xref: /linux/drivers/usb/gadget/function/f_fs.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <linux/uio.h>
27 #include <asm/unaligned.h>
28 
29 #include <linux/usb/composite.h>
30 #include <linux/usb/functionfs.h>
31 
32 #include <linux/aio.h>
33 #include <linux/mmu_context.h>
34 #include <linux/poll.h>
35 #include <linux/eventfd.h>
36 
37 #include "u_fs.h"
38 #include "u_f.h"
39 #include "u_os_desc.h"
40 #include "configfs.h"
41 
42 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
43 
44 /* Reference counter handling */
45 static void ffs_data_get(struct ffs_data *ffs);
46 static void ffs_data_put(struct ffs_data *ffs);
47 /* Creates new ffs_data object. */
48 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
49 
50 /* Opened counter handling. */
51 static void ffs_data_opened(struct ffs_data *ffs);
52 static void ffs_data_closed(struct ffs_data *ffs);
53 
54 /* Called with ffs->mutex held; take over ownership of data. */
55 static int __must_check
56 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
57 static int __must_check
58 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
59 
60 
61 /* The function structure ***************************************************/
62 
63 struct ffs_ep;
64 
65 struct ffs_function {
66 	struct usb_configuration	*conf;
67 	struct usb_gadget		*gadget;
68 	struct ffs_data			*ffs;
69 
70 	struct ffs_ep			*eps;
71 	u8				eps_revmap[16];
72 	short				*interfaces_nums;
73 
74 	struct usb_function		function;
75 };
76 
77 
78 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
79 {
80 	return container_of(f, struct ffs_function, function);
81 }
82 
83 
84 static inline enum ffs_setup_state
85 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
86 {
87 	return (enum ffs_setup_state)
88 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
89 }
90 
91 
92 static void ffs_func_eps_disable(struct ffs_function *func);
93 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
94 
95 static int ffs_func_bind(struct usb_configuration *,
96 			 struct usb_function *);
97 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
98 static void ffs_func_disable(struct usb_function *);
99 static int ffs_func_setup(struct usb_function *,
100 			  const struct usb_ctrlrequest *);
101 static void ffs_func_suspend(struct usb_function *);
102 static void ffs_func_resume(struct usb_function *);
103 
104 
105 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
106 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
107 
108 
109 /* The endpoints structures *************************************************/
110 
111 struct ffs_ep {
112 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
113 	struct usb_request		*req;	/* P: epfile->mutex */
114 
115 	/* [0]: full speed, [1]: high speed, [2]: super speed */
116 	struct usb_endpoint_descriptor	*descs[3];
117 
118 	u8				num;
119 
120 	int				status;	/* P: epfile->mutex */
121 };
122 
123 struct ffs_epfile {
124 	/* Protects ep->ep and ep->req. */
125 	struct mutex			mutex;
126 	wait_queue_head_t		wait;
127 
128 	struct ffs_data			*ffs;
129 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
130 
131 	struct dentry			*dentry;
132 
133 	char				name[5];
134 
135 	unsigned char			in;	/* P: ffs->eps_lock */
136 	unsigned char			isoc;	/* P: ffs->eps_lock */
137 
138 	unsigned char			_pad;
139 };
140 
141 /*  ffs_io_data structure ***************************************************/
142 
143 struct ffs_io_data {
144 	bool aio;
145 	bool read;
146 
147 	struct kiocb *kiocb;
148 	struct iov_iter data;
149 	const void *to_free;
150 	char *buf;
151 
152 	struct mm_struct *mm;
153 	struct work_struct work;
154 
155 	struct usb_ep *ep;
156 	struct usb_request *req;
157 
158 	struct ffs_data *ffs;
159 };
160 
161 struct ffs_desc_helper {
162 	struct ffs_data *ffs;
163 	unsigned interfaces_count;
164 	unsigned eps_count;
165 };
166 
167 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
168 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
169 
170 static struct dentry *
171 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
172 		   const struct file_operations *fops);
173 
174 /* Devices management *******************************************************/
175 
176 DEFINE_MUTEX(ffs_lock);
177 EXPORT_SYMBOL_GPL(ffs_lock);
178 
179 static struct ffs_dev *_ffs_find_dev(const char *name);
180 static struct ffs_dev *_ffs_alloc_dev(void);
181 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
182 static void _ffs_free_dev(struct ffs_dev *dev);
183 static void *ffs_acquire_dev(const char *dev_name);
184 static void ffs_release_dev(struct ffs_data *ffs_data);
185 static int ffs_ready(struct ffs_data *ffs);
186 static void ffs_closed(struct ffs_data *ffs);
187 
188 /* Misc helper functions ****************************************************/
189 
190 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
191 	__attribute__((warn_unused_result, nonnull));
192 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
193 	__attribute__((warn_unused_result, nonnull));
194 
195 
196 /* Control file aka ep0 *****************************************************/
197 
198 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
199 {
200 	struct ffs_data *ffs = req->context;
201 
202 	complete_all(&ffs->ep0req_completion);
203 }
204 
205 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
206 {
207 	struct usb_request *req = ffs->ep0req;
208 	int ret;
209 
210 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
211 
212 	spin_unlock_irq(&ffs->ev.waitq.lock);
213 
214 	req->buf      = data;
215 	req->length   = len;
216 
217 	/*
218 	 * UDC layer requires to provide a buffer even for ZLP, but should
219 	 * not use it at all. Let's provide some poisoned pointer to catch
220 	 * possible bug in the driver.
221 	 */
222 	if (req->buf == NULL)
223 		req->buf = (void *)0xDEADBABE;
224 
225 	reinit_completion(&ffs->ep0req_completion);
226 
227 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
228 	if (unlikely(ret < 0))
229 		return ret;
230 
231 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
232 	if (unlikely(ret)) {
233 		usb_ep_dequeue(ffs->gadget->ep0, req);
234 		return -EINTR;
235 	}
236 
237 	ffs->setup_state = FFS_NO_SETUP;
238 	return req->status ? req->status : req->actual;
239 }
240 
241 static int __ffs_ep0_stall(struct ffs_data *ffs)
242 {
243 	if (ffs->ev.can_stall) {
244 		pr_vdebug("ep0 stall\n");
245 		usb_ep_set_halt(ffs->gadget->ep0);
246 		ffs->setup_state = FFS_NO_SETUP;
247 		return -EL2HLT;
248 	} else {
249 		pr_debug("bogus ep0 stall!\n");
250 		return -ESRCH;
251 	}
252 }
253 
254 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
255 			     size_t len, loff_t *ptr)
256 {
257 	struct ffs_data *ffs = file->private_data;
258 	ssize_t ret;
259 	char *data;
260 
261 	ENTER();
262 
263 	/* Fast check if setup was canceled */
264 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
265 		return -EIDRM;
266 
267 	/* Acquire mutex */
268 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
269 	if (unlikely(ret < 0))
270 		return ret;
271 
272 	/* Check state */
273 	switch (ffs->state) {
274 	case FFS_READ_DESCRIPTORS:
275 	case FFS_READ_STRINGS:
276 		/* Copy data */
277 		if (unlikely(len < 16)) {
278 			ret = -EINVAL;
279 			break;
280 		}
281 
282 		data = ffs_prepare_buffer(buf, len);
283 		if (IS_ERR(data)) {
284 			ret = PTR_ERR(data);
285 			break;
286 		}
287 
288 		/* Handle data */
289 		if (ffs->state == FFS_READ_DESCRIPTORS) {
290 			pr_info("read descriptors\n");
291 			ret = __ffs_data_got_descs(ffs, data, len);
292 			if (unlikely(ret < 0))
293 				break;
294 
295 			ffs->state = FFS_READ_STRINGS;
296 			ret = len;
297 		} else {
298 			pr_info("read strings\n");
299 			ret = __ffs_data_got_strings(ffs, data, len);
300 			if (unlikely(ret < 0))
301 				break;
302 
303 			ret = ffs_epfiles_create(ffs);
304 			if (unlikely(ret)) {
305 				ffs->state = FFS_CLOSING;
306 				break;
307 			}
308 
309 			ffs->state = FFS_ACTIVE;
310 			mutex_unlock(&ffs->mutex);
311 
312 			ret = ffs_ready(ffs);
313 			if (unlikely(ret < 0)) {
314 				ffs->state = FFS_CLOSING;
315 				return ret;
316 			}
317 
318 			return len;
319 		}
320 		break;
321 
322 	case FFS_ACTIVE:
323 		data = NULL;
324 		/*
325 		 * We're called from user space, we can use _irq
326 		 * rather then _irqsave
327 		 */
328 		spin_lock_irq(&ffs->ev.waitq.lock);
329 		switch (ffs_setup_state_clear_cancelled(ffs)) {
330 		case FFS_SETUP_CANCELLED:
331 			ret = -EIDRM;
332 			goto done_spin;
333 
334 		case FFS_NO_SETUP:
335 			ret = -ESRCH;
336 			goto done_spin;
337 
338 		case FFS_SETUP_PENDING:
339 			break;
340 		}
341 
342 		/* FFS_SETUP_PENDING */
343 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
344 			spin_unlock_irq(&ffs->ev.waitq.lock);
345 			ret = __ffs_ep0_stall(ffs);
346 			break;
347 		}
348 
349 		/* FFS_SETUP_PENDING and not stall */
350 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
351 
352 		spin_unlock_irq(&ffs->ev.waitq.lock);
353 
354 		data = ffs_prepare_buffer(buf, len);
355 		if (IS_ERR(data)) {
356 			ret = PTR_ERR(data);
357 			break;
358 		}
359 
360 		spin_lock_irq(&ffs->ev.waitq.lock);
361 
362 		/*
363 		 * We are guaranteed to be still in FFS_ACTIVE state
364 		 * but the state of setup could have changed from
365 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
366 		 * to check for that.  If that happened we copied data
367 		 * from user space in vain but it's unlikely.
368 		 *
369 		 * For sure we are not in FFS_NO_SETUP since this is
370 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
371 		 * transition can be performed and it's protected by
372 		 * mutex.
373 		 */
374 		if (ffs_setup_state_clear_cancelled(ffs) ==
375 		    FFS_SETUP_CANCELLED) {
376 			ret = -EIDRM;
377 done_spin:
378 			spin_unlock_irq(&ffs->ev.waitq.lock);
379 		} else {
380 			/* unlocks spinlock */
381 			ret = __ffs_ep0_queue_wait(ffs, data, len);
382 		}
383 		kfree(data);
384 		break;
385 
386 	default:
387 		ret = -EBADFD;
388 		break;
389 	}
390 
391 	mutex_unlock(&ffs->mutex);
392 	return ret;
393 }
394 
395 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
396 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
397 				     size_t n)
398 {
399 	/*
400 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
401 	 * size of ffs->ev.types array (which is four) so that's how much space
402 	 * we reserve.
403 	 */
404 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
405 	const size_t size = n * sizeof *events;
406 	unsigned i = 0;
407 
408 	memset(events, 0, size);
409 
410 	do {
411 		events[i].type = ffs->ev.types[i];
412 		if (events[i].type == FUNCTIONFS_SETUP) {
413 			events[i].u.setup = ffs->ev.setup;
414 			ffs->setup_state = FFS_SETUP_PENDING;
415 		}
416 	} while (++i < n);
417 
418 	ffs->ev.count -= n;
419 	if (ffs->ev.count)
420 		memmove(ffs->ev.types, ffs->ev.types + n,
421 			ffs->ev.count * sizeof *ffs->ev.types);
422 
423 	spin_unlock_irq(&ffs->ev.waitq.lock);
424 	mutex_unlock(&ffs->mutex);
425 
426 	return unlikely(__copy_to_user(buf, events, size)) ? -EFAULT : size;
427 }
428 
429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
430 			    size_t len, loff_t *ptr)
431 {
432 	struct ffs_data *ffs = file->private_data;
433 	char *data = NULL;
434 	size_t n;
435 	int ret;
436 
437 	ENTER();
438 
439 	/* Fast check if setup was canceled */
440 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
441 		return -EIDRM;
442 
443 	/* Acquire mutex */
444 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
445 	if (unlikely(ret < 0))
446 		return ret;
447 
448 	/* Check state */
449 	if (ffs->state != FFS_ACTIVE) {
450 		ret = -EBADFD;
451 		goto done_mutex;
452 	}
453 
454 	/*
455 	 * We're called from user space, we can use _irq rather then
456 	 * _irqsave
457 	 */
458 	spin_lock_irq(&ffs->ev.waitq.lock);
459 
460 	switch (ffs_setup_state_clear_cancelled(ffs)) {
461 	case FFS_SETUP_CANCELLED:
462 		ret = -EIDRM;
463 		break;
464 
465 	case FFS_NO_SETUP:
466 		n = len / sizeof(struct usb_functionfs_event);
467 		if (unlikely(!n)) {
468 			ret = -EINVAL;
469 			break;
470 		}
471 
472 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
473 			ret = -EAGAIN;
474 			break;
475 		}
476 
477 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
478 							ffs->ev.count)) {
479 			ret = -EINTR;
480 			break;
481 		}
482 
483 		return __ffs_ep0_read_events(ffs, buf,
484 					     min(n, (size_t)ffs->ev.count));
485 
486 	case FFS_SETUP_PENDING:
487 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
488 			spin_unlock_irq(&ffs->ev.waitq.lock);
489 			ret = __ffs_ep0_stall(ffs);
490 			goto done_mutex;
491 		}
492 
493 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
494 
495 		spin_unlock_irq(&ffs->ev.waitq.lock);
496 
497 		if (likely(len)) {
498 			data = kmalloc(len, GFP_KERNEL);
499 			if (unlikely(!data)) {
500 				ret = -ENOMEM;
501 				goto done_mutex;
502 			}
503 		}
504 
505 		spin_lock_irq(&ffs->ev.waitq.lock);
506 
507 		/* See ffs_ep0_write() */
508 		if (ffs_setup_state_clear_cancelled(ffs) ==
509 		    FFS_SETUP_CANCELLED) {
510 			ret = -EIDRM;
511 			break;
512 		}
513 
514 		/* unlocks spinlock */
515 		ret = __ffs_ep0_queue_wait(ffs, data, len);
516 		if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len)))
517 			ret = -EFAULT;
518 		goto done_mutex;
519 
520 	default:
521 		ret = -EBADFD;
522 		break;
523 	}
524 
525 	spin_unlock_irq(&ffs->ev.waitq.lock);
526 done_mutex:
527 	mutex_unlock(&ffs->mutex);
528 	kfree(data);
529 	return ret;
530 }
531 
532 static int ffs_ep0_open(struct inode *inode, struct file *file)
533 {
534 	struct ffs_data *ffs = inode->i_private;
535 
536 	ENTER();
537 
538 	if (unlikely(ffs->state == FFS_CLOSING))
539 		return -EBUSY;
540 
541 	file->private_data = ffs;
542 	ffs_data_opened(ffs);
543 
544 	return 0;
545 }
546 
547 static int ffs_ep0_release(struct inode *inode, struct file *file)
548 {
549 	struct ffs_data *ffs = file->private_data;
550 
551 	ENTER();
552 
553 	ffs_data_closed(ffs);
554 
555 	return 0;
556 }
557 
558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
559 {
560 	struct ffs_data *ffs = file->private_data;
561 	struct usb_gadget *gadget = ffs->gadget;
562 	long ret;
563 
564 	ENTER();
565 
566 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
567 		struct ffs_function *func = ffs->func;
568 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
569 	} else if (gadget && gadget->ops->ioctl) {
570 		ret = gadget->ops->ioctl(gadget, code, value);
571 	} else {
572 		ret = -ENOTTY;
573 	}
574 
575 	return ret;
576 }
577 
578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
579 {
580 	struct ffs_data *ffs = file->private_data;
581 	unsigned int mask = POLLWRNORM;
582 	int ret;
583 
584 	poll_wait(file, &ffs->ev.waitq, wait);
585 
586 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
587 	if (unlikely(ret < 0))
588 		return mask;
589 
590 	switch (ffs->state) {
591 	case FFS_READ_DESCRIPTORS:
592 	case FFS_READ_STRINGS:
593 		mask |= POLLOUT;
594 		break;
595 
596 	case FFS_ACTIVE:
597 		switch (ffs->setup_state) {
598 		case FFS_NO_SETUP:
599 			if (ffs->ev.count)
600 				mask |= POLLIN;
601 			break;
602 
603 		case FFS_SETUP_PENDING:
604 		case FFS_SETUP_CANCELLED:
605 			mask |= (POLLIN | POLLOUT);
606 			break;
607 		}
608 	case FFS_CLOSING:
609 		break;
610 	case FFS_DEACTIVATED:
611 		break;
612 	}
613 
614 	mutex_unlock(&ffs->mutex);
615 
616 	return mask;
617 }
618 
619 static const struct file_operations ffs_ep0_operations = {
620 	.llseek =	no_llseek,
621 
622 	.open =		ffs_ep0_open,
623 	.write =	ffs_ep0_write,
624 	.read =		ffs_ep0_read,
625 	.release =	ffs_ep0_release,
626 	.unlocked_ioctl =	ffs_ep0_ioctl,
627 	.poll =		ffs_ep0_poll,
628 };
629 
630 
631 /* "Normal" endpoints operations ********************************************/
632 
633 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
634 {
635 	ENTER();
636 	if (likely(req->context)) {
637 		struct ffs_ep *ep = _ep->driver_data;
638 		ep->status = req->status ? req->status : req->actual;
639 		complete(req->context);
640 	}
641 }
642 
643 static void ffs_user_copy_worker(struct work_struct *work)
644 {
645 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
646 						   work);
647 	int ret = io_data->req->status ? io_data->req->status :
648 					 io_data->req->actual;
649 
650 	if (io_data->read && ret > 0) {
651 		use_mm(io_data->mm);
652 		ret = copy_to_iter(io_data->buf, ret, &io_data->data);
653 		if (iov_iter_count(&io_data->data))
654 			ret = -EFAULT;
655 		unuse_mm(io_data->mm);
656 	}
657 
658 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
659 
660 	if (io_data->ffs->ffs_eventfd &&
661 	    !(io_data->kiocb->ki_flags & IOCB_EVENTFD))
662 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
663 
664 	usb_ep_free_request(io_data->ep, io_data->req);
665 
666 	io_data->kiocb->private = NULL;
667 	if (io_data->read)
668 		kfree(io_data->to_free);
669 	kfree(io_data->buf);
670 	kfree(io_data);
671 }
672 
673 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
674 					 struct usb_request *req)
675 {
676 	struct ffs_io_data *io_data = req->context;
677 
678 	ENTER();
679 
680 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
681 	schedule_work(&io_data->work);
682 }
683 
684 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
685 {
686 	struct ffs_epfile *epfile = file->private_data;
687 	struct ffs_ep *ep;
688 	char *data = NULL;
689 	ssize_t ret, data_len = -EINVAL;
690 	int halt;
691 
692 	/* Are we still active? */
693 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
694 		ret = -ENODEV;
695 		goto error;
696 	}
697 
698 	/* Wait for endpoint to be enabled */
699 	ep = epfile->ep;
700 	if (!ep) {
701 		if (file->f_flags & O_NONBLOCK) {
702 			ret = -EAGAIN;
703 			goto error;
704 		}
705 
706 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
707 		if (ret) {
708 			ret = -EINTR;
709 			goto error;
710 		}
711 	}
712 
713 	/* Do we halt? */
714 	halt = (!io_data->read == !epfile->in);
715 	if (halt && epfile->isoc) {
716 		ret = -EINVAL;
717 		goto error;
718 	}
719 
720 	/* Allocate & copy */
721 	if (!halt) {
722 		/*
723 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
724 		 * before the waiting completes, so do not assign to 'gadget' earlier
725 		 */
726 		struct usb_gadget *gadget = epfile->ffs->gadget;
727 		size_t copied;
728 
729 		spin_lock_irq(&epfile->ffs->eps_lock);
730 		/* In the meantime, endpoint got disabled or changed. */
731 		if (epfile->ep != ep) {
732 			spin_unlock_irq(&epfile->ffs->eps_lock);
733 			return -ESHUTDOWN;
734 		}
735 		data_len = iov_iter_count(&io_data->data);
736 		/*
737 		 * Controller may require buffer size to be aligned to
738 		 * maxpacketsize of an out endpoint.
739 		 */
740 		if (io_data->read)
741 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
742 		spin_unlock_irq(&epfile->ffs->eps_lock);
743 
744 		data = kmalloc(data_len, GFP_KERNEL);
745 		if (unlikely(!data))
746 			return -ENOMEM;
747 		if (!io_data->read) {
748 			copied = copy_from_iter(data, data_len, &io_data->data);
749 			if (copied != data_len) {
750 				ret = -EFAULT;
751 				goto error;
752 			}
753 		}
754 	}
755 
756 	/* We will be using request */
757 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
758 	if (unlikely(ret))
759 		goto error;
760 
761 	spin_lock_irq(&epfile->ffs->eps_lock);
762 
763 	if (epfile->ep != ep) {
764 		/* In the meantime, endpoint got disabled or changed. */
765 		ret = -ESHUTDOWN;
766 		spin_unlock_irq(&epfile->ffs->eps_lock);
767 	} else if (halt) {
768 		/* Halt */
769 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
770 			usb_ep_set_halt(ep->ep);
771 		spin_unlock_irq(&epfile->ffs->eps_lock);
772 		ret = -EBADMSG;
773 	} else {
774 		/* Fire the request */
775 		struct usb_request *req;
776 
777 		/*
778 		 * Sanity Check: even though data_len can't be used
779 		 * uninitialized at the time I write this comment, some
780 		 * compilers complain about this situation.
781 		 * In order to keep the code clean from warnings, data_len is
782 		 * being initialized to -EINVAL during its declaration, which
783 		 * means we can't rely on compiler anymore to warn no future
784 		 * changes won't result in data_len being used uninitialized.
785 		 * For such reason, we're adding this redundant sanity check
786 		 * here.
787 		 */
788 		if (unlikely(data_len == -EINVAL)) {
789 			WARN(1, "%s: data_len == -EINVAL\n", __func__);
790 			ret = -EINVAL;
791 			goto error_lock;
792 		}
793 
794 		if (io_data->aio) {
795 			req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
796 			if (unlikely(!req))
797 				goto error_lock;
798 
799 			req->buf      = data;
800 			req->length   = data_len;
801 
802 			io_data->buf = data;
803 			io_data->ep = ep->ep;
804 			io_data->req = req;
805 			io_data->ffs = epfile->ffs;
806 
807 			req->context  = io_data;
808 			req->complete = ffs_epfile_async_io_complete;
809 
810 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
811 			if (unlikely(ret)) {
812 				usb_ep_free_request(ep->ep, req);
813 				goto error_lock;
814 			}
815 			ret = -EIOCBQUEUED;
816 
817 			spin_unlock_irq(&epfile->ffs->eps_lock);
818 		} else {
819 			DECLARE_COMPLETION_ONSTACK(done);
820 
821 			req = ep->req;
822 			req->buf      = data;
823 			req->length   = data_len;
824 
825 			req->context  = &done;
826 			req->complete = ffs_epfile_io_complete;
827 
828 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
829 
830 			spin_unlock_irq(&epfile->ffs->eps_lock);
831 
832 			if (unlikely(ret < 0)) {
833 				/* nop */
834 			} else if (unlikely(
835 				   wait_for_completion_interruptible(&done))) {
836 				ret = -EINTR;
837 				usb_ep_dequeue(ep->ep, req);
838 			} else {
839 				/*
840 				 * XXX We may end up silently droping data
841 				 * here.  Since data_len (i.e. req->length) may
842 				 * be bigger than len (after being rounded up
843 				 * to maxpacketsize), we may end up with more
844 				 * data then user space has space for.
845 				 */
846 				ret = ep->status;
847 				if (io_data->read && ret > 0) {
848 					ret = copy_to_iter(data, ret, &io_data->data);
849 					if (!ret)
850 						ret = -EFAULT;
851 				}
852 			}
853 			kfree(data);
854 		}
855 	}
856 
857 	mutex_unlock(&epfile->mutex);
858 	return ret;
859 
860 error_lock:
861 	spin_unlock_irq(&epfile->ffs->eps_lock);
862 	mutex_unlock(&epfile->mutex);
863 error:
864 	kfree(data);
865 	return ret;
866 }
867 
868 static int
869 ffs_epfile_open(struct inode *inode, struct file *file)
870 {
871 	struct ffs_epfile *epfile = inode->i_private;
872 
873 	ENTER();
874 
875 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
876 		return -ENODEV;
877 
878 	file->private_data = epfile;
879 	ffs_data_opened(epfile->ffs);
880 
881 	return 0;
882 }
883 
884 static int ffs_aio_cancel(struct kiocb *kiocb)
885 {
886 	struct ffs_io_data *io_data = kiocb->private;
887 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
888 	int value;
889 
890 	ENTER();
891 
892 	spin_lock_irq(&epfile->ffs->eps_lock);
893 
894 	if (likely(io_data && io_data->ep && io_data->req))
895 		value = usb_ep_dequeue(io_data->ep, io_data->req);
896 	else
897 		value = -EINVAL;
898 
899 	spin_unlock_irq(&epfile->ffs->eps_lock);
900 
901 	return value;
902 }
903 
904 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
905 {
906 	struct ffs_io_data io_data, *p = &io_data;
907 	ssize_t res;
908 
909 	ENTER();
910 
911 	if (!is_sync_kiocb(kiocb)) {
912 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
913 		if (unlikely(!p))
914 			return -ENOMEM;
915 		p->aio = true;
916 	} else {
917 		p->aio = false;
918 	}
919 
920 	p->read = false;
921 	p->kiocb = kiocb;
922 	p->data = *from;
923 	p->mm = current->mm;
924 
925 	kiocb->private = p;
926 
927 	if (p->aio)
928 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
929 
930 	res = ffs_epfile_io(kiocb->ki_filp, p);
931 	if (res == -EIOCBQUEUED)
932 		return res;
933 	if (p->aio)
934 		kfree(p);
935 	else
936 		*from = p->data;
937 	return res;
938 }
939 
940 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
941 {
942 	struct ffs_io_data io_data, *p = &io_data;
943 	ssize_t res;
944 
945 	ENTER();
946 
947 	if (!is_sync_kiocb(kiocb)) {
948 		p = kmalloc(sizeof(io_data), GFP_KERNEL);
949 		if (unlikely(!p))
950 			return -ENOMEM;
951 		p->aio = true;
952 	} else {
953 		p->aio = false;
954 	}
955 
956 	p->read = true;
957 	p->kiocb = kiocb;
958 	if (p->aio) {
959 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
960 		if (!p->to_free) {
961 			kfree(p);
962 			return -ENOMEM;
963 		}
964 	} else {
965 		p->data = *to;
966 		p->to_free = NULL;
967 	}
968 	p->mm = current->mm;
969 
970 	kiocb->private = p;
971 
972 	if (p->aio)
973 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
974 
975 	res = ffs_epfile_io(kiocb->ki_filp, p);
976 	if (res == -EIOCBQUEUED)
977 		return res;
978 
979 	if (p->aio) {
980 		kfree(p->to_free);
981 		kfree(p);
982 	} else {
983 		*to = p->data;
984 	}
985 	return res;
986 }
987 
988 static int
989 ffs_epfile_release(struct inode *inode, struct file *file)
990 {
991 	struct ffs_epfile *epfile = inode->i_private;
992 
993 	ENTER();
994 
995 	ffs_data_closed(epfile->ffs);
996 
997 	return 0;
998 }
999 
1000 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1001 			     unsigned long value)
1002 {
1003 	struct ffs_epfile *epfile = file->private_data;
1004 	int ret;
1005 
1006 	ENTER();
1007 
1008 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1009 		return -ENODEV;
1010 
1011 	spin_lock_irq(&epfile->ffs->eps_lock);
1012 	if (likely(epfile->ep)) {
1013 		switch (code) {
1014 		case FUNCTIONFS_FIFO_STATUS:
1015 			ret = usb_ep_fifo_status(epfile->ep->ep);
1016 			break;
1017 		case FUNCTIONFS_FIFO_FLUSH:
1018 			usb_ep_fifo_flush(epfile->ep->ep);
1019 			ret = 0;
1020 			break;
1021 		case FUNCTIONFS_CLEAR_HALT:
1022 			ret = usb_ep_clear_halt(epfile->ep->ep);
1023 			break;
1024 		case FUNCTIONFS_ENDPOINT_REVMAP:
1025 			ret = epfile->ep->num;
1026 			break;
1027 		case FUNCTIONFS_ENDPOINT_DESC:
1028 		{
1029 			int desc_idx;
1030 			struct usb_endpoint_descriptor *desc;
1031 
1032 			switch (epfile->ffs->gadget->speed) {
1033 			case USB_SPEED_SUPER:
1034 				desc_idx = 2;
1035 				break;
1036 			case USB_SPEED_HIGH:
1037 				desc_idx = 1;
1038 				break;
1039 			default:
1040 				desc_idx = 0;
1041 			}
1042 			desc = epfile->ep->descs[desc_idx];
1043 
1044 			spin_unlock_irq(&epfile->ffs->eps_lock);
1045 			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1046 			if (ret)
1047 				ret = -EFAULT;
1048 			return ret;
1049 		}
1050 		default:
1051 			ret = -ENOTTY;
1052 		}
1053 	} else {
1054 		ret = -ENODEV;
1055 	}
1056 	spin_unlock_irq(&epfile->ffs->eps_lock);
1057 
1058 	return ret;
1059 }
1060 
1061 static const struct file_operations ffs_epfile_operations = {
1062 	.llseek =	no_llseek,
1063 
1064 	.open =		ffs_epfile_open,
1065 	.write_iter =	ffs_epfile_write_iter,
1066 	.read_iter =	ffs_epfile_read_iter,
1067 	.release =	ffs_epfile_release,
1068 	.unlocked_ioctl =	ffs_epfile_ioctl,
1069 };
1070 
1071 
1072 /* File system and super block operations ***********************************/
1073 
1074 /*
1075  * Mounting the file system creates a controller file, used first for
1076  * function configuration then later for event monitoring.
1077  */
1078 
1079 static struct inode *__must_check
1080 ffs_sb_make_inode(struct super_block *sb, void *data,
1081 		  const struct file_operations *fops,
1082 		  const struct inode_operations *iops,
1083 		  struct ffs_file_perms *perms)
1084 {
1085 	struct inode *inode;
1086 
1087 	ENTER();
1088 
1089 	inode = new_inode(sb);
1090 
1091 	if (likely(inode)) {
1092 		struct timespec current_time = CURRENT_TIME;
1093 
1094 		inode->i_ino	 = get_next_ino();
1095 		inode->i_mode    = perms->mode;
1096 		inode->i_uid     = perms->uid;
1097 		inode->i_gid     = perms->gid;
1098 		inode->i_atime   = current_time;
1099 		inode->i_mtime   = current_time;
1100 		inode->i_ctime   = current_time;
1101 		inode->i_private = data;
1102 		if (fops)
1103 			inode->i_fop = fops;
1104 		if (iops)
1105 			inode->i_op  = iops;
1106 	}
1107 
1108 	return inode;
1109 }
1110 
1111 /* Create "regular" file */
1112 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1113 					const char *name, void *data,
1114 					const struct file_operations *fops)
1115 {
1116 	struct ffs_data	*ffs = sb->s_fs_info;
1117 	struct dentry	*dentry;
1118 	struct inode	*inode;
1119 
1120 	ENTER();
1121 
1122 	dentry = d_alloc_name(sb->s_root, name);
1123 	if (unlikely(!dentry))
1124 		return NULL;
1125 
1126 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1127 	if (unlikely(!inode)) {
1128 		dput(dentry);
1129 		return NULL;
1130 	}
1131 
1132 	d_add(dentry, inode);
1133 	return dentry;
1134 }
1135 
1136 /* Super block */
1137 static const struct super_operations ffs_sb_operations = {
1138 	.statfs =	simple_statfs,
1139 	.drop_inode =	generic_delete_inode,
1140 };
1141 
1142 struct ffs_sb_fill_data {
1143 	struct ffs_file_perms perms;
1144 	umode_t root_mode;
1145 	const char *dev_name;
1146 	bool no_disconnect;
1147 	struct ffs_data *ffs_data;
1148 };
1149 
1150 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1151 {
1152 	struct ffs_sb_fill_data *data = _data;
1153 	struct inode	*inode;
1154 	struct ffs_data	*ffs = data->ffs_data;
1155 
1156 	ENTER();
1157 
1158 	ffs->sb              = sb;
1159 	data->ffs_data       = NULL;
1160 	sb->s_fs_info        = ffs;
1161 	sb->s_blocksize      = PAGE_CACHE_SIZE;
1162 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1163 	sb->s_magic          = FUNCTIONFS_MAGIC;
1164 	sb->s_op             = &ffs_sb_operations;
1165 	sb->s_time_gran      = 1;
1166 
1167 	/* Root inode */
1168 	data->perms.mode = data->root_mode;
1169 	inode = ffs_sb_make_inode(sb, NULL,
1170 				  &simple_dir_operations,
1171 				  &simple_dir_inode_operations,
1172 				  &data->perms);
1173 	sb->s_root = d_make_root(inode);
1174 	if (unlikely(!sb->s_root))
1175 		return -ENOMEM;
1176 
1177 	/* EP0 file */
1178 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1179 					 &ffs_ep0_operations)))
1180 		return -ENOMEM;
1181 
1182 	return 0;
1183 }
1184 
1185 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1186 {
1187 	ENTER();
1188 
1189 	if (!opts || !*opts)
1190 		return 0;
1191 
1192 	for (;;) {
1193 		unsigned long value;
1194 		char *eq, *comma;
1195 
1196 		/* Option limit */
1197 		comma = strchr(opts, ',');
1198 		if (comma)
1199 			*comma = 0;
1200 
1201 		/* Value limit */
1202 		eq = strchr(opts, '=');
1203 		if (unlikely(!eq)) {
1204 			pr_err("'=' missing in %s\n", opts);
1205 			return -EINVAL;
1206 		}
1207 		*eq = 0;
1208 
1209 		/* Parse value */
1210 		if (kstrtoul(eq + 1, 0, &value)) {
1211 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1212 			return -EINVAL;
1213 		}
1214 
1215 		/* Interpret option */
1216 		switch (eq - opts) {
1217 		case 13:
1218 			if (!memcmp(opts, "no_disconnect", 13))
1219 				data->no_disconnect = !!value;
1220 			else
1221 				goto invalid;
1222 			break;
1223 		case 5:
1224 			if (!memcmp(opts, "rmode", 5))
1225 				data->root_mode  = (value & 0555) | S_IFDIR;
1226 			else if (!memcmp(opts, "fmode", 5))
1227 				data->perms.mode = (value & 0666) | S_IFREG;
1228 			else
1229 				goto invalid;
1230 			break;
1231 
1232 		case 4:
1233 			if (!memcmp(opts, "mode", 4)) {
1234 				data->root_mode  = (value & 0555) | S_IFDIR;
1235 				data->perms.mode = (value & 0666) | S_IFREG;
1236 			} else {
1237 				goto invalid;
1238 			}
1239 			break;
1240 
1241 		case 3:
1242 			if (!memcmp(opts, "uid", 3)) {
1243 				data->perms.uid = make_kuid(current_user_ns(), value);
1244 				if (!uid_valid(data->perms.uid)) {
1245 					pr_err("%s: unmapped value: %lu\n", opts, value);
1246 					return -EINVAL;
1247 				}
1248 			} else if (!memcmp(opts, "gid", 3)) {
1249 				data->perms.gid = make_kgid(current_user_ns(), value);
1250 				if (!gid_valid(data->perms.gid)) {
1251 					pr_err("%s: unmapped value: %lu\n", opts, value);
1252 					return -EINVAL;
1253 				}
1254 			} else {
1255 				goto invalid;
1256 			}
1257 			break;
1258 
1259 		default:
1260 invalid:
1261 			pr_err("%s: invalid option\n", opts);
1262 			return -EINVAL;
1263 		}
1264 
1265 		/* Next iteration */
1266 		if (!comma)
1267 			break;
1268 		opts = comma + 1;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 /* "mount -t functionfs dev_name /dev/function" ends up here */
1275 
1276 static struct dentry *
1277 ffs_fs_mount(struct file_system_type *t, int flags,
1278 	      const char *dev_name, void *opts)
1279 {
1280 	struct ffs_sb_fill_data data = {
1281 		.perms = {
1282 			.mode = S_IFREG | 0600,
1283 			.uid = GLOBAL_ROOT_UID,
1284 			.gid = GLOBAL_ROOT_GID,
1285 		},
1286 		.root_mode = S_IFDIR | 0500,
1287 		.no_disconnect = false,
1288 	};
1289 	struct dentry *rv;
1290 	int ret;
1291 	void *ffs_dev;
1292 	struct ffs_data	*ffs;
1293 
1294 	ENTER();
1295 
1296 	ret = ffs_fs_parse_opts(&data, opts);
1297 	if (unlikely(ret < 0))
1298 		return ERR_PTR(ret);
1299 
1300 	ffs = ffs_data_new();
1301 	if (unlikely(!ffs))
1302 		return ERR_PTR(-ENOMEM);
1303 	ffs->file_perms = data.perms;
1304 	ffs->no_disconnect = data.no_disconnect;
1305 
1306 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1307 	if (unlikely(!ffs->dev_name)) {
1308 		ffs_data_put(ffs);
1309 		return ERR_PTR(-ENOMEM);
1310 	}
1311 
1312 	ffs_dev = ffs_acquire_dev(dev_name);
1313 	if (IS_ERR(ffs_dev)) {
1314 		ffs_data_put(ffs);
1315 		return ERR_CAST(ffs_dev);
1316 	}
1317 	ffs->private_data = ffs_dev;
1318 	data.ffs_data = ffs;
1319 
1320 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1321 	if (IS_ERR(rv) && data.ffs_data) {
1322 		ffs_release_dev(data.ffs_data);
1323 		ffs_data_put(data.ffs_data);
1324 	}
1325 	return rv;
1326 }
1327 
1328 static void
1329 ffs_fs_kill_sb(struct super_block *sb)
1330 {
1331 	ENTER();
1332 
1333 	kill_litter_super(sb);
1334 	if (sb->s_fs_info) {
1335 		ffs_release_dev(sb->s_fs_info);
1336 		ffs_data_closed(sb->s_fs_info);
1337 		ffs_data_put(sb->s_fs_info);
1338 	}
1339 }
1340 
1341 static struct file_system_type ffs_fs_type = {
1342 	.owner		= THIS_MODULE,
1343 	.name		= "functionfs",
1344 	.mount		= ffs_fs_mount,
1345 	.kill_sb	= ffs_fs_kill_sb,
1346 };
1347 MODULE_ALIAS_FS("functionfs");
1348 
1349 
1350 /* Driver's main init/cleanup functions *************************************/
1351 
1352 static int functionfs_init(void)
1353 {
1354 	int ret;
1355 
1356 	ENTER();
1357 
1358 	ret = register_filesystem(&ffs_fs_type);
1359 	if (likely(!ret))
1360 		pr_info("file system registered\n");
1361 	else
1362 		pr_err("failed registering file system (%d)\n", ret);
1363 
1364 	return ret;
1365 }
1366 
1367 static void functionfs_cleanup(void)
1368 {
1369 	ENTER();
1370 
1371 	pr_info("unloading\n");
1372 	unregister_filesystem(&ffs_fs_type);
1373 }
1374 
1375 
1376 /* ffs_data and ffs_function construction and destruction code **************/
1377 
1378 static void ffs_data_clear(struct ffs_data *ffs);
1379 static void ffs_data_reset(struct ffs_data *ffs);
1380 
1381 static void ffs_data_get(struct ffs_data *ffs)
1382 {
1383 	ENTER();
1384 
1385 	atomic_inc(&ffs->ref);
1386 }
1387 
1388 static void ffs_data_opened(struct ffs_data *ffs)
1389 {
1390 	ENTER();
1391 
1392 	atomic_inc(&ffs->ref);
1393 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1394 			ffs->state == FFS_DEACTIVATED) {
1395 		ffs->state = FFS_CLOSING;
1396 		ffs_data_reset(ffs);
1397 	}
1398 }
1399 
1400 static void ffs_data_put(struct ffs_data *ffs)
1401 {
1402 	ENTER();
1403 
1404 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1405 		pr_info("%s(): freeing\n", __func__);
1406 		ffs_data_clear(ffs);
1407 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1408 		       waitqueue_active(&ffs->ep0req_completion.wait));
1409 		kfree(ffs->dev_name);
1410 		kfree(ffs);
1411 	}
1412 }
1413 
1414 static void ffs_data_closed(struct ffs_data *ffs)
1415 {
1416 	ENTER();
1417 
1418 	if (atomic_dec_and_test(&ffs->opened)) {
1419 		if (ffs->no_disconnect) {
1420 			ffs->state = FFS_DEACTIVATED;
1421 			if (ffs->epfiles) {
1422 				ffs_epfiles_destroy(ffs->epfiles,
1423 						   ffs->eps_count);
1424 				ffs->epfiles = NULL;
1425 			}
1426 			if (ffs->setup_state == FFS_SETUP_PENDING)
1427 				__ffs_ep0_stall(ffs);
1428 		} else {
1429 			ffs->state = FFS_CLOSING;
1430 			ffs_data_reset(ffs);
1431 		}
1432 	}
1433 	if (atomic_read(&ffs->opened) < 0) {
1434 		ffs->state = FFS_CLOSING;
1435 		ffs_data_reset(ffs);
1436 	}
1437 
1438 	ffs_data_put(ffs);
1439 }
1440 
1441 static struct ffs_data *ffs_data_new(void)
1442 {
1443 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1444 	if (unlikely(!ffs))
1445 		return NULL;
1446 
1447 	ENTER();
1448 
1449 	atomic_set(&ffs->ref, 1);
1450 	atomic_set(&ffs->opened, 0);
1451 	ffs->state = FFS_READ_DESCRIPTORS;
1452 	mutex_init(&ffs->mutex);
1453 	spin_lock_init(&ffs->eps_lock);
1454 	init_waitqueue_head(&ffs->ev.waitq);
1455 	init_completion(&ffs->ep0req_completion);
1456 
1457 	/* XXX REVISIT need to update it in some places, or do we? */
1458 	ffs->ev.can_stall = 1;
1459 
1460 	return ffs;
1461 }
1462 
1463 static void ffs_data_clear(struct ffs_data *ffs)
1464 {
1465 	ENTER();
1466 
1467 	ffs_closed(ffs);
1468 
1469 	BUG_ON(ffs->gadget);
1470 
1471 	if (ffs->epfiles)
1472 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1473 
1474 	if (ffs->ffs_eventfd)
1475 		eventfd_ctx_put(ffs->ffs_eventfd);
1476 
1477 	kfree(ffs->raw_descs_data);
1478 	kfree(ffs->raw_strings);
1479 	kfree(ffs->stringtabs);
1480 }
1481 
1482 static void ffs_data_reset(struct ffs_data *ffs)
1483 {
1484 	ENTER();
1485 
1486 	ffs_data_clear(ffs);
1487 
1488 	ffs->epfiles = NULL;
1489 	ffs->raw_descs_data = NULL;
1490 	ffs->raw_descs = NULL;
1491 	ffs->raw_strings = NULL;
1492 	ffs->stringtabs = NULL;
1493 
1494 	ffs->raw_descs_length = 0;
1495 	ffs->fs_descs_count = 0;
1496 	ffs->hs_descs_count = 0;
1497 	ffs->ss_descs_count = 0;
1498 
1499 	ffs->strings_count = 0;
1500 	ffs->interfaces_count = 0;
1501 	ffs->eps_count = 0;
1502 
1503 	ffs->ev.count = 0;
1504 
1505 	ffs->state = FFS_READ_DESCRIPTORS;
1506 	ffs->setup_state = FFS_NO_SETUP;
1507 	ffs->flags = 0;
1508 }
1509 
1510 
1511 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1512 {
1513 	struct usb_gadget_strings **lang;
1514 	int first_id;
1515 
1516 	ENTER();
1517 
1518 	if (WARN_ON(ffs->state != FFS_ACTIVE
1519 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1520 		return -EBADFD;
1521 
1522 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1523 	if (unlikely(first_id < 0))
1524 		return first_id;
1525 
1526 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1527 	if (unlikely(!ffs->ep0req))
1528 		return -ENOMEM;
1529 	ffs->ep0req->complete = ffs_ep0_complete;
1530 	ffs->ep0req->context = ffs;
1531 
1532 	lang = ffs->stringtabs;
1533 	if (lang) {
1534 		for (; *lang; ++lang) {
1535 			struct usb_string *str = (*lang)->strings;
1536 			int id = first_id;
1537 			for (; str->s; ++id, ++str)
1538 				str->id = id;
1539 		}
1540 	}
1541 
1542 	ffs->gadget = cdev->gadget;
1543 	ffs_data_get(ffs);
1544 	return 0;
1545 }
1546 
1547 static void functionfs_unbind(struct ffs_data *ffs)
1548 {
1549 	ENTER();
1550 
1551 	if (!WARN_ON(!ffs->gadget)) {
1552 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1553 		ffs->ep0req = NULL;
1554 		ffs->gadget = NULL;
1555 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1556 		ffs_data_put(ffs);
1557 	}
1558 }
1559 
1560 static int ffs_epfiles_create(struct ffs_data *ffs)
1561 {
1562 	struct ffs_epfile *epfile, *epfiles;
1563 	unsigned i, count;
1564 
1565 	ENTER();
1566 
1567 	count = ffs->eps_count;
1568 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1569 	if (!epfiles)
1570 		return -ENOMEM;
1571 
1572 	epfile = epfiles;
1573 	for (i = 1; i <= count; ++i, ++epfile) {
1574 		epfile->ffs = ffs;
1575 		mutex_init(&epfile->mutex);
1576 		init_waitqueue_head(&epfile->wait);
1577 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1578 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1579 		else
1580 			sprintf(epfile->name, "ep%u", i);
1581 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1582 						 epfile,
1583 						 &ffs_epfile_operations);
1584 		if (unlikely(!epfile->dentry)) {
1585 			ffs_epfiles_destroy(epfiles, i - 1);
1586 			return -ENOMEM;
1587 		}
1588 	}
1589 
1590 	ffs->epfiles = epfiles;
1591 	return 0;
1592 }
1593 
1594 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1595 {
1596 	struct ffs_epfile *epfile = epfiles;
1597 
1598 	ENTER();
1599 
1600 	for (; count; --count, ++epfile) {
1601 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1602 		       waitqueue_active(&epfile->wait));
1603 		if (epfile->dentry) {
1604 			d_delete(epfile->dentry);
1605 			dput(epfile->dentry);
1606 			epfile->dentry = NULL;
1607 		}
1608 	}
1609 
1610 	kfree(epfiles);
1611 }
1612 
1613 static void ffs_func_eps_disable(struct ffs_function *func)
1614 {
1615 	struct ffs_ep *ep         = func->eps;
1616 	struct ffs_epfile *epfile = func->ffs->epfiles;
1617 	unsigned count            = func->ffs->eps_count;
1618 	unsigned long flags;
1619 
1620 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1621 	do {
1622 		/* pending requests get nuked */
1623 		if (likely(ep->ep))
1624 			usb_ep_disable(ep->ep);
1625 		++ep;
1626 
1627 		if (epfile) {
1628 			epfile->ep = NULL;
1629 			++epfile;
1630 		}
1631 	} while (--count);
1632 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1633 }
1634 
1635 static int ffs_func_eps_enable(struct ffs_function *func)
1636 {
1637 	struct ffs_data *ffs      = func->ffs;
1638 	struct ffs_ep *ep         = func->eps;
1639 	struct ffs_epfile *epfile = ffs->epfiles;
1640 	unsigned count            = ffs->eps_count;
1641 	unsigned long flags;
1642 	int ret = 0;
1643 
1644 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1645 	do {
1646 		struct usb_endpoint_descriptor *ds;
1647 		int desc_idx;
1648 
1649 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1650 			desc_idx = 2;
1651 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1652 			desc_idx = 1;
1653 		else
1654 			desc_idx = 0;
1655 
1656 		/* fall-back to lower speed if desc missing for current speed */
1657 		do {
1658 			ds = ep->descs[desc_idx];
1659 		} while (!ds && --desc_idx >= 0);
1660 
1661 		if (!ds) {
1662 			ret = -EINVAL;
1663 			break;
1664 		}
1665 
1666 		ep->ep->driver_data = ep;
1667 		ep->ep->desc = ds;
1668 		ret = usb_ep_enable(ep->ep);
1669 		if (likely(!ret)) {
1670 			epfile->ep = ep;
1671 			epfile->in = usb_endpoint_dir_in(ds);
1672 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1673 		} else {
1674 			break;
1675 		}
1676 
1677 		wake_up(&epfile->wait);
1678 
1679 		++ep;
1680 		++epfile;
1681 	} while (--count);
1682 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1683 
1684 	return ret;
1685 }
1686 
1687 
1688 /* Parsing and building descriptors and strings *****************************/
1689 
1690 /*
1691  * This validates if data pointed by data is a valid USB descriptor as
1692  * well as record how many interfaces, endpoints and strings are
1693  * required by given configuration.  Returns address after the
1694  * descriptor or NULL if data is invalid.
1695  */
1696 
1697 enum ffs_entity_type {
1698 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1699 };
1700 
1701 enum ffs_os_desc_type {
1702 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1703 };
1704 
1705 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1706 				   u8 *valuep,
1707 				   struct usb_descriptor_header *desc,
1708 				   void *priv);
1709 
1710 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1711 				    struct usb_os_desc_header *h, void *data,
1712 				    unsigned len, void *priv);
1713 
1714 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1715 					   ffs_entity_callback entity,
1716 					   void *priv)
1717 {
1718 	struct usb_descriptor_header *_ds = (void *)data;
1719 	u8 length;
1720 	int ret;
1721 
1722 	ENTER();
1723 
1724 	/* At least two bytes are required: length and type */
1725 	if (len < 2) {
1726 		pr_vdebug("descriptor too short\n");
1727 		return -EINVAL;
1728 	}
1729 
1730 	/* If we have at least as many bytes as the descriptor takes? */
1731 	length = _ds->bLength;
1732 	if (len < length) {
1733 		pr_vdebug("descriptor longer then available data\n");
1734 		return -EINVAL;
1735 	}
1736 
1737 #define __entity_check_INTERFACE(val)  1
1738 #define __entity_check_STRING(val)     (val)
1739 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1740 #define __entity(type, val) do {					\
1741 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1742 		if (unlikely(!__entity_check_ ##type(val))) {		\
1743 			pr_vdebug("invalid entity's value\n");		\
1744 			return -EINVAL;					\
1745 		}							\
1746 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1747 		if (unlikely(ret < 0)) {				\
1748 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1749 				 (val), ret);				\
1750 			return ret;					\
1751 		}							\
1752 	} while (0)
1753 
1754 	/* Parse descriptor depending on type. */
1755 	switch (_ds->bDescriptorType) {
1756 	case USB_DT_DEVICE:
1757 	case USB_DT_CONFIG:
1758 	case USB_DT_STRING:
1759 	case USB_DT_DEVICE_QUALIFIER:
1760 		/* function can't have any of those */
1761 		pr_vdebug("descriptor reserved for gadget: %d\n",
1762 		      _ds->bDescriptorType);
1763 		return -EINVAL;
1764 
1765 	case USB_DT_INTERFACE: {
1766 		struct usb_interface_descriptor *ds = (void *)_ds;
1767 		pr_vdebug("interface descriptor\n");
1768 		if (length != sizeof *ds)
1769 			goto inv_length;
1770 
1771 		__entity(INTERFACE, ds->bInterfaceNumber);
1772 		if (ds->iInterface)
1773 			__entity(STRING, ds->iInterface);
1774 	}
1775 		break;
1776 
1777 	case USB_DT_ENDPOINT: {
1778 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1779 		pr_vdebug("endpoint descriptor\n");
1780 		if (length != USB_DT_ENDPOINT_SIZE &&
1781 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1782 			goto inv_length;
1783 		__entity(ENDPOINT, ds->bEndpointAddress);
1784 	}
1785 		break;
1786 
1787 	case HID_DT_HID:
1788 		pr_vdebug("hid descriptor\n");
1789 		if (length != sizeof(struct hid_descriptor))
1790 			goto inv_length;
1791 		break;
1792 
1793 	case USB_DT_OTG:
1794 		if (length != sizeof(struct usb_otg_descriptor))
1795 			goto inv_length;
1796 		break;
1797 
1798 	case USB_DT_INTERFACE_ASSOCIATION: {
1799 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1800 		pr_vdebug("interface association descriptor\n");
1801 		if (length != sizeof *ds)
1802 			goto inv_length;
1803 		if (ds->iFunction)
1804 			__entity(STRING, ds->iFunction);
1805 	}
1806 		break;
1807 
1808 	case USB_DT_SS_ENDPOINT_COMP:
1809 		pr_vdebug("EP SS companion descriptor\n");
1810 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1811 			goto inv_length;
1812 		break;
1813 
1814 	case USB_DT_OTHER_SPEED_CONFIG:
1815 	case USB_DT_INTERFACE_POWER:
1816 	case USB_DT_DEBUG:
1817 	case USB_DT_SECURITY:
1818 	case USB_DT_CS_RADIO_CONTROL:
1819 		/* TODO */
1820 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1821 		return -EINVAL;
1822 
1823 	default:
1824 		/* We should never be here */
1825 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1826 		return -EINVAL;
1827 
1828 inv_length:
1829 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1830 			  _ds->bLength, _ds->bDescriptorType);
1831 		return -EINVAL;
1832 	}
1833 
1834 #undef __entity
1835 #undef __entity_check_DESCRIPTOR
1836 #undef __entity_check_INTERFACE
1837 #undef __entity_check_STRING
1838 #undef __entity_check_ENDPOINT
1839 
1840 	return length;
1841 }
1842 
1843 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1844 				     ffs_entity_callback entity, void *priv)
1845 {
1846 	const unsigned _len = len;
1847 	unsigned long num = 0;
1848 
1849 	ENTER();
1850 
1851 	for (;;) {
1852 		int ret;
1853 
1854 		if (num == count)
1855 			data = NULL;
1856 
1857 		/* Record "descriptor" entity */
1858 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1859 		if (unlikely(ret < 0)) {
1860 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1861 				 num, ret);
1862 			return ret;
1863 		}
1864 
1865 		if (!data)
1866 			return _len - len;
1867 
1868 		ret = ffs_do_single_desc(data, len, entity, priv);
1869 		if (unlikely(ret < 0)) {
1870 			pr_debug("%s returns %d\n", __func__, ret);
1871 			return ret;
1872 		}
1873 
1874 		len -= ret;
1875 		data += ret;
1876 		++num;
1877 	}
1878 }
1879 
1880 static int __ffs_data_do_entity(enum ffs_entity_type type,
1881 				u8 *valuep, struct usb_descriptor_header *desc,
1882 				void *priv)
1883 {
1884 	struct ffs_desc_helper *helper = priv;
1885 	struct usb_endpoint_descriptor *d;
1886 
1887 	ENTER();
1888 
1889 	switch (type) {
1890 	case FFS_DESCRIPTOR:
1891 		break;
1892 
1893 	case FFS_INTERFACE:
1894 		/*
1895 		 * Interfaces are indexed from zero so if we
1896 		 * encountered interface "n" then there are at least
1897 		 * "n+1" interfaces.
1898 		 */
1899 		if (*valuep >= helper->interfaces_count)
1900 			helper->interfaces_count = *valuep + 1;
1901 		break;
1902 
1903 	case FFS_STRING:
1904 		/*
1905 		 * Strings are indexed from 1 (0 is magic ;) reserved
1906 		 * for languages list or some such)
1907 		 */
1908 		if (*valuep > helper->ffs->strings_count)
1909 			helper->ffs->strings_count = *valuep;
1910 		break;
1911 
1912 	case FFS_ENDPOINT:
1913 		d = (void *)desc;
1914 		helper->eps_count++;
1915 		if (helper->eps_count >= 15)
1916 			return -EINVAL;
1917 		/* Check if descriptors for any speed were already parsed */
1918 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1919 			helper->ffs->eps_addrmap[helper->eps_count] =
1920 				d->bEndpointAddress;
1921 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1922 				d->bEndpointAddress)
1923 			return -EINVAL;
1924 		break;
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1931 				   struct usb_os_desc_header *desc)
1932 {
1933 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1934 	u16 w_index = le16_to_cpu(desc->wIndex);
1935 
1936 	if (bcd_version != 1) {
1937 		pr_vdebug("unsupported os descriptors version: %d",
1938 			  bcd_version);
1939 		return -EINVAL;
1940 	}
1941 	switch (w_index) {
1942 	case 0x4:
1943 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1944 		break;
1945 	case 0x5:
1946 		*next_type = FFS_OS_DESC_EXT_PROP;
1947 		break;
1948 	default:
1949 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1950 		return -EINVAL;
1951 	}
1952 
1953 	return sizeof(*desc);
1954 }
1955 
1956 /*
1957  * Process all extended compatibility/extended property descriptors
1958  * of a feature descriptor
1959  */
1960 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1961 					      enum ffs_os_desc_type type,
1962 					      u16 feature_count,
1963 					      ffs_os_desc_callback entity,
1964 					      void *priv,
1965 					      struct usb_os_desc_header *h)
1966 {
1967 	int ret;
1968 	const unsigned _len = len;
1969 
1970 	ENTER();
1971 
1972 	/* loop over all ext compat/ext prop descriptors */
1973 	while (feature_count--) {
1974 		ret = entity(type, h, data, len, priv);
1975 		if (unlikely(ret < 0)) {
1976 			pr_debug("bad OS descriptor, type: %d\n", type);
1977 			return ret;
1978 		}
1979 		data += ret;
1980 		len -= ret;
1981 	}
1982 	return _len - len;
1983 }
1984 
1985 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1986 static int __must_check ffs_do_os_descs(unsigned count,
1987 					char *data, unsigned len,
1988 					ffs_os_desc_callback entity, void *priv)
1989 {
1990 	const unsigned _len = len;
1991 	unsigned long num = 0;
1992 
1993 	ENTER();
1994 
1995 	for (num = 0; num < count; ++num) {
1996 		int ret;
1997 		enum ffs_os_desc_type type;
1998 		u16 feature_count;
1999 		struct usb_os_desc_header *desc = (void *)data;
2000 
2001 		if (len < sizeof(*desc))
2002 			return -EINVAL;
2003 
2004 		/*
2005 		 * Record "descriptor" entity.
2006 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2007 		 * Move the data pointer to the beginning of extended
2008 		 * compatibilities proper or extended properties proper
2009 		 * portions of the data
2010 		 */
2011 		if (le32_to_cpu(desc->dwLength) > len)
2012 			return -EINVAL;
2013 
2014 		ret = __ffs_do_os_desc_header(&type, desc);
2015 		if (unlikely(ret < 0)) {
2016 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2017 				 num, ret);
2018 			return ret;
2019 		}
2020 		/*
2021 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2022 		 */
2023 		feature_count = le16_to_cpu(desc->wCount);
2024 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2025 		    (feature_count > 255 || desc->Reserved))
2026 				return -EINVAL;
2027 		len -= ret;
2028 		data += ret;
2029 
2030 		/*
2031 		 * Process all function/property descriptors
2032 		 * of this Feature Descriptor
2033 		 */
2034 		ret = ffs_do_single_os_desc(data, len, type,
2035 					    feature_count, entity, priv, desc);
2036 		if (unlikely(ret < 0)) {
2037 			pr_debug("%s returns %d\n", __func__, ret);
2038 			return ret;
2039 		}
2040 
2041 		len -= ret;
2042 		data += ret;
2043 	}
2044 	return _len - len;
2045 }
2046 
2047 /**
2048  * Validate contents of the buffer from userspace related to OS descriptors.
2049  */
2050 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2051 				 struct usb_os_desc_header *h, void *data,
2052 				 unsigned len, void *priv)
2053 {
2054 	struct ffs_data *ffs = priv;
2055 	u8 length;
2056 
2057 	ENTER();
2058 
2059 	switch (type) {
2060 	case FFS_OS_DESC_EXT_COMPAT: {
2061 		struct usb_ext_compat_desc *d = data;
2062 		int i;
2063 
2064 		if (len < sizeof(*d) ||
2065 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2066 		    d->Reserved1)
2067 			return -EINVAL;
2068 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2069 			if (d->Reserved2[i])
2070 				return -EINVAL;
2071 
2072 		length = sizeof(struct usb_ext_compat_desc);
2073 	}
2074 		break;
2075 	case FFS_OS_DESC_EXT_PROP: {
2076 		struct usb_ext_prop_desc *d = data;
2077 		u32 type, pdl;
2078 		u16 pnl;
2079 
2080 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2081 			return -EINVAL;
2082 		length = le32_to_cpu(d->dwSize);
2083 		type = le32_to_cpu(d->dwPropertyDataType);
2084 		if (type < USB_EXT_PROP_UNICODE ||
2085 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2086 			pr_vdebug("unsupported os descriptor property type: %d",
2087 				  type);
2088 			return -EINVAL;
2089 		}
2090 		pnl = le16_to_cpu(d->wPropertyNameLength);
2091 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2092 		if (length != 14 + pnl + pdl) {
2093 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2094 				  length, pnl, pdl, type);
2095 			return -EINVAL;
2096 		}
2097 		++ffs->ms_os_descs_ext_prop_count;
2098 		/* property name reported to the host as "WCHAR"s */
2099 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2100 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2101 	}
2102 		break;
2103 	default:
2104 		pr_vdebug("unknown descriptor: %d\n", type);
2105 		return -EINVAL;
2106 	}
2107 	return length;
2108 }
2109 
2110 static int __ffs_data_got_descs(struct ffs_data *ffs,
2111 				char *const _data, size_t len)
2112 {
2113 	char *data = _data, *raw_descs;
2114 	unsigned os_descs_count = 0, counts[3], flags;
2115 	int ret = -EINVAL, i;
2116 	struct ffs_desc_helper helper;
2117 
2118 	ENTER();
2119 
2120 	if (get_unaligned_le32(data + 4) != len)
2121 		goto error;
2122 
2123 	switch (get_unaligned_le32(data)) {
2124 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2125 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2126 		data += 8;
2127 		len  -= 8;
2128 		break;
2129 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2130 		flags = get_unaligned_le32(data + 8);
2131 		ffs->user_flags = flags;
2132 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2133 			      FUNCTIONFS_HAS_HS_DESC |
2134 			      FUNCTIONFS_HAS_SS_DESC |
2135 			      FUNCTIONFS_HAS_MS_OS_DESC |
2136 			      FUNCTIONFS_VIRTUAL_ADDR |
2137 			      FUNCTIONFS_EVENTFD)) {
2138 			ret = -ENOSYS;
2139 			goto error;
2140 		}
2141 		data += 12;
2142 		len  -= 12;
2143 		break;
2144 	default:
2145 		goto error;
2146 	}
2147 
2148 	if (flags & FUNCTIONFS_EVENTFD) {
2149 		if (len < 4)
2150 			goto error;
2151 		ffs->ffs_eventfd =
2152 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2153 		if (IS_ERR(ffs->ffs_eventfd)) {
2154 			ret = PTR_ERR(ffs->ffs_eventfd);
2155 			ffs->ffs_eventfd = NULL;
2156 			goto error;
2157 		}
2158 		data += 4;
2159 		len  -= 4;
2160 	}
2161 
2162 	/* Read fs_count, hs_count and ss_count (if present) */
2163 	for (i = 0; i < 3; ++i) {
2164 		if (!(flags & (1 << i))) {
2165 			counts[i] = 0;
2166 		} else if (len < 4) {
2167 			goto error;
2168 		} else {
2169 			counts[i] = get_unaligned_le32(data);
2170 			data += 4;
2171 			len  -= 4;
2172 		}
2173 	}
2174 	if (flags & (1 << i)) {
2175 		os_descs_count = get_unaligned_le32(data);
2176 		data += 4;
2177 		len -= 4;
2178 	};
2179 
2180 	/* Read descriptors */
2181 	raw_descs = data;
2182 	helper.ffs = ffs;
2183 	for (i = 0; i < 3; ++i) {
2184 		if (!counts[i])
2185 			continue;
2186 		helper.interfaces_count = 0;
2187 		helper.eps_count = 0;
2188 		ret = ffs_do_descs(counts[i], data, len,
2189 				   __ffs_data_do_entity, &helper);
2190 		if (ret < 0)
2191 			goto error;
2192 		if (!ffs->eps_count && !ffs->interfaces_count) {
2193 			ffs->eps_count = helper.eps_count;
2194 			ffs->interfaces_count = helper.interfaces_count;
2195 		} else {
2196 			if (ffs->eps_count != helper.eps_count) {
2197 				ret = -EINVAL;
2198 				goto error;
2199 			}
2200 			if (ffs->interfaces_count != helper.interfaces_count) {
2201 				ret = -EINVAL;
2202 				goto error;
2203 			}
2204 		}
2205 		data += ret;
2206 		len  -= ret;
2207 	}
2208 	if (os_descs_count) {
2209 		ret = ffs_do_os_descs(os_descs_count, data, len,
2210 				      __ffs_data_do_os_desc, ffs);
2211 		if (ret < 0)
2212 			goto error;
2213 		data += ret;
2214 		len -= ret;
2215 	}
2216 
2217 	if (raw_descs == data || len) {
2218 		ret = -EINVAL;
2219 		goto error;
2220 	}
2221 
2222 	ffs->raw_descs_data	= _data;
2223 	ffs->raw_descs		= raw_descs;
2224 	ffs->raw_descs_length	= data - raw_descs;
2225 	ffs->fs_descs_count	= counts[0];
2226 	ffs->hs_descs_count	= counts[1];
2227 	ffs->ss_descs_count	= counts[2];
2228 	ffs->ms_os_descs_count	= os_descs_count;
2229 
2230 	return 0;
2231 
2232 error:
2233 	kfree(_data);
2234 	return ret;
2235 }
2236 
2237 static int __ffs_data_got_strings(struct ffs_data *ffs,
2238 				  char *const _data, size_t len)
2239 {
2240 	u32 str_count, needed_count, lang_count;
2241 	struct usb_gadget_strings **stringtabs, *t;
2242 	struct usb_string *strings, *s;
2243 	const char *data = _data;
2244 
2245 	ENTER();
2246 
2247 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2248 		     get_unaligned_le32(data + 4) != len))
2249 		goto error;
2250 	str_count  = get_unaligned_le32(data + 8);
2251 	lang_count = get_unaligned_le32(data + 12);
2252 
2253 	/* if one is zero the other must be zero */
2254 	if (unlikely(!str_count != !lang_count))
2255 		goto error;
2256 
2257 	/* Do we have at least as many strings as descriptors need? */
2258 	needed_count = ffs->strings_count;
2259 	if (unlikely(str_count < needed_count))
2260 		goto error;
2261 
2262 	/*
2263 	 * If we don't need any strings just return and free all
2264 	 * memory.
2265 	 */
2266 	if (!needed_count) {
2267 		kfree(_data);
2268 		return 0;
2269 	}
2270 
2271 	/* Allocate everything in one chunk so there's less maintenance. */
2272 	{
2273 		unsigned i = 0;
2274 		vla_group(d);
2275 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2276 			lang_count + 1);
2277 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2278 		vla_item(d, struct usb_string, strings,
2279 			lang_count*(needed_count+1));
2280 
2281 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2282 
2283 		if (unlikely(!vlabuf)) {
2284 			kfree(_data);
2285 			return -ENOMEM;
2286 		}
2287 
2288 		/* Initialize the VLA pointers */
2289 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2290 		t = vla_ptr(vlabuf, d, stringtab);
2291 		i = lang_count;
2292 		do {
2293 			*stringtabs++ = t++;
2294 		} while (--i);
2295 		*stringtabs = NULL;
2296 
2297 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2298 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2299 		t = vla_ptr(vlabuf, d, stringtab);
2300 		s = vla_ptr(vlabuf, d, strings);
2301 		strings = s;
2302 	}
2303 
2304 	/* For each language */
2305 	data += 16;
2306 	len -= 16;
2307 
2308 	do { /* lang_count > 0 so we can use do-while */
2309 		unsigned needed = needed_count;
2310 
2311 		if (unlikely(len < 3))
2312 			goto error_free;
2313 		t->language = get_unaligned_le16(data);
2314 		t->strings  = s;
2315 		++t;
2316 
2317 		data += 2;
2318 		len -= 2;
2319 
2320 		/* For each string */
2321 		do { /* str_count > 0 so we can use do-while */
2322 			size_t length = strnlen(data, len);
2323 
2324 			if (unlikely(length == len))
2325 				goto error_free;
2326 
2327 			/*
2328 			 * User may provide more strings then we need,
2329 			 * if that's the case we simply ignore the
2330 			 * rest
2331 			 */
2332 			if (likely(needed)) {
2333 				/*
2334 				 * s->id will be set while adding
2335 				 * function to configuration so for
2336 				 * now just leave garbage here.
2337 				 */
2338 				s->s = data;
2339 				--needed;
2340 				++s;
2341 			}
2342 
2343 			data += length + 1;
2344 			len -= length + 1;
2345 		} while (--str_count);
2346 
2347 		s->id = 0;   /* terminator */
2348 		s->s = NULL;
2349 		++s;
2350 
2351 	} while (--lang_count);
2352 
2353 	/* Some garbage left? */
2354 	if (unlikely(len))
2355 		goto error_free;
2356 
2357 	/* Done! */
2358 	ffs->stringtabs = stringtabs;
2359 	ffs->raw_strings = _data;
2360 
2361 	return 0;
2362 
2363 error_free:
2364 	kfree(stringtabs);
2365 error:
2366 	kfree(_data);
2367 	return -EINVAL;
2368 }
2369 
2370 
2371 /* Events handling and management *******************************************/
2372 
2373 static void __ffs_event_add(struct ffs_data *ffs,
2374 			    enum usb_functionfs_event_type type)
2375 {
2376 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2377 	int neg = 0;
2378 
2379 	/*
2380 	 * Abort any unhandled setup
2381 	 *
2382 	 * We do not need to worry about some cmpxchg() changing value
2383 	 * of ffs->setup_state without holding the lock because when
2384 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2385 	 * the source does nothing.
2386 	 */
2387 	if (ffs->setup_state == FFS_SETUP_PENDING)
2388 		ffs->setup_state = FFS_SETUP_CANCELLED;
2389 
2390 	/*
2391 	 * Logic of this function guarantees that there are at most four pending
2392 	 * evens on ffs->ev.types queue.  This is important because the queue
2393 	 * has space for four elements only and __ffs_ep0_read_events function
2394 	 * depends on that limit as well.  If more event types are added, those
2395 	 * limits have to be revisited or guaranteed to still hold.
2396 	 */
2397 	switch (type) {
2398 	case FUNCTIONFS_RESUME:
2399 		rem_type2 = FUNCTIONFS_SUSPEND;
2400 		/* FALL THROUGH */
2401 	case FUNCTIONFS_SUSPEND:
2402 	case FUNCTIONFS_SETUP:
2403 		rem_type1 = type;
2404 		/* Discard all similar events */
2405 		break;
2406 
2407 	case FUNCTIONFS_BIND:
2408 	case FUNCTIONFS_UNBIND:
2409 	case FUNCTIONFS_DISABLE:
2410 	case FUNCTIONFS_ENABLE:
2411 		/* Discard everything other then power management. */
2412 		rem_type1 = FUNCTIONFS_SUSPEND;
2413 		rem_type2 = FUNCTIONFS_RESUME;
2414 		neg = 1;
2415 		break;
2416 
2417 	default:
2418 		WARN(1, "%d: unknown event, this should not happen\n", type);
2419 		return;
2420 	}
2421 
2422 	{
2423 		u8 *ev  = ffs->ev.types, *out = ev;
2424 		unsigned n = ffs->ev.count;
2425 		for (; n; --n, ++ev)
2426 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2427 				*out++ = *ev;
2428 			else
2429 				pr_vdebug("purging event %d\n", *ev);
2430 		ffs->ev.count = out - ffs->ev.types;
2431 	}
2432 
2433 	pr_vdebug("adding event %d\n", type);
2434 	ffs->ev.types[ffs->ev.count++] = type;
2435 	wake_up_locked(&ffs->ev.waitq);
2436 	if (ffs->ffs_eventfd)
2437 		eventfd_signal(ffs->ffs_eventfd, 1);
2438 }
2439 
2440 static void ffs_event_add(struct ffs_data *ffs,
2441 			  enum usb_functionfs_event_type type)
2442 {
2443 	unsigned long flags;
2444 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2445 	__ffs_event_add(ffs, type);
2446 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2447 }
2448 
2449 /* Bind/unbind USB function hooks *******************************************/
2450 
2451 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2452 {
2453 	int i;
2454 
2455 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2456 		if (ffs->eps_addrmap[i] == endpoint_address)
2457 			return i;
2458 	return -ENOENT;
2459 }
2460 
2461 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2462 				    struct usb_descriptor_header *desc,
2463 				    void *priv)
2464 {
2465 	struct usb_endpoint_descriptor *ds = (void *)desc;
2466 	struct ffs_function *func = priv;
2467 	struct ffs_ep *ffs_ep;
2468 	unsigned ep_desc_id;
2469 	int idx;
2470 	static const char *speed_names[] = { "full", "high", "super" };
2471 
2472 	if (type != FFS_DESCRIPTOR)
2473 		return 0;
2474 
2475 	/*
2476 	 * If ss_descriptors is not NULL, we are reading super speed
2477 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2478 	 * speed descriptors; otherwise, we are reading full speed
2479 	 * descriptors.
2480 	 */
2481 	if (func->function.ss_descriptors) {
2482 		ep_desc_id = 2;
2483 		func->function.ss_descriptors[(long)valuep] = desc;
2484 	} else if (func->function.hs_descriptors) {
2485 		ep_desc_id = 1;
2486 		func->function.hs_descriptors[(long)valuep] = desc;
2487 	} else {
2488 		ep_desc_id = 0;
2489 		func->function.fs_descriptors[(long)valuep]    = desc;
2490 	}
2491 
2492 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2493 		return 0;
2494 
2495 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2496 	if (idx < 0)
2497 		return idx;
2498 
2499 	ffs_ep = func->eps + idx;
2500 
2501 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2502 		pr_err("two %sspeed descriptors for EP %d\n",
2503 			  speed_names[ep_desc_id],
2504 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2505 		return -EINVAL;
2506 	}
2507 	ffs_ep->descs[ep_desc_id] = ds;
2508 
2509 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2510 	if (ffs_ep->ep) {
2511 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2512 		if (!ds->wMaxPacketSize)
2513 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2514 	} else {
2515 		struct usb_request *req;
2516 		struct usb_ep *ep;
2517 		u8 bEndpointAddress;
2518 
2519 		/*
2520 		 * We back up bEndpointAddress because autoconfig overwrites
2521 		 * it with physical endpoint address.
2522 		 */
2523 		bEndpointAddress = ds->bEndpointAddress;
2524 		pr_vdebug("autoconfig\n");
2525 		ep = usb_ep_autoconfig(func->gadget, ds);
2526 		if (unlikely(!ep))
2527 			return -ENOTSUPP;
2528 		ep->driver_data = func->eps + idx;
2529 
2530 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2531 		if (unlikely(!req))
2532 			return -ENOMEM;
2533 
2534 		ffs_ep->ep  = ep;
2535 		ffs_ep->req = req;
2536 		func->eps_revmap[ds->bEndpointAddress &
2537 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2538 		/*
2539 		 * If we use virtual address mapping, we restore
2540 		 * original bEndpointAddress value.
2541 		 */
2542 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2543 			ds->bEndpointAddress = bEndpointAddress;
2544 	}
2545 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2546 
2547 	return 0;
2548 }
2549 
2550 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2551 				   struct usb_descriptor_header *desc,
2552 				   void *priv)
2553 {
2554 	struct ffs_function *func = priv;
2555 	unsigned idx;
2556 	u8 newValue;
2557 
2558 	switch (type) {
2559 	default:
2560 	case FFS_DESCRIPTOR:
2561 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2562 		return 0;
2563 
2564 	case FFS_INTERFACE:
2565 		idx = *valuep;
2566 		if (func->interfaces_nums[idx] < 0) {
2567 			int id = usb_interface_id(func->conf, &func->function);
2568 			if (unlikely(id < 0))
2569 				return id;
2570 			func->interfaces_nums[idx] = id;
2571 		}
2572 		newValue = func->interfaces_nums[idx];
2573 		break;
2574 
2575 	case FFS_STRING:
2576 		/* String' IDs are allocated when fsf_data is bound to cdev */
2577 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2578 		break;
2579 
2580 	case FFS_ENDPOINT:
2581 		/*
2582 		 * USB_DT_ENDPOINT are handled in
2583 		 * __ffs_func_bind_do_descs().
2584 		 */
2585 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2586 			return 0;
2587 
2588 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2589 		if (unlikely(!func->eps[idx].ep))
2590 			return -EINVAL;
2591 
2592 		{
2593 			struct usb_endpoint_descriptor **descs;
2594 			descs = func->eps[idx].descs;
2595 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2596 		}
2597 		break;
2598 	}
2599 
2600 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2601 	*valuep = newValue;
2602 	return 0;
2603 }
2604 
2605 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2606 				      struct usb_os_desc_header *h, void *data,
2607 				      unsigned len, void *priv)
2608 {
2609 	struct ffs_function *func = priv;
2610 	u8 length = 0;
2611 
2612 	switch (type) {
2613 	case FFS_OS_DESC_EXT_COMPAT: {
2614 		struct usb_ext_compat_desc *desc = data;
2615 		struct usb_os_desc_table *t;
2616 
2617 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2618 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2619 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2620 		       ARRAY_SIZE(desc->CompatibleID) +
2621 		       ARRAY_SIZE(desc->SubCompatibleID));
2622 		length = sizeof(*desc);
2623 	}
2624 		break;
2625 	case FFS_OS_DESC_EXT_PROP: {
2626 		struct usb_ext_prop_desc *desc = data;
2627 		struct usb_os_desc_table *t;
2628 		struct usb_os_desc_ext_prop *ext_prop;
2629 		char *ext_prop_name;
2630 		char *ext_prop_data;
2631 
2632 		t = &func->function.os_desc_table[h->interface];
2633 		t->if_id = func->interfaces_nums[h->interface];
2634 
2635 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2636 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2637 
2638 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2639 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2640 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2641 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2642 		length = ext_prop->name_len + ext_prop->data_len + 14;
2643 
2644 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2645 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2646 			ext_prop->name_len;
2647 
2648 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2649 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2650 			ext_prop->data_len;
2651 		memcpy(ext_prop_data,
2652 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2653 		       ext_prop->data_len);
2654 		/* unicode data reported to the host as "WCHAR"s */
2655 		switch (ext_prop->type) {
2656 		case USB_EXT_PROP_UNICODE:
2657 		case USB_EXT_PROP_UNICODE_ENV:
2658 		case USB_EXT_PROP_UNICODE_LINK:
2659 		case USB_EXT_PROP_UNICODE_MULTI:
2660 			ext_prop->data_len *= 2;
2661 			break;
2662 		}
2663 		ext_prop->data = ext_prop_data;
2664 
2665 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2666 		       ext_prop->name_len);
2667 		/* property name reported to the host as "WCHAR"s */
2668 		ext_prop->name_len *= 2;
2669 		ext_prop->name = ext_prop_name;
2670 
2671 		t->os_desc->ext_prop_len +=
2672 			ext_prop->name_len + ext_prop->data_len + 14;
2673 		++t->os_desc->ext_prop_count;
2674 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2675 	}
2676 		break;
2677 	default:
2678 		pr_vdebug("unknown descriptor: %d\n", type);
2679 	}
2680 
2681 	return length;
2682 }
2683 
2684 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2685 						struct usb_configuration *c)
2686 {
2687 	struct ffs_function *func = ffs_func_from_usb(f);
2688 	struct f_fs_opts *ffs_opts =
2689 		container_of(f->fi, struct f_fs_opts, func_inst);
2690 	int ret;
2691 
2692 	ENTER();
2693 
2694 	/*
2695 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2696 	 * which already uses locking; taking the same lock here would
2697 	 * cause a deadlock.
2698 	 *
2699 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2700 	 */
2701 	if (!ffs_opts->no_configfs)
2702 		ffs_dev_lock();
2703 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2704 	func->ffs = ffs_opts->dev->ffs_data;
2705 	if (!ffs_opts->no_configfs)
2706 		ffs_dev_unlock();
2707 	if (ret)
2708 		return ERR_PTR(ret);
2709 
2710 	func->conf = c;
2711 	func->gadget = c->cdev->gadget;
2712 
2713 	/*
2714 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2715 	 * configurations are bound in sequence with list_for_each_entry,
2716 	 * in each configuration its functions are bound in sequence
2717 	 * with list_for_each_entry, so we assume no race condition
2718 	 * with regard to ffs_opts->bound access
2719 	 */
2720 	if (!ffs_opts->refcnt) {
2721 		ret = functionfs_bind(func->ffs, c->cdev);
2722 		if (ret)
2723 			return ERR_PTR(ret);
2724 	}
2725 	ffs_opts->refcnt++;
2726 	func->function.strings = func->ffs->stringtabs;
2727 
2728 	return ffs_opts;
2729 }
2730 
2731 static int _ffs_func_bind(struct usb_configuration *c,
2732 			  struct usb_function *f)
2733 {
2734 	struct ffs_function *func = ffs_func_from_usb(f);
2735 	struct ffs_data *ffs = func->ffs;
2736 
2737 	const int full = !!func->ffs->fs_descs_count;
2738 	const int high = gadget_is_dualspeed(func->gadget) &&
2739 		func->ffs->hs_descs_count;
2740 	const int super = gadget_is_superspeed(func->gadget) &&
2741 		func->ffs->ss_descs_count;
2742 
2743 	int fs_len, hs_len, ss_len, ret, i;
2744 
2745 	/* Make it a single chunk, less management later on */
2746 	vla_group(d);
2747 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2748 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2749 		full ? ffs->fs_descs_count + 1 : 0);
2750 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2751 		high ? ffs->hs_descs_count + 1 : 0);
2752 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2753 		super ? ffs->ss_descs_count + 1 : 0);
2754 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2755 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2756 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2757 	vla_item_with_sz(d, char[16], ext_compat,
2758 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2759 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2760 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2761 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2762 			 ffs->ms_os_descs_ext_prop_count);
2763 	vla_item_with_sz(d, char, ext_prop_name,
2764 			 ffs->ms_os_descs_ext_prop_name_len);
2765 	vla_item_with_sz(d, char, ext_prop_data,
2766 			 ffs->ms_os_descs_ext_prop_data_len);
2767 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2768 	char *vlabuf;
2769 
2770 	ENTER();
2771 
2772 	/* Has descriptors only for speeds gadget does not support */
2773 	if (unlikely(!(full | high | super)))
2774 		return -ENOTSUPP;
2775 
2776 	/* Allocate a single chunk, less management later on */
2777 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2778 	if (unlikely(!vlabuf))
2779 		return -ENOMEM;
2780 
2781 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2782 	ffs->ms_os_descs_ext_prop_name_avail =
2783 		vla_ptr(vlabuf, d, ext_prop_name);
2784 	ffs->ms_os_descs_ext_prop_data_avail =
2785 		vla_ptr(vlabuf, d, ext_prop_data);
2786 
2787 	/* Copy descriptors  */
2788 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2789 	       ffs->raw_descs_length);
2790 
2791 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2792 	for (ret = ffs->eps_count; ret; --ret) {
2793 		struct ffs_ep *ptr;
2794 
2795 		ptr = vla_ptr(vlabuf, d, eps);
2796 		ptr[ret].num = -1;
2797 	}
2798 
2799 	/* Save pointers
2800 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2801 	*/
2802 	func->eps             = vla_ptr(vlabuf, d, eps);
2803 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2804 
2805 	/*
2806 	 * Go through all the endpoint descriptors and allocate
2807 	 * endpoints first, so that later we can rewrite the endpoint
2808 	 * numbers without worrying that it may be described later on.
2809 	 */
2810 	if (likely(full)) {
2811 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2812 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2813 				      vla_ptr(vlabuf, d, raw_descs),
2814 				      d_raw_descs__sz,
2815 				      __ffs_func_bind_do_descs, func);
2816 		if (unlikely(fs_len < 0)) {
2817 			ret = fs_len;
2818 			goto error;
2819 		}
2820 	} else {
2821 		fs_len = 0;
2822 	}
2823 
2824 	if (likely(high)) {
2825 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2826 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2827 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2828 				      d_raw_descs__sz - fs_len,
2829 				      __ffs_func_bind_do_descs, func);
2830 		if (unlikely(hs_len < 0)) {
2831 			ret = hs_len;
2832 			goto error;
2833 		}
2834 	} else {
2835 		hs_len = 0;
2836 	}
2837 
2838 	if (likely(super)) {
2839 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2840 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2841 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2842 				d_raw_descs__sz - fs_len - hs_len,
2843 				__ffs_func_bind_do_descs, func);
2844 		if (unlikely(ss_len < 0)) {
2845 			ret = ss_len;
2846 			goto error;
2847 		}
2848 	} else {
2849 		ss_len = 0;
2850 	}
2851 
2852 	/*
2853 	 * Now handle interface numbers allocation and interface and
2854 	 * endpoint numbers rewriting.  We can do that in one go
2855 	 * now.
2856 	 */
2857 	ret = ffs_do_descs(ffs->fs_descs_count +
2858 			   (high ? ffs->hs_descs_count : 0) +
2859 			   (super ? ffs->ss_descs_count : 0),
2860 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2861 			   __ffs_func_bind_do_nums, func);
2862 	if (unlikely(ret < 0))
2863 		goto error;
2864 
2865 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2866 	if (c->cdev->use_os_string)
2867 		for (i = 0; i < ffs->interfaces_count; ++i) {
2868 			struct usb_os_desc *desc;
2869 
2870 			desc = func->function.os_desc_table[i].os_desc =
2871 				vla_ptr(vlabuf, d, os_desc) +
2872 				i * sizeof(struct usb_os_desc);
2873 			desc->ext_compat_id =
2874 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2875 			INIT_LIST_HEAD(&desc->ext_prop);
2876 		}
2877 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2878 			      vla_ptr(vlabuf, d, raw_descs) +
2879 			      fs_len + hs_len + ss_len,
2880 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2881 			      __ffs_func_bind_do_os_desc, func);
2882 	if (unlikely(ret < 0))
2883 		goto error;
2884 	func->function.os_desc_n =
2885 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2886 
2887 	/* And we're done */
2888 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2889 	return 0;
2890 
2891 error:
2892 	/* XXX Do we need to release all claimed endpoints here? */
2893 	return ret;
2894 }
2895 
2896 static int ffs_func_bind(struct usb_configuration *c,
2897 			 struct usb_function *f)
2898 {
2899 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2900 	struct ffs_function *func = ffs_func_from_usb(f);
2901 	int ret;
2902 
2903 	if (IS_ERR(ffs_opts))
2904 		return PTR_ERR(ffs_opts);
2905 
2906 	ret = _ffs_func_bind(c, f);
2907 	if (ret && !--ffs_opts->refcnt)
2908 		functionfs_unbind(func->ffs);
2909 
2910 	return ret;
2911 }
2912 
2913 
2914 /* Other USB function hooks *************************************************/
2915 
2916 static void ffs_reset_work(struct work_struct *work)
2917 {
2918 	struct ffs_data *ffs = container_of(work,
2919 		struct ffs_data, reset_work);
2920 	ffs_data_reset(ffs);
2921 }
2922 
2923 static int ffs_func_set_alt(struct usb_function *f,
2924 			    unsigned interface, unsigned alt)
2925 {
2926 	struct ffs_function *func = ffs_func_from_usb(f);
2927 	struct ffs_data *ffs = func->ffs;
2928 	int ret = 0, intf;
2929 
2930 	if (alt != (unsigned)-1) {
2931 		intf = ffs_func_revmap_intf(func, interface);
2932 		if (unlikely(intf < 0))
2933 			return intf;
2934 	}
2935 
2936 	if (ffs->func)
2937 		ffs_func_eps_disable(ffs->func);
2938 
2939 	if (ffs->state == FFS_DEACTIVATED) {
2940 		ffs->state = FFS_CLOSING;
2941 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
2942 		schedule_work(&ffs->reset_work);
2943 		return -ENODEV;
2944 	}
2945 
2946 	if (ffs->state != FFS_ACTIVE)
2947 		return -ENODEV;
2948 
2949 	if (alt == (unsigned)-1) {
2950 		ffs->func = NULL;
2951 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2952 		return 0;
2953 	}
2954 
2955 	ffs->func = func;
2956 	ret = ffs_func_eps_enable(func);
2957 	if (likely(ret >= 0))
2958 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2959 	return ret;
2960 }
2961 
2962 static void ffs_func_disable(struct usb_function *f)
2963 {
2964 	ffs_func_set_alt(f, 0, (unsigned)-1);
2965 }
2966 
2967 static int ffs_func_setup(struct usb_function *f,
2968 			  const struct usb_ctrlrequest *creq)
2969 {
2970 	struct ffs_function *func = ffs_func_from_usb(f);
2971 	struct ffs_data *ffs = func->ffs;
2972 	unsigned long flags;
2973 	int ret;
2974 
2975 	ENTER();
2976 
2977 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2978 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2979 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2980 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2981 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2982 
2983 	/*
2984 	 * Most requests directed to interface go through here
2985 	 * (notable exceptions are set/get interface) so we need to
2986 	 * handle them.  All other either handled by composite or
2987 	 * passed to usb_configuration->setup() (if one is set).  No
2988 	 * matter, we will handle requests directed to endpoint here
2989 	 * as well (as it's straightforward) but what to do with any
2990 	 * other request?
2991 	 */
2992 	if (ffs->state != FFS_ACTIVE)
2993 		return -ENODEV;
2994 
2995 	switch (creq->bRequestType & USB_RECIP_MASK) {
2996 	case USB_RECIP_INTERFACE:
2997 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2998 		if (unlikely(ret < 0))
2999 			return ret;
3000 		break;
3001 
3002 	case USB_RECIP_ENDPOINT:
3003 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3004 		if (unlikely(ret < 0))
3005 			return ret;
3006 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3007 			ret = func->ffs->eps_addrmap[ret];
3008 		break;
3009 
3010 	default:
3011 		return -EOPNOTSUPP;
3012 	}
3013 
3014 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3015 	ffs->ev.setup = *creq;
3016 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3017 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3018 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3019 
3020 	return 0;
3021 }
3022 
3023 static void ffs_func_suspend(struct usb_function *f)
3024 {
3025 	ENTER();
3026 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3027 }
3028 
3029 static void ffs_func_resume(struct usb_function *f)
3030 {
3031 	ENTER();
3032 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3033 }
3034 
3035 
3036 /* Endpoint and interface numbers reverse mapping ***************************/
3037 
3038 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3039 {
3040 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3041 	return num ? num : -EDOM;
3042 }
3043 
3044 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3045 {
3046 	short *nums = func->interfaces_nums;
3047 	unsigned count = func->ffs->interfaces_count;
3048 
3049 	for (; count; --count, ++nums) {
3050 		if (*nums >= 0 && *nums == intf)
3051 			return nums - func->interfaces_nums;
3052 	}
3053 
3054 	return -EDOM;
3055 }
3056 
3057 
3058 /* Devices management *******************************************************/
3059 
3060 static LIST_HEAD(ffs_devices);
3061 
3062 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3063 {
3064 	struct ffs_dev *dev;
3065 
3066 	list_for_each_entry(dev, &ffs_devices, entry) {
3067 		if (!dev->name || !name)
3068 			continue;
3069 		if (strcmp(dev->name, name) == 0)
3070 			return dev;
3071 	}
3072 
3073 	return NULL;
3074 }
3075 
3076 /*
3077  * ffs_lock must be taken by the caller of this function
3078  */
3079 static struct ffs_dev *_ffs_get_single_dev(void)
3080 {
3081 	struct ffs_dev *dev;
3082 
3083 	if (list_is_singular(&ffs_devices)) {
3084 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3085 		if (dev->single)
3086 			return dev;
3087 	}
3088 
3089 	return NULL;
3090 }
3091 
3092 /*
3093  * ffs_lock must be taken by the caller of this function
3094  */
3095 static struct ffs_dev *_ffs_find_dev(const char *name)
3096 {
3097 	struct ffs_dev *dev;
3098 
3099 	dev = _ffs_get_single_dev();
3100 	if (dev)
3101 		return dev;
3102 
3103 	return _ffs_do_find_dev(name);
3104 }
3105 
3106 /* Configfs support *********************************************************/
3107 
3108 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3109 {
3110 	return container_of(to_config_group(item), struct f_fs_opts,
3111 			    func_inst.group);
3112 }
3113 
3114 static void ffs_attr_release(struct config_item *item)
3115 {
3116 	struct f_fs_opts *opts = to_ffs_opts(item);
3117 
3118 	usb_put_function_instance(&opts->func_inst);
3119 }
3120 
3121 static struct configfs_item_operations ffs_item_ops = {
3122 	.release	= ffs_attr_release,
3123 };
3124 
3125 static struct config_item_type ffs_func_type = {
3126 	.ct_item_ops	= &ffs_item_ops,
3127 	.ct_owner	= THIS_MODULE,
3128 };
3129 
3130 
3131 /* Function registration interface ******************************************/
3132 
3133 static void ffs_free_inst(struct usb_function_instance *f)
3134 {
3135 	struct f_fs_opts *opts;
3136 
3137 	opts = to_f_fs_opts(f);
3138 	ffs_dev_lock();
3139 	_ffs_free_dev(opts->dev);
3140 	ffs_dev_unlock();
3141 	kfree(opts);
3142 }
3143 
3144 #define MAX_INST_NAME_LEN	40
3145 
3146 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3147 {
3148 	struct f_fs_opts *opts;
3149 	char *ptr;
3150 	const char *tmp;
3151 	int name_len, ret;
3152 
3153 	name_len = strlen(name) + 1;
3154 	if (name_len > MAX_INST_NAME_LEN)
3155 		return -ENAMETOOLONG;
3156 
3157 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3158 	if (!ptr)
3159 		return -ENOMEM;
3160 
3161 	opts = to_f_fs_opts(fi);
3162 	tmp = NULL;
3163 
3164 	ffs_dev_lock();
3165 
3166 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3167 	ret = _ffs_name_dev(opts->dev, ptr);
3168 	if (ret) {
3169 		kfree(ptr);
3170 		ffs_dev_unlock();
3171 		return ret;
3172 	}
3173 	opts->dev->name_allocated = true;
3174 
3175 	ffs_dev_unlock();
3176 
3177 	kfree(tmp);
3178 
3179 	return 0;
3180 }
3181 
3182 static struct usb_function_instance *ffs_alloc_inst(void)
3183 {
3184 	struct f_fs_opts *opts;
3185 	struct ffs_dev *dev;
3186 
3187 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3188 	if (!opts)
3189 		return ERR_PTR(-ENOMEM);
3190 
3191 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3192 	opts->func_inst.free_func_inst = ffs_free_inst;
3193 	ffs_dev_lock();
3194 	dev = _ffs_alloc_dev();
3195 	ffs_dev_unlock();
3196 	if (IS_ERR(dev)) {
3197 		kfree(opts);
3198 		return ERR_CAST(dev);
3199 	}
3200 	opts->dev = dev;
3201 	dev->opts = opts;
3202 
3203 	config_group_init_type_name(&opts->func_inst.group, "",
3204 				    &ffs_func_type);
3205 	return &opts->func_inst;
3206 }
3207 
3208 static void ffs_free(struct usb_function *f)
3209 {
3210 	kfree(ffs_func_from_usb(f));
3211 }
3212 
3213 static void ffs_func_unbind(struct usb_configuration *c,
3214 			    struct usb_function *f)
3215 {
3216 	struct ffs_function *func = ffs_func_from_usb(f);
3217 	struct ffs_data *ffs = func->ffs;
3218 	struct f_fs_opts *opts =
3219 		container_of(f->fi, struct f_fs_opts, func_inst);
3220 	struct ffs_ep *ep = func->eps;
3221 	unsigned count = ffs->eps_count;
3222 	unsigned long flags;
3223 
3224 	ENTER();
3225 	if (ffs->func == func) {
3226 		ffs_func_eps_disable(func);
3227 		ffs->func = NULL;
3228 	}
3229 
3230 	if (!--opts->refcnt)
3231 		functionfs_unbind(ffs);
3232 
3233 	/* cleanup after autoconfig */
3234 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3235 	do {
3236 		if (ep->ep && ep->req)
3237 			usb_ep_free_request(ep->ep, ep->req);
3238 		ep->req = NULL;
3239 		++ep;
3240 	} while (--count);
3241 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3242 	kfree(func->eps);
3243 	func->eps = NULL;
3244 	/*
3245 	 * eps, descriptors and interfaces_nums are allocated in the
3246 	 * same chunk so only one free is required.
3247 	 */
3248 	func->function.fs_descriptors = NULL;
3249 	func->function.hs_descriptors = NULL;
3250 	func->function.ss_descriptors = NULL;
3251 	func->interfaces_nums = NULL;
3252 
3253 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3254 }
3255 
3256 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3257 {
3258 	struct ffs_function *func;
3259 
3260 	ENTER();
3261 
3262 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3263 	if (unlikely(!func))
3264 		return ERR_PTR(-ENOMEM);
3265 
3266 	func->function.name    = "Function FS Gadget";
3267 
3268 	func->function.bind    = ffs_func_bind;
3269 	func->function.unbind  = ffs_func_unbind;
3270 	func->function.set_alt = ffs_func_set_alt;
3271 	func->function.disable = ffs_func_disable;
3272 	func->function.setup   = ffs_func_setup;
3273 	func->function.suspend = ffs_func_suspend;
3274 	func->function.resume  = ffs_func_resume;
3275 	func->function.free_func = ffs_free;
3276 
3277 	return &func->function;
3278 }
3279 
3280 /*
3281  * ffs_lock must be taken by the caller of this function
3282  */
3283 static struct ffs_dev *_ffs_alloc_dev(void)
3284 {
3285 	struct ffs_dev *dev;
3286 	int ret;
3287 
3288 	if (_ffs_get_single_dev())
3289 			return ERR_PTR(-EBUSY);
3290 
3291 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3292 	if (!dev)
3293 		return ERR_PTR(-ENOMEM);
3294 
3295 	if (list_empty(&ffs_devices)) {
3296 		ret = functionfs_init();
3297 		if (ret) {
3298 			kfree(dev);
3299 			return ERR_PTR(ret);
3300 		}
3301 	}
3302 
3303 	list_add(&dev->entry, &ffs_devices);
3304 
3305 	return dev;
3306 }
3307 
3308 /*
3309  * ffs_lock must be taken by the caller of this function
3310  * The caller is responsible for "name" being available whenever f_fs needs it
3311  */
3312 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3313 {
3314 	struct ffs_dev *existing;
3315 
3316 	existing = _ffs_do_find_dev(name);
3317 	if (existing)
3318 		return -EBUSY;
3319 
3320 	dev->name = name;
3321 
3322 	return 0;
3323 }
3324 
3325 /*
3326  * The caller is responsible for "name" being available whenever f_fs needs it
3327  */
3328 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3329 {
3330 	int ret;
3331 
3332 	ffs_dev_lock();
3333 	ret = _ffs_name_dev(dev, name);
3334 	ffs_dev_unlock();
3335 
3336 	return ret;
3337 }
3338 EXPORT_SYMBOL_GPL(ffs_name_dev);
3339 
3340 int ffs_single_dev(struct ffs_dev *dev)
3341 {
3342 	int ret;
3343 
3344 	ret = 0;
3345 	ffs_dev_lock();
3346 
3347 	if (!list_is_singular(&ffs_devices))
3348 		ret = -EBUSY;
3349 	else
3350 		dev->single = true;
3351 
3352 	ffs_dev_unlock();
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(ffs_single_dev);
3356 
3357 /*
3358  * ffs_lock must be taken by the caller of this function
3359  */
3360 static void _ffs_free_dev(struct ffs_dev *dev)
3361 {
3362 	list_del(&dev->entry);
3363 	if (dev->name_allocated)
3364 		kfree(dev->name);
3365 	kfree(dev);
3366 	if (list_empty(&ffs_devices))
3367 		functionfs_cleanup();
3368 }
3369 
3370 static void *ffs_acquire_dev(const char *dev_name)
3371 {
3372 	struct ffs_dev *ffs_dev;
3373 
3374 	ENTER();
3375 	ffs_dev_lock();
3376 
3377 	ffs_dev = _ffs_find_dev(dev_name);
3378 	if (!ffs_dev)
3379 		ffs_dev = ERR_PTR(-ENOENT);
3380 	else if (ffs_dev->mounted)
3381 		ffs_dev = ERR_PTR(-EBUSY);
3382 	else if (ffs_dev->ffs_acquire_dev_callback &&
3383 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3384 		ffs_dev = ERR_PTR(-ENOENT);
3385 	else
3386 		ffs_dev->mounted = true;
3387 
3388 	ffs_dev_unlock();
3389 	return ffs_dev;
3390 }
3391 
3392 static void ffs_release_dev(struct ffs_data *ffs_data)
3393 {
3394 	struct ffs_dev *ffs_dev;
3395 
3396 	ENTER();
3397 	ffs_dev_lock();
3398 
3399 	ffs_dev = ffs_data->private_data;
3400 	if (ffs_dev) {
3401 		ffs_dev->mounted = false;
3402 
3403 		if (ffs_dev->ffs_release_dev_callback)
3404 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3405 	}
3406 
3407 	ffs_dev_unlock();
3408 }
3409 
3410 static int ffs_ready(struct ffs_data *ffs)
3411 {
3412 	struct ffs_dev *ffs_obj;
3413 	int ret = 0;
3414 
3415 	ENTER();
3416 	ffs_dev_lock();
3417 
3418 	ffs_obj = ffs->private_data;
3419 	if (!ffs_obj) {
3420 		ret = -EINVAL;
3421 		goto done;
3422 	}
3423 	if (WARN_ON(ffs_obj->desc_ready)) {
3424 		ret = -EBUSY;
3425 		goto done;
3426 	}
3427 
3428 	ffs_obj->desc_ready = true;
3429 	ffs_obj->ffs_data = ffs;
3430 
3431 	if (ffs_obj->ffs_ready_callback) {
3432 		ret = ffs_obj->ffs_ready_callback(ffs);
3433 		if (ret)
3434 			goto done;
3435 	}
3436 
3437 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3438 done:
3439 	ffs_dev_unlock();
3440 	return ret;
3441 }
3442 
3443 static void ffs_closed(struct ffs_data *ffs)
3444 {
3445 	struct ffs_dev *ffs_obj;
3446 	struct f_fs_opts *opts;
3447 
3448 	ENTER();
3449 	ffs_dev_lock();
3450 
3451 	ffs_obj = ffs->private_data;
3452 	if (!ffs_obj)
3453 		goto done;
3454 
3455 	ffs_obj->desc_ready = false;
3456 
3457 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3458 	    ffs_obj->ffs_closed_callback)
3459 		ffs_obj->ffs_closed_callback(ffs);
3460 
3461 	if (ffs_obj->opts)
3462 		opts = ffs_obj->opts;
3463 	else
3464 		goto done;
3465 
3466 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3467 	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3468 		goto done;
3469 
3470 	unregister_gadget_item(ffs_obj->opts->
3471 			       func_inst.group.cg_item.ci_parent->ci_parent);
3472 done:
3473 	ffs_dev_unlock();
3474 }
3475 
3476 /* Misc helper functions ****************************************************/
3477 
3478 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3479 {
3480 	return nonblock
3481 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3482 		: mutex_lock_interruptible(mutex);
3483 }
3484 
3485 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3486 {
3487 	char *data;
3488 
3489 	if (unlikely(!len))
3490 		return NULL;
3491 
3492 	data = kmalloc(len, GFP_KERNEL);
3493 	if (unlikely(!data))
3494 		return ERR_PTR(-ENOMEM);
3495 
3496 	if (unlikely(__copy_from_user(data, buf, len))) {
3497 		kfree(data);
3498 		return ERR_PTR(-EFAULT);
3499 	}
3500 
3501 	pr_vdebug("Buffer from user space:\n");
3502 	ffs_dump_mem("", data, len);
3503 
3504 	return data;
3505 }
3506 
3507 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3508 MODULE_LICENSE("GPL");
3509 MODULE_AUTHOR("Michal Nazarewicz");
3510