capable endpoints work at 1019 * both speeds 1020 */ 1021 /* copy descriptors, and track endpoint copies */ 1022 f->fs_descriptors = usb_copy_descriptors(midi_function); 1023 if (!f->fs_descriptors) 1024 goto fail_f_midi; 1025 1026 bulk_in_desc.wMaxPacketSize = cpu_to_le16(512); 1027 bulk_out_desc.wMaxPacketSize = cpu_to_le16(512); 1028 f->hs_descriptors = usb_copy_descriptors(midi_function); 1029 if (!f->hs_descriptors) 1030 goto fail_f_midi; 1031 1032 bulk_in_desc.wMaxPacketSize = cpu_to_le16(1024); 1033 bulk_out_desc.wMaxPacketSize = cpu_to_le16(1024); 1034 i = endpoint_descriptor_index; 1035 midi_function[i++] = (struct usb_descriptor_header *) 1036 &bulk_out_desc; 1037 midi_function[i++] = (struct usb_descriptor_header *) 1038 &bulk_out_ss_comp_desc; 1039 midi_function[i++] = (struct usb_descriptor_header *) 1040 &ms_out_desc; 1041 midi_function[i++] = (struct usb_descriptor_header *) 1042 &bulk_in_desc; 1043 midi_function[i++] = (struct usb_descriptor_header *) 1044 &bulk_in_ss_comp_desc; 1045 midi_function[i++] = (struct usb_descriptor_header *) 1046 &ms_in_desc; 1047 f->ss_descriptors = usb_copy_descriptors(midi_function); 1048 if (!f->ss_descriptors) 1049 goto fail_f_midi; 1050 1051 kfree(midi_function); 1052 1053 return 0; 1054 1055 fail_f_midi: 1056 kfree(midi_function); 1057 usb_free_all_descriptors(f); 1058 fail: 1059 f_midi_unregister_card(midi); 1060 fail_register: 1061 ERROR(cdev, "%s: can't bind, err %d\n", f->name, status); 1062 1063 return status; 1064 } 1065 1066 static inline struct f_midi_opts *to_f_midi_opts(struct config_item *item) 1067 { 1068 return container_of(to_config_group(item), struct f_midi_opts, 1069 func_inst.group); 1070 } 1071 1072 static void midi_attr_release(struct config_item *item) 1073 { 1074 struct f_midi_opts *opts = to_f_midi_opts(item); 1075 1076 usb_put_function_instance(&opts->func_inst); 1077 } 1078 1079 static struct configfs_item_operations midi_item_ops = { 1080 .release = midi_attr_release, 1081 }; 1082 1083 #define F_MIDI_OPT(name, test_limit, limit) \ 1084 static ssize_t f_midi_opts_##name##_show(struct config_item *item, char *page) \ 1085 { \ 1086 struct f_midi_opts *opts = to_f_midi_opts(item); \ 1087 int result; \ 1088 \ 1089 mutex_lock(&opts->lock); \ 1090 result = sprintf(page, "%u\n", opts->name); \ 1091 mutex_unlock(&opts->lock); \ 1092 \ 1093 return result; \ 1094 } \ 1095 \ 1096 static ssize_t f_midi_opts_##name##_store(struct config_item *item, \ 1097 const char *page, size_t len) \ 1098 { \ 1099 struct f_midi_opts *opts = to_f_midi_opts(item); \ 1100 int ret; \ 1101 u32 num; \ 1102 \ 1103 mutex_lock(&opts->lock); \ 1104 if (opts->refcnt > 1) { \ 1105 ret = -EBUSY; \ 1106 goto end; \ 1107 } \ 1108 \ 1109 ret = kstrtou32(page, 0, &num); \ 1110 if (ret) \ 1111 goto end; \ 1112 \ 1113 if (test_limit && num > limit) { \ 1114 ret = -EINVAL; \ 1115 goto end; \ 1116 } \ 1117 opts->name = num; \ 1118 ret = len; \ 1119 \ 1120 end: \ 1121 mutex_unlock(&opts->lock); \ 1122 return ret; \ 1123 } \ 1124 \ 1125 CONFIGFS_ATTR(f_midi_opts_, name); 1126 1127 #define F_MIDI_OPT_SIGNED(name, test_limit, limit) \ 1128 static ssize_t f_midi_opts_##name##_show(struct config_item *item, char *page) \ 1129 { \ 1130 struct f_midi_opts *opts = to_f_midi_opts(item); \ 1131 int result; \ 1132 \ 1133 mutex_lock(&opts->lock); \ 1134 result = sprintf(page, "%d\n", opts->name); \ 1135 mutex_unlock(&opts->lock); \ 1136 \ 1137 return result; \ 1138 } \ 1139 \ 1140 static ssize_t f_midi_opts_##name##_store(struct config_item *item, \ 1141 const char *page, size_t len) \ 1142 { \ 1143 struct f_midi_opts *opts = to_f_midi_opts(item); \ 1144 int ret; \ 1145 s32 num; \ 1146 \ 1147 mutex_lock(&opts->lock); \ 1148 if (opts->refcnt > 1) { \ 1149 ret = -EBUSY; \ 1150 goto end; \ 1151 } \ 1152 \ 1153 ret = kstrtos32(page, 0, &num); \ 1154 if (ret) \ 1155 goto end; \ 1156 \ 1157 if (test_limit && num > limit) { \ 1158 ret = -EINVAL; \ 1159 goto end; \ 1160 } \ 1161 opts->name = num; \ 1162 ret = len; \ 1163 \ 1164 end: \ 1165 mutex_unlock(&opts->lock); \ 1166 return ret; \ 1167 } \ 1168 \ 1169 CONFIGFS_ATTR(f_midi_opts_, name); 1170 1171 F_MIDI_OPT_SIGNED(index, true, SNDRV_CARDS); 1172 F_MIDI_OPT(buflen, false, 0); 1173 F_MIDI_OPT(qlen, false, 0); 1174 F_MIDI_OPT(in_ports, true, MAX_PORTS); 1175 F_MIDI_OPT(out_ports, true, MAX_PORTS); 1176 1177 static ssize_t f_midi_opts_id_show(struct config_item *item, char *page) 1178 { 1179 struct f_midi_opts *opts = to_f_midi_opts(item); 1180 int result; 1181 1182 mutex_lock(&opts->lock); 1183 if (opts->id) { 1184 result = strlcpy(page, opts->id, PAGE_SIZE); 1185 } else { 1186 page[0] = 0; 1187 result = 0; 1188 } 1189 1190 mutex_unlock(&opts->lock); 1191 1192 return result; 1193 } 1194 1195 static ssize_t f_midi_opts_id_store(struct config_item *item, 1196 const char *page, size_t len) 1197 { 1198 struct f_midi_opts *opts = to_f_midi_opts(item); 1199 int ret; 1200 char *c; 1201 1202 mutex_lock(&opts->lock); 1203 if (opts->refcnt > 1) { 1204 ret = -EBUSY; 1205 goto end; 1206 } 1207 1208 c = kstrndup(page, len, GFP_KERNEL); 1209 if (!c) { 1210 ret = -ENOMEM; 1211 goto end; 1212 } 1213 if (opts->id_allocated) 1214 kfree(opts->id); 1215 opts->id = c; 1216 opts->id_allocated = true; 1217 ret = len; 1218 end: 1219 mutex_unlock(&opts->lock); 1220 return ret; 1221 } 1222 1223 CONFIGFS_ATTR(f_midi_opts_, id); 1224 1225 static struct configfs_attribute *midi_attrs[] = { 1226 &f_midi_opts_attr_index, 1227 &f_midi_opts_attr_buflen, 1228 &f_midi_opts_attr_qlen, 1229 &f_midi_opts_attr_in_ports, 1230 &f_midi_opts_attr_out_ports, 1231 &f_midi_opts_attr_id, 1232 NULL, 1233 }; 1234 1235 static const struct config_item_type midi_func_type = { 1236 .ct_item_ops = &midi_item_ops, 1237 .ct_attrs = midi_attrs, 1238 .ct_owner = THIS_MODULE, 1239 }; 1240 1241 static void f_midi_free_inst(struct usb_function_instance *f) 1242 { 1243 struct f_midi_opts *opts; 1244 bool free = false; 1245 1246 opts = container_of(f, struct f_midi_opts, func_inst); 1247 1248 mutex_lock(&opts->lock); 1249 if (!--opts->refcnt) { 1250 free = true; 1251 } 1252 mutex_unlock(&opts->lock); 1253 1254 if (free) { 1255 if (opts->id_allocated) 1256 kfree(opts->id); 1257 kfree(opts); 1258 } 1259 } 1260 1261 static struct usb_function_instance *f_midi_alloc_inst(void) 1262 { 1263 struct f_midi_opts *opts; 1264 1265 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1266 if (!opts) 1267 return ERR_PTR(-ENOMEM); 1268 1269 mutex_init(&opts->lock); 1270 opts->func_inst.free_func_inst = f_midi_free_inst; 1271 opts->index = SNDRV_DEFAULT_IDX1; 1272 opts->id = SNDRV_DEFAULT_STR1; 1273 opts->buflen = 512; 1274 opts->qlen = 32; 1275 opts->in_ports = 1; 1276 opts->out_ports = 1; 1277 opts->refcnt = 1; 1278 1279 config_group_init_type_name(&opts->func_inst.group, "", 1280 &midi_func_type); 1281 1282 return &opts->func_inst; 1283 } 1284 1285 static void f_midi_free(struct usb_function *f) 1286 { 1287 struct f_midi *midi; 1288 struct f_midi_opts *opts; 1289 bool free = false; 1290 1291 midi = func_to_midi(f); 1292 opts = container_of(f->fi, struct f_midi_opts, func_inst); 1293 mutex_lock(&opts->lock); 1294 if (!--midi->free_ref) { 1295 kfree(midi->id); 1296 kfifo_free(&midi->in_req_fifo); 1297 kfree(midi); 1298 free = true; 1299 } 1300 mutex_unlock(&opts->lock); 1301 1302 if (free) 1303 f_midi_free_inst(&opts->func_inst); 1304 } 1305 1306 static void f_midi_rmidi_free(struct snd_rawmidi *rmidi) 1307 { 1308 f_midi_free(rmidi->private_data); 1309 } 1310 1311 static void f_midi_unbind(struct usb_configuration *c, struct usb_function *f) 1312 { 1313 struct usb_composite_dev *cdev = f->config->cdev; 1314 struct f_midi *midi = func_to_midi(f); 1315 struct snd_card *card; 1316 1317 DBG(cdev, "unbind\n"); 1318 1319 /* just to be sure */ 1320 f_midi_disable(f); 1321 1322 card = midi->card; 1323 midi->card = NULL; 1324 if (card) 1325 snd_card_free_when_closed(card); 1326 1327 usb_free_all_descriptors(f); 1328 } 1329 1330 static struct usb_function *f_midi_alloc(struct usb_function_instance *fi) 1331 { 1332 struct f_midi *midi = NULL; 1333 struct f_midi_opts *opts; 1334 int status, i; 1335 1336 opts = container_of(fi, struct f_midi_opts, func_inst); 1337 1338 mutex_lock(&opts->lock); 1339 /* sanity check */ 1340 if (opts->in_ports > MAX_PORTS || opts->out_ports > MAX_PORTS) { 1341 status = -EINVAL; 1342 goto setup_fail; 1343 } 1344 1345 /* allocate and initialize one new instance */ 1346 midi = kzalloc(struct_size(midi, in_ports_array, opts->in_ports), 1347 GFP_KERNEL); 1348 if (!midi) { 1349 status = -ENOMEM; 1350 goto setup_fail; 1351 } 1352 midi->in_ports = opts->in_ports; 1353 1354 for (i = 0; i < opts->in_ports; i++) 1355 midi->in_ports_array[i].cable = i; 1356 1357 /* set up ALSA midi devices */ 1358 midi->id = kstrdup(opts->id, GFP_KERNEL); 1359 if (opts->id && !midi->id) { 1360 status = -ENOMEM; 1361 goto midi_free; 1362 } 1363 midi->out_ports = opts->out_ports; 1364 midi->index = opts->index; 1365 midi->buflen = opts->buflen; 1366 midi->qlen = opts->qlen; 1367 midi->in_last_port = 0; 1368 midi->free_ref = 1; 1369 1370 status = kfifo_alloc(&midi->in_req_fifo, midi->qlen, GFP_KERNEL); 1371 if (status) 1372 goto midi_free; 1373 1374 spin_lock_init(&midi->transmit_lock); 1375 1376 ++opts->refcnt; 1377 mutex_unlock(&opts->lock); 1378 1379 midi->func.name = "gmidi function"; 1380 midi->func.bind = f_midi_bind; 1381 midi->func.unbind = f_midi_unbind; 1382 midi->func.set_alt = f_midi_set_alt; 1383 midi->func.disable = f_midi_disable; 1384 midi->func.free_func = f_midi_free; 1385 1386 return &midi->func; 1387 1388 midi_free: 1389 if (midi) 1390 kfree(midi->id); 1391 kfree(midi); 1392 setup_fail: 1393 mutex_unlock(&opts->lock); 1394 1395 return ERR_PTR(status); 1396 } 1397 1398 DECLARE_USB_FUNCTION_INIT(midi, f_midi_alloc_inst, f_midi_alloc); 1399