1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/dma-buf.h> 19 #include <linux/dma-fence.h> 20 #include <linux/dma-resv.h> 21 #include <linux/pagemap.h> 22 #include <linux/export.h> 23 #include <linux/fs_parser.h> 24 #include <linux/hid.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/scatterlist.h> 28 #include <linux/sched/signal.h> 29 #include <linux/uio.h> 30 #include <linux/vmalloc.h> 31 #include <asm/unaligned.h> 32 33 #include <linux/usb/ccid.h> 34 #include <linux/usb/composite.h> 35 #include <linux/usb/functionfs.h> 36 37 #include <linux/aio.h> 38 #include <linux/kthread.h> 39 #include <linux/poll.h> 40 #include <linux/eventfd.h> 41 42 #include "u_fs.h" 43 #include "u_f.h" 44 #include "u_os_desc.h" 45 #include "configfs.h" 46 47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 48 #define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */ 49 50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000 51 52 MODULE_IMPORT_NS(DMA_BUF); 53 54 /* Reference counter handling */ 55 static void ffs_data_get(struct ffs_data *ffs); 56 static void ffs_data_put(struct ffs_data *ffs); 57 /* Creates new ffs_data object. */ 58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 59 __attribute__((malloc)); 60 61 /* Opened counter handling. */ 62 static void ffs_data_opened(struct ffs_data *ffs); 63 static void ffs_data_closed(struct ffs_data *ffs); 64 65 /* Called with ffs->mutex held; take over ownership of data. */ 66 static int __must_check 67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 68 static int __must_check 69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 70 71 72 /* The function structure ***************************************************/ 73 74 struct ffs_ep; 75 76 struct ffs_function { 77 struct usb_configuration *conf; 78 struct usb_gadget *gadget; 79 struct ffs_data *ffs; 80 81 struct ffs_ep *eps; 82 u8 eps_revmap[16]; 83 short *interfaces_nums; 84 85 struct usb_function function; 86 int cur_alt[MAX_CONFIG_INTERFACES]; 87 }; 88 89 90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 91 { 92 return container_of(f, struct ffs_function, function); 93 } 94 95 96 static inline enum ffs_setup_state 97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 98 { 99 return (enum ffs_setup_state) 100 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 101 } 102 103 104 static void ffs_func_eps_disable(struct ffs_function *func); 105 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 106 107 static int ffs_func_bind(struct usb_configuration *, 108 struct usb_function *); 109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf); 111 static void ffs_func_disable(struct usb_function *); 112 static int ffs_func_setup(struct usb_function *, 113 const struct usb_ctrlrequest *); 114 static bool ffs_func_req_match(struct usb_function *, 115 const struct usb_ctrlrequest *, 116 bool config0); 117 static void ffs_func_suspend(struct usb_function *); 118 static void ffs_func_resume(struct usb_function *); 119 120 121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 123 124 125 /* The endpoints structures *************************************************/ 126 127 struct ffs_ep { 128 struct usb_ep *ep; /* P: ffs->eps_lock */ 129 struct usb_request *req; /* P: epfile->mutex */ 130 131 /* [0]: full speed, [1]: high speed, [2]: super speed */ 132 struct usb_endpoint_descriptor *descs[3]; 133 134 u8 num; 135 }; 136 137 struct ffs_dmabuf_priv { 138 struct list_head entry; 139 struct kref ref; 140 struct ffs_data *ffs; 141 struct dma_buf_attachment *attach; 142 struct sg_table *sgt; 143 enum dma_data_direction dir; 144 spinlock_t lock; 145 u64 context; 146 struct usb_request *req; /* P: ffs->eps_lock */ 147 struct usb_ep *ep; /* P: ffs->eps_lock */ 148 }; 149 150 struct ffs_dma_fence { 151 struct dma_fence base; 152 struct ffs_dmabuf_priv *priv; 153 struct work_struct work; 154 }; 155 156 struct ffs_epfile { 157 /* Protects ep->ep and ep->req. */ 158 struct mutex mutex; 159 160 struct ffs_data *ffs; 161 struct ffs_ep *ep; /* P: ffs->eps_lock */ 162 163 struct dentry *dentry; 164 165 /* 166 * Buffer for holding data from partial reads which may happen since 167 * we’re rounding user read requests to a multiple of a max packet size. 168 * 169 * The pointer is initialised with NULL value and may be set by 170 * __ffs_epfile_read_data function to point to a temporary buffer. 171 * 172 * In normal operation, calls to __ffs_epfile_read_buffered will consume 173 * data from said buffer and eventually free it. Importantly, while the 174 * function is using the buffer, it sets the pointer to NULL. This is 175 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 176 * can never run concurrently (they are synchronised by epfile->mutex) 177 * so the latter will not assign a new value to the pointer. 178 * 179 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 180 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 181 * value is crux of the synchronisation between ffs_func_eps_disable and 182 * __ffs_epfile_read_data. 183 * 184 * Once __ffs_epfile_read_data is about to finish it will try to set the 185 * pointer back to its old value (as described above), but seeing as the 186 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 187 * the buffer. 188 * 189 * == State transitions == 190 * 191 * • ptr == NULL: (initial state) 192 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 193 * ◦ __ffs_epfile_read_buffered: nop 194 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 195 * ◦ reading finishes: n/a, not in ‘and reading’ state 196 * • ptr == DROP: 197 * ◦ __ffs_epfile_read_buffer_free: nop 198 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 199 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 200 * ◦ reading finishes: n/a, not in ‘and reading’ state 201 * • ptr == buf: 202 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 203 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 204 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 205 * is always called first 206 * ◦ reading finishes: n/a, not in ‘and reading’ state 207 * • ptr == NULL and reading: 208 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 209 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 210 * ◦ __ffs_epfile_read_data: n/a, mutex is held 211 * ◦ reading finishes and … 212 * … all data read: free buf, go to ptr == NULL 213 * … otherwise: go to ptr == buf and reading 214 * • ptr == DROP and reading: 215 * ◦ __ffs_epfile_read_buffer_free: nop 216 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 217 * ◦ __ffs_epfile_read_data: n/a, mutex is held 218 * ◦ reading finishes: free buf, go to ptr == DROP 219 */ 220 struct ffs_buffer *read_buffer; 221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 222 223 char name[5]; 224 225 unsigned char in; /* P: ffs->eps_lock */ 226 unsigned char isoc; /* P: ffs->eps_lock */ 227 228 unsigned char _pad; 229 230 /* Protects dmabufs */ 231 struct mutex dmabufs_mutex; 232 struct list_head dmabufs; /* P: dmabufs_mutex */ 233 atomic_t seqno; 234 }; 235 236 struct ffs_buffer { 237 size_t length; 238 char *data; 239 char storage[] __counted_by(length); 240 }; 241 242 /* ffs_io_data structure ***************************************************/ 243 244 struct ffs_io_data { 245 bool aio; 246 bool read; 247 248 struct kiocb *kiocb; 249 struct iov_iter data; 250 const void *to_free; 251 char *buf; 252 253 struct mm_struct *mm; 254 struct work_struct work; 255 256 struct usb_ep *ep; 257 struct usb_request *req; 258 struct sg_table sgt; 259 bool use_sg; 260 261 struct ffs_data *ffs; 262 263 int status; 264 struct completion done; 265 }; 266 267 struct ffs_desc_helper { 268 struct ffs_data *ffs; 269 unsigned interfaces_count; 270 unsigned eps_count; 271 }; 272 273 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 275 276 static struct dentry * 277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 278 const struct file_operations *fops); 279 280 /* Devices management *******************************************************/ 281 282 DEFINE_MUTEX(ffs_lock); 283 EXPORT_SYMBOL_GPL(ffs_lock); 284 285 static struct ffs_dev *_ffs_find_dev(const char *name); 286 static struct ffs_dev *_ffs_alloc_dev(void); 287 static void _ffs_free_dev(struct ffs_dev *dev); 288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 289 static void ffs_release_dev(struct ffs_dev *ffs_dev); 290 static int ffs_ready(struct ffs_data *ffs); 291 static void ffs_closed(struct ffs_data *ffs); 292 293 /* Misc helper functions ****************************************************/ 294 295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 296 __attribute__((warn_unused_result, nonnull)); 297 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 298 __attribute__((warn_unused_result, nonnull)); 299 300 301 /* Control file aka ep0 *****************************************************/ 302 303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 304 { 305 struct ffs_data *ffs = req->context; 306 307 complete(&ffs->ep0req_completion); 308 } 309 310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 311 __releases(&ffs->ev.waitq.lock) 312 { 313 struct usb_request *req = ffs->ep0req; 314 int ret; 315 316 if (!req) { 317 spin_unlock_irq(&ffs->ev.waitq.lock); 318 return -EINVAL; 319 } 320 321 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 322 323 spin_unlock_irq(&ffs->ev.waitq.lock); 324 325 req->buf = data; 326 req->length = len; 327 328 /* 329 * UDC layer requires to provide a buffer even for ZLP, but should 330 * not use it at all. Let's provide some poisoned pointer to catch 331 * possible bug in the driver. 332 */ 333 if (req->buf == NULL) 334 req->buf = (void *)0xDEADBABE; 335 336 reinit_completion(&ffs->ep0req_completion); 337 338 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 339 if (ret < 0) 340 return ret; 341 342 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 343 if (ret) { 344 usb_ep_dequeue(ffs->gadget->ep0, req); 345 return -EINTR; 346 } 347 348 ffs->setup_state = FFS_NO_SETUP; 349 return req->status ? req->status : req->actual; 350 } 351 352 static int __ffs_ep0_stall(struct ffs_data *ffs) 353 { 354 if (ffs->ev.can_stall) { 355 pr_vdebug("ep0 stall\n"); 356 usb_ep_set_halt(ffs->gadget->ep0); 357 ffs->setup_state = FFS_NO_SETUP; 358 return -EL2HLT; 359 } else { 360 pr_debug("bogus ep0 stall!\n"); 361 return -ESRCH; 362 } 363 } 364 365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 366 size_t len, loff_t *ptr) 367 { 368 struct ffs_data *ffs = file->private_data; 369 ssize_t ret; 370 char *data; 371 372 /* Fast check if setup was canceled */ 373 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 374 return -EIDRM; 375 376 /* Acquire mutex */ 377 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 378 if (ret < 0) 379 return ret; 380 381 /* Check state */ 382 switch (ffs->state) { 383 case FFS_READ_DESCRIPTORS: 384 case FFS_READ_STRINGS: 385 /* Copy data */ 386 if (len < 16) { 387 ret = -EINVAL; 388 break; 389 } 390 391 data = ffs_prepare_buffer(buf, len); 392 if (IS_ERR(data)) { 393 ret = PTR_ERR(data); 394 break; 395 } 396 397 /* Handle data */ 398 if (ffs->state == FFS_READ_DESCRIPTORS) { 399 pr_info("read descriptors\n"); 400 ret = __ffs_data_got_descs(ffs, data, len); 401 if (ret < 0) 402 break; 403 404 ffs->state = FFS_READ_STRINGS; 405 ret = len; 406 } else { 407 pr_info("read strings\n"); 408 ret = __ffs_data_got_strings(ffs, data, len); 409 if (ret < 0) 410 break; 411 412 ret = ffs_epfiles_create(ffs); 413 if (ret) { 414 ffs->state = FFS_CLOSING; 415 break; 416 } 417 418 ffs->state = FFS_ACTIVE; 419 mutex_unlock(&ffs->mutex); 420 421 ret = ffs_ready(ffs); 422 if (ret < 0) { 423 ffs->state = FFS_CLOSING; 424 return ret; 425 } 426 427 return len; 428 } 429 break; 430 431 case FFS_ACTIVE: 432 data = NULL; 433 /* 434 * We're called from user space, we can use _irq 435 * rather then _irqsave 436 */ 437 spin_lock_irq(&ffs->ev.waitq.lock); 438 switch (ffs_setup_state_clear_cancelled(ffs)) { 439 case FFS_SETUP_CANCELLED: 440 ret = -EIDRM; 441 goto done_spin; 442 443 case FFS_NO_SETUP: 444 ret = -ESRCH; 445 goto done_spin; 446 447 case FFS_SETUP_PENDING: 448 break; 449 } 450 451 /* FFS_SETUP_PENDING */ 452 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 453 spin_unlock_irq(&ffs->ev.waitq.lock); 454 ret = __ffs_ep0_stall(ffs); 455 break; 456 } 457 458 /* FFS_SETUP_PENDING and not stall */ 459 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 460 461 spin_unlock_irq(&ffs->ev.waitq.lock); 462 463 data = ffs_prepare_buffer(buf, len); 464 if (IS_ERR(data)) { 465 ret = PTR_ERR(data); 466 break; 467 } 468 469 spin_lock_irq(&ffs->ev.waitq.lock); 470 471 /* 472 * We are guaranteed to be still in FFS_ACTIVE state 473 * but the state of setup could have changed from 474 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 475 * to check for that. If that happened we copied data 476 * from user space in vain but it's unlikely. 477 * 478 * For sure we are not in FFS_NO_SETUP since this is 479 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 480 * transition can be performed and it's protected by 481 * mutex. 482 */ 483 if (ffs_setup_state_clear_cancelled(ffs) == 484 FFS_SETUP_CANCELLED) { 485 ret = -EIDRM; 486 done_spin: 487 spin_unlock_irq(&ffs->ev.waitq.lock); 488 } else { 489 /* unlocks spinlock */ 490 ret = __ffs_ep0_queue_wait(ffs, data, len); 491 } 492 kfree(data); 493 break; 494 495 default: 496 ret = -EBADFD; 497 break; 498 } 499 500 mutex_unlock(&ffs->mutex); 501 return ret; 502 } 503 504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 506 size_t n) 507 __releases(&ffs->ev.waitq.lock) 508 { 509 /* 510 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 511 * size of ffs->ev.types array (which is four) so that's how much space 512 * we reserve. 513 */ 514 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 515 const size_t size = n * sizeof *events; 516 unsigned i = 0; 517 518 memset(events, 0, size); 519 520 do { 521 events[i].type = ffs->ev.types[i]; 522 if (events[i].type == FUNCTIONFS_SETUP) { 523 events[i].u.setup = ffs->ev.setup; 524 ffs->setup_state = FFS_SETUP_PENDING; 525 } 526 } while (++i < n); 527 528 ffs->ev.count -= n; 529 if (ffs->ev.count) 530 memmove(ffs->ev.types, ffs->ev.types + n, 531 ffs->ev.count * sizeof *ffs->ev.types); 532 533 spin_unlock_irq(&ffs->ev.waitq.lock); 534 mutex_unlock(&ffs->mutex); 535 536 return copy_to_user(buf, events, size) ? -EFAULT : size; 537 } 538 539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 540 size_t len, loff_t *ptr) 541 { 542 struct ffs_data *ffs = file->private_data; 543 char *data = NULL; 544 size_t n; 545 int ret; 546 547 /* Fast check if setup was canceled */ 548 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 549 return -EIDRM; 550 551 /* Acquire mutex */ 552 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 553 if (ret < 0) 554 return ret; 555 556 /* Check state */ 557 if (ffs->state != FFS_ACTIVE) { 558 ret = -EBADFD; 559 goto done_mutex; 560 } 561 562 /* 563 * We're called from user space, we can use _irq rather then 564 * _irqsave 565 */ 566 spin_lock_irq(&ffs->ev.waitq.lock); 567 568 switch (ffs_setup_state_clear_cancelled(ffs)) { 569 case FFS_SETUP_CANCELLED: 570 ret = -EIDRM; 571 break; 572 573 case FFS_NO_SETUP: 574 n = len / sizeof(struct usb_functionfs_event); 575 if (!n) { 576 ret = -EINVAL; 577 break; 578 } 579 580 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 581 ret = -EAGAIN; 582 break; 583 } 584 585 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 586 ffs->ev.count)) { 587 ret = -EINTR; 588 break; 589 } 590 591 /* unlocks spinlock */ 592 return __ffs_ep0_read_events(ffs, buf, 593 min(n, (size_t)ffs->ev.count)); 594 595 case FFS_SETUP_PENDING: 596 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 597 spin_unlock_irq(&ffs->ev.waitq.lock); 598 ret = __ffs_ep0_stall(ffs); 599 goto done_mutex; 600 } 601 602 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 603 604 spin_unlock_irq(&ffs->ev.waitq.lock); 605 606 if (len) { 607 data = kmalloc(len, GFP_KERNEL); 608 if (!data) { 609 ret = -ENOMEM; 610 goto done_mutex; 611 } 612 } 613 614 spin_lock_irq(&ffs->ev.waitq.lock); 615 616 /* See ffs_ep0_write() */ 617 if (ffs_setup_state_clear_cancelled(ffs) == 618 FFS_SETUP_CANCELLED) { 619 ret = -EIDRM; 620 break; 621 } 622 623 /* unlocks spinlock */ 624 ret = __ffs_ep0_queue_wait(ffs, data, len); 625 if ((ret > 0) && (copy_to_user(buf, data, len))) 626 ret = -EFAULT; 627 goto done_mutex; 628 629 default: 630 ret = -EBADFD; 631 break; 632 } 633 634 spin_unlock_irq(&ffs->ev.waitq.lock); 635 done_mutex: 636 mutex_unlock(&ffs->mutex); 637 kfree(data); 638 return ret; 639 } 640 641 static int ffs_ep0_open(struct inode *inode, struct file *file) 642 { 643 struct ffs_data *ffs = inode->i_private; 644 645 if (ffs->state == FFS_CLOSING) 646 return -EBUSY; 647 648 file->private_data = ffs; 649 ffs_data_opened(ffs); 650 651 return stream_open(inode, file); 652 } 653 654 static int ffs_ep0_release(struct inode *inode, struct file *file) 655 { 656 struct ffs_data *ffs = file->private_data; 657 658 ffs_data_closed(ffs); 659 660 return 0; 661 } 662 663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 664 { 665 struct ffs_data *ffs = file->private_data; 666 struct usb_gadget *gadget = ffs->gadget; 667 long ret; 668 669 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 670 struct ffs_function *func = ffs->func; 671 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 672 } else if (gadget && gadget->ops->ioctl) { 673 ret = gadget->ops->ioctl(gadget, code, value); 674 } else { 675 ret = -ENOTTY; 676 } 677 678 return ret; 679 } 680 681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 682 { 683 struct ffs_data *ffs = file->private_data; 684 __poll_t mask = EPOLLWRNORM; 685 int ret; 686 687 poll_wait(file, &ffs->ev.waitq, wait); 688 689 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 690 if (ret < 0) 691 return mask; 692 693 switch (ffs->state) { 694 case FFS_READ_DESCRIPTORS: 695 case FFS_READ_STRINGS: 696 mask |= EPOLLOUT; 697 break; 698 699 case FFS_ACTIVE: 700 switch (ffs->setup_state) { 701 case FFS_NO_SETUP: 702 if (ffs->ev.count) 703 mask |= EPOLLIN; 704 break; 705 706 case FFS_SETUP_PENDING: 707 case FFS_SETUP_CANCELLED: 708 mask |= (EPOLLIN | EPOLLOUT); 709 break; 710 } 711 break; 712 713 case FFS_CLOSING: 714 break; 715 case FFS_DEACTIVATED: 716 break; 717 } 718 719 mutex_unlock(&ffs->mutex); 720 721 return mask; 722 } 723 724 static const struct file_operations ffs_ep0_operations = { 725 .llseek = no_llseek, 726 727 .open = ffs_ep0_open, 728 .write = ffs_ep0_write, 729 .read = ffs_ep0_read, 730 .release = ffs_ep0_release, 731 .unlocked_ioctl = ffs_ep0_ioctl, 732 .poll = ffs_ep0_poll, 733 }; 734 735 736 /* "Normal" endpoints operations ********************************************/ 737 738 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 739 { 740 struct ffs_io_data *io_data = req->context; 741 742 if (req->status) 743 io_data->status = req->status; 744 else 745 io_data->status = req->actual; 746 747 complete(&io_data->done); 748 } 749 750 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 751 { 752 ssize_t ret = copy_to_iter(data, data_len, iter); 753 if (ret == data_len) 754 return ret; 755 756 if (iov_iter_count(iter)) 757 return -EFAULT; 758 759 /* 760 * Dear user space developer! 761 * 762 * TL;DR: To stop getting below error message in your kernel log, change 763 * user space code using functionfs to align read buffers to a max 764 * packet size. 765 * 766 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 767 * packet size. When unaligned buffer is passed to functionfs, it 768 * internally uses a larger, aligned buffer so that such UDCs are happy. 769 * 770 * Unfortunately, this means that host may send more data than was 771 * requested in read(2) system call. f_fs doesn’t know what to do with 772 * that excess data so it simply drops it. 773 * 774 * Was the buffer aligned in the first place, no such problem would 775 * happen. 776 * 777 * Data may be dropped only in AIO reads. Synchronous reads are handled 778 * by splitting a request into multiple parts. This splitting may still 779 * be a problem though so it’s likely best to align the buffer 780 * regardless of it being AIO or not.. 781 * 782 * This only affects OUT endpoints, i.e. reading data with a read(2), 783 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 784 * affected. 785 */ 786 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 787 "Align read buffer size to max packet size to avoid the problem.\n", 788 data_len, ret); 789 790 return ret; 791 } 792 793 /* 794 * allocate a virtually contiguous buffer and create a scatterlist describing it 795 * @sg_table - pointer to a place to be filled with sg_table contents 796 * @size - required buffer size 797 */ 798 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 799 { 800 struct page **pages; 801 void *vaddr, *ptr; 802 unsigned int n_pages; 803 int i; 804 805 vaddr = vmalloc(sz); 806 if (!vaddr) 807 return NULL; 808 809 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 810 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 811 if (!pages) { 812 vfree(vaddr); 813 814 return NULL; 815 } 816 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 817 pages[i] = vmalloc_to_page(ptr); 818 819 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 820 kvfree(pages); 821 vfree(vaddr); 822 823 return NULL; 824 } 825 kvfree(pages); 826 827 return vaddr; 828 } 829 830 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 831 size_t data_len) 832 { 833 if (io_data->use_sg) 834 return ffs_build_sg_list(&io_data->sgt, data_len); 835 836 return kmalloc(data_len, GFP_KERNEL); 837 } 838 839 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 840 { 841 if (!io_data->buf) 842 return; 843 844 if (io_data->use_sg) { 845 sg_free_table(&io_data->sgt); 846 vfree(io_data->buf); 847 } else { 848 kfree(io_data->buf); 849 } 850 } 851 852 static void ffs_user_copy_worker(struct work_struct *work) 853 { 854 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 855 work); 856 int ret = io_data->status; 857 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 858 unsigned long flags; 859 860 if (io_data->read && ret > 0) { 861 kthread_use_mm(io_data->mm); 862 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 863 kthread_unuse_mm(io_data->mm); 864 } 865 866 io_data->kiocb->ki_complete(io_data->kiocb, ret); 867 868 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 869 eventfd_signal(io_data->ffs->ffs_eventfd); 870 871 spin_lock_irqsave(&io_data->ffs->eps_lock, flags); 872 usb_ep_free_request(io_data->ep, io_data->req); 873 io_data->req = NULL; 874 spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags); 875 876 if (io_data->read) 877 kfree(io_data->to_free); 878 ffs_free_buffer(io_data); 879 kfree(io_data); 880 } 881 882 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 883 struct usb_request *req) 884 { 885 struct ffs_io_data *io_data = req->context; 886 struct ffs_data *ffs = io_data->ffs; 887 888 io_data->status = req->status ? req->status : req->actual; 889 890 INIT_WORK(&io_data->work, ffs_user_copy_worker); 891 queue_work(ffs->io_completion_wq, &io_data->work); 892 } 893 894 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 895 { 896 /* 897 * See comment in struct ffs_epfile for full read_buffer pointer 898 * synchronisation story. 899 */ 900 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 901 if (buf && buf != READ_BUFFER_DROP) 902 kfree(buf); 903 } 904 905 /* Assumes epfile->mutex is held. */ 906 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 907 struct iov_iter *iter) 908 { 909 /* 910 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 911 * the buffer while we are using it. See comment in struct ffs_epfile 912 * for full read_buffer pointer synchronisation story. 913 */ 914 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 915 ssize_t ret; 916 if (!buf || buf == READ_BUFFER_DROP) 917 return 0; 918 919 ret = copy_to_iter(buf->data, buf->length, iter); 920 if (buf->length == ret) { 921 kfree(buf); 922 return ret; 923 } 924 925 if (iov_iter_count(iter)) { 926 ret = -EFAULT; 927 } else { 928 buf->length -= ret; 929 buf->data += ret; 930 } 931 932 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 933 kfree(buf); 934 935 return ret; 936 } 937 938 /* Assumes epfile->mutex is held. */ 939 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 940 void *data, int data_len, 941 struct iov_iter *iter) 942 { 943 struct ffs_buffer *buf; 944 945 ssize_t ret = copy_to_iter(data, data_len, iter); 946 if (data_len == ret) 947 return ret; 948 949 if (iov_iter_count(iter)) 950 return -EFAULT; 951 952 /* See ffs_copy_to_iter for more context. */ 953 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 954 data_len, ret); 955 956 data_len -= ret; 957 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 958 if (!buf) 959 return -ENOMEM; 960 buf->length = data_len; 961 buf->data = buf->storage; 962 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 963 964 /* 965 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 966 * ffs_func_eps_disable has been called in the meanwhile). See comment 967 * in struct ffs_epfile for full read_buffer pointer synchronisation 968 * story. 969 */ 970 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 971 kfree(buf); 972 973 return ret; 974 } 975 976 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file) 977 { 978 struct ffs_epfile *epfile = file->private_data; 979 struct ffs_ep *ep; 980 int ret; 981 982 /* Wait for endpoint to be enabled */ 983 ep = epfile->ep; 984 if (!ep) { 985 if (file->f_flags & O_NONBLOCK) 986 return ERR_PTR(-EAGAIN); 987 988 ret = wait_event_interruptible( 989 epfile->ffs->wait, (ep = epfile->ep)); 990 if (ret) 991 return ERR_PTR(-EINTR); 992 } 993 994 return ep; 995 } 996 997 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 998 { 999 struct ffs_epfile *epfile = file->private_data; 1000 struct usb_request *req; 1001 struct ffs_ep *ep; 1002 char *data = NULL; 1003 ssize_t ret, data_len = -EINVAL; 1004 int halt; 1005 1006 /* Are we still active? */ 1007 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1008 return -ENODEV; 1009 1010 ep = ffs_epfile_wait_ep(file); 1011 if (IS_ERR(ep)) 1012 return PTR_ERR(ep); 1013 1014 /* Do we halt? */ 1015 halt = (!io_data->read == !epfile->in); 1016 if (halt && epfile->isoc) 1017 return -EINVAL; 1018 1019 /* We will be using request and read_buffer */ 1020 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 1021 if (ret) 1022 goto error; 1023 1024 /* Allocate & copy */ 1025 if (!halt) { 1026 struct usb_gadget *gadget; 1027 1028 /* 1029 * Do we have buffered data from previous partial read? Check 1030 * that for synchronous case only because we do not have 1031 * facility to ‘wake up’ a pending asynchronous read and push 1032 * buffered data to it which we would need to make things behave 1033 * consistently. 1034 */ 1035 if (!io_data->aio && io_data->read) { 1036 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 1037 if (ret) 1038 goto error_mutex; 1039 } 1040 1041 /* 1042 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1043 * before the waiting completes, so do not assign to 'gadget' 1044 * earlier 1045 */ 1046 gadget = epfile->ffs->gadget; 1047 1048 spin_lock_irq(&epfile->ffs->eps_lock); 1049 /* In the meantime, endpoint got disabled or changed. */ 1050 if (epfile->ep != ep) { 1051 ret = -ESHUTDOWN; 1052 goto error_lock; 1053 } 1054 data_len = iov_iter_count(&io_data->data); 1055 /* 1056 * Controller may require buffer size to be aligned to 1057 * maxpacketsize of an out endpoint. 1058 */ 1059 if (io_data->read) 1060 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1061 1062 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1063 spin_unlock_irq(&epfile->ffs->eps_lock); 1064 1065 data = ffs_alloc_buffer(io_data, data_len); 1066 if (!data) { 1067 ret = -ENOMEM; 1068 goto error_mutex; 1069 } 1070 if (!io_data->read && 1071 !copy_from_iter_full(data, data_len, &io_data->data)) { 1072 ret = -EFAULT; 1073 goto error_mutex; 1074 } 1075 } 1076 1077 spin_lock_irq(&epfile->ffs->eps_lock); 1078 1079 if (epfile->ep != ep) { 1080 /* In the meantime, endpoint got disabled or changed. */ 1081 ret = -ESHUTDOWN; 1082 } else if (halt) { 1083 ret = usb_ep_set_halt(ep->ep); 1084 if (!ret) 1085 ret = -EBADMSG; 1086 } else if (data_len == -EINVAL) { 1087 /* 1088 * Sanity Check: even though data_len can't be used 1089 * uninitialized at the time I write this comment, some 1090 * compilers complain about this situation. 1091 * In order to keep the code clean from warnings, data_len is 1092 * being initialized to -EINVAL during its declaration, which 1093 * means we can't rely on compiler anymore to warn no future 1094 * changes won't result in data_len being used uninitialized. 1095 * For such reason, we're adding this redundant sanity check 1096 * here. 1097 */ 1098 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1099 ret = -EINVAL; 1100 } else if (!io_data->aio) { 1101 bool interrupted = false; 1102 1103 req = ep->req; 1104 if (io_data->use_sg) { 1105 req->buf = NULL; 1106 req->sg = io_data->sgt.sgl; 1107 req->num_sgs = io_data->sgt.nents; 1108 } else { 1109 req->buf = data; 1110 req->num_sgs = 0; 1111 } 1112 req->length = data_len; 1113 1114 io_data->buf = data; 1115 1116 init_completion(&io_data->done); 1117 req->context = io_data; 1118 req->complete = ffs_epfile_io_complete; 1119 1120 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1121 if (ret < 0) 1122 goto error_lock; 1123 1124 spin_unlock_irq(&epfile->ffs->eps_lock); 1125 1126 if (wait_for_completion_interruptible(&io_data->done)) { 1127 spin_lock_irq(&epfile->ffs->eps_lock); 1128 if (epfile->ep != ep) { 1129 ret = -ESHUTDOWN; 1130 goto error_lock; 1131 } 1132 /* 1133 * To avoid race condition with ffs_epfile_io_complete, 1134 * dequeue the request first then check 1135 * status. usb_ep_dequeue API should guarantee no race 1136 * condition with req->complete callback. 1137 */ 1138 usb_ep_dequeue(ep->ep, req); 1139 spin_unlock_irq(&epfile->ffs->eps_lock); 1140 wait_for_completion(&io_data->done); 1141 interrupted = io_data->status < 0; 1142 } 1143 1144 if (interrupted) 1145 ret = -EINTR; 1146 else if (io_data->read && io_data->status > 0) 1147 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1148 &io_data->data); 1149 else 1150 ret = io_data->status; 1151 goto error_mutex; 1152 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1153 ret = -ENOMEM; 1154 } else { 1155 if (io_data->use_sg) { 1156 req->buf = NULL; 1157 req->sg = io_data->sgt.sgl; 1158 req->num_sgs = io_data->sgt.nents; 1159 } else { 1160 req->buf = data; 1161 req->num_sgs = 0; 1162 } 1163 req->length = data_len; 1164 1165 io_data->buf = data; 1166 io_data->ep = ep->ep; 1167 io_data->req = req; 1168 io_data->ffs = epfile->ffs; 1169 1170 req->context = io_data; 1171 req->complete = ffs_epfile_async_io_complete; 1172 1173 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1174 if (ret) { 1175 io_data->req = NULL; 1176 usb_ep_free_request(ep->ep, req); 1177 goto error_lock; 1178 } 1179 1180 ret = -EIOCBQUEUED; 1181 /* 1182 * Do not kfree the buffer in this function. It will be freed 1183 * by ffs_user_copy_worker. 1184 */ 1185 data = NULL; 1186 } 1187 1188 error_lock: 1189 spin_unlock_irq(&epfile->ffs->eps_lock); 1190 error_mutex: 1191 mutex_unlock(&epfile->mutex); 1192 error: 1193 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1194 ffs_free_buffer(io_data); 1195 return ret; 1196 } 1197 1198 static int 1199 ffs_epfile_open(struct inode *inode, struct file *file) 1200 { 1201 struct ffs_epfile *epfile = inode->i_private; 1202 1203 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1204 return -ENODEV; 1205 1206 file->private_data = epfile; 1207 ffs_data_opened(epfile->ffs); 1208 1209 return stream_open(inode, file); 1210 } 1211 1212 static int ffs_aio_cancel(struct kiocb *kiocb) 1213 { 1214 struct ffs_io_data *io_data = kiocb->private; 1215 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1216 unsigned long flags; 1217 int value; 1218 1219 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1220 1221 if (io_data && io_data->ep && io_data->req) 1222 value = usb_ep_dequeue(io_data->ep, io_data->req); 1223 else 1224 value = -EINVAL; 1225 1226 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1227 1228 return value; 1229 } 1230 1231 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1232 { 1233 struct ffs_io_data io_data, *p = &io_data; 1234 ssize_t res; 1235 1236 if (!is_sync_kiocb(kiocb)) { 1237 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1238 if (!p) 1239 return -ENOMEM; 1240 p->aio = true; 1241 } else { 1242 memset(p, 0, sizeof(*p)); 1243 p->aio = false; 1244 } 1245 1246 p->read = false; 1247 p->kiocb = kiocb; 1248 p->data = *from; 1249 p->mm = current->mm; 1250 1251 kiocb->private = p; 1252 1253 if (p->aio) 1254 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1255 1256 res = ffs_epfile_io(kiocb->ki_filp, p); 1257 if (res == -EIOCBQUEUED) 1258 return res; 1259 if (p->aio) 1260 kfree(p); 1261 else 1262 *from = p->data; 1263 return res; 1264 } 1265 1266 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1267 { 1268 struct ffs_io_data io_data, *p = &io_data; 1269 ssize_t res; 1270 1271 if (!is_sync_kiocb(kiocb)) { 1272 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1273 if (!p) 1274 return -ENOMEM; 1275 p->aio = true; 1276 } else { 1277 memset(p, 0, sizeof(*p)); 1278 p->aio = false; 1279 } 1280 1281 p->read = true; 1282 p->kiocb = kiocb; 1283 if (p->aio) { 1284 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1285 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1286 kfree(p); 1287 return -ENOMEM; 1288 } 1289 } else { 1290 p->data = *to; 1291 p->to_free = NULL; 1292 } 1293 p->mm = current->mm; 1294 1295 kiocb->private = p; 1296 1297 if (p->aio) 1298 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1299 1300 res = ffs_epfile_io(kiocb->ki_filp, p); 1301 if (res == -EIOCBQUEUED) 1302 return res; 1303 1304 if (p->aio) { 1305 kfree(p->to_free); 1306 kfree(p); 1307 } else { 1308 *to = p->data; 1309 } 1310 return res; 1311 } 1312 1313 static void ffs_dmabuf_release(struct kref *ref) 1314 { 1315 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref); 1316 struct dma_buf_attachment *attach = priv->attach; 1317 struct dma_buf *dmabuf = attach->dmabuf; 1318 1319 pr_vdebug("FFS DMABUF release\n"); 1320 dma_resv_lock(dmabuf->resv, NULL); 1321 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir); 1322 dma_resv_unlock(dmabuf->resv); 1323 1324 dma_buf_detach(attach->dmabuf, attach); 1325 dma_buf_put(dmabuf); 1326 kfree(priv); 1327 } 1328 1329 static void ffs_dmabuf_get(struct dma_buf_attachment *attach) 1330 { 1331 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1332 1333 kref_get(&priv->ref); 1334 } 1335 1336 static void ffs_dmabuf_put(struct dma_buf_attachment *attach) 1337 { 1338 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1339 1340 kref_put(&priv->ref, ffs_dmabuf_release); 1341 } 1342 1343 static int 1344 ffs_epfile_release(struct inode *inode, struct file *file) 1345 { 1346 struct ffs_epfile *epfile = inode->i_private; 1347 struct ffs_dmabuf_priv *priv, *tmp; 1348 struct ffs_data *ffs = epfile->ffs; 1349 1350 mutex_lock(&epfile->dmabufs_mutex); 1351 1352 /* Close all attached DMABUFs */ 1353 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1354 /* Cancel any pending transfer */ 1355 spin_lock_irq(&ffs->eps_lock); 1356 if (priv->ep && priv->req) 1357 usb_ep_dequeue(priv->ep, priv->req); 1358 spin_unlock_irq(&ffs->eps_lock); 1359 1360 list_del(&priv->entry); 1361 ffs_dmabuf_put(priv->attach); 1362 } 1363 1364 mutex_unlock(&epfile->dmabufs_mutex); 1365 1366 __ffs_epfile_read_buffer_free(epfile); 1367 ffs_data_closed(epfile->ffs); 1368 1369 return 0; 1370 } 1371 1372 static void ffs_dmabuf_cleanup(struct work_struct *work) 1373 { 1374 struct ffs_dma_fence *dma_fence = 1375 container_of(work, struct ffs_dma_fence, work); 1376 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1377 struct dma_buf_attachment *attach = priv->attach; 1378 struct dma_fence *fence = &dma_fence->base; 1379 1380 ffs_dmabuf_put(attach); 1381 dma_fence_put(fence); 1382 } 1383 1384 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret) 1385 { 1386 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1387 struct dma_fence *fence = &dma_fence->base; 1388 bool cookie = dma_fence_begin_signalling(); 1389 1390 dma_fence_get(fence); 1391 fence->error = ret; 1392 dma_fence_signal(fence); 1393 dma_fence_end_signalling(cookie); 1394 1395 /* 1396 * The fence will be unref'd in ffs_dmabuf_cleanup. 1397 * It can't be done here, as the unref functions might try to lock 1398 * the resv object, which would deadlock. 1399 */ 1400 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup); 1401 queue_work(priv->ffs->io_completion_wq, &dma_fence->work); 1402 } 1403 1404 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep, 1405 struct usb_request *req) 1406 { 1407 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status); 1408 ffs_dmabuf_signal_done(req->context, req->status); 1409 usb_ep_free_request(ep, req); 1410 } 1411 1412 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence) 1413 { 1414 return "functionfs"; 1415 } 1416 1417 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence) 1418 { 1419 return ""; 1420 } 1421 1422 static void ffs_dmabuf_fence_release(struct dma_fence *fence) 1423 { 1424 struct ffs_dma_fence *dma_fence = 1425 container_of(fence, struct ffs_dma_fence, base); 1426 1427 kfree(dma_fence); 1428 } 1429 1430 static const struct dma_fence_ops ffs_dmabuf_fence_ops = { 1431 .get_driver_name = ffs_dmabuf_get_driver_name, 1432 .get_timeline_name = ffs_dmabuf_get_timeline_name, 1433 .release = ffs_dmabuf_fence_release, 1434 }; 1435 1436 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock) 1437 { 1438 if (!nonblock) 1439 return dma_resv_lock_interruptible(dmabuf->resv, NULL); 1440 1441 if (!dma_resv_trylock(dmabuf->resv)) 1442 return -EBUSY; 1443 1444 return 0; 1445 } 1446 1447 static struct dma_buf_attachment * 1448 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf) 1449 { 1450 struct device *dev = epfile->ffs->gadget->dev.parent; 1451 struct dma_buf_attachment *attach = NULL; 1452 struct ffs_dmabuf_priv *priv; 1453 1454 mutex_lock(&epfile->dmabufs_mutex); 1455 1456 list_for_each_entry(priv, &epfile->dmabufs, entry) { 1457 if (priv->attach->dev == dev 1458 && priv->attach->dmabuf == dmabuf) { 1459 attach = priv->attach; 1460 break; 1461 } 1462 } 1463 1464 if (attach) 1465 ffs_dmabuf_get(attach); 1466 1467 mutex_unlock(&epfile->dmabufs_mutex); 1468 1469 return attach ?: ERR_PTR(-EPERM); 1470 } 1471 1472 static int ffs_dmabuf_attach(struct file *file, int fd) 1473 { 1474 bool nonblock = file->f_flags & O_NONBLOCK; 1475 struct ffs_epfile *epfile = file->private_data; 1476 struct usb_gadget *gadget = epfile->ffs->gadget; 1477 struct dma_buf_attachment *attach; 1478 struct ffs_dmabuf_priv *priv; 1479 enum dma_data_direction dir; 1480 struct sg_table *sg_table; 1481 struct dma_buf *dmabuf; 1482 int err; 1483 1484 if (!gadget || !gadget->sg_supported) 1485 return -EPERM; 1486 1487 dmabuf = dma_buf_get(fd); 1488 if (IS_ERR(dmabuf)) 1489 return PTR_ERR(dmabuf); 1490 1491 attach = dma_buf_attach(dmabuf, gadget->dev.parent); 1492 if (IS_ERR(attach)) { 1493 err = PTR_ERR(attach); 1494 goto err_dmabuf_put; 1495 } 1496 1497 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1498 if (!priv) { 1499 err = -ENOMEM; 1500 goto err_dmabuf_detach; 1501 } 1502 1503 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1504 1505 err = ffs_dma_resv_lock(dmabuf, nonblock); 1506 if (err) 1507 goto err_free_priv; 1508 1509 sg_table = dma_buf_map_attachment(attach, dir); 1510 dma_resv_unlock(dmabuf->resv); 1511 1512 if (IS_ERR(sg_table)) { 1513 err = PTR_ERR(sg_table); 1514 goto err_free_priv; 1515 } 1516 1517 attach->importer_priv = priv; 1518 1519 priv->sgt = sg_table; 1520 priv->dir = dir; 1521 priv->ffs = epfile->ffs; 1522 priv->attach = attach; 1523 spin_lock_init(&priv->lock); 1524 kref_init(&priv->ref); 1525 priv->context = dma_fence_context_alloc(1); 1526 1527 mutex_lock(&epfile->dmabufs_mutex); 1528 list_add(&priv->entry, &epfile->dmabufs); 1529 mutex_unlock(&epfile->dmabufs_mutex); 1530 1531 return 0; 1532 1533 err_free_priv: 1534 kfree(priv); 1535 err_dmabuf_detach: 1536 dma_buf_detach(dmabuf, attach); 1537 err_dmabuf_put: 1538 dma_buf_put(dmabuf); 1539 1540 return err; 1541 } 1542 1543 static int ffs_dmabuf_detach(struct file *file, int fd) 1544 { 1545 struct ffs_epfile *epfile = file->private_data; 1546 struct ffs_data *ffs = epfile->ffs; 1547 struct device *dev = ffs->gadget->dev.parent; 1548 struct ffs_dmabuf_priv *priv, *tmp; 1549 struct dma_buf *dmabuf; 1550 int ret = -EPERM; 1551 1552 dmabuf = dma_buf_get(fd); 1553 if (IS_ERR(dmabuf)) 1554 return PTR_ERR(dmabuf); 1555 1556 mutex_lock(&epfile->dmabufs_mutex); 1557 1558 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1559 if (priv->attach->dev == dev 1560 && priv->attach->dmabuf == dmabuf) { 1561 /* Cancel any pending transfer */ 1562 spin_lock_irq(&ffs->eps_lock); 1563 if (priv->ep && priv->req) 1564 usb_ep_dequeue(priv->ep, priv->req); 1565 spin_unlock_irq(&ffs->eps_lock); 1566 1567 list_del(&priv->entry); 1568 1569 /* Unref the reference from ffs_dmabuf_attach() */ 1570 ffs_dmabuf_put(priv->attach); 1571 ret = 0; 1572 break; 1573 } 1574 } 1575 1576 mutex_unlock(&epfile->dmabufs_mutex); 1577 dma_buf_put(dmabuf); 1578 1579 return ret; 1580 } 1581 1582 static int ffs_dmabuf_transfer(struct file *file, 1583 const struct usb_ffs_dmabuf_transfer_req *req) 1584 { 1585 bool nonblock = file->f_flags & O_NONBLOCK; 1586 struct ffs_epfile *epfile = file->private_data; 1587 struct dma_buf_attachment *attach; 1588 struct ffs_dmabuf_priv *priv; 1589 struct ffs_dma_fence *fence; 1590 struct usb_request *usb_req; 1591 enum dma_resv_usage resv_dir; 1592 struct dma_buf *dmabuf; 1593 unsigned long timeout; 1594 struct ffs_ep *ep; 1595 bool cookie; 1596 u32 seqno; 1597 long retl; 1598 int ret; 1599 1600 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK) 1601 return -EINVAL; 1602 1603 dmabuf = dma_buf_get(req->fd); 1604 if (IS_ERR(dmabuf)) 1605 return PTR_ERR(dmabuf); 1606 1607 if (req->length > dmabuf->size || req->length == 0) { 1608 ret = -EINVAL; 1609 goto err_dmabuf_put; 1610 } 1611 1612 attach = ffs_dmabuf_find_attachment(epfile, dmabuf); 1613 if (IS_ERR(attach)) { 1614 ret = PTR_ERR(attach); 1615 goto err_dmabuf_put; 1616 } 1617 1618 priv = attach->importer_priv; 1619 1620 ep = ffs_epfile_wait_ep(file); 1621 if (IS_ERR(ep)) { 1622 ret = PTR_ERR(ep); 1623 goto err_attachment_put; 1624 } 1625 1626 ret = ffs_dma_resv_lock(dmabuf, nonblock); 1627 if (ret) 1628 goto err_attachment_put; 1629 1630 /* Make sure we don't have writers */ 1631 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS); 1632 retl = dma_resv_wait_timeout(dmabuf->resv, 1633 dma_resv_usage_rw(epfile->in), 1634 true, timeout); 1635 if (retl == 0) 1636 retl = -EBUSY; 1637 if (retl < 0) { 1638 ret = (int)retl; 1639 goto err_resv_unlock; 1640 } 1641 1642 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 1643 if (ret) 1644 goto err_resv_unlock; 1645 1646 fence = kmalloc(sizeof(*fence), GFP_KERNEL); 1647 if (!fence) { 1648 ret = -ENOMEM; 1649 goto err_resv_unlock; 1650 } 1651 1652 fence->priv = priv; 1653 1654 spin_lock_irq(&epfile->ffs->eps_lock); 1655 1656 /* In the meantime, endpoint got disabled or changed. */ 1657 if (epfile->ep != ep) { 1658 ret = -ESHUTDOWN; 1659 goto err_fence_put; 1660 } 1661 1662 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC); 1663 if (!usb_req) { 1664 ret = -ENOMEM; 1665 goto err_fence_put; 1666 } 1667 1668 /* 1669 * usb_ep_queue() guarantees that all transfers are processed in the 1670 * order they are enqueued, so we can use a simple incrementing 1671 * sequence number for the dma_fence. 1672 */ 1673 seqno = atomic_add_return(1, &epfile->seqno); 1674 1675 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops, 1676 &priv->lock, priv->context, seqno); 1677 1678 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; 1679 1680 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir); 1681 dma_resv_unlock(dmabuf->resv); 1682 1683 /* Now that the dma_fence is in place, queue the transfer. */ 1684 1685 usb_req->length = req->length; 1686 usb_req->buf = NULL; 1687 usb_req->sg = priv->sgt->sgl; 1688 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length); 1689 usb_req->sg_was_mapped = true; 1690 usb_req->context = fence; 1691 usb_req->complete = ffs_epfile_dmabuf_io_complete; 1692 1693 cookie = dma_fence_begin_signalling(); 1694 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC); 1695 dma_fence_end_signalling(cookie); 1696 if (!ret) { 1697 priv->req = usb_req; 1698 priv->ep = ep->ep; 1699 } else { 1700 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret); 1701 ffs_dmabuf_signal_done(fence, ret); 1702 usb_ep_free_request(ep->ep, usb_req); 1703 } 1704 1705 spin_unlock_irq(&epfile->ffs->eps_lock); 1706 dma_buf_put(dmabuf); 1707 1708 return ret; 1709 1710 err_fence_put: 1711 spin_unlock_irq(&epfile->ffs->eps_lock); 1712 dma_fence_put(&fence->base); 1713 err_resv_unlock: 1714 dma_resv_unlock(dmabuf->resv); 1715 err_attachment_put: 1716 ffs_dmabuf_put(attach); 1717 err_dmabuf_put: 1718 dma_buf_put(dmabuf); 1719 1720 return ret; 1721 } 1722 1723 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1724 unsigned long value) 1725 { 1726 struct ffs_epfile *epfile = file->private_data; 1727 struct ffs_ep *ep; 1728 int ret; 1729 1730 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1731 return -ENODEV; 1732 1733 switch (code) { 1734 case FUNCTIONFS_DMABUF_ATTACH: 1735 { 1736 int fd; 1737 1738 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1739 ret = -EFAULT; 1740 break; 1741 } 1742 1743 return ffs_dmabuf_attach(file, fd); 1744 } 1745 case FUNCTIONFS_DMABUF_DETACH: 1746 { 1747 int fd; 1748 1749 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1750 ret = -EFAULT; 1751 break; 1752 } 1753 1754 return ffs_dmabuf_detach(file, fd); 1755 } 1756 case FUNCTIONFS_DMABUF_TRANSFER: 1757 { 1758 struct usb_ffs_dmabuf_transfer_req req; 1759 1760 if (copy_from_user(&req, (void __user *)value, sizeof(req))) { 1761 ret = -EFAULT; 1762 break; 1763 } 1764 1765 return ffs_dmabuf_transfer(file, &req); 1766 } 1767 default: 1768 break; 1769 } 1770 1771 /* Wait for endpoint to be enabled */ 1772 ep = ffs_epfile_wait_ep(file); 1773 if (IS_ERR(ep)) 1774 return PTR_ERR(ep); 1775 1776 spin_lock_irq(&epfile->ffs->eps_lock); 1777 1778 /* In the meantime, endpoint got disabled or changed. */ 1779 if (epfile->ep != ep) { 1780 spin_unlock_irq(&epfile->ffs->eps_lock); 1781 return -ESHUTDOWN; 1782 } 1783 1784 switch (code) { 1785 case FUNCTIONFS_FIFO_STATUS: 1786 ret = usb_ep_fifo_status(epfile->ep->ep); 1787 break; 1788 case FUNCTIONFS_FIFO_FLUSH: 1789 usb_ep_fifo_flush(epfile->ep->ep); 1790 ret = 0; 1791 break; 1792 case FUNCTIONFS_CLEAR_HALT: 1793 ret = usb_ep_clear_halt(epfile->ep->ep); 1794 break; 1795 case FUNCTIONFS_ENDPOINT_REVMAP: 1796 ret = epfile->ep->num; 1797 break; 1798 case FUNCTIONFS_ENDPOINT_DESC: 1799 { 1800 int desc_idx; 1801 struct usb_endpoint_descriptor desc1, *desc; 1802 1803 switch (epfile->ffs->gadget->speed) { 1804 case USB_SPEED_SUPER: 1805 case USB_SPEED_SUPER_PLUS: 1806 desc_idx = 2; 1807 break; 1808 case USB_SPEED_HIGH: 1809 desc_idx = 1; 1810 break; 1811 default: 1812 desc_idx = 0; 1813 } 1814 1815 desc = epfile->ep->descs[desc_idx]; 1816 memcpy(&desc1, desc, desc->bLength); 1817 1818 spin_unlock_irq(&epfile->ffs->eps_lock); 1819 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1820 if (ret) 1821 ret = -EFAULT; 1822 return ret; 1823 } 1824 default: 1825 ret = -ENOTTY; 1826 } 1827 spin_unlock_irq(&epfile->ffs->eps_lock); 1828 1829 return ret; 1830 } 1831 1832 static const struct file_operations ffs_epfile_operations = { 1833 .llseek = no_llseek, 1834 1835 .open = ffs_epfile_open, 1836 .write_iter = ffs_epfile_write_iter, 1837 .read_iter = ffs_epfile_read_iter, 1838 .release = ffs_epfile_release, 1839 .unlocked_ioctl = ffs_epfile_ioctl, 1840 .compat_ioctl = compat_ptr_ioctl, 1841 }; 1842 1843 1844 /* File system and super block operations ***********************************/ 1845 1846 /* 1847 * Mounting the file system creates a controller file, used first for 1848 * function configuration then later for event monitoring. 1849 */ 1850 1851 static struct inode *__must_check 1852 ffs_sb_make_inode(struct super_block *sb, void *data, 1853 const struct file_operations *fops, 1854 const struct inode_operations *iops, 1855 struct ffs_file_perms *perms) 1856 { 1857 struct inode *inode; 1858 1859 inode = new_inode(sb); 1860 1861 if (inode) { 1862 struct timespec64 ts = inode_set_ctime_current(inode); 1863 1864 inode->i_ino = get_next_ino(); 1865 inode->i_mode = perms->mode; 1866 inode->i_uid = perms->uid; 1867 inode->i_gid = perms->gid; 1868 inode_set_atime_to_ts(inode, ts); 1869 inode_set_mtime_to_ts(inode, ts); 1870 inode->i_private = data; 1871 if (fops) 1872 inode->i_fop = fops; 1873 if (iops) 1874 inode->i_op = iops; 1875 } 1876 1877 return inode; 1878 } 1879 1880 /* Create "regular" file */ 1881 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1882 const char *name, void *data, 1883 const struct file_operations *fops) 1884 { 1885 struct ffs_data *ffs = sb->s_fs_info; 1886 struct dentry *dentry; 1887 struct inode *inode; 1888 1889 dentry = d_alloc_name(sb->s_root, name); 1890 if (!dentry) 1891 return NULL; 1892 1893 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1894 if (!inode) { 1895 dput(dentry); 1896 return NULL; 1897 } 1898 1899 d_add(dentry, inode); 1900 return dentry; 1901 } 1902 1903 /* Super block */ 1904 static const struct super_operations ffs_sb_operations = { 1905 .statfs = simple_statfs, 1906 .drop_inode = generic_delete_inode, 1907 }; 1908 1909 struct ffs_sb_fill_data { 1910 struct ffs_file_perms perms; 1911 umode_t root_mode; 1912 const char *dev_name; 1913 bool no_disconnect; 1914 struct ffs_data *ffs_data; 1915 }; 1916 1917 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1918 { 1919 struct ffs_sb_fill_data *data = fc->fs_private; 1920 struct inode *inode; 1921 struct ffs_data *ffs = data->ffs_data; 1922 1923 ffs->sb = sb; 1924 data->ffs_data = NULL; 1925 sb->s_fs_info = ffs; 1926 sb->s_blocksize = PAGE_SIZE; 1927 sb->s_blocksize_bits = PAGE_SHIFT; 1928 sb->s_magic = FUNCTIONFS_MAGIC; 1929 sb->s_op = &ffs_sb_operations; 1930 sb->s_time_gran = 1; 1931 1932 /* Root inode */ 1933 data->perms.mode = data->root_mode; 1934 inode = ffs_sb_make_inode(sb, NULL, 1935 &simple_dir_operations, 1936 &simple_dir_inode_operations, 1937 &data->perms); 1938 sb->s_root = d_make_root(inode); 1939 if (!sb->s_root) 1940 return -ENOMEM; 1941 1942 /* EP0 file */ 1943 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1944 return -ENOMEM; 1945 1946 return 0; 1947 } 1948 1949 enum { 1950 Opt_no_disconnect, 1951 Opt_rmode, 1952 Opt_fmode, 1953 Opt_mode, 1954 Opt_uid, 1955 Opt_gid, 1956 }; 1957 1958 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1959 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1960 fsparam_u32 ("rmode", Opt_rmode), 1961 fsparam_u32 ("fmode", Opt_fmode), 1962 fsparam_u32 ("mode", Opt_mode), 1963 fsparam_u32 ("uid", Opt_uid), 1964 fsparam_u32 ("gid", Opt_gid), 1965 {} 1966 }; 1967 1968 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1969 { 1970 struct ffs_sb_fill_data *data = fc->fs_private; 1971 struct fs_parse_result result; 1972 int opt; 1973 1974 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1975 if (opt < 0) 1976 return opt; 1977 1978 switch (opt) { 1979 case Opt_no_disconnect: 1980 data->no_disconnect = result.boolean; 1981 break; 1982 case Opt_rmode: 1983 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1984 break; 1985 case Opt_fmode: 1986 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1987 break; 1988 case Opt_mode: 1989 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1990 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1991 break; 1992 1993 case Opt_uid: 1994 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1995 if (!uid_valid(data->perms.uid)) 1996 goto unmapped_value; 1997 break; 1998 case Opt_gid: 1999 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 2000 if (!gid_valid(data->perms.gid)) 2001 goto unmapped_value; 2002 break; 2003 2004 default: 2005 return -ENOPARAM; 2006 } 2007 2008 return 0; 2009 2010 unmapped_value: 2011 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 2012 } 2013 2014 /* 2015 * Set up the superblock for a mount. 2016 */ 2017 static int ffs_fs_get_tree(struct fs_context *fc) 2018 { 2019 struct ffs_sb_fill_data *ctx = fc->fs_private; 2020 struct ffs_data *ffs; 2021 int ret; 2022 2023 if (!fc->source) 2024 return invalf(fc, "No source specified"); 2025 2026 ffs = ffs_data_new(fc->source); 2027 if (!ffs) 2028 return -ENOMEM; 2029 ffs->file_perms = ctx->perms; 2030 ffs->no_disconnect = ctx->no_disconnect; 2031 2032 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 2033 if (!ffs->dev_name) { 2034 ffs_data_put(ffs); 2035 return -ENOMEM; 2036 } 2037 2038 ret = ffs_acquire_dev(ffs->dev_name, ffs); 2039 if (ret) { 2040 ffs_data_put(ffs); 2041 return ret; 2042 } 2043 2044 ctx->ffs_data = ffs; 2045 return get_tree_nodev(fc, ffs_sb_fill); 2046 } 2047 2048 static void ffs_fs_free_fc(struct fs_context *fc) 2049 { 2050 struct ffs_sb_fill_data *ctx = fc->fs_private; 2051 2052 if (ctx) { 2053 if (ctx->ffs_data) { 2054 ffs_data_put(ctx->ffs_data); 2055 } 2056 2057 kfree(ctx); 2058 } 2059 } 2060 2061 static const struct fs_context_operations ffs_fs_context_ops = { 2062 .free = ffs_fs_free_fc, 2063 .parse_param = ffs_fs_parse_param, 2064 .get_tree = ffs_fs_get_tree, 2065 }; 2066 2067 static int ffs_fs_init_fs_context(struct fs_context *fc) 2068 { 2069 struct ffs_sb_fill_data *ctx; 2070 2071 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 2072 if (!ctx) 2073 return -ENOMEM; 2074 2075 ctx->perms.mode = S_IFREG | 0600; 2076 ctx->perms.uid = GLOBAL_ROOT_UID; 2077 ctx->perms.gid = GLOBAL_ROOT_GID; 2078 ctx->root_mode = S_IFDIR | 0500; 2079 ctx->no_disconnect = false; 2080 2081 fc->fs_private = ctx; 2082 fc->ops = &ffs_fs_context_ops; 2083 return 0; 2084 } 2085 2086 static void 2087 ffs_fs_kill_sb(struct super_block *sb) 2088 { 2089 kill_litter_super(sb); 2090 if (sb->s_fs_info) 2091 ffs_data_closed(sb->s_fs_info); 2092 } 2093 2094 static struct file_system_type ffs_fs_type = { 2095 .owner = THIS_MODULE, 2096 .name = "functionfs", 2097 .init_fs_context = ffs_fs_init_fs_context, 2098 .parameters = ffs_fs_fs_parameters, 2099 .kill_sb = ffs_fs_kill_sb, 2100 }; 2101 MODULE_ALIAS_FS("functionfs"); 2102 2103 2104 /* Driver's main init/cleanup functions *************************************/ 2105 2106 static int functionfs_init(void) 2107 { 2108 int ret; 2109 2110 ret = register_filesystem(&ffs_fs_type); 2111 if (!ret) 2112 pr_info("file system registered\n"); 2113 else 2114 pr_err("failed registering file system (%d)\n", ret); 2115 2116 return ret; 2117 } 2118 2119 static void functionfs_cleanup(void) 2120 { 2121 pr_info("unloading\n"); 2122 unregister_filesystem(&ffs_fs_type); 2123 } 2124 2125 2126 /* ffs_data and ffs_function construction and destruction code **************/ 2127 2128 static void ffs_data_clear(struct ffs_data *ffs); 2129 static void ffs_data_reset(struct ffs_data *ffs); 2130 2131 static void ffs_data_get(struct ffs_data *ffs) 2132 { 2133 refcount_inc(&ffs->ref); 2134 } 2135 2136 static void ffs_data_opened(struct ffs_data *ffs) 2137 { 2138 refcount_inc(&ffs->ref); 2139 if (atomic_add_return(1, &ffs->opened) == 1 && 2140 ffs->state == FFS_DEACTIVATED) { 2141 ffs->state = FFS_CLOSING; 2142 ffs_data_reset(ffs); 2143 } 2144 } 2145 2146 static void ffs_data_put(struct ffs_data *ffs) 2147 { 2148 if (refcount_dec_and_test(&ffs->ref)) { 2149 pr_info("%s(): freeing\n", __func__); 2150 ffs_data_clear(ffs); 2151 ffs_release_dev(ffs->private_data); 2152 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 2153 swait_active(&ffs->ep0req_completion.wait) || 2154 waitqueue_active(&ffs->wait)); 2155 destroy_workqueue(ffs->io_completion_wq); 2156 kfree(ffs->dev_name); 2157 kfree(ffs); 2158 } 2159 } 2160 2161 static void ffs_data_closed(struct ffs_data *ffs) 2162 { 2163 struct ffs_epfile *epfiles; 2164 unsigned long flags; 2165 2166 if (atomic_dec_and_test(&ffs->opened)) { 2167 if (ffs->no_disconnect) { 2168 ffs->state = FFS_DEACTIVATED; 2169 spin_lock_irqsave(&ffs->eps_lock, flags); 2170 epfiles = ffs->epfiles; 2171 ffs->epfiles = NULL; 2172 spin_unlock_irqrestore(&ffs->eps_lock, 2173 flags); 2174 2175 if (epfiles) 2176 ffs_epfiles_destroy(epfiles, 2177 ffs->eps_count); 2178 2179 if (ffs->setup_state == FFS_SETUP_PENDING) 2180 __ffs_ep0_stall(ffs); 2181 } else { 2182 ffs->state = FFS_CLOSING; 2183 ffs_data_reset(ffs); 2184 } 2185 } 2186 if (atomic_read(&ffs->opened) < 0) { 2187 ffs->state = FFS_CLOSING; 2188 ffs_data_reset(ffs); 2189 } 2190 2191 ffs_data_put(ffs); 2192 } 2193 2194 static struct ffs_data *ffs_data_new(const char *dev_name) 2195 { 2196 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 2197 if (!ffs) 2198 return NULL; 2199 2200 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 2201 if (!ffs->io_completion_wq) { 2202 kfree(ffs); 2203 return NULL; 2204 } 2205 2206 refcount_set(&ffs->ref, 1); 2207 atomic_set(&ffs->opened, 0); 2208 ffs->state = FFS_READ_DESCRIPTORS; 2209 mutex_init(&ffs->mutex); 2210 spin_lock_init(&ffs->eps_lock); 2211 init_waitqueue_head(&ffs->ev.waitq); 2212 init_waitqueue_head(&ffs->wait); 2213 init_completion(&ffs->ep0req_completion); 2214 2215 /* XXX REVISIT need to update it in some places, or do we? */ 2216 ffs->ev.can_stall = 1; 2217 2218 return ffs; 2219 } 2220 2221 static void ffs_data_clear(struct ffs_data *ffs) 2222 { 2223 struct ffs_epfile *epfiles; 2224 unsigned long flags; 2225 2226 ffs_closed(ffs); 2227 2228 BUG_ON(ffs->gadget); 2229 2230 spin_lock_irqsave(&ffs->eps_lock, flags); 2231 epfiles = ffs->epfiles; 2232 ffs->epfiles = NULL; 2233 spin_unlock_irqrestore(&ffs->eps_lock, flags); 2234 2235 /* 2236 * potential race possible between ffs_func_eps_disable 2237 * & ffs_epfile_release therefore maintaining a local 2238 * copy of epfile will save us from use-after-free. 2239 */ 2240 if (epfiles) { 2241 ffs_epfiles_destroy(epfiles, ffs->eps_count); 2242 ffs->epfiles = NULL; 2243 } 2244 2245 if (ffs->ffs_eventfd) { 2246 eventfd_ctx_put(ffs->ffs_eventfd); 2247 ffs->ffs_eventfd = NULL; 2248 } 2249 2250 kfree(ffs->raw_descs_data); 2251 kfree(ffs->raw_strings); 2252 kfree(ffs->stringtabs); 2253 } 2254 2255 static void ffs_data_reset(struct ffs_data *ffs) 2256 { 2257 ffs_data_clear(ffs); 2258 2259 ffs->raw_descs_data = NULL; 2260 ffs->raw_descs = NULL; 2261 ffs->raw_strings = NULL; 2262 ffs->stringtabs = NULL; 2263 2264 ffs->raw_descs_length = 0; 2265 ffs->fs_descs_count = 0; 2266 ffs->hs_descs_count = 0; 2267 ffs->ss_descs_count = 0; 2268 2269 ffs->strings_count = 0; 2270 ffs->interfaces_count = 0; 2271 ffs->eps_count = 0; 2272 2273 ffs->ev.count = 0; 2274 2275 ffs->state = FFS_READ_DESCRIPTORS; 2276 ffs->setup_state = FFS_NO_SETUP; 2277 ffs->flags = 0; 2278 2279 ffs->ms_os_descs_ext_prop_count = 0; 2280 ffs->ms_os_descs_ext_prop_name_len = 0; 2281 ffs->ms_os_descs_ext_prop_data_len = 0; 2282 } 2283 2284 2285 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 2286 { 2287 struct usb_gadget_strings **lang; 2288 int first_id; 2289 2290 if (WARN_ON(ffs->state != FFS_ACTIVE 2291 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 2292 return -EBADFD; 2293 2294 first_id = usb_string_ids_n(cdev, ffs->strings_count); 2295 if (first_id < 0) 2296 return first_id; 2297 2298 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 2299 if (!ffs->ep0req) 2300 return -ENOMEM; 2301 ffs->ep0req->complete = ffs_ep0_complete; 2302 ffs->ep0req->context = ffs; 2303 2304 lang = ffs->stringtabs; 2305 if (lang) { 2306 for (; *lang; ++lang) { 2307 struct usb_string *str = (*lang)->strings; 2308 int id = first_id; 2309 for (; str->s; ++id, ++str) 2310 str->id = id; 2311 } 2312 } 2313 2314 ffs->gadget = cdev->gadget; 2315 ffs_data_get(ffs); 2316 return 0; 2317 } 2318 2319 static void functionfs_unbind(struct ffs_data *ffs) 2320 { 2321 if (!WARN_ON(!ffs->gadget)) { 2322 /* dequeue before freeing ep0req */ 2323 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 2324 mutex_lock(&ffs->mutex); 2325 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 2326 ffs->ep0req = NULL; 2327 ffs->gadget = NULL; 2328 clear_bit(FFS_FL_BOUND, &ffs->flags); 2329 mutex_unlock(&ffs->mutex); 2330 ffs_data_put(ffs); 2331 } 2332 } 2333 2334 static int ffs_epfiles_create(struct ffs_data *ffs) 2335 { 2336 struct ffs_epfile *epfile, *epfiles; 2337 unsigned i, count; 2338 2339 count = ffs->eps_count; 2340 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 2341 if (!epfiles) 2342 return -ENOMEM; 2343 2344 epfile = epfiles; 2345 for (i = 1; i <= count; ++i, ++epfile) { 2346 epfile->ffs = ffs; 2347 mutex_init(&epfile->mutex); 2348 mutex_init(&epfile->dmabufs_mutex); 2349 INIT_LIST_HEAD(&epfile->dmabufs); 2350 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2351 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 2352 else 2353 sprintf(epfile->name, "ep%u", i); 2354 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 2355 epfile, 2356 &ffs_epfile_operations); 2357 if (!epfile->dentry) { 2358 ffs_epfiles_destroy(epfiles, i - 1); 2359 return -ENOMEM; 2360 } 2361 } 2362 2363 ffs->epfiles = epfiles; 2364 return 0; 2365 } 2366 2367 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 2368 { 2369 struct ffs_epfile *epfile = epfiles; 2370 2371 for (; count; --count, ++epfile) { 2372 BUG_ON(mutex_is_locked(&epfile->mutex)); 2373 if (epfile->dentry) { 2374 d_delete(epfile->dentry); 2375 dput(epfile->dentry); 2376 epfile->dentry = NULL; 2377 } 2378 } 2379 2380 kfree(epfiles); 2381 } 2382 2383 static void ffs_func_eps_disable(struct ffs_function *func) 2384 { 2385 struct ffs_ep *ep; 2386 struct ffs_epfile *epfile; 2387 unsigned short count; 2388 unsigned long flags; 2389 2390 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2391 count = func->ffs->eps_count; 2392 epfile = func->ffs->epfiles; 2393 ep = func->eps; 2394 while (count--) { 2395 /* pending requests get nuked */ 2396 if (ep->ep) 2397 usb_ep_disable(ep->ep); 2398 ++ep; 2399 2400 if (epfile) { 2401 epfile->ep = NULL; 2402 __ffs_epfile_read_buffer_free(epfile); 2403 ++epfile; 2404 } 2405 } 2406 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2407 } 2408 2409 static int ffs_func_eps_enable(struct ffs_function *func) 2410 { 2411 struct ffs_data *ffs; 2412 struct ffs_ep *ep; 2413 struct ffs_epfile *epfile; 2414 unsigned short count; 2415 unsigned long flags; 2416 int ret = 0; 2417 2418 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2419 ffs = func->ffs; 2420 ep = func->eps; 2421 epfile = ffs->epfiles; 2422 count = ffs->eps_count; 2423 while(count--) { 2424 ep->ep->driver_data = ep; 2425 2426 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2427 if (ret) { 2428 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2429 __func__, ep->ep->name, ret); 2430 break; 2431 } 2432 2433 ret = usb_ep_enable(ep->ep); 2434 if (!ret) { 2435 epfile->ep = ep; 2436 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2437 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2438 } else { 2439 break; 2440 } 2441 2442 ++ep; 2443 ++epfile; 2444 } 2445 2446 wake_up_interruptible(&ffs->wait); 2447 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2448 2449 return ret; 2450 } 2451 2452 2453 /* Parsing and building descriptors and strings *****************************/ 2454 2455 /* 2456 * This validates if data pointed by data is a valid USB descriptor as 2457 * well as record how many interfaces, endpoints and strings are 2458 * required by given configuration. Returns address after the 2459 * descriptor or NULL if data is invalid. 2460 */ 2461 2462 enum ffs_entity_type { 2463 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2464 }; 2465 2466 enum ffs_os_desc_type { 2467 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2468 }; 2469 2470 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2471 u8 *valuep, 2472 struct usb_descriptor_header *desc, 2473 void *priv); 2474 2475 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2476 struct usb_os_desc_header *h, void *data, 2477 unsigned len, void *priv); 2478 2479 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2480 ffs_entity_callback entity, 2481 void *priv, int *current_class) 2482 { 2483 struct usb_descriptor_header *_ds = (void *)data; 2484 u8 length; 2485 int ret; 2486 2487 /* At least two bytes are required: length and type */ 2488 if (len < 2) { 2489 pr_vdebug("descriptor too short\n"); 2490 return -EINVAL; 2491 } 2492 2493 /* If we have at least as many bytes as the descriptor takes? */ 2494 length = _ds->bLength; 2495 if (len < length) { 2496 pr_vdebug("descriptor longer then available data\n"); 2497 return -EINVAL; 2498 } 2499 2500 #define __entity_check_INTERFACE(val) 1 2501 #define __entity_check_STRING(val) (val) 2502 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2503 #define __entity(type, val) do { \ 2504 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2505 if (!__entity_check_ ##type(val)) { \ 2506 pr_vdebug("invalid entity's value\n"); \ 2507 return -EINVAL; \ 2508 } \ 2509 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2510 if (ret < 0) { \ 2511 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2512 (val), ret); \ 2513 return ret; \ 2514 } \ 2515 } while (0) 2516 2517 /* Parse descriptor depending on type. */ 2518 switch (_ds->bDescriptorType) { 2519 case USB_DT_DEVICE: 2520 case USB_DT_CONFIG: 2521 case USB_DT_STRING: 2522 case USB_DT_DEVICE_QUALIFIER: 2523 /* function can't have any of those */ 2524 pr_vdebug("descriptor reserved for gadget: %d\n", 2525 _ds->bDescriptorType); 2526 return -EINVAL; 2527 2528 case USB_DT_INTERFACE: { 2529 struct usb_interface_descriptor *ds = (void *)_ds; 2530 pr_vdebug("interface descriptor\n"); 2531 if (length != sizeof *ds) 2532 goto inv_length; 2533 2534 __entity(INTERFACE, ds->bInterfaceNumber); 2535 if (ds->iInterface) 2536 __entity(STRING, ds->iInterface); 2537 *current_class = ds->bInterfaceClass; 2538 } 2539 break; 2540 2541 case USB_DT_ENDPOINT: { 2542 struct usb_endpoint_descriptor *ds = (void *)_ds; 2543 pr_vdebug("endpoint descriptor\n"); 2544 if (length != USB_DT_ENDPOINT_SIZE && 2545 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2546 goto inv_length; 2547 __entity(ENDPOINT, ds->bEndpointAddress); 2548 } 2549 break; 2550 2551 case USB_TYPE_CLASS | 0x01: 2552 if (*current_class == USB_INTERFACE_CLASS_HID) { 2553 pr_vdebug("hid descriptor\n"); 2554 if (length != sizeof(struct hid_descriptor)) 2555 goto inv_length; 2556 break; 2557 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2558 pr_vdebug("ccid descriptor\n"); 2559 if (length != sizeof(struct ccid_descriptor)) 2560 goto inv_length; 2561 break; 2562 } else { 2563 pr_vdebug("unknown descriptor: %d for class %d\n", 2564 _ds->bDescriptorType, *current_class); 2565 return -EINVAL; 2566 } 2567 2568 case USB_DT_OTG: 2569 if (length != sizeof(struct usb_otg_descriptor)) 2570 goto inv_length; 2571 break; 2572 2573 case USB_DT_INTERFACE_ASSOCIATION: { 2574 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2575 pr_vdebug("interface association descriptor\n"); 2576 if (length != sizeof *ds) 2577 goto inv_length; 2578 if (ds->iFunction) 2579 __entity(STRING, ds->iFunction); 2580 } 2581 break; 2582 2583 case USB_DT_SS_ENDPOINT_COMP: 2584 pr_vdebug("EP SS companion descriptor\n"); 2585 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2586 goto inv_length; 2587 break; 2588 2589 case USB_DT_OTHER_SPEED_CONFIG: 2590 case USB_DT_INTERFACE_POWER: 2591 case USB_DT_DEBUG: 2592 case USB_DT_SECURITY: 2593 case USB_DT_CS_RADIO_CONTROL: 2594 /* TODO */ 2595 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2596 return -EINVAL; 2597 2598 default: 2599 /* We should never be here */ 2600 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2601 return -EINVAL; 2602 2603 inv_length: 2604 pr_vdebug("invalid length: %d (descriptor %d)\n", 2605 _ds->bLength, _ds->bDescriptorType); 2606 return -EINVAL; 2607 } 2608 2609 #undef __entity 2610 #undef __entity_check_DESCRIPTOR 2611 #undef __entity_check_INTERFACE 2612 #undef __entity_check_STRING 2613 #undef __entity_check_ENDPOINT 2614 2615 return length; 2616 } 2617 2618 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2619 ffs_entity_callback entity, void *priv) 2620 { 2621 const unsigned _len = len; 2622 unsigned long num = 0; 2623 int current_class = -1; 2624 2625 for (;;) { 2626 int ret; 2627 2628 if (num == count) 2629 data = NULL; 2630 2631 /* Record "descriptor" entity */ 2632 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2633 if (ret < 0) { 2634 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2635 num, ret); 2636 return ret; 2637 } 2638 2639 if (!data) 2640 return _len - len; 2641 2642 ret = ffs_do_single_desc(data, len, entity, priv, 2643 ¤t_class); 2644 if (ret < 0) { 2645 pr_debug("%s returns %d\n", __func__, ret); 2646 return ret; 2647 } 2648 2649 len -= ret; 2650 data += ret; 2651 ++num; 2652 } 2653 } 2654 2655 static int __ffs_data_do_entity(enum ffs_entity_type type, 2656 u8 *valuep, struct usb_descriptor_header *desc, 2657 void *priv) 2658 { 2659 struct ffs_desc_helper *helper = priv; 2660 struct usb_endpoint_descriptor *d; 2661 2662 switch (type) { 2663 case FFS_DESCRIPTOR: 2664 break; 2665 2666 case FFS_INTERFACE: 2667 /* 2668 * Interfaces are indexed from zero so if we 2669 * encountered interface "n" then there are at least 2670 * "n+1" interfaces. 2671 */ 2672 if (*valuep >= helper->interfaces_count) 2673 helper->interfaces_count = *valuep + 1; 2674 break; 2675 2676 case FFS_STRING: 2677 /* 2678 * Strings are indexed from 1 (0 is reserved 2679 * for languages list) 2680 */ 2681 if (*valuep > helper->ffs->strings_count) 2682 helper->ffs->strings_count = *valuep; 2683 break; 2684 2685 case FFS_ENDPOINT: 2686 d = (void *)desc; 2687 helper->eps_count++; 2688 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2689 return -EINVAL; 2690 /* Check if descriptors for any speed were already parsed */ 2691 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2692 helper->ffs->eps_addrmap[helper->eps_count] = 2693 d->bEndpointAddress; 2694 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2695 d->bEndpointAddress) 2696 return -EINVAL; 2697 break; 2698 } 2699 2700 return 0; 2701 } 2702 2703 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2704 struct usb_os_desc_header *desc) 2705 { 2706 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2707 u16 w_index = le16_to_cpu(desc->wIndex); 2708 2709 if (bcd_version == 0x1) { 2710 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2711 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2712 } else if (bcd_version != 0x100) { 2713 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2714 bcd_version); 2715 return -EINVAL; 2716 } 2717 switch (w_index) { 2718 case 0x4: 2719 *next_type = FFS_OS_DESC_EXT_COMPAT; 2720 break; 2721 case 0x5: 2722 *next_type = FFS_OS_DESC_EXT_PROP; 2723 break; 2724 default: 2725 pr_vdebug("unsupported os descriptor type: %d", w_index); 2726 return -EINVAL; 2727 } 2728 2729 return sizeof(*desc); 2730 } 2731 2732 /* 2733 * Process all extended compatibility/extended property descriptors 2734 * of a feature descriptor 2735 */ 2736 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2737 enum ffs_os_desc_type type, 2738 u16 feature_count, 2739 ffs_os_desc_callback entity, 2740 void *priv, 2741 struct usb_os_desc_header *h) 2742 { 2743 int ret; 2744 const unsigned _len = len; 2745 2746 /* loop over all ext compat/ext prop descriptors */ 2747 while (feature_count--) { 2748 ret = entity(type, h, data, len, priv); 2749 if (ret < 0) { 2750 pr_debug("bad OS descriptor, type: %d\n", type); 2751 return ret; 2752 } 2753 data += ret; 2754 len -= ret; 2755 } 2756 return _len - len; 2757 } 2758 2759 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2760 static int __must_check ffs_do_os_descs(unsigned count, 2761 char *data, unsigned len, 2762 ffs_os_desc_callback entity, void *priv) 2763 { 2764 const unsigned _len = len; 2765 unsigned long num = 0; 2766 2767 for (num = 0; num < count; ++num) { 2768 int ret; 2769 enum ffs_os_desc_type type; 2770 u16 feature_count; 2771 struct usb_os_desc_header *desc = (void *)data; 2772 2773 if (len < sizeof(*desc)) 2774 return -EINVAL; 2775 2776 /* 2777 * Record "descriptor" entity. 2778 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2779 * Move the data pointer to the beginning of extended 2780 * compatibilities proper or extended properties proper 2781 * portions of the data 2782 */ 2783 if (le32_to_cpu(desc->dwLength) > len) 2784 return -EINVAL; 2785 2786 ret = __ffs_do_os_desc_header(&type, desc); 2787 if (ret < 0) { 2788 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2789 num, ret); 2790 return ret; 2791 } 2792 /* 2793 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2794 */ 2795 feature_count = le16_to_cpu(desc->wCount); 2796 if (type == FFS_OS_DESC_EXT_COMPAT && 2797 (feature_count > 255 || desc->Reserved)) 2798 return -EINVAL; 2799 len -= ret; 2800 data += ret; 2801 2802 /* 2803 * Process all function/property descriptors 2804 * of this Feature Descriptor 2805 */ 2806 ret = ffs_do_single_os_desc(data, len, type, 2807 feature_count, entity, priv, desc); 2808 if (ret < 0) { 2809 pr_debug("%s returns %d\n", __func__, ret); 2810 return ret; 2811 } 2812 2813 len -= ret; 2814 data += ret; 2815 } 2816 return _len - len; 2817 } 2818 2819 /* 2820 * Validate contents of the buffer from userspace related to OS descriptors. 2821 */ 2822 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2823 struct usb_os_desc_header *h, void *data, 2824 unsigned len, void *priv) 2825 { 2826 struct ffs_data *ffs = priv; 2827 u8 length; 2828 2829 switch (type) { 2830 case FFS_OS_DESC_EXT_COMPAT: { 2831 struct usb_ext_compat_desc *d = data; 2832 int i; 2833 2834 if (len < sizeof(*d) || 2835 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2836 return -EINVAL; 2837 if (d->Reserved1 != 1) { 2838 /* 2839 * According to the spec, Reserved1 must be set to 1 2840 * but older kernels incorrectly rejected non-zero 2841 * values. We fix it here to avoid returning EINVAL 2842 * in response to values we used to accept. 2843 */ 2844 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2845 d->Reserved1 = 1; 2846 } 2847 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2848 if (d->Reserved2[i]) 2849 return -EINVAL; 2850 2851 length = sizeof(struct usb_ext_compat_desc); 2852 } 2853 break; 2854 case FFS_OS_DESC_EXT_PROP: { 2855 struct usb_ext_prop_desc *d = data; 2856 u32 type, pdl; 2857 u16 pnl; 2858 2859 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2860 return -EINVAL; 2861 length = le32_to_cpu(d->dwSize); 2862 if (len < length) 2863 return -EINVAL; 2864 type = le32_to_cpu(d->dwPropertyDataType); 2865 if (type < USB_EXT_PROP_UNICODE || 2866 type > USB_EXT_PROP_UNICODE_MULTI) { 2867 pr_vdebug("unsupported os descriptor property type: %d", 2868 type); 2869 return -EINVAL; 2870 } 2871 pnl = le16_to_cpu(d->wPropertyNameLength); 2872 if (length < 14 + pnl) { 2873 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2874 length, pnl, type); 2875 return -EINVAL; 2876 } 2877 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2878 if (length != 14 + pnl + pdl) { 2879 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2880 length, pnl, pdl, type); 2881 return -EINVAL; 2882 } 2883 ++ffs->ms_os_descs_ext_prop_count; 2884 /* property name reported to the host as "WCHAR"s */ 2885 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2886 ffs->ms_os_descs_ext_prop_data_len += pdl; 2887 } 2888 break; 2889 default: 2890 pr_vdebug("unknown descriptor: %d\n", type); 2891 return -EINVAL; 2892 } 2893 return length; 2894 } 2895 2896 static int __ffs_data_got_descs(struct ffs_data *ffs, 2897 char *const _data, size_t len) 2898 { 2899 char *data = _data, *raw_descs; 2900 unsigned os_descs_count = 0, counts[3], flags; 2901 int ret = -EINVAL, i; 2902 struct ffs_desc_helper helper; 2903 2904 if (get_unaligned_le32(data + 4) != len) 2905 goto error; 2906 2907 switch (get_unaligned_le32(data)) { 2908 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2909 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2910 data += 8; 2911 len -= 8; 2912 break; 2913 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2914 flags = get_unaligned_le32(data + 8); 2915 ffs->user_flags = flags; 2916 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2917 FUNCTIONFS_HAS_HS_DESC | 2918 FUNCTIONFS_HAS_SS_DESC | 2919 FUNCTIONFS_HAS_MS_OS_DESC | 2920 FUNCTIONFS_VIRTUAL_ADDR | 2921 FUNCTIONFS_EVENTFD | 2922 FUNCTIONFS_ALL_CTRL_RECIP | 2923 FUNCTIONFS_CONFIG0_SETUP)) { 2924 ret = -ENOSYS; 2925 goto error; 2926 } 2927 data += 12; 2928 len -= 12; 2929 break; 2930 default: 2931 goto error; 2932 } 2933 2934 if (flags & FUNCTIONFS_EVENTFD) { 2935 if (len < 4) 2936 goto error; 2937 ffs->ffs_eventfd = 2938 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2939 if (IS_ERR(ffs->ffs_eventfd)) { 2940 ret = PTR_ERR(ffs->ffs_eventfd); 2941 ffs->ffs_eventfd = NULL; 2942 goto error; 2943 } 2944 data += 4; 2945 len -= 4; 2946 } 2947 2948 /* Read fs_count, hs_count and ss_count (if present) */ 2949 for (i = 0; i < 3; ++i) { 2950 if (!(flags & (1 << i))) { 2951 counts[i] = 0; 2952 } else if (len < 4) { 2953 goto error; 2954 } else { 2955 counts[i] = get_unaligned_le32(data); 2956 data += 4; 2957 len -= 4; 2958 } 2959 } 2960 if (flags & (1 << i)) { 2961 if (len < 4) { 2962 goto error; 2963 } 2964 os_descs_count = get_unaligned_le32(data); 2965 data += 4; 2966 len -= 4; 2967 } 2968 2969 /* Read descriptors */ 2970 raw_descs = data; 2971 helper.ffs = ffs; 2972 for (i = 0; i < 3; ++i) { 2973 if (!counts[i]) 2974 continue; 2975 helper.interfaces_count = 0; 2976 helper.eps_count = 0; 2977 ret = ffs_do_descs(counts[i], data, len, 2978 __ffs_data_do_entity, &helper); 2979 if (ret < 0) 2980 goto error; 2981 if (!ffs->eps_count && !ffs->interfaces_count) { 2982 ffs->eps_count = helper.eps_count; 2983 ffs->interfaces_count = helper.interfaces_count; 2984 } else { 2985 if (ffs->eps_count != helper.eps_count) { 2986 ret = -EINVAL; 2987 goto error; 2988 } 2989 if (ffs->interfaces_count != helper.interfaces_count) { 2990 ret = -EINVAL; 2991 goto error; 2992 } 2993 } 2994 data += ret; 2995 len -= ret; 2996 } 2997 if (os_descs_count) { 2998 ret = ffs_do_os_descs(os_descs_count, data, len, 2999 __ffs_data_do_os_desc, ffs); 3000 if (ret < 0) 3001 goto error; 3002 data += ret; 3003 len -= ret; 3004 } 3005 3006 if (raw_descs == data || len) { 3007 ret = -EINVAL; 3008 goto error; 3009 } 3010 3011 ffs->raw_descs_data = _data; 3012 ffs->raw_descs = raw_descs; 3013 ffs->raw_descs_length = data - raw_descs; 3014 ffs->fs_descs_count = counts[0]; 3015 ffs->hs_descs_count = counts[1]; 3016 ffs->ss_descs_count = counts[2]; 3017 ffs->ms_os_descs_count = os_descs_count; 3018 3019 return 0; 3020 3021 error: 3022 kfree(_data); 3023 return ret; 3024 } 3025 3026 static int __ffs_data_got_strings(struct ffs_data *ffs, 3027 char *const _data, size_t len) 3028 { 3029 u32 str_count, needed_count, lang_count; 3030 struct usb_gadget_strings **stringtabs, *t; 3031 const char *data = _data; 3032 struct usb_string *s; 3033 3034 if (len < 16 || 3035 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 3036 get_unaligned_le32(data + 4) != len) 3037 goto error; 3038 str_count = get_unaligned_le32(data + 8); 3039 lang_count = get_unaligned_le32(data + 12); 3040 3041 /* if one is zero the other must be zero */ 3042 if (!str_count != !lang_count) 3043 goto error; 3044 3045 /* Do we have at least as many strings as descriptors need? */ 3046 needed_count = ffs->strings_count; 3047 if (str_count < needed_count) 3048 goto error; 3049 3050 /* 3051 * If we don't need any strings just return and free all 3052 * memory. 3053 */ 3054 if (!needed_count) { 3055 kfree(_data); 3056 return 0; 3057 } 3058 3059 /* Allocate everything in one chunk so there's less maintenance. */ 3060 { 3061 unsigned i = 0; 3062 vla_group(d); 3063 vla_item(d, struct usb_gadget_strings *, stringtabs, 3064 size_add(lang_count, 1)); 3065 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 3066 vla_item(d, struct usb_string, strings, 3067 size_mul(lang_count, (needed_count + 1))); 3068 3069 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 3070 3071 if (!vlabuf) { 3072 kfree(_data); 3073 return -ENOMEM; 3074 } 3075 3076 /* Initialize the VLA pointers */ 3077 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3078 t = vla_ptr(vlabuf, d, stringtab); 3079 i = lang_count; 3080 do { 3081 *stringtabs++ = t++; 3082 } while (--i); 3083 *stringtabs = NULL; 3084 3085 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 3086 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3087 t = vla_ptr(vlabuf, d, stringtab); 3088 s = vla_ptr(vlabuf, d, strings); 3089 } 3090 3091 /* For each language */ 3092 data += 16; 3093 len -= 16; 3094 3095 do { /* lang_count > 0 so we can use do-while */ 3096 unsigned needed = needed_count; 3097 u32 str_per_lang = str_count; 3098 3099 if (len < 3) 3100 goto error_free; 3101 t->language = get_unaligned_le16(data); 3102 t->strings = s; 3103 ++t; 3104 3105 data += 2; 3106 len -= 2; 3107 3108 /* For each string */ 3109 do { /* str_count > 0 so we can use do-while */ 3110 size_t length = strnlen(data, len); 3111 3112 if (length == len) 3113 goto error_free; 3114 3115 /* 3116 * User may provide more strings then we need, 3117 * if that's the case we simply ignore the 3118 * rest 3119 */ 3120 if (needed) { 3121 /* 3122 * s->id will be set while adding 3123 * function to configuration so for 3124 * now just leave garbage here. 3125 */ 3126 s->s = data; 3127 --needed; 3128 ++s; 3129 } 3130 3131 data += length + 1; 3132 len -= length + 1; 3133 } while (--str_per_lang); 3134 3135 s->id = 0; /* terminator */ 3136 s->s = NULL; 3137 ++s; 3138 3139 } while (--lang_count); 3140 3141 /* Some garbage left? */ 3142 if (len) 3143 goto error_free; 3144 3145 /* Done! */ 3146 ffs->stringtabs = stringtabs; 3147 ffs->raw_strings = _data; 3148 3149 return 0; 3150 3151 error_free: 3152 kfree(stringtabs); 3153 error: 3154 kfree(_data); 3155 return -EINVAL; 3156 } 3157 3158 3159 /* Events handling and management *******************************************/ 3160 3161 static void __ffs_event_add(struct ffs_data *ffs, 3162 enum usb_functionfs_event_type type) 3163 { 3164 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 3165 int neg = 0; 3166 3167 /* 3168 * Abort any unhandled setup 3169 * 3170 * We do not need to worry about some cmpxchg() changing value 3171 * of ffs->setup_state without holding the lock because when 3172 * state is FFS_SETUP_PENDING cmpxchg() in several places in 3173 * the source does nothing. 3174 */ 3175 if (ffs->setup_state == FFS_SETUP_PENDING) 3176 ffs->setup_state = FFS_SETUP_CANCELLED; 3177 3178 /* 3179 * Logic of this function guarantees that there are at most four pending 3180 * evens on ffs->ev.types queue. This is important because the queue 3181 * has space for four elements only and __ffs_ep0_read_events function 3182 * depends on that limit as well. If more event types are added, those 3183 * limits have to be revisited or guaranteed to still hold. 3184 */ 3185 switch (type) { 3186 case FUNCTIONFS_RESUME: 3187 rem_type2 = FUNCTIONFS_SUSPEND; 3188 fallthrough; 3189 case FUNCTIONFS_SUSPEND: 3190 case FUNCTIONFS_SETUP: 3191 rem_type1 = type; 3192 /* Discard all similar events */ 3193 break; 3194 3195 case FUNCTIONFS_BIND: 3196 case FUNCTIONFS_UNBIND: 3197 case FUNCTIONFS_DISABLE: 3198 case FUNCTIONFS_ENABLE: 3199 /* Discard everything other then power management. */ 3200 rem_type1 = FUNCTIONFS_SUSPEND; 3201 rem_type2 = FUNCTIONFS_RESUME; 3202 neg = 1; 3203 break; 3204 3205 default: 3206 WARN(1, "%d: unknown event, this should not happen\n", type); 3207 return; 3208 } 3209 3210 { 3211 u8 *ev = ffs->ev.types, *out = ev; 3212 unsigned n = ffs->ev.count; 3213 for (; n; --n, ++ev) 3214 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 3215 *out++ = *ev; 3216 else 3217 pr_vdebug("purging event %d\n", *ev); 3218 ffs->ev.count = out - ffs->ev.types; 3219 } 3220 3221 pr_vdebug("adding event %d\n", type); 3222 ffs->ev.types[ffs->ev.count++] = type; 3223 wake_up_locked(&ffs->ev.waitq); 3224 if (ffs->ffs_eventfd) 3225 eventfd_signal(ffs->ffs_eventfd); 3226 } 3227 3228 static void ffs_event_add(struct ffs_data *ffs, 3229 enum usb_functionfs_event_type type) 3230 { 3231 unsigned long flags; 3232 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3233 __ffs_event_add(ffs, type); 3234 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3235 } 3236 3237 /* Bind/unbind USB function hooks *******************************************/ 3238 3239 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 3240 { 3241 int i; 3242 3243 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 3244 if (ffs->eps_addrmap[i] == endpoint_address) 3245 return i; 3246 return -ENOENT; 3247 } 3248 3249 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 3250 struct usb_descriptor_header *desc, 3251 void *priv) 3252 { 3253 struct usb_endpoint_descriptor *ds = (void *)desc; 3254 struct ffs_function *func = priv; 3255 struct ffs_ep *ffs_ep; 3256 unsigned ep_desc_id; 3257 int idx; 3258 static const char *speed_names[] = { "full", "high", "super" }; 3259 3260 if (type != FFS_DESCRIPTOR) 3261 return 0; 3262 3263 /* 3264 * If ss_descriptors is not NULL, we are reading super speed 3265 * descriptors; if hs_descriptors is not NULL, we are reading high 3266 * speed descriptors; otherwise, we are reading full speed 3267 * descriptors. 3268 */ 3269 if (func->function.ss_descriptors) { 3270 ep_desc_id = 2; 3271 func->function.ss_descriptors[(long)valuep] = desc; 3272 } else if (func->function.hs_descriptors) { 3273 ep_desc_id = 1; 3274 func->function.hs_descriptors[(long)valuep] = desc; 3275 } else { 3276 ep_desc_id = 0; 3277 func->function.fs_descriptors[(long)valuep] = desc; 3278 } 3279 3280 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 3281 return 0; 3282 3283 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 3284 if (idx < 0) 3285 return idx; 3286 3287 ffs_ep = func->eps + idx; 3288 3289 if (ffs_ep->descs[ep_desc_id]) { 3290 pr_err("two %sspeed descriptors for EP %d\n", 3291 speed_names[ep_desc_id], 3292 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 3293 return -EINVAL; 3294 } 3295 ffs_ep->descs[ep_desc_id] = ds; 3296 3297 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 3298 if (ffs_ep->ep) { 3299 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 3300 if (!ds->wMaxPacketSize) 3301 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 3302 } else { 3303 struct usb_request *req; 3304 struct usb_ep *ep; 3305 u8 bEndpointAddress; 3306 u16 wMaxPacketSize; 3307 3308 /* 3309 * We back up bEndpointAddress because autoconfig overwrites 3310 * it with physical endpoint address. 3311 */ 3312 bEndpointAddress = ds->bEndpointAddress; 3313 /* 3314 * We back up wMaxPacketSize because autoconfig treats 3315 * endpoint descriptors as if they were full speed. 3316 */ 3317 wMaxPacketSize = ds->wMaxPacketSize; 3318 pr_vdebug("autoconfig\n"); 3319 ep = usb_ep_autoconfig(func->gadget, ds); 3320 if (!ep) 3321 return -ENOTSUPP; 3322 ep->driver_data = func->eps + idx; 3323 3324 req = usb_ep_alloc_request(ep, GFP_KERNEL); 3325 if (!req) 3326 return -ENOMEM; 3327 3328 ffs_ep->ep = ep; 3329 ffs_ep->req = req; 3330 func->eps_revmap[ds->bEndpointAddress & 3331 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 3332 /* 3333 * If we use virtual address mapping, we restore 3334 * original bEndpointAddress value. 3335 */ 3336 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3337 ds->bEndpointAddress = bEndpointAddress; 3338 /* 3339 * Restore wMaxPacketSize which was potentially 3340 * overwritten by autoconfig. 3341 */ 3342 ds->wMaxPacketSize = wMaxPacketSize; 3343 } 3344 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 3345 3346 return 0; 3347 } 3348 3349 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 3350 struct usb_descriptor_header *desc, 3351 void *priv) 3352 { 3353 struct ffs_function *func = priv; 3354 unsigned idx; 3355 u8 newValue; 3356 3357 switch (type) { 3358 default: 3359 case FFS_DESCRIPTOR: 3360 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 3361 return 0; 3362 3363 case FFS_INTERFACE: 3364 idx = *valuep; 3365 if (func->interfaces_nums[idx] < 0) { 3366 int id = usb_interface_id(func->conf, &func->function); 3367 if (id < 0) 3368 return id; 3369 func->interfaces_nums[idx] = id; 3370 } 3371 newValue = func->interfaces_nums[idx]; 3372 break; 3373 3374 case FFS_STRING: 3375 /* String' IDs are allocated when fsf_data is bound to cdev */ 3376 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 3377 break; 3378 3379 case FFS_ENDPOINT: 3380 /* 3381 * USB_DT_ENDPOINT are handled in 3382 * __ffs_func_bind_do_descs(). 3383 */ 3384 if (desc->bDescriptorType == USB_DT_ENDPOINT) 3385 return 0; 3386 3387 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 3388 if (!func->eps[idx].ep) 3389 return -EINVAL; 3390 3391 { 3392 struct usb_endpoint_descriptor **descs; 3393 descs = func->eps[idx].descs; 3394 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 3395 } 3396 break; 3397 } 3398 3399 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 3400 *valuep = newValue; 3401 return 0; 3402 } 3403 3404 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 3405 struct usb_os_desc_header *h, void *data, 3406 unsigned len, void *priv) 3407 { 3408 struct ffs_function *func = priv; 3409 u8 length = 0; 3410 3411 switch (type) { 3412 case FFS_OS_DESC_EXT_COMPAT: { 3413 struct usb_ext_compat_desc *desc = data; 3414 struct usb_os_desc_table *t; 3415 3416 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3417 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3418 memcpy(t->os_desc->ext_compat_id, &desc->IDs, 3419 sizeof_field(struct usb_ext_compat_desc, IDs)); 3420 length = sizeof(*desc); 3421 } 3422 break; 3423 case FFS_OS_DESC_EXT_PROP: { 3424 struct usb_ext_prop_desc *desc = data; 3425 struct usb_os_desc_table *t; 3426 struct usb_os_desc_ext_prop *ext_prop; 3427 char *ext_prop_name; 3428 char *ext_prop_data; 3429 3430 t = &func->function.os_desc_table[h->interface]; 3431 t->if_id = func->interfaces_nums[h->interface]; 3432 3433 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3434 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3435 3436 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3437 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3438 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3439 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3440 length = ext_prop->name_len + ext_prop->data_len + 14; 3441 3442 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3443 func->ffs->ms_os_descs_ext_prop_name_avail += 3444 ext_prop->name_len; 3445 3446 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3447 func->ffs->ms_os_descs_ext_prop_data_avail += 3448 ext_prop->data_len; 3449 memcpy(ext_prop_data, 3450 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3451 ext_prop->data_len); 3452 /* unicode data reported to the host as "WCHAR"s */ 3453 switch (ext_prop->type) { 3454 case USB_EXT_PROP_UNICODE: 3455 case USB_EXT_PROP_UNICODE_ENV: 3456 case USB_EXT_PROP_UNICODE_LINK: 3457 case USB_EXT_PROP_UNICODE_MULTI: 3458 ext_prop->data_len *= 2; 3459 break; 3460 } 3461 ext_prop->data = ext_prop_data; 3462 3463 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3464 ext_prop->name_len); 3465 /* property name reported to the host as "WCHAR"s */ 3466 ext_prop->name_len *= 2; 3467 ext_prop->name = ext_prop_name; 3468 3469 t->os_desc->ext_prop_len += 3470 ext_prop->name_len + ext_prop->data_len + 14; 3471 ++t->os_desc->ext_prop_count; 3472 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3473 } 3474 break; 3475 default: 3476 pr_vdebug("unknown descriptor: %d\n", type); 3477 } 3478 3479 return length; 3480 } 3481 3482 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3483 struct usb_configuration *c) 3484 { 3485 struct ffs_function *func = ffs_func_from_usb(f); 3486 struct f_fs_opts *ffs_opts = 3487 container_of(f->fi, struct f_fs_opts, func_inst); 3488 struct ffs_data *ffs_data; 3489 int ret; 3490 3491 /* 3492 * Legacy gadget triggers binding in functionfs_ready_callback, 3493 * which already uses locking; taking the same lock here would 3494 * cause a deadlock. 3495 * 3496 * Configfs-enabled gadgets however do need ffs_dev_lock. 3497 */ 3498 if (!ffs_opts->no_configfs) 3499 ffs_dev_lock(); 3500 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3501 ffs_data = ffs_opts->dev->ffs_data; 3502 if (!ffs_opts->no_configfs) 3503 ffs_dev_unlock(); 3504 if (ret) 3505 return ERR_PTR(ret); 3506 3507 func->ffs = ffs_data; 3508 func->conf = c; 3509 func->gadget = c->cdev->gadget; 3510 3511 /* 3512 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3513 * configurations are bound in sequence with list_for_each_entry, 3514 * in each configuration its functions are bound in sequence 3515 * with list_for_each_entry, so we assume no race condition 3516 * with regard to ffs_opts->bound access 3517 */ 3518 if (!ffs_opts->refcnt) { 3519 ret = functionfs_bind(func->ffs, c->cdev); 3520 if (ret) 3521 return ERR_PTR(ret); 3522 } 3523 ffs_opts->refcnt++; 3524 func->function.strings = func->ffs->stringtabs; 3525 3526 return ffs_opts; 3527 } 3528 3529 static int _ffs_func_bind(struct usb_configuration *c, 3530 struct usb_function *f) 3531 { 3532 struct ffs_function *func = ffs_func_from_usb(f); 3533 struct ffs_data *ffs = func->ffs; 3534 3535 const int full = !!func->ffs->fs_descs_count; 3536 const int high = !!func->ffs->hs_descs_count; 3537 const int super = !!func->ffs->ss_descs_count; 3538 3539 int fs_len, hs_len, ss_len, ret, i; 3540 struct ffs_ep *eps_ptr; 3541 3542 /* Make it a single chunk, less management later on */ 3543 vla_group(d); 3544 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3545 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3546 full ? ffs->fs_descs_count + 1 : 0); 3547 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3548 high ? ffs->hs_descs_count + 1 : 0); 3549 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3550 super ? ffs->ss_descs_count + 1 : 0); 3551 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3552 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3553 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3554 vla_item_with_sz(d, char[16], ext_compat, 3555 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3556 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3557 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3558 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3559 ffs->ms_os_descs_ext_prop_count); 3560 vla_item_with_sz(d, char, ext_prop_name, 3561 ffs->ms_os_descs_ext_prop_name_len); 3562 vla_item_with_sz(d, char, ext_prop_data, 3563 ffs->ms_os_descs_ext_prop_data_len); 3564 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3565 char *vlabuf; 3566 3567 /* Has descriptors only for speeds gadget does not support */ 3568 if (!(full | high | super)) 3569 return -ENOTSUPP; 3570 3571 /* Allocate a single chunk, less management later on */ 3572 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3573 if (!vlabuf) 3574 return -ENOMEM; 3575 3576 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3577 ffs->ms_os_descs_ext_prop_name_avail = 3578 vla_ptr(vlabuf, d, ext_prop_name); 3579 ffs->ms_os_descs_ext_prop_data_avail = 3580 vla_ptr(vlabuf, d, ext_prop_data); 3581 3582 /* Copy descriptors */ 3583 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3584 ffs->raw_descs_length); 3585 3586 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3587 eps_ptr = vla_ptr(vlabuf, d, eps); 3588 for (i = 0; i < ffs->eps_count; i++) 3589 eps_ptr[i].num = -1; 3590 3591 /* Save pointers 3592 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3593 */ 3594 func->eps = vla_ptr(vlabuf, d, eps); 3595 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3596 3597 /* 3598 * Go through all the endpoint descriptors and allocate 3599 * endpoints first, so that later we can rewrite the endpoint 3600 * numbers without worrying that it may be described later on. 3601 */ 3602 if (full) { 3603 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3604 fs_len = ffs_do_descs(ffs->fs_descs_count, 3605 vla_ptr(vlabuf, d, raw_descs), 3606 d_raw_descs__sz, 3607 __ffs_func_bind_do_descs, func); 3608 if (fs_len < 0) { 3609 ret = fs_len; 3610 goto error; 3611 } 3612 } else { 3613 fs_len = 0; 3614 } 3615 3616 if (high) { 3617 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3618 hs_len = ffs_do_descs(ffs->hs_descs_count, 3619 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3620 d_raw_descs__sz - fs_len, 3621 __ffs_func_bind_do_descs, func); 3622 if (hs_len < 0) { 3623 ret = hs_len; 3624 goto error; 3625 } 3626 } else { 3627 hs_len = 0; 3628 } 3629 3630 if (super) { 3631 func->function.ss_descriptors = func->function.ssp_descriptors = 3632 vla_ptr(vlabuf, d, ss_descs); 3633 ss_len = ffs_do_descs(ffs->ss_descs_count, 3634 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3635 d_raw_descs__sz - fs_len - hs_len, 3636 __ffs_func_bind_do_descs, func); 3637 if (ss_len < 0) { 3638 ret = ss_len; 3639 goto error; 3640 } 3641 } else { 3642 ss_len = 0; 3643 } 3644 3645 /* 3646 * Now handle interface numbers allocation and interface and 3647 * endpoint numbers rewriting. We can do that in one go 3648 * now. 3649 */ 3650 ret = ffs_do_descs(ffs->fs_descs_count + 3651 (high ? ffs->hs_descs_count : 0) + 3652 (super ? ffs->ss_descs_count : 0), 3653 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3654 __ffs_func_bind_do_nums, func); 3655 if (ret < 0) 3656 goto error; 3657 3658 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3659 if (c->cdev->use_os_string) { 3660 for (i = 0; i < ffs->interfaces_count; ++i) { 3661 struct usb_os_desc *desc; 3662 3663 desc = func->function.os_desc_table[i].os_desc = 3664 vla_ptr(vlabuf, d, os_desc) + 3665 i * sizeof(struct usb_os_desc); 3666 desc->ext_compat_id = 3667 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3668 INIT_LIST_HEAD(&desc->ext_prop); 3669 } 3670 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3671 vla_ptr(vlabuf, d, raw_descs) + 3672 fs_len + hs_len + ss_len, 3673 d_raw_descs__sz - fs_len - hs_len - 3674 ss_len, 3675 __ffs_func_bind_do_os_desc, func); 3676 if (ret < 0) 3677 goto error; 3678 } 3679 func->function.os_desc_n = 3680 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3681 3682 /* And we're done */ 3683 ffs_event_add(ffs, FUNCTIONFS_BIND); 3684 return 0; 3685 3686 error: 3687 /* XXX Do we need to release all claimed endpoints here? */ 3688 return ret; 3689 } 3690 3691 static int ffs_func_bind(struct usb_configuration *c, 3692 struct usb_function *f) 3693 { 3694 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3695 struct ffs_function *func = ffs_func_from_usb(f); 3696 int ret; 3697 3698 if (IS_ERR(ffs_opts)) 3699 return PTR_ERR(ffs_opts); 3700 3701 ret = _ffs_func_bind(c, f); 3702 if (ret && !--ffs_opts->refcnt) 3703 functionfs_unbind(func->ffs); 3704 3705 return ret; 3706 } 3707 3708 3709 /* Other USB function hooks *************************************************/ 3710 3711 static void ffs_reset_work(struct work_struct *work) 3712 { 3713 struct ffs_data *ffs = container_of(work, 3714 struct ffs_data, reset_work); 3715 ffs_data_reset(ffs); 3716 } 3717 3718 static int ffs_func_get_alt(struct usb_function *f, 3719 unsigned int interface) 3720 { 3721 struct ffs_function *func = ffs_func_from_usb(f); 3722 int intf = ffs_func_revmap_intf(func, interface); 3723 3724 return (intf < 0) ? intf : func->cur_alt[interface]; 3725 } 3726 3727 static int ffs_func_set_alt(struct usb_function *f, 3728 unsigned interface, unsigned alt) 3729 { 3730 struct ffs_function *func = ffs_func_from_usb(f); 3731 struct ffs_data *ffs = func->ffs; 3732 int ret = 0, intf; 3733 3734 if (alt > MAX_ALT_SETTINGS) 3735 return -EINVAL; 3736 3737 intf = ffs_func_revmap_intf(func, interface); 3738 if (intf < 0) 3739 return intf; 3740 3741 if (ffs->func) 3742 ffs_func_eps_disable(ffs->func); 3743 3744 if (ffs->state == FFS_DEACTIVATED) { 3745 ffs->state = FFS_CLOSING; 3746 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3747 schedule_work(&ffs->reset_work); 3748 return -ENODEV; 3749 } 3750 3751 if (ffs->state != FFS_ACTIVE) 3752 return -ENODEV; 3753 3754 ffs->func = func; 3755 ret = ffs_func_eps_enable(func); 3756 if (ret >= 0) { 3757 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3758 func->cur_alt[interface] = alt; 3759 } 3760 return ret; 3761 } 3762 3763 static void ffs_func_disable(struct usb_function *f) 3764 { 3765 struct ffs_function *func = ffs_func_from_usb(f); 3766 struct ffs_data *ffs = func->ffs; 3767 3768 if (ffs->func) 3769 ffs_func_eps_disable(ffs->func); 3770 3771 if (ffs->state == FFS_DEACTIVATED) { 3772 ffs->state = FFS_CLOSING; 3773 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3774 schedule_work(&ffs->reset_work); 3775 return; 3776 } 3777 3778 if (ffs->state == FFS_ACTIVE) { 3779 ffs->func = NULL; 3780 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3781 } 3782 } 3783 3784 static int ffs_func_setup(struct usb_function *f, 3785 const struct usb_ctrlrequest *creq) 3786 { 3787 struct ffs_function *func = ffs_func_from_usb(f); 3788 struct ffs_data *ffs = func->ffs; 3789 unsigned long flags; 3790 int ret; 3791 3792 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3793 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3794 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3795 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3796 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3797 3798 /* 3799 * Most requests directed to interface go through here 3800 * (notable exceptions are set/get interface) so we need to 3801 * handle them. All other either handled by composite or 3802 * passed to usb_configuration->setup() (if one is set). No 3803 * matter, we will handle requests directed to endpoint here 3804 * as well (as it's straightforward). Other request recipient 3805 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3806 * is being used. 3807 */ 3808 if (ffs->state != FFS_ACTIVE) 3809 return -ENODEV; 3810 3811 switch (creq->bRequestType & USB_RECIP_MASK) { 3812 case USB_RECIP_INTERFACE: 3813 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3814 if (ret < 0) 3815 return ret; 3816 break; 3817 3818 case USB_RECIP_ENDPOINT: 3819 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3820 if (ret < 0) 3821 return ret; 3822 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3823 ret = func->ffs->eps_addrmap[ret]; 3824 break; 3825 3826 default: 3827 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3828 ret = le16_to_cpu(creq->wIndex); 3829 else 3830 return -EOPNOTSUPP; 3831 } 3832 3833 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3834 ffs->ev.setup = *creq; 3835 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3836 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3837 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3838 3839 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3840 } 3841 3842 static bool ffs_func_req_match(struct usb_function *f, 3843 const struct usb_ctrlrequest *creq, 3844 bool config0) 3845 { 3846 struct ffs_function *func = ffs_func_from_usb(f); 3847 3848 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3849 return false; 3850 3851 switch (creq->bRequestType & USB_RECIP_MASK) { 3852 case USB_RECIP_INTERFACE: 3853 return (ffs_func_revmap_intf(func, 3854 le16_to_cpu(creq->wIndex)) >= 0); 3855 case USB_RECIP_ENDPOINT: 3856 return (ffs_func_revmap_ep(func, 3857 le16_to_cpu(creq->wIndex)) >= 0); 3858 default: 3859 return (bool) (func->ffs->user_flags & 3860 FUNCTIONFS_ALL_CTRL_RECIP); 3861 } 3862 } 3863 3864 static void ffs_func_suspend(struct usb_function *f) 3865 { 3866 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3867 } 3868 3869 static void ffs_func_resume(struct usb_function *f) 3870 { 3871 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3872 } 3873 3874 3875 /* Endpoint and interface numbers reverse mapping ***************************/ 3876 3877 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3878 { 3879 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3880 return num ? num : -EDOM; 3881 } 3882 3883 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3884 { 3885 short *nums = func->interfaces_nums; 3886 unsigned count = func->ffs->interfaces_count; 3887 3888 for (; count; --count, ++nums) { 3889 if (*nums >= 0 && *nums == intf) 3890 return nums - func->interfaces_nums; 3891 } 3892 3893 return -EDOM; 3894 } 3895 3896 3897 /* Devices management *******************************************************/ 3898 3899 static LIST_HEAD(ffs_devices); 3900 3901 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3902 { 3903 struct ffs_dev *dev; 3904 3905 if (!name) 3906 return NULL; 3907 3908 list_for_each_entry(dev, &ffs_devices, entry) { 3909 if (strcmp(dev->name, name) == 0) 3910 return dev; 3911 } 3912 3913 return NULL; 3914 } 3915 3916 /* 3917 * ffs_lock must be taken by the caller of this function 3918 */ 3919 static struct ffs_dev *_ffs_get_single_dev(void) 3920 { 3921 struct ffs_dev *dev; 3922 3923 if (list_is_singular(&ffs_devices)) { 3924 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3925 if (dev->single) 3926 return dev; 3927 } 3928 3929 return NULL; 3930 } 3931 3932 /* 3933 * ffs_lock must be taken by the caller of this function 3934 */ 3935 static struct ffs_dev *_ffs_find_dev(const char *name) 3936 { 3937 struct ffs_dev *dev; 3938 3939 dev = _ffs_get_single_dev(); 3940 if (dev) 3941 return dev; 3942 3943 return _ffs_do_find_dev(name); 3944 } 3945 3946 /* Configfs support *********************************************************/ 3947 3948 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3949 { 3950 return container_of(to_config_group(item), struct f_fs_opts, 3951 func_inst.group); 3952 } 3953 3954 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page) 3955 { 3956 struct f_fs_opts *opts = to_ffs_opts(item); 3957 int ready; 3958 3959 ffs_dev_lock(); 3960 ready = opts->dev->desc_ready; 3961 ffs_dev_unlock(); 3962 3963 return sprintf(page, "%d\n", ready); 3964 } 3965 3966 CONFIGFS_ATTR_RO(f_fs_opts_, ready); 3967 3968 static struct configfs_attribute *ffs_attrs[] = { 3969 &f_fs_opts_attr_ready, 3970 NULL, 3971 }; 3972 3973 static void ffs_attr_release(struct config_item *item) 3974 { 3975 struct f_fs_opts *opts = to_ffs_opts(item); 3976 3977 usb_put_function_instance(&opts->func_inst); 3978 } 3979 3980 static struct configfs_item_operations ffs_item_ops = { 3981 .release = ffs_attr_release, 3982 }; 3983 3984 static const struct config_item_type ffs_func_type = { 3985 .ct_item_ops = &ffs_item_ops, 3986 .ct_attrs = ffs_attrs, 3987 .ct_owner = THIS_MODULE, 3988 }; 3989 3990 3991 /* Function registration interface ******************************************/ 3992 3993 static void ffs_free_inst(struct usb_function_instance *f) 3994 { 3995 struct f_fs_opts *opts; 3996 3997 opts = to_f_fs_opts(f); 3998 ffs_release_dev(opts->dev); 3999 ffs_dev_lock(); 4000 _ffs_free_dev(opts->dev); 4001 ffs_dev_unlock(); 4002 kfree(opts); 4003 } 4004 4005 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 4006 { 4007 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 4008 return -ENAMETOOLONG; 4009 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 4010 } 4011 4012 static struct usb_function_instance *ffs_alloc_inst(void) 4013 { 4014 struct f_fs_opts *opts; 4015 struct ffs_dev *dev; 4016 4017 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 4018 if (!opts) 4019 return ERR_PTR(-ENOMEM); 4020 4021 opts->func_inst.set_inst_name = ffs_set_inst_name; 4022 opts->func_inst.free_func_inst = ffs_free_inst; 4023 ffs_dev_lock(); 4024 dev = _ffs_alloc_dev(); 4025 ffs_dev_unlock(); 4026 if (IS_ERR(dev)) { 4027 kfree(opts); 4028 return ERR_CAST(dev); 4029 } 4030 opts->dev = dev; 4031 dev->opts = opts; 4032 4033 config_group_init_type_name(&opts->func_inst.group, "", 4034 &ffs_func_type); 4035 return &opts->func_inst; 4036 } 4037 4038 static void ffs_free(struct usb_function *f) 4039 { 4040 kfree(ffs_func_from_usb(f)); 4041 } 4042 4043 static void ffs_func_unbind(struct usb_configuration *c, 4044 struct usb_function *f) 4045 { 4046 struct ffs_function *func = ffs_func_from_usb(f); 4047 struct ffs_data *ffs = func->ffs; 4048 struct f_fs_opts *opts = 4049 container_of(f->fi, struct f_fs_opts, func_inst); 4050 struct ffs_ep *ep = func->eps; 4051 unsigned count = ffs->eps_count; 4052 unsigned long flags; 4053 4054 if (ffs->func == func) { 4055 ffs_func_eps_disable(func); 4056 ffs->func = NULL; 4057 } 4058 4059 /* Drain any pending AIO completions */ 4060 drain_workqueue(ffs->io_completion_wq); 4061 4062 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 4063 if (!--opts->refcnt) 4064 functionfs_unbind(ffs); 4065 4066 /* cleanup after autoconfig */ 4067 spin_lock_irqsave(&func->ffs->eps_lock, flags); 4068 while (count--) { 4069 if (ep->ep && ep->req) 4070 usb_ep_free_request(ep->ep, ep->req); 4071 ep->req = NULL; 4072 ++ep; 4073 } 4074 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 4075 kfree(func->eps); 4076 func->eps = NULL; 4077 /* 4078 * eps, descriptors and interfaces_nums are allocated in the 4079 * same chunk so only one free is required. 4080 */ 4081 func->function.fs_descriptors = NULL; 4082 func->function.hs_descriptors = NULL; 4083 func->function.ss_descriptors = NULL; 4084 func->function.ssp_descriptors = NULL; 4085 func->interfaces_nums = NULL; 4086 4087 } 4088 4089 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 4090 { 4091 struct ffs_function *func; 4092 4093 func = kzalloc(sizeof(*func), GFP_KERNEL); 4094 if (!func) 4095 return ERR_PTR(-ENOMEM); 4096 4097 func->function.name = "Function FS Gadget"; 4098 4099 func->function.bind = ffs_func_bind; 4100 func->function.unbind = ffs_func_unbind; 4101 func->function.set_alt = ffs_func_set_alt; 4102 func->function.get_alt = ffs_func_get_alt; 4103 func->function.disable = ffs_func_disable; 4104 func->function.setup = ffs_func_setup; 4105 func->function.req_match = ffs_func_req_match; 4106 func->function.suspend = ffs_func_suspend; 4107 func->function.resume = ffs_func_resume; 4108 func->function.free_func = ffs_free; 4109 4110 return &func->function; 4111 } 4112 4113 /* 4114 * ffs_lock must be taken by the caller of this function 4115 */ 4116 static struct ffs_dev *_ffs_alloc_dev(void) 4117 { 4118 struct ffs_dev *dev; 4119 int ret; 4120 4121 if (_ffs_get_single_dev()) 4122 return ERR_PTR(-EBUSY); 4123 4124 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4125 if (!dev) 4126 return ERR_PTR(-ENOMEM); 4127 4128 if (list_empty(&ffs_devices)) { 4129 ret = functionfs_init(); 4130 if (ret) { 4131 kfree(dev); 4132 return ERR_PTR(ret); 4133 } 4134 } 4135 4136 list_add(&dev->entry, &ffs_devices); 4137 4138 return dev; 4139 } 4140 4141 int ffs_name_dev(struct ffs_dev *dev, const char *name) 4142 { 4143 struct ffs_dev *existing; 4144 int ret = 0; 4145 4146 ffs_dev_lock(); 4147 4148 existing = _ffs_do_find_dev(name); 4149 if (!existing) 4150 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 4151 else if (existing != dev) 4152 ret = -EBUSY; 4153 4154 ffs_dev_unlock(); 4155 4156 return ret; 4157 } 4158 EXPORT_SYMBOL_GPL(ffs_name_dev); 4159 4160 int ffs_single_dev(struct ffs_dev *dev) 4161 { 4162 int ret; 4163 4164 ret = 0; 4165 ffs_dev_lock(); 4166 4167 if (!list_is_singular(&ffs_devices)) 4168 ret = -EBUSY; 4169 else 4170 dev->single = true; 4171 4172 ffs_dev_unlock(); 4173 return ret; 4174 } 4175 EXPORT_SYMBOL_GPL(ffs_single_dev); 4176 4177 /* 4178 * ffs_lock must be taken by the caller of this function 4179 */ 4180 static void _ffs_free_dev(struct ffs_dev *dev) 4181 { 4182 list_del(&dev->entry); 4183 4184 kfree(dev); 4185 if (list_empty(&ffs_devices)) 4186 functionfs_cleanup(); 4187 } 4188 4189 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 4190 { 4191 int ret = 0; 4192 struct ffs_dev *ffs_dev; 4193 4194 ffs_dev_lock(); 4195 4196 ffs_dev = _ffs_find_dev(dev_name); 4197 if (!ffs_dev) { 4198 ret = -ENOENT; 4199 } else if (ffs_dev->mounted) { 4200 ret = -EBUSY; 4201 } else if (ffs_dev->ffs_acquire_dev_callback && 4202 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 4203 ret = -ENOENT; 4204 } else { 4205 ffs_dev->mounted = true; 4206 ffs_dev->ffs_data = ffs_data; 4207 ffs_data->private_data = ffs_dev; 4208 } 4209 4210 ffs_dev_unlock(); 4211 return ret; 4212 } 4213 4214 static void ffs_release_dev(struct ffs_dev *ffs_dev) 4215 { 4216 ffs_dev_lock(); 4217 4218 if (ffs_dev && ffs_dev->mounted) { 4219 ffs_dev->mounted = false; 4220 if (ffs_dev->ffs_data) { 4221 ffs_dev->ffs_data->private_data = NULL; 4222 ffs_dev->ffs_data = NULL; 4223 } 4224 4225 if (ffs_dev->ffs_release_dev_callback) 4226 ffs_dev->ffs_release_dev_callback(ffs_dev); 4227 } 4228 4229 ffs_dev_unlock(); 4230 } 4231 4232 static int ffs_ready(struct ffs_data *ffs) 4233 { 4234 struct ffs_dev *ffs_obj; 4235 int ret = 0; 4236 4237 ffs_dev_lock(); 4238 4239 ffs_obj = ffs->private_data; 4240 if (!ffs_obj) { 4241 ret = -EINVAL; 4242 goto done; 4243 } 4244 if (WARN_ON(ffs_obj->desc_ready)) { 4245 ret = -EBUSY; 4246 goto done; 4247 } 4248 4249 ffs_obj->desc_ready = true; 4250 4251 if (ffs_obj->ffs_ready_callback) { 4252 ret = ffs_obj->ffs_ready_callback(ffs); 4253 if (ret) 4254 goto done; 4255 } 4256 4257 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 4258 done: 4259 ffs_dev_unlock(); 4260 return ret; 4261 } 4262 4263 static void ffs_closed(struct ffs_data *ffs) 4264 { 4265 struct ffs_dev *ffs_obj; 4266 struct f_fs_opts *opts; 4267 struct config_item *ci; 4268 4269 ffs_dev_lock(); 4270 4271 ffs_obj = ffs->private_data; 4272 if (!ffs_obj) 4273 goto done; 4274 4275 ffs_obj->desc_ready = false; 4276 4277 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 4278 ffs_obj->ffs_closed_callback) 4279 ffs_obj->ffs_closed_callback(ffs); 4280 4281 if (ffs_obj->opts) 4282 opts = ffs_obj->opts; 4283 else 4284 goto done; 4285 4286 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 4287 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 4288 goto done; 4289 4290 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 4291 ffs_dev_unlock(); 4292 4293 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 4294 unregister_gadget_item(ci); 4295 return; 4296 done: 4297 ffs_dev_unlock(); 4298 } 4299 4300 /* Misc helper functions ****************************************************/ 4301 4302 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 4303 { 4304 return nonblock 4305 ? mutex_trylock(mutex) ? 0 : -EAGAIN 4306 : mutex_lock_interruptible(mutex); 4307 } 4308 4309 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 4310 { 4311 char *data; 4312 4313 if (!len) 4314 return NULL; 4315 4316 data = memdup_user(buf, len); 4317 if (IS_ERR(data)) 4318 return data; 4319 4320 pr_vdebug("Buffer from user space:\n"); 4321 ffs_dump_mem("", data, len); 4322 4323 return data; 4324 } 4325 4326 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 4327 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers"); 4328 MODULE_LICENSE("GPL"); 4329 MODULE_AUTHOR("Michal Nazarewicz"); 4330