xref: /linux/drivers/usb/gadget/function/f_fs.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <asm/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 
37 #include <linux/aio.h>
38 #include <linux/kthread.h>
39 #include <linux/poll.h>
40 #include <linux/eventfd.h>
41 
42 #include "u_fs.h"
43 #include "u_f.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
49 
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51 
52 MODULE_IMPORT_NS(DMA_BUF);
53 
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 	__attribute__((malloc));
60 
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64 
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70 
71 
72 /* The function structure ***************************************************/
73 
74 struct ffs_ep;
75 
76 struct ffs_function {
77 	struct usb_configuration	*conf;
78 	struct usb_gadget		*gadget;
79 	struct ffs_data			*ffs;
80 
81 	struct ffs_ep			*eps;
82 	u8				eps_revmap[16];
83 	short				*interfaces_nums;
84 
85 	struct usb_function		function;
86 	int				cur_alt[MAX_CONFIG_INTERFACES];
87 };
88 
89 
90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92 	return container_of(f, struct ffs_function, function);
93 }
94 
95 
96 static inline enum ffs_setup_state
97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99 	return (enum ffs_setup_state)
100 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102 
103 
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106 
107 static int ffs_func_bind(struct usb_configuration *,
108 			 struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113 			  const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115 			       const struct usb_ctrlrequest *,
116 			       bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119 
120 
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123 
124 
125 /* The endpoints structures *************************************************/
126 
127 struct ffs_ep {
128 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
129 	struct usb_request		*req;	/* P: epfile->mutex */
130 
131 	/* [0]: full speed, [1]: high speed, [2]: super speed */
132 	struct usb_endpoint_descriptor	*descs[3];
133 
134 	u8				num;
135 };
136 
137 struct ffs_dmabuf_priv {
138 	struct list_head entry;
139 	struct kref ref;
140 	struct ffs_data *ffs;
141 	struct dma_buf_attachment *attach;
142 	struct sg_table *sgt;
143 	enum dma_data_direction dir;
144 	spinlock_t lock;
145 	u64 context;
146 	struct usb_request *req;	/* P: ffs->eps_lock */
147 	struct usb_ep *ep;		/* P: ffs->eps_lock */
148 };
149 
150 struct ffs_dma_fence {
151 	struct dma_fence base;
152 	struct ffs_dmabuf_priv *priv;
153 	struct work_struct work;
154 };
155 
156 struct ffs_epfile {
157 	/* Protects ep->ep and ep->req. */
158 	struct mutex			mutex;
159 
160 	struct ffs_data			*ffs;
161 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
162 
163 	struct dentry			*dentry;
164 
165 	/*
166 	 * Buffer for holding data from partial reads which may happen since
167 	 * we’re rounding user read requests to a multiple of a max packet size.
168 	 *
169 	 * The pointer is initialised with NULL value and may be set by
170 	 * __ffs_epfile_read_data function to point to a temporary buffer.
171 	 *
172 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
173 	 * data from said buffer and eventually free it.  Importantly, while the
174 	 * function is using the buffer, it sets the pointer to NULL.  This is
175 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176 	 * can never run concurrently (they are synchronised by epfile->mutex)
177 	 * so the latter will not assign a new value to the pointer.
178 	 *
179 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
181 	 * value is crux of the synchronisation between ffs_func_eps_disable and
182 	 * __ffs_epfile_read_data.
183 	 *
184 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
185 	 * pointer back to its old value (as described above), but seeing as the
186 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187 	 * the buffer.
188 	 *
189 	 * == State transitions ==
190 	 *
191 	 * • ptr == NULL:  (initial state)
192 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193 	 *   ◦ __ffs_epfile_read_buffered:    nop
194 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
196 	 * • ptr == DROP:
197 	 *   ◦ __ffs_epfile_read_buffer_free: nop
198 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
199 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
201 	 * • ptr == buf:
202 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
204 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
205 	 *                                    is always called first
206 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
207 	 * • ptr == NULL and reading:
208 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
210 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
211 	 *   ◦ reading finishes and …
212 	 *     … all data read:               free buf, go to ptr == NULL
213 	 *     … otherwise:                   go to ptr == buf and reading
214 	 * • ptr == DROP and reading:
215 	 *   ◦ __ffs_epfile_read_buffer_free: nop
216 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
217 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
218 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
219 	 */
220 	struct ffs_buffer		*read_buffer;
221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222 
223 	char				name[5];
224 
225 	unsigned char			in;	/* P: ffs->eps_lock */
226 	unsigned char			isoc;	/* P: ffs->eps_lock */
227 
228 	unsigned char			_pad;
229 
230 	/* Protects dmabufs */
231 	struct mutex			dmabufs_mutex;
232 	struct list_head		dmabufs; /* P: dmabufs_mutex */
233 	atomic_t			seqno;
234 };
235 
236 struct ffs_buffer {
237 	size_t length;
238 	char *data;
239 	char storage[] __counted_by(length);
240 };
241 
242 /*  ffs_io_data structure ***************************************************/
243 
244 struct ffs_io_data {
245 	bool aio;
246 	bool read;
247 
248 	struct kiocb *kiocb;
249 	struct iov_iter data;
250 	const void *to_free;
251 	char *buf;
252 
253 	struct mm_struct *mm;
254 	struct work_struct work;
255 
256 	struct usb_ep *ep;
257 	struct usb_request *req;
258 	struct sg_table sgt;
259 	bool use_sg;
260 
261 	struct ffs_data *ffs;
262 
263 	int status;
264 	struct completion done;
265 };
266 
267 struct ffs_desc_helper {
268 	struct ffs_data *ffs;
269 	unsigned interfaces_count;
270 	unsigned eps_count;
271 };
272 
273 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275 
276 static struct dentry *
277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278 		   const struct file_operations *fops);
279 
280 /* Devices management *******************************************************/
281 
282 DEFINE_MUTEX(ffs_lock);
283 EXPORT_SYMBOL_GPL(ffs_lock);
284 
285 static struct ffs_dev *_ffs_find_dev(const char *name);
286 static struct ffs_dev *_ffs_alloc_dev(void);
287 static void _ffs_free_dev(struct ffs_dev *dev);
288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289 static void ffs_release_dev(struct ffs_dev *ffs_dev);
290 static int ffs_ready(struct ffs_data *ffs);
291 static void ffs_closed(struct ffs_data *ffs);
292 
293 /* Misc helper functions ****************************************************/
294 
295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296 	__attribute__((warn_unused_result, nonnull));
297 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298 	__attribute__((warn_unused_result, nonnull));
299 
300 
301 /* Control file aka ep0 *****************************************************/
302 
303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304 {
305 	struct ffs_data *ffs = req->context;
306 
307 	complete(&ffs->ep0req_completion);
308 }
309 
310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311 	__releases(&ffs->ev.waitq.lock)
312 {
313 	struct usb_request *req = ffs->ep0req;
314 	int ret;
315 
316 	if (!req) {
317 		spin_unlock_irq(&ffs->ev.waitq.lock);
318 		return -EINVAL;
319 	}
320 
321 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
322 
323 	spin_unlock_irq(&ffs->ev.waitq.lock);
324 
325 	req->buf      = data;
326 	req->length   = len;
327 
328 	/*
329 	 * UDC layer requires to provide a buffer even for ZLP, but should
330 	 * not use it at all. Let's provide some poisoned pointer to catch
331 	 * possible bug in the driver.
332 	 */
333 	if (req->buf == NULL)
334 		req->buf = (void *)0xDEADBABE;
335 
336 	reinit_completion(&ffs->ep0req_completion);
337 
338 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339 	if (ret < 0)
340 		return ret;
341 
342 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343 	if (ret) {
344 		usb_ep_dequeue(ffs->gadget->ep0, req);
345 		return -EINTR;
346 	}
347 
348 	ffs->setup_state = FFS_NO_SETUP;
349 	return req->status ? req->status : req->actual;
350 }
351 
352 static int __ffs_ep0_stall(struct ffs_data *ffs)
353 {
354 	if (ffs->ev.can_stall) {
355 		pr_vdebug("ep0 stall\n");
356 		usb_ep_set_halt(ffs->gadget->ep0);
357 		ffs->setup_state = FFS_NO_SETUP;
358 		return -EL2HLT;
359 	} else {
360 		pr_debug("bogus ep0 stall!\n");
361 		return -ESRCH;
362 	}
363 }
364 
365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366 			     size_t len, loff_t *ptr)
367 {
368 	struct ffs_data *ffs = file->private_data;
369 	ssize_t ret;
370 	char *data;
371 
372 	/* Fast check if setup was canceled */
373 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374 		return -EIDRM;
375 
376 	/* Acquire mutex */
377 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378 	if (ret < 0)
379 		return ret;
380 
381 	/* Check state */
382 	switch (ffs->state) {
383 	case FFS_READ_DESCRIPTORS:
384 	case FFS_READ_STRINGS:
385 		/* Copy data */
386 		if (len < 16) {
387 			ret = -EINVAL;
388 			break;
389 		}
390 
391 		data = ffs_prepare_buffer(buf, len);
392 		if (IS_ERR(data)) {
393 			ret = PTR_ERR(data);
394 			break;
395 		}
396 
397 		/* Handle data */
398 		if (ffs->state == FFS_READ_DESCRIPTORS) {
399 			pr_info("read descriptors\n");
400 			ret = __ffs_data_got_descs(ffs, data, len);
401 			if (ret < 0)
402 				break;
403 
404 			ffs->state = FFS_READ_STRINGS;
405 			ret = len;
406 		} else {
407 			pr_info("read strings\n");
408 			ret = __ffs_data_got_strings(ffs, data, len);
409 			if (ret < 0)
410 				break;
411 
412 			ret = ffs_epfiles_create(ffs);
413 			if (ret) {
414 				ffs->state = FFS_CLOSING;
415 				break;
416 			}
417 
418 			ffs->state = FFS_ACTIVE;
419 			mutex_unlock(&ffs->mutex);
420 
421 			ret = ffs_ready(ffs);
422 			if (ret < 0) {
423 				ffs->state = FFS_CLOSING;
424 				return ret;
425 			}
426 
427 			return len;
428 		}
429 		break;
430 
431 	case FFS_ACTIVE:
432 		data = NULL;
433 		/*
434 		 * We're called from user space, we can use _irq
435 		 * rather then _irqsave
436 		 */
437 		spin_lock_irq(&ffs->ev.waitq.lock);
438 		switch (ffs_setup_state_clear_cancelled(ffs)) {
439 		case FFS_SETUP_CANCELLED:
440 			ret = -EIDRM;
441 			goto done_spin;
442 
443 		case FFS_NO_SETUP:
444 			ret = -ESRCH;
445 			goto done_spin;
446 
447 		case FFS_SETUP_PENDING:
448 			break;
449 		}
450 
451 		/* FFS_SETUP_PENDING */
452 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453 			spin_unlock_irq(&ffs->ev.waitq.lock);
454 			ret = __ffs_ep0_stall(ffs);
455 			break;
456 		}
457 
458 		/* FFS_SETUP_PENDING and not stall */
459 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
460 
461 		spin_unlock_irq(&ffs->ev.waitq.lock);
462 
463 		data = ffs_prepare_buffer(buf, len);
464 		if (IS_ERR(data)) {
465 			ret = PTR_ERR(data);
466 			break;
467 		}
468 
469 		spin_lock_irq(&ffs->ev.waitq.lock);
470 
471 		/*
472 		 * We are guaranteed to be still in FFS_ACTIVE state
473 		 * but the state of setup could have changed from
474 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475 		 * to check for that.  If that happened we copied data
476 		 * from user space in vain but it's unlikely.
477 		 *
478 		 * For sure we are not in FFS_NO_SETUP since this is
479 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480 		 * transition can be performed and it's protected by
481 		 * mutex.
482 		 */
483 		if (ffs_setup_state_clear_cancelled(ffs) ==
484 		    FFS_SETUP_CANCELLED) {
485 			ret = -EIDRM;
486 done_spin:
487 			spin_unlock_irq(&ffs->ev.waitq.lock);
488 		} else {
489 			/* unlocks spinlock */
490 			ret = __ffs_ep0_queue_wait(ffs, data, len);
491 		}
492 		kfree(data);
493 		break;
494 
495 	default:
496 		ret = -EBADFD;
497 		break;
498 	}
499 
500 	mutex_unlock(&ffs->mutex);
501 	return ret;
502 }
503 
504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506 				     size_t n)
507 	__releases(&ffs->ev.waitq.lock)
508 {
509 	/*
510 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511 	 * size of ffs->ev.types array (which is four) so that's how much space
512 	 * we reserve.
513 	 */
514 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515 	const size_t size = n * sizeof *events;
516 	unsigned i = 0;
517 
518 	memset(events, 0, size);
519 
520 	do {
521 		events[i].type = ffs->ev.types[i];
522 		if (events[i].type == FUNCTIONFS_SETUP) {
523 			events[i].u.setup = ffs->ev.setup;
524 			ffs->setup_state = FFS_SETUP_PENDING;
525 		}
526 	} while (++i < n);
527 
528 	ffs->ev.count -= n;
529 	if (ffs->ev.count)
530 		memmove(ffs->ev.types, ffs->ev.types + n,
531 			ffs->ev.count * sizeof *ffs->ev.types);
532 
533 	spin_unlock_irq(&ffs->ev.waitq.lock);
534 	mutex_unlock(&ffs->mutex);
535 
536 	return copy_to_user(buf, events, size) ? -EFAULT : size;
537 }
538 
539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540 			    size_t len, loff_t *ptr)
541 {
542 	struct ffs_data *ffs = file->private_data;
543 	char *data = NULL;
544 	size_t n;
545 	int ret;
546 
547 	/* Fast check if setup was canceled */
548 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549 		return -EIDRM;
550 
551 	/* Acquire mutex */
552 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553 	if (ret < 0)
554 		return ret;
555 
556 	/* Check state */
557 	if (ffs->state != FFS_ACTIVE) {
558 		ret = -EBADFD;
559 		goto done_mutex;
560 	}
561 
562 	/*
563 	 * We're called from user space, we can use _irq rather then
564 	 * _irqsave
565 	 */
566 	spin_lock_irq(&ffs->ev.waitq.lock);
567 
568 	switch (ffs_setup_state_clear_cancelled(ffs)) {
569 	case FFS_SETUP_CANCELLED:
570 		ret = -EIDRM;
571 		break;
572 
573 	case FFS_NO_SETUP:
574 		n = len / sizeof(struct usb_functionfs_event);
575 		if (!n) {
576 			ret = -EINVAL;
577 			break;
578 		}
579 
580 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581 			ret = -EAGAIN;
582 			break;
583 		}
584 
585 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586 							ffs->ev.count)) {
587 			ret = -EINTR;
588 			break;
589 		}
590 
591 		/* unlocks spinlock */
592 		return __ffs_ep0_read_events(ffs, buf,
593 					     min(n, (size_t)ffs->ev.count));
594 
595 	case FFS_SETUP_PENDING:
596 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597 			spin_unlock_irq(&ffs->ev.waitq.lock);
598 			ret = __ffs_ep0_stall(ffs);
599 			goto done_mutex;
600 		}
601 
602 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
603 
604 		spin_unlock_irq(&ffs->ev.waitq.lock);
605 
606 		if (len) {
607 			data = kmalloc(len, GFP_KERNEL);
608 			if (!data) {
609 				ret = -ENOMEM;
610 				goto done_mutex;
611 			}
612 		}
613 
614 		spin_lock_irq(&ffs->ev.waitq.lock);
615 
616 		/* See ffs_ep0_write() */
617 		if (ffs_setup_state_clear_cancelled(ffs) ==
618 		    FFS_SETUP_CANCELLED) {
619 			ret = -EIDRM;
620 			break;
621 		}
622 
623 		/* unlocks spinlock */
624 		ret = __ffs_ep0_queue_wait(ffs, data, len);
625 		if ((ret > 0) && (copy_to_user(buf, data, len)))
626 			ret = -EFAULT;
627 		goto done_mutex;
628 
629 	default:
630 		ret = -EBADFD;
631 		break;
632 	}
633 
634 	spin_unlock_irq(&ffs->ev.waitq.lock);
635 done_mutex:
636 	mutex_unlock(&ffs->mutex);
637 	kfree(data);
638 	return ret;
639 }
640 
641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 	struct ffs_data *ffs = inode->i_private;
644 
645 	if (ffs->state == FFS_CLOSING)
646 		return -EBUSY;
647 
648 	file->private_data = ffs;
649 	ffs_data_opened(ffs);
650 
651 	return stream_open(inode, file);
652 }
653 
654 static int ffs_ep0_release(struct inode *inode, struct file *file)
655 {
656 	struct ffs_data *ffs = file->private_data;
657 
658 	ffs_data_closed(ffs);
659 
660 	return 0;
661 }
662 
663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664 {
665 	struct ffs_data *ffs = file->private_data;
666 	struct usb_gadget *gadget = ffs->gadget;
667 	long ret;
668 
669 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670 		struct ffs_function *func = ffs->func;
671 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672 	} else if (gadget && gadget->ops->ioctl) {
673 		ret = gadget->ops->ioctl(gadget, code, value);
674 	} else {
675 		ret = -ENOTTY;
676 	}
677 
678 	return ret;
679 }
680 
681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682 {
683 	struct ffs_data *ffs = file->private_data;
684 	__poll_t mask = EPOLLWRNORM;
685 	int ret;
686 
687 	poll_wait(file, &ffs->ev.waitq, wait);
688 
689 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690 	if (ret < 0)
691 		return mask;
692 
693 	switch (ffs->state) {
694 	case FFS_READ_DESCRIPTORS:
695 	case FFS_READ_STRINGS:
696 		mask |= EPOLLOUT;
697 		break;
698 
699 	case FFS_ACTIVE:
700 		switch (ffs->setup_state) {
701 		case FFS_NO_SETUP:
702 			if (ffs->ev.count)
703 				mask |= EPOLLIN;
704 			break;
705 
706 		case FFS_SETUP_PENDING:
707 		case FFS_SETUP_CANCELLED:
708 			mask |= (EPOLLIN | EPOLLOUT);
709 			break;
710 		}
711 		break;
712 
713 	case FFS_CLOSING:
714 		break;
715 	case FFS_DEACTIVATED:
716 		break;
717 	}
718 
719 	mutex_unlock(&ffs->mutex);
720 
721 	return mask;
722 }
723 
724 static const struct file_operations ffs_ep0_operations = {
725 	.llseek =	no_llseek,
726 
727 	.open =		ffs_ep0_open,
728 	.write =	ffs_ep0_write,
729 	.read =		ffs_ep0_read,
730 	.release =	ffs_ep0_release,
731 	.unlocked_ioctl =	ffs_ep0_ioctl,
732 	.poll =		ffs_ep0_poll,
733 };
734 
735 
736 /* "Normal" endpoints operations ********************************************/
737 
738 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
739 {
740 	struct ffs_io_data *io_data = req->context;
741 
742 	if (req->status)
743 		io_data->status = req->status;
744 	else
745 		io_data->status = req->actual;
746 
747 	complete(&io_data->done);
748 }
749 
750 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
751 {
752 	ssize_t ret = copy_to_iter(data, data_len, iter);
753 	if (ret == data_len)
754 		return ret;
755 
756 	if (iov_iter_count(iter))
757 		return -EFAULT;
758 
759 	/*
760 	 * Dear user space developer!
761 	 *
762 	 * TL;DR: To stop getting below error message in your kernel log, change
763 	 * user space code using functionfs to align read buffers to a max
764 	 * packet size.
765 	 *
766 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
767 	 * packet size.  When unaligned buffer is passed to functionfs, it
768 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
769 	 *
770 	 * Unfortunately, this means that host may send more data than was
771 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
772 	 * that excess data so it simply drops it.
773 	 *
774 	 * Was the buffer aligned in the first place, no such problem would
775 	 * happen.
776 	 *
777 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
778 	 * by splitting a request into multiple parts.  This splitting may still
779 	 * be a problem though so it’s likely best to align the buffer
780 	 * regardless of it being AIO or not..
781 	 *
782 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
783 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
784 	 * affected.
785 	 */
786 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
787 	       "Align read buffer size to max packet size to avoid the problem.\n",
788 	       data_len, ret);
789 
790 	return ret;
791 }
792 
793 /*
794  * allocate a virtually contiguous buffer and create a scatterlist describing it
795  * @sg_table	- pointer to a place to be filled with sg_table contents
796  * @size	- required buffer size
797  */
798 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
799 {
800 	struct page **pages;
801 	void *vaddr, *ptr;
802 	unsigned int n_pages;
803 	int i;
804 
805 	vaddr = vmalloc(sz);
806 	if (!vaddr)
807 		return NULL;
808 
809 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
810 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
811 	if (!pages) {
812 		vfree(vaddr);
813 
814 		return NULL;
815 	}
816 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
817 		pages[i] = vmalloc_to_page(ptr);
818 
819 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
820 		kvfree(pages);
821 		vfree(vaddr);
822 
823 		return NULL;
824 	}
825 	kvfree(pages);
826 
827 	return vaddr;
828 }
829 
830 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
831 	size_t data_len)
832 {
833 	if (io_data->use_sg)
834 		return ffs_build_sg_list(&io_data->sgt, data_len);
835 
836 	return kmalloc(data_len, GFP_KERNEL);
837 }
838 
839 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
840 {
841 	if (!io_data->buf)
842 		return;
843 
844 	if (io_data->use_sg) {
845 		sg_free_table(&io_data->sgt);
846 		vfree(io_data->buf);
847 	} else {
848 		kfree(io_data->buf);
849 	}
850 }
851 
852 static void ffs_user_copy_worker(struct work_struct *work)
853 {
854 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
855 						   work);
856 	int ret = io_data->status;
857 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
858 	unsigned long flags;
859 
860 	if (io_data->read && ret > 0) {
861 		kthread_use_mm(io_data->mm);
862 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
863 		kthread_unuse_mm(io_data->mm);
864 	}
865 
866 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
867 
868 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
869 		eventfd_signal(io_data->ffs->ffs_eventfd);
870 
871 	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
872 	usb_ep_free_request(io_data->ep, io_data->req);
873 	io_data->req = NULL;
874 	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
875 
876 	if (io_data->read)
877 		kfree(io_data->to_free);
878 	ffs_free_buffer(io_data);
879 	kfree(io_data);
880 }
881 
882 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
883 					 struct usb_request *req)
884 {
885 	struct ffs_io_data *io_data = req->context;
886 	struct ffs_data *ffs = io_data->ffs;
887 
888 	io_data->status = req->status ? req->status : req->actual;
889 
890 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
891 	queue_work(ffs->io_completion_wq, &io_data->work);
892 }
893 
894 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
895 {
896 	/*
897 	 * See comment in struct ffs_epfile for full read_buffer pointer
898 	 * synchronisation story.
899 	 */
900 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
901 	if (buf && buf != READ_BUFFER_DROP)
902 		kfree(buf);
903 }
904 
905 /* Assumes epfile->mutex is held. */
906 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
907 					  struct iov_iter *iter)
908 {
909 	/*
910 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
911 	 * the buffer while we are using it.  See comment in struct ffs_epfile
912 	 * for full read_buffer pointer synchronisation story.
913 	 */
914 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
915 	ssize_t ret;
916 	if (!buf || buf == READ_BUFFER_DROP)
917 		return 0;
918 
919 	ret = copy_to_iter(buf->data, buf->length, iter);
920 	if (buf->length == ret) {
921 		kfree(buf);
922 		return ret;
923 	}
924 
925 	if (iov_iter_count(iter)) {
926 		ret = -EFAULT;
927 	} else {
928 		buf->length -= ret;
929 		buf->data += ret;
930 	}
931 
932 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
933 		kfree(buf);
934 
935 	return ret;
936 }
937 
938 /* Assumes epfile->mutex is held. */
939 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
940 				      void *data, int data_len,
941 				      struct iov_iter *iter)
942 {
943 	struct ffs_buffer *buf;
944 
945 	ssize_t ret = copy_to_iter(data, data_len, iter);
946 	if (data_len == ret)
947 		return ret;
948 
949 	if (iov_iter_count(iter))
950 		return -EFAULT;
951 
952 	/* See ffs_copy_to_iter for more context. */
953 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
954 		data_len, ret);
955 
956 	data_len -= ret;
957 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
958 	if (!buf)
959 		return -ENOMEM;
960 	buf->length = data_len;
961 	buf->data = buf->storage;
962 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
963 
964 	/*
965 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
966 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
967 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
968 	 * story.
969 	 */
970 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
971 		kfree(buf);
972 
973 	return ret;
974 }
975 
976 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
977 {
978 	struct ffs_epfile *epfile = file->private_data;
979 	struct ffs_ep *ep;
980 	int ret;
981 
982 	/* Wait for endpoint to be enabled */
983 	ep = epfile->ep;
984 	if (!ep) {
985 		if (file->f_flags & O_NONBLOCK)
986 			return ERR_PTR(-EAGAIN);
987 
988 		ret = wait_event_interruptible(
989 				epfile->ffs->wait, (ep = epfile->ep));
990 		if (ret)
991 			return ERR_PTR(-EINTR);
992 	}
993 
994 	return ep;
995 }
996 
997 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
998 {
999 	struct ffs_epfile *epfile = file->private_data;
1000 	struct usb_request *req;
1001 	struct ffs_ep *ep;
1002 	char *data = NULL;
1003 	ssize_t ret, data_len = -EINVAL;
1004 	int halt;
1005 
1006 	/* Are we still active? */
1007 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1008 		return -ENODEV;
1009 
1010 	ep = ffs_epfile_wait_ep(file);
1011 	if (IS_ERR(ep))
1012 		return PTR_ERR(ep);
1013 
1014 	/* Do we halt? */
1015 	halt = (!io_data->read == !epfile->in);
1016 	if (halt && epfile->isoc)
1017 		return -EINVAL;
1018 
1019 	/* We will be using request and read_buffer */
1020 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1021 	if (ret)
1022 		goto error;
1023 
1024 	/* Allocate & copy */
1025 	if (!halt) {
1026 		struct usb_gadget *gadget;
1027 
1028 		/*
1029 		 * Do we have buffered data from previous partial read?  Check
1030 		 * that for synchronous case only because we do not have
1031 		 * facility to ‘wake up’ a pending asynchronous read and push
1032 		 * buffered data to it which we would need to make things behave
1033 		 * consistently.
1034 		 */
1035 		if (!io_data->aio && io_data->read) {
1036 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1037 			if (ret)
1038 				goto error_mutex;
1039 		}
1040 
1041 		/*
1042 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1043 		 * before the waiting completes, so do not assign to 'gadget'
1044 		 * earlier
1045 		 */
1046 		gadget = epfile->ffs->gadget;
1047 
1048 		spin_lock_irq(&epfile->ffs->eps_lock);
1049 		/* In the meantime, endpoint got disabled or changed. */
1050 		if (epfile->ep != ep) {
1051 			ret = -ESHUTDOWN;
1052 			goto error_lock;
1053 		}
1054 		data_len = iov_iter_count(&io_data->data);
1055 		/*
1056 		 * Controller may require buffer size to be aligned to
1057 		 * maxpacketsize of an out endpoint.
1058 		 */
1059 		if (io_data->read)
1060 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1061 
1062 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1063 		spin_unlock_irq(&epfile->ffs->eps_lock);
1064 
1065 		data = ffs_alloc_buffer(io_data, data_len);
1066 		if (!data) {
1067 			ret = -ENOMEM;
1068 			goto error_mutex;
1069 		}
1070 		if (!io_data->read &&
1071 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1072 			ret = -EFAULT;
1073 			goto error_mutex;
1074 		}
1075 	}
1076 
1077 	spin_lock_irq(&epfile->ffs->eps_lock);
1078 
1079 	if (epfile->ep != ep) {
1080 		/* In the meantime, endpoint got disabled or changed. */
1081 		ret = -ESHUTDOWN;
1082 	} else if (halt) {
1083 		ret = usb_ep_set_halt(ep->ep);
1084 		if (!ret)
1085 			ret = -EBADMSG;
1086 	} else if (data_len == -EINVAL) {
1087 		/*
1088 		 * Sanity Check: even though data_len can't be used
1089 		 * uninitialized at the time I write this comment, some
1090 		 * compilers complain about this situation.
1091 		 * In order to keep the code clean from warnings, data_len is
1092 		 * being initialized to -EINVAL during its declaration, which
1093 		 * means we can't rely on compiler anymore to warn no future
1094 		 * changes won't result in data_len being used uninitialized.
1095 		 * For such reason, we're adding this redundant sanity check
1096 		 * here.
1097 		 */
1098 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1099 		ret = -EINVAL;
1100 	} else if (!io_data->aio) {
1101 		bool interrupted = false;
1102 
1103 		req = ep->req;
1104 		if (io_data->use_sg) {
1105 			req->buf = NULL;
1106 			req->sg	= io_data->sgt.sgl;
1107 			req->num_sgs = io_data->sgt.nents;
1108 		} else {
1109 			req->buf = data;
1110 			req->num_sgs = 0;
1111 		}
1112 		req->length = data_len;
1113 
1114 		io_data->buf = data;
1115 
1116 		init_completion(&io_data->done);
1117 		req->context  = io_data;
1118 		req->complete = ffs_epfile_io_complete;
1119 
1120 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1121 		if (ret < 0)
1122 			goto error_lock;
1123 
1124 		spin_unlock_irq(&epfile->ffs->eps_lock);
1125 
1126 		if (wait_for_completion_interruptible(&io_data->done)) {
1127 			spin_lock_irq(&epfile->ffs->eps_lock);
1128 			if (epfile->ep != ep) {
1129 				ret = -ESHUTDOWN;
1130 				goto error_lock;
1131 			}
1132 			/*
1133 			 * To avoid race condition with ffs_epfile_io_complete,
1134 			 * dequeue the request first then check
1135 			 * status. usb_ep_dequeue API should guarantee no race
1136 			 * condition with req->complete callback.
1137 			 */
1138 			usb_ep_dequeue(ep->ep, req);
1139 			spin_unlock_irq(&epfile->ffs->eps_lock);
1140 			wait_for_completion(&io_data->done);
1141 			interrupted = io_data->status < 0;
1142 		}
1143 
1144 		if (interrupted)
1145 			ret = -EINTR;
1146 		else if (io_data->read && io_data->status > 0)
1147 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1148 						     &io_data->data);
1149 		else
1150 			ret = io_data->status;
1151 		goto error_mutex;
1152 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1153 		ret = -ENOMEM;
1154 	} else {
1155 		if (io_data->use_sg) {
1156 			req->buf = NULL;
1157 			req->sg	= io_data->sgt.sgl;
1158 			req->num_sgs = io_data->sgt.nents;
1159 		} else {
1160 			req->buf = data;
1161 			req->num_sgs = 0;
1162 		}
1163 		req->length = data_len;
1164 
1165 		io_data->buf = data;
1166 		io_data->ep = ep->ep;
1167 		io_data->req = req;
1168 		io_data->ffs = epfile->ffs;
1169 
1170 		req->context  = io_data;
1171 		req->complete = ffs_epfile_async_io_complete;
1172 
1173 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1174 		if (ret) {
1175 			io_data->req = NULL;
1176 			usb_ep_free_request(ep->ep, req);
1177 			goto error_lock;
1178 		}
1179 
1180 		ret = -EIOCBQUEUED;
1181 		/*
1182 		 * Do not kfree the buffer in this function.  It will be freed
1183 		 * by ffs_user_copy_worker.
1184 		 */
1185 		data = NULL;
1186 	}
1187 
1188 error_lock:
1189 	spin_unlock_irq(&epfile->ffs->eps_lock);
1190 error_mutex:
1191 	mutex_unlock(&epfile->mutex);
1192 error:
1193 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1194 		ffs_free_buffer(io_data);
1195 	return ret;
1196 }
1197 
1198 static int
1199 ffs_epfile_open(struct inode *inode, struct file *file)
1200 {
1201 	struct ffs_epfile *epfile = inode->i_private;
1202 
1203 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1204 		return -ENODEV;
1205 
1206 	file->private_data = epfile;
1207 	ffs_data_opened(epfile->ffs);
1208 
1209 	return stream_open(inode, file);
1210 }
1211 
1212 static int ffs_aio_cancel(struct kiocb *kiocb)
1213 {
1214 	struct ffs_io_data *io_data = kiocb->private;
1215 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1216 	unsigned long flags;
1217 	int value;
1218 
1219 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1220 
1221 	if (io_data && io_data->ep && io_data->req)
1222 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1223 	else
1224 		value = -EINVAL;
1225 
1226 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1227 
1228 	return value;
1229 }
1230 
1231 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1232 {
1233 	struct ffs_io_data io_data, *p = &io_data;
1234 	ssize_t res;
1235 
1236 	if (!is_sync_kiocb(kiocb)) {
1237 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1238 		if (!p)
1239 			return -ENOMEM;
1240 		p->aio = true;
1241 	} else {
1242 		memset(p, 0, sizeof(*p));
1243 		p->aio = false;
1244 	}
1245 
1246 	p->read = false;
1247 	p->kiocb = kiocb;
1248 	p->data = *from;
1249 	p->mm = current->mm;
1250 
1251 	kiocb->private = p;
1252 
1253 	if (p->aio)
1254 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1255 
1256 	res = ffs_epfile_io(kiocb->ki_filp, p);
1257 	if (res == -EIOCBQUEUED)
1258 		return res;
1259 	if (p->aio)
1260 		kfree(p);
1261 	else
1262 		*from = p->data;
1263 	return res;
1264 }
1265 
1266 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1267 {
1268 	struct ffs_io_data io_data, *p = &io_data;
1269 	ssize_t res;
1270 
1271 	if (!is_sync_kiocb(kiocb)) {
1272 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1273 		if (!p)
1274 			return -ENOMEM;
1275 		p->aio = true;
1276 	} else {
1277 		memset(p, 0, sizeof(*p));
1278 		p->aio = false;
1279 	}
1280 
1281 	p->read = true;
1282 	p->kiocb = kiocb;
1283 	if (p->aio) {
1284 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1285 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1286 			kfree(p);
1287 			return -ENOMEM;
1288 		}
1289 	} else {
1290 		p->data = *to;
1291 		p->to_free = NULL;
1292 	}
1293 	p->mm = current->mm;
1294 
1295 	kiocb->private = p;
1296 
1297 	if (p->aio)
1298 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1299 
1300 	res = ffs_epfile_io(kiocb->ki_filp, p);
1301 	if (res == -EIOCBQUEUED)
1302 		return res;
1303 
1304 	if (p->aio) {
1305 		kfree(p->to_free);
1306 		kfree(p);
1307 	} else {
1308 		*to = p->data;
1309 	}
1310 	return res;
1311 }
1312 
1313 static void ffs_dmabuf_release(struct kref *ref)
1314 {
1315 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1316 	struct dma_buf_attachment *attach = priv->attach;
1317 	struct dma_buf *dmabuf = attach->dmabuf;
1318 
1319 	pr_vdebug("FFS DMABUF release\n");
1320 	dma_resv_lock(dmabuf->resv, NULL);
1321 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1322 	dma_resv_unlock(dmabuf->resv);
1323 
1324 	dma_buf_detach(attach->dmabuf, attach);
1325 	dma_buf_put(dmabuf);
1326 	kfree(priv);
1327 }
1328 
1329 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1330 {
1331 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1332 
1333 	kref_get(&priv->ref);
1334 }
1335 
1336 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1337 {
1338 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1339 
1340 	kref_put(&priv->ref, ffs_dmabuf_release);
1341 }
1342 
1343 static int
1344 ffs_epfile_release(struct inode *inode, struct file *file)
1345 {
1346 	struct ffs_epfile *epfile = inode->i_private;
1347 	struct ffs_dmabuf_priv *priv, *tmp;
1348 	struct ffs_data *ffs = epfile->ffs;
1349 
1350 	mutex_lock(&epfile->dmabufs_mutex);
1351 
1352 	/* Close all attached DMABUFs */
1353 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1354 		/* Cancel any pending transfer */
1355 		spin_lock_irq(&ffs->eps_lock);
1356 		if (priv->ep && priv->req)
1357 			usb_ep_dequeue(priv->ep, priv->req);
1358 		spin_unlock_irq(&ffs->eps_lock);
1359 
1360 		list_del(&priv->entry);
1361 		ffs_dmabuf_put(priv->attach);
1362 	}
1363 
1364 	mutex_unlock(&epfile->dmabufs_mutex);
1365 
1366 	__ffs_epfile_read_buffer_free(epfile);
1367 	ffs_data_closed(epfile->ffs);
1368 
1369 	return 0;
1370 }
1371 
1372 static void ffs_dmabuf_cleanup(struct work_struct *work)
1373 {
1374 	struct ffs_dma_fence *dma_fence =
1375 		container_of(work, struct ffs_dma_fence, work);
1376 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1377 	struct dma_buf_attachment *attach = priv->attach;
1378 	struct dma_fence *fence = &dma_fence->base;
1379 
1380 	ffs_dmabuf_put(attach);
1381 	dma_fence_put(fence);
1382 }
1383 
1384 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1385 {
1386 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1387 	struct dma_fence *fence = &dma_fence->base;
1388 	bool cookie = dma_fence_begin_signalling();
1389 
1390 	dma_fence_get(fence);
1391 	fence->error = ret;
1392 	dma_fence_signal(fence);
1393 	dma_fence_end_signalling(cookie);
1394 
1395 	/*
1396 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1397 	 * It can't be done here, as the unref functions might try to lock
1398 	 * the resv object, which would deadlock.
1399 	 */
1400 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1401 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1402 }
1403 
1404 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1405 					  struct usb_request *req)
1406 {
1407 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1408 	ffs_dmabuf_signal_done(req->context, req->status);
1409 	usb_ep_free_request(ep, req);
1410 }
1411 
1412 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1413 {
1414 	return "functionfs";
1415 }
1416 
1417 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1418 {
1419 	return "";
1420 }
1421 
1422 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1423 {
1424 	struct ffs_dma_fence *dma_fence =
1425 		container_of(fence, struct ffs_dma_fence, base);
1426 
1427 	kfree(dma_fence);
1428 }
1429 
1430 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1431 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1432 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1433 	.release		= ffs_dmabuf_fence_release,
1434 };
1435 
1436 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1437 {
1438 	if (!nonblock)
1439 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1440 
1441 	if (!dma_resv_trylock(dmabuf->resv))
1442 		return -EBUSY;
1443 
1444 	return 0;
1445 }
1446 
1447 static struct dma_buf_attachment *
1448 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1449 {
1450 	struct device *dev = epfile->ffs->gadget->dev.parent;
1451 	struct dma_buf_attachment *attach = NULL;
1452 	struct ffs_dmabuf_priv *priv;
1453 
1454 	mutex_lock(&epfile->dmabufs_mutex);
1455 
1456 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1457 		if (priv->attach->dev == dev
1458 		    && priv->attach->dmabuf == dmabuf) {
1459 			attach = priv->attach;
1460 			break;
1461 		}
1462 	}
1463 
1464 	if (attach)
1465 		ffs_dmabuf_get(attach);
1466 
1467 	mutex_unlock(&epfile->dmabufs_mutex);
1468 
1469 	return attach ?: ERR_PTR(-EPERM);
1470 }
1471 
1472 static int ffs_dmabuf_attach(struct file *file, int fd)
1473 {
1474 	bool nonblock = file->f_flags & O_NONBLOCK;
1475 	struct ffs_epfile *epfile = file->private_data;
1476 	struct usb_gadget *gadget = epfile->ffs->gadget;
1477 	struct dma_buf_attachment *attach;
1478 	struct ffs_dmabuf_priv *priv;
1479 	enum dma_data_direction dir;
1480 	struct sg_table *sg_table;
1481 	struct dma_buf *dmabuf;
1482 	int err;
1483 
1484 	if (!gadget || !gadget->sg_supported)
1485 		return -EPERM;
1486 
1487 	dmabuf = dma_buf_get(fd);
1488 	if (IS_ERR(dmabuf))
1489 		return PTR_ERR(dmabuf);
1490 
1491 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1492 	if (IS_ERR(attach)) {
1493 		err = PTR_ERR(attach);
1494 		goto err_dmabuf_put;
1495 	}
1496 
1497 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1498 	if (!priv) {
1499 		err = -ENOMEM;
1500 		goto err_dmabuf_detach;
1501 	}
1502 
1503 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1504 
1505 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1506 	if (err)
1507 		goto err_free_priv;
1508 
1509 	sg_table = dma_buf_map_attachment(attach, dir);
1510 	dma_resv_unlock(dmabuf->resv);
1511 
1512 	if (IS_ERR(sg_table)) {
1513 		err = PTR_ERR(sg_table);
1514 		goto err_free_priv;
1515 	}
1516 
1517 	attach->importer_priv = priv;
1518 
1519 	priv->sgt = sg_table;
1520 	priv->dir = dir;
1521 	priv->ffs = epfile->ffs;
1522 	priv->attach = attach;
1523 	spin_lock_init(&priv->lock);
1524 	kref_init(&priv->ref);
1525 	priv->context = dma_fence_context_alloc(1);
1526 
1527 	mutex_lock(&epfile->dmabufs_mutex);
1528 	list_add(&priv->entry, &epfile->dmabufs);
1529 	mutex_unlock(&epfile->dmabufs_mutex);
1530 
1531 	return 0;
1532 
1533 err_free_priv:
1534 	kfree(priv);
1535 err_dmabuf_detach:
1536 	dma_buf_detach(dmabuf, attach);
1537 err_dmabuf_put:
1538 	dma_buf_put(dmabuf);
1539 
1540 	return err;
1541 }
1542 
1543 static int ffs_dmabuf_detach(struct file *file, int fd)
1544 {
1545 	struct ffs_epfile *epfile = file->private_data;
1546 	struct ffs_data *ffs = epfile->ffs;
1547 	struct device *dev = ffs->gadget->dev.parent;
1548 	struct ffs_dmabuf_priv *priv, *tmp;
1549 	struct dma_buf *dmabuf;
1550 	int ret = -EPERM;
1551 
1552 	dmabuf = dma_buf_get(fd);
1553 	if (IS_ERR(dmabuf))
1554 		return PTR_ERR(dmabuf);
1555 
1556 	mutex_lock(&epfile->dmabufs_mutex);
1557 
1558 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1559 		if (priv->attach->dev == dev
1560 		    && priv->attach->dmabuf == dmabuf) {
1561 			/* Cancel any pending transfer */
1562 			spin_lock_irq(&ffs->eps_lock);
1563 			if (priv->ep && priv->req)
1564 				usb_ep_dequeue(priv->ep, priv->req);
1565 			spin_unlock_irq(&ffs->eps_lock);
1566 
1567 			list_del(&priv->entry);
1568 
1569 			/* Unref the reference from ffs_dmabuf_attach() */
1570 			ffs_dmabuf_put(priv->attach);
1571 			ret = 0;
1572 			break;
1573 		}
1574 	}
1575 
1576 	mutex_unlock(&epfile->dmabufs_mutex);
1577 	dma_buf_put(dmabuf);
1578 
1579 	return ret;
1580 }
1581 
1582 static int ffs_dmabuf_transfer(struct file *file,
1583 			       const struct usb_ffs_dmabuf_transfer_req *req)
1584 {
1585 	bool nonblock = file->f_flags & O_NONBLOCK;
1586 	struct ffs_epfile *epfile = file->private_data;
1587 	struct dma_buf_attachment *attach;
1588 	struct ffs_dmabuf_priv *priv;
1589 	struct ffs_dma_fence *fence;
1590 	struct usb_request *usb_req;
1591 	enum dma_resv_usage resv_dir;
1592 	struct dma_buf *dmabuf;
1593 	unsigned long timeout;
1594 	struct ffs_ep *ep;
1595 	bool cookie;
1596 	u32 seqno;
1597 	long retl;
1598 	int ret;
1599 
1600 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1601 		return -EINVAL;
1602 
1603 	dmabuf = dma_buf_get(req->fd);
1604 	if (IS_ERR(dmabuf))
1605 		return PTR_ERR(dmabuf);
1606 
1607 	if (req->length > dmabuf->size || req->length == 0) {
1608 		ret = -EINVAL;
1609 		goto err_dmabuf_put;
1610 	}
1611 
1612 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1613 	if (IS_ERR(attach)) {
1614 		ret = PTR_ERR(attach);
1615 		goto err_dmabuf_put;
1616 	}
1617 
1618 	priv = attach->importer_priv;
1619 
1620 	ep = ffs_epfile_wait_ep(file);
1621 	if (IS_ERR(ep)) {
1622 		ret = PTR_ERR(ep);
1623 		goto err_attachment_put;
1624 	}
1625 
1626 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1627 	if (ret)
1628 		goto err_attachment_put;
1629 
1630 	/* Make sure we don't have writers */
1631 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1632 	retl = dma_resv_wait_timeout(dmabuf->resv,
1633 				     dma_resv_usage_rw(epfile->in),
1634 				     true, timeout);
1635 	if (retl == 0)
1636 		retl = -EBUSY;
1637 	if (retl < 0) {
1638 		ret = (int)retl;
1639 		goto err_resv_unlock;
1640 	}
1641 
1642 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1643 	if (ret)
1644 		goto err_resv_unlock;
1645 
1646 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1647 	if (!fence) {
1648 		ret = -ENOMEM;
1649 		goto err_resv_unlock;
1650 	}
1651 
1652 	fence->priv = priv;
1653 
1654 	spin_lock_irq(&epfile->ffs->eps_lock);
1655 
1656 	/* In the meantime, endpoint got disabled or changed. */
1657 	if (epfile->ep != ep) {
1658 		ret = -ESHUTDOWN;
1659 		goto err_fence_put;
1660 	}
1661 
1662 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1663 	if (!usb_req) {
1664 		ret = -ENOMEM;
1665 		goto err_fence_put;
1666 	}
1667 
1668 	/*
1669 	 * usb_ep_queue() guarantees that all transfers are processed in the
1670 	 * order they are enqueued, so we can use a simple incrementing
1671 	 * sequence number for the dma_fence.
1672 	 */
1673 	seqno = atomic_add_return(1, &epfile->seqno);
1674 
1675 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1676 		       &priv->lock, priv->context, seqno);
1677 
1678 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1679 
1680 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1681 	dma_resv_unlock(dmabuf->resv);
1682 
1683 	/* Now that the dma_fence is in place, queue the transfer. */
1684 
1685 	usb_req->length = req->length;
1686 	usb_req->buf = NULL;
1687 	usb_req->sg = priv->sgt->sgl;
1688 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1689 	usb_req->sg_was_mapped = true;
1690 	usb_req->context  = fence;
1691 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1692 
1693 	cookie = dma_fence_begin_signalling();
1694 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1695 	dma_fence_end_signalling(cookie);
1696 	if (!ret) {
1697 		priv->req = usb_req;
1698 		priv->ep = ep->ep;
1699 	} else {
1700 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1701 		ffs_dmabuf_signal_done(fence, ret);
1702 		usb_ep_free_request(ep->ep, usb_req);
1703 	}
1704 
1705 	spin_unlock_irq(&epfile->ffs->eps_lock);
1706 	dma_buf_put(dmabuf);
1707 
1708 	return ret;
1709 
1710 err_fence_put:
1711 	spin_unlock_irq(&epfile->ffs->eps_lock);
1712 	dma_fence_put(&fence->base);
1713 err_resv_unlock:
1714 	dma_resv_unlock(dmabuf->resv);
1715 err_attachment_put:
1716 	ffs_dmabuf_put(attach);
1717 err_dmabuf_put:
1718 	dma_buf_put(dmabuf);
1719 
1720 	return ret;
1721 }
1722 
1723 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1724 			     unsigned long value)
1725 {
1726 	struct ffs_epfile *epfile = file->private_data;
1727 	struct ffs_ep *ep;
1728 	int ret;
1729 
1730 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1731 		return -ENODEV;
1732 
1733 	switch (code) {
1734 	case FUNCTIONFS_DMABUF_ATTACH:
1735 	{
1736 		int fd;
1737 
1738 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1739 			ret = -EFAULT;
1740 			break;
1741 		}
1742 
1743 		return ffs_dmabuf_attach(file, fd);
1744 	}
1745 	case FUNCTIONFS_DMABUF_DETACH:
1746 	{
1747 		int fd;
1748 
1749 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1750 			ret = -EFAULT;
1751 			break;
1752 		}
1753 
1754 		return ffs_dmabuf_detach(file, fd);
1755 	}
1756 	case FUNCTIONFS_DMABUF_TRANSFER:
1757 	{
1758 		struct usb_ffs_dmabuf_transfer_req req;
1759 
1760 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1761 			ret = -EFAULT;
1762 			break;
1763 		}
1764 
1765 		return ffs_dmabuf_transfer(file, &req);
1766 	}
1767 	default:
1768 		break;
1769 	}
1770 
1771 	/* Wait for endpoint to be enabled */
1772 	ep = ffs_epfile_wait_ep(file);
1773 	if (IS_ERR(ep))
1774 		return PTR_ERR(ep);
1775 
1776 	spin_lock_irq(&epfile->ffs->eps_lock);
1777 
1778 	/* In the meantime, endpoint got disabled or changed. */
1779 	if (epfile->ep != ep) {
1780 		spin_unlock_irq(&epfile->ffs->eps_lock);
1781 		return -ESHUTDOWN;
1782 	}
1783 
1784 	switch (code) {
1785 	case FUNCTIONFS_FIFO_STATUS:
1786 		ret = usb_ep_fifo_status(epfile->ep->ep);
1787 		break;
1788 	case FUNCTIONFS_FIFO_FLUSH:
1789 		usb_ep_fifo_flush(epfile->ep->ep);
1790 		ret = 0;
1791 		break;
1792 	case FUNCTIONFS_CLEAR_HALT:
1793 		ret = usb_ep_clear_halt(epfile->ep->ep);
1794 		break;
1795 	case FUNCTIONFS_ENDPOINT_REVMAP:
1796 		ret = epfile->ep->num;
1797 		break;
1798 	case FUNCTIONFS_ENDPOINT_DESC:
1799 	{
1800 		int desc_idx;
1801 		struct usb_endpoint_descriptor desc1, *desc;
1802 
1803 		switch (epfile->ffs->gadget->speed) {
1804 		case USB_SPEED_SUPER:
1805 		case USB_SPEED_SUPER_PLUS:
1806 			desc_idx = 2;
1807 			break;
1808 		case USB_SPEED_HIGH:
1809 			desc_idx = 1;
1810 			break;
1811 		default:
1812 			desc_idx = 0;
1813 		}
1814 
1815 		desc = epfile->ep->descs[desc_idx];
1816 		memcpy(&desc1, desc, desc->bLength);
1817 
1818 		spin_unlock_irq(&epfile->ffs->eps_lock);
1819 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1820 		if (ret)
1821 			ret = -EFAULT;
1822 		return ret;
1823 	}
1824 	default:
1825 		ret = -ENOTTY;
1826 	}
1827 	spin_unlock_irq(&epfile->ffs->eps_lock);
1828 
1829 	return ret;
1830 }
1831 
1832 static const struct file_operations ffs_epfile_operations = {
1833 	.llseek =	no_llseek,
1834 
1835 	.open =		ffs_epfile_open,
1836 	.write_iter =	ffs_epfile_write_iter,
1837 	.read_iter =	ffs_epfile_read_iter,
1838 	.release =	ffs_epfile_release,
1839 	.unlocked_ioctl =	ffs_epfile_ioctl,
1840 	.compat_ioctl = compat_ptr_ioctl,
1841 };
1842 
1843 
1844 /* File system and super block operations ***********************************/
1845 
1846 /*
1847  * Mounting the file system creates a controller file, used first for
1848  * function configuration then later for event monitoring.
1849  */
1850 
1851 static struct inode *__must_check
1852 ffs_sb_make_inode(struct super_block *sb, void *data,
1853 		  const struct file_operations *fops,
1854 		  const struct inode_operations *iops,
1855 		  struct ffs_file_perms *perms)
1856 {
1857 	struct inode *inode;
1858 
1859 	inode = new_inode(sb);
1860 
1861 	if (inode) {
1862 		struct timespec64 ts = inode_set_ctime_current(inode);
1863 
1864 		inode->i_ino	 = get_next_ino();
1865 		inode->i_mode    = perms->mode;
1866 		inode->i_uid     = perms->uid;
1867 		inode->i_gid     = perms->gid;
1868 		inode_set_atime_to_ts(inode, ts);
1869 		inode_set_mtime_to_ts(inode, ts);
1870 		inode->i_private = data;
1871 		if (fops)
1872 			inode->i_fop = fops;
1873 		if (iops)
1874 			inode->i_op  = iops;
1875 	}
1876 
1877 	return inode;
1878 }
1879 
1880 /* Create "regular" file */
1881 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1882 					const char *name, void *data,
1883 					const struct file_operations *fops)
1884 {
1885 	struct ffs_data	*ffs = sb->s_fs_info;
1886 	struct dentry	*dentry;
1887 	struct inode	*inode;
1888 
1889 	dentry = d_alloc_name(sb->s_root, name);
1890 	if (!dentry)
1891 		return NULL;
1892 
1893 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1894 	if (!inode) {
1895 		dput(dentry);
1896 		return NULL;
1897 	}
1898 
1899 	d_add(dentry, inode);
1900 	return dentry;
1901 }
1902 
1903 /* Super block */
1904 static const struct super_operations ffs_sb_operations = {
1905 	.statfs =	simple_statfs,
1906 	.drop_inode =	generic_delete_inode,
1907 };
1908 
1909 struct ffs_sb_fill_data {
1910 	struct ffs_file_perms perms;
1911 	umode_t root_mode;
1912 	const char *dev_name;
1913 	bool no_disconnect;
1914 	struct ffs_data *ffs_data;
1915 };
1916 
1917 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1918 {
1919 	struct ffs_sb_fill_data *data = fc->fs_private;
1920 	struct inode	*inode;
1921 	struct ffs_data	*ffs = data->ffs_data;
1922 
1923 	ffs->sb              = sb;
1924 	data->ffs_data       = NULL;
1925 	sb->s_fs_info        = ffs;
1926 	sb->s_blocksize      = PAGE_SIZE;
1927 	sb->s_blocksize_bits = PAGE_SHIFT;
1928 	sb->s_magic          = FUNCTIONFS_MAGIC;
1929 	sb->s_op             = &ffs_sb_operations;
1930 	sb->s_time_gran      = 1;
1931 
1932 	/* Root inode */
1933 	data->perms.mode = data->root_mode;
1934 	inode = ffs_sb_make_inode(sb, NULL,
1935 				  &simple_dir_operations,
1936 				  &simple_dir_inode_operations,
1937 				  &data->perms);
1938 	sb->s_root = d_make_root(inode);
1939 	if (!sb->s_root)
1940 		return -ENOMEM;
1941 
1942 	/* EP0 file */
1943 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1944 		return -ENOMEM;
1945 
1946 	return 0;
1947 }
1948 
1949 enum {
1950 	Opt_no_disconnect,
1951 	Opt_rmode,
1952 	Opt_fmode,
1953 	Opt_mode,
1954 	Opt_uid,
1955 	Opt_gid,
1956 };
1957 
1958 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1959 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1960 	fsparam_u32	("rmode",		Opt_rmode),
1961 	fsparam_u32	("fmode",		Opt_fmode),
1962 	fsparam_u32	("mode",		Opt_mode),
1963 	fsparam_u32	("uid",			Opt_uid),
1964 	fsparam_u32	("gid",			Opt_gid),
1965 	{}
1966 };
1967 
1968 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1969 {
1970 	struct ffs_sb_fill_data *data = fc->fs_private;
1971 	struct fs_parse_result result;
1972 	int opt;
1973 
1974 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1975 	if (opt < 0)
1976 		return opt;
1977 
1978 	switch (opt) {
1979 	case Opt_no_disconnect:
1980 		data->no_disconnect = result.boolean;
1981 		break;
1982 	case Opt_rmode:
1983 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1984 		break;
1985 	case Opt_fmode:
1986 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1987 		break;
1988 	case Opt_mode:
1989 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1990 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1991 		break;
1992 
1993 	case Opt_uid:
1994 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1995 		if (!uid_valid(data->perms.uid))
1996 			goto unmapped_value;
1997 		break;
1998 	case Opt_gid:
1999 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
2000 		if (!gid_valid(data->perms.gid))
2001 			goto unmapped_value;
2002 		break;
2003 
2004 	default:
2005 		return -ENOPARAM;
2006 	}
2007 
2008 	return 0;
2009 
2010 unmapped_value:
2011 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2012 }
2013 
2014 /*
2015  * Set up the superblock for a mount.
2016  */
2017 static int ffs_fs_get_tree(struct fs_context *fc)
2018 {
2019 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2020 	struct ffs_data	*ffs;
2021 	int ret;
2022 
2023 	if (!fc->source)
2024 		return invalf(fc, "No source specified");
2025 
2026 	ffs = ffs_data_new(fc->source);
2027 	if (!ffs)
2028 		return -ENOMEM;
2029 	ffs->file_perms = ctx->perms;
2030 	ffs->no_disconnect = ctx->no_disconnect;
2031 
2032 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2033 	if (!ffs->dev_name) {
2034 		ffs_data_put(ffs);
2035 		return -ENOMEM;
2036 	}
2037 
2038 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2039 	if (ret) {
2040 		ffs_data_put(ffs);
2041 		return ret;
2042 	}
2043 
2044 	ctx->ffs_data = ffs;
2045 	return get_tree_nodev(fc, ffs_sb_fill);
2046 }
2047 
2048 static void ffs_fs_free_fc(struct fs_context *fc)
2049 {
2050 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2051 
2052 	if (ctx) {
2053 		if (ctx->ffs_data) {
2054 			ffs_data_put(ctx->ffs_data);
2055 		}
2056 
2057 		kfree(ctx);
2058 	}
2059 }
2060 
2061 static const struct fs_context_operations ffs_fs_context_ops = {
2062 	.free		= ffs_fs_free_fc,
2063 	.parse_param	= ffs_fs_parse_param,
2064 	.get_tree	= ffs_fs_get_tree,
2065 };
2066 
2067 static int ffs_fs_init_fs_context(struct fs_context *fc)
2068 {
2069 	struct ffs_sb_fill_data *ctx;
2070 
2071 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2072 	if (!ctx)
2073 		return -ENOMEM;
2074 
2075 	ctx->perms.mode = S_IFREG | 0600;
2076 	ctx->perms.uid = GLOBAL_ROOT_UID;
2077 	ctx->perms.gid = GLOBAL_ROOT_GID;
2078 	ctx->root_mode = S_IFDIR | 0500;
2079 	ctx->no_disconnect = false;
2080 
2081 	fc->fs_private = ctx;
2082 	fc->ops = &ffs_fs_context_ops;
2083 	return 0;
2084 }
2085 
2086 static void
2087 ffs_fs_kill_sb(struct super_block *sb)
2088 {
2089 	kill_litter_super(sb);
2090 	if (sb->s_fs_info)
2091 		ffs_data_closed(sb->s_fs_info);
2092 }
2093 
2094 static struct file_system_type ffs_fs_type = {
2095 	.owner		= THIS_MODULE,
2096 	.name		= "functionfs",
2097 	.init_fs_context = ffs_fs_init_fs_context,
2098 	.parameters	= ffs_fs_fs_parameters,
2099 	.kill_sb	= ffs_fs_kill_sb,
2100 };
2101 MODULE_ALIAS_FS("functionfs");
2102 
2103 
2104 /* Driver's main init/cleanup functions *************************************/
2105 
2106 static int functionfs_init(void)
2107 {
2108 	int ret;
2109 
2110 	ret = register_filesystem(&ffs_fs_type);
2111 	if (!ret)
2112 		pr_info("file system registered\n");
2113 	else
2114 		pr_err("failed registering file system (%d)\n", ret);
2115 
2116 	return ret;
2117 }
2118 
2119 static void functionfs_cleanup(void)
2120 {
2121 	pr_info("unloading\n");
2122 	unregister_filesystem(&ffs_fs_type);
2123 }
2124 
2125 
2126 /* ffs_data and ffs_function construction and destruction code **************/
2127 
2128 static void ffs_data_clear(struct ffs_data *ffs);
2129 static void ffs_data_reset(struct ffs_data *ffs);
2130 
2131 static void ffs_data_get(struct ffs_data *ffs)
2132 {
2133 	refcount_inc(&ffs->ref);
2134 }
2135 
2136 static void ffs_data_opened(struct ffs_data *ffs)
2137 {
2138 	refcount_inc(&ffs->ref);
2139 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2140 			ffs->state == FFS_DEACTIVATED) {
2141 		ffs->state = FFS_CLOSING;
2142 		ffs_data_reset(ffs);
2143 	}
2144 }
2145 
2146 static void ffs_data_put(struct ffs_data *ffs)
2147 {
2148 	if (refcount_dec_and_test(&ffs->ref)) {
2149 		pr_info("%s(): freeing\n", __func__);
2150 		ffs_data_clear(ffs);
2151 		ffs_release_dev(ffs->private_data);
2152 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2153 		       swait_active(&ffs->ep0req_completion.wait) ||
2154 		       waitqueue_active(&ffs->wait));
2155 		destroy_workqueue(ffs->io_completion_wq);
2156 		kfree(ffs->dev_name);
2157 		kfree(ffs);
2158 	}
2159 }
2160 
2161 static void ffs_data_closed(struct ffs_data *ffs)
2162 {
2163 	struct ffs_epfile *epfiles;
2164 	unsigned long flags;
2165 
2166 	if (atomic_dec_and_test(&ffs->opened)) {
2167 		if (ffs->no_disconnect) {
2168 			ffs->state = FFS_DEACTIVATED;
2169 			spin_lock_irqsave(&ffs->eps_lock, flags);
2170 			epfiles = ffs->epfiles;
2171 			ffs->epfiles = NULL;
2172 			spin_unlock_irqrestore(&ffs->eps_lock,
2173 							flags);
2174 
2175 			if (epfiles)
2176 				ffs_epfiles_destroy(epfiles,
2177 						 ffs->eps_count);
2178 
2179 			if (ffs->setup_state == FFS_SETUP_PENDING)
2180 				__ffs_ep0_stall(ffs);
2181 		} else {
2182 			ffs->state = FFS_CLOSING;
2183 			ffs_data_reset(ffs);
2184 		}
2185 	}
2186 	if (atomic_read(&ffs->opened) < 0) {
2187 		ffs->state = FFS_CLOSING;
2188 		ffs_data_reset(ffs);
2189 	}
2190 
2191 	ffs_data_put(ffs);
2192 }
2193 
2194 static struct ffs_data *ffs_data_new(const char *dev_name)
2195 {
2196 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2197 	if (!ffs)
2198 		return NULL;
2199 
2200 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2201 	if (!ffs->io_completion_wq) {
2202 		kfree(ffs);
2203 		return NULL;
2204 	}
2205 
2206 	refcount_set(&ffs->ref, 1);
2207 	atomic_set(&ffs->opened, 0);
2208 	ffs->state = FFS_READ_DESCRIPTORS;
2209 	mutex_init(&ffs->mutex);
2210 	spin_lock_init(&ffs->eps_lock);
2211 	init_waitqueue_head(&ffs->ev.waitq);
2212 	init_waitqueue_head(&ffs->wait);
2213 	init_completion(&ffs->ep0req_completion);
2214 
2215 	/* XXX REVISIT need to update it in some places, or do we? */
2216 	ffs->ev.can_stall = 1;
2217 
2218 	return ffs;
2219 }
2220 
2221 static void ffs_data_clear(struct ffs_data *ffs)
2222 {
2223 	struct ffs_epfile *epfiles;
2224 	unsigned long flags;
2225 
2226 	ffs_closed(ffs);
2227 
2228 	BUG_ON(ffs->gadget);
2229 
2230 	spin_lock_irqsave(&ffs->eps_lock, flags);
2231 	epfiles = ffs->epfiles;
2232 	ffs->epfiles = NULL;
2233 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2234 
2235 	/*
2236 	 * potential race possible between ffs_func_eps_disable
2237 	 * & ffs_epfile_release therefore maintaining a local
2238 	 * copy of epfile will save us from use-after-free.
2239 	 */
2240 	if (epfiles) {
2241 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2242 		ffs->epfiles = NULL;
2243 	}
2244 
2245 	if (ffs->ffs_eventfd) {
2246 		eventfd_ctx_put(ffs->ffs_eventfd);
2247 		ffs->ffs_eventfd = NULL;
2248 	}
2249 
2250 	kfree(ffs->raw_descs_data);
2251 	kfree(ffs->raw_strings);
2252 	kfree(ffs->stringtabs);
2253 }
2254 
2255 static void ffs_data_reset(struct ffs_data *ffs)
2256 {
2257 	ffs_data_clear(ffs);
2258 
2259 	ffs->raw_descs_data = NULL;
2260 	ffs->raw_descs = NULL;
2261 	ffs->raw_strings = NULL;
2262 	ffs->stringtabs = NULL;
2263 
2264 	ffs->raw_descs_length = 0;
2265 	ffs->fs_descs_count = 0;
2266 	ffs->hs_descs_count = 0;
2267 	ffs->ss_descs_count = 0;
2268 
2269 	ffs->strings_count = 0;
2270 	ffs->interfaces_count = 0;
2271 	ffs->eps_count = 0;
2272 
2273 	ffs->ev.count = 0;
2274 
2275 	ffs->state = FFS_READ_DESCRIPTORS;
2276 	ffs->setup_state = FFS_NO_SETUP;
2277 	ffs->flags = 0;
2278 
2279 	ffs->ms_os_descs_ext_prop_count = 0;
2280 	ffs->ms_os_descs_ext_prop_name_len = 0;
2281 	ffs->ms_os_descs_ext_prop_data_len = 0;
2282 }
2283 
2284 
2285 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2286 {
2287 	struct usb_gadget_strings **lang;
2288 	int first_id;
2289 
2290 	if (WARN_ON(ffs->state != FFS_ACTIVE
2291 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2292 		return -EBADFD;
2293 
2294 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2295 	if (first_id < 0)
2296 		return first_id;
2297 
2298 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2299 	if (!ffs->ep0req)
2300 		return -ENOMEM;
2301 	ffs->ep0req->complete = ffs_ep0_complete;
2302 	ffs->ep0req->context = ffs;
2303 
2304 	lang = ffs->stringtabs;
2305 	if (lang) {
2306 		for (; *lang; ++lang) {
2307 			struct usb_string *str = (*lang)->strings;
2308 			int id = first_id;
2309 			for (; str->s; ++id, ++str)
2310 				str->id = id;
2311 		}
2312 	}
2313 
2314 	ffs->gadget = cdev->gadget;
2315 	ffs_data_get(ffs);
2316 	return 0;
2317 }
2318 
2319 static void functionfs_unbind(struct ffs_data *ffs)
2320 {
2321 	if (!WARN_ON(!ffs->gadget)) {
2322 		/* dequeue before freeing ep0req */
2323 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2324 		mutex_lock(&ffs->mutex);
2325 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2326 		ffs->ep0req = NULL;
2327 		ffs->gadget = NULL;
2328 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2329 		mutex_unlock(&ffs->mutex);
2330 		ffs_data_put(ffs);
2331 	}
2332 }
2333 
2334 static int ffs_epfiles_create(struct ffs_data *ffs)
2335 {
2336 	struct ffs_epfile *epfile, *epfiles;
2337 	unsigned i, count;
2338 
2339 	count = ffs->eps_count;
2340 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2341 	if (!epfiles)
2342 		return -ENOMEM;
2343 
2344 	epfile = epfiles;
2345 	for (i = 1; i <= count; ++i, ++epfile) {
2346 		epfile->ffs = ffs;
2347 		mutex_init(&epfile->mutex);
2348 		mutex_init(&epfile->dmabufs_mutex);
2349 		INIT_LIST_HEAD(&epfile->dmabufs);
2350 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2351 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2352 		else
2353 			sprintf(epfile->name, "ep%u", i);
2354 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2355 						 epfile,
2356 						 &ffs_epfile_operations);
2357 		if (!epfile->dentry) {
2358 			ffs_epfiles_destroy(epfiles, i - 1);
2359 			return -ENOMEM;
2360 		}
2361 	}
2362 
2363 	ffs->epfiles = epfiles;
2364 	return 0;
2365 }
2366 
2367 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2368 {
2369 	struct ffs_epfile *epfile = epfiles;
2370 
2371 	for (; count; --count, ++epfile) {
2372 		BUG_ON(mutex_is_locked(&epfile->mutex));
2373 		if (epfile->dentry) {
2374 			d_delete(epfile->dentry);
2375 			dput(epfile->dentry);
2376 			epfile->dentry = NULL;
2377 		}
2378 	}
2379 
2380 	kfree(epfiles);
2381 }
2382 
2383 static void ffs_func_eps_disable(struct ffs_function *func)
2384 {
2385 	struct ffs_ep *ep;
2386 	struct ffs_epfile *epfile;
2387 	unsigned short count;
2388 	unsigned long flags;
2389 
2390 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2391 	count = func->ffs->eps_count;
2392 	epfile = func->ffs->epfiles;
2393 	ep = func->eps;
2394 	while (count--) {
2395 		/* pending requests get nuked */
2396 		if (ep->ep)
2397 			usb_ep_disable(ep->ep);
2398 		++ep;
2399 
2400 		if (epfile) {
2401 			epfile->ep = NULL;
2402 			__ffs_epfile_read_buffer_free(epfile);
2403 			++epfile;
2404 		}
2405 	}
2406 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2407 }
2408 
2409 static int ffs_func_eps_enable(struct ffs_function *func)
2410 {
2411 	struct ffs_data *ffs;
2412 	struct ffs_ep *ep;
2413 	struct ffs_epfile *epfile;
2414 	unsigned short count;
2415 	unsigned long flags;
2416 	int ret = 0;
2417 
2418 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2419 	ffs = func->ffs;
2420 	ep = func->eps;
2421 	epfile = ffs->epfiles;
2422 	count = ffs->eps_count;
2423 	while(count--) {
2424 		ep->ep->driver_data = ep;
2425 
2426 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2427 		if (ret) {
2428 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2429 					__func__, ep->ep->name, ret);
2430 			break;
2431 		}
2432 
2433 		ret = usb_ep_enable(ep->ep);
2434 		if (!ret) {
2435 			epfile->ep = ep;
2436 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2437 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2438 		} else {
2439 			break;
2440 		}
2441 
2442 		++ep;
2443 		++epfile;
2444 	}
2445 
2446 	wake_up_interruptible(&ffs->wait);
2447 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2448 
2449 	return ret;
2450 }
2451 
2452 
2453 /* Parsing and building descriptors and strings *****************************/
2454 
2455 /*
2456  * This validates if data pointed by data is a valid USB descriptor as
2457  * well as record how many interfaces, endpoints and strings are
2458  * required by given configuration.  Returns address after the
2459  * descriptor or NULL if data is invalid.
2460  */
2461 
2462 enum ffs_entity_type {
2463 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2464 };
2465 
2466 enum ffs_os_desc_type {
2467 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2468 };
2469 
2470 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2471 				   u8 *valuep,
2472 				   struct usb_descriptor_header *desc,
2473 				   void *priv);
2474 
2475 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2476 				    struct usb_os_desc_header *h, void *data,
2477 				    unsigned len, void *priv);
2478 
2479 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2480 					   ffs_entity_callback entity,
2481 					   void *priv, int *current_class)
2482 {
2483 	struct usb_descriptor_header *_ds = (void *)data;
2484 	u8 length;
2485 	int ret;
2486 
2487 	/* At least two bytes are required: length and type */
2488 	if (len < 2) {
2489 		pr_vdebug("descriptor too short\n");
2490 		return -EINVAL;
2491 	}
2492 
2493 	/* If we have at least as many bytes as the descriptor takes? */
2494 	length = _ds->bLength;
2495 	if (len < length) {
2496 		pr_vdebug("descriptor longer then available data\n");
2497 		return -EINVAL;
2498 	}
2499 
2500 #define __entity_check_INTERFACE(val)  1
2501 #define __entity_check_STRING(val)     (val)
2502 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2503 #define __entity(type, val) do {					\
2504 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2505 		if (!__entity_check_ ##type(val)) {			\
2506 			pr_vdebug("invalid entity's value\n");		\
2507 			return -EINVAL;					\
2508 		}							\
2509 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2510 		if (ret < 0) {						\
2511 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2512 				 (val), ret);				\
2513 			return ret;					\
2514 		}							\
2515 	} while (0)
2516 
2517 	/* Parse descriptor depending on type. */
2518 	switch (_ds->bDescriptorType) {
2519 	case USB_DT_DEVICE:
2520 	case USB_DT_CONFIG:
2521 	case USB_DT_STRING:
2522 	case USB_DT_DEVICE_QUALIFIER:
2523 		/* function can't have any of those */
2524 		pr_vdebug("descriptor reserved for gadget: %d\n",
2525 		      _ds->bDescriptorType);
2526 		return -EINVAL;
2527 
2528 	case USB_DT_INTERFACE: {
2529 		struct usb_interface_descriptor *ds = (void *)_ds;
2530 		pr_vdebug("interface descriptor\n");
2531 		if (length != sizeof *ds)
2532 			goto inv_length;
2533 
2534 		__entity(INTERFACE, ds->bInterfaceNumber);
2535 		if (ds->iInterface)
2536 			__entity(STRING, ds->iInterface);
2537 		*current_class = ds->bInterfaceClass;
2538 	}
2539 		break;
2540 
2541 	case USB_DT_ENDPOINT: {
2542 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2543 		pr_vdebug("endpoint descriptor\n");
2544 		if (length != USB_DT_ENDPOINT_SIZE &&
2545 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2546 			goto inv_length;
2547 		__entity(ENDPOINT, ds->bEndpointAddress);
2548 	}
2549 		break;
2550 
2551 	case USB_TYPE_CLASS | 0x01:
2552 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2553 			pr_vdebug("hid descriptor\n");
2554 			if (length != sizeof(struct hid_descriptor))
2555 				goto inv_length;
2556 			break;
2557 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2558 			pr_vdebug("ccid descriptor\n");
2559 			if (length != sizeof(struct ccid_descriptor))
2560 				goto inv_length;
2561 			break;
2562 		} else {
2563 			pr_vdebug("unknown descriptor: %d for class %d\n",
2564 			      _ds->bDescriptorType, *current_class);
2565 			return -EINVAL;
2566 		}
2567 
2568 	case USB_DT_OTG:
2569 		if (length != sizeof(struct usb_otg_descriptor))
2570 			goto inv_length;
2571 		break;
2572 
2573 	case USB_DT_INTERFACE_ASSOCIATION: {
2574 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2575 		pr_vdebug("interface association descriptor\n");
2576 		if (length != sizeof *ds)
2577 			goto inv_length;
2578 		if (ds->iFunction)
2579 			__entity(STRING, ds->iFunction);
2580 	}
2581 		break;
2582 
2583 	case USB_DT_SS_ENDPOINT_COMP:
2584 		pr_vdebug("EP SS companion descriptor\n");
2585 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2586 			goto inv_length;
2587 		break;
2588 
2589 	case USB_DT_OTHER_SPEED_CONFIG:
2590 	case USB_DT_INTERFACE_POWER:
2591 	case USB_DT_DEBUG:
2592 	case USB_DT_SECURITY:
2593 	case USB_DT_CS_RADIO_CONTROL:
2594 		/* TODO */
2595 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2596 		return -EINVAL;
2597 
2598 	default:
2599 		/* We should never be here */
2600 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2601 		return -EINVAL;
2602 
2603 inv_length:
2604 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2605 			  _ds->bLength, _ds->bDescriptorType);
2606 		return -EINVAL;
2607 	}
2608 
2609 #undef __entity
2610 #undef __entity_check_DESCRIPTOR
2611 #undef __entity_check_INTERFACE
2612 #undef __entity_check_STRING
2613 #undef __entity_check_ENDPOINT
2614 
2615 	return length;
2616 }
2617 
2618 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2619 				     ffs_entity_callback entity, void *priv)
2620 {
2621 	const unsigned _len = len;
2622 	unsigned long num = 0;
2623 	int current_class = -1;
2624 
2625 	for (;;) {
2626 		int ret;
2627 
2628 		if (num == count)
2629 			data = NULL;
2630 
2631 		/* Record "descriptor" entity */
2632 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2633 		if (ret < 0) {
2634 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2635 				 num, ret);
2636 			return ret;
2637 		}
2638 
2639 		if (!data)
2640 			return _len - len;
2641 
2642 		ret = ffs_do_single_desc(data, len, entity, priv,
2643 			&current_class);
2644 		if (ret < 0) {
2645 			pr_debug("%s returns %d\n", __func__, ret);
2646 			return ret;
2647 		}
2648 
2649 		len -= ret;
2650 		data += ret;
2651 		++num;
2652 	}
2653 }
2654 
2655 static int __ffs_data_do_entity(enum ffs_entity_type type,
2656 				u8 *valuep, struct usb_descriptor_header *desc,
2657 				void *priv)
2658 {
2659 	struct ffs_desc_helper *helper = priv;
2660 	struct usb_endpoint_descriptor *d;
2661 
2662 	switch (type) {
2663 	case FFS_DESCRIPTOR:
2664 		break;
2665 
2666 	case FFS_INTERFACE:
2667 		/*
2668 		 * Interfaces are indexed from zero so if we
2669 		 * encountered interface "n" then there are at least
2670 		 * "n+1" interfaces.
2671 		 */
2672 		if (*valuep >= helper->interfaces_count)
2673 			helper->interfaces_count = *valuep + 1;
2674 		break;
2675 
2676 	case FFS_STRING:
2677 		/*
2678 		 * Strings are indexed from 1 (0 is reserved
2679 		 * for languages list)
2680 		 */
2681 		if (*valuep > helper->ffs->strings_count)
2682 			helper->ffs->strings_count = *valuep;
2683 		break;
2684 
2685 	case FFS_ENDPOINT:
2686 		d = (void *)desc;
2687 		helper->eps_count++;
2688 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2689 			return -EINVAL;
2690 		/* Check if descriptors for any speed were already parsed */
2691 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2692 			helper->ffs->eps_addrmap[helper->eps_count] =
2693 				d->bEndpointAddress;
2694 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2695 				d->bEndpointAddress)
2696 			return -EINVAL;
2697 		break;
2698 	}
2699 
2700 	return 0;
2701 }
2702 
2703 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2704 				   struct usb_os_desc_header *desc)
2705 {
2706 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2707 	u16 w_index = le16_to_cpu(desc->wIndex);
2708 
2709 	if (bcd_version == 0x1) {
2710 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2711 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2712 	} else if (bcd_version != 0x100) {
2713 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2714 			  bcd_version);
2715 		return -EINVAL;
2716 	}
2717 	switch (w_index) {
2718 	case 0x4:
2719 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2720 		break;
2721 	case 0x5:
2722 		*next_type = FFS_OS_DESC_EXT_PROP;
2723 		break;
2724 	default:
2725 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2726 		return -EINVAL;
2727 	}
2728 
2729 	return sizeof(*desc);
2730 }
2731 
2732 /*
2733  * Process all extended compatibility/extended property descriptors
2734  * of a feature descriptor
2735  */
2736 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2737 					      enum ffs_os_desc_type type,
2738 					      u16 feature_count,
2739 					      ffs_os_desc_callback entity,
2740 					      void *priv,
2741 					      struct usb_os_desc_header *h)
2742 {
2743 	int ret;
2744 	const unsigned _len = len;
2745 
2746 	/* loop over all ext compat/ext prop descriptors */
2747 	while (feature_count--) {
2748 		ret = entity(type, h, data, len, priv);
2749 		if (ret < 0) {
2750 			pr_debug("bad OS descriptor, type: %d\n", type);
2751 			return ret;
2752 		}
2753 		data += ret;
2754 		len -= ret;
2755 	}
2756 	return _len - len;
2757 }
2758 
2759 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2760 static int __must_check ffs_do_os_descs(unsigned count,
2761 					char *data, unsigned len,
2762 					ffs_os_desc_callback entity, void *priv)
2763 {
2764 	const unsigned _len = len;
2765 	unsigned long num = 0;
2766 
2767 	for (num = 0; num < count; ++num) {
2768 		int ret;
2769 		enum ffs_os_desc_type type;
2770 		u16 feature_count;
2771 		struct usb_os_desc_header *desc = (void *)data;
2772 
2773 		if (len < sizeof(*desc))
2774 			return -EINVAL;
2775 
2776 		/*
2777 		 * Record "descriptor" entity.
2778 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2779 		 * Move the data pointer to the beginning of extended
2780 		 * compatibilities proper or extended properties proper
2781 		 * portions of the data
2782 		 */
2783 		if (le32_to_cpu(desc->dwLength) > len)
2784 			return -EINVAL;
2785 
2786 		ret = __ffs_do_os_desc_header(&type, desc);
2787 		if (ret < 0) {
2788 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2789 				 num, ret);
2790 			return ret;
2791 		}
2792 		/*
2793 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2794 		 */
2795 		feature_count = le16_to_cpu(desc->wCount);
2796 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2797 		    (feature_count > 255 || desc->Reserved))
2798 				return -EINVAL;
2799 		len -= ret;
2800 		data += ret;
2801 
2802 		/*
2803 		 * Process all function/property descriptors
2804 		 * of this Feature Descriptor
2805 		 */
2806 		ret = ffs_do_single_os_desc(data, len, type,
2807 					    feature_count, entity, priv, desc);
2808 		if (ret < 0) {
2809 			pr_debug("%s returns %d\n", __func__, ret);
2810 			return ret;
2811 		}
2812 
2813 		len -= ret;
2814 		data += ret;
2815 	}
2816 	return _len - len;
2817 }
2818 
2819 /*
2820  * Validate contents of the buffer from userspace related to OS descriptors.
2821  */
2822 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2823 				 struct usb_os_desc_header *h, void *data,
2824 				 unsigned len, void *priv)
2825 {
2826 	struct ffs_data *ffs = priv;
2827 	u8 length;
2828 
2829 	switch (type) {
2830 	case FFS_OS_DESC_EXT_COMPAT: {
2831 		struct usb_ext_compat_desc *d = data;
2832 		int i;
2833 
2834 		if (len < sizeof(*d) ||
2835 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2836 			return -EINVAL;
2837 		if (d->Reserved1 != 1) {
2838 			/*
2839 			 * According to the spec, Reserved1 must be set to 1
2840 			 * but older kernels incorrectly rejected non-zero
2841 			 * values.  We fix it here to avoid returning EINVAL
2842 			 * in response to values we used to accept.
2843 			 */
2844 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2845 			d->Reserved1 = 1;
2846 		}
2847 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2848 			if (d->Reserved2[i])
2849 				return -EINVAL;
2850 
2851 		length = sizeof(struct usb_ext_compat_desc);
2852 	}
2853 		break;
2854 	case FFS_OS_DESC_EXT_PROP: {
2855 		struct usb_ext_prop_desc *d = data;
2856 		u32 type, pdl;
2857 		u16 pnl;
2858 
2859 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2860 			return -EINVAL;
2861 		length = le32_to_cpu(d->dwSize);
2862 		if (len < length)
2863 			return -EINVAL;
2864 		type = le32_to_cpu(d->dwPropertyDataType);
2865 		if (type < USB_EXT_PROP_UNICODE ||
2866 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2867 			pr_vdebug("unsupported os descriptor property type: %d",
2868 				  type);
2869 			return -EINVAL;
2870 		}
2871 		pnl = le16_to_cpu(d->wPropertyNameLength);
2872 		if (length < 14 + pnl) {
2873 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2874 				  length, pnl, type);
2875 			return -EINVAL;
2876 		}
2877 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2878 		if (length != 14 + pnl + pdl) {
2879 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2880 				  length, pnl, pdl, type);
2881 			return -EINVAL;
2882 		}
2883 		++ffs->ms_os_descs_ext_prop_count;
2884 		/* property name reported to the host as "WCHAR"s */
2885 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2886 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2887 	}
2888 		break;
2889 	default:
2890 		pr_vdebug("unknown descriptor: %d\n", type);
2891 		return -EINVAL;
2892 	}
2893 	return length;
2894 }
2895 
2896 static int __ffs_data_got_descs(struct ffs_data *ffs,
2897 				char *const _data, size_t len)
2898 {
2899 	char *data = _data, *raw_descs;
2900 	unsigned os_descs_count = 0, counts[3], flags;
2901 	int ret = -EINVAL, i;
2902 	struct ffs_desc_helper helper;
2903 
2904 	if (get_unaligned_le32(data + 4) != len)
2905 		goto error;
2906 
2907 	switch (get_unaligned_le32(data)) {
2908 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2909 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2910 		data += 8;
2911 		len  -= 8;
2912 		break;
2913 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2914 		flags = get_unaligned_le32(data + 8);
2915 		ffs->user_flags = flags;
2916 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2917 			      FUNCTIONFS_HAS_HS_DESC |
2918 			      FUNCTIONFS_HAS_SS_DESC |
2919 			      FUNCTIONFS_HAS_MS_OS_DESC |
2920 			      FUNCTIONFS_VIRTUAL_ADDR |
2921 			      FUNCTIONFS_EVENTFD |
2922 			      FUNCTIONFS_ALL_CTRL_RECIP |
2923 			      FUNCTIONFS_CONFIG0_SETUP)) {
2924 			ret = -ENOSYS;
2925 			goto error;
2926 		}
2927 		data += 12;
2928 		len  -= 12;
2929 		break;
2930 	default:
2931 		goto error;
2932 	}
2933 
2934 	if (flags & FUNCTIONFS_EVENTFD) {
2935 		if (len < 4)
2936 			goto error;
2937 		ffs->ffs_eventfd =
2938 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2939 		if (IS_ERR(ffs->ffs_eventfd)) {
2940 			ret = PTR_ERR(ffs->ffs_eventfd);
2941 			ffs->ffs_eventfd = NULL;
2942 			goto error;
2943 		}
2944 		data += 4;
2945 		len  -= 4;
2946 	}
2947 
2948 	/* Read fs_count, hs_count and ss_count (if present) */
2949 	for (i = 0; i < 3; ++i) {
2950 		if (!(flags & (1 << i))) {
2951 			counts[i] = 0;
2952 		} else if (len < 4) {
2953 			goto error;
2954 		} else {
2955 			counts[i] = get_unaligned_le32(data);
2956 			data += 4;
2957 			len  -= 4;
2958 		}
2959 	}
2960 	if (flags & (1 << i)) {
2961 		if (len < 4) {
2962 			goto error;
2963 		}
2964 		os_descs_count = get_unaligned_le32(data);
2965 		data += 4;
2966 		len -= 4;
2967 	}
2968 
2969 	/* Read descriptors */
2970 	raw_descs = data;
2971 	helper.ffs = ffs;
2972 	for (i = 0; i < 3; ++i) {
2973 		if (!counts[i])
2974 			continue;
2975 		helper.interfaces_count = 0;
2976 		helper.eps_count = 0;
2977 		ret = ffs_do_descs(counts[i], data, len,
2978 				   __ffs_data_do_entity, &helper);
2979 		if (ret < 0)
2980 			goto error;
2981 		if (!ffs->eps_count && !ffs->interfaces_count) {
2982 			ffs->eps_count = helper.eps_count;
2983 			ffs->interfaces_count = helper.interfaces_count;
2984 		} else {
2985 			if (ffs->eps_count != helper.eps_count) {
2986 				ret = -EINVAL;
2987 				goto error;
2988 			}
2989 			if (ffs->interfaces_count != helper.interfaces_count) {
2990 				ret = -EINVAL;
2991 				goto error;
2992 			}
2993 		}
2994 		data += ret;
2995 		len  -= ret;
2996 	}
2997 	if (os_descs_count) {
2998 		ret = ffs_do_os_descs(os_descs_count, data, len,
2999 				      __ffs_data_do_os_desc, ffs);
3000 		if (ret < 0)
3001 			goto error;
3002 		data += ret;
3003 		len -= ret;
3004 	}
3005 
3006 	if (raw_descs == data || len) {
3007 		ret = -EINVAL;
3008 		goto error;
3009 	}
3010 
3011 	ffs->raw_descs_data	= _data;
3012 	ffs->raw_descs		= raw_descs;
3013 	ffs->raw_descs_length	= data - raw_descs;
3014 	ffs->fs_descs_count	= counts[0];
3015 	ffs->hs_descs_count	= counts[1];
3016 	ffs->ss_descs_count	= counts[2];
3017 	ffs->ms_os_descs_count	= os_descs_count;
3018 
3019 	return 0;
3020 
3021 error:
3022 	kfree(_data);
3023 	return ret;
3024 }
3025 
3026 static int __ffs_data_got_strings(struct ffs_data *ffs,
3027 				  char *const _data, size_t len)
3028 {
3029 	u32 str_count, needed_count, lang_count;
3030 	struct usb_gadget_strings **stringtabs, *t;
3031 	const char *data = _data;
3032 	struct usb_string *s;
3033 
3034 	if (len < 16 ||
3035 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3036 	    get_unaligned_le32(data + 4) != len)
3037 		goto error;
3038 	str_count  = get_unaligned_le32(data + 8);
3039 	lang_count = get_unaligned_le32(data + 12);
3040 
3041 	/* if one is zero the other must be zero */
3042 	if (!str_count != !lang_count)
3043 		goto error;
3044 
3045 	/* Do we have at least as many strings as descriptors need? */
3046 	needed_count = ffs->strings_count;
3047 	if (str_count < needed_count)
3048 		goto error;
3049 
3050 	/*
3051 	 * If we don't need any strings just return and free all
3052 	 * memory.
3053 	 */
3054 	if (!needed_count) {
3055 		kfree(_data);
3056 		return 0;
3057 	}
3058 
3059 	/* Allocate everything in one chunk so there's less maintenance. */
3060 	{
3061 		unsigned i = 0;
3062 		vla_group(d);
3063 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3064 			size_add(lang_count, 1));
3065 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3066 		vla_item(d, struct usb_string, strings,
3067 			size_mul(lang_count, (needed_count + 1)));
3068 
3069 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3070 
3071 		if (!vlabuf) {
3072 			kfree(_data);
3073 			return -ENOMEM;
3074 		}
3075 
3076 		/* Initialize the VLA pointers */
3077 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3078 		t = vla_ptr(vlabuf, d, stringtab);
3079 		i = lang_count;
3080 		do {
3081 			*stringtabs++ = t++;
3082 		} while (--i);
3083 		*stringtabs = NULL;
3084 
3085 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3086 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3087 		t = vla_ptr(vlabuf, d, stringtab);
3088 		s = vla_ptr(vlabuf, d, strings);
3089 	}
3090 
3091 	/* For each language */
3092 	data += 16;
3093 	len -= 16;
3094 
3095 	do { /* lang_count > 0 so we can use do-while */
3096 		unsigned needed = needed_count;
3097 		u32 str_per_lang = str_count;
3098 
3099 		if (len < 3)
3100 			goto error_free;
3101 		t->language = get_unaligned_le16(data);
3102 		t->strings  = s;
3103 		++t;
3104 
3105 		data += 2;
3106 		len -= 2;
3107 
3108 		/* For each string */
3109 		do { /* str_count > 0 so we can use do-while */
3110 			size_t length = strnlen(data, len);
3111 
3112 			if (length == len)
3113 				goto error_free;
3114 
3115 			/*
3116 			 * User may provide more strings then we need,
3117 			 * if that's the case we simply ignore the
3118 			 * rest
3119 			 */
3120 			if (needed) {
3121 				/*
3122 				 * s->id will be set while adding
3123 				 * function to configuration so for
3124 				 * now just leave garbage here.
3125 				 */
3126 				s->s = data;
3127 				--needed;
3128 				++s;
3129 			}
3130 
3131 			data += length + 1;
3132 			len -= length + 1;
3133 		} while (--str_per_lang);
3134 
3135 		s->id = 0;   /* terminator */
3136 		s->s = NULL;
3137 		++s;
3138 
3139 	} while (--lang_count);
3140 
3141 	/* Some garbage left? */
3142 	if (len)
3143 		goto error_free;
3144 
3145 	/* Done! */
3146 	ffs->stringtabs = stringtabs;
3147 	ffs->raw_strings = _data;
3148 
3149 	return 0;
3150 
3151 error_free:
3152 	kfree(stringtabs);
3153 error:
3154 	kfree(_data);
3155 	return -EINVAL;
3156 }
3157 
3158 
3159 /* Events handling and management *******************************************/
3160 
3161 static void __ffs_event_add(struct ffs_data *ffs,
3162 			    enum usb_functionfs_event_type type)
3163 {
3164 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3165 	int neg = 0;
3166 
3167 	/*
3168 	 * Abort any unhandled setup
3169 	 *
3170 	 * We do not need to worry about some cmpxchg() changing value
3171 	 * of ffs->setup_state without holding the lock because when
3172 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3173 	 * the source does nothing.
3174 	 */
3175 	if (ffs->setup_state == FFS_SETUP_PENDING)
3176 		ffs->setup_state = FFS_SETUP_CANCELLED;
3177 
3178 	/*
3179 	 * Logic of this function guarantees that there are at most four pending
3180 	 * evens on ffs->ev.types queue.  This is important because the queue
3181 	 * has space for four elements only and __ffs_ep0_read_events function
3182 	 * depends on that limit as well.  If more event types are added, those
3183 	 * limits have to be revisited or guaranteed to still hold.
3184 	 */
3185 	switch (type) {
3186 	case FUNCTIONFS_RESUME:
3187 		rem_type2 = FUNCTIONFS_SUSPEND;
3188 		fallthrough;
3189 	case FUNCTIONFS_SUSPEND:
3190 	case FUNCTIONFS_SETUP:
3191 		rem_type1 = type;
3192 		/* Discard all similar events */
3193 		break;
3194 
3195 	case FUNCTIONFS_BIND:
3196 	case FUNCTIONFS_UNBIND:
3197 	case FUNCTIONFS_DISABLE:
3198 	case FUNCTIONFS_ENABLE:
3199 		/* Discard everything other then power management. */
3200 		rem_type1 = FUNCTIONFS_SUSPEND;
3201 		rem_type2 = FUNCTIONFS_RESUME;
3202 		neg = 1;
3203 		break;
3204 
3205 	default:
3206 		WARN(1, "%d: unknown event, this should not happen\n", type);
3207 		return;
3208 	}
3209 
3210 	{
3211 		u8 *ev  = ffs->ev.types, *out = ev;
3212 		unsigned n = ffs->ev.count;
3213 		for (; n; --n, ++ev)
3214 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3215 				*out++ = *ev;
3216 			else
3217 				pr_vdebug("purging event %d\n", *ev);
3218 		ffs->ev.count = out - ffs->ev.types;
3219 	}
3220 
3221 	pr_vdebug("adding event %d\n", type);
3222 	ffs->ev.types[ffs->ev.count++] = type;
3223 	wake_up_locked(&ffs->ev.waitq);
3224 	if (ffs->ffs_eventfd)
3225 		eventfd_signal(ffs->ffs_eventfd);
3226 }
3227 
3228 static void ffs_event_add(struct ffs_data *ffs,
3229 			  enum usb_functionfs_event_type type)
3230 {
3231 	unsigned long flags;
3232 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3233 	__ffs_event_add(ffs, type);
3234 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3235 }
3236 
3237 /* Bind/unbind USB function hooks *******************************************/
3238 
3239 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3240 {
3241 	int i;
3242 
3243 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3244 		if (ffs->eps_addrmap[i] == endpoint_address)
3245 			return i;
3246 	return -ENOENT;
3247 }
3248 
3249 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3250 				    struct usb_descriptor_header *desc,
3251 				    void *priv)
3252 {
3253 	struct usb_endpoint_descriptor *ds = (void *)desc;
3254 	struct ffs_function *func = priv;
3255 	struct ffs_ep *ffs_ep;
3256 	unsigned ep_desc_id;
3257 	int idx;
3258 	static const char *speed_names[] = { "full", "high", "super" };
3259 
3260 	if (type != FFS_DESCRIPTOR)
3261 		return 0;
3262 
3263 	/*
3264 	 * If ss_descriptors is not NULL, we are reading super speed
3265 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3266 	 * speed descriptors; otherwise, we are reading full speed
3267 	 * descriptors.
3268 	 */
3269 	if (func->function.ss_descriptors) {
3270 		ep_desc_id = 2;
3271 		func->function.ss_descriptors[(long)valuep] = desc;
3272 	} else if (func->function.hs_descriptors) {
3273 		ep_desc_id = 1;
3274 		func->function.hs_descriptors[(long)valuep] = desc;
3275 	} else {
3276 		ep_desc_id = 0;
3277 		func->function.fs_descriptors[(long)valuep]    = desc;
3278 	}
3279 
3280 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3281 		return 0;
3282 
3283 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3284 	if (idx < 0)
3285 		return idx;
3286 
3287 	ffs_ep = func->eps + idx;
3288 
3289 	if (ffs_ep->descs[ep_desc_id]) {
3290 		pr_err("two %sspeed descriptors for EP %d\n",
3291 			  speed_names[ep_desc_id],
3292 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3293 		return -EINVAL;
3294 	}
3295 	ffs_ep->descs[ep_desc_id] = ds;
3296 
3297 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3298 	if (ffs_ep->ep) {
3299 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3300 		if (!ds->wMaxPacketSize)
3301 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3302 	} else {
3303 		struct usb_request *req;
3304 		struct usb_ep *ep;
3305 		u8 bEndpointAddress;
3306 		u16 wMaxPacketSize;
3307 
3308 		/*
3309 		 * We back up bEndpointAddress because autoconfig overwrites
3310 		 * it with physical endpoint address.
3311 		 */
3312 		bEndpointAddress = ds->bEndpointAddress;
3313 		/*
3314 		 * We back up wMaxPacketSize because autoconfig treats
3315 		 * endpoint descriptors as if they were full speed.
3316 		 */
3317 		wMaxPacketSize = ds->wMaxPacketSize;
3318 		pr_vdebug("autoconfig\n");
3319 		ep = usb_ep_autoconfig(func->gadget, ds);
3320 		if (!ep)
3321 			return -ENOTSUPP;
3322 		ep->driver_data = func->eps + idx;
3323 
3324 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3325 		if (!req)
3326 			return -ENOMEM;
3327 
3328 		ffs_ep->ep  = ep;
3329 		ffs_ep->req = req;
3330 		func->eps_revmap[ds->bEndpointAddress &
3331 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3332 		/*
3333 		 * If we use virtual address mapping, we restore
3334 		 * original bEndpointAddress value.
3335 		 */
3336 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3337 			ds->bEndpointAddress = bEndpointAddress;
3338 		/*
3339 		 * Restore wMaxPacketSize which was potentially
3340 		 * overwritten by autoconfig.
3341 		 */
3342 		ds->wMaxPacketSize = wMaxPacketSize;
3343 	}
3344 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3345 
3346 	return 0;
3347 }
3348 
3349 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3350 				   struct usb_descriptor_header *desc,
3351 				   void *priv)
3352 {
3353 	struct ffs_function *func = priv;
3354 	unsigned idx;
3355 	u8 newValue;
3356 
3357 	switch (type) {
3358 	default:
3359 	case FFS_DESCRIPTOR:
3360 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3361 		return 0;
3362 
3363 	case FFS_INTERFACE:
3364 		idx = *valuep;
3365 		if (func->interfaces_nums[idx] < 0) {
3366 			int id = usb_interface_id(func->conf, &func->function);
3367 			if (id < 0)
3368 				return id;
3369 			func->interfaces_nums[idx] = id;
3370 		}
3371 		newValue = func->interfaces_nums[idx];
3372 		break;
3373 
3374 	case FFS_STRING:
3375 		/* String' IDs are allocated when fsf_data is bound to cdev */
3376 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3377 		break;
3378 
3379 	case FFS_ENDPOINT:
3380 		/*
3381 		 * USB_DT_ENDPOINT are handled in
3382 		 * __ffs_func_bind_do_descs().
3383 		 */
3384 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3385 			return 0;
3386 
3387 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3388 		if (!func->eps[idx].ep)
3389 			return -EINVAL;
3390 
3391 		{
3392 			struct usb_endpoint_descriptor **descs;
3393 			descs = func->eps[idx].descs;
3394 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3395 		}
3396 		break;
3397 	}
3398 
3399 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3400 	*valuep = newValue;
3401 	return 0;
3402 }
3403 
3404 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3405 				      struct usb_os_desc_header *h, void *data,
3406 				      unsigned len, void *priv)
3407 {
3408 	struct ffs_function *func = priv;
3409 	u8 length = 0;
3410 
3411 	switch (type) {
3412 	case FFS_OS_DESC_EXT_COMPAT: {
3413 		struct usb_ext_compat_desc *desc = data;
3414 		struct usb_os_desc_table *t;
3415 
3416 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3417 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3418 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3419 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3420 		length = sizeof(*desc);
3421 	}
3422 		break;
3423 	case FFS_OS_DESC_EXT_PROP: {
3424 		struct usb_ext_prop_desc *desc = data;
3425 		struct usb_os_desc_table *t;
3426 		struct usb_os_desc_ext_prop *ext_prop;
3427 		char *ext_prop_name;
3428 		char *ext_prop_data;
3429 
3430 		t = &func->function.os_desc_table[h->interface];
3431 		t->if_id = func->interfaces_nums[h->interface];
3432 
3433 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3434 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3435 
3436 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3437 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3438 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3439 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3440 		length = ext_prop->name_len + ext_prop->data_len + 14;
3441 
3442 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3443 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3444 			ext_prop->name_len;
3445 
3446 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3447 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3448 			ext_prop->data_len;
3449 		memcpy(ext_prop_data,
3450 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3451 		       ext_prop->data_len);
3452 		/* unicode data reported to the host as "WCHAR"s */
3453 		switch (ext_prop->type) {
3454 		case USB_EXT_PROP_UNICODE:
3455 		case USB_EXT_PROP_UNICODE_ENV:
3456 		case USB_EXT_PROP_UNICODE_LINK:
3457 		case USB_EXT_PROP_UNICODE_MULTI:
3458 			ext_prop->data_len *= 2;
3459 			break;
3460 		}
3461 		ext_prop->data = ext_prop_data;
3462 
3463 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3464 		       ext_prop->name_len);
3465 		/* property name reported to the host as "WCHAR"s */
3466 		ext_prop->name_len *= 2;
3467 		ext_prop->name = ext_prop_name;
3468 
3469 		t->os_desc->ext_prop_len +=
3470 			ext_prop->name_len + ext_prop->data_len + 14;
3471 		++t->os_desc->ext_prop_count;
3472 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3473 	}
3474 		break;
3475 	default:
3476 		pr_vdebug("unknown descriptor: %d\n", type);
3477 	}
3478 
3479 	return length;
3480 }
3481 
3482 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3483 						struct usb_configuration *c)
3484 {
3485 	struct ffs_function *func = ffs_func_from_usb(f);
3486 	struct f_fs_opts *ffs_opts =
3487 		container_of(f->fi, struct f_fs_opts, func_inst);
3488 	struct ffs_data *ffs_data;
3489 	int ret;
3490 
3491 	/*
3492 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3493 	 * which already uses locking; taking the same lock here would
3494 	 * cause a deadlock.
3495 	 *
3496 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3497 	 */
3498 	if (!ffs_opts->no_configfs)
3499 		ffs_dev_lock();
3500 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3501 	ffs_data = ffs_opts->dev->ffs_data;
3502 	if (!ffs_opts->no_configfs)
3503 		ffs_dev_unlock();
3504 	if (ret)
3505 		return ERR_PTR(ret);
3506 
3507 	func->ffs = ffs_data;
3508 	func->conf = c;
3509 	func->gadget = c->cdev->gadget;
3510 
3511 	/*
3512 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3513 	 * configurations are bound in sequence with list_for_each_entry,
3514 	 * in each configuration its functions are bound in sequence
3515 	 * with list_for_each_entry, so we assume no race condition
3516 	 * with regard to ffs_opts->bound access
3517 	 */
3518 	if (!ffs_opts->refcnt) {
3519 		ret = functionfs_bind(func->ffs, c->cdev);
3520 		if (ret)
3521 			return ERR_PTR(ret);
3522 	}
3523 	ffs_opts->refcnt++;
3524 	func->function.strings = func->ffs->stringtabs;
3525 
3526 	return ffs_opts;
3527 }
3528 
3529 static int _ffs_func_bind(struct usb_configuration *c,
3530 			  struct usb_function *f)
3531 {
3532 	struct ffs_function *func = ffs_func_from_usb(f);
3533 	struct ffs_data *ffs = func->ffs;
3534 
3535 	const int full = !!func->ffs->fs_descs_count;
3536 	const int high = !!func->ffs->hs_descs_count;
3537 	const int super = !!func->ffs->ss_descs_count;
3538 
3539 	int fs_len, hs_len, ss_len, ret, i;
3540 	struct ffs_ep *eps_ptr;
3541 
3542 	/* Make it a single chunk, less management later on */
3543 	vla_group(d);
3544 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3545 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3546 		full ? ffs->fs_descs_count + 1 : 0);
3547 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3548 		high ? ffs->hs_descs_count + 1 : 0);
3549 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3550 		super ? ffs->ss_descs_count + 1 : 0);
3551 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3552 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3553 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3554 	vla_item_with_sz(d, char[16], ext_compat,
3555 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3556 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3557 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3558 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3559 			 ffs->ms_os_descs_ext_prop_count);
3560 	vla_item_with_sz(d, char, ext_prop_name,
3561 			 ffs->ms_os_descs_ext_prop_name_len);
3562 	vla_item_with_sz(d, char, ext_prop_data,
3563 			 ffs->ms_os_descs_ext_prop_data_len);
3564 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3565 	char *vlabuf;
3566 
3567 	/* Has descriptors only for speeds gadget does not support */
3568 	if (!(full | high | super))
3569 		return -ENOTSUPP;
3570 
3571 	/* Allocate a single chunk, less management later on */
3572 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3573 	if (!vlabuf)
3574 		return -ENOMEM;
3575 
3576 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3577 	ffs->ms_os_descs_ext_prop_name_avail =
3578 		vla_ptr(vlabuf, d, ext_prop_name);
3579 	ffs->ms_os_descs_ext_prop_data_avail =
3580 		vla_ptr(vlabuf, d, ext_prop_data);
3581 
3582 	/* Copy descriptors  */
3583 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3584 	       ffs->raw_descs_length);
3585 
3586 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3587 	eps_ptr = vla_ptr(vlabuf, d, eps);
3588 	for (i = 0; i < ffs->eps_count; i++)
3589 		eps_ptr[i].num = -1;
3590 
3591 	/* Save pointers
3592 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3593 	*/
3594 	func->eps             = vla_ptr(vlabuf, d, eps);
3595 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3596 
3597 	/*
3598 	 * Go through all the endpoint descriptors and allocate
3599 	 * endpoints first, so that later we can rewrite the endpoint
3600 	 * numbers without worrying that it may be described later on.
3601 	 */
3602 	if (full) {
3603 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3604 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3605 				      vla_ptr(vlabuf, d, raw_descs),
3606 				      d_raw_descs__sz,
3607 				      __ffs_func_bind_do_descs, func);
3608 		if (fs_len < 0) {
3609 			ret = fs_len;
3610 			goto error;
3611 		}
3612 	} else {
3613 		fs_len = 0;
3614 	}
3615 
3616 	if (high) {
3617 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3618 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3619 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3620 				      d_raw_descs__sz - fs_len,
3621 				      __ffs_func_bind_do_descs, func);
3622 		if (hs_len < 0) {
3623 			ret = hs_len;
3624 			goto error;
3625 		}
3626 	} else {
3627 		hs_len = 0;
3628 	}
3629 
3630 	if (super) {
3631 		func->function.ss_descriptors = func->function.ssp_descriptors =
3632 			vla_ptr(vlabuf, d, ss_descs);
3633 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3634 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3635 				d_raw_descs__sz - fs_len - hs_len,
3636 				__ffs_func_bind_do_descs, func);
3637 		if (ss_len < 0) {
3638 			ret = ss_len;
3639 			goto error;
3640 		}
3641 	} else {
3642 		ss_len = 0;
3643 	}
3644 
3645 	/*
3646 	 * Now handle interface numbers allocation and interface and
3647 	 * endpoint numbers rewriting.  We can do that in one go
3648 	 * now.
3649 	 */
3650 	ret = ffs_do_descs(ffs->fs_descs_count +
3651 			   (high ? ffs->hs_descs_count : 0) +
3652 			   (super ? ffs->ss_descs_count : 0),
3653 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3654 			   __ffs_func_bind_do_nums, func);
3655 	if (ret < 0)
3656 		goto error;
3657 
3658 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3659 	if (c->cdev->use_os_string) {
3660 		for (i = 0; i < ffs->interfaces_count; ++i) {
3661 			struct usb_os_desc *desc;
3662 
3663 			desc = func->function.os_desc_table[i].os_desc =
3664 				vla_ptr(vlabuf, d, os_desc) +
3665 				i * sizeof(struct usb_os_desc);
3666 			desc->ext_compat_id =
3667 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3668 			INIT_LIST_HEAD(&desc->ext_prop);
3669 		}
3670 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3671 				      vla_ptr(vlabuf, d, raw_descs) +
3672 				      fs_len + hs_len + ss_len,
3673 				      d_raw_descs__sz - fs_len - hs_len -
3674 				      ss_len,
3675 				      __ffs_func_bind_do_os_desc, func);
3676 		if (ret < 0)
3677 			goto error;
3678 	}
3679 	func->function.os_desc_n =
3680 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3681 
3682 	/* And we're done */
3683 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3684 	return 0;
3685 
3686 error:
3687 	/* XXX Do we need to release all claimed endpoints here? */
3688 	return ret;
3689 }
3690 
3691 static int ffs_func_bind(struct usb_configuration *c,
3692 			 struct usb_function *f)
3693 {
3694 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3695 	struct ffs_function *func = ffs_func_from_usb(f);
3696 	int ret;
3697 
3698 	if (IS_ERR(ffs_opts))
3699 		return PTR_ERR(ffs_opts);
3700 
3701 	ret = _ffs_func_bind(c, f);
3702 	if (ret && !--ffs_opts->refcnt)
3703 		functionfs_unbind(func->ffs);
3704 
3705 	return ret;
3706 }
3707 
3708 
3709 /* Other USB function hooks *************************************************/
3710 
3711 static void ffs_reset_work(struct work_struct *work)
3712 {
3713 	struct ffs_data *ffs = container_of(work,
3714 		struct ffs_data, reset_work);
3715 	ffs_data_reset(ffs);
3716 }
3717 
3718 static int ffs_func_get_alt(struct usb_function *f,
3719 			    unsigned int interface)
3720 {
3721 	struct ffs_function *func = ffs_func_from_usb(f);
3722 	int intf = ffs_func_revmap_intf(func, interface);
3723 
3724 	return (intf < 0) ? intf : func->cur_alt[interface];
3725 }
3726 
3727 static int ffs_func_set_alt(struct usb_function *f,
3728 			    unsigned interface, unsigned alt)
3729 {
3730 	struct ffs_function *func = ffs_func_from_usb(f);
3731 	struct ffs_data *ffs = func->ffs;
3732 	int ret = 0, intf;
3733 
3734 	if (alt > MAX_ALT_SETTINGS)
3735 		return -EINVAL;
3736 
3737 	intf = ffs_func_revmap_intf(func, interface);
3738 	if (intf < 0)
3739 		return intf;
3740 
3741 	if (ffs->func)
3742 		ffs_func_eps_disable(ffs->func);
3743 
3744 	if (ffs->state == FFS_DEACTIVATED) {
3745 		ffs->state = FFS_CLOSING;
3746 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3747 		schedule_work(&ffs->reset_work);
3748 		return -ENODEV;
3749 	}
3750 
3751 	if (ffs->state != FFS_ACTIVE)
3752 		return -ENODEV;
3753 
3754 	ffs->func = func;
3755 	ret = ffs_func_eps_enable(func);
3756 	if (ret >= 0) {
3757 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3758 		func->cur_alt[interface] = alt;
3759 	}
3760 	return ret;
3761 }
3762 
3763 static void ffs_func_disable(struct usb_function *f)
3764 {
3765 	struct ffs_function *func = ffs_func_from_usb(f);
3766 	struct ffs_data *ffs = func->ffs;
3767 
3768 	if (ffs->func)
3769 		ffs_func_eps_disable(ffs->func);
3770 
3771 	if (ffs->state == FFS_DEACTIVATED) {
3772 		ffs->state = FFS_CLOSING;
3773 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3774 		schedule_work(&ffs->reset_work);
3775 		return;
3776 	}
3777 
3778 	if (ffs->state == FFS_ACTIVE) {
3779 		ffs->func = NULL;
3780 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3781 	}
3782 }
3783 
3784 static int ffs_func_setup(struct usb_function *f,
3785 			  const struct usb_ctrlrequest *creq)
3786 {
3787 	struct ffs_function *func = ffs_func_from_usb(f);
3788 	struct ffs_data *ffs = func->ffs;
3789 	unsigned long flags;
3790 	int ret;
3791 
3792 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3793 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3794 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3795 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3796 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3797 
3798 	/*
3799 	 * Most requests directed to interface go through here
3800 	 * (notable exceptions are set/get interface) so we need to
3801 	 * handle them.  All other either handled by composite or
3802 	 * passed to usb_configuration->setup() (if one is set).  No
3803 	 * matter, we will handle requests directed to endpoint here
3804 	 * as well (as it's straightforward).  Other request recipient
3805 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3806 	 * is being used.
3807 	 */
3808 	if (ffs->state != FFS_ACTIVE)
3809 		return -ENODEV;
3810 
3811 	switch (creq->bRequestType & USB_RECIP_MASK) {
3812 	case USB_RECIP_INTERFACE:
3813 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3814 		if (ret < 0)
3815 			return ret;
3816 		break;
3817 
3818 	case USB_RECIP_ENDPOINT:
3819 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3820 		if (ret < 0)
3821 			return ret;
3822 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3823 			ret = func->ffs->eps_addrmap[ret];
3824 		break;
3825 
3826 	default:
3827 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3828 			ret = le16_to_cpu(creq->wIndex);
3829 		else
3830 			return -EOPNOTSUPP;
3831 	}
3832 
3833 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3834 	ffs->ev.setup = *creq;
3835 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3836 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3837 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3838 
3839 	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3840 }
3841 
3842 static bool ffs_func_req_match(struct usb_function *f,
3843 			       const struct usb_ctrlrequest *creq,
3844 			       bool config0)
3845 {
3846 	struct ffs_function *func = ffs_func_from_usb(f);
3847 
3848 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3849 		return false;
3850 
3851 	switch (creq->bRequestType & USB_RECIP_MASK) {
3852 	case USB_RECIP_INTERFACE:
3853 		return (ffs_func_revmap_intf(func,
3854 					     le16_to_cpu(creq->wIndex)) >= 0);
3855 	case USB_RECIP_ENDPOINT:
3856 		return (ffs_func_revmap_ep(func,
3857 					   le16_to_cpu(creq->wIndex)) >= 0);
3858 	default:
3859 		return (bool) (func->ffs->user_flags &
3860 			       FUNCTIONFS_ALL_CTRL_RECIP);
3861 	}
3862 }
3863 
3864 static void ffs_func_suspend(struct usb_function *f)
3865 {
3866 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3867 }
3868 
3869 static void ffs_func_resume(struct usb_function *f)
3870 {
3871 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3872 }
3873 
3874 
3875 /* Endpoint and interface numbers reverse mapping ***************************/
3876 
3877 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3878 {
3879 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3880 	return num ? num : -EDOM;
3881 }
3882 
3883 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3884 {
3885 	short *nums = func->interfaces_nums;
3886 	unsigned count = func->ffs->interfaces_count;
3887 
3888 	for (; count; --count, ++nums) {
3889 		if (*nums >= 0 && *nums == intf)
3890 			return nums - func->interfaces_nums;
3891 	}
3892 
3893 	return -EDOM;
3894 }
3895 
3896 
3897 /* Devices management *******************************************************/
3898 
3899 static LIST_HEAD(ffs_devices);
3900 
3901 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3902 {
3903 	struct ffs_dev *dev;
3904 
3905 	if (!name)
3906 		return NULL;
3907 
3908 	list_for_each_entry(dev, &ffs_devices, entry) {
3909 		if (strcmp(dev->name, name) == 0)
3910 			return dev;
3911 	}
3912 
3913 	return NULL;
3914 }
3915 
3916 /*
3917  * ffs_lock must be taken by the caller of this function
3918  */
3919 static struct ffs_dev *_ffs_get_single_dev(void)
3920 {
3921 	struct ffs_dev *dev;
3922 
3923 	if (list_is_singular(&ffs_devices)) {
3924 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3925 		if (dev->single)
3926 			return dev;
3927 	}
3928 
3929 	return NULL;
3930 }
3931 
3932 /*
3933  * ffs_lock must be taken by the caller of this function
3934  */
3935 static struct ffs_dev *_ffs_find_dev(const char *name)
3936 {
3937 	struct ffs_dev *dev;
3938 
3939 	dev = _ffs_get_single_dev();
3940 	if (dev)
3941 		return dev;
3942 
3943 	return _ffs_do_find_dev(name);
3944 }
3945 
3946 /* Configfs support *********************************************************/
3947 
3948 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3949 {
3950 	return container_of(to_config_group(item), struct f_fs_opts,
3951 			    func_inst.group);
3952 }
3953 
3954 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3955 {
3956 	struct f_fs_opts *opts = to_ffs_opts(item);
3957 	int ready;
3958 
3959 	ffs_dev_lock();
3960 	ready = opts->dev->desc_ready;
3961 	ffs_dev_unlock();
3962 
3963 	return sprintf(page, "%d\n", ready);
3964 }
3965 
3966 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3967 
3968 static struct configfs_attribute *ffs_attrs[] = {
3969 	&f_fs_opts_attr_ready,
3970 	NULL,
3971 };
3972 
3973 static void ffs_attr_release(struct config_item *item)
3974 {
3975 	struct f_fs_opts *opts = to_ffs_opts(item);
3976 
3977 	usb_put_function_instance(&opts->func_inst);
3978 }
3979 
3980 static struct configfs_item_operations ffs_item_ops = {
3981 	.release	= ffs_attr_release,
3982 };
3983 
3984 static const struct config_item_type ffs_func_type = {
3985 	.ct_item_ops	= &ffs_item_ops,
3986 	.ct_attrs	= ffs_attrs,
3987 	.ct_owner	= THIS_MODULE,
3988 };
3989 
3990 
3991 /* Function registration interface ******************************************/
3992 
3993 static void ffs_free_inst(struct usb_function_instance *f)
3994 {
3995 	struct f_fs_opts *opts;
3996 
3997 	opts = to_f_fs_opts(f);
3998 	ffs_release_dev(opts->dev);
3999 	ffs_dev_lock();
4000 	_ffs_free_dev(opts->dev);
4001 	ffs_dev_unlock();
4002 	kfree(opts);
4003 }
4004 
4005 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4006 {
4007 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4008 		return -ENAMETOOLONG;
4009 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4010 }
4011 
4012 static struct usb_function_instance *ffs_alloc_inst(void)
4013 {
4014 	struct f_fs_opts *opts;
4015 	struct ffs_dev *dev;
4016 
4017 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4018 	if (!opts)
4019 		return ERR_PTR(-ENOMEM);
4020 
4021 	opts->func_inst.set_inst_name = ffs_set_inst_name;
4022 	opts->func_inst.free_func_inst = ffs_free_inst;
4023 	ffs_dev_lock();
4024 	dev = _ffs_alloc_dev();
4025 	ffs_dev_unlock();
4026 	if (IS_ERR(dev)) {
4027 		kfree(opts);
4028 		return ERR_CAST(dev);
4029 	}
4030 	opts->dev = dev;
4031 	dev->opts = opts;
4032 
4033 	config_group_init_type_name(&opts->func_inst.group, "",
4034 				    &ffs_func_type);
4035 	return &opts->func_inst;
4036 }
4037 
4038 static void ffs_free(struct usb_function *f)
4039 {
4040 	kfree(ffs_func_from_usb(f));
4041 }
4042 
4043 static void ffs_func_unbind(struct usb_configuration *c,
4044 			    struct usb_function *f)
4045 {
4046 	struct ffs_function *func = ffs_func_from_usb(f);
4047 	struct ffs_data *ffs = func->ffs;
4048 	struct f_fs_opts *opts =
4049 		container_of(f->fi, struct f_fs_opts, func_inst);
4050 	struct ffs_ep *ep = func->eps;
4051 	unsigned count = ffs->eps_count;
4052 	unsigned long flags;
4053 
4054 	if (ffs->func == func) {
4055 		ffs_func_eps_disable(func);
4056 		ffs->func = NULL;
4057 	}
4058 
4059 	/* Drain any pending AIO completions */
4060 	drain_workqueue(ffs->io_completion_wq);
4061 
4062 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4063 	if (!--opts->refcnt)
4064 		functionfs_unbind(ffs);
4065 
4066 	/* cleanup after autoconfig */
4067 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4068 	while (count--) {
4069 		if (ep->ep && ep->req)
4070 			usb_ep_free_request(ep->ep, ep->req);
4071 		ep->req = NULL;
4072 		++ep;
4073 	}
4074 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4075 	kfree(func->eps);
4076 	func->eps = NULL;
4077 	/*
4078 	 * eps, descriptors and interfaces_nums are allocated in the
4079 	 * same chunk so only one free is required.
4080 	 */
4081 	func->function.fs_descriptors = NULL;
4082 	func->function.hs_descriptors = NULL;
4083 	func->function.ss_descriptors = NULL;
4084 	func->function.ssp_descriptors = NULL;
4085 	func->interfaces_nums = NULL;
4086 
4087 }
4088 
4089 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4090 {
4091 	struct ffs_function *func;
4092 
4093 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4094 	if (!func)
4095 		return ERR_PTR(-ENOMEM);
4096 
4097 	func->function.name    = "Function FS Gadget";
4098 
4099 	func->function.bind    = ffs_func_bind;
4100 	func->function.unbind  = ffs_func_unbind;
4101 	func->function.set_alt = ffs_func_set_alt;
4102 	func->function.get_alt = ffs_func_get_alt;
4103 	func->function.disable = ffs_func_disable;
4104 	func->function.setup   = ffs_func_setup;
4105 	func->function.req_match = ffs_func_req_match;
4106 	func->function.suspend = ffs_func_suspend;
4107 	func->function.resume  = ffs_func_resume;
4108 	func->function.free_func = ffs_free;
4109 
4110 	return &func->function;
4111 }
4112 
4113 /*
4114  * ffs_lock must be taken by the caller of this function
4115  */
4116 static struct ffs_dev *_ffs_alloc_dev(void)
4117 {
4118 	struct ffs_dev *dev;
4119 	int ret;
4120 
4121 	if (_ffs_get_single_dev())
4122 			return ERR_PTR(-EBUSY);
4123 
4124 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4125 	if (!dev)
4126 		return ERR_PTR(-ENOMEM);
4127 
4128 	if (list_empty(&ffs_devices)) {
4129 		ret = functionfs_init();
4130 		if (ret) {
4131 			kfree(dev);
4132 			return ERR_PTR(ret);
4133 		}
4134 	}
4135 
4136 	list_add(&dev->entry, &ffs_devices);
4137 
4138 	return dev;
4139 }
4140 
4141 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4142 {
4143 	struct ffs_dev *existing;
4144 	int ret = 0;
4145 
4146 	ffs_dev_lock();
4147 
4148 	existing = _ffs_do_find_dev(name);
4149 	if (!existing)
4150 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4151 	else if (existing != dev)
4152 		ret = -EBUSY;
4153 
4154 	ffs_dev_unlock();
4155 
4156 	return ret;
4157 }
4158 EXPORT_SYMBOL_GPL(ffs_name_dev);
4159 
4160 int ffs_single_dev(struct ffs_dev *dev)
4161 {
4162 	int ret;
4163 
4164 	ret = 0;
4165 	ffs_dev_lock();
4166 
4167 	if (!list_is_singular(&ffs_devices))
4168 		ret = -EBUSY;
4169 	else
4170 		dev->single = true;
4171 
4172 	ffs_dev_unlock();
4173 	return ret;
4174 }
4175 EXPORT_SYMBOL_GPL(ffs_single_dev);
4176 
4177 /*
4178  * ffs_lock must be taken by the caller of this function
4179  */
4180 static void _ffs_free_dev(struct ffs_dev *dev)
4181 {
4182 	list_del(&dev->entry);
4183 
4184 	kfree(dev);
4185 	if (list_empty(&ffs_devices))
4186 		functionfs_cleanup();
4187 }
4188 
4189 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4190 {
4191 	int ret = 0;
4192 	struct ffs_dev *ffs_dev;
4193 
4194 	ffs_dev_lock();
4195 
4196 	ffs_dev = _ffs_find_dev(dev_name);
4197 	if (!ffs_dev) {
4198 		ret = -ENOENT;
4199 	} else if (ffs_dev->mounted) {
4200 		ret = -EBUSY;
4201 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4202 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4203 		ret = -ENOENT;
4204 	} else {
4205 		ffs_dev->mounted = true;
4206 		ffs_dev->ffs_data = ffs_data;
4207 		ffs_data->private_data = ffs_dev;
4208 	}
4209 
4210 	ffs_dev_unlock();
4211 	return ret;
4212 }
4213 
4214 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4215 {
4216 	ffs_dev_lock();
4217 
4218 	if (ffs_dev && ffs_dev->mounted) {
4219 		ffs_dev->mounted = false;
4220 		if (ffs_dev->ffs_data) {
4221 			ffs_dev->ffs_data->private_data = NULL;
4222 			ffs_dev->ffs_data = NULL;
4223 		}
4224 
4225 		if (ffs_dev->ffs_release_dev_callback)
4226 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4227 	}
4228 
4229 	ffs_dev_unlock();
4230 }
4231 
4232 static int ffs_ready(struct ffs_data *ffs)
4233 {
4234 	struct ffs_dev *ffs_obj;
4235 	int ret = 0;
4236 
4237 	ffs_dev_lock();
4238 
4239 	ffs_obj = ffs->private_data;
4240 	if (!ffs_obj) {
4241 		ret = -EINVAL;
4242 		goto done;
4243 	}
4244 	if (WARN_ON(ffs_obj->desc_ready)) {
4245 		ret = -EBUSY;
4246 		goto done;
4247 	}
4248 
4249 	ffs_obj->desc_ready = true;
4250 
4251 	if (ffs_obj->ffs_ready_callback) {
4252 		ret = ffs_obj->ffs_ready_callback(ffs);
4253 		if (ret)
4254 			goto done;
4255 	}
4256 
4257 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4258 done:
4259 	ffs_dev_unlock();
4260 	return ret;
4261 }
4262 
4263 static void ffs_closed(struct ffs_data *ffs)
4264 {
4265 	struct ffs_dev *ffs_obj;
4266 	struct f_fs_opts *opts;
4267 	struct config_item *ci;
4268 
4269 	ffs_dev_lock();
4270 
4271 	ffs_obj = ffs->private_data;
4272 	if (!ffs_obj)
4273 		goto done;
4274 
4275 	ffs_obj->desc_ready = false;
4276 
4277 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4278 	    ffs_obj->ffs_closed_callback)
4279 		ffs_obj->ffs_closed_callback(ffs);
4280 
4281 	if (ffs_obj->opts)
4282 		opts = ffs_obj->opts;
4283 	else
4284 		goto done;
4285 
4286 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4287 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4288 		goto done;
4289 
4290 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4291 	ffs_dev_unlock();
4292 
4293 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4294 		unregister_gadget_item(ci);
4295 	return;
4296 done:
4297 	ffs_dev_unlock();
4298 }
4299 
4300 /* Misc helper functions ****************************************************/
4301 
4302 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4303 {
4304 	return nonblock
4305 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4306 		: mutex_lock_interruptible(mutex);
4307 }
4308 
4309 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4310 {
4311 	char *data;
4312 
4313 	if (!len)
4314 		return NULL;
4315 
4316 	data = memdup_user(buf, len);
4317 	if (IS_ERR(data))
4318 		return data;
4319 
4320 	pr_vdebug("Buffer from user space:\n");
4321 	ffs_dump_mem("", data, len);
4322 
4323 	return data;
4324 }
4325 
4326 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4327 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4328 MODULE_LICENSE("GPL");
4329 MODULE_AUTHOR("Michal Nazarewicz");
4330