xref: /linux/drivers/usb/gadget/function/f_fs.c (revision c5951e7c8ee5cb04b8b41c32bf567b90117a2124)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/mmu_context.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static void *ffs_acquire_dev(const char *dev_name);
254 static void ffs_release_dev(struct ffs_data *ffs_data);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282 
283 	spin_unlock_irq(&ffs->ev.waitq.lock);
284 
285 	req->buf      = data;
286 	req->length   = len;
287 
288 	/*
289 	 * UDC layer requires to provide a buffer even for ZLP, but should
290 	 * not use it at all. Let's provide some poisoned pointer to catch
291 	 * possible bug in the driver.
292 	 */
293 	if (req->buf == NULL)
294 		req->buf = (void *)0xDEADBABE;
295 
296 	reinit_completion(&ffs->ep0req_completion);
297 
298 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 	if (unlikely(ret < 0))
300 		return ret;
301 
302 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 	if (unlikely(ret)) {
304 		usb_ep_dequeue(ffs->gadget->ep0, req);
305 		return -EINTR;
306 	}
307 
308 	ffs->setup_state = FFS_NO_SETUP;
309 	return req->status ? req->status : req->actual;
310 }
311 
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 	if (ffs->ev.can_stall) {
315 		pr_vdebug("ep0 stall\n");
316 		usb_ep_set_halt(ffs->gadget->ep0);
317 		ffs->setup_state = FFS_NO_SETUP;
318 		return -EL2HLT;
319 	} else {
320 		pr_debug("bogus ep0 stall!\n");
321 		return -ESRCH;
322 	}
323 }
324 
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 			     size_t len, loff_t *ptr)
327 {
328 	struct ffs_data *ffs = file->private_data;
329 	ssize_t ret;
330 	char *data;
331 
332 	ENTER();
333 
334 	/* Fast check if setup was canceled */
335 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 		return -EIDRM;
337 
338 	/* Acquire mutex */
339 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 	if (unlikely(ret < 0))
341 		return ret;
342 
343 	/* Check state */
344 	switch (ffs->state) {
345 	case FFS_READ_DESCRIPTORS:
346 	case FFS_READ_STRINGS:
347 		/* Copy data */
348 		if (unlikely(len < 16)) {
349 			ret = -EINVAL;
350 			break;
351 		}
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		/* Handle data */
360 		if (ffs->state == FFS_READ_DESCRIPTORS) {
361 			pr_info("read descriptors\n");
362 			ret = __ffs_data_got_descs(ffs, data, len);
363 			if (unlikely(ret < 0))
364 				break;
365 
366 			ffs->state = FFS_READ_STRINGS;
367 			ret = len;
368 		} else {
369 			pr_info("read strings\n");
370 			ret = __ffs_data_got_strings(ffs, data, len);
371 			if (unlikely(ret < 0))
372 				break;
373 
374 			ret = ffs_epfiles_create(ffs);
375 			if (unlikely(ret)) {
376 				ffs->state = FFS_CLOSING;
377 				break;
378 			}
379 
380 			ffs->state = FFS_ACTIVE;
381 			mutex_unlock(&ffs->mutex);
382 
383 			ret = ffs_ready(ffs);
384 			if (unlikely(ret < 0)) {
385 				ffs->state = FFS_CLOSING;
386 				return ret;
387 			}
388 
389 			return len;
390 		}
391 		break;
392 
393 	case FFS_ACTIVE:
394 		data = NULL;
395 		/*
396 		 * We're called from user space, we can use _irq
397 		 * rather then _irqsave
398 		 */
399 		spin_lock_irq(&ffs->ev.waitq.lock);
400 		switch (ffs_setup_state_clear_cancelled(ffs)) {
401 		case FFS_SETUP_CANCELLED:
402 			ret = -EIDRM;
403 			goto done_spin;
404 
405 		case FFS_NO_SETUP:
406 			ret = -ESRCH;
407 			goto done_spin;
408 
409 		case FFS_SETUP_PENDING:
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING */
414 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 			spin_unlock_irq(&ffs->ev.waitq.lock);
416 			ret = __ffs_ep0_stall(ffs);
417 			break;
418 		}
419 
420 		/* FFS_SETUP_PENDING and not stall */
421 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422 
423 		spin_unlock_irq(&ffs->ev.waitq.lock);
424 
425 		data = ffs_prepare_buffer(buf, len);
426 		if (IS_ERR(data)) {
427 			ret = PTR_ERR(data);
428 			break;
429 		}
430 
431 		spin_lock_irq(&ffs->ev.waitq.lock);
432 
433 		/*
434 		 * We are guaranteed to be still in FFS_ACTIVE state
435 		 * but the state of setup could have changed from
436 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 		 * to check for that.  If that happened we copied data
438 		 * from user space in vain but it's unlikely.
439 		 *
440 		 * For sure we are not in FFS_NO_SETUP since this is
441 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 		 * transition can be performed and it's protected by
443 		 * mutex.
444 		 */
445 		if (ffs_setup_state_clear_cancelled(ffs) ==
446 		    FFS_SETUP_CANCELLED) {
447 			ret = -EIDRM;
448 done_spin:
449 			spin_unlock_irq(&ffs->ev.waitq.lock);
450 		} else {
451 			/* unlocks spinlock */
452 			ret = __ffs_ep0_queue_wait(ffs, data, len);
453 		}
454 		kfree(data);
455 		break;
456 
457 	default:
458 		ret = -EBADFD;
459 		break;
460 	}
461 
462 	mutex_unlock(&ffs->mutex);
463 	return ret;
464 }
465 
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 				     size_t n)
469 	__releases(&ffs->ev.waitq.lock)
470 {
471 	/*
472 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 	 * size of ffs->ev.types array (which is four) so that's how much space
474 	 * we reserve.
475 	 */
476 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 	const size_t size = n * sizeof *events;
478 	unsigned i = 0;
479 
480 	memset(events, 0, size);
481 
482 	do {
483 		events[i].type = ffs->ev.types[i];
484 		if (events[i].type == FUNCTIONFS_SETUP) {
485 			events[i].u.setup = ffs->ev.setup;
486 			ffs->setup_state = FFS_SETUP_PENDING;
487 		}
488 	} while (++i < n);
489 
490 	ffs->ev.count -= n;
491 	if (ffs->ev.count)
492 		memmove(ffs->ev.types, ffs->ev.types + n,
493 			ffs->ev.count * sizeof *ffs->ev.types);
494 
495 	spin_unlock_irq(&ffs->ev.waitq.lock);
496 	mutex_unlock(&ffs->mutex);
497 
498 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
499 }
500 
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 			    size_t len, loff_t *ptr)
503 {
504 	struct ffs_data *ffs = file->private_data;
505 	char *data = NULL;
506 	size_t n;
507 	int ret;
508 
509 	ENTER();
510 
511 	/* Fast check if setup was canceled */
512 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 		return -EIDRM;
514 
515 	/* Acquire mutex */
516 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 	if (unlikely(ret < 0))
518 		return ret;
519 
520 	/* Check state */
521 	if (ffs->state != FFS_ACTIVE) {
522 		ret = -EBADFD;
523 		goto done_mutex;
524 	}
525 
526 	/*
527 	 * We're called from user space, we can use _irq rather then
528 	 * _irqsave
529 	 */
530 	spin_lock_irq(&ffs->ev.waitq.lock);
531 
532 	switch (ffs_setup_state_clear_cancelled(ffs)) {
533 	case FFS_SETUP_CANCELLED:
534 		ret = -EIDRM;
535 		break;
536 
537 	case FFS_NO_SETUP:
538 		n = len / sizeof(struct usb_functionfs_event);
539 		if (unlikely(!n)) {
540 			ret = -EINVAL;
541 			break;
542 		}
543 
544 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 			ret = -EAGAIN;
546 			break;
547 		}
548 
549 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 							ffs->ev.count)) {
551 			ret = -EINTR;
552 			break;
553 		}
554 
555 		/* unlocks spinlock */
556 		return __ffs_ep0_read_events(ffs, buf,
557 					     min(n, (size_t)ffs->ev.count));
558 
559 	case FFS_SETUP_PENDING:
560 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 			spin_unlock_irq(&ffs->ev.waitq.lock);
562 			ret = __ffs_ep0_stall(ffs);
563 			goto done_mutex;
564 		}
565 
566 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567 
568 		spin_unlock_irq(&ffs->ev.waitq.lock);
569 
570 		if (likely(len)) {
571 			data = kmalloc(len, GFP_KERNEL);
572 			if (unlikely(!data)) {
573 				ret = -ENOMEM;
574 				goto done_mutex;
575 			}
576 		}
577 
578 		spin_lock_irq(&ffs->ev.waitq.lock);
579 
580 		/* See ffs_ep0_write() */
581 		if (ffs_setup_state_clear_cancelled(ffs) ==
582 		    FFS_SETUP_CANCELLED) {
583 			ret = -EIDRM;
584 			break;
585 		}
586 
587 		/* unlocks spinlock */
588 		ret = __ffs_ep0_queue_wait(ffs, data, len);
589 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
590 			ret = -EFAULT;
591 		goto done_mutex;
592 
593 	default:
594 		ret = -EBADFD;
595 		break;
596 	}
597 
598 	spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 	mutex_unlock(&ffs->mutex);
601 	kfree(data);
602 	return ret;
603 }
604 
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 	struct ffs_data *ffs = inode->i_private;
608 
609 	ENTER();
610 
611 	if (unlikely(ffs->state == FFS_CLOSING))
612 		return -EBUSY;
613 
614 	file->private_data = ffs;
615 	ffs_data_opened(ffs);
616 
617 	return 0;
618 }
619 
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 	struct ffs_data *ffs = file->private_data;
623 
624 	ENTER();
625 
626 	ffs_data_closed(ffs);
627 
628 	return 0;
629 }
630 
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 	struct ffs_data *ffs = file->private_data;
634 	struct usb_gadget *gadget = ffs->gadget;
635 	long ret;
636 
637 	ENTER();
638 
639 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 		struct ffs_function *func = ffs->func;
641 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 	} else if (gadget && gadget->ops->ioctl) {
643 		ret = gadget->ops->ioctl(gadget, code, value);
644 	} else {
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 	__poll_t mask = EPOLLWRNORM;
655 	int ret;
656 
657 	poll_wait(file, &ffs->ev.waitq, wait);
658 
659 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 	if (unlikely(ret < 0))
661 		return mask;
662 
663 	switch (ffs->state) {
664 	case FFS_READ_DESCRIPTORS:
665 	case FFS_READ_STRINGS:
666 		mask |= EPOLLOUT;
667 		break;
668 
669 	case FFS_ACTIVE:
670 		switch (ffs->setup_state) {
671 		case FFS_NO_SETUP:
672 			if (ffs->ev.count)
673 				mask |= EPOLLIN;
674 			break;
675 
676 		case FFS_SETUP_PENDING:
677 		case FFS_SETUP_CANCELLED:
678 			mask |= (EPOLLIN | EPOLLOUT);
679 			break;
680 		}
681 	case FFS_CLOSING:
682 		break;
683 	case FFS_DEACTIVATED:
684 		break;
685 	}
686 
687 	mutex_unlock(&ffs->mutex);
688 
689 	return mask;
690 }
691 
692 static const struct file_operations ffs_ep0_operations = {
693 	.llseek =	no_llseek,
694 
695 	.open =		ffs_ep0_open,
696 	.write =	ffs_ep0_write,
697 	.read =		ffs_ep0_read,
698 	.release =	ffs_ep0_release,
699 	.unlocked_ioctl =	ffs_ep0_ioctl,
700 	.poll =		ffs_ep0_poll,
701 };
702 
703 
704 /* "Normal" endpoints operations ********************************************/
705 
706 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
707 {
708 	ENTER();
709 	if (likely(req->context)) {
710 		struct ffs_ep *ep = _ep->driver_data;
711 		ep->status = req->status ? req->status : req->actual;
712 		complete(req->context);
713 	}
714 }
715 
716 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
717 {
718 	ssize_t ret = copy_to_iter(data, data_len, iter);
719 	if (likely(ret == data_len))
720 		return ret;
721 
722 	if (unlikely(iov_iter_count(iter)))
723 		return -EFAULT;
724 
725 	/*
726 	 * Dear user space developer!
727 	 *
728 	 * TL;DR: To stop getting below error message in your kernel log, change
729 	 * user space code using functionfs to align read buffers to a max
730 	 * packet size.
731 	 *
732 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
733 	 * packet size.  When unaligned buffer is passed to functionfs, it
734 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
735 	 *
736 	 * Unfortunately, this means that host may send more data than was
737 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
738 	 * that excess data so it simply drops it.
739 	 *
740 	 * Was the buffer aligned in the first place, no such problem would
741 	 * happen.
742 	 *
743 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
744 	 * by splitting a request into multiple parts.  This splitting may still
745 	 * be a problem though so it’s likely best to align the buffer
746 	 * regardless of it being AIO or not..
747 	 *
748 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
749 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
750 	 * affected.
751 	 */
752 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
753 	       "Align read buffer size to max packet size to avoid the problem.\n",
754 	       data_len, ret);
755 
756 	return ret;
757 }
758 
759 /*
760  * allocate a virtually contiguous buffer and create a scatterlist describing it
761  * @sg_table	- pointer to a place to be filled with sg_table contents
762  * @size	- required buffer size
763  */
764 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
765 {
766 	struct page **pages;
767 	void *vaddr, *ptr;
768 	unsigned int n_pages;
769 	int i;
770 
771 	vaddr = vmalloc(sz);
772 	if (!vaddr)
773 		return NULL;
774 
775 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
776 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
777 	if (!pages) {
778 		vfree(vaddr);
779 
780 		return NULL;
781 	}
782 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
783 		pages[i] = vmalloc_to_page(ptr);
784 
785 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
786 		kvfree(pages);
787 		vfree(vaddr);
788 
789 		return NULL;
790 	}
791 	kvfree(pages);
792 
793 	return vaddr;
794 }
795 
796 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
797 	size_t data_len)
798 {
799 	if (io_data->use_sg)
800 		return ffs_build_sg_list(&io_data->sgt, data_len);
801 
802 	return kmalloc(data_len, GFP_KERNEL);
803 }
804 
805 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
806 {
807 	if (!io_data->buf)
808 		return;
809 
810 	if (io_data->use_sg) {
811 		sg_free_table(&io_data->sgt);
812 		vfree(io_data->buf);
813 	} else {
814 		kfree(io_data->buf);
815 	}
816 }
817 
818 static void ffs_user_copy_worker(struct work_struct *work)
819 {
820 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
821 						   work);
822 	int ret = io_data->req->status ? io_data->req->status :
823 					 io_data->req->actual;
824 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
825 
826 	if (io_data->read && ret > 0) {
827 		mm_segment_t oldfs = get_fs();
828 
829 		set_fs(USER_DS);
830 		use_mm(io_data->mm);
831 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
832 		unuse_mm(io_data->mm);
833 		set_fs(oldfs);
834 	}
835 
836 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
837 
838 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
839 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
840 
841 	usb_ep_free_request(io_data->ep, io_data->req);
842 
843 	if (io_data->read)
844 		kfree(io_data->to_free);
845 	ffs_free_buffer(io_data);
846 	kfree(io_data);
847 }
848 
849 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
850 					 struct usb_request *req)
851 {
852 	struct ffs_io_data *io_data = req->context;
853 	struct ffs_data *ffs = io_data->ffs;
854 
855 	ENTER();
856 
857 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
858 	queue_work(ffs->io_completion_wq, &io_data->work);
859 }
860 
861 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
862 {
863 	/*
864 	 * See comment in struct ffs_epfile for full read_buffer pointer
865 	 * synchronisation story.
866 	 */
867 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
868 	if (buf && buf != READ_BUFFER_DROP)
869 		kfree(buf);
870 }
871 
872 /* Assumes epfile->mutex is held. */
873 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
874 					  struct iov_iter *iter)
875 {
876 	/*
877 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
878 	 * the buffer while we are using it.  See comment in struct ffs_epfile
879 	 * for full read_buffer pointer synchronisation story.
880 	 */
881 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
882 	ssize_t ret;
883 	if (!buf || buf == READ_BUFFER_DROP)
884 		return 0;
885 
886 	ret = copy_to_iter(buf->data, buf->length, iter);
887 	if (buf->length == ret) {
888 		kfree(buf);
889 		return ret;
890 	}
891 
892 	if (unlikely(iov_iter_count(iter))) {
893 		ret = -EFAULT;
894 	} else {
895 		buf->length -= ret;
896 		buf->data += ret;
897 	}
898 
899 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
900 		kfree(buf);
901 
902 	return ret;
903 }
904 
905 /* Assumes epfile->mutex is held. */
906 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
907 				      void *data, int data_len,
908 				      struct iov_iter *iter)
909 {
910 	struct ffs_buffer *buf;
911 
912 	ssize_t ret = copy_to_iter(data, data_len, iter);
913 	if (likely(data_len == ret))
914 		return ret;
915 
916 	if (unlikely(iov_iter_count(iter)))
917 		return -EFAULT;
918 
919 	/* See ffs_copy_to_iter for more context. */
920 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
921 		data_len, ret);
922 
923 	data_len -= ret;
924 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
925 	if (!buf)
926 		return -ENOMEM;
927 	buf->length = data_len;
928 	buf->data = buf->storage;
929 	memcpy(buf->storage, data + ret, data_len);
930 
931 	/*
932 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
933 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
934 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
935 	 * story.
936 	 */
937 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
938 		kfree(buf);
939 
940 	return ret;
941 }
942 
943 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
944 {
945 	struct ffs_epfile *epfile = file->private_data;
946 	struct usb_request *req;
947 	struct ffs_ep *ep;
948 	char *data = NULL;
949 	ssize_t ret, data_len = -EINVAL;
950 	int halt;
951 
952 	/* Are we still active? */
953 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
954 		return -ENODEV;
955 
956 	/* Wait for endpoint to be enabled */
957 	ep = epfile->ep;
958 	if (!ep) {
959 		if (file->f_flags & O_NONBLOCK)
960 			return -EAGAIN;
961 
962 		ret = wait_event_interruptible(
963 				epfile->ffs->wait, (ep = epfile->ep));
964 		if (ret)
965 			return -EINTR;
966 	}
967 
968 	/* Do we halt? */
969 	halt = (!io_data->read == !epfile->in);
970 	if (halt && epfile->isoc)
971 		return -EINVAL;
972 
973 	/* We will be using request and read_buffer */
974 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
975 	if (unlikely(ret))
976 		goto error;
977 
978 	/* Allocate & copy */
979 	if (!halt) {
980 		struct usb_gadget *gadget;
981 
982 		/*
983 		 * Do we have buffered data from previous partial read?  Check
984 		 * that for synchronous case only because we do not have
985 		 * facility to ‘wake up’ a pending asynchronous read and push
986 		 * buffered data to it which we would need to make things behave
987 		 * consistently.
988 		 */
989 		if (!io_data->aio && io_data->read) {
990 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
991 			if (ret)
992 				goto error_mutex;
993 		}
994 
995 		/*
996 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
997 		 * before the waiting completes, so do not assign to 'gadget'
998 		 * earlier
999 		 */
1000 		gadget = epfile->ffs->gadget;
1001 
1002 		spin_lock_irq(&epfile->ffs->eps_lock);
1003 		/* In the meantime, endpoint got disabled or changed. */
1004 		if (epfile->ep != ep) {
1005 			ret = -ESHUTDOWN;
1006 			goto error_lock;
1007 		}
1008 		data_len = iov_iter_count(&io_data->data);
1009 		/*
1010 		 * Controller may require buffer size to be aligned to
1011 		 * maxpacketsize of an out endpoint.
1012 		 */
1013 		if (io_data->read)
1014 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 
1016 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1017 		spin_unlock_irq(&epfile->ffs->eps_lock);
1018 
1019 		data = ffs_alloc_buffer(io_data, data_len);
1020 		if (unlikely(!data)) {
1021 			ret = -ENOMEM;
1022 			goto error_mutex;
1023 		}
1024 		if (!io_data->read &&
1025 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1026 			ret = -EFAULT;
1027 			goto error_mutex;
1028 		}
1029 	}
1030 
1031 	spin_lock_irq(&epfile->ffs->eps_lock);
1032 
1033 	if (epfile->ep != ep) {
1034 		/* In the meantime, endpoint got disabled or changed. */
1035 		ret = -ESHUTDOWN;
1036 	} else if (halt) {
1037 		ret = usb_ep_set_halt(ep->ep);
1038 		if (!ret)
1039 			ret = -EBADMSG;
1040 	} else if (unlikely(data_len == -EINVAL)) {
1041 		/*
1042 		 * Sanity Check: even though data_len can't be used
1043 		 * uninitialized at the time I write this comment, some
1044 		 * compilers complain about this situation.
1045 		 * In order to keep the code clean from warnings, data_len is
1046 		 * being initialized to -EINVAL during its declaration, which
1047 		 * means we can't rely on compiler anymore to warn no future
1048 		 * changes won't result in data_len being used uninitialized.
1049 		 * For such reason, we're adding this redundant sanity check
1050 		 * here.
1051 		 */
1052 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1053 		ret = -EINVAL;
1054 	} else if (!io_data->aio) {
1055 		DECLARE_COMPLETION_ONSTACK(done);
1056 		bool interrupted = false;
1057 
1058 		req = ep->req;
1059 		if (io_data->use_sg) {
1060 			req->buf = NULL;
1061 			req->sg	= io_data->sgt.sgl;
1062 			req->num_sgs = io_data->sgt.nents;
1063 		} else {
1064 			req->buf = data;
1065 			req->num_sgs = 0;
1066 		}
1067 		req->length = data_len;
1068 
1069 		io_data->buf = data;
1070 
1071 		req->context  = &done;
1072 		req->complete = ffs_epfile_io_complete;
1073 
1074 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1075 		if (unlikely(ret < 0))
1076 			goto error_lock;
1077 
1078 		spin_unlock_irq(&epfile->ffs->eps_lock);
1079 
1080 		if (unlikely(wait_for_completion_interruptible(&done))) {
1081 			/*
1082 			 * To avoid race condition with ffs_epfile_io_complete,
1083 			 * dequeue the request first then check
1084 			 * status. usb_ep_dequeue API should guarantee no race
1085 			 * condition with req->complete callback.
1086 			 */
1087 			usb_ep_dequeue(ep->ep, req);
1088 			wait_for_completion(&done);
1089 			interrupted = ep->status < 0;
1090 		}
1091 
1092 		if (interrupted)
1093 			ret = -EINTR;
1094 		else if (io_data->read && ep->status > 0)
1095 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1096 						     &io_data->data);
1097 		else
1098 			ret = ep->status;
1099 		goto error_mutex;
1100 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1101 		ret = -ENOMEM;
1102 	} else {
1103 		if (io_data->use_sg) {
1104 			req->buf = NULL;
1105 			req->sg	= io_data->sgt.sgl;
1106 			req->num_sgs = io_data->sgt.nents;
1107 		} else {
1108 			req->buf = data;
1109 			req->num_sgs = 0;
1110 		}
1111 		req->length = data_len;
1112 
1113 		io_data->buf = data;
1114 		io_data->ep = ep->ep;
1115 		io_data->req = req;
1116 		io_data->ffs = epfile->ffs;
1117 
1118 		req->context  = io_data;
1119 		req->complete = ffs_epfile_async_io_complete;
1120 
1121 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1122 		if (unlikely(ret)) {
1123 			usb_ep_free_request(ep->ep, req);
1124 			goto error_lock;
1125 		}
1126 
1127 		ret = -EIOCBQUEUED;
1128 		/*
1129 		 * Do not kfree the buffer in this function.  It will be freed
1130 		 * by ffs_user_copy_worker.
1131 		 */
1132 		data = NULL;
1133 	}
1134 
1135 error_lock:
1136 	spin_unlock_irq(&epfile->ffs->eps_lock);
1137 error_mutex:
1138 	mutex_unlock(&epfile->mutex);
1139 error:
1140 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1141 		ffs_free_buffer(io_data);
1142 	return ret;
1143 }
1144 
1145 static int
1146 ffs_epfile_open(struct inode *inode, struct file *file)
1147 {
1148 	struct ffs_epfile *epfile = inode->i_private;
1149 
1150 	ENTER();
1151 
1152 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1153 		return -ENODEV;
1154 
1155 	file->private_data = epfile;
1156 	ffs_data_opened(epfile->ffs);
1157 
1158 	return 0;
1159 }
1160 
1161 static int ffs_aio_cancel(struct kiocb *kiocb)
1162 {
1163 	struct ffs_io_data *io_data = kiocb->private;
1164 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1165 	int value;
1166 
1167 	ENTER();
1168 
1169 	spin_lock_irq(&epfile->ffs->eps_lock);
1170 
1171 	if (likely(io_data && io_data->ep && io_data->req))
1172 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1173 	else
1174 		value = -EINVAL;
1175 
1176 	spin_unlock_irq(&epfile->ffs->eps_lock);
1177 
1178 	return value;
1179 }
1180 
1181 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1182 {
1183 	struct ffs_io_data io_data, *p = &io_data;
1184 	ssize_t res;
1185 
1186 	ENTER();
1187 
1188 	if (!is_sync_kiocb(kiocb)) {
1189 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1190 		if (unlikely(!p))
1191 			return -ENOMEM;
1192 		p->aio = true;
1193 	} else {
1194 		memset(p, 0, sizeof(*p));
1195 		p->aio = false;
1196 	}
1197 
1198 	p->read = false;
1199 	p->kiocb = kiocb;
1200 	p->data = *from;
1201 	p->mm = current->mm;
1202 
1203 	kiocb->private = p;
1204 
1205 	if (p->aio)
1206 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1207 
1208 	res = ffs_epfile_io(kiocb->ki_filp, p);
1209 	if (res == -EIOCBQUEUED)
1210 		return res;
1211 	if (p->aio)
1212 		kfree(p);
1213 	else
1214 		*from = p->data;
1215 	return res;
1216 }
1217 
1218 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1219 {
1220 	struct ffs_io_data io_data, *p = &io_data;
1221 	ssize_t res;
1222 
1223 	ENTER();
1224 
1225 	if (!is_sync_kiocb(kiocb)) {
1226 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227 		if (unlikely(!p))
1228 			return -ENOMEM;
1229 		p->aio = true;
1230 	} else {
1231 		memset(p, 0, sizeof(*p));
1232 		p->aio = false;
1233 	}
1234 
1235 	p->read = true;
1236 	p->kiocb = kiocb;
1237 	if (p->aio) {
1238 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1239 		if (!p->to_free) {
1240 			kfree(p);
1241 			return -ENOMEM;
1242 		}
1243 	} else {
1244 		p->data = *to;
1245 		p->to_free = NULL;
1246 	}
1247 	p->mm = current->mm;
1248 
1249 	kiocb->private = p;
1250 
1251 	if (p->aio)
1252 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1253 
1254 	res = ffs_epfile_io(kiocb->ki_filp, p);
1255 	if (res == -EIOCBQUEUED)
1256 		return res;
1257 
1258 	if (p->aio) {
1259 		kfree(p->to_free);
1260 		kfree(p);
1261 	} else {
1262 		*to = p->data;
1263 	}
1264 	return res;
1265 }
1266 
1267 static int
1268 ffs_epfile_release(struct inode *inode, struct file *file)
1269 {
1270 	struct ffs_epfile *epfile = inode->i_private;
1271 
1272 	ENTER();
1273 
1274 	__ffs_epfile_read_buffer_free(epfile);
1275 	ffs_data_closed(epfile->ffs);
1276 
1277 	return 0;
1278 }
1279 
1280 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1281 			     unsigned long value)
1282 {
1283 	struct ffs_epfile *epfile = file->private_data;
1284 	struct ffs_ep *ep;
1285 	int ret;
1286 
1287 	ENTER();
1288 
1289 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1290 		return -ENODEV;
1291 
1292 	/* Wait for endpoint to be enabled */
1293 	ep = epfile->ep;
1294 	if (!ep) {
1295 		if (file->f_flags & O_NONBLOCK)
1296 			return -EAGAIN;
1297 
1298 		ret = wait_event_interruptible(
1299 				epfile->ffs->wait, (ep = epfile->ep));
1300 		if (ret)
1301 			return -EINTR;
1302 	}
1303 
1304 	spin_lock_irq(&epfile->ffs->eps_lock);
1305 
1306 	/* In the meantime, endpoint got disabled or changed. */
1307 	if (epfile->ep != ep) {
1308 		spin_unlock_irq(&epfile->ffs->eps_lock);
1309 		return -ESHUTDOWN;
1310 	}
1311 
1312 	switch (code) {
1313 	case FUNCTIONFS_FIFO_STATUS:
1314 		ret = usb_ep_fifo_status(epfile->ep->ep);
1315 		break;
1316 	case FUNCTIONFS_FIFO_FLUSH:
1317 		usb_ep_fifo_flush(epfile->ep->ep);
1318 		ret = 0;
1319 		break;
1320 	case FUNCTIONFS_CLEAR_HALT:
1321 		ret = usb_ep_clear_halt(epfile->ep->ep);
1322 		break;
1323 	case FUNCTIONFS_ENDPOINT_REVMAP:
1324 		ret = epfile->ep->num;
1325 		break;
1326 	case FUNCTIONFS_ENDPOINT_DESC:
1327 	{
1328 		int desc_idx;
1329 		struct usb_endpoint_descriptor *desc;
1330 
1331 		switch (epfile->ffs->gadget->speed) {
1332 		case USB_SPEED_SUPER:
1333 			desc_idx = 2;
1334 			break;
1335 		case USB_SPEED_HIGH:
1336 			desc_idx = 1;
1337 			break;
1338 		default:
1339 			desc_idx = 0;
1340 		}
1341 		desc = epfile->ep->descs[desc_idx];
1342 
1343 		spin_unlock_irq(&epfile->ffs->eps_lock);
1344 		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1345 		if (ret)
1346 			ret = -EFAULT;
1347 		return ret;
1348 	}
1349 	default:
1350 		ret = -ENOTTY;
1351 	}
1352 	spin_unlock_irq(&epfile->ffs->eps_lock);
1353 
1354 	return ret;
1355 }
1356 
1357 static const struct file_operations ffs_epfile_operations = {
1358 	.llseek =	no_llseek,
1359 
1360 	.open =		ffs_epfile_open,
1361 	.write_iter =	ffs_epfile_write_iter,
1362 	.read_iter =	ffs_epfile_read_iter,
1363 	.release =	ffs_epfile_release,
1364 	.unlocked_ioctl =	ffs_epfile_ioctl,
1365 	.compat_ioctl = compat_ptr_ioctl,
1366 };
1367 
1368 
1369 /* File system and super block operations ***********************************/
1370 
1371 /*
1372  * Mounting the file system creates a controller file, used first for
1373  * function configuration then later for event monitoring.
1374  */
1375 
1376 static struct inode *__must_check
1377 ffs_sb_make_inode(struct super_block *sb, void *data,
1378 		  const struct file_operations *fops,
1379 		  const struct inode_operations *iops,
1380 		  struct ffs_file_perms *perms)
1381 {
1382 	struct inode *inode;
1383 
1384 	ENTER();
1385 
1386 	inode = new_inode(sb);
1387 
1388 	if (likely(inode)) {
1389 		struct timespec64 ts = current_time(inode);
1390 
1391 		inode->i_ino	 = get_next_ino();
1392 		inode->i_mode    = perms->mode;
1393 		inode->i_uid     = perms->uid;
1394 		inode->i_gid     = perms->gid;
1395 		inode->i_atime   = ts;
1396 		inode->i_mtime   = ts;
1397 		inode->i_ctime   = ts;
1398 		inode->i_private = data;
1399 		if (fops)
1400 			inode->i_fop = fops;
1401 		if (iops)
1402 			inode->i_op  = iops;
1403 	}
1404 
1405 	return inode;
1406 }
1407 
1408 /* Create "regular" file */
1409 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1410 					const char *name, void *data,
1411 					const struct file_operations *fops)
1412 {
1413 	struct ffs_data	*ffs = sb->s_fs_info;
1414 	struct dentry	*dentry;
1415 	struct inode	*inode;
1416 
1417 	ENTER();
1418 
1419 	dentry = d_alloc_name(sb->s_root, name);
1420 	if (unlikely(!dentry))
1421 		return NULL;
1422 
1423 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1424 	if (unlikely(!inode)) {
1425 		dput(dentry);
1426 		return NULL;
1427 	}
1428 
1429 	d_add(dentry, inode);
1430 	return dentry;
1431 }
1432 
1433 /* Super block */
1434 static const struct super_operations ffs_sb_operations = {
1435 	.statfs =	simple_statfs,
1436 	.drop_inode =	generic_delete_inode,
1437 };
1438 
1439 struct ffs_sb_fill_data {
1440 	struct ffs_file_perms perms;
1441 	umode_t root_mode;
1442 	const char *dev_name;
1443 	bool no_disconnect;
1444 	struct ffs_data *ffs_data;
1445 };
1446 
1447 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1448 {
1449 	struct ffs_sb_fill_data *data = fc->fs_private;
1450 	struct inode	*inode;
1451 	struct ffs_data	*ffs = data->ffs_data;
1452 
1453 	ENTER();
1454 
1455 	ffs->sb              = sb;
1456 	data->ffs_data       = NULL;
1457 	sb->s_fs_info        = ffs;
1458 	sb->s_blocksize      = PAGE_SIZE;
1459 	sb->s_blocksize_bits = PAGE_SHIFT;
1460 	sb->s_magic          = FUNCTIONFS_MAGIC;
1461 	sb->s_op             = &ffs_sb_operations;
1462 	sb->s_time_gran      = 1;
1463 
1464 	/* Root inode */
1465 	data->perms.mode = data->root_mode;
1466 	inode = ffs_sb_make_inode(sb, NULL,
1467 				  &simple_dir_operations,
1468 				  &simple_dir_inode_operations,
1469 				  &data->perms);
1470 	sb->s_root = d_make_root(inode);
1471 	if (unlikely(!sb->s_root))
1472 		return -ENOMEM;
1473 
1474 	/* EP0 file */
1475 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1476 					 &ffs_ep0_operations)))
1477 		return -ENOMEM;
1478 
1479 	return 0;
1480 }
1481 
1482 enum {
1483 	Opt_no_disconnect,
1484 	Opt_rmode,
1485 	Opt_fmode,
1486 	Opt_mode,
1487 	Opt_uid,
1488 	Opt_gid,
1489 };
1490 
1491 static const struct fs_parameter_spec ffs_fs_param_specs[] = {
1492 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1493 	fsparam_u32	("rmode",		Opt_rmode),
1494 	fsparam_u32	("fmode",		Opt_fmode),
1495 	fsparam_u32	("mode",		Opt_mode),
1496 	fsparam_u32	("uid",			Opt_uid),
1497 	fsparam_u32	("gid",			Opt_gid),
1498 	{}
1499 };
1500 
1501 static const struct fs_parameter_description ffs_fs_fs_parameters = {
1502 	.name		= "kAFS",
1503 	.specs		= ffs_fs_param_specs,
1504 };
1505 
1506 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1507 {
1508 	struct ffs_sb_fill_data *data = fc->fs_private;
1509 	struct fs_parse_result result;
1510 	int opt;
1511 
1512 	ENTER();
1513 
1514 	opt = fs_parse(fc, &ffs_fs_fs_parameters, param, &result);
1515 	if (opt < 0)
1516 		return opt;
1517 
1518 	switch (opt) {
1519 	case Opt_no_disconnect:
1520 		data->no_disconnect = result.boolean;
1521 		break;
1522 	case Opt_rmode:
1523 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1524 		break;
1525 	case Opt_fmode:
1526 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1527 		break;
1528 	case Opt_mode:
1529 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1530 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1531 		break;
1532 
1533 	case Opt_uid:
1534 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1535 		if (!uid_valid(data->perms.uid))
1536 			goto unmapped_value;
1537 		break;
1538 	case Opt_gid:
1539 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1540 		if (!gid_valid(data->perms.gid))
1541 			goto unmapped_value;
1542 		break;
1543 
1544 	default:
1545 		return -ENOPARAM;
1546 	}
1547 
1548 	return 0;
1549 
1550 unmapped_value:
1551 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1552 }
1553 
1554 /*
1555  * Set up the superblock for a mount.
1556  */
1557 static int ffs_fs_get_tree(struct fs_context *fc)
1558 {
1559 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1560 	void *ffs_dev;
1561 	struct ffs_data	*ffs;
1562 
1563 	ENTER();
1564 
1565 	if (!fc->source)
1566 		return invalf(fc, "No source specified");
1567 
1568 	ffs = ffs_data_new(fc->source);
1569 	if (unlikely(!ffs))
1570 		return -ENOMEM;
1571 	ffs->file_perms = ctx->perms;
1572 	ffs->no_disconnect = ctx->no_disconnect;
1573 
1574 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1575 	if (unlikely(!ffs->dev_name)) {
1576 		ffs_data_put(ffs);
1577 		return -ENOMEM;
1578 	}
1579 
1580 	ffs_dev = ffs_acquire_dev(ffs->dev_name);
1581 	if (IS_ERR(ffs_dev)) {
1582 		ffs_data_put(ffs);
1583 		return PTR_ERR(ffs_dev);
1584 	}
1585 
1586 	ffs->private_data = ffs_dev;
1587 	ctx->ffs_data = ffs;
1588 	return get_tree_nodev(fc, ffs_sb_fill);
1589 }
1590 
1591 static void ffs_fs_free_fc(struct fs_context *fc)
1592 {
1593 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1594 
1595 	if (ctx) {
1596 		if (ctx->ffs_data) {
1597 			ffs_release_dev(ctx->ffs_data);
1598 			ffs_data_put(ctx->ffs_data);
1599 		}
1600 
1601 		kfree(ctx);
1602 	}
1603 }
1604 
1605 static const struct fs_context_operations ffs_fs_context_ops = {
1606 	.free		= ffs_fs_free_fc,
1607 	.parse_param	= ffs_fs_parse_param,
1608 	.get_tree	= ffs_fs_get_tree,
1609 };
1610 
1611 static int ffs_fs_init_fs_context(struct fs_context *fc)
1612 {
1613 	struct ffs_sb_fill_data *ctx;
1614 
1615 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1616 	if (!ctx)
1617 		return -ENOMEM;
1618 
1619 	ctx->perms.mode = S_IFREG | 0600;
1620 	ctx->perms.uid = GLOBAL_ROOT_UID;
1621 	ctx->perms.gid = GLOBAL_ROOT_GID;
1622 	ctx->root_mode = S_IFDIR | 0500;
1623 	ctx->no_disconnect = false;
1624 
1625 	fc->fs_private = ctx;
1626 	fc->ops = &ffs_fs_context_ops;
1627 	return 0;
1628 }
1629 
1630 static void
1631 ffs_fs_kill_sb(struct super_block *sb)
1632 {
1633 	ENTER();
1634 
1635 	kill_litter_super(sb);
1636 	if (sb->s_fs_info) {
1637 		ffs_release_dev(sb->s_fs_info);
1638 		ffs_data_closed(sb->s_fs_info);
1639 	}
1640 }
1641 
1642 static struct file_system_type ffs_fs_type = {
1643 	.owner		= THIS_MODULE,
1644 	.name		= "functionfs",
1645 	.init_fs_context = ffs_fs_init_fs_context,
1646 	.parameters	= &ffs_fs_fs_parameters,
1647 	.kill_sb	= ffs_fs_kill_sb,
1648 };
1649 MODULE_ALIAS_FS("functionfs");
1650 
1651 
1652 /* Driver's main init/cleanup functions *************************************/
1653 
1654 static int functionfs_init(void)
1655 {
1656 	int ret;
1657 
1658 	ENTER();
1659 
1660 	ret = register_filesystem(&ffs_fs_type);
1661 	if (likely(!ret))
1662 		pr_info("file system registered\n");
1663 	else
1664 		pr_err("failed registering file system (%d)\n", ret);
1665 
1666 	return ret;
1667 }
1668 
1669 static void functionfs_cleanup(void)
1670 {
1671 	ENTER();
1672 
1673 	pr_info("unloading\n");
1674 	unregister_filesystem(&ffs_fs_type);
1675 }
1676 
1677 
1678 /* ffs_data and ffs_function construction and destruction code **************/
1679 
1680 static void ffs_data_clear(struct ffs_data *ffs);
1681 static void ffs_data_reset(struct ffs_data *ffs);
1682 
1683 static void ffs_data_get(struct ffs_data *ffs)
1684 {
1685 	ENTER();
1686 
1687 	refcount_inc(&ffs->ref);
1688 }
1689 
1690 static void ffs_data_opened(struct ffs_data *ffs)
1691 {
1692 	ENTER();
1693 
1694 	refcount_inc(&ffs->ref);
1695 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1696 			ffs->state == FFS_DEACTIVATED) {
1697 		ffs->state = FFS_CLOSING;
1698 		ffs_data_reset(ffs);
1699 	}
1700 }
1701 
1702 static void ffs_data_put(struct ffs_data *ffs)
1703 {
1704 	ENTER();
1705 
1706 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1707 		pr_info("%s(): freeing\n", __func__);
1708 		ffs_data_clear(ffs);
1709 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1710 		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1711 		       waitqueue_active(&ffs->wait));
1712 		destroy_workqueue(ffs->io_completion_wq);
1713 		kfree(ffs->dev_name);
1714 		kfree(ffs);
1715 	}
1716 }
1717 
1718 static void ffs_data_closed(struct ffs_data *ffs)
1719 {
1720 	ENTER();
1721 
1722 	if (atomic_dec_and_test(&ffs->opened)) {
1723 		if (ffs->no_disconnect) {
1724 			ffs->state = FFS_DEACTIVATED;
1725 			if (ffs->epfiles) {
1726 				ffs_epfiles_destroy(ffs->epfiles,
1727 						   ffs->eps_count);
1728 				ffs->epfiles = NULL;
1729 			}
1730 			if (ffs->setup_state == FFS_SETUP_PENDING)
1731 				__ffs_ep0_stall(ffs);
1732 		} else {
1733 			ffs->state = FFS_CLOSING;
1734 			ffs_data_reset(ffs);
1735 		}
1736 	}
1737 	if (atomic_read(&ffs->opened) < 0) {
1738 		ffs->state = FFS_CLOSING;
1739 		ffs_data_reset(ffs);
1740 	}
1741 
1742 	ffs_data_put(ffs);
1743 }
1744 
1745 static struct ffs_data *ffs_data_new(const char *dev_name)
1746 {
1747 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1748 	if (unlikely(!ffs))
1749 		return NULL;
1750 
1751 	ENTER();
1752 
1753 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1754 	if (!ffs->io_completion_wq) {
1755 		kfree(ffs);
1756 		return NULL;
1757 	}
1758 
1759 	refcount_set(&ffs->ref, 1);
1760 	atomic_set(&ffs->opened, 0);
1761 	ffs->state = FFS_READ_DESCRIPTORS;
1762 	mutex_init(&ffs->mutex);
1763 	spin_lock_init(&ffs->eps_lock);
1764 	init_waitqueue_head(&ffs->ev.waitq);
1765 	init_waitqueue_head(&ffs->wait);
1766 	init_completion(&ffs->ep0req_completion);
1767 
1768 	/* XXX REVISIT need to update it in some places, or do we? */
1769 	ffs->ev.can_stall = 1;
1770 
1771 	return ffs;
1772 }
1773 
1774 static void ffs_data_clear(struct ffs_data *ffs)
1775 {
1776 	ENTER();
1777 
1778 	ffs_closed(ffs);
1779 
1780 	BUG_ON(ffs->gadget);
1781 
1782 	if (ffs->epfiles)
1783 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1784 
1785 	if (ffs->ffs_eventfd)
1786 		eventfd_ctx_put(ffs->ffs_eventfd);
1787 
1788 	kfree(ffs->raw_descs_data);
1789 	kfree(ffs->raw_strings);
1790 	kfree(ffs->stringtabs);
1791 }
1792 
1793 static void ffs_data_reset(struct ffs_data *ffs)
1794 {
1795 	ENTER();
1796 
1797 	ffs_data_clear(ffs);
1798 
1799 	ffs->epfiles = NULL;
1800 	ffs->raw_descs_data = NULL;
1801 	ffs->raw_descs = NULL;
1802 	ffs->raw_strings = NULL;
1803 	ffs->stringtabs = NULL;
1804 
1805 	ffs->raw_descs_length = 0;
1806 	ffs->fs_descs_count = 0;
1807 	ffs->hs_descs_count = 0;
1808 	ffs->ss_descs_count = 0;
1809 
1810 	ffs->strings_count = 0;
1811 	ffs->interfaces_count = 0;
1812 	ffs->eps_count = 0;
1813 
1814 	ffs->ev.count = 0;
1815 
1816 	ffs->state = FFS_READ_DESCRIPTORS;
1817 	ffs->setup_state = FFS_NO_SETUP;
1818 	ffs->flags = 0;
1819 }
1820 
1821 
1822 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1823 {
1824 	struct usb_gadget_strings **lang;
1825 	int first_id;
1826 
1827 	ENTER();
1828 
1829 	if (WARN_ON(ffs->state != FFS_ACTIVE
1830 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1831 		return -EBADFD;
1832 
1833 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1834 	if (unlikely(first_id < 0))
1835 		return first_id;
1836 
1837 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1838 	if (unlikely(!ffs->ep0req))
1839 		return -ENOMEM;
1840 	ffs->ep0req->complete = ffs_ep0_complete;
1841 	ffs->ep0req->context = ffs;
1842 
1843 	lang = ffs->stringtabs;
1844 	if (lang) {
1845 		for (; *lang; ++lang) {
1846 			struct usb_string *str = (*lang)->strings;
1847 			int id = first_id;
1848 			for (; str->s; ++id, ++str)
1849 				str->id = id;
1850 		}
1851 	}
1852 
1853 	ffs->gadget = cdev->gadget;
1854 	ffs_data_get(ffs);
1855 	return 0;
1856 }
1857 
1858 static void functionfs_unbind(struct ffs_data *ffs)
1859 {
1860 	ENTER();
1861 
1862 	if (!WARN_ON(!ffs->gadget)) {
1863 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1864 		ffs->ep0req = NULL;
1865 		ffs->gadget = NULL;
1866 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1867 		ffs_data_put(ffs);
1868 	}
1869 }
1870 
1871 static int ffs_epfiles_create(struct ffs_data *ffs)
1872 {
1873 	struct ffs_epfile *epfile, *epfiles;
1874 	unsigned i, count;
1875 
1876 	ENTER();
1877 
1878 	count = ffs->eps_count;
1879 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1880 	if (!epfiles)
1881 		return -ENOMEM;
1882 
1883 	epfile = epfiles;
1884 	for (i = 1; i <= count; ++i, ++epfile) {
1885 		epfile->ffs = ffs;
1886 		mutex_init(&epfile->mutex);
1887 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1888 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1889 		else
1890 			sprintf(epfile->name, "ep%u", i);
1891 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1892 						 epfile,
1893 						 &ffs_epfile_operations);
1894 		if (unlikely(!epfile->dentry)) {
1895 			ffs_epfiles_destroy(epfiles, i - 1);
1896 			return -ENOMEM;
1897 		}
1898 	}
1899 
1900 	ffs->epfiles = epfiles;
1901 	return 0;
1902 }
1903 
1904 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1905 {
1906 	struct ffs_epfile *epfile = epfiles;
1907 
1908 	ENTER();
1909 
1910 	for (; count; --count, ++epfile) {
1911 		BUG_ON(mutex_is_locked(&epfile->mutex));
1912 		if (epfile->dentry) {
1913 			d_delete(epfile->dentry);
1914 			dput(epfile->dentry);
1915 			epfile->dentry = NULL;
1916 		}
1917 	}
1918 
1919 	kfree(epfiles);
1920 }
1921 
1922 static void ffs_func_eps_disable(struct ffs_function *func)
1923 {
1924 	struct ffs_ep *ep         = func->eps;
1925 	struct ffs_epfile *epfile = func->ffs->epfiles;
1926 	unsigned count            = func->ffs->eps_count;
1927 	unsigned long flags;
1928 
1929 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1930 	while (count--) {
1931 		/* pending requests get nuked */
1932 		if (likely(ep->ep))
1933 			usb_ep_disable(ep->ep);
1934 		++ep;
1935 
1936 		if (epfile) {
1937 			epfile->ep = NULL;
1938 			__ffs_epfile_read_buffer_free(epfile);
1939 			++epfile;
1940 		}
1941 	}
1942 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1943 }
1944 
1945 static int ffs_func_eps_enable(struct ffs_function *func)
1946 {
1947 	struct ffs_data *ffs      = func->ffs;
1948 	struct ffs_ep *ep         = func->eps;
1949 	struct ffs_epfile *epfile = ffs->epfiles;
1950 	unsigned count            = ffs->eps_count;
1951 	unsigned long flags;
1952 	int ret = 0;
1953 
1954 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1955 	while(count--) {
1956 		ep->ep->driver_data = ep;
1957 
1958 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1959 		if (ret) {
1960 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1961 					__func__, ep->ep->name, ret);
1962 			break;
1963 		}
1964 
1965 		ret = usb_ep_enable(ep->ep);
1966 		if (likely(!ret)) {
1967 			epfile->ep = ep;
1968 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1969 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1970 		} else {
1971 			break;
1972 		}
1973 
1974 		++ep;
1975 		++epfile;
1976 	}
1977 
1978 	wake_up_interruptible(&ffs->wait);
1979 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1980 
1981 	return ret;
1982 }
1983 
1984 
1985 /* Parsing and building descriptors and strings *****************************/
1986 
1987 /*
1988  * This validates if data pointed by data is a valid USB descriptor as
1989  * well as record how many interfaces, endpoints and strings are
1990  * required by given configuration.  Returns address after the
1991  * descriptor or NULL if data is invalid.
1992  */
1993 
1994 enum ffs_entity_type {
1995 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1996 };
1997 
1998 enum ffs_os_desc_type {
1999 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2000 };
2001 
2002 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2003 				   u8 *valuep,
2004 				   struct usb_descriptor_header *desc,
2005 				   void *priv);
2006 
2007 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2008 				    struct usb_os_desc_header *h, void *data,
2009 				    unsigned len, void *priv);
2010 
2011 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2012 					   ffs_entity_callback entity,
2013 					   void *priv, int *current_class)
2014 {
2015 	struct usb_descriptor_header *_ds = (void *)data;
2016 	u8 length;
2017 	int ret;
2018 
2019 	ENTER();
2020 
2021 	/* At least two bytes are required: length and type */
2022 	if (len < 2) {
2023 		pr_vdebug("descriptor too short\n");
2024 		return -EINVAL;
2025 	}
2026 
2027 	/* If we have at least as many bytes as the descriptor takes? */
2028 	length = _ds->bLength;
2029 	if (len < length) {
2030 		pr_vdebug("descriptor longer then available data\n");
2031 		return -EINVAL;
2032 	}
2033 
2034 #define __entity_check_INTERFACE(val)  1
2035 #define __entity_check_STRING(val)     (val)
2036 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2037 #define __entity(type, val) do {					\
2038 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2039 		if (unlikely(!__entity_check_ ##type(val))) {		\
2040 			pr_vdebug("invalid entity's value\n");		\
2041 			return -EINVAL;					\
2042 		}							\
2043 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2044 		if (unlikely(ret < 0)) {				\
2045 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2046 				 (val), ret);				\
2047 			return ret;					\
2048 		}							\
2049 	} while (0)
2050 
2051 	/* Parse descriptor depending on type. */
2052 	switch (_ds->bDescriptorType) {
2053 	case USB_DT_DEVICE:
2054 	case USB_DT_CONFIG:
2055 	case USB_DT_STRING:
2056 	case USB_DT_DEVICE_QUALIFIER:
2057 		/* function can't have any of those */
2058 		pr_vdebug("descriptor reserved for gadget: %d\n",
2059 		      _ds->bDescriptorType);
2060 		return -EINVAL;
2061 
2062 	case USB_DT_INTERFACE: {
2063 		struct usb_interface_descriptor *ds = (void *)_ds;
2064 		pr_vdebug("interface descriptor\n");
2065 		if (length != sizeof *ds)
2066 			goto inv_length;
2067 
2068 		__entity(INTERFACE, ds->bInterfaceNumber);
2069 		if (ds->iInterface)
2070 			__entity(STRING, ds->iInterface);
2071 		*current_class = ds->bInterfaceClass;
2072 	}
2073 		break;
2074 
2075 	case USB_DT_ENDPOINT: {
2076 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2077 		pr_vdebug("endpoint descriptor\n");
2078 		if (length != USB_DT_ENDPOINT_SIZE &&
2079 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2080 			goto inv_length;
2081 		__entity(ENDPOINT, ds->bEndpointAddress);
2082 	}
2083 		break;
2084 
2085 	case USB_TYPE_CLASS | 0x01:
2086                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2087 			pr_vdebug("hid descriptor\n");
2088 			if (length != sizeof(struct hid_descriptor))
2089 				goto inv_length;
2090 			break;
2091 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2092 			pr_vdebug("ccid descriptor\n");
2093 			if (length != sizeof(struct ccid_descriptor))
2094 				goto inv_length;
2095 			break;
2096 		} else {
2097 			pr_vdebug("unknown descriptor: %d for class %d\n",
2098 			      _ds->bDescriptorType, *current_class);
2099 			return -EINVAL;
2100 		}
2101 
2102 	case USB_DT_OTG:
2103 		if (length != sizeof(struct usb_otg_descriptor))
2104 			goto inv_length;
2105 		break;
2106 
2107 	case USB_DT_INTERFACE_ASSOCIATION: {
2108 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2109 		pr_vdebug("interface association descriptor\n");
2110 		if (length != sizeof *ds)
2111 			goto inv_length;
2112 		if (ds->iFunction)
2113 			__entity(STRING, ds->iFunction);
2114 	}
2115 		break;
2116 
2117 	case USB_DT_SS_ENDPOINT_COMP:
2118 		pr_vdebug("EP SS companion descriptor\n");
2119 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2120 			goto inv_length;
2121 		break;
2122 
2123 	case USB_DT_OTHER_SPEED_CONFIG:
2124 	case USB_DT_INTERFACE_POWER:
2125 	case USB_DT_DEBUG:
2126 	case USB_DT_SECURITY:
2127 	case USB_DT_CS_RADIO_CONTROL:
2128 		/* TODO */
2129 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2130 		return -EINVAL;
2131 
2132 	default:
2133 		/* We should never be here */
2134 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2135 		return -EINVAL;
2136 
2137 inv_length:
2138 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2139 			  _ds->bLength, _ds->bDescriptorType);
2140 		return -EINVAL;
2141 	}
2142 
2143 #undef __entity
2144 #undef __entity_check_DESCRIPTOR
2145 #undef __entity_check_INTERFACE
2146 #undef __entity_check_STRING
2147 #undef __entity_check_ENDPOINT
2148 
2149 	return length;
2150 }
2151 
2152 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2153 				     ffs_entity_callback entity, void *priv)
2154 {
2155 	const unsigned _len = len;
2156 	unsigned long num = 0;
2157 	int current_class = -1;
2158 
2159 	ENTER();
2160 
2161 	for (;;) {
2162 		int ret;
2163 
2164 		if (num == count)
2165 			data = NULL;
2166 
2167 		/* Record "descriptor" entity */
2168 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2169 		if (unlikely(ret < 0)) {
2170 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2171 				 num, ret);
2172 			return ret;
2173 		}
2174 
2175 		if (!data)
2176 			return _len - len;
2177 
2178 		ret = ffs_do_single_desc(data, len, entity, priv,
2179 			&current_class);
2180 		if (unlikely(ret < 0)) {
2181 			pr_debug("%s returns %d\n", __func__, ret);
2182 			return ret;
2183 		}
2184 
2185 		len -= ret;
2186 		data += ret;
2187 		++num;
2188 	}
2189 }
2190 
2191 static int __ffs_data_do_entity(enum ffs_entity_type type,
2192 				u8 *valuep, struct usb_descriptor_header *desc,
2193 				void *priv)
2194 {
2195 	struct ffs_desc_helper *helper = priv;
2196 	struct usb_endpoint_descriptor *d;
2197 
2198 	ENTER();
2199 
2200 	switch (type) {
2201 	case FFS_DESCRIPTOR:
2202 		break;
2203 
2204 	case FFS_INTERFACE:
2205 		/*
2206 		 * Interfaces are indexed from zero so if we
2207 		 * encountered interface "n" then there are at least
2208 		 * "n+1" interfaces.
2209 		 */
2210 		if (*valuep >= helper->interfaces_count)
2211 			helper->interfaces_count = *valuep + 1;
2212 		break;
2213 
2214 	case FFS_STRING:
2215 		/*
2216 		 * Strings are indexed from 1 (0 is reserved
2217 		 * for languages list)
2218 		 */
2219 		if (*valuep > helper->ffs->strings_count)
2220 			helper->ffs->strings_count = *valuep;
2221 		break;
2222 
2223 	case FFS_ENDPOINT:
2224 		d = (void *)desc;
2225 		helper->eps_count++;
2226 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2227 			return -EINVAL;
2228 		/* Check if descriptors for any speed were already parsed */
2229 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2230 			helper->ffs->eps_addrmap[helper->eps_count] =
2231 				d->bEndpointAddress;
2232 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2233 				d->bEndpointAddress)
2234 			return -EINVAL;
2235 		break;
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2242 				   struct usb_os_desc_header *desc)
2243 {
2244 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2245 	u16 w_index = le16_to_cpu(desc->wIndex);
2246 
2247 	if (bcd_version != 1) {
2248 		pr_vdebug("unsupported os descriptors version: %d",
2249 			  bcd_version);
2250 		return -EINVAL;
2251 	}
2252 	switch (w_index) {
2253 	case 0x4:
2254 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2255 		break;
2256 	case 0x5:
2257 		*next_type = FFS_OS_DESC_EXT_PROP;
2258 		break;
2259 	default:
2260 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2261 		return -EINVAL;
2262 	}
2263 
2264 	return sizeof(*desc);
2265 }
2266 
2267 /*
2268  * Process all extended compatibility/extended property descriptors
2269  * of a feature descriptor
2270  */
2271 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2272 					      enum ffs_os_desc_type type,
2273 					      u16 feature_count,
2274 					      ffs_os_desc_callback entity,
2275 					      void *priv,
2276 					      struct usb_os_desc_header *h)
2277 {
2278 	int ret;
2279 	const unsigned _len = len;
2280 
2281 	ENTER();
2282 
2283 	/* loop over all ext compat/ext prop descriptors */
2284 	while (feature_count--) {
2285 		ret = entity(type, h, data, len, priv);
2286 		if (unlikely(ret < 0)) {
2287 			pr_debug("bad OS descriptor, type: %d\n", type);
2288 			return ret;
2289 		}
2290 		data += ret;
2291 		len -= ret;
2292 	}
2293 	return _len - len;
2294 }
2295 
2296 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2297 static int __must_check ffs_do_os_descs(unsigned count,
2298 					char *data, unsigned len,
2299 					ffs_os_desc_callback entity, void *priv)
2300 {
2301 	const unsigned _len = len;
2302 	unsigned long num = 0;
2303 
2304 	ENTER();
2305 
2306 	for (num = 0; num < count; ++num) {
2307 		int ret;
2308 		enum ffs_os_desc_type type;
2309 		u16 feature_count;
2310 		struct usb_os_desc_header *desc = (void *)data;
2311 
2312 		if (len < sizeof(*desc))
2313 			return -EINVAL;
2314 
2315 		/*
2316 		 * Record "descriptor" entity.
2317 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2318 		 * Move the data pointer to the beginning of extended
2319 		 * compatibilities proper or extended properties proper
2320 		 * portions of the data
2321 		 */
2322 		if (le32_to_cpu(desc->dwLength) > len)
2323 			return -EINVAL;
2324 
2325 		ret = __ffs_do_os_desc_header(&type, desc);
2326 		if (unlikely(ret < 0)) {
2327 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2328 				 num, ret);
2329 			return ret;
2330 		}
2331 		/*
2332 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2333 		 */
2334 		feature_count = le16_to_cpu(desc->wCount);
2335 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2336 		    (feature_count > 255 || desc->Reserved))
2337 				return -EINVAL;
2338 		len -= ret;
2339 		data += ret;
2340 
2341 		/*
2342 		 * Process all function/property descriptors
2343 		 * of this Feature Descriptor
2344 		 */
2345 		ret = ffs_do_single_os_desc(data, len, type,
2346 					    feature_count, entity, priv, desc);
2347 		if (unlikely(ret < 0)) {
2348 			pr_debug("%s returns %d\n", __func__, ret);
2349 			return ret;
2350 		}
2351 
2352 		len -= ret;
2353 		data += ret;
2354 	}
2355 	return _len - len;
2356 }
2357 
2358 /**
2359  * Validate contents of the buffer from userspace related to OS descriptors.
2360  */
2361 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2362 				 struct usb_os_desc_header *h, void *data,
2363 				 unsigned len, void *priv)
2364 {
2365 	struct ffs_data *ffs = priv;
2366 	u8 length;
2367 
2368 	ENTER();
2369 
2370 	switch (type) {
2371 	case FFS_OS_DESC_EXT_COMPAT: {
2372 		struct usb_ext_compat_desc *d = data;
2373 		int i;
2374 
2375 		if (len < sizeof(*d) ||
2376 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2377 			return -EINVAL;
2378 		if (d->Reserved1 != 1) {
2379 			/*
2380 			 * According to the spec, Reserved1 must be set to 1
2381 			 * but older kernels incorrectly rejected non-zero
2382 			 * values.  We fix it here to avoid returning EINVAL
2383 			 * in response to values we used to accept.
2384 			 */
2385 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2386 			d->Reserved1 = 1;
2387 		}
2388 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2389 			if (d->Reserved2[i])
2390 				return -EINVAL;
2391 
2392 		length = sizeof(struct usb_ext_compat_desc);
2393 	}
2394 		break;
2395 	case FFS_OS_DESC_EXT_PROP: {
2396 		struct usb_ext_prop_desc *d = data;
2397 		u32 type, pdl;
2398 		u16 pnl;
2399 
2400 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2401 			return -EINVAL;
2402 		length = le32_to_cpu(d->dwSize);
2403 		if (len < length)
2404 			return -EINVAL;
2405 		type = le32_to_cpu(d->dwPropertyDataType);
2406 		if (type < USB_EXT_PROP_UNICODE ||
2407 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2408 			pr_vdebug("unsupported os descriptor property type: %d",
2409 				  type);
2410 			return -EINVAL;
2411 		}
2412 		pnl = le16_to_cpu(d->wPropertyNameLength);
2413 		if (length < 14 + pnl) {
2414 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2415 				  length, pnl, type);
2416 			return -EINVAL;
2417 		}
2418 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2419 		if (length != 14 + pnl + pdl) {
2420 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2421 				  length, pnl, pdl, type);
2422 			return -EINVAL;
2423 		}
2424 		++ffs->ms_os_descs_ext_prop_count;
2425 		/* property name reported to the host as "WCHAR"s */
2426 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2427 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2428 	}
2429 		break;
2430 	default:
2431 		pr_vdebug("unknown descriptor: %d\n", type);
2432 		return -EINVAL;
2433 	}
2434 	return length;
2435 }
2436 
2437 static int __ffs_data_got_descs(struct ffs_data *ffs,
2438 				char *const _data, size_t len)
2439 {
2440 	char *data = _data, *raw_descs;
2441 	unsigned os_descs_count = 0, counts[3], flags;
2442 	int ret = -EINVAL, i;
2443 	struct ffs_desc_helper helper;
2444 
2445 	ENTER();
2446 
2447 	if (get_unaligned_le32(data + 4) != len)
2448 		goto error;
2449 
2450 	switch (get_unaligned_le32(data)) {
2451 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2452 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2453 		data += 8;
2454 		len  -= 8;
2455 		break;
2456 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2457 		flags = get_unaligned_le32(data + 8);
2458 		ffs->user_flags = flags;
2459 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2460 			      FUNCTIONFS_HAS_HS_DESC |
2461 			      FUNCTIONFS_HAS_SS_DESC |
2462 			      FUNCTIONFS_HAS_MS_OS_DESC |
2463 			      FUNCTIONFS_VIRTUAL_ADDR |
2464 			      FUNCTIONFS_EVENTFD |
2465 			      FUNCTIONFS_ALL_CTRL_RECIP |
2466 			      FUNCTIONFS_CONFIG0_SETUP)) {
2467 			ret = -ENOSYS;
2468 			goto error;
2469 		}
2470 		data += 12;
2471 		len  -= 12;
2472 		break;
2473 	default:
2474 		goto error;
2475 	}
2476 
2477 	if (flags & FUNCTIONFS_EVENTFD) {
2478 		if (len < 4)
2479 			goto error;
2480 		ffs->ffs_eventfd =
2481 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2482 		if (IS_ERR(ffs->ffs_eventfd)) {
2483 			ret = PTR_ERR(ffs->ffs_eventfd);
2484 			ffs->ffs_eventfd = NULL;
2485 			goto error;
2486 		}
2487 		data += 4;
2488 		len  -= 4;
2489 	}
2490 
2491 	/* Read fs_count, hs_count and ss_count (if present) */
2492 	for (i = 0; i < 3; ++i) {
2493 		if (!(flags & (1 << i))) {
2494 			counts[i] = 0;
2495 		} else if (len < 4) {
2496 			goto error;
2497 		} else {
2498 			counts[i] = get_unaligned_le32(data);
2499 			data += 4;
2500 			len  -= 4;
2501 		}
2502 	}
2503 	if (flags & (1 << i)) {
2504 		if (len < 4) {
2505 			goto error;
2506 		}
2507 		os_descs_count = get_unaligned_le32(data);
2508 		data += 4;
2509 		len -= 4;
2510 	};
2511 
2512 	/* Read descriptors */
2513 	raw_descs = data;
2514 	helper.ffs = ffs;
2515 	for (i = 0; i < 3; ++i) {
2516 		if (!counts[i])
2517 			continue;
2518 		helper.interfaces_count = 0;
2519 		helper.eps_count = 0;
2520 		ret = ffs_do_descs(counts[i], data, len,
2521 				   __ffs_data_do_entity, &helper);
2522 		if (ret < 0)
2523 			goto error;
2524 		if (!ffs->eps_count && !ffs->interfaces_count) {
2525 			ffs->eps_count = helper.eps_count;
2526 			ffs->interfaces_count = helper.interfaces_count;
2527 		} else {
2528 			if (ffs->eps_count != helper.eps_count) {
2529 				ret = -EINVAL;
2530 				goto error;
2531 			}
2532 			if (ffs->interfaces_count != helper.interfaces_count) {
2533 				ret = -EINVAL;
2534 				goto error;
2535 			}
2536 		}
2537 		data += ret;
2538 		len  -= ret;
2539 	}
2540 	if (os_descs_count) {
2541 		ret = ffs_do_os_descs(os_descs_count, data, len,
2542 				      __ffs_data_do_os_desc, ffs);
2543 		if (ret < 0)
2544 			goto error;
2545 		data += ret;
2546 		len -= ret;
2547 	}
2548 
2549 	if (raw_descs == data || len) {
2550 		ret = -EINVAL;
2551 		goto error;
2552 	}
2553 
2554 	ffs->raw_descs_data	= _data;
2555 	ffs->raw_descs		= raw_descs;
2556 	ffs->raw_descs_length	= data - raw_descs;
2557 	ffs->fs_descs_count	= counts[0];
2558 	ffs->hs_descs_count	= counts[1];
2559 	ffs->ss_descs_count	= counts[2];
2560 	ffs->ms_os_descs_count	= os_descs_count;
2561 
2562 	return 0;
2563 
2564 error:
2565 	kfree(_data);
2566 	return ret;
2567 }
2568 
2569 static int __ffs_data_got_strings(struct ffs_data *ffs,
2570 				  char *const _data, size_t len)
2571 {
2572 	u32 str_count, needed_count, lang_count;
2573 	struct usb_gadget_strings **stringtabs, *t;
2574 	const char *data = _data;
2575 	struct usb_string *s;
2576 
2577 	ENTER();
2578 
2579 	if (unlikely(len < 16 ||
2580 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2581 		     get_unaligned_le32(data + 4) != len))
2582 		goto error;
2583 	str_count  = get_unaligned_le32(data + 8);
2584 	lang_count = get_unaligned_le32(data + 12);
2585 
2586 	/* if one is zero the other must be zero */
2587 	if (unlikely(!str_count != !lang_count))
2588 		goto error;
2589 
2590 	/* Do we have at least as many strings as descriptors need? */
2591 	needed_count = ffs->strings_count;
2592 	if (unlikely(str_count < needed_count))
2593 		goto error;
2594 
2595 	/*
2596 	 * If we don't need any strings just return and free all
2597 	 * memory.
2598 	 */
2599 	if (!needed_count) {
2600 		kfree(_data);
2601 		return 0;
2602 	}
2603 
2604 	/* Allocate everything in one chunk so there's less maintenance. */
2605 	{
2606 		unsigned i = 0;
2607 		vla_group(d);
2608 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2609 			lang_count + 1);
2610 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2611 		vla_item(d, struct usb_string, strings,
2612 			lang_count*(needed_count+1));
2613 
2614 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2615 
2616 		if (unlikely(!vlabuf)) {
2617 			kfree(_data);
2618 			return -ENOMEM;
2619 		}
2620 
2621 		/* Initialize the VLA pointers */
2622 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2623 		t = vla_ptr(vlabuf, d, stringtab);
2624 		i = lang_count;
2625 		do {
2626 			*stringtabs++ = t++;
2627 		} while (--i);
2628 		*stringtabs = NULL;
2629 
2630 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2631 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2632 		t = vla_ptr(vlabuf, d, stringtab);
2633 		s = vla_ptr(vlabuf, d, strings);
2634 	}
2635 
2636 	/* For each language */
2637 	data += 16;
2638 	len -= 16;
2639 
2640 	do { /* lang_count > 0 so we can use do-while */
2641 		unsigned needed = needed_count;
2642 
2643 		if (unlikely(len < 3))
2644 			goto error_free;
2645 		t->language = get_unaligned_le16(data);
2646 		t->strings  = s;
2647 		++t;
2648 
2649 		data += 2;
2650 		len -= 2;
2651 
2652 		/* For each string */
2653 		do { /* str_count > 0 so we can use do-while */
2654 			size_t length = strnlen(data, len);
2655 
2656 			if (unlikely(length == len))
2657 				goto error_free;
2658 
2659 			/*
2660 			 * User may provide more strings then we need,
2661 			 * if that's the case we simply ignore the
2662 			 * rest
2663 			 */
2664 			if (likely(needed)) {
2665 				/*
2666 				 * s->id will be set while adding
2667 				 * function to configuration so for
2668 				 * now just leave garbage here.
2669 				 */
2670 				s->s = data;
2671 				--needed;
2672 				++s;
2673 			}
2674 
2675 			data += length + 1;
2676 			len -= length + 1;
2677 		} while (--str_count);
2678 
2679 		s->id = 0;   /* terminator */
2680 		s->s = NULL;
2681 		++s;
2682 
2683 	} while (--lang_count);
2684 
2685 	/* Some garbage left? */
2686 	if (unlikely(len))
2687 		goto error_free;
2688 
2689 	/* Done! */
2690 	ffs->stringtabs = stringtabs;
2691 	ffs->raw_strings = _data;
2692 
2693 	return 0;
2694 
2695 error_free:
2696 	kfree(stringtabs);
2697 error:
2698 	kfree(_data);
2699 	return -EINVAL;
2700 }
2701 
2702 
2703 /* Events handling and management *******************************************/
2704 
2705 static void __ffs_event_add(struct ffs_data *ffs,
2706 			    enum usb_functionfs_event_type type)
2707 {
2708 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2709 	int neg = 0;
2710 
2711 	/*
2712 	 * Abort any unhandled setup
2713 	 *
2714 	 * We do not need to worry about some cmpxchg() changing value
2715 	 * of ffs->setup_state without holding the lock because when
2716 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2717 	 * the source does nothing.
2718 	 */
2719 	if (ffs->setup_state == FFS_SETUP_PENDING)
2720 		ffs->setup_state = FFS_SETUP_CANCELLED;
2721 
2722 	/*
2723 	 * Logic of this function guarantees that there are at most four pending
2724 	 * evens on ffs->ev.types queue.  This is important because the queue
2725 	 * has space for four elements only and __ffs_ep0_read_events function
2726 	 * depends on that limit as well.  If more event types are added, those
2727 	 * limits have to be revisited or guaranteed to still hold.
2728 	 */
2729 	switch (type) {
2730 	case FUNCTIONFS_RESUME:
2731 		rem_type2 = FUNCTIONFS_SUSPEND;
2732 		/* FALL THROUGH */
2733 	case FUNCTIONFS_SUSPEND:
2734 	case FUNCTIONFS_SETUP:
2735 		rem_type1 = type;
2736 		/* Discard all similar events */
2737 		break;
2738 
2739 	case FUNCTIONFS_BIND:
2740 	case FUNCTIONFS_UNBIND:
2741 	case FUNCTIONFS_DISABLE:
2742 	case FUNCTIONFS_ENABLE:
2743 		/* Discard everything other then power management. */
2744 		rem_type1 = FUNCTIONFS_SUSPEND;
2745 		rem_type2 = FUNCTIONFS_RESUME;
2746 		neg = 1;
2747 		break;
2748 
2749 	default:
2750 		WARN(1, "%d: unknown event, this should not happen\n", type);
2751 		return;
2752 	}
2753 
2754 	{
2755 		u8 *ev  = ffs->ev.types, *out = ev;
2756 		unsigned n = ffs->ev.count;
2757 		for (; n; --n, ++ev)
2758 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2759 				*out++ = *ev;
2760 			else
2761 				pr_vdebug("purging event %d\n", *ev);
2762 		ffs->ev.count = out - ffs->ev.types;
2763 	}
2764 
2765 	pr_vdebug("adding event %d\n", type);
2766 	ffs->ev.types[ffs->ev.count++] = type;
2767 	wake_up_locked(&ffs->ev.waitq);
2768 	if (ffs->ffs_eventfd)
2769 		eventfd_signal(ffs->ffs_eventfd, 1);
2770 }
2771 
2772 static void ffs_event_add(struct ffs_data *ffs,
2773 			  enum usb_functionfs_event_type type)
2774 {
2775 	unsigned long flags;
2776 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2777 	__ffs_event_add(ffs, type);
2778 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2779 }
2780 
2781 /* Bind/unbind USB function hooks *******************************************/
2782 
2783 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2784 {
2785 	int i;
2786 
2787 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2788 		if (ffs->eps_addrmap[i] == endpoint_address)
2789 			return i;
2790 	return -ENOENT;
2791 }
2792 
2793 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2794 				    struct usb_descriptor_header *desc,
2795 				    void *priv)
2796 {
2797 	struct usb_endpoint_descriptor *ds = (void *)desc;
2798 	struct ffs_function *func = priv;
2799 	struct ffs_ep *ffs_ep;
2800 	unsigned ep_desc_id;
2801 	int idx;
2802 	static const char *speed_names[] = { "full", "high", "super" };
2803 
2804 	if (type != FFS_DESCRIPTOR)
2805 		return 0;
2806 
2807 	/*
2808 	 * If ss_descriptors is not NULL, we are reading super speed
2809 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2810 	 * speed descriptors; otherwise, we are reading full speed
2811 	 * descriptors.
2812 	 */
2813 	if (func->function.ss_descriptors) {
2814 		ep_desc_id = 2;
2815 		func->function.ss_descriptors[(long)valuep] = desc;
2816 	} else if (func->function.hs_descriptors) {
2817 		ep_desc_id = 1;
2818 		func->function.hs_descriptors[(long)valuep] = desc;
2819 	} else {
2820 		ep_desc_id = 0;
2821 		func->function.fs_descriptors[(long)valuep]    = desc;
2822 	}
2823 
2824 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2825 		return 0;
2826 
2827 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2828 	if (idx < 0)
2829 		return idx;
2830 
2831 	ffs_ep = func->eps + idx;
2832 
2833 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2834 		pr_err("two %sspeed descriptors for EP %d\n",
2835 			  speed_names[ep_desc_id],
2836 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2837 		return -EINVAL;
2838 	}
2839 	ffs_ep->descs[ep_desc_id] = ds;
2840 
2841 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2842 	if (ffs_ep->ep) {
2843 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2844 		if (!ds->wMaxPacketSize)
2845 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2846 	} else {
2847 		struct usb_request *req;
2848 		struct usb_ep *ep;
2849 		u8 bEndpointAddress;
2850 		u16 wMaxPacketSize;
2851 
2852 		/*
2853 		 * We back up bEndpointAddress because autoconfig overwrites
2854 		 * it with physical endpoint address.
2855 		 */
2856 		bEndpointAddress = ds->bEndpointAddress;
2857 		/*
2858 		 * We back up wMaxPacketSize because autoconfig treats
2859 		 * endpoint descriptors as if they were full speed.
2860 		 */
2861 		wMaxPacketSize = ds->wMaxPacketSize;
2862 		pr_vdebug("autoconfig\n");
2863 		ep = usb_ep_autoconfig(func->gadget, ds);
2864 		if (unlikely(!ep))
2865 			return -ENOTSUPP;
2866 		ep->driver_data = func->eps + idx;
2867 
2868 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2869 		if (unlikely(!req))
2870 			return -ENOMEM;
2871 
2872 		ffs_ep->ep  = ep;
2873 		ffs_ep->req = req;
2874 		func->eps_revmap[ds->bEndpointAddress &
2875 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2876 		/*
2877 		 * If we use virtual address mapping, we restore
2878 		 * original bEndpointAddress value.
2879 		 */
2880 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2881 			ds->bEndpointAddress = bEndpointAddress;
2882 		/*
2883 		 * Restore wMaxPacketSize which was potentially
2884 		 * overwritten by autoconfig.
2885 		 */
2886 		ds->wMaxPacketSize = wMaxPacketSize;
2887 	}
2888 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2889 
2890 	return 0;
2891 }
2892 
2893 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2894 				   struct usb_descriptor_header *desc,
2895 				   void *priv)
2896 {
2897 	struct ffs_function *func = priv;
2898 	unsigned idx;
2899 	u8 newValue;
2900 
2901 	switch (type) {
2902 	default:
2903 	case FFS_DESCRIPTOR:
2904 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2905 		return 0;
2906 
2907 	case FFS_INTERFACE:
2908 		idx = *valuep;
2909 		if (func->interfaces_nums[idx] < 0) {
2910 			int id = usb_interface_id(func->conf, &func->function);
2911 			if (unlikely(id < 0))
2912 				return id;
2913 			func->interfaces_nums[idx] = id;
2914 		}
2915 		newValue = func->interfaces_nums[idx];
2916 		break;
2917 
2918 	case FFS_STRING:
2919 		/* String' IDs are allocated when fsf_data is bound to cdev */
2920 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2921 		break;
2922 
2923 	case FFS_ENDPOINT:
2924 		/*
2925 		 * USB_DT_ENDPOINT are handled in
2926 		 * __ffs_func_bind_do_descs().
2927 		 */
2928 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2929 			return 0;
2930 
2931 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2932 		if (unlikely(!func->eps[idx].ep))
2933 			return -EINVAL;
2934 
2935 		{
2936 			struct usb_endpoint_descriptor **descs;
2937 			descs = func->eps[idx].descs;
2938 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2939 		}
2940 		break;
2941 	}
2942 
2943 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2944 	*valuep = newValue;
2945 	return 0;
2946 }
2947 
2948 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2949 				      struct usb_os_desc_header *h, void *data,
2950 				      unsigned len, void *priv)
2951 {
2952 	struct ffs_function *func = priv;
2953 	u8 length = 0;
2954 
2955 	switch (type) {
2956 	case FFS_OS_DESC_EXT_COMPAT: {
2957 		struct usb_ext_compat_desc *desc = data;
2958 		struct usb_os_desc_table *t;
2959 
2960 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2961 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2962 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2963 		       ARRAY_SIZE(desc->CompatibleID) +
2964 		       ARRAY_SIZE(desc->SubCompatibleID));
2965 		length = sizeof(*desc);
2966 	}
2967 		break;
2968 	case FFS_OS_DESC_EXT_PROP: {
2969 		struct usb_ext_prop_desc *desc = data;
2970 		struct usb_os_desc_table *t;
2971 		struct usb_os_desc_ext_prop *ext_prop;
2972 		char *ext_prop_name;
2973 		char *ext_prop_data;
2974 
2975 		t = &func->function.os_desc_table[h->interface];
2976 		t->if_id = func->interfaces_nums[h->interface];
2977 
2978 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2979 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2980 
2981 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2982 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2983 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2984 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2985 		length = ext_prop->name_len + ext_prop->data_len + 14;
2986 
2987 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2988 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2989 			ext_prop->name_len;
2990 
2991 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2992 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2993 			ext_prop->data_len;
2994 		memcpy(ext_prop_data,
2995 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2996 		       ext_prop->data_len);
2997 		/* unicode data reported to the host as "WCHAR"s */
2998 		switch (ext_prop->type) {
2999 		case USB_EXT_PROP_UNICODE:
3000 		case USB_EXT_PROP_UNICODE_ENV:
3001 		case USB_EXT_PROP_UNICODE_LINK:
3002 		case USB_EXT_PROP_UNICODE_MULTI:
3003 			ext_prop->data_len *= 2;
3004 			break;
3005 		}
3006 		ext_prop->data = ext_prop_data;
3007 
3008 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3009 		       ext_prop->name_len);
3010 		/* property name reported to the host as "WCHAR"s */
3011 		ext_prop->name_len *= 2;
3012 		ext_prop->name = ext_prop_name;
3013 
3014 		t->os_desc->ext_prop_len +=
3015 			ext_prop->name_len + ext_prop->data_len + 14;
3016 		++t->os_desc->ext_prop_count;
3017 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3018 	}
3019 		break;
3020 	default:
3021 		pr_vdebug("unknown descriptor: %d\n", type);
3022 	}
3023 
3024 	return length;
3025 }
3026 
3027 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3028 						struct usb_configuration *c)
3029 {
3030 	struct ffs_function *func = ffs_func_from_usb(f);
3031 	struct f_fs_opts *ffs_opts =
3032 		container_of(f->fi, struct f_fs_opts, func_inst);
3033 	int ret;
3034 
3035 	ENTER();
3036 
3037 	/*
3038 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3039 	 * which already uses locking; taking the same lock here would
3040 	 * cause a deadlock.
3041 	 *
3042 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3043 	 */
3044 	if (!ffs_opts->no_configfs)
3045 		ffs_dev_lock();
3046 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3047 	func->ffs = ffs_opts->dev->ffs_data;
3048 	if (!ffs_opts->no_configfs)
3049 		ffs_dev_unlock();
3050 	if (ret)
3051 		return ERR_PTR(ret);
3052 
3053 	func->conf = c;
3054 	func->gadget = c->cdev->gadget;
3055 
3056 	/*
3057 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3058 	 * configurations are bound in sequence with list_for_each_entry,
3059 	 * in each configuration its functions are bound in sequence
3060 	 * with list_for_each_entry, so we assume no race condition
3061 	 * with regard to ffs_opts->bound access
3062 	 */
3063 	if (!ffs_opts->refcnt) {
3064 		ret = functionfs_bind(func->ffs, c->cdev);
3065 		if (ret)
3066 			return ERR_PTR(ret);
3067 	}
3068 	ffs_opts->refcnt++;
3069 	func->function.strings = func->ffs->stringtabs;
3070 
3071 	return ffs_opts;
3072 }
3073 
3074 static int _ffs_func_bind(struct usb_configuration *c,
3075 			  struct usb_function *f)
3076 {
3077 	struct ffs_function *func = ffs_func_from_usb(f);
3078 	struct ffs_data *ffs = func->ffs;
3079 
3080 	const int full = !!func->ffs->fs_descs_count;
3081 	const int high = !!func->ffs->hs_descs_count;
3082 	const int super = !!func->ffs->ss_descs_count;
3083 
3084 	int fs_len, hs_len, ss_len, ret, i;
3085 	struct ffs_ep *eps_ptr;
3086 
3087 	/* Make it a single chunk, less management later on */
3088 	vla_group(d);
3089 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3090 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3091 		full ? ffs->fs_descs_count + 1 : 0);
3092 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3093 		high ? ffs->hs_descs_count + 1 : 0);
3094 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3095 		super ? ffs->ss_descs_count + 1 : 0);
3096 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3097 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3098 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3099 	vla_item_with_sz(d, char[16], ext_compat,
3100 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3101 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3102 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3103 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3104 			 ffs->ms_os_descs_ext_prop_count);
3105 	vla_item_with_sz(d, char, ext_prop_name,
3106 			 ffs->ms_os_descs_ext_prop_name_len);
3107 	vla_item_with_sz(d, char, ext_prop_data,
3108 			 ffs->ms_os_descs_ext_prop_data_len);
3109 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3110 	char *vlabuf;
3111 
3112 	ENTER();
3113 
3114 	/* Has descriptors only for speeds gadget does not support */
3115 	if (unlikely(!(full | high | super)))
3116 		return -ENOTSUPP;
3117 
3118 	/* Allocate a single chunk, less management later on */
3119 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3120 	if (unlikely(!vlabuf))
3121 		return -ENOMEM;
3122 
3123 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3124 	ffs->ms_os_descs_ext_prop_name_avail =
3125 		vla_ptr(vlabuf, d, ext_prop_name);
3126 	ffs->ms_os_descs_ext_prop_data_avail =
3127 		vla_ptr(vlabuf, d, ext_prop_data);
3128 
3129 	/* Copy descriptors  */
3130 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3131 	       ffs->raw_descs_length);
3132 
3133 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3134 	eps_ptr = vla_ptr(vlabuf, d, eps);
3135 	for (i = 0; i < ffs->eps_count; i++)
3136 		eps_ptr[i].num = -1;
3137 
3138 	/* Save pointers
3139 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3140 	*/
3141 	func->eps             = vla_ptr(vlabuf, d, eps);
3142 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3143 
3144 	/*
3145 	 * Go through all the endpoint descriptors and allocate
3146 	 * endpoints first, so that later we can rewrite the endpoint
3147 	 * numbers without worrying that it may be described later on.
3148 	 */
3149 	if (likely(full)) {
3150 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3151 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3152 				      vla_ptr(vlabuf, d, raw_descs),
3153 				      d_raw_descs__sz,
3154 				      __ffs_func_bind_do_descs, func);
3155 		if (unlikely(fs_len < 0)) {
3156 			ret = fs_len;
3157 			goto error;
3158 		}
3159 	} else {
3160 		fs_len = 0;
3161 	}
3162 
3163 	if (likely(high)) {
3164 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3165 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3166 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3167 				      d_raw_descs__sz - fs_len,
3168 				      __ffs_func_bind_do_descs, func);
3169 		if (unlikely(hs_len < 0)) {
3170 			ret = hs_len;
3171 			goto error;
3172 		}
3173 	} else {
3174 		hs_len = 0;
3175 	}
3176 
3177 	if (likely(super)) {
3178 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3179 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3180 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3181 				d_raw_descs__sz - fs_len - hs_len,
3182 				__ffs_func_bind_do_descs, func);
3183 		if (unlikely(ss_len < 0)) {
3184 			ret = ss_len;
3185 			goto error;
3186 		}
3187 	} else {
3188 		ss_len = 0;
3189 	}
3190 
3191 	/*
3192 	 * Now handle interface numbers allocation and interface and
3193 	 * endpoint numbers rewriting.  We can do that in one go
3194 	 * now.
3195 	 */
3196 	ret = ffs_do_descs(ffs->fs_descs_count +
3197 			   (high ? ffs->hs_descs_count : 0) +
3198 			   (super ? ffs->ss_descs_count : 0),
3199 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3200 			   __ffs_func_bind_do_nums, func);
3201 	if (unlikely(ret < 0))
3202 		goto error;
3203 
3204 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3205 	if (c->cdev->use_os_string) {
3206 		for (i = 0; i < ffs->interfaces_count; ++i) {
3207 			struct usb_os_desc *desc;
3208 
3209 			desc = func->function.os_desc_table[i].os_desc =
3210 				vla_ptr(vlabuf, d, os_desc) +
3211 				i * sizeof(struct usb_os_desc);
3212 			desc->ext_compat_id =
3213 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3214 			INIT_LIST_HEAD(&desc->ext_prop);
3215 		}
3216 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3217 				      vla_ptr(vlabuf, d, raw_descs) +
3218 				      fs_len + hs_len + ss_len,
3219 				      d_raw_descs__sz - fs_len - hs_len -
3220 				      ss_len,
3221 				      __ffs_func_bind_do_os_desc, func);
3222 		if (unlikely(ret < 0))
3223 			goto error;
3224 	}
3225 	func->function.os_desc_n =
3226 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3227 
3228 	/* And we're done */
3229 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3230 	return 0;
3231 
3232 error:
3233 	/* XXX Do we need to release all claimed endpoints here? */
3234 	return ret;
3235 }
3236 
3237 static int ffs_func_bind(struct usb_configuration *c,
3238 			 struct usb_function *f)
3239 {
3240 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3241 	struct ffs_function *func = ffs_func_from_usb(f);
3242 	int ret;
3243 
3244 	if (IS_ERR(ffs_opts))
3245 		return PTR_ERR(ffs_opts);
3246 
3247 	ret = _ffs_func_bind(c, f);
3248 	if (ret && !--ffs_opts->refcnt)
3249 		functionfs_unbind(func->ffs);
3250 
3251 	return ret;
3252 }
3253 
3254 
3255 /* Other USB function hooks *************************************************/
3256 
3257 static void ffs_reset_work(struct work_struct *work)
3258 {
3259 	struct ffs_data *ffs = container_of(work,
3260 		struct ffs_data, reset_work);
3261 	ffs_data_reset(ffs);
3262 }
3263 
3264 static int ffs_func_set_alt(struct usb_function *f,
3265 			    unsigned interface, unsigned alt)
3266 {
3267 	struct ffs_function *func = ffs_func_from_usb(f);
3268 	struct ffs_data *ffs = func->ffs;
3269 	int ret = 0, intf;
3270 
3271 	if (alt != (unsigned)-1) {
3272 		intf = ffs_func_revmap_intf(func, interface);
3273 		if (unlikely(intf < 0))
3274 			return intf;
3275 	}
3276 
3277 	if (ffs->func)
3278 		ffs_func_eps_disable(ffs->func);
3279 
3280 	if (ffs->state == FFS_DEACTIVATED) {
3281 		ffs->state = FFS_CLOSING;
3282 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3283 		schedule_work(&ffs->reset_work);
3284 		return -ENODEV;
3285 	}
3286 
3287 	if (ffs->state != FFS_ACTIVE)
3288 		return -ENODEV;
3289 
3290 	if (alt == (unsigned)-1) {
3291 		ffs->func = NULL;
3292 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3293 		return 0;
3294 	}
3295 
3296 	ffs->func = func;
3297 	ret = ffs_func_eps_enable(func);
3298 	if (likely(ret >= 0))
3299 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3300 	return ret;
3301 }
3302 
3303 static void ffs_func_disable(struct usb_function *f)
3304 {
3305 	ffs_func_set_alt(f, 0, (unsigned)-1);
3306 }
3307 
3308 static int ffs_func_setup(struct usb_function *f,
3309 			  const struct usb_ctrlrequest *creq)
3310 {
3311 	struct ffs_function *func = ffs_func_from_usb(f);
3312 	struct ffs_data *ffs = func->ffs;
3313 	unsigned long flags;
3314 	int ret;
3315 
3316 	ENTER();
3317 
3318 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3319 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3320 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3321 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3322 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3323 
3324 	/*
3325 	 * Most requests directed to interface go through here
3326 	 * (notable exceptions are set/get interface) so we need to
3327 	 * handle them.  All other either handled by composite or
3328 	 * passed to usb_configuration->setup() (if one is set).  No
3329 	 * matter, we will handle requests directed to endpoint here
3330 	 * as well (as it's straightforward).  Other request recipient
3331 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3332 	 * is being used.
3333 	 */
3334 	if (ffs->state != FFS_ACTIVE)
3335 		return -ENODEV;
3336 
3337 	switch (creq->bRequestType & USB_RECIP_MASK) {
3338 	case USB_RECIP_INTERFACE:
3339 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3340 		if (unlikely(ret < 0))
3341 			return ret;
3342 		break;
3343 
3344 	case USB_RECIP_ENDPOINT:
3345 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3346 		if (unlikely(ret < 0))
3347 			return ret;
3348 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3349 			ret = func->ffs->eps_addrmap[ret];
3350 		break;
3351 
3352 	default:
3353 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3354 			ret = le16_to_cpu(creq->wIndex);
3355 		else
3356 			return -EOPNOTSUPP;
3357 	}
3358 
3359 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3360 	ffs->ev.setup = *creq;
3361 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3362 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3363 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3364 
3365 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3366 }
3367 
3368 static bool ffs_func_req_match(struct usb_function *f,
3369 			       const struct usb_ctrlrequest *creq,
3370 			       bool config0)
3371 {
3372 	struct ffs_function *func = ffs_func_from_usb(f);
3373 
3374 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3375 		return false;
3376 
3377 	switch (creq->bRequestType & USB_RECIP_MASK) {
3378 	case USB_RECIP_INTERFACE:
3379 		return (ffs_func_revmap_intf(func,
3380 					     le16_to_cpu(creq->wIndex)) >= 0);
3381 	case USB_RECIP_ENDPOINT:
3382 		return (ffs_func_revmap_ep(func,
3383 					   le16_to_cpu(creq->wIndex)) >= 0);
3384 	default:
3385 		return (bool) (func->ffs->user_flags &
3386 			       FUNCTIONFS_ALL_CTRL_RECIP);
3387 	}
3388 }
3389 
3390 static void ffs_func_suspend(struct usb_function *f)
3391 {
3392 	ENTER();
3393 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3394 }
3395 
3396 static void ffs_func_resume(struct usb_function *f)
3397 {
3398 	ENTER();
3399 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3400 }
3401 
3402 
3403 /* Endpoint and interface numbers reverse mapping ***************************/
3404 
3405 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3406 {
3407 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3408 	return num ? num : -EDOM;
3409 }
3410 
3411 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3412 {
3413 	short *nums = func->interfaces_nums;
3414 	unsigned count = func->ffs->interfaces_count;
3415 
3416 	for (; count; --count, ++nums) {
3417 		if (*nums >= 0 && *nums == intf)
3418 			return nums - func->interfaces_nums;
3419 	}
3420 
3421 	return -EDOM;
3422 }
3423 
3424 
3425 /* Devices management *******************************************************/
3426 
3427 static LIST_HEAD(ffs_devices);
3428 
3429 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3430 {
3431 	struct ffs_dev *dev;
3432 
3433 	if (!name)
3434 		return NULL;
3435 
3436 	list_for_each_entry(dev, &ffs_devices, entry) {
3437 		if (strcmp(dev->name, name) == 0)
3438 			return dev;
3439 	}
3440 
3441 	return NULL;
3442 }
3443 
3444 /*
3445  * ffs_lock must be taken by the caller of this function
3446  */
3447 static struct ffs_dev *_ffs_get_single_dev(void)
3448 {
3449 	struct ffs_dev *dev;
3450 
3451 	if (list_is_singular(&ffs_devices)) {
3452 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3453 		if (dev->single)
3454 			return dev;
3455 	}
3456 
3457 	return NULL;
3458 }
3459 
3460 /*
3461  * ffs_lock must be taken by the caller of this function
3462  */
3463 static struct ffs_dev *_ffs_find_dev(const char *name)
3464 {
3465 	struct ffs_dev *dev;
3466 
3467 	dev = _ffs_get_single_dev();
3468 	if (dev)
3469 		return dev;
3470 
3471 	return _ffs_do_find_dev(name);
3472 }
3473 
3474 /* Configfs support *********************************************************/
3475 
3476 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3477 {
3478 	return container_of(to_config_group(item), struct f_fs_opts,
3479 			    func_inst.group);
3480 }
3481 
3482 static void ffs_attr_release(struct config_item *item)
3483 {
3484 	struct f_fs_opts *opts = to_ffs_opts(item);
3485 
3486 	usb_put_function_instance(&opts->func_inst);
3487 }
3488 
3489 static struct configfs_item_operations ffs_item_ops = {
3490 	.release	= ffs_attr_release,
3491 };
3492 
3493 static const struct config_item_type ffs_func_type = {
3494 	.ct_item_ops	= &ffs_item_ops,
3495 	.ct_owner	= THIS_MODULE,
3496 };
3497 
3498 
3499 /* Function registration interface ******************************************/
3500 
3501 static void ffs_free_inst(struct usb_function_instance *f)
3502 {
3503 	struct f_fs_opts *opts;
3504 
3505 	opts = to_f_fs_opts(f);
3506 	ffs_dev_lock();
3507 	_ffs_free_dev(opts->dev);
3508 	ffs_dev_unlock();
3509 	kfree(opts);
3510 }
3511 
3512 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3513 {
3514 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3515 		return -ENAMETOOLONG;
3516 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3517 }
3518 
3519 static struct usb_function_instance *ffs_alloc_inst(void)
3520 {
3521 	struct f_fs_opts *opts;
3522 	struct ffs_dev *dev;
3523 
3524 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3525 	if (!opts)
3526 		return ERR_PTR(-ENOMEM);
3527 
3528 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3529 	opts->func_inst.free_func_inst = ffs_free_inst;
3530 	ffs_dev_lock();
3531 	dev = _ffs_alloc_dev();
3532 	ffs_dev_unlock();
3533 	if (IS_ERR(dev)) {
3534 		kfree(opts);
3535 		return ERR_CAST(dev);
3536 	}
3537 	opts->dev = dev;
3538 	dev->opts = opts;
3539 
3540 	config_group_init_type_name(&opts->func_inst.group, "",
3541 				    &ffs_func_type);
3542 	return &opts->func_inst;
3543 }
3544 
3545 static void ffs_free(struct usb_function *f)
3546 {
3547 	kfree(ffs_func_from_usb(f));
3548 }
3549 
3550 static void ffs_func_unbind(struct usb_configuration *c,
3551 			    struct usb_function *f)
3552 {
3553 	struct ffs_function *func = ffs_func_from_usb(f);
3554 	struct ffs_data *ffs = func->ffs;
3555 	struct f_fs_opts *opts =
3556 		container_of(f->fi, struct f_fs_opts, func_inst);
3557 	struct ffs_ep *ep = func->eps;
3558 	unsigned count = ffs->eps_count;
3559 	unsigned long flags;
3560 
3561 	ENTER();
3562 	if (ffs->func == func) {
3563 		ffs_func_eps_disable(func);
3564 		ffs->func = NULL;
3565 	}
3566 
3567 	if (!--opts->refcnt)
3568 		functionfs_unbind(ffs);
3569 
3570 	/* cleanup after autoconfig */
3571 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3572 	while (count--) {
3573 		if (ep->ep && ep->req)
3574 			usb_ep_free_request(ep->ep, ep->req);
3575 		ep->req = NULL;
3576 		++ep;
3577 	}
3578 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3579 	kfree(func->eps);
3580 	func->eps = NULL;
3581 	/*
3582 	 * eps, descriptors and interfaces_nums are allocated in the
3583 	 * same chunk so only one free is required.
3584 	 */
3585 	func->function.fs_descriptors = NULL;
3586 	func->function.hs_descriptors = NULL;
3587 	func->function.ss_descriptors = NULL;
3588 	func->interfaces_nums = NULL;
3589 
3590 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3591 }
3592 
3593 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3594 {
3595 	struct ffs_function *func;
3596 
3597 	ENTER();
3598 
3599 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3600 	if (unlikely(!func))
3601 		return ERR_PTR(-ENOMEM);
3602 
3603 	func->function.name    = "Function FS Gadget";
3604 
3605 	func->function.bind    = ffs_func_bind;
3606 	func->function.unbind  = ffs_func_unbind;
3607 	func->function.set_alt = ffs_func_set_alt;
3608 	func->function.disable = ffs_func_disable;
3609 	func->function.setup   = ffs_func_setup;
3610 	func->function.req_match = ffs_func_req_match;
3611 	func->function.suspend = ffs_func_suspend;
3612 	func->function.resume  = ffs_func_resume;
3613 	func->function.free_func = ffs_free;
3614 
3615 	return &func->function;
3616 }
3617 
3618 /*
3619  * ffs_lock must be taken by the caller of this function
3620  */
3621 static struct ffs_dev *_ffs_alloc_dev(void)
3622 {
3623 	struct ffs_dev *dev;
3624 	int ret;
3625 
3626 	if (_ffs_get_single_dev())
3627 			return ERR_PTR(-EBUSY);
3628 
3629 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3630 	if (!dev)
3631 		return ERR_PTR(-ENOMEM);
3632 
3633 	if (list_empty(&ffs_devices)) {
3634 		ret = functionfs_init();
3635 		if (ret) {
3636 			kfree(dev);
3637 			return ERR_PTR(ret);
3638 		}
3639 	}
3640 
3641 	list_add(&dev->entry, &ffs_devices);
3642 
3643 	return dev;
3644 }
3645 
3646 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3647 {
3648 	struct ffs_dev *existing;
3649 	int ret = 0;
3650 
3651 	ffs_dev_lock();
3652 
3653 	existing = _ffs_do_find_dev(name);
3654 	if (!existing)
3655 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3656 	else if (existing != dev)
3657 		ret = -EBUSY;
3658 
3659 	ffs_dev_unlock();
3660 
3661 	return ret;
3662 }
3663 EXPORT_SYMBOL_GPL(ffs_name_dev);
3664 
3665 int ffs_single_dev(struct ffs_dev *dev)
3666 {
3667 	int ret;
3668 
3669 	ret = 0;
3670 	ffs_dev_lock();
3671 
3672 	if (!list_is_singular(&ffs_devices))
3673 		ret = -EBUSY;
3674 	else
3675 		dev->single = true;
3676 
3677 	ffs_dev_unlock();
3678 	return ret;
3679 }
3680 EXPORT_SYMBOL_GPL(ffs_single_dev);
3681 
3682 /*
3683  * ffs_lock must be taken by the caller of this function
3684  */
3685 static void _ffs_free_dev(struct ffs_dev *dev)
3686 {
3687 	list_del(&dev->entry);
3688 
3689 	/* Clear the private_data pointer to stop incorrect dev access */
3690 	if (dev->ffs_data)
3691 		dev->ffs_data->private_data = NULL;
3692 
3693 	kfree(dev);
3694 	if (list_empty(&ffs_devices))
3695 		functionfs_cleanup();
3696 }
3697 
3698 static void *ffs_acquire_dev(const char *dev_name)
3699 {
3700 	struct ffs_dev *ffs_dev;
3701 
3702 	ENTER();
3703 	ffs_dev_lock();
3704 
3705 	ffs_dev = _ffs_find_dev(dev_name);
3706 	if (!ffs_dev)
3707 		ffs_dev = ERR_PTR(-ENOENT);
3708 	else if (ffs_dev->mounted)
3709 		ffs_dev = ERR_PTR(-EBUSY);
3710 	else if (ffs_dev->ffs_acquire_dev_callback &&
3711 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3712 		ffs_dev = ERR_PTR(-ENOENT);
3713 	else
3714 		ffs_dev->mounted = true;
3715 
3716 	ffs_dev_unlock();
3717 	return ffs_dev;
3718 }
3719 
3720 static void ffs_release_dev(struct ffs_data *ffs_data)
3721 {
3722 	struct ffs_dev *ffs_dev;
3723 
3724 	ENTER();
3725 	ffs_dev_lock();
3726 
3727 	ffs_dev = ffs_data->private_data;
3728 	if (ffs_dev) {
3729 		ffs_dev->mounted = false;
3730 
3731 		if (ffs_dev->ffs_release_dev_callback)
3732 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3733 	}
3734 
3735 	ffs_dev_unlock();
3736 }
3737 
3738 static int ffs_ready(struct ffs_data *ffs)
3739 {
3740 	struct ffs_dev *ffs_obj;
3741 	int ret = 0;
3742 
3743 	ENTER();
3744 	ffs_dev_lock();
3745 
3746 	ffs_obj = ffs->private_data;
3747 	if (!ffs_obj) {
3748 		ret = -EINVAL;
3749 		goto done;
3750 	}
3751 	if (WARN_ON(ffs_obj->desc_ready)) {
3752 		ret = -EBUSY;
3753 		goto done;
3754 	}
3755 
3756 	ffs_obj->desc_ready = true;
3757 	ffs_obj->ffs_data = ffs;
3758 
3759 	if (ffs_obj->ffs_ready_callback) {
3760 		ret = ffs_obj->ffs_ready_callback(ffs);
3761 		if (ret)
3762 			goto done;
3763 	}
3764 
3765 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3766 done:
3767 	ffs_dev_unlock();
3768 	return ret;
3769 }
3770 
3771 static void ffs_closed(struct ffs_data *ffs)
3772 {
3773 	struct ffs_dev *ffs_obj;
3774 	struct f_fs_opts *opts;
3775 	struct config_item *ci;
3776 
3777 	ENTER();
3778 	ffs_dev_lock();
3779 
3780 	ffs_obj = ffs->private_data;
3781 	if (!ffs_obj)
3782 		goto done;
3783 
3784 	ffs_obj->desc_ready = false;
3785 	ffs_obj->ffs_data = NULL;
3786 
3787 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3788 	    ffs_obj->ffs_closed_callback)
3789 		ffs_obj->ffs_closed_callback(ffs);
3790 
3791 	if (ffs_obj->opts)
3792 		opts = ffs_obj->opts;
3793 	else
3794 		goto done;
3795 
3796 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3797 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3798 		goto done;
3799 
3800 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3801 	ffs_dev_unlock();
3802 
3803 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3804 		unregister_gadget_item(ci);
3805 	return;
3806 done:
3807 	ffs_dev_unlock();
3808 }
3809 
3810 /* Misc helper functions ****************************************************/
3811 
3812 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3813 {
3814 	return nonblock
3815 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3816 		: mutex_lock_interruptible(mutex);
3817 }
3818 
3819 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3820 {
3821 	char *data;
3822 
3823 	if (unlikely(!len))
3824 		return NULL;
3825 
3826 	data = kmalloc(len, GFP_KERNEL);
3827 	if (unlikely(!data))
3828 		return ERR_PTR(-ENOMEM);
3829 
3830 	if (unlikely(copy_from_user(data, buf, len))) {
3831 		kfree(data);
3832 		return ERR_PTR(-EFAULT);
3833 	}
3834 
3835 	pr_vdebug("Buffer from user space:\n");
3836 	ffs_dump_mem("", data, len);
3837 
3838 	return data;
3839 }
3840 
3841 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3842 MODULE_LICENSE("GPL");
3843 MODULE_AUTHOR("Michal Nazarewicz");
3844