1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/fs_parser.h> 21 #include <linux/hid.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/scatterlist.h> 25 #include <linux/sched/signal.h> 26 #include <linux/uio.h> 27 #include <linux/vmalloc.h> 28 #include <asm/unaligned.h> 29 30 #include <linux/usb/ccid.h> 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/kthread.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 }; 126 127 struct ffs_epfile { 128 /* Protects ep->ep and ep->req. */ 129 struct mutex mutex; 130 131 struct ffs_data *ffs; 132 struct ffs_ep *ep; /* P: ffs->eps_lock */ 133 134 struct dentry *dentry; 135 136 /* 137 * Buffer for holding data from partial reads which may happen since 138 * we’re rounding user read requests to a multiple of a max packet size. 139 * 140 * The pointer is initialised with NULL value and may be set by 141 * __ffs_epfile_read_data function to point to a temporary buffer. 142 * 143 * In normal operation, calls to __ffs_epfile_read_buffered will consume 144 * data from said buffer and eventually free it. Importantly, while the 145 * function is using the buffer, it sets the pointer to NULL. This is 146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 147 * can never run concurrently (they are synchronised by epfile->mutex) 148 * so the latter will not assign a new value to the pointer. 149 * 150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 152 * value is crux of the synchronisation between ffs_func_eps_disable and 153 * __ffs_epfile_read_data. 154 * 155 * Once __ffs_epfile_read_data is about to finish it will try to set the 156 * pointer back to its old value (as described above), but seeing as the 157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 158 * the buffer. 159 * 160 * == State transitions == 161 * 162 * • ptr == NULL: (initial state) 163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 164 * ◦ __ffs_epfile_read_buffered: nop 165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 166 * ◦ reading finishes: n/a, not in ‘and reading’ state 167 * • ptr == DROP: 168 * ◦ __ffs_epfile_read_buffer_free: nop 169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 171 * ◦ reading finishes: n/a, not in ‘and reading’ state 172 * • ptr == buf: 173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 176 * is always called first 177 * ◦ reading finishes: n/a, not in ‘and reading’ state 178 * • ptr == NULL and reading: 179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 181 * ◦ __ffs_epfile_read_data: n/a, mutex is held 182 * ◦ reading finishes and … 183 * … all data read: free buf, go to ptr == NULL 184 * … otherwise: go to ptr == buf and reading 185 * • ptr == DROP and reading: 186 * ◦ __ffs_epfile_read_buffer_free: nop 187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 188 * ◦ __ffs_epfile_read_data: n/a, mutex is held 189 * ◦ reading finishes: free buf, go to ptr == DROP 190 */ 191 struct ffs_buffer *read_buffer; 192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 193 194 char name[5]; 195 196 unsigned char in; /* P: ffs->eps_lock */ 197 unsigned char isoc; /* P: ffs->eps_lock */ 198 199 unsigned char _pad; 200 }; 201 202 struct ffs_buffer { 203 size_t length; 204 char *data; 205 char storage[] __counted_by(length); 206 }; 207 208 /* ffs_io_data structure ***************************************************/ 209 210 struct ffs_io_data { 211 bool aio; 212 bool read; 213 214 struct kiocb *kiocb; 215 struct iov_iter data; 216 const void *to_free; 217 char *buf; 218 219 struct mm_struct *mm; 220 struct work_struct work; 221 222 struct usb_ep *ep; 223 struct usb_request *req; 224 struct sg_table sgt; 225 bool use_sg; 226 227 struct ffs_data *ffs; 228 229 int status; 230 struct completion done; 231 }; 232 233 struct ffs_desc_helper { 234 struct ffs_data *ffs; 235 unsigned interfaces_count; 236 unsigned eps_count; 237 }; 238 239 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 241 242 static struct dentry * 243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 244 const struct file_operations *fops); 245 246 /* Devices management *******************************************************/ 247 248 DEFINE_MUTEX(ffs_lock); 249 EXPORT_SYMBOL_GPL(ffs_lock); 250 251 static struct ffs_dev *_ffs_find_dev(const char *name); 252 static struct ffs_dev *_ffs_alloc_dev(void); 253 static void _ffs_free_dev(struct ffs_dev *dev); 254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 255 static void ffs_release_dev(struct ffs_dev *ffs_dev); 256 static int ffs_ready(struct ffs_data *ffs); 257 static void ffs_closed(struct ffs_data *ffs); 258 259 /* Misc helper functions ****************************************************/ 260 261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 262 __attribute__((warn_unused_result, nonnull)); 263 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 264 __attribute__((warn_unused_result, nonnull)); 265 266 267 /* Control file aka ep0 *****************************************************/ 268 269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 270 { 271 struct ffs_data *ffs = req->context; 272 273 complete(&ffs->ep0req_completion); 274 } 275 276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 277 __releases(&ffs->ev.waitq.lock) 278 { 279 struct usb_request *req = ffs->ep0req; 280 int ret; 281 282 if (!req) { 283 spin_unlock_irq(&ffs->ev.waitq.lock); 284 return -EINVAL; 285 } 286 287 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 288 289 spin_unlock_irq(&ffs->ev.waitq.lock); 290 291 req->buf = data; 292 req->length = len; 293 294 /* 295 * UDC layer requires to provide a buffer even for ZLP, but should 296 * not use it at all. Let's provide some poisoned pointer to catch 297 * possible bug in the driver. 298 */ 299 if (req->buf == NULL) 300 req->buf = (void *)0xDEADBABE; 301 302 reinit_completion(&ffs->ep0req_completion); 303 304 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 305 if (ret < 0) 306 return ret; 307 308 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 309 if (ret) { 310 usb_ep_dequeue(ffs->gadget->ep0, req); 311 return -EINTR; 312 } 313 314 ffs->setup_state = FFS_NO_SETUP; 315 return req->status ? req->status : req->actual; 316 } 317 318 static int __ffs_ep0_stall(struct ffs_data *ffs) 319 { 320 if (ffs->ev.can_stall) { 321 pr_vdebug("ep0 stall\n"); 322 usb_ep_set_halt(ffs->gadget->ep0); 323 ffs->setup_state = FFS_NO_SETUP; 324 return -EL2HLT; 325 } else { 326 pr_debug("bogus ep0 stall!\n"); 327 return -ESRCH; 328 } 329 } 330 331 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 332 size_t len, loff_t *ptr) 333 { 334 struct ffs_data *ffs = file->private_data; 335 ssize_t ret; 336 char *data; 337 338 /* Fast check if setup was canceled */ 339 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 340 return -EIDRM; 341 342 /* Acquire mutex */ 343 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 344 if (ret < 0) 345 return ret; 346 347 /* Check state */ 348 switch (ffs->state) { 349 case FFS_READ_DESCRIPTORS: 350 case FFS_READ_STRINGS: 351 /* Copy data */ 352 if (len < 16) { 353 ret = -EINVAL; 354 break; 355 } 356 357 data = ffs_prepare_buffer(buf, len); 358 if (IS_ERR(data)) { 359 ret = PTR_ERR(data); 360 break; 361 } 362 363 /* Handle data */ 364 if (ffs->state == FFS_READ_DESCRIPTORS) { 365 pr_info("read descriptors\n"); 366 ret = __ffs_data_got_descs(ffs, data, len); 367 if (ret < 0) 368 break; 369 370 ffs->state = FFS_READ_STRINGS; 371 ret = len; 372 } else { 373 pr_info("read strings\n"); 374 ret = __ffs_data_got_strings(ffs, data, len); 375 if (ret < 0) 376 break; 377 378 ret = ffs_epfiles_create(ffs); 379 if (ret) { 380 ffs->state = FFS_CLOSING; 381 break; 382 } 383 384 ffs->state = FFS_ACTIVE; 385 mutex_unlock(&ffs->mutex); 386 387 ret = ffs_ready(ffs); 388 if (ret < 0) { 389 ffs->state = FFS_CLOSING; 390 return ret; 391 } 392 393 return len; 394 } 395 break; 396 397 case FFS_ACTIVE: 398 data = NULL; 399 /* 400 * We're called from user space, we can use _irq 401 * rather then _irqsave 402 */ 403 spin_lock_irq(&ffs->ev.waitq.lock); 404 switch (ffs_setup_state_clear_cancelled(ffs)) { 405 case FFS_SETUP_CANCELLED: 406 ret = -EIDRM; 407 goto done_spin; 408 409 case FFS_NO_SETUP: 410 ret = -ESRCH; 411 goto done_spin; 412 413 case FFS_SETUP_PENDING: 414 break; 415 } 416 417 /* FFS_SETUP_PENDING */ 418 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 419 spin_unlock_irq(&ffs->ev.waitq.lock); 420 ret = __ffs_ep0_stall(ffs); 421 break; 422 } 423 424 /* FFS_SETUP_PENDING and not stall */ 425 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 426 427 spin_unlock_irq(&ffs->ev.waitq.lock); 428 429 data = ffs_prepare_buffer(buf, len); 430 if (IS_ERR(data)) { 431 ret = PTR_ERR(data); 432 break; 433 } 434 435 spin_lock_irq(&ffs->ev.waitq.lock); 436 437 /* 438 * We are guaranteed to be still in FFS_ACTIVE state 439 * but the state of setup could have changed from 440 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 441 * to check for that. If that happened we copied data 442 * from user space in vain but it's unlikely. 443 * 444 * For sure we are not in FFS_NO_SETUP since this is 445 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 446 * transition can be performed and it's protected by 447 * mutex. 448 */ 449 if (ffs_setup_state_clear_cancelled(ffs) == 450 FFS_SETUP_CANCELLED) { 451 ret = -EIDRM; 452 done_spin: 453 spin_unlock_irq(&ffs->ev.waitq.lock); 454 } else { 455 /* unlocks spinlock */ 456 ret = __ffs_ep0_queue_wait(ffs, data, len); 457 } 458 kfree(data); 459 break; 460 461 default: 462 ret = -EBADFD; 463 break; 464 } 465 466 mutex_unlock(&ffs->mutex); 467 return ret; 468 } 469 470 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 471 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 472 size_t n) 473 __releases(&ffs->ev.waitq.lock) 474 { 475 /* 476 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 477 * size of ffs->ev.types array (which is four) so that's how much space 478 * we reserve. 479 */ 480 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 481 const size_t size = n * sizeof *events; 482 unsigned i = 0; 483 484 memset(events, 0, size); 485 486 do { 487 events[i].type = ffs->ev.types[i]; 488 if (events[i].type == FUNCTIONFS_SETUP) { 489 events[i].u.setup = ffs->ev.setup; 490 ffs->setup_state = FFS_SETUP_PENDING; 491 } 492 } while (++i < n); 493 494 ffs->ev.count -= n; 495 if (ffs->ev.count) 496 memmove(ffs->ev.types, ffs->ev.types + n, 497 ffs->ev.count * sizeof *ffs->ev.types); 498 499 spin_unlock_irq(&ffs->ev.waitq.lock); 500 mutex_unlock(&ffs->mutex); 501 502 return copy_to_user(buf, events, size) ? -EFAULT : size; 503 } 504 505 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 506 size_t len, loff_t *ptr) 507 { 508 struct ffs_data *ffs = file->private_data; 509 char *data = NULL; 510 size_t n; 511 int ret; 512 513 /* Fast check if setup was canceled */ 514 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 515 return -EIDRM; 516 517 /* Acquire mutex */ 518 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 519 if (ret < 0) 520 return ret; 521 522 /* Check state */ 523 if (ffs->state != FFS_ACTIVE) { 524 ret = -EBADFD; 525 goto done_mutex; 526 } 527 528 /* 529 * We're called from user space, we can use _irq rather then 530 * _irqsave 531 */ 532 spin_lock_irq(&ffs->ev.waitq.lock); 533 534 switch (ffs_setup_state_clear_cancelled(ffs)) { 535 case FFS_SETUP_CANCELLED: 536 ret = -EIDRM; 537 break; 538 539 case FFS_NO_SETUP: 540 n = len / sizeof(struct usb_functionfs_event); 541 if (!n) { 542 ret = -EINVAL; 543 break; 544 } 545 546 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 547 ret = -EAGAIN; 548 break; 549 } 550 551 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 552 ffs->ev.count)) { 553 ret = -EINTR; 554 break; 555 } 556 557 /* unlocks spinlock */ 558 return __ffs_ep0_read_events(ffs, buf, 559 min(n, (size_t)ffs->ev.count)); 560 561 case FFS_SETUP_PENDING: 562 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 563 spin_unlock_irq(&ffs->ev.waitq.lock); 564 ret = __ffs_ep0_stall(ffs); 565 goto done_mutex; 566 } 567 568 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 569 570 spin_unlock_irq(&ffs->ev.waitq.lock); 571 572 if (len) { 573 data = kmalloc(len, GFP_KERNEL); 574 if (!data) { 575 ret = -ENOMEM; 576 goto done_mutex; 577 } 578 } 579 580 spin_lock_irq(&ffs->ev.waitq.lock); 581 582 /* See ffs_ep0_write() */ 583 if (ffs_setup_state_clear_cancelled(ffs) == 584 FFS_SETUP_CANCELLED) { 585 ret = -EIDRM; 586 break; 587 } 588 589 /* unlocks spinlock */ 590 ret = __ffs_ep0_queue_wait(ffs, data, len); 591 if ((ret > 0) && (copy_to_user(buf, data, len))) 592 ret = -EFAULT; 593 goto done_mutex; 594 595 default: 596 ret = -EBADFD; 597 break; 598 } 599 600 spin_unlock_irq(&ffs->ev.waitq.lock); 601 done_mutex: 602 mutex_unlock(&ffs->mutex); 603 kfree(data); 604 return ret; 605 } 606 607 static int ffs_ep0_open(struct inode *inode, struct file *file) 608 { 609 struct ffs_data *ffs = inode->i_private; 610 611 if (ffs->state == FFS_CLOSING) 612 return -EBUSY; 613 614 file->private_data = ffs; 615 ffs_data_opened(ffs); 616 617 return stream_open(inode, file); 618 } 619 620 static int ffs_ep0_release(struct inode *inode, struct file *file) 621 { 622 struct ffs_data *ffs = file->private_data; 623 624 ffs_data_closed(ffs); 625 626 return 0; 627 } 628 629 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 630 { 631 struct ffs_data *ffs = file->private_data; 632 struct usb_gadget *gadget = ffs->gadget; 633 long ret; 634 635 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 636 struct ffs_function *func = ffs->func; 637 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 638 } else if (gadget && gadget->ops->ioctl) { 639 ret = gadget->ops->ioctl(gadget, code, value); 640 } else { 641 ret = -ENOTTY; 642 } 643 644 return ret; 645 } 646 647 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 648 { 649 struct ffs_data *ffs = file->private_data; 650 __poll_t mask = EPOLLWRNORM; 651 int ret; 652 653 poll_wait(file, &ffs->ev.waitq, wait); 654 655 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 656 if (ret < 0) 657 return mask; 658 659 switch (ffs->state) { 660 case FFS_READ_DESCRIPTORS: 661 case FFS_READ_STRINGS: 662 mask |= EPOLLOUT; 663 break; 664 665 case FFS_ACTIVE: 666 switch (ffs->setup_state) { 667 case FFS_NO_SETUP: 668 if (ffs->ev.count) 669 mask |= EPOLLIN; 670 break; 671 672 case FFS_SETUP_PENDING: 673 case FFS_SETUP_CANCELLED: 674 mask |= (EPOLLIN | EPOLLOUT); 675 break; 676 } 677 break; 678 679 case FFS_CLOSING: 680 break; 681 case FFS_DEACTIVATED: 682 break; 683 } 684 685 mutex_unlock(&ffs->mutex); 686 687 return mask; 688 } 689 690 static const struct file_operations ffs_ep0_operations = { 691 .llseek = no_llseek, 692 693 .open = ffs_ep0_open, 694 .write = ffs_ep0_write, 695 .read = ffs_ep0_read, 696 .release = ffs_ep0_release, 697 .unlocked_ioctl = ffs_ep0_ioctl, 698 .poll = ffs_ep0_poll, 699 }; 700 701 702 /* "Normal" endpoints operations ********************************************/ 703 704 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 705 { 706 struct ffs_io_data *io_data = req->context; 707 708 if (req->status) 709 io_data->status = req->status; 710 else 711 io_data->status = req->actual; 712 713 complete(&io_data->done); 714 } 715 716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 717 { 718 ssize_t ret = copy_to_iter(data, data_len, iter); 719 if (ret == data_len) 720 return ret; 721 722 if (iov_iter_count(iter)) 723 return -EFAULT; 724 725 /* 726 * Dear user space developer! 727 * 728 * TL;DR: To stop getting below error message in your kernel log, change 729 * user space code using functionfs to align read buffers to a max 730 * packet size. 731 * 732 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 733 * packet size. When unaligned buffer is passed to functionfs, it 734 * internally uses a larger, aligned buffer so that such UDCs are happy. 735 * 736 * Unfortunately, this means that host may send more data than was 737 * requested in read(2) system call. f_fs doesn’t know what to do with 738 * that excess data so it simply drops it. 739 * 740 * Was the buffer aligned in the first place, no such problem would 741 * happen. 742 * 743 * Data may be dropped only in AIO reads. Synchronous reads are handled 744 * by splitting a request into multiple parts. This splitting may still 745 * be a problem though so it’s likely best to align the buffer 746 * regardless of it being AIO or not.. 747 * 748 * This only affects OUT endpoints, i.e. reading data with a read(2), 749 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 750 * affected. 751 */ 752 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 753 "Align read buffer size to max packet size to avoid the problem.\n", 754 data_len, ret); 755 756 return ret; 757 } 758 759 /* 760 * allocate a virtually contiguous buffer and create a scatterlist describing it 761 * @sg_table - pointer to a place to be filled with sg_table contents 762 * @size - required buffer size 763 */ 764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 765 { 766 struct page **pages; 767 void *vaddr, *ptr; 768 unsigned int n_pages; 769 int i; 770 771 vaddr = vmalloc(sz); 772 if (!vaddr) 773 return NULL; 774 775 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 776 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 777 if (!pages) { 778 vfree(vaddr); 779 780 return NULL; 781 } 782 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 783 pages[i] = vmalloc_to_page(ptr); 784 785 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 786 kvfree(pages); 787 vfree(vaddr); 788 789 return NULL; 790 } 791 kvfree(pages); 792 793 return vaddr; 794 } 795 796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 797 size_t data_len) 798 { 799 if (io_data->use_sg) 800 return ffs_build_sg_list(&io_data->sgt, data_len); 801 802 return kmalloc(data_len, GFP_KERNEL); 803 } 804 805 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 806 { 807 if (!io_data->buf) 808 return; 809 810 if (io_data->use_sg) { 811 sg_free_table(&io_data->sgt); 812 vfree(io_data->buf); 813 } else { 814 kfree(io_data->buf); 815 } 816 } 817 818 static void ffs_user_copy_worker(struct work_struct *work) 819 { 820 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 821 work); 822 int ret = io_data->status; 823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 824 825 if (io_data->read && ret > 0) { 826 kthread_use_mm(io_data->mm); 827 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 828 kthread_unuse_mm(io_data->mm); 829 } 830 831 io_data->kiocb->ki_complete(io_data->kiocb, ret); 832 833 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 834 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 835 836 if (io_data->read) 837 kfree(io_data->to_free); 838 ffs_free_buffer(io_data); 839 kfree(io_data); 840 } 841 842 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 843 struct usb_request *req) 844 { 845 struct ffs_io_data *io_data = req->context; 846 struct ffs_data *ffs = io_data->ffs; 847 848 io_data->status = req->status ? req->status : req->actual; 849 usb_ep_free_request(_ep, req); 850 851 INIT_WORK(&io_data->work, ffs_user_copy_worker); 852 queue_work(ffs->io_completion_wq, &io_data->work); 853 } 854 855 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 856 { 857 /* 858 * See comment in struct ffs_epfile for full read_buffer pointer 859 * synchronisation story. 860 */ 861 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 862 if (buf && buf != READ_BUFFER_DROP) 863 kfree(buf); 864 } 865 866 /* Assumes epfile->mutex is held. */ 867 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 868 struct iov_iter *iter) 869 { 870 /* 871 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 872 * the buffer while we are using it. See comment in struct ffs_epfile 873 * for full read_buffer pointer synchronisation story. 874 */ 875 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 876 ssize_t ret; 877 if (!buf || buf == READ_BUFFER_DROP) 878 return 0; 879 880 ret = copy_to_iter(buf->data, buf->length, iter); 881 if (buf->length == ret) { 882 kfree(buf); 883 return ret; 884 } 885 886 if (iov_iter_count(iter)) { 887 ret = -EFAULT; 888 } else { 889 buf->length -= ret; 890 buf->data += ret; 891 } 892 893 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 894 kfree(buf); 895 896 return ret; 897 } 898 899 /* Assumes epfile->mutex is held. */ 900 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 901 void *data, int data_len, 902 struct iov_iter *iter) 903 { 904 struct ffs_buffer *buf; 905 906 ssize_t ret = copy_to_iter(data, data_len, iter); 907 if (data_len == ret) 908 return ret; 909 910 if (iov_iter_count(iter)) 911 return -EFAULT; 912 913 /* See ffs_copy_to_iter for more context. */ 914 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 915 data_len, ret); 916 917 data_len -= ret; 918 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 919 if (!buf) 920 return -ENOMEM; 921 buf->length = data_len; 922 buf->data = buf->storage; 923 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 924 925 /* 926 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 927 * ffs_func_eps_disable has been called in the meanwhile). See comment 928 * in struct ffs_epfile for full read_buffer pointer synchronisation 929 * story. 930 */ 931 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 932 kfree(buf); 933 934 return ret; 935 } 936 937 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 938 { 939 struct ffs_epfile *epfile = file->private_data; 940 struct usb_request *req; 941 struct ffs_ep *ep; 942 char *data = NULL; 943 ssize_t ret, data_len = -EINVAL; 944 int halt; 945 946 /* Are we still active? */ 947 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 948 return -ENODEV; 949 950 /* Wait for endpoint to be enabled */ 951 ep = epfile->ep; 952 if (!ep) { 953 if (file->f_flags & O_NONBLOCK) 954 return -EAGAIN; 955 956 ret = wait_event_interruptible( 957 epfile->ffs->wait, (ep = epfile->ep)); 958 if (ret) 959 return -EINTR; 960 } 961 962 /* Do we halt? */ 963 halt = (!io_data->read == !epfile->in); 964 if (halt && epfile->isoc) 965 return -EINVAL; 966 967 /* We will be using request and read_buffer */ 968 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 969 if (ret) 970 goto error; 971 972 /* Allocate & copy */ 973 if (!halt) { 974 struct usb_gadget *gadget; 975 976 /* 977 * Do we have buffered data from previous partial read? Check 978 * that for synchronous case only because we do not have 979 * facility to ‘wake up’ a pending asynchronous read and push 980 * buffered data to it which we would need to make things behave 981 * consistently. 982 */ 983 if (!io_data->aio && io_data->read) { 984 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 985 if (ret) 986 goto error_mutex; 987 } 988 989 /* 990 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 991 * before the waiting completes, so do not assign to 'gadget' 992 * earlier 993 */ 994 gadget = epfile->ffs->gadget; 995 996 spin_lock_irq(&epfile->ffs->eps_lock); 997 /* In the meantime, endpoint got disabled or changed. */ 998 if (epfile->ep != ep) { 999 ret = -ESHUTDOWN; 1000 goto error_lock; 1001 } 1002 data_len = iov_iter_count(&io_data->data); 1003 /* 1004 * Controller may require buffer size to be aligned to 1005 * maxpacketsize of an out endpoint. 1006 */ 1007 if (io_data->read) 1008 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1009 1010 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1011 spin_unlock_irq(&epfile->ffs->eps_lock); 1012 1013 data = ffs_alloc_buffer(io_data, data_len); 1014 if (!data) { 1015 ret = -ENOMEM; 1016 goto error_mutex; 1017 } 1018 if (!io_data->read && 1019 !copy_from_iter_full(data, data_len, &io_data->data)) { 1020 ret = -EFAULT; 1021 goto error_mutex; 1022 } 1023 } 1024 1025 spin_lock_irq(&epfile->ffs->eps_lock); 1026 1027 if (epfile->ep != ep) { 1028 /* In the meantime, endpoint got disabled or changed. */ 1029 ret = -ESHUTDOWN; 1030 } else if (halt) { 1031 ret = usb_ep_set_halt(ep->ep); 1032 if (!ret) 1033 ret = -EBADMSG; 1034 } else if (data_len == -EINVAL) { 1035 /* 1036 * Sanity Check: even though data_len can't be used 1037 * uninitialized at the time I write this comment, some 1038 * compilers complain about this situation. 1039 * In order to keep the code clean from warnings, data_len is 1040 * being initialized to -EINVAL during its declaration, which 1041 * means we can't rely on compiler anymore to warn no future 1042 * changes won't result in data_len being used uninitialized. 1043 * For such reason, we're adding this redundant sanity check 1044 * here. 1045 */ 1046 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1047 ret = -EINVAL; 1048 } else if (!io_data->aio) { 1049 bool interrupted = false; 1050 1051 req = ep->req; 1052 if (io_data->use_sg) { 1053 req->buf = NULL; 1054 req->sg = io_data->sgt.sgl; 1055 req->num_sgs = io_data->sgt.nents; 1056 } else { 1057 req->buf = data; 1058 req->num_sgs = 0; 1059 } 1060 req->length = data_len; 1061 1062 io_data->buf = data; 1063 1064 init_completion(&io_data->done); 1065 req->context = io_data; 1066 req->complete = ffs_epfile_io_complete; 1067 1068 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1069 if (ret < 0) 1070 goto error_lock; 1071 1072 spin_unlock_irq(&epfile->ffs->eps_lock); 1073 1074 if (wait_for_completion_interruptible(&io_data->done)) { 1075 spin_lock_irq(&epfile->ffs->eps_lock); 1076 if (epfile->ep != ep) { 1077 ret = -ESHUTDOWN; 1078 goto error_lock; 1079 } 1080 /* 1081 * To avoid race condition with ffs_epfile_io_complete, 1082 * dequeue the request first then check 1083 * status. usb_ep_dequeue API should guarantee no race 1084 * condition with req->complete callback. 1085 */ 1086 usb_ep_dequeue(ep->ep, req); 1087 spin_unlock_irq(&epfile->ffs->eps_lock); 1088 wait_for_completion(&io_data->done); 1089 interrupted = io_data->status < 0; 1090 } 1091 1092 if (interrupted) 1093 ret = -EINTR; 1094 else if (io_data->read && io_data->status > 0) 1095 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1096 &io_data->data); 1097 else 1098 ret = io_data->status; 1099 goto error_mutex; 1100 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1101 ret = -ENOMEM; 1102 } else { 1103 if (io_data->use_sg) { 1104 req->buf = NULL; 1105 req->sg = io_data->sgt.sgl; 1106 req->num_sgs = io_data->sgt.nents; 1107 } else { 1108 req->buf = data; 1109 req->num_sgs = 0; 1110 } 1111 req->length = data_len; 1112 1113 io_data->buf = data; 1114 io_data->ep = ep->ep; 1115 io_data->req = req; 1116 io_data->ffs = epfile->ffs; 1117 1118 req->context = io_data; 1119 req->complete = ffs_epfile_async_io_complete; 1120 1121 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1122 if (ret) { 1123 io_data->req = NULL; 1124 usb_ep_free_request(ep->ep, req); 1125 goto error_lock; 1126 } 1127 1128 ret = -EIOCBQUEUED; 1129 /* 1130 * Do not kfree the buffer in this function. It will be freed 1131 * by ffs_user_copy_worker. 1132 */ 1133 data = NULL; 1134 } 1135 1136 error_lock: 1137 spin_unlock_irq(&epfile->ffs->eps_lock); 1138 error_mutex: 1139 mutex_unlock(&epfile->mutex); 1140 error: 1141 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1142 ffs_free_buffer(io_data); 1143 return ret; 1144 } 1145 1146 static int 1147 ffs_epfile_open(struct inode *inode, struct file *file) 1148 { 1149 struct ffs_epfile *epfile = inode->i_private; 1150 1151 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1152 return -ENODEV; 1153 1154 file->private_data = epfile; 1155 ffs_data_opened(epfile->ffs); 1156 1157 return stream_open(inode, file); 1158 } 1159 1160 static int ffs_aio_cancel(struct kiocb *kiocb) 1161 { 1162 struct ffs_io_data *io_data = kiocb->private; 1163 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1164 unsigned long flags; 1165 int value; 1166 1167 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1168 1169 if (io_data && io_data->ep && io_data->req) 1170 value = usb_ep_dequeue(io_data->ep, io_data->req); 1171 else 1172 value = -EINVAL; 1173 1174 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1175 1176 return value; 1177 } 1178 1179 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1180 { 1181 struct ffs_io_data io_data, *p = &io_data; 1182 ssize_t res; 1183 1184 if (!is_sync_kiocb(kiocb)) { 1185 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1186 if (!p) 1187 return -ENOMEM; 1188 p->aio = true; 1189 } else { 1190 memset(p, 0, sizeof(*p)); 1191 p->aio = false; 1192 } 1193 1194 p->read = false; 1195 p->kiocb = kiocb; 1196 p->data = *from; 1197 p->mm = current->mm; 1198 1199 kiocb->private = p; 1200 1201 if (p->aio) 1202 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1203 1204 res = ffs_epfile_io(kiocb->ki_filp, p); 1205 if (res == -EIOCBQUEUED) 1206 return res; 1207 if (p->aio) 1208 kfree(p); 1209 else 1210 *from = p->data; 1211 return res; 1212 } 1213 1214 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1215 { 1216 struct ffs_io_data io_data, *p = &io_data; 1217 ssize_t res; 1218 1219 if (!is_sync_kiocb(kiocb)) { 1220 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1221 if (!p) 1222 return -ENOMEM; 1223 p->aio = true; 1224 } else { 1225 memset(p, 0, sizeof(*p)); 1226 p->aio = false; 1227 } 1228 1229 p->read = true; 1230 p->kiocb = kiocb; 1231 if (p->aio) { 1232 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1233 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1234 kfree(p); 1235 return -ENOMEM; 1236 } 1237 } else { 1238 p->data = *to; 1239 p->to_free = NULL; 1240 } 1241 p->mm = current->mm; 1242 1243 kiocb->private = p; 1244 1245 if (p->aio) 1246 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1247 1248 res = ffs_epfile_io(kiocb->ki_filp, p); 1249 if (res == -EIOCBQUEUED) 1250 return res; 1251 1252 if (p->aio) { 1253 kfree(p->to_free); 1254 kfree(p); 1255 } else { 1256 *to = p->data; 1257 } 1258 return res; 1259 } 1260 1261 static int 1262 ffs_epfile_release(struct inode *inode, struct file *file) 1263 { 1264 struct ffs_epfile *epfile = inode->i_private; 1265 1266 __ffs_epfile_read_buffer_free(epfile); 1267 ffs_data_closed(epfile->ffs); 1268 1269 return 0; 1270 } 1271 1272 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1273 unsigned long value) 1274 { 1275 struct ffs_epfile *epfile = file->private_data; 1276 struct ffs_ep *ep; 1277 int ret; 1278 1279 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1280 return -ENODEV; 1281 1282 /* Wait for endpoint to be enabled */ 1283 ep = epfile->ep; 1284 if (!ep) { 1285 if (file->f_flags & O_NONBLOCK) 1286 return -EAGAIN; 1287 1288 ret = wait_event_interruptible( 1289 epfile->ffs->wait, (ep = epfile->ep)); 1290 if (ret) 1291 return -EINTR; 1292 } 1293 1294 spin_lock_irq(&epfile->ffs->eps_lock); 1295 1296 /* In the meantime, endpoint got disabled or changed. */ 1297 if (epfile->ep != ep) { 1298 spin_unlock_irq(&epfile->ffs->eps_lock); 1299 return -ESHUTDOWN; 1300 } 1301 1302 switch (code) { 1303 case FUNCTIONFS_FIFO_STATUS: 1304 ret = usb_ep_fifo_status(epfile->ep->ep); 1305 break; 1306 case FUNCTIONFS_FIFO_FLUSH: 1307 usb_ep_fifo_flush(epfile->ep->ep); 1308 ret = 0; 1309 break; 1310 case FUNCTIONFS_CLEAR_HALT: 1311 ret = usb_ep_clear_halt(epfile->ep->ep); 1312 break; 1313 case FUNCTIONFS_ENDPOINT_REVMAP: 1314 ret = epfile->ep->num; 1315 break; 1316 case FUNCTIONFS_ENDPOINT_DESC: 1317 { 1318 int desc_idx; 1319 struct usb_endpoint_descriptor desc1, *desc; 1320 1321 switch (epfile->ffs->gadget->speed) { 1322 case USB_SPEED_SUPER: 1323 case USB_SPEED_SUPER_PLUS: 1324 desc_idx = 2; 1325 break; 1326 case USB_SPEED_HIGH: 1327 desc_idx = 1; 1328 break; 1329 default: 1330 desc_idx = 0; 1331 } 1332 1333 desc = epfile->ep->descs[desc_idx]; 1334 memcpy(&desc1, desc, desc->bLength); 1335 1336 spin_unlock_irq(&epfile->ffs->eps_lock); 1337 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1338 if (ret) 1339 ret = -EFAULT; 1340 return ret; 1341 } 1342 default: 1343 ret = -ENOTTY; 1344 } 1345 spin_unlock_irq(&epfile->ffs->eps_lock); 1346 1347 return ret; 1348 } 1349 1350 static const struct file_operations ffs_epfile_operations = { 1351 .llseek = no_llseek, 1352 1353 .open = ffs_epfile_open, 1354 .write_iter = ffs_epfile_write_iter, 1355 .read_iter = ffs_epfile_read_iter, 1356 .release = ffs_epfile_release, 1357 .unlocked_ioctl = ffs_epfile_ioctl, 1358 .compat_ioctl = compat_ptr_ioctl, 1359 }; 1360 1361 1362 /* File system and super block operations ***********************************/ 1363 1364 /* 1365 * Mounting the file system creates a controller file, used first for 1366 * function configuration then later for event monitoring. 1367 */ 1368 1369 static struct inode *__must_check 1370 ffs_sb_make_inode(struct super_block *sb, void *data, 1371 const struct file_operations *fops, 1372 const struct inode_operations *iops, 1373 struct ffs_file_perms *perms) 1374 { 1375 struct inode *inode; 1376 1377 inode = new_inode(sb); 1378 1379 if (inode) { 1380 struct timespec64 ts = inode_set_ctime_current(inode); 1381 1382 inode->i_ino = get_next_ino(); 1383 inode->i_mode = perms->mode; 1384 inode->i_uid = perms->uid; 1385 inode->i_gid = perms->gid; 1386 inode_set_atime_to_ts(inode, ts); 1387 inode_set_mtime_to_ts(inode, ts); 1388 inode->i_private = data; 1389 if (fops) 1390 inode->i_fop = fops; 1391 if (iops) 1392 inode->i_op = iops; 1393 } 1394 1395 return inode; 1396 } 1397 1398 /* Create "regular" file */ 1399 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1400 const char *name, void *data, 1401 const struct file_operations *fops) 1402 { 1403 struct ffs_data *ffs = sb->s_fs_info; 1404 struct dentry *dentry; 1405 struct inode *inode; 1406 1407 dentry = d_alloc_name(sb->s_root, name); 1408 if (!dentry) 1409 return NULL; 1410 1411 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1412 if (!inode) { 1413 dput(dentry); 1414 return NULL; 1415 } 1416 1417 d_add(dentry, inode); 1418 return dentry; 1419 } 1420 1421 /* Super block */ 1422 static const struct super_operations ffs_sb_operations = { 1423 .statfs = simple_statfs, 1424 .drop_inode = generic_delete_inode, 1425 }; 1426 1427 struct ffs_sb_fill_data { 1428 struct ffs_file_perms perms; 1429 umode_t root_mode; 1430 const char *dev_name; 1431 bool no_disconnect; 1432 struct ffs_data *ffs_data; 1433 }; 1434 1435 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1436 { 1437 struct ffs_sb_fill_data *data = fc->fs_private; 1438 struct inode *inode; 1439 struct ffs_data *ffs = data->ffs_data; 1440 1441 ffs->sb = sb; 1442 data->ffs_data = NULL; 1443 sb->s_fs_info = ffs; 1444 sb->s_blocksize = PAGE_SIZE; 1445 sb->s_blocksize_bits = PAGE_SHIFT; 1446 sb->s_magic = FUNCTIONFS_MAGIC; 1447 sb->s_op = &ffs_sb_operations; 1448 sb->s_time_gran = 1; 1449 1450 /* Root inode */ 1451 data->perms.mode = data->root_mode; 1452 inode = ffs_sb_make_inode(sb, NULL, 1453 &simple_dir_operations, 1454 &simple_dir_inode_operations, 1455 &data->perms); 1456 sb->s_root = d_make_root(inode); 1457 if (!sb->s_root) 1458 return -ENOMEM; 1459 1460 /* EP0 file */ 1461 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1462 return -ENOMEM; 1463 1464 return 0; 1465 } 1466 1467 enum { 1468 Opt_no_disconnect, 1469 Opt_rmode, 1470 Opt_fmode, 1471 Opt_mode, 1472 Opt_uid, 1473 Opt_gid, 1474 }; 1475 1476 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1477 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1478 fsparam_u32 ("rmode", Opt_rmode), 1479 fsparam_u32 ("fmode", Opt_fmode), 1480 fsparam_u32 ("mode", Opt_mode), 1481 fsparam_u32 ("uid", Opt_uid), 1482 fsparam_u32 ("gid", Opt_gid), 1483 {} 1484 }; 1485 1486 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1487 { 1488 struct ffs_sb_fill_data *data = fc->fs_private; 1489 struct fs_parse_result result; 1490 int opt; 1491 1492 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1493 if (opt < 0) 1494 return opt; 1495 1496 switch (opt) { 1497 case Opt_no_disconnect: 1498 data->no_disconnect = result.boolean; 1499 break; 1500 case Opt_rmode: 1501 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1502 break; 1503 case Opt_fmode: 1504 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1505 break; 1506 case Opt_mode: 1507 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1508 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1509 break; 1510 1511 case Opt_uid: 1512 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1513 if (!uid_valid(data->perms.uid)) 1514 goto unmapped_value; 1515 break; 1516 case Opt_gid: 1517 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1518 if (!gid_valid(data->perms.gid)) 1519 goto unmapped_value; 1520 break; 1521 1522 default: 1523 return -ENOPARAM; 1524 } 1525 1526 return 0; 1527 1528 unmapped_value: 1529 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 1530 } 1531 1532 /* 1533 * Set up the superblock for a mount. 1534 */ 1535 static int ffs_fs_get_tree(struct fs_context *fc) 1536 { 1537 struct ffs_sb_fill_data *ctx = fc->fs_private; 1538 struct ffs_data *ffs; 1539 int ret; 1540 1541 if (!fc->source) 1542 return invalf(fc, "No source specified"); 1543 1544 ffs = ffs_data_new(fc->source); 1545 if (!ffs) 1546 return -ENOMEM; 1547 ffs->file_perms = ctx->perms; 1548 ffs->no_disconnect = ctx->no_disconnect; 1549 1550 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 1551 if (!ffs->dev_name) { 1552 ffs_data_put(ffs); 1553 return -ENOMEM; 1554 } 1555 1556 ret = ffs_acquire_dev(ffs->dev_name, ffs); 1557 if (ret) { 1558 ffs_data_put(ffs); 1559 return ret; 1560 } 1561 1562 ctx->ffs_data = ffs; 1563 return get_tree_nodev(fc, ffs_sb_fill); 1564 } 1565 1566 static void ffs_fs_free_fc(struct fs_context *fc) 1567 { 1568 struct ffs_sb_fill_data *ctx = fc->fs_private; 1569 1570 if (ctx) { 1571 if (ctx->ffs_data) { 1572 ffs_data_put(ctx->ffs_data); 1573 } 1574 1575 kfree(ctx); 1576 } 1577 } 1578 1579 static const struct fs_context_operations ffs_fs_context_ops = { 1580 .free = ffs_fs_free_fc, 1581 .parse_param = ffs_fs_parse_param, 1582 .get_tree = ffs_fs_get_tree, 1583 }; 1584 1585 static int ffs_fs_init_fs_context(struct fs_context *fc) 1586 { 1587 struct ffs_sb_fill_data *ctx; 1588 1589 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 1590 if (!ctx) 1591 return -ENOMEM; 1592 1593 ctx->perms.mode = S_IFREG | 0600; 1594 ctx->perms.uid = GLOBAL_ROOT_UID; 1595 ctx->perms.gid = GLOBAL_ROOT_GID; 1596 ctx->root_mode = S_IFDIR | 0500; 1597 ctx->no_disconnect = false; 1598 1599 fc->fs_private = ctx; 1600 fc->ops = &ffs_fs_context_ops; 1601 return 0; 1602 } 1603 1604 static void 1605 ffs_fs_kill_sb(struct super_block *sb) 1606 { 1607 kill_litter_super(sb); 1608 if (sb->s_fs_info) 1609 ffs_data_closed(sb->s_fs_info); 1610 } 1611 1612 static struct file_system_type ffs_fs_type = { 1613 .owner = THIS_MODULE, 1614 .name = "functionfs", 1615 .init_fs_context = ffs_fs_init_fs_context, 1616 .parameters = ffs_fs_fs_parameters, 1617 .kill_sb = ffs_fs_kill_sb, 1618 }; 1619 MODULE_ALIAS_FS("functionfs"); 1620 1621 1622 /* Driver's main init/cleanup functions *************************************/ 1623 1624 static int functionfs_init(void) 1625 { 1626 int ret; 1627 1628 ret = register_filesystem(&ffs_fs_type); 1629 if (!ret) 1630 pr_info("file system registered\n"); 1631 else 1632 pr_err("failed registering file system (%d)\n", ret); 1633 1634 return ret; 1635 } 1636 1637 static void functionfs_cleanup(void) 1638 { 1639 pr_info("unloading\n"); 1640 unregister_filesystem(&ffs_fs_type); 1641 } 1642 1643 1644 /* ffs_data and ffs_function construction and destruction code **************/ 1645 1646 static void ffs_data_clear(struct ffs_data *ffs); 1647 static void ffs_data_reset(struct ffs_data *ffs); 1648 1649 static void ffs_data_get(struct ffs_data *ffs) 1650 { 1651 refcount_inc(&ffs->ref); 1652 } 1653 1654 static void ffs_data_opened(struct ffs_data *ffs) 1655 { 1656 refcount_inc(&ffs->ref); 1657 if (atomic_add_return(1, &ffs->opened) == 1 && 1658 ffs->state == FFS_DEACTIVATED) { 1659 ffs->state = FFS_CLOSING; 1660 ffs_data_reset(ffs); 1661 } 1662 } 1663 1664 static void ffs_data_put(struct ffs_data *ffs) 1665 { 1666 if (refcount_dec_and_test(&ffs->ref)) { 1667 pr_info("%s(): freeing\n", __func__); 1668 ffs_data_clear(ffs); 1669 ffs_release_dev(ffs->private_data); 1670 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1671 swait_active(&ffs->ep0req_completion.wait) || 1672 waitqueue_active(&ffs->wait)); 1673 destroy_workqueue(ffs->io_completion_wq); 1674 kfree(ffs->dev_name); 1675 kfree(ffs); 1676 } 1677 } 1678 1679 static void ffs_data_closed(struct ffs_data *ffs) 1680 { 1681 struct ffs_epfile *epfiles; 1682 unsigned long flags; 1683 1684 if (atomic_dec_and_test(&ffs->opened)) { 1685 if (ffs->no_disconnect) { 1686 ffs->state = FFS_DEACTIVATED; 1687 spin_lock_irqsave(&ffs->eps_lock, flags); 1688 epfiles = ffs->epfiles; 1689 ffs->epfiles = NULL; 1690 spin_unlock_irqrestore(&ffs->eps_lock, 1691 flags); 1692 1693 if (epfiles) 1694 ffs_epfiles_destroy(epfiles, 1695 ffs->eps_count); 1696 1697 if (ffs->setup_state == FFS_SETUP_PENDING) 1698 __ffs_ep0_stall(ffs); 1699 } else { 1700 ffs->state = FFS_CLOSING; 1701 ffs_data_reset(ffs); 1702 } 1703 } 1704 if (atomic_read(&ffs->opened) < 0) { 1705 ffs->state = FFS_CLOSING; 1706 ffs_data_reset(ffs); 1707 } 1708 1709 ffs_data_put(ffs); 1710 } 1711 1712 static struct ffs_data *ffs_data_new(const char *dev_name) 1713 { 1714 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1715 if (!ffs) 1716 return NULL; 1717 1718 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1719 if (!ffs->io_completion_wq) { 1720 kfree(ffs); 1721 return NULL; 1722 } 1723 1724 refcount_set(&ffs->ref, 1); 1725 atomic_set(&ffs->opened, 0); 1726 ffs->state = FFS_READ_DESCRIPTORS; 1727 mutex_init(&ffs->mutex); 1728 spin_lock_init(&ffs->eps_lock); 1729 init_waitqueue_head(&ffs->ev.waitq); 1730 init_waitqueue_head(&ffs->wait); 1731 init_completion(&ffs->ep0req_completion); 1732 1733 /* XXX REVISIT need to update it in some places, or do we? */ 1734 ffs->ev.can_stall = 1; 1735 1736 return ffs; 1737 } 1738 1739 static void ffs_data_clear(struct ffs_data *ffs) 1740 { 1741 struct ffs_epfile *epfiles; 1742 unsigned long flags; 1743 1744 ffs_closed(ffs); 1745 1746 BUG_ON(ffs->gadget); 1747 1748 spin_lock_irqsave(&ffs->eps_lock, flags); 1749 epfiles = ffs->epfiles; 1750 ffs->epfiles = NULL; 1751 spin_unlock_irqrestore(&ffs->eps_lock, flags); 1752 1753 /* 1754 * potential race possible between ffs_func_eps_disable 1755 * & ffs_epfile_release therefore maintaining a local 1756 * copy of epfile will save us from use-after-free. 1757 */ 1758 if (epfiles) { 1759 ffs_epfiles_destroy(epfiles, ffs->eps_count); 1760 ffs->epfiles = NULL; 1761 } 1762 1763 if (ffs->ffs_eventfd) { 1764 eventfd_ctx_put(ffs->ffs_eventfd); 1765 ffs->ffs_eventfd = NULL; 1766 } 1767 1768 kfree(ffs->raw_descs_data); 1769 kfree(ffs->raw_strings); 1770 kfree(ffs->stringtabs); 1771 } 1772 1773 static void ffs_data_reset(struct ffs_data *ffs) 1774 { 1775 ffs_data_clear(ffs); 1776 1777 ffs->raw_descs_data = NULL; 1778 ffs->raw_descs = NULL; 1779 ffs->raw_strings = NULL; 1780 ffs->stringtabs = NULL; 1781 1782 ffs->raw_descs_length = 0; 1783 ffs->fs_descs_count = 0; 1784 ffs->hs_descs_count = 0; 1785 ffs->ss_descs_count = 0; 1786 1787 ffs->strings_count = 0; 1788 ffs->interfaces_count = 0; 1789 ffs->eps_count = 0; 1790 1791 ffs->ev.count = 0; 1792 1793 ffs->state = FFS_READ_DESCRIPTORS; 1794 ffs->setup_state = FFS_NO_SETUP; 1795 ffs->flags = 0; 1796 1797 ffs->ms_os_descs_ext_prop_count = 0; 1798 ffs->ms_os_descs_ext_prop_name_len = 0; 1799 ffs->ms_os_descs_ext_prop_data_len = 0; 1800 } 1801 1802 1803 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1804 { 1805 struct usb_gadget_strings **lang; 1806 int first_id; 1807 1808 if (WARN_ON(ffs->state != FFS_ACTIVE 1809 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1810 return -EBADFD; 1811 1812 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1813 if (first_id < 0) 1814 return first_id; 1815 1816 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1817 if (!ffs->ep0req) 1818 return -ENOMEM; 1819 ffs->ep0req->complete = ffs_ep0_complete; 1820 ffs->ep0req->context = ffs; 1821 1822 lang = ffs->stringtabs; 1823 if (lang) { 1824 for (; *lang; ++lang) { 1825 struct usb_string *str = (*lang)->strings; 1826 int id = first_id; 1827 for (; str->s; ++id, ++str) 1828 str->id = id; 1829 } 1830 } 1831 1832 ffs->gadget = cdev->gadget; 1833 ffs_data_get(ffs); 1834 return 0; 1835 } 1836 1837 static void functionfs_unbind(struct ffs_data *ffs) 1838 { 1839 if (!WARN_ON(!ffs->gadget)) { 1840 /* dequeue before freeing ep0req */ 1841 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 1842 mutex_lock(&ffs->mutex); 1843 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1844 ffs->ep0req = NULL; 1845 ffs->gadget = NULL; 1846 clear_bit(FFS_FL_BOUND, &ffs->flags); 1847 mutex_unlock(&ffs->mutex); 1848 ffs_data_put(ffs); 1849 } 1850 } 1851 1852 static int ffs_epfiles_create(struct ffs_data *ffs) 1853 { 1854 struct ffs_epfile *epfile, *epfiles; 1855 unsigned i, count; 1856 1857 count = ffs->eps_count; 1858 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1859 if (!epfiles) 1860 return -ENOMEM; 1861 1862 epfile = epfiles; 1863 for (i = 1; i <= count; ++i, ++epfile) { 1864 epfile->ffs = ffs; 1865 mutex_init(&epfile->mutex); 1866 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1867 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1868 else 1869 sprintf(epfile->name, "ep%u", i); 1870 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1871 epfile, 1872 &ffs_epfile_operations); 1873 if (!epfile->dentry) { 1874 ffs_epfiles_destroy(epfiles, i - 1); 1875 return -ENOMEM; 1876 } 1877 } 1878 1879 ffs->epfiles = epfiles; 1880 return 0; 1881 } 1882 1883 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1884 { 1885 struct ffs_epfile *epfile = epfiles; 1886 1887 for (; count; --count, ++epfile) { 1888 BUG_ON(mutex_is_locked(&epfile->mutex)); 1889 if (epfile->dentry) { 1890 d_delete(epfile->dentry); 1891 dput(epfile->dentry); 1892 epfile->dentry = NULL; 1893 } 1894 } 1895 1896 kfree(epfiles); 1897 } 1898 1899 static void ffs_func_eps_disable(struct ffs_function *func) 1900 { 1901 struct ffs_ep *ep; 1902 struct ffs_epfile *epfile; 1903 unsigned short count; 1904 unsigned long flags; 1905 1906 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1907 count = func->ffs->eps_count; 1908 epfile = func->ffs->epfiles; 1909 ep = func->eps; 1910 while (count--) { 1911 /* pending requests get nuked */ 1912 if (ep->ep) 1913 usb_ep_disable(ep->ep); 1914 ++ep; 1915 1916 if (epfile) { 1917 epfile->ep = NULL; 1918 __ffs_epfile_read_buffer_free(epfile); 1919 ++epfile; 1920 } 1921 } 1922 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1923 } 1924 1925 static int ffs_func_eps_enable(struct ffs_function *func) 1926 { 1927 struct ffs_data *ffs; 1928 struct ffs_ep *ep; 1929 struct ffs_epfile *epfile; 1930 unsigned short count; 1931 unsigned long flags; 1932 int ret = 0; 1933 1934 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1935 ffs = func->ffs; 1936 ep = func->eps; 1937 epfile = ffs->epfiles; 1938 count = ffs->eps_count; 1939 while(count--) { 1940 ep->ep->driver_data = ep; 1941 1942 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1943 if (ret) { 1944 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1945 __func__, ep->ep->name, ret); 1946 break; 1947 } 1948 1949 ret = usb_ep_enable(ep->ep); 1950 if (!ret) { 1951 epfile->ep = ep; 1952 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1953 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1954 } else { 1955 break; 1956 } 1957 1958 ++ep; 1959 ++epfile; 1960 } 1961 1962 wake_up_interruptible(&ffs->wait); 1963 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1964 1965 return ret; 1966 } 1967 1968 1969 /* Parsing and building descriptors and strings *****************************/ 1970 1971 /* 1972 * This validates if data pointed by data is a valid USB descriptor as 1973 * well as record how many interfaces, endpoints and strings are 1974 * required by given configuration. Returns address after the 1975 * descriptor or NULL if data is invalid. 1976 */ 1977 1978 enum ffs_entity_type { 1979 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1980 }; 1981 1982 enum ffs_os_desc_type { 1983 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1984 }; 1985 1986 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1987 u8 *valuep, 1988 struct usb_descriptor_header *desc, 1989 void *priv); 1990 1991 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1992 struct usb_os_desc_header *h, void *data, 1993 unsigned len, void *priv); 1994 1995 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1996 ffs_entity_callback entity, 1997 void *priv, int *current_class) 1998 { 1999 struct usb_descriptor_header *_ds = (void *)data; 2000 u8 length; 2001 int ret; 2002 2003 /* At least two bytes are required: length and type */ 2004 if (len < 2) { 2005 pr_vdebug("descriptor too short\n"); 2006 return -EINVAL; 2007 } 2008 2009 /* If we have at least as many bytes as the descriptor takes? */ 2010 length = _ds->bLength; 2011 if (len < length) { 2012 pr_vdebug("descriptor longer then available data\n"); 2013 return -EINVAL; 2014 } 2015 2016 #define __entity_check_INTERFACE(val) 1 2017 #define __entity_check_STRING(val) (val) 2018 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2019 #define __entity(type, val) do { \ 2020 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2021 if (!__entity_check_ ##type(val)) { \ 2022 pr_vdebug("invalid entity's value\n"); \ 2023 return -EINVAL; \ 2024 } \ 2025 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2026 if (ret < 0) { \ 2027 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2028 (val), ret); \ 2029 return ret; \ 2030 } \ 2031 } while (0) 2032 2033 /* Parse descriptor depending on type. */ 2034 switch (_ds->bDescriptorType) { 2035 case USB_DT_DEVICE: 2036 case USB_DT_CONFIG: 2037 case USB_DT_STRING: 2038 case USB_DT_DEVICE_QUALIFIER: 2039 /* function can't have any of those */ 2040 pr_vdebug("descriptor reserved for gadget: %d\n", 2041 _ds->bDescriptorType); 2042 return -EINVAL; 2043 2044 case USB_DT_INTERFACE: { 2045 struct usb_interface_descriptor *ds = (void *)_ds; 2046 pr_vdebug("interface descriptor\n"); 2047 if (length != sizeof *ds) 2048 goto inv_length; 2049 2050 __entity(INTERFACE, ds->bInterfaceNumber); 2051 if (ds->iInterface) 2052 __entity(STRING, ds->iInterface); 2053 *current_class = ds->bInterfaceClass; 2054 } 2055 break; 2056 2057 case USB_DT_ENDPOINT: { 2058 struct usb_endpoint_descriptor *ds = (void *)_ds; 2059 pr_vdebug("endpoint descriptor\n"); 2060 if (length != USB_DT_ENDPOINT_SIZE && 2061 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2062 goto inv_length; 2063 __entity(ENDPOINT, ds->bEndpointAddress); 2064 } 2065 break; 2066 2067 case USB_TYPE_CLASS | 0x01: 2068 if (*current_class == USB_INTERFACE_CLASS_HID) { 2069 pr_vdebug("hid descriptor\n"); 2070 if (length != sizeof(struct hid_descriptor)) 2071 goto inv_length; 2072 break; 2073 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2074 pr_vdebug("ccid descriptor\n"); 2075 if (length != sizeof(struct ccid_descriptor)) 2076 goto inv_length; 2077 break; 2078 } else { 2079 pr_vdebug("unknown descriptor: %d for class %d\n", 2080 _ds->bDescriptorType, *current_class); 2081 return -EINVAL; 2082 } 2083 2084 case USB_DT_OTG: 2085 if (length != sizeof(struct usb_otg_descriptor)) 2086 goto inv_length; 2087 break; 2088 2089 case USB_DT_INTERFACE_ASSOCIATION: { 2090 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2091 pr_vdebug("interface association descriptor\n"); 2092 if (length != sizeof *ds) 2093 goto inv_length; 2094 if (ds->iFunction) 2095 __entity(STRING, ds->iFunction); 2096 } 2097 break; 2098 2099 case USB_DT_SS_ENDPOINT_COMP: 2100 pr_vdebug("EP SS companion descriptor\n"); 2101 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2102 goto inv_length; 2103 break; 2104 2105 case USB_DT_OTHER_SPEED_CONFIG: 2106 case USB_DT_INTERFACE_POWER: 2107 case USB_DT_DEBUG: 2108 case USB_DT_SECURITY: 2109 case USB_DT_CS_RADIO_CONTROL: 2110 /* TODO */ 2111 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2112 return -EINVAL; 2113 2114 default: 2115 /* We should never be here */ 2116 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2117 return -EINVAL; 2118 2119 inv_length: 2120 pr_vdebug("invalid length: %d (descriptor %d)\n", 2121 _ds->bLength, _ds->bDescriptorType); 2122 return -EINVAL; 2123 } 2124 2125 #undef __entity 2126 #undef __entity_check_DESCRIPTOR 2127 #undef __entity_check_INTERFACE 2128 #undef __entity_check_STRING 2129 #undef __entity_check_ENDPOINT 2130 2131 return length; 2132 } 2133 2134 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2135 ffs_entity_callback entity, void *priv) 2136 { 2137 const unsigned _len = len; 2138 unsigned long num = 0; 2139 int current_class = -1; 2140 2141 for (;;) { 2142 int ret; 2143 2144 if (num == count) 2145 data = NULL; 2146 2147 /* Record "descriptor" entity */ 2148 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2149 if (ret < 0) { 2150 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2151 num, ret); 2152 return ret; 2153 } 2154 2155 if (!data) 2156 return _len - len; 2157 2158 ret = ffs_do_single_desc(data, len, entity, priv, 2159 ¤t_class); 2160 if (ret < 0) { 2161 pr_debug("%s returns %d\n", __func__, ret); 2162 return ret; 2163 } 2164 2165 len -= ret; 2166 data += ret; 2167 ++num; 2168 } 2169 } 2170 2171 static int __ffs_data_do_entity(enum ffs_entity_type type, 2172 u8 *valuep, struct usb_descriptor_header *desc, 2173 void *priv) 2174 { 2175 struct ffs_desc_helper *helper = priv; 2176 struct usb_endpoint_descriptor *d; 2177 2178 switch (type) { 2179 case FFS_DESCRIPTOR: 2180 break; 2181 2182 case FFS_INTERFACE: 2183 /* 2184 * Interfaces are indexed from zero so if we 2185 * encountered interface "n" then there are at least 2186 * "n+1" interfaces. 2187 */ 2188 if (*valuep >= helper->interfaces_count) 2189 helper->interfaces_count = *valuep + 1; 2190 break; 2191 2192 case FFS_STRING: 2193 /* 2194 * Strings are indexed from 1 (0 is reserved 2195 * for languages list) 2196 */ 2197 if (*valuep > helper->ffs->strings_count) 2198 helper->ffs->strings_count = *valuep; 2199 break; 2200 2201 case FFS_ENDPOINT: 2202 d = (void *)desc; 2203 helper->eps_count++; 2204 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2205 return -EINVAL; 2206 /* Check if descriptors for any speed were already parsed */ 2207 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2208 helper->ffs->eps_addrmap[helper->eps_count] = 2209 d->bEndpointAddress; 2210 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2211 d->bEndpointAddress) 2212 return -EINVAL; 2213 break; 2214 } 2215 2216 return 0; 2217 } 2218 2219 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2220 struct usb_os_desc_header *desc) 2221 { 2222 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2223 u16 w_index = le16_to_cpu(desc->wIndex); 2224 2225 if (bcd_version == 0x1) { 2226 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2227 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2228 } else if (bcd_version != 0x100) { 2229 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2230 bcd_version); 2231 return -EINVAL; 2232 } 2233 switch (w_index) { 2234 case 0x4: 2235 *next_type = FFS_OS_DESC_EXT_COMPAT; 2236 break; 2237 case 0x5: 2238 *next_type = FFS_OS_DESC_EXT_PROP; 2239 break; 2240 default: 2241 pr_vdebug("unsupported os descriptor type: %d", w_index); 2242 return -EINVAL; 2243 } 2244 2245 return sizeof(*desc); 2246 } 2247 2248 /* 2249 * Process all extended compatibility/extended property descriptors 2250 * of a feature descriptor 2251 */ 2252 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2253 enum ffs_os_desc_type type, 2254 u16 feature_count, 2255 ffs_os_desc_callback entity, 2256 void *priv, 2257 struct usb_os_desc_header *h) 2258 { 2259 int ret; 2260 const unsigned _len = len; 2261 2262 /* loop over all ext compat/ext prop descriptors */ 2263 while (feature_count--) { 2264 ret = entity(type, h, data, len, priv); 2265 if (ret < 0) { 2266 pr_debug("bad OS descriptor, type: %d\n", type); 2267 return ret; 2268 } 2269 data += ret; 2270 len -= ret; 2271 } 2272 return _len - len; 2273 } 2274 2275 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2276 static int __must_check ffs_do_os_descs(unsigned count, 2277 char *data, unsigned len, 2278 ffs_os_desc_callback entity, void *priv) 2279 { 2280 const unsigned _len = len; 2281 unsigned long num = 0; 2282 2283 for (num = 0; num < count; ++num) { 2284 int ret; 2285 enum ffs_os_desc_type type; 2286 u16 feature_count; 2287 struct usb_os_desc_header *desc = (void *)data; 2288 2289 if (len < sizeof(*desc)) 2290 return -EINVAL; 2291 2292 /* 2293 * Record "descriptor" entity. 2294 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2295 * Move the data pointer to the beginning of extended 2296 * compatibilities proper or extended properties proper 2297 * portions of the data 2298 */ 2299 if (le32_to_cpu(desc->dwLength) > len) 2300 return -EINVAL; 2301 2302 ret = __ffs_do_os_desc_header(&type, desc); 2303 if (ret < 0) { 2304 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2305 num, ret); 2306 return ret; 2307 } 2308 /* 2309 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2310 */ 2311 feature_count = le16_to_cpu(desc->wCount); 2312 if (type == FFS_OS_DESC_EXT_COMPAT && 2313 (feature_count > 255 || desc->Reserved)) 2314 return -EINVAL; 2315 len -= ret; 2316 data += ret; 2317 2318 /* 2319 * Process all function/property descriptors 2320 * of this Feature Descriptor 2321 */ 2322 ret = ffs_do_single_os_desc(data, len, type, 2323 feature_count, entity, priv, desc); 2324 if (ret < 0) { 2325 pr_debug("%s returns %d\n", __func__, ret); 2326 return ret; 2327 } 2328 2329 len -= ret; 2330 data += ret; 2331 } 2332 return _len - len; 2333 } 2334 2335 /* 2336 * Validate contents of the buffer from userspace related to OS descriptors. 2337 */ 2338 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2339 struct usb_os_desc_header *h, void *data, 2340 unsigned len, void *priv) 2341 { 2342 struct ffs_data *ffs = priv; 2343 u8 length; 2344 2345 switch (type) { 2346 case FFS_OS_DESC_EXT_COMPAT: { 2347 struct usb_ext_compat_desc *d = data; 2348 int i; 2349 2350 if (len < sizeof(*d) || 2351 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2352 return -EINVAL; 2353 if (d->Reserved1 != 1) { 2354 /* 2355 * According to the spec, Reserved1 must be set to 1 2356 * but older kernels incorrectly rejected non-zero 2357 * values. We fix it here to avoid returning EINVAL 2358 * in response to values we used to accept. 2359 */ 2360 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2361 d->Reserved1 = 1; 2362 } 2363 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2364 if (d->Reserved2[i]) 2365 return -EINVAL; 2366 2367 length = sizeof(struct usb_ext_compat_desc); 2368 } 2369 break; 2370 case FFS_OS_DESC_EXT_PROP: { 2371 struct usb_ext_prop_desc *d = data; 2372 u32 type, pdl; 2373 u16 pnl; 2374 2375 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2376 return -EINVAL; 2377 length = le32_to_cpu(d->dwSize); 2378 if (len < length) 2379 return -EINVAL; 2380 type = le32_to_cpu(d->dwPropertyDataType); 2381 if (type < USB_EXT_PROP_UNICODE || 2382 type > USB_EXT_PROP_UNICODE_MULTI) { 2383 pr_vdebug("unsupported os descriptor property type: %d", 2384 type); 2385 return -EINVAL; 2386 } 2387 pnl = le16_to_cpu(d->wPropertyNameLength); 2388 if (length < 14 + pnl) { 2389 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2390 length, pnl, type); 2391 return -EINVAL; 2392 } 2393 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2394 if (length != 14 + pnl + pdl) { 2395 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2396 length, pnl, pdl, type); 2397 return -EINVAL; 2398 } 2399 ++ffs->ms_os_descs_ext_prop_count; 2400 /* property name reported to the host as "WCHAR"s */ 2401 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2402 ffs->ms_os_descs_ext_prop_data_len += pdl; 2403 } 2404 break; 2405 default: 2406 pr_vdebug("unknown descriptor: %d\n", type); 2407 return -EINVAL; 2408 } 2409 return length; 2410 } 2411 2412 static int __ffs_data_got_descs(struct ffs_data *ffs, 2413 char *const _data, size_t len) 2414 { 2415 char *data = _data, *raw_descs; 2416 unsigned os_descs_count = 0, counts[3], flags; 2417 int ret = -EINVAL, i; 2418 struct ffs_desc_helper helper; 2419 2420 if (get_unaligned_le32(data + 4) != len) 2421 goto error; 2422 2423 switch (get_unaligned_le32(data)) { 2424 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2425 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2426 data += 8; 2427 len -= 8; 2428 break; 2429 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2430 flags = get_unaligned_le32(data + 8); 2431 ffs->user_flags = flags; 2432 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2433 FUNCTIONFS_HAS_HS_DESC | 2434 FUNCTIONFS_HAS_SS_DESC | 2435 FUNCTIONFS_HAS_MS_OS_DESC | 2436 FUNCTIONFS_VIRTUAL_ADDR | 2437 FUNCTIONFS_EVENTFD | 2438 FUNCTIONFS_ALL_CTRL_RECIP | 2439 FUNCTIONFS_CONFIG0_SETUP)) { 2440 ret = -ENOSYS; 2441 goto error; 2442 } 2443 data += 12; 2444 len -= 12; 2445 break; 2446 default: 2447 goto error; 2448 } 2449 2450 if (flags & FUNCTIONFS_EVENTFD) { 2451 if (len < 4) 2452 goto error; 2453 ffs->ffs_eventfd = 2454 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2455 if (IS_ERR(ffs->ffs_eventfd)) { 2456 ret = PTR_ERR(ffs->ffs_eventfd); 2457 ffs->ffs_eventfd = NULL; 2458 goto error; 2459 } 2460 data += 4; 2461 len -= 4; 2462 } 2463 2464 /* Read fs_count, hs_count and ss_count (if present) */ 2465 for (i = 0; i < 3; ++i) { 2466 if (!(flags & (1 << i))) { 2467 counts[i] = 0; 2468 } else if (len < 4) { 2469 goto error; 2470 } else { 2471 counts[i] = get_unaligned_le32(data); 2472 data += 4; 2473 len -= 4; 2474 } 2475 } 2476 if (flags & (1 << i)) { 2477 if (len < 4) { 2478 goto error; 2479 } 2480 os_descs_count = get_unaligned_le32(data); 2481 data += 4; 2482 len -= 4; 2483 } 2484 2485 /* Read descriptors */ 2486 raw_descs = data; 2487 helper.ffs = ffs; 2488 for (i = 0; i < 3; ++i) { 2489 if (!counts[i]) 2490 continue; 2491 helper.interfaces_count = 0; 2492 helper.eps_count = 0; 2493 ret = ffs_do_descs(counts[i], data, len, 2494 __ffs_data_do_entity, &helper); 2495 if (ret < 0) 2496 goto error; 2497 if (!ffs->eps_count && !ffs->interfaces_count) { 2498 ffs->eps_count = helper.eps_count; 2499 ffs->interfaces_count = helper.interfaces_count; 2500 } else { 2501 if (ffs->eps_count != helper.eps_count) { 2502 ret = -EINVAL; 2503 goto error; 2504 } 2505 if (ffs->interfaces_count != helper.interfaces_count) { 2506 ret = -EINVAL; 2507 goto error; 2508 } 2509 } 2510 data += ret; 2511 len -= ret; 2512 } 2513 if (os_descs_count) { 2514 ret = ffs_do_os_descs(os_descs_count, data, len, 2515 __ffs_data_do_os_desc, ffs); 2516 if (ret < 0) 2517 goto error; 2518 data += ret; 2519 len -= ret; 2520 } 2521 2522 if (raw_descs == data || len) { 2523 ret = -EINVAL; 2524 goto error; 2525 } 2526 2527 ffs->raw_descs_data = _data; 2528 ffs->raw_descs = raw_descs; 2529 ffs->raw_descs_length = data - raw_descs; 2530 ffs->fs_descs_count = counts[0]; 2531 ffs->hs_descs_count = counts[1]; 2532 ffs->ss_descs_count = counts[2]; 2533 ffs->ms_os_descs_count = os_descs_count; 2534 2535 return 0; 2536 2537 error: 2538 kfree(_data); 2539 return ret; 2540 } 2541 2542 static int __ffs_data_got_strings(struct ffs_data *ffs, 2543 char *const _data, size_t len) 2544 { 2545 u32 str_count, needed_count, lang_count; 2546 struct usb_gadget_strings **stringtabs, *t; 2547 const char *data = _data; 2548 struct usb_string *s; 2549 2550 if (len < 16 || 2551 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2552 get_unaligned_le32(data + 4) != len) 2553 goto error; 2554 str_count = get_unaligned_le32(data + 8); 2555 lang_count = get_unaligned_le32(data + 12); 2556 2557 /* if one is zero the other must be zero */ 2558 if (!str_count != !lang_count) 2559 goto error; 2560 2561 /* Do we have at least as many strings as descriptors need? */ 2562 needed_count = ffs->strings_count; 2563 if (str_count < needed_count) 2564 goto error; 2565 2566 /* 2567 * If we don't need any strings just return and free all 2568 * memory. 2569 */ 2570 if (!needed_count) { 2571 kfree(_data); 2572 return 0; 2573 } 2574 2575 /* Allocate everything in one chunk so there's less maintenance. */ 2576 { 2577 unsigned i = 0; 2578 vla_group(d); 2579 vla_item(d, struct usb_gadget_strings *, stringtabs, 2580 size_add(lang_count, 1)); 2581 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2582 vla_item(d, struct usb_string, strings, 2583 size_mul(lang_count, (needed_count + 1))); 2584 2585 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2586 2587 if (!vlabuf) { 2588 kfree(_data); 2589 return -ENOMEM; 2590 } 2591 2592 /* Initialize the VLA pointers */ 2593 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2594 t = vla_ptr(vlabuf, d, stringtab); 2595 i = lang_count; 2596 do { 2597 *stringtabs++ = t++; 2598 } while (--i); 2599 *stringtabs = NULL; 2600 2601 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2602 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2603 t = vla_ptr(vlabuf, d, stringtab); 2604 s = vla_ptr(vlabuf, d, strings); 2605 } 2606 2607 /* For each language */ 2608 data += 16; 2609 len -= 16; 2610 2611 do { /* lang_count > 0 so we can use do-while */ 2612 unsigned needed = needed_count; 2613 u32 str_per_lang = str_count; 2614 2615 if (len < 3) 2616 goto error_free; 2617 t->language = get_unaligned_le16(data); 2618 t->strings = s; 2619 ++t; 2620 2621 data += 2; 2622 len -= 2; 2623 2624 /* For each string */ 2625 do { /* str_count > 0 so we can use do-while */ 2626 size_t length = strnlen(data, len); 2627 2628 if (length == len) 2629 goto error_free; 2630 2631 /* 2632 * User may provide more strings then we need, 2633 * if that's the case we simply ignore the 2634 * rest 2635 */ 2636 if (needed) { 2637 /* 2638 * s->id will be set while adding 2639 * function to configuration so for 2640 * now just leave garbage here. 2641 */ 2642 s->s = data; 2643 --needed; 2644 ++s; 2645 } 2646 2647 data += length + 1; 2648 len -= length + 1; 2649 } while (--str_per_lang); 2650 2651 s->id = 0; /* terminator */ 2652 s->s = NULL; 2653 ++s; 2654 2655 } while (--lang_count); 2656 2657 /* Some garbage left? */ 2658 if (len) 2659 goto error_free; 2660 2661 /* Done! */ 2662 ffs->stringtabs = stringtabs; 2663 ffs->raw_strings = _data; 2664 2665 return 0; 2666 2667 error_free: 2668 kfree(stringtabs); 2669 error: 2670 kfree(_data); 2671 return -EINVAL; 2672 } 2673 2674 2675 /* Events handling and management *******************************************/ 2676 2677 static void __ffs_event_add(struct ffs_data *ffs, 2678 enum usb_functionfs_event_type type) 2679 { 2680 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2681 int neg = 0; 2682 2683 /* 2684 * Abort any unhandled setup 2685 * 2686 * We do not need to worry about some cmpxchg() changing value 2687 * of ffs->setup_state without holding the lock because when 2688 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2689 * the source does nothing. 2690 */ 2691 if (ffs->setup_state == FFS_SETUP_PENDING) 2692 ffs->setup_state = FFS_SETUP_CANCELLED; 2693 2694 /* 2695 * Logic of this function guarantees that there are at most four pending 2696 * evens on ffs->ev.types queue. This is important because the queue 2697 * has space for four elements only and __ffs_ep0_read_events function 2698 * depends on that limit as well. If more event types are added, those 2699 * limits have to be revisited or guaranteed to still hold. 2700 */ 2701 switch (type) { 2702 case FUNCTIONFS_RESUME: 2703 rem_type2 = FUNCTIONFS_SUSPEND; 2704 fallthrough; 2705 case FUNCTIONFS_SUSPEND: 2706 case FUNCTIONFS_SETUP: 2707 rem_type1 = type; 2708 /* Discard all similar events */ 2709 break; 2710 2711 case FUNCTIONFS_BIND: 2712 case FUNCTIONFS_UNBIND: 2713 case FUNCTIONFS_DISABLE: 2714 case FUNCTIONFS_ENABLE: 2715 /* Discard everything other then power management. */ 2716 rem_type1 = FUNCTIONFS_SUSPEND; 2717 rem_type2 = FUNCTIONFS_RESUME; 2718 neg = 1; 2719 break; 2720 2721 default: 2722 WARN(1, "%d: unknown event, this should not happen\n", type); 2723 return; 2724 } 2725 2726 { 2727 u8 *ev = ffs->ev.types, *out = ev; 2728 unsigned n = ffs->ev.count; 2729 for (; n; --n, ++ev) 2730 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2731 *out++ = *ev; 2732 else 2733 pr_vdebug("purging event %d\n", *ev); 2734 ffs->ev.count = out - ffs->ev.types; 2735 } 2736 2737 pr_vdebug("adding event %d\n", type); 2738 ffs->ev.types[ffs->ev.count++] = type; 2739 wake_up_locked(&ffs->ev.waitq); 2740 if (ffs->ffs_eventfd) 2741 eventfd_signal(ffs->ffs_eventfd, 1); 2742 } 2743 2744 static void ffs_event_add(struct ffs_data *ffs, 2745 enum usb_functionfs_event_type type) 2746 { 2747 unsigned long flags; 2748 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2749 __ffs_event_add(ffs, type); 2750 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2751 } 2752 2753 /* Bind/unbind USB function hooks *******************************************/ 2754 2755 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2756 { 2757 int i; 2758 2759 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2760 if (ffs->eps_addrmap[i] == endpoint_address) 2761 return i; 2762 return -ENOENT; 2763 } 2764 2765 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2766 struct usb_descriptor_header *desc, 2767 void *priv) 2768 { 2769 struct usb_endpoint_descriptor *ds = (void *)desc; 2770 struct ffs_function *func = priv; 2771 struct ffs_ep *ffs_ep; 2772 unsigned ep_desc_id; 2773 int idx; 2774 static const char *speed_names[] = { "full", "high", "super" }; 2775 2776 if (type != FFS_DESCRIPTOR) 2777 return 0; 2778 2779 /* 2780 * If ss_descriptors is not NULL, we are reading super speed 2781 * descriptors; if hs_descriptors is not NULL, we are reading high 2782 * speed descriptors; otherwise, we are reading full speed 2783 * descriptors. 2784 */ 2785 if (func->function.ss_descriptors) { 2786 ep_desc_id = 2; 2787 func->function.ss_descriptors[(long)valuep] = desc; 2788 } else if (func->function.hs_descriptors) { 2789 ep_desc_id = 1; 2790 func->function.hs_descriptors[(long)valuep] = desc; 2791 } else { 2792 ep_desc_id = 0; 2793 func->function.fs_descriptors[(long)valuep] = desc; 2794 } 2795 2796 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2797 return 0; 2798 2799 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2800 if (idx < 0) 2801 return idx; 2802 2803 ffs_ep = func->eps + idx; 2804 2805 if (ffs_ep->descs[ep_desc_id]) { 2806 pr_err("two %sspeed descriptors for EP %d\n", 2807 speed_names[ep_desc_id], 2808 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2809 return -EINVAL; 2810 } 2811 ffs_ep->descs[ep_desc_id] = ds; 2812 2813 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2814 if (ffs_ep->ep) { 2815 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2816 if (!ds->wMaxPacketSize) 2817 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2818 } else { 2819 struct usb_request *req; 2820 struct usb_ep *ep; 2821 u8 bEndpointAddress; 2822 u16 wMaxPacketSize; 2823 2824 /* 2825 * We back up bEndpointAddress because autoconfig overwrites 2826 * it with physical endpoint address. 2827 */ 2828 bEndpointAddress = ds->bEndpointAddress; 2829 /* 2830 * We back up wMaxPacketSize because autoconfig treats 2831 * endpoint descriptors as if they were full speed. 2832 */ 2833 wMaxPacketSize = ds->wMaxPacketSize; 2834 pr_vdebug("autoconfig\n"); 2835 ep = usb_ep_autoconfig(func->gadget, ds); 2836 if (!ep) 2837 return -ENOTSUPP; 2838 ep->driver_data = func->eps + idx; 2839 2840 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2841 if (!req) 2842 return -ENOMEM; 2843 2844 ffs_ep->ep = ep; 2845 ffs_ep->req = req; 2846 func->eps_revmap[ds->bEndpointAddress & 2847 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2848 /* 2849 * If we use virtual address mapping, we restore 2850 * original bEndpointAddress value. 2851 */ 2852 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2853 ds->bEndpointAddress = bEndpointAddress; 2854 /* 2855 * Restore wMaxPacketSize which was potentially 2856 * overwritten by autoconfig. 2857 */ 2858 ds->wMaxPacketSize = wMaxPacketSize; 2859 } 2860 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2861 2862 return 0; 2863 } 2864 2865 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2866 struct usb_descriptor_header *desc, 2867 void *priv) 2868 { 2869 struct ffs_function *func = priv; 2870 unsigned idx; 2871 u8 newValue; 2872 2873 switch (type) { 2874 default: 2875 case FFS_DESCRIPTOR: 2876 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2877 return 0; 2878 2879 case FFS_INTERFACE: 2880 idx = *valuep; 2881 if (func->interfaces_nums[idx] < 0) { 2882 int id = usb_interface_id(func->conf, &func->function); 2883 if (id < 0) 2884 return id; 2885 func->interfaces_nums[idx] = id; 2886 } 2887 newValue = func->interfaces_nums[idx]; 2888 break; 2889 2890 case FFS_STRING: 2891 /* String' IDs are allocated when fsf_data is bound to cdev */ 2892 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2893 break; 2894 2895 case FFS_ENDPOINT: 2896 /* 2897 * USB_DT_ENDPOINT are handled in 2898 * __ffs_func_bind_do_descs(). 2899 */ 2900 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2901 return 0; 2902 2903 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2904 if (!func->eps[idx].ep) 2905 return -EINVAL; 2906 2907 { 2908 struct usb_endpoint_descriptor **descs; 2909 descs = func->eps[idx].descs; 2910 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2911 } 2912 break; 2913 } 2914 2915 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2916 *valuep = newValue; 2917 return 0; 2918 } 2919 2920 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2921 struct usb_os_desc_header *h, void *data, 2922 unsigned len, void *priv) 2923 { 2924 struct ffs_function *func = priv; 2925 u8 length = 0; 2926 2927 switch (type) { 2928 case FFS_OS_DESC_EXT_COMPAT: { 2929 struct usb_ext_compat_desc *desc = data; 2930 struct usb_os_desc_table *t; 2931 2932 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2933 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2934 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2935 ARRAY_SIZE(desc->CompatibleID) + 2936 ARRAY_SIZE(desc->SubCompatibleID)); 2937 length = sizeof(*desc); 2938 } 2939 break; 2940 case FFS_OS_DESC_EXT_PROP: { 2941 struct usb_ext_prop_desc *desc = data; 2942 struct usb_os_desc_table *t; 2943 struct usb_os_desc_ext_prop *ext_prop; 2944 char *ext_prop_name; 2945 char *ext_prop_data; 2946 2947 t = &func->function.os_desc_table[h->interface]; 2948 t->if_id = func->interfaces_nums[h->interface]; 2949 2950 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2951 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2952 2953 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2954 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2955 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2956 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2957 length = ext_prop->name_len + ext_prop->data_len + 14; 2958 2959 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2960 func->ffs->ms_os_descs_ext_prop_name_avail += 2961 ext_prop->name_len; 2962 2963 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2964 func->ffs->ms_os_descs_ext_prop_data_avail += 2965 ext_prop->data_len; 2966 memcpy(ext_prop_data, 2967 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2968 ext_prop->data_len); 2969 /* unicode data reported to the host as "WCHAR"s */ 2970 switch (ext_prop->type) { 2971 case USB_EXT_PROP_UNICODE: 2972 case USB_EXT_PROP_UNICODE_ENV: 2973 case USB_EXT_PROP_UNICODE_LINK: 2974 case USB_EXT_PROP_UNICODE_MULTI: 2975 ext_prop->data_len *= 2; 2976 break; 2977 } 2978 ext_prop->data = ext_prop_data; 2979 2980 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2981 ext_prop->name_len); 2982 /* property name reported to the host as "WCHAR"s */ 2983 ext_prop->name_len *= 2; 2984 ext_prop->name = ext_prop_name; 2985 2986 t->os_desc->ext_prop_len += 2987 ext_prop->name_len + ext_prop->data_len + 14; 2988 ++t->os_desc->ext_prop_count; 2989 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2990 } 2991 break; 2992 default: 2993 pr_vdebug("unknown descriptor: %d\n", type); 2994 } 2995 2996 return length; 2997 } 2998 2999 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3000 struct usb_configuration *c) 3001 { 3002 struct ffs_function *func = ffs_func_from_usb(f); 3003 struct f_fs_opts *ffs_opts = 3004 container_of(f->fi, struct f_fs_opts, func_inst); 3005 struct ffs_data *ffs_data; 3006 int ret; 3007 3008 /* 3009 * Legacy gadget triggers binding in functionfs_ready_callback, 3010 * which already uses locking; taking the same lock here would 3011 * cause a deadlock. 3012 * 3013 * Configfs-enabled gadgets however do need ffs_dev_lock. 3014 */ 3015 if (!ffs_opts->no_configfs) 3016 ffs_dev_lock(); 3017 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3018 ffs_data = ffs_opts->dev->ffs_data; 3019 if (!ffs_opts->no_configfs) 3020 ffs_dev_unlock(); 3021 if (ret) 3022 return ERR_PTR(ret); 3023 3024 func->ffs = ffs_data; 3025 func->conf = c; 3026 func->gadget = c->cdev->gadget; 3027 3028 /* 3029 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3030 * configurations are bound in sequence with list_for_each_entry, 3031 * in each configuration its functions are bound in sequence 3032 * with list_for_each_entry, so we assume no race condition 3033 * with regard to ffs_opts->bound access 3034 */ 3035 if (!ffs_opts->refcnt) { 3036 ret = functionfs_bind(func->ffs, c->cdev); 3037 if (ret) 3038 return ERR_PTR(ret); 3039 } 3040 ffs_opts->refcnt++; 3041 func->function.strings = func->ffs->stringtabs; 3042 3043 return ffs_opts; 3044 } 3045 3046 static int _ffs_func_bind(struct usb_configuration *c, 3047 struct usb_function *f) 3048 { 3049 struct ffs_function *func = ffs_func_from_usb(f); 3050 struct ffs_data *ffs = func->ffs; 3051 3052 const int full = !!func->ffs->fs_descs_count; 3053 const int high = !!func->ffs->hs_descs_count; 3054 const int super = !!func->ffs->ss_descs_count; 3055 3056 int fs_len, hs_len, ss_len, ret, i; 3057 struct ffs_ep *eps_ptr; 3058 3059 /* Make it a single chunk, less management later on */ 3060 vla_group(d); 3061 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3062 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3063 full ? ffs->fs_descs_count + 1 : 0); 3064 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3065 high ? ffs->hs_descs_count + 1 : 0); 3066 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3067 super ? ffs->ss_descs_count + 1 : 0); 3068 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3069 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3070 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3071 vla_item_with_sz(d, char[16], ext_compat, 3072 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3073 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3074 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3075 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3076 ffs->ms_os_descs_ext_prop_count); 3077 vla_item_with_sz(d, char, ext_prop_name, 3078 ffs->ms_os_descs_ext_prop_name_len); 3079 vla_item_with_sz(d, char, ext_prop_data, 3080 ffs->ms_os_descs_ext_prop_data_len); 3081 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3082 char *vlabuf; 3083 3084 /* Has descriptors only for speeds gadget does not support */ 3085 if (!(full | high | super)) 3086 return -ENOTSUPP; 3087 3088 /* Allocate a single chunk, less management later on */ 3089 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3090 if (!vlabuf) 3091 return -ENOMEM; 3092 3093 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3094 ffs->ms_os_descs_ext_prop_name_avail = 3095 vla_ptr(vlabuf, d, ext_prop_name); 3096 ffs->ms_os_descs_ext_prop_data_avail = 3097 vla_ptr(vlabuf, d, ext_prop_data); 3098 3099 /* Copy descriptors */ 3100 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3101 ffs->raw_descs_length); 3102 3103 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3104 eps_ptr = vla_ptr(vlabuf, d, eps); 3105 for (i = 0; i < ffs->eps_count; i++) 3106 eps_ptr[i].num = -1; 3107 3108 /* Save pointers 3109 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3110 */ 3111 func->eps = vla_ptr(vlabuf, d, eps); 3112 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3113 3114 /* 3115 * Go through all the endpoint descriptors and allocate 3116 * endpoints first, so that later we can rewrite the endpoint 3117 * numbers without worrying that it may be described later on. 3118 */ 3119 if (full) { 3120 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3121 fs_len = ffs_do_descs(ffs->fs_descs_count, 3122 vla_ptr(vlabuf, d, raw_descs), 3123 d_raw_descs__sz, 3124 __ffs_func_bind_do_descs, func); 3125 if (fs_len < 0) { 3126 ret = fs_len; 3127 goto error; 3128 } 3129 } else { 3130 fs_len = 0; 3131 } 3132 3133 if (high) { 3134 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3135 hs_len = ffs_do_descs(ffs->hs_descs_count, 3136 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3137 d_raw_descs__sz - fs_len, 3138 __ffs_func_bind_do_descs, func); 3139 if (hs_len < 0) { 3140 ret = hs_len; 3141 goto error; 3142 } 3143 } else { 3144 hs_len = 0; 3145 } 3146 3147 if (super) { 3148 func->function.ss_descriptors = func->function.ssp_descriptors = 3149 vla_ptr(vlabuf, d, ss_descs); 3150 ss_len = ffs_do_descs(ffs->ss_descs_count, 3151 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3152 d_raw_descs__sz - fs_len - hs_len, 3153 __ffs_func_bind_do_descs, func); 3154 if (ss_len < 0) { 3155 ret = ss_len; 3156 goto error; 3157 } 3158 } else { 3159 ss_len = 0; 3160 } 3161 3162 /* 3163 * Now handle interface numbers allocation and interface and 3164 * endpoint numbers rewriting. We can do that in one go 3165 * now. 3166 */ 3167 ret = ffs_do_descs(ffs->fs_descs_count + 3168 (high ? ffs->hs_descs_count : 0) + 3169 (super ? ffs->ss_descs_count : 0), 3170 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3171 __ffs_func_bind_do_nums, func); 3172 if (ret < 0) 3173 goto error; 3174 3175 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3176 if (c->cdev->use_os_string) { 3177 for (i = 0; i < ffs->interfaces_count; ++i) { 3178 struct usb_os_desc *desc; 3179 3180 desc = func->function.os_desc_table[i].os_desc = 3181 vla_ptr(vlabuf, d, os_desc) + 3182 i * sizeof(struct usb_os_desc); 3183 desc->ext_compat_id = 3184 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3185 INIT_LIST_HEAD(&desc->ext_prop); 3186 } 3187 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3188 vla_ptr(vlabuf, d, raw_descs) + 3189 fs_len + hs_len + ss_len, 3190 d_raw_descs__sz - fs_len - hs_len - 3191 ss_len, 3192 __ffs_func_bind_do_os_desc, func); 3193 if (ret < 0) 3194 goto error; 3195 } 3196 func->function.os_desc_n = 3197 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3198 3199 /* And we're done */ 3200 ffs_event_add(ffs, FUNCTIONFS_BIND); 3201 return 0; 3202 3203 error: 3204 /* XXX Do we need to release all claimed endpoints here? */ 3205 return ret; 3206 } 3207 3208 static int ffs_func_bind(struct usb_configuration *c, 3209 struct usb_function *f) 3210 { 3211 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3212 struct ffs_function *func = ffs_func_from_usb(f); 3213 int ret; 3214 3215 if (IS_ERR(ffs_opts)) 3216 return PTR_ERR(ffs_opts); 3217 3218 ret = _ffs_func_bind(c, f); 3219 if (ret && !--ffs_opts->refcnt) 3220 functionfs_unbind(func->ffs); 3221 3222 return ret; 3223 } 3224 3225 3226 /* Other USB function hooks *************************************************/ 3227 3228 static void ffs_reset_work(struct work_struct *work) 3229 { 3230 struct ffs_data *ffs = container_of(work, 3231 struct ffs_data, reset_work); 3232 ffs_data_reset(ffs); 3233 } 3234 3235 static int ffs_func_set_alt(struct usb_function *f, 3236 unsigned interface, unsigned alt) 3237 { 3238 struct ffs_function *func = ffs_func_from_usb(f); 3239 struct ffs_data *ffs = func->ffs; 3240 int ret = 0, intf; 3241 3242 if (alt != (unsigned)-1) { 3243 intf = ffs_func_revmap_intf(func, interface); 3244 if (intf < 0) 3245 return intf; 3246 } 3247 3248 if (ffs->func) 3249 ffs_func_eps_disable(ffs->func); 3250 3251 if (ffs->state == FFS_DEACTIVATED) { 3252 ffs->state = FFS_CLOSING; 3253 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3254 schedule_work(&ffs->reset_work); 3255 return -ENODEV; 3256 } 3257 3258 if (ffs->state != FFS_ACTIVE) 3259 return -ENODEV; 3260 3261 if (alt == (unsigned)-1) { 3262 ffs->func = NULL; 3263 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3264 return 0; 3265 } 3266 3267 ffs->func = func; 3268 ret = ffs_func_eps_enable(func); 3269 if (ret >= 0) 3270 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3271 return ret; 3272 } 3273 3274 static void ffs_func_disable(struct usb_function *f) 3275 { 3276 ffs_func_set_alt(f, 0, (unsigned)-1); 3277 } 3278 3279 static int ffs_func_setup(struct usb_function *f, 3280 const struct usb_ctrlrequest *creq) 3281 { 3282 struct ffs_function *func = ffs_func_from_usb(f); 3283 struct ffs_data *ffs = func->ffs; 3284 unsigned long flags; 3285 int ret; 3286 3287 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3288 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3289 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3290 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3291 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3292 3293 /* 3294 * Most requests directed to interface go through here 3295 * (notable exceptions are set/get interface) so we need to 3296 * handle them. All other either handled by composite or 3297 * passed to usb_configuration->setup() (if one is set). No 3298 * matter, we will handle requests directed to endpoint here 3299 * as well (as it's straightforward). Other request recipient 3300 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3301 * is being used. 3302 */ 3303 if (ffs->state != FFS_ACTIVE) 3304 return -ENODEV; 3305 3306 switch (creq->bRequestType & USB_RECIP_MASK) { 3307 case USB_RECIP_INTERFACE: 3308 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3309 if (ret < 0) 3310 return ret; 3311 break; 3312 3313 case USB_RECIP_ENDPOINT: 3314 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3315 if (ret < 0) 3316 return ret; 3317 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3318 ret = func->ffs->eps_addrmap[ret]; 3319 break; 3320 3321 default: 3322 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3323 ret = le16_to_cpu(creq->wIndex); 3324 else 3325 return -EOPNOTSUPP; 3326 } 3327 3328 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3329 ffs->ev.setup = *creq; 3330 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3331 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3332 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3333 3334 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3335 } 3336 3337 static bool ffs_func_req_match(struct usb_function *f, 3338 const struct usb_ctrlrequest *creq, 3339 bool config0) 3340 { 3341 struct ffs_function *func = ffs_func_from_usb(f); 3342 3343 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3344 return false; 3345 3346 switch (creq->bRequestType & USB_RECIP_MASK) { 3347 case USB_RECIP_INTERFACE: 3348 return (ffs_func_revmap_intf(func, 3349 le16_to_cpu(creq->wIndex)) >= 0); 3350 case USB_RECIP_ENDPOINT: 3351 return (ffs_func_revmap_ep(func, 3352 le16_to_cpu(creq->wIndex)) >= 0); 3353 default: 3354 return (bool) (func->ffs->user_flags & 3355 FUNCTIONFS_ALL_CTRL_RECIP); 3356 } 3357 } 3358 3359 static void ffs_func_suspend(struct usb_function *f) 3360 { 3361 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3362 } 3363 3364 static void ffs_func_resume(struct usb_function *f) 3365 { 3366 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3367 } 3368 3369 3370 /* Endpoint and interface numbers reverse mapping ***************************/ 3371 3372 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3373 { 3374 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3375 return num ? num : -EDOM; 3376 } 3377 3378 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3379 { 3380 short *nums = func->interfaces_nums; 3381 unsigned count = func->ffs->interfaces_count; 3382 3383 for (; count; --count, ++nums) { 3384 if (*nums >= 0 && *nums == intf) 3385 return nums - func->interfaces_nums; 3386 } 3387 3388 return -EDOM; 3389 } 3390 3391 3392 /* Devices management *******************************************************/ 3393 3394 static LIST_HEAD(ffs_devices); 3395 3396 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3397 { 3398 struct ffs_dev *dev; 3399 3400 if (!name) 3401 return NULL; 3402 3403 list_for_each_entry(dev, &ffs_devices, entry) { 3404 if (strcmp(dev->name, name) == 0) 3405 return dev; 3406 } 3407 3408 return NULL; 3409 } 3410 3411 /* 3412 * ffs_lock must be taken by the caller of this function 3413 */ 3414 static struct ffs_dev *_ffs_get_single_dev(void) 3415 { 3416 struct ffs_dev *dev; 3417 3418 if (list_is_singular(&ffs_devices)) { 3419 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3420 if (dev->single) 3421 return dev; 3422 } 3423 3424 return NULL; 3425 } 3426 3427 /* 3428 * ffs_lock must be taken by the caller of this function 3429 */ 3430 static struct ffs_dev *_ffs_find_dev(const char *name) 3431 { 3432 struct ffs_dev *dev; 3433 3434 dev = _ffs_get_single_dev(); 3435 if (dev) 3436 return dev; 3437 3438 return _ffs_do_find_dev(name); 3439 } 3440 3441 /* Configfs support *********************************************************/ 3442 3443 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3444 { 3445 return container_of(to_config_group(item), struct f_fs_opts, 3446 func_inst.group); 3447 } 3448 3449 static void ffs_attr_release(struct config_item *item) 3450 { 3451 struct f_fs_opts *opts = to_ffs_opts(item); 3452 3453 usb_put_function_instance(&opts->func_inst); 3454 } 3455 3456 static struct configfs_item_operations ffs_item_ops = { 3457 .release = ffs_attr_release, 3458 }; 3459 3460 static const struct config_item_type ffs_func_type = { 3461 .ct_item_ops = &ffs_item_ops, 3462 .ct_owner = THIS_MODULE, 3463 }; 3464 3465 3466 /* Function registration interface ******************************************/ 3467 3468 static void ffs_free_inst(struct usb_function_instance *f) 3469 { 3470 struct f_fs_opts *opts; 3471 3472 opts = to_f_fs_opts(f); 3473 ffs_release_dev(opts->dev); 3474 ffs_dev_lock(); 3475 _ffs_free_dev(opts->dev); 3476 ffs_dev_unlock(); 3477 kfree(opts); 3478 } 3479 3480 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3481 { 3482 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3483 return -ENAMETOOLONG; 3484 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3485 } 3486 3487 static struct usb_function_instance *ffs_alloc_inst(void) 3488 { 3489 struct f_fs_opts *opts; 3490 struct ffs_dev *dev; 3491 3492 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3493 if (!opts) 3494 return ERR_PTR(-ENOMEM); 3495 3496 opts->func_inst.set_inst_name = ffs_set_inst_name; 3497 opts->func_inst.free_func_inst = ffs_free_inst; 3498 ffs_dev_lock(); 3499 dev = _ffs_alloc_dev(); 3500 ffs_dev_unlock(); 3501 if (IS_ERR(dev)) { 3502 kfree(opts); 3503 return ERR_CAST(dev); 3504 } 3505 opts->dev = dev; 3506 dev->opts = opts; 3507 3508 config_group_init_type_name(&opts->func_inst.group, "", 3509 &ffs_func_type); 3510 return &opts->func_inst; 3511 } 3512 3513 static void ffs_free(struct usb_function *f) 3514 { 3515 kfree(ffs_func_from_usb(f)); 3516 } 3517 3518 static void ffs_func_unbind(struct usb_configuration *c, 3519 struct usb_function *f) 3520 { 3521 struct ffs_function *func = ffs_func_from_usb(f); 3522 struct ffs_data *ffs = func->ffs; 3523 struct f_fs_opts *opts = 3524 container_of(f->fi, struct f_fs_opts, func_inst); 3525 struct ffs_ep *ep = func->eps; 3526 unsigned count = ffs->eps_count; 3527 unsigned long flags; 3528 3529 if (ffs->func == func) { 3530 ffs_func_eps_disable(func); 3531 ffs->func = NULL; 3532 } 3533 3534 /* Drain any pending AIO completions */ 3535 drain_workqueue(ffs->io_completion_wq); 3536 3537 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3538 if (!--opts->refcnt) 3539 functionfs_unbind(ffs); 3540 3541 /* cleanup after autoconfig */ 3542 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3543 while (count--) { 3544 if (ep->ep && ep->req) 3545 usb_ep_free_request(ep->ep, ep->req); 3546 ep->req = NULL; 3547 ++ep; 3548 } 3549 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3550 kfree(func->eps); 3551 func->eps = NULL; 3552 /* 3553 * eps, descriptors and interfaces_nums are allocated in the 3554 * same chunk so only one free is required. 3555 */ 3556 func->function.fs_descriptors = NULL; 3557 func->function.hs_descriptors = NULL; 3558 func->function.ss_descriptors = NULL; 3559 func->function.ssp_descriptors = NULL; 3560 func->interfaces_nums = NULL; 3561 3562 } 3563 3564 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3565 { 3566 struct ffs_function *func; 3567 3568 func = kzalloc(sizeof(*func), GFP_KERNEL); 3569 if (!func) 3570 return ERR_PTR(-ENOMEM); 3571 3572 func->function.name = "Function FS Gadget"; 3573 3574 func->function.bind = ffs_func_bind; 3575 func->function.unbind = ffs_func_unbind; 3576 func->function.set_alt = ffs_func_set_alt; 3577 func->function.disable = ffs_func_disable; 3578 func->function.setup = ffs_func_setup; 3579 func->function.req_match = ffs_func_req_match; 3580 func->function.suspend = ffs_func_suspend; 3581 func->function.resume = ffs_func_resume; 3582 func->function.free_func = ffs_free; 3583 3584 return &func->function; 3585 } 3586 3587 /* 3588 * ffs_lock must be taken by the caller of this function 3589 */ 3590 static struct ffs_dev *_ffs_alloc_dev(void) 3591 { 3592 struct ffs_dev *dev; 3593 int ret; 3594 3595 if (_ffs_get_single_dev()) 3596 return ERR_PTR(-EBUSY); 3597 3598 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3599 if (!dev) 3600 return ERR_PTR(-ENOMEM); 3601 3602 if (list_empty(&ffs_devices)) { 3603 ret = functionfs_init(); 3604 if (ret) { 3605 kfree(dev); 3606 return ERR_PTR(ret); 3607 } 3608 } 3609 3610 list_add(&dev->entry, &ffs_devices); 3611 3612 return dev; 3613 } 3614 3615 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3616 { 3617 struct ffs_dev *existing; 3618 int ret = 0; 3619 3620 ffs_dev_lock(); 3621 3622 existing = _ffs_do_find_dev(name); 3623 if (!existing) 3624 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 3625 else if (existing != dev) 3626 ret = -EBUSY; 3627 3628 ffs_dev_unlock(); 3629 3630 return ret; 3631 } 3632 EXPORT_SYMBOL_GPL(ffs_name_dev); 3633 3634 int ffs_single_dev(struct ffs_dev *dev) 3635 { 3636 int ret; 3637 3638 ret = 0; 3639 ffs_dev_lock(); 3640 3641 if (!list_is_singular(&ffs_devices)) 3642 ret = -EBUSY; 3643 else 3644 dev->single = true; 3645 3646 ffs_dev_unlock(); 3647 return ret; 3648 } 3649 EXPORT_SYMBOL_GPL(ffs_single_dev); 3650 3651 /* 3652 * ffs_lock must be taken by the caller of this function 3653 */ 3654 static void _ffs_free_dev(struct ffs_dev *dev) 3655 { 3656 list_del(&dev->entry); 3657 3658 kfree(dev); 3659 if (list_empty(&ffs_devices)) 3660 functionfs_cleanup(); 3661 } 3662 3663 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 3664 { 3665 int ret = 0; 3666 struct ffs_dev *ffs_dev; 3667 3668 ffs_dev_lock(); 3669 3670 ffs_dev = _ffs_find_dev(dev_name); 3671 if (!ffs_dev) { 3672 ret = -ENOENT; 3673 } else if (ffs_dev->mounted) { 3674 ret = -EBUSY; 3675 } else if (ffs_dev->ffs_acquire_dev_callback && 3676 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 3677 ret = -ENOENT; 3678 } else { 3679 ffs_dev->mounted = true; 3680 ffs_dev->ffs_data = ffs_data; 3681 ffs_data->private_data = ffs_dev; 3682 } 3683 3684 ffs_dev_unlock(); 3685 return ret; 3686 } 3687 3688 static void ffs_release_dev(struct ffs_dev *ffs_dev) 3689 { 3690 ffs_dev_lock(); 3691 3692 if (ffs_dev && ffs_dev->mounted) { 3693 ffs_dev->mounted = false; 3694 if (ffs_dev->ffs_data) { 3695 ffs_dev->ffs_data->private_data = NULL; 3696 ffs_dev->ffs_data = NULL; 3697 } 3698 3699 if (ffs_dev->ffs_release_dev_callback) 3700 ffs_dev->ffs_release_dev_callback(ffs_dev); 3701 } 3702 3703 ffs_dev_unlock(); 3704 } 3705 3706 static int ffs_ready(struct ffs_data *ffs) 3707 { 3708 struct ffs_dev *ffs_obj; 3709 int ret = 0; 3710 3711 ffs_dev_lock(); 3712 3713 ffs_obj = ffs->private_data; 3714 if (!ffs_obj) { 3715 ret = -EINVAL; 3716 goto done; 3717 } 3718 if (WARN_ON(ffs_obj->desc_ready)) { 3719 ret = -EBUSY; 3720 goto done; 3721 } 3722 3723 ffs_obj->desc_ready = true; 3724 3725 if (ffs_obj->ffs_ready_callback) { 3726 ret = ffs_obj->ffs_ready_callback(ffs); 3727 if (ret) 3728 goto done; 3729 } 3730 3731 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3732 done: 3733 ffs_dev_unlock(); 3734 return ret; 3735 } 3736 3737 static void ffs_closed(struct ffs_data *ffs) 3738 { 3739 struct ffs_dev *ffs_obj; 3740 struct f_fs_opts *opts; 3741 struct config_item *ci; 3742 3743 ffs_dev_lock(); 3744 3745 ffs_obj = ffs->private_data; 3746 if (!ffs_obj) 3747 goto done; 3748 3749 ffs_obj->desc_ready = false; 3750 3751 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3752 ffs_obj->ffs_closed_callback) 3753 ffs_obj->ffs_closed_callback(ffs); 3754 3755 if (ffs_obj->opts) 3756 opts = ffs_obj->opts; 3757 else 3758 goto done; 3759 3760 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3761 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3762 goto done; 3763 3764 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3765 ffs_dev_unlock(); 3766 3767 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3768 unregister_gadget_item(ci); 3769 return; 3770 done: 3771 ffs_dev_unlock(); 3772 } 3773 3774 /* Misc helper functions ****************************************************/ 3775 3776 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3777 { 3778 return nonblock 3779 ? mutex_trylock(mutex) ? 0 : -EAGAIN 3780 : mutex_lock_interruptible(mutex); 3781 } 3782 3783 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3784 { 3785 char *data; 3786 3787 if (!len) 3788 return NULL; 3789 3790 data = memdup_user(buf, len); 3791 if (IS_ERR(data)) 3792 return data; 3793 3794 pr_vdebug("Buffer from user space:\n"); 3795 ffs_dump_mem("", data, len); 3796 3797 return data; 3798 } 3799 3800 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3801 MODULE_LICENSE("GPL"); 3802 MODULE_AUTHOR("Michal Nazarewicz"); 3803