1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/dma-buf.h> 19 #include <linux/dma-fence.h> 20 #include <linux/dma-resv.h> 21 #include <linux/pagemap.h> 22 #include <linux/export.h> 23 #include <linux/fs_parser.h> 24 #include <linux/hid.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/scatterlist.h> 28 #include <linux/sched/signal.h> 29 #include <linux/uio.h> 30 #include <linux/vmalloc.h> 31 #include <asm/unaligned.h> 32 33 #include <linux/usb/ccid.h> 34 #include <linux/usb/composite.h> 35 #include <linux/usb/functionfs.h> 36 37 #include <linux/aio.h> 38 #include <linux/kthread.h> 39 #include <linux/poll.h> 40 #include <linux/eventfd.h> 41 42 #include "u_fs.h" 43 #include "u_f.h" 44 #include "u_os_desc.h" 45 #include "configfs.h" 46 47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 48 49 MODULE_IMPORT_NS(DMA_BUF); 50 51 /* Reference counter handling */ 52 static void ffs_data_get(struct ffs_data *ffs); 53 static void ffs_data_put(struct ffs_data *ffs); 54 /* Creates new ffs_data object. */ 55 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 56 __attribute__((malloc)); 57 58 /* Opened counter handling. */ 59 static void ffs_data_opened(struct ffs_data *ffs); 60 static void ffs_data_closed(struct ffs_data *ffs); 61 62 /* Called with ffs->mutex held; take over ownership of data. */ 63 static int __must_check 64 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 65 static int __must_check 66 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 67 68 69 /* The function structure ***************************************************/ 70 71 struct ffs_ep; 72 73 struct ffs_function { 74 struct usb_configuration *conf; 75 struct usb_gadget *gadget; 76 struct ffs_data *ffs; 77 78 struct ffs_ep *eps; 79 u8 eps_revmap[16]; 80 short *interfaces_nums; 81 82 struct usb_function function; 83 }; 84 85 86 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 87 { 88 return container_of(f, struct ffs_function, function); 89 } 90 91 92 static inline enum ffs_setup_state 93 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 94 { 95 return (enum ffs_setup_state) 96 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 97 } 98 99 100 static void ffs_func_eps_disable(struct ffs_function *func); 101 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 102 103 static int ffs_func_bind(struct usb_configuration *, 104 struct usb_function *); 105 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 106 static void ffs_func_disable(struct usb_function *); 107 static int ffs_func_setup(struct usb_function *, 108 const struct usb_ctrlrequest *); 109 static bool ffs_func_req_match(struct usb_function *, 110 const struct usb_ctrlrequest *, 111 bool config0); 112 static void ffs_func_suspend(struct usb_function *); 113 static void ffs_func_resume(struct usb_function *); 114 115 116 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 117 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 118 119 120 /* The endpoints structures *************************************************/ 121 122 struct ffs_ep { 123 struct usb_ep *ep; /* P: ffs->eps_lock */ 124 struct usb_request *req; /* P: epfile->mutex */ 125 126 /* [0]: full speed, [1]: high speed, [2]: super speed */ 127 struct usb_endpoint_descriptor *descs[3]; 128 129 u8 num; 130 }; 131 132 struct ffs_dmabuf_priv { 133 struct list_head entry; 134 struct kref ref; 135 struct ffs_data *ffs; 136 struct dma_buf_attachment *attach; 137 struct sg_table *sgt; 138 enum dma_data_direction dir; 139 spinlock_t lock; 140 u64 context; 141 struct usb_request *req; /* P: ffs->eps_lock */ 142 struct usb_ep *ep; /* P: ffs->eps_lock */ 143 }; 144 145 struct ffs_dma_fence { 146 struct dma_fence base; 147 struct ffs_dmabuf_priv *priv; 148 struct work_struct work; 149 }; 150 151 struct ffs_epfile { 152 /* Protects ep->ep and ep->req. */ 153 struct mutex mutex; 154 155 struct ffs_data *ffs; 156 struct ffs_ep *ep; /* P: ffs->eps_lock */ 157 158 struct dentry *dentry; 159 160 /* 161 * Buffer for holding data from partial reads which may happen since 162 * we’re rounding user read requests to a multiple of a max packet size. 163 * 164 * The pointer is initialised with NULL value and may be set by 165 * __ffs_epfile_read_data function to point to a temporary buffer. 166 * 167 * In normal operation, calls to __ffs_epfile_read_buffered will consume 168 * data from said buffer and eventually free it. Importantly, while the 169 * function is using the buffer, it sets the pointer to NULL. This is 170 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 171 * can never run concurrently (they are synchronised by epfile->mutex) 172 * so the latter will not assign a new value to the pointer. 173 * 174 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 175 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 176 * value is crux of the synchronisation between ffs_func_eps_disable and 177 * __ffs_epfile_read_data. 178 * 179 * Once __ffs_epfile_read_data is about to finish it will try to set the 180 * pointer back to its old value (as described above), but seeing as the 181 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 182 * the buffer. 183 * 184 * == State transitions == 185 * 186 * • ptr == NULL: (initial state) 187 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 188 * ◦ __ffs_epfile_read_buffered: nop 189 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 190 * ◦ reading finishes: n/a, not in ‘and reading’ state 191 * • ptr == DROP: 192 * ◦ __ffs_epfile_read_buffer_free: nop 193 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 194 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 195 * ◦ reading finishes: n/a, not in ‘and reading’ state 196 * • ptr == buf: 197 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 198 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 199 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 200 * is always called first 201 * ◦ reading finishes: n/a, not in ‘and reading’ state 202 * • ptr == NULL and reading: 203 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 204 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 205 * ◦ __ffs_epfile_read_data: n/a, mutex is held 206 * ◦ reading finishes and … 207 * … all data read: free buf, go to ptr == NULL 208 * … otherwise: go to ptr == buf and reading 209 * • ptr == DROP and reading: 210 * ◦ __ffs_epfile_read_buffer_free: nop 211 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 212 * ◦ __ffs_epfile_read_data: n/a, mutex is held 213 * ◦ reading finishes: free buf, go to ptr == DROP 214 */ 215 struct ffs_buffer *read_buffer; 216 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 217 218 char name[5]; 219 220 unsigned char in; /* P: ffs->eps_lock */ 221 unsigned char isoc; /* P: ffs->eps_lock */ 222 223 unsigned char _pad; 224 225 /* Protects dmabufs */ 226 struct mutex dmabufs_mutex; 227 struct list_head dmabufs; /* P: dmabufs_mutex */ 228 atomic_t seqno; 229 }; 230 231 struct ffs_buffer { 232 size_t length; 233 char *data; 234 char storage[] __counted_by(length); 235 }; 236 237 /* ffs_io_data structure ***************************************************/ 238 239 struct ffs_io_data { 240 bool aio; 241 bool read; 242 243 struct kiocb *kiocb; 244 struct iov_iter data; 245 const void *to_free; 246 char *buf; 247 248 struct mm_struct *mm; 249 struct work_struct work; 250 251 struct usb_ep *ep; 252 struct usb_request *req; 253 struct sg_table sgt; 254 bool use_sg; 255 256 struct ffs_data *ffs; 257 258 int status; 259 struct completion done; 260 }; 261 262 struct ffs_desc_helper { 263 struct ffs_data *ffs; 264 unsigned interfaces_count; 265 unsigned eps_count; 266 }; 267 268 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 269 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 270 271 static struct dentry * 272 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 273 const struct file_operations *fops); 274 275 /* Devices management *******************************************************/ 276 277 DEFINE_MUTEX(ffs_lock); 278 EXPORT_SYMBOL_GPL(ffs_lock); 279 280 static struct ffs_dev *_ffs_find_dev(const char *name); 281 static struct ffs_dev *_ffs_alloc_dev(void); 282 static void _ffs_free_dev(struct ffs_dev *dev); 283 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 284 static void ffs_release_dev(struct ffs_dev *ffs_dev); 285 static int ffs_ready(struct ffs_data *ffs); 286 static void ffs_closed(struct ffs_data *ffs); 287 288 /* Misc helper functions ****************************************************/ 289 290 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 291 __attribute__((warn_unused_result, nonnull)); 292 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 293 __attribute__((warn_unused_result, nonnull)); 294 295 296 /* Control file aka ep0 *****************************************************/ 297 298 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 299 { 300 struct ffs_data *ffs = req->context; 301 302 complete(&ffs->ep0req_completion); 303 } 304 305 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 306 __releases(&ffs->ev.waitq.lock) 307 { 308 struct usb_request *req = ffs->ep0req; 309 int ret; 310 311 if (!req) { 312 spin_unlock_irq(&ffs->ev.waitq.lock); 313 return -EINVAL; 314 } 315 316 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 317 318 spin_unlock_irq(&ffs->ev.waitq.lock); 319 320 req->buf = data; 321 req->length = len; 322 323 /* 324 * UDC layer requires to provide a buffer even for ZLP, but should 325 * not use it at all. Let's provide some poisoned pointer to catch 326 * possible bug in the driver. 327 */ 328 if (req->buf == NULL) 329 req->buf = (void *)0xDEADBABE; 330 331 reinit_completion(&ffs->ep0req_completion); 332 333 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 334 if (ret < 0) 335 return ret; 336 337 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 338 if (ret) { 339 usb_ep_dequeue(ffs->gadget->ep0, req); 340 return -EINTR; 341 } 342 343 ffs->setup_state = FFS_NO_SETUP; 344 return req->status ? req->status : req->actual; 345 } 346 347 static int __ffs_ep0_stall(struct ffs_data *ffs) 348 { 349 if (ffs->ev.can_stall) { 350 pr_vdebug("ep0 stall\n"); 351 usb_ep_set_halt(ffs->gadget->ep0); 352 ffs->setup_state = FFS_NO_SETUP; 353 return -EL2HLT; 354 } else { 355 pr_debug("bogus ep0 stall!\n"); 356 return -ESRCH; 357 } 358 } 359 360 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 361 size_t len, loff_t *ptr) 362 { 363 struct ffs_data *ffs = file->private_data; 364 ssize_t ret; 365 char *data; 366 367 /* Fast check if setup was canceled */ 368 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 369 return -EIDRM; 370 371 /* Acquire mutex */ 372 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 373 if (ret < 0) 374 return ret; 375 376 /* Check state */ 377 switch (ffs->state) { 378 case FFS_READ_DESCRIPTORS: 379 case FFS_READ_STRINGS: 380 /* Copy data */ 381 if (len < 16) { 382 ret = -EINVAL; 383 break; 384 } 385 386 data = ffs_prepare_buffer(buf, len); 387 if (IS_ERR(data)) { 388 ret = PTR_ERR(data); 389 break; 390 } 391 392 /* Handle data */ 393 if (ffs->state == FFS_READ_DESCRIPTORS) { 394 pr_info("read descriptors\n"); 395 ret = __ffs_data_got_descs(ffs, data, len); 396 if (ret < 0) 397 break; 398 399 ffs->state = FFS_READ_STRINGS; 400 ret = len; 401 } else { 402 pr_info("read strings\n"); 403 ret = __ffs_data_got_strings(ffs, data, len); 404 if (ret < 0) 405 break; 406 407 ret = ffs_epfiles_create(ffs); 408 if (ret) { 409 ffs->state = FFS_CLOSING; 410 break; 411 } 412 413 ffs->state = FFS_ACTIVE; 414 mutex_unlock(&ffs->mutex); 415 416 ret = ffs_ready(ffs); 417 if (ret < 0) { 418 ffs->state = FFS_CLOSING; 419 return ret; 420 } 421 422 return len; 423 } 424 break; 425 426 case FFS_ACTIVE: 427 data = NULL; 428 /* 429 * We're called from user space, we can use _irq 430 * rather then _irqsave 431 */ 432 spin_lock_irq(&ffs->ev.waitq.lock); 433 switch (ffs_setup_state_clear_cancelled(ffs)) { 434 case FFS_SETUP_CANCELLED: 435 ret = -EIDRM; 436 goto done_spin; 437 438 case FFS_NO_SETUP: 439 ret = -ESRCH; 440 goto done_spin; 441 442 case FFS_SETUP_PENDING: 443 break; 444 } 445 446 /* FFS_SETUP_PENDING */ 447 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 448 spin_unlock_irq(&ffs->ev.waitq.lock); 449 ret = __ffs_ep0_stall(ffs); 450 break; 451 } 452 453 /* FFS_SETUP_PENDING and not stall */ 454 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 455 456 spin_unlock_irq(&ffs->ev.waitq.lock); 457 458 data = ffs_prepare_buffer(buf, len); 459 if (IS_ERR(data)) { 460 ret = PTR_ERR(data); 461 break; 462 } 463 464 spin_lock_irq(&ffs->ev.waitq.lock); 465 466 /* 467 * We are guaranteed to be still in FFS_ACTIVE state 468 * but the state of setup could have changed from 469 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 470 * to check for that. If that happened we copied data 471 * from user space in vain but it's unlikely. 472 * 473 * For sure we are not in FFS_NO_SETUP since this is 474 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 475 * transition can be performed and it's protected by 476 * mutex. 477 */ 478 if (ffs_setup_state_clear_cancelled(ffs) == 479 FFS_SETUP_CANCELLED) { 480 ret = -EIDRM; 481 done_spin: 482 spin_unlock_irq(&ffs->ev.waitq.lock); 483 } else { 484 /* unlocks spinlock */ 485 ret = __ffs_ep0_queue_wait(ffs, data, len); 486 } 487 kfree(data); 488 break; 489 490 default: 491 ret = -EBADFD; 492 break; 493 } 494 495 mutex_unlock(&ffs->mutex); 496 return ret; 497 } 498 499 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 500 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 501 size_t n) 502 __releases(&ffs->ev.waitq.lock) 503 { 504 /* 505 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 506 * size of ffs->ev.types array (which is four) so that's how much space 507 * we reserve. 508 */ 509 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 510 const size_t size = n * sizeof *events; 511 unsigned i = 0; 512 513 memset(events, 0, size); 514 515 do { 516 events[i].type = ffs->ev.types[i]; 517 if (events[i].type == FUNCTIONFS_SETUP) { 518 events[i].u.setup = ffs->ev.setup; 519 ffs->setup_state = FFS_SETUP_PENDING; 520 } 521 } while (++i < n); 522 523 ffs->ev.count -= n; 524 if (ffs->ev.count) 525 memmove(ffs->ev.types, ffs->ev.types + n, 526 ffs->ev.count * sizeof *ffs->ev.types); 527 528 spin_unlock_irq(&ffs->ev.waitq.lock); 529 mutex_unlock(&ffs->mutex); 530 531 return copy_to_user(buf, events, size) ? -EFAULT : size; 532 } 533 534 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 535 size_t len, loff_t *ptr) 536 { 537 struct ffs_data *ffs = file->private_data; 538 char *data = NULL; 539 size_t n; 540 int ret; 541 542 /* Fast check if setup was canceled */ 543 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 544 return -EIDRM; 545 546 /* Acquire mutex */ 547 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 548 if (ret < 0) 549 return ret; 550 551 /* Check state */ 552 if (ffs->state != FFS_ACTIVE) { 553 ret = -EBADFD; 554 goto done_mutex; 555 } 556 557 /* 558 * We're called from user space, we can use _irq rather then 559 * _irqsave 560 */ 561 spin_lock_irq(&ffs->ev.waitq.lock); 562 563 switch (ffs_setup_state_clear_cancelled(ffs)) { 564 case FFS_SETUP_CANCELLED: 565 ret = -EIDRM; 566 break; 567 568 case FFS_NO_SETUP: 569 n = len / sizeof(struct usb_functionfs_event); 570 if (!n) { 571 ret = -EINVAL; 572 break; 573 } 574 575 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 576 ret = -EAGAIN; 577 break; 578 } 579 580 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 581 ffs->ev.count)) { 582 ret = -EINTR; 583 break; 584 } 585 586 /* unlocks spinlock */ 587 return __ffs_ep0_read_events(ffs, buf, 588 min(n, (size_t)ffs->ev.count)); 589 590 case FFS_SETUP_PENDING: 591 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 592 spin_unlock_irq(&ffs->ev.waitq.lock); 593 ret = __ffs_ep0_stall(ffs); 594 goto done_mutex; 595 } 596 597 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 598 599 spin_unlock_irq(&ffs->ev.waitq.lock); 600 601 if (len) { 602 data = kmalloc(len, GFP_KERNEL); 603 if (!data) { 604 ret = -ENOMEM; 605 goto done_mutex; 606 } 607 } 608 609 spin_lock_irq(&ffs->ev.waitq.lock); 610 611 /* See ffs_ep0_write() */ 612 if (ffs_setup_state_clear_cancelled(ffs) == 613 FFS_SETUP_CANCELLED) { 614 ret = -EIDRM; 615 break; 616 } 617 618 /* unlocks spinlock */ 619 ret = __ffs_ep0_queue_wait(ffs, data, len); 620 if ((ret > 0) && (copy_to_user(buf, data, len))) 621 ret = -EFAULT; 622 goto done_mutex; 623 624 default: 625 ret = -EBADFD; 626 break; 627 } 628 629 spin_unlock_irq(&ffs->ev.waitq.lock); 630 done_mutex: 631 mutex_unlock(&ffs->mutex); 632 kfree(data); 633 return ret; 634 } 635 636 static int ffs_ep0_open(struct inode *inode, struct file *file) 637 { 638 struct ffs_data *ffs = inode->i_private; 639 640 if (ffs->state == FFS_CLOSING) 641 return -EBUSY; 642 643 file->private_data = ffs; 644 ffs_data_opened(ffs); 645 646 return stream_open(inode, file); 647 } 648 649 static int ffs_ep0_release(struct inode *inode, struct file *file) 650 { 651 struct ffs_data *ffs = file->private_data; 652 653 ffs_data_closed(ffs); 654 655 return 0; 656 } 657 658 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 659 { 660 struct ffs_data *ffs = file->private_data; 661 struct usb_gadget *gadget = ffs->gadget; 662 long ret; 663 664 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 665 struct ffs_function *func = ffs->func; 666 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 667 } else if (gadget && gadget->ops->ioctl) { 668 ret = gadget->ops->ioctl(gadget, code, value); 669 } else { 670 ret = -ENOTTY; 671 } 672 673 return ret; 674 } 675 676 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 677 { 678 struct ffs_data *ffs = file->private_data; 679 __poll_t mask = EPOLLWRNORM; 680 int ret; 681 682 poll_wait(file, &ffs->ev.waitq, wait); 683 684 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 685 if (ret < 0) 686 return mask; 687 688 switch (ffs->state) { 689 case FFS_READ_DESCRIPTORS: 690 case FFS_READ_STRINGS: 691 mask |= EPOLLOUT; 692 break; 693 694 case FFS_ACTIVE: 695 switch (ffs->setup_state) { 696 case FFS_NO_SETUP: 697 if (ffs->ev.count) 698 mask |= EPOLLIN; 699 break; 700 701 case FFS_SETUP_PENDING: 702 case FFS_SETUP_CANCELLED: 703 mask |= (EPOLLIN | EPOLLOUT); 704 break; 705 } 706 break; 707 708 case FFS_CLOSING: 709 break; 710 case FFS_DEACTIVATED: 711 break; 712 } 713 714 mutex_unlock(&ffs->mutex); 715 716 return mask; 717 } 718 719 static const struct file_operations ffs_ep0_operations = { 720 .llseek = no_llseek, 721 722 .open = ffs_ep0_open, 723 .write = ffs_ep0_write, 724 .read = ffs_ep0_read, 725 .release = ffs_ep0_release, 726 .unlocked_ioctl = ffs_ep0_ioctl, 727 .poll = ffs_ep0_poll, 728 }; 729 730 731 /* "Normal" endpoints operations ********************************************/ 732 733 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 734 { 735 struct ffs_io_data *io_data = req->context; 736 737 if (req->status) 738 io_data->status = req->status; 739 else 740 io_data->status = req->actual; 741 742 complete(&io_data->done); 743 } 744 745 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 746 { 747 ssize_t ret = copy_to_iter(data, data_len, iter); 748 if (ret == data_len) 749 return ret; 750 751 if (iov_iter_count(iter)) 752 return -EFAULT; 753 754 /* 755 * Dear user space developer! 756 * 757 * TL;DR: To stop getting below error message in your kernel log, change 758 * user space code using functionfs to align read buffers to a max 759 * packet size. 760 * 761 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 762 * packet size. When unaligned buffer is passed to functionfs, it 763 * internally uses a larger, aligned buffer so that such UDCs are happy. 764 * 765 * Unfortunately, this means that host may send more data than was 766 * requested in read(2) system call. f_fs doesn’t know what to do with 767 * that excess data so it simply drops it. 768 * 769 * Was the buffer aligned in the first place, no such problem would 770 * happen. 771 * 772 * Data may be dropped only in AIO reads. Synchronous reads are handled 773 * by splitting a request into multiple parts. This splitting may still 774 * be a problem though so it’s likely best to align the buffer 775 * regardless of it being AIO or not.. 776 * 777 * This only affects OUT endpoints, i.e. reading data with a read(2), 778 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 779 * affected. 780 */ 781 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 782 "Align read buffer size to max packet size to avoid the problem.\n", 783 data_len, ret); 784 785 return ret; 786 } 787 788 /* 789 * allocate a virtually contiguous buffer and create a scatterlist describing it 790 * @sg_table - pointer to a place to be filled with sg_table contents 791 * @size - required buffer size 792 */ 793 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 794 { 795 struct page **pages; 796 void *vaddr, *ptr; 797 unsigned int n_pages; 798 int i; 799 800 vaddr = vmalloc(sz); 801 if (!vaddr) 802 return NULL; 803 804 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 805 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 806 if (!pages) { 807 vfree(vaddr); 808 809 return NULL; 810 } 811 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 812 pages[i] = vmalloc_to_page(ptr); 813 814 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 815 kvfree(pages); 816 vfree(vaddr); 817 818 return NULL; 819 } 820 kvfree(pages); 821 822 return vaddr; 823 } 824 825 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 826 size_t data_len) 827 { 828 if (io_data->use_sg) 829 return ffs_build_sg_list(&io_data->sgt, data_len); 830 831 return kmalloc(data_len, GFP_KERNEL); 832 } 833 834 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 835 { 836 if (!io_data->buf) 837 return; 838 839 if (io_data->use_sg) { 840 sg_free_table(&io_data->sgt); 841 vfree(io_data->buf); 842 } else { 843 kfree(io_data->buf); 844 } 845 } 846 847 static void ffs_user_copy_worker(struct work_struct *work) 848 { 849 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 850 work); 851 int ret = io_data->status; 852 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 853 854 if (io_data->read && ret > 0) { 855 kthread_use_mm(io_data->mm); 856 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 857 kthread_unuse_mm(io_data->mm); 858 } 859 860 io_data->kiocb->ki_complete(io_data->kiocb, ret); 861 862 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 863 eventfd_signal(io_data->ffs->ffs_eventfd); 864 865 if (io_data->read) 866 kfree(io_data->to_free); 867 ffs_free_buffer(io_data); 868 kfree(io_data); 869 } 870 871 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 872 struct usb_request *req) 873 { 874 struct ffs_io_data *io_data = req->context; 875 struct ffs_data *ffs = io_data->ffs; 876 877 io_data->status = req->status ? req->status : req->actual; 878 usb_ep_free_request(_ep, req); 879 880 INIT_WORK(&io_data->work, ffs_user_copy_worker); 881 queue_work(ffs->io_completion_wq, &io_data->work); 882 } 883 884 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 885 { 886 /* 887 * See comment in struct ffs_epfile for full read_buffer pointer 888 * synchronisation story. 889 */ 890 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 891 if (buf && buf != READ_BUFFER_DROP) 892 kfree(buf); 893 } 894 895 /* Assumes epfile->mutex is held. */ 896 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 897 struct iov_iter *iter) 898 { 899 /* 900 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 901 * the buffer while we are using it. See comment in struct ffs_epfile 902 * for full read_buffer pointer synchronisation story. 903 */ 904 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 905 ssize_t ret; 906 if (!buf || buf == READ_BUFFER_DROP) 907 return 0; 908 909 ret = copy_to_iter(buf->data, buf->length, iter); 910 if (buf->length == ret) { 911 kfree(buf); 912 return ret; 913 } 914 915 if (iov_iter_count(iter)) { 916 ret = -EFAULT; 917 } else { 918 buf->length -= ret; 919 buf->data += ret; 920 } 921 922 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 923 kfree(buf); 924 925 return ret; 926 } 927 928 /* Assumes epfile->mutex is held. */ 929 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 930 void *data, int data_len, 931 struct iov_iter *iter) 932 { 933 struct ffs_buffer *buf; 934 935 ssize_t ret = copy_to_iter(data, data_len, iter); 936 if (data_len == ret) 937 return ret; 938 939 if (iov_iter_count(iter)) 940 return -EFAULT; 941 942 /* See ffs_copy_to_iter for more context. */ 943 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 944 data_len, ret); 945 946 data_len -= ret; 947 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 948 if (!buf) 949 return -ENOMEM; 950 buf->length = data_len; 951 buf->data = buf->storage; 952 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 953 954 /* 955 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 956 * ffs_func_eps_disable has been called in the meanwhile). See comment 957 * in struct ffs_epfile for full read_buffer pointer synchronisation 958 * story. 959 */ 960 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 961 kfree(buf); 962 963 return ret; 964 } 965 966 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file) 967 { 968 struct ffs_epfile *epfile = file->private_data; 969 struct ffs_ep *ep; 970 int ret; 971 972 /* Wait for endpoint to be enabled */ 973 ep = epfile->ep; 974 if (!ep) { 975 if (file->f_flags & O_NONBLOCK) 976 return ERR_PTR(-EAGAIN); 977 978 ret = wait_event_interruptible( 979 epfile->ffs->wait, (ep = epfile->ep)); 980 if (ret) 981 return ERR_PTR(-EINTR); 982 } 983 984 return ep; 985 } 986 987 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 988 { 989 struct ffs_epfile *epfile = file->private_data; 990 struct usb_request *req; 991 struct ffs_ep *ep; 992 char *data = NULL; 993 ssize_t ret, data_len = -EINVAL; 994 int halt; 995 996 /* Are we still active? */ 997 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 998 return -ENODEV; 999 1000 ep = ffs_epfile_wait_ep(file); 1001 if (IS_ERR(ep)) 1002 return PTR_ERR(ep); 1003 1004 /* Do we halt? */ 1005 halt = (!io_data->read == !epfile->in); 1006 if (halt && epfile->isoc) 1007 return -EINVAL; 1008 1009 /* We will be using request and read_buffer */ 1010 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 1011 if (ret) 1012 goto error; 1013 1014 /* Allocate & copy */ 1015 if (!halt) { 1016 struct usb_gadget *gadget; 1017 1018 /* 1019 * Do we have buffered data from previous partial read? Check 1020 * that for synchronous case only because we do not have 1021 * facility to ‘wake up’ a pending asynchronous read and push 1022 * buffered data to it which we would need to make things behave 1023 * consistently. 1024 */ 1025 if (!io_data->aio && io_data->read) { 1026 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 1027 if (ret) 1028 goto error_mutex; 1029 } 1030 1031 /* 1032 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1033 * before the waiting completes, so do not assign to 'gadget' 1034 * earlier 1035 */ 1036 gadget = epfile->ffs->gadget; 1037 1038 spin_lock_irq(&epfile->ffs->eps_lock); 1039 /* In the meantime, endpoint got disabled or changed. */ 1040 if (epfile->ep != ep) { 1041 ret = -ESHUTDOWN; 1042 goto error_lock; 1043 } 1044 data_len = iov_iter_count(&io_data->data); 1045 /* 1046 * Controller may require buffer size to be aligned to 1047 * maxpacketsize of an out endpoint. 1048 */ 1049 if (io_data->read) 1050 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1051 1052 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1053 spin_unlock_irq(&epfile->ffs->eps_lock); 1054 1055 data = ffs_alloc_buffer(io_data, data_len); 1056 if (!data) { 1057 ret = -ENOMEM; 1058 goto error_mutex; 1059 } 1060 if (!io_data->read && 1061 !copy_from_iter_full(data, data_len, &io_data->data)) { 1062 ret = -EFAULT; 1063 goto error_mutex; 1064 } 1065 } 1066 1067 spin_lock_irq(&epfile->ffs->eps_lock); 1068 1069 if (epfile->ep != ep) { 1070 /* In the meantime, endpoint got disabled or changed. */ 1071 ret = -ESHUTDOWN; 1072 } else if (halt) { 1073 ret = usb_ep_set_halt(ep->ep); 1074 if (!ret) 1075 ret = -EBADMSG; 1076 } else if (data_len == -EINVAL) { 1077 /* 1078 * Sanity Check: even though data_len can't be used 1079 * uninitialized at the time I write this comment, some 1080 * compilers complain about this situation. 1081 * In order to keep the code clean from warnings, data_len is 1082 * being initialized to -EINVAL during its declaration, which 1083 * means we can't rely on compiler anymore to warn no future 1084 * changes won't result in data_len being used uninitialized. 1085 * For such reason, we're adding this redundant sanity check 1086 * here. 1087 */ 1088 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1089 ret = -EINVAL; 1090 } else if (!io_data->aio) { 1091 bool interrupted = false; 1092 1093 req = ep->req; 1094 if (io_data->use_sg) { 1095 req->buf = NULL; 1096 req->sg = io_data->sgt.sgl; 1097 req->num_sgs = io_data->sgt.nents; 1098 } else { 1099 req->buf = data; 1100 req->num_sgs = 0; 1101 } 1102 req->length = data_len; 1103 1104 io_data->buf = data; 1105 1106 init_completion(&io_data->done); 1107 req->context = io_data; 1108 req->complete = ffs_epfile_io_complete; 1109 1110 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1111 if (ret < 0) 1112 goto error_lock; 1113 1114 spin_unlock_irq(&epfile->ffs->eps_lock); 1115 1116 if (wait_for_completion_interruptible(&io_data->done)) { 1117 spin_lock_irq(&epfile->ffs->eps_lock); 1118 if (epfile->ep != ep) { 1119 ret = -ESHUTDOWN; 1120 goto error_lock; 1121 } 1122 /* 1123 * To avoid race condition with ffs_epfile_io_complete, 1124 * dequeue the request first then check 1125 * status. usb_ep_dequeue API should guarantee no race 1126 * condition with req->complete callback. 1127 */ 1128 usb_ep_dequeue(ep->ep, req); 1129 spin_unlock_irq(&epfile->ffs->eps_lock); 1130 wait_for_completion(&io_data->done); 1131 interrupted = io_data->status < 0; 1132 } 1133 1134 if (interrupted) 1135 ret = -EINTR; 1136 else if (io_data->read && io_data->status > 0) 1137 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1138 &io_data->data); 1139 else 1140 ret = io_data->status; 1141 goto error_mutex; 1142 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1143 ret = -ENOMEM; 1144 } else { 1145 if (io_data->use_sg) { 1146 req->buf = NULL; 1147 req->sg = io_data->sgt.sgl; 1148 req->num_sgs = io_data->sgt.nents; 1149 } else { 1150 req->buf = data; 1151 req->num_sgs = 0; 1152 } 1153 req->length = data_len; 1154 1155 io_data->buf = data; 1156 io_data->ep = ep->ep; 1157 io_data->req = req; 1158 io_data->ffs = epfile->ffs; 1159 1160 req->context = io_data; 1161 req->complete = ffs_epfile_async_io_complete; 1162 1163 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1164 if (ret) { 1165 io_data->req = NULL; 1166 usb_ep_free_request(ep->ep, req); 1167 goto error_lock; 1168 } 1169 1170 ret = -EIOCBQUEUED; 1171 /* 1172 * Do not kfree the buffer in this function. It will be freed 1173 * by ffs_user_copy_worker. 1174 */ 1175 data = NULL; 1176 } 1177 1178 error_lock: 1179 spin_unlock_irq(&epfile->ffs->eps_lock); 1180 error_mutex: 1181 mutex_unlock(&epfile->mutex); 1182 error: 1183 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1184 ffs_free_buffer(io_data); 1185 return ret; 1186 } 1187 1188 static int 1189 ffs_epfile_open(struct inode *inode, struct file *file) 1190 { 1191 struct ffs_epfile *epfile = inode->i_private; 1192 1193 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1194 return -ENODEV; 1195 1196 file->private_data = epfile; 1197 ffs_data_opened(epfile->ffs); 1198 1199 return stream_open(inode, file); 1200 } 1201 1202 static int ffs_aio_cancel(struct kiocb *kiocb) 1203 { 1204 struct ffs_io_data *io_data = kiocb->private; 1205 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1206 unsigned long flags; 1207 int value; 1208 1209 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1210 1211 if (io_data && io_data->ep && io_data->req) 1212 value = usb_ep_dequeue(io_data->ep, io_data->req); 1213 else 1214 value = -EINVAL; 1215 1216 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1217 1218 return value; 1219 } 1220 1221 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1222 { 1223 struct ffs_io_data io_data, *p = &io_data; 1224 ssize_t res; 1225 1226 if (!is_sync_kiocb(kiocb)) { 1227 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1228 if (!p) 1229 return -ENOMEM; 1230 p->aio = true; 1231 } else { 1232 memset(p, 0, sizeof(*p)); 1233 p->aio = false; 1234 } 1235 1236 p->read = false; 1237 p->kiocb = kiocb; 1238 p->data = *from; 1239 p->mm = current->mm; 1240 1241 kiocb->private = p; 1242 1243 if (p->aio) 1244 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1245 1246 res = ffs_epfile_io(kiocb->ki_filp, p); 1247 if (res == -EIOCBQUEUED) 1248 return res; 1249 if (p->aio) 1250 kfree(p); 1251 else 1252 *from = p->data; 1253 return res; 1254 } 1255 1256 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1257 { 1258 struct ffs_io_data io_data, *p = &io_data; 1259 ssize_t res; 1260 1261 if (!is_sync_kiocb(kiocb)) { 1262 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1263 if (!p) 1264 return -ENOMEM; 1265 p->aio = true; 1266 } else { 1267 memset(p, 0, sizeof(*p)); 1268 p->aio = false; 1269 } 1270 1271 p->read = true; 1272 p->kiocb = kiocb; 1273 if (p->aio) { 1274 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1275 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1276 kfree(p); 1277 return -ENOMEM; 1278 } 1279 } else { 1280 p->data = *to; 1281 p->to_free = NULL; 1282 } 1283 p->mm = current->mm; 1284 1285 kiocb->private = p; 1286 1287 if (p->aio) 1288 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1289 1290 res = ffs_epfile_io(kiocb->ki_filp, p); 1291 if (res == -EIOCBQUEUED) 1292 return res; 1293 1294 if (p->aio) { 1295 kfree(p->to_free); 1296 kfree(p); 1297 } else { 1298 *to = p->data; 1299 } 1300 return res; 1301 } 1302 1303 static void ffs_dmabuf_release(struct kref *ref) 1304 { 1305 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref); 1306 struct dma_buf_attachment *attach = priv->attach; 1307 struct dma_buf *dmabuf = attach->dmabuf; 1308 1309 pr_vdebug("FFS DMABUF release\n"); 1310 dma_resv_lock(dmabuf->resv, NULL); 1311 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir); 1312 dma_resv_unlock(dmabuf->resv); 1313 1314 dma_buf_detach(attach->dmabuf, attach); 1315 dma_buf_put(dmabuf); 1316 kfree(priv); 1317 } 1318 1319 static void ffs_dmabuf_get(struct dma_buf_attachment *attach) 1320 { 1321 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1322 1323 kref_get(&priv->ref); 1324 } 1325 1326 static void ffs_dmabuf_put(struct dma_buf_attachment *attach) 1327 { 1328 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1329 1330 kref_put(&priv->ref, ffs_dmabuf_release); 1331 } 1332 1333 static int 1334 ffs_epfile_release(struct inode *inode, struct file *file) 1335 { 1336 struct ffs_epfile *epfile = inode->i_private; 1337 struct ffs_dmabuf_priv *priv, *tmp; 1338 struct ffs_data *ffs = epfile->ffs; 1339 1340 mutex_lock(&epfile->dmabufs_mutex); 1341 1342 /* Close all attached DMABUFs */ 1343 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1344 /* Cancel any pending transfer */ 1345 spin_lock_irq(&ffs->eps_lock); 1346 if (priv->ep && priv->req) 1347 usb_ep_dequeue(priv->ep, priv->req); 1348 spin_unlock_irq(&ffs->eps_lock); 1349 1350 list_del(&priv->entry); 1351 ffs_dmabuf_put(priv->attach); 1352 } 1353 1354 mutex_unlock(&epfile->dmabufs_mutex); 1355 1356 __ffs_epfile_read_buffer_free(epfile); 1357 ffs_data_closed(epfile->ffs); 1358 1359 return 0; 1360 } 1361 1362 static void ffs_dmabuf_cleanup(struct work_struct *work) 1363 { 1364 struct ffs_dma_fence *dma_fence = 1365 container_of(work, struct ffs_dma_fence, work); 1366 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1367 struct dma_buf_attachment *attach = priv->attach; 1368 struct dma_fence *fence = &dma_fence->base; 1369 1370 ffs_dmabuf_put(attach); 1371 dma_fence_put(fence); 1372 } 1373 1374 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret) 1375 { 1376 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1377 struct dma_fence *fence = &dma_fence->base; 1378 bool cookie = dma_fence_begin_signalling(); 1379 1380 dma_fence_get(fence); 1381 fence->error = ret; 1382 dma_fence_signal(fence); 1383 dma_fence_end_signalling(cookie); 1384 1385 /* 1386 * The fence will be unref'd in ffs_dmabuf_cleanup. 1387 * It can't be done here, as the unref functions might try to lock 1388 * the resv object, which would deadlock. 1389 */ 1390 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup); 1391 queue_work(priv->ffs->io_completion_wq, &dma_fence->work); 1392 } 1393 1394 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep, 1395 struct usb_request *req) 1396 { 1397 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status); 1398 ffs_dmabuf_signal_done(req->context, req->status); 1399 usb_ep_free_request(ep, req); 1400 } 1401 1402 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence) 1403 { 1404 return "functionfs"; 1405 } 1406 1407 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence) 1408 { 1409 return ""; 1410 } 1411 1412 static void ffs_dmabuf_fence_release(struct dma_fence *fence) 1413 { 1414 struct ffs_dma_fence *dma_fence = 1415 container_of(fence, struct ffs_dma_fence, base); 1416 1417 kfree(dma_fence); 1418 } 1419 1420 static const struct dma_fence_ops ffs_dmabuf_fence_ops = { 1421 .get_driver_name = ffs_dmabuf_get_driver_name, 1422 .get_timeline_name = ffs_dmabuf_get_timeline_name, 1423 .release = ffs_dmabuf_fence_release, 1424 }; 1425 1426 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock) 1427 { 1428 if (!nonblock) 1429 return dma_resv_lock_interruptible(dmabuf->resv, NULL); 1430 1431 if (!dma_resv_trylock(dmabuf->resv)) 1432 return -EBUSY; 1433 1434 return 0; 1435 } 1436 1437 static struct dma_buf_attachment * 1438 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf) 1439 { 1440 struct device *dev = epfile->ffs->gadget->dev.parent; 1441 struct dma_buf_attachment *attach = NULL; 1442 struct ffs_dmabuf_priv *priv; 1443 1444 mutex_lock(&epfile->dmabufs_mutex); 1445 1446 list_for_each_entry(priv, &epfile->dmabufs, entry) { 1447 if (priv->attach->dev == dev 1448 && priv->attach->dmabuf == dmabuf) { 1449 attach = priv->attach; 1450 break; 1451 } 1452 } 1453 1454 if (attach) 1455 ffs_dmabuf_get(attach); 1456 1457 mutex_unlock(&epfile->dmabufs_mutex); 1458 1459 return attach ?: ERR_PTR(-EPERM); 1460 } 1461 1462 static int ffs_dmabuf_attach(struct file *file, int fd) 1463 { 1464 bool nonblock = file->f_flags & O_NONBLOCK; 1465 struct ffs_epfile *epfile = file->private_data; 1466 struct usb_gadget *gadget = epfile->ffs->gadget; 1467 struct dma_buf_attachment *attach; 1468 struct ffs_dmabuf_priv *priv; 1469 enum dma_data_direction dir; 1470 struct sg_table *sg_table; 1471 struct dma_buf *dmabuf; 1472 int err; 1473 1474 if (!gadget || !gadget->sg_supported) 1475 return -EPERM; 1476 1477 dmabuf = dma_buf_get(fd); 1478 if (IS_ERR(dmabuf)) 1479 return PTR_ERR(dmabuf); 1480 1481 attach = dma_buf_attach(dmabuf, gadget->dev.parent); 1482 if (IS_ERR(attach)) { 1483 err = PTR_ERR(attach); 1484 goto err_dmabuf_put; 1485 } 1486 1487 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1488 if (!priv) { 1489 err = -ENOMEM; 1490 goto err_dmabuf_detach; 1491 } 1492 1493 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1494 1495 err = ffs_dma_resv_lock(dmabuf, nonblock); 1496 if (err) 1497 goto err_free_priv; 1498 1499 sg_table = dma_buf_map_attachment(attach, dir); 1500 dma_resv_unlock(dmabuf->resv); 1501 1502 if (IS_ERR(sg_table)) { 1503 err = PTR_ERR(sg_table); 1504 goto err_free_priv; 1505 } 1506 1507 attach->importer_priv = priv; 1508 1509 priv->sgt = sg_table; 1510 priv->dir = dir; 1511 priv->ffs = epfile->ffs; 1512 priv->attach = attach; 1513 spin_lock_init(&priv->lock); 1514 kref_init(&priv->ref); 1515 priv->context = dma_fence_context_alloc(1); 1516 1517 mutex_lock(&epfile->dmabufs_mutex); 1518 list_add(&priv->entry, &epfile->dmabufs); 1519 mutex_unlock(&epfile->dmabufs_mutex); 1520 1521 return 0; 1522 1523 err_free_priv: 1524 kfree(priv); 1525 err_dmabuf_detach: 1526 dma_buf_detach(dmabuf, attach); 1527 err_dmabuf_put: 1528 dma_buf_put(dmabuf); 1529 1530 return err; 1531 } 1532 1533 static int ffs_dmabuf_detach(struct file *file, int fd) 1534 { 1535 struct ffs_epfile *epfile = file->private_data; 1536 struct ffs_data *ffs = epfile->ffs; 1537 struct device *dev = ffs->gadget->dev.parent; 1538 struct ffs_dmabuf_priv *priv, *tmp; 1539 struct dma_buf *dmabuf; 1540 int ret = -EPERM; 1541 1542 dmabuf = dma_buf_get(fd); 1543 if (IS_ERR(dmabuf)) 1544 return PTR_ERR(dmabuf); 1545 1546 mutex_lock(&epfile->dmabufs_mutex); 1547 1548 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1549 if (priv->attach->dev == dev 1550 && priv->attach->dmabuf == dmabuf) { 1551 /* Cancel any pending transfer */ 1552 spin_lock_irq(&ffs->eps_lock); 1553 if (priv->ep && priv->req) 1554 usb_ep_dequeue(priv->ep, priv->req); 1555 spin_unlock_irq(&ffs->eps_lock); 1556 1557 list_del(&priv->entry); 1558 1559 /* Unref the reference from ffs_dmabuf_attach() */ 1560 ffs_dmabuf_put(priv->attach); 1561 ret = 0; 1562 break; 1563 } 1564 } 1565 1566 mutex_unlock(&epfile->dmabufs_mutex); 1567 dma_buf_put(dmabuf); 1568 1569 return ret; 1570 } 1571 1572 static int ffs_dmabuf_transfer(struct file *file, 1573 const struct usb_ffs_dmabuf_transfer_req *req) 1574 { 1575 bool nonblock = file->f_flags & O_NONBLOCK; 1576 struct ffs_epfile *epfile = file->private_data; 1577 struct dma_buf_attachment *attach; 1578 struct ffs_dmabuf_priv *priv; 1579 struct ffs_dma_fence *fence; 1580 struct usb_request *usb_req; 1581 struct dma_buf *dmabuf; 1582 struct ffs_ep *ep; 1583 bool cookie; 1584 u32 seqno; 1585 int ret; 1586 1587 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK) 1588 return -EINVAL; 1589 1590 dmabuf = dma_buf_get(req->fd); 1591 if (IS_ERR(dmabuf)) 1592 return PTR_ERR(dmabuf); 1593 1594 if (req->length > dmabuf->size || req->length == 0) { 1595 ret = -EINVAL; 1596 goto err_dmabuf_put; 1597 } 1598 1599 attach = ffs_dmabuf_find_attachment(epfile, dmabuf); 1600 if (IS_ERR(attach)) { 1601 ret = PTR_ERR(attach); 1602 goto err_dmabuf_put; 1603 } 1604 1605 priv = attach->importer_priv; 1606 1607 ep = ffs_epfile_wait_ep(file); 1608 if (IS_ERR(ep)) { 1609 ret = PTR_ERR(ep); 1610 goto err_attachment_put; 1611 } 1612 1613 ret = ffs_dma_resv_lock(dmabuf, nonblock); 1614 if (ret) 1615 goto err_attachment_put; 1616 1617 /* Make sure we don't have writers */ 1618 if (!dma_resv_test_signaled(dmabuf->resv, DMA_RESV_USAGE_WRITE)) { 1619 pr_vdebug("FFS WRITE fence is not signaled\n"); 1620 ret = -EBUSY; 1621 goto err_resv_unlock; 1622 } 1623 1624 /* If we're writing to the DMABUF, make sure we don't have readers */ 1625 if (epfile->in && 1626 !dma_resv_test_signaled(dmabuf->resv, DMA_RESV_USAGE_READ)) { 1627 pr_vdebug("FFS READ fence is not signaled\n"); 1628 ret = -EBUSY; 1629 goto err_resv_unlock; 1630 } 1631 1632 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 1633 if (ret) 1634 goto err_resv_unlock; 1635 1636 fence = kmalloc(sizeof(*fence), GFP_KERNEL); 1637 if (!fence) { 1638 ret = -ENOMEM; 1639 goto err_resv_unlock; 1640 } 1641 1642 fence->priv = priv; 1643 1644 spin_lock_irq(&epfile->ffs->eps_lock); 1645 1646 /* In the meantime, endpoint got disabled or changed. */ 1647 if (epfile->ep != ep) { 1648 ret = -ESHUTDOWN; 1649 goto err_fence_put; 1650 } 1651 1652 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC); 1653 if (!usb_req) { 1654 ret = -ENOMEM; 1655 goto err_fence_put; 1656 } 1657 1658 /* 1659 * usb_ep_queue() guarantees that all transfers are processed in the 1660 * order they are enqueued, so we can use a simple incrementing 1661 * sequence number for the dma_fence. 1662 */ 1663 seqno = atomic_add_return(1, &epfile->seqno); 1664 1665 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops, 1666 &priv->lock, priv->context, seqno); 1667 1668 dma_resv_add_fence(dmabuf->resv, &fence->base, 1669 dma_resv_usage_rw(epfile->in)); 1670 dma_resv_unlock(dmabuf->resv); 1671 1672 /* Now that the dma_fence is in place, queue the transfer. */ 1673 1674 usb_req->length = req->length; 1675 usb_req->buf = NULL; 1676 usb_req->sg = priv->sgt->sgl; 1677 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length); 1678 usb_req->sg_was_mapped = true; 1679 usb_req->context = fence; 1680 usb_req->complete = ffs_epfile_dmabuf_io_complete; 1681 1682 cookie = dma_fence_begin_signalling(); 1683 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC); 1684 dma_fence_end_signalling(cookie); 1685 if (!ret) { 1686 priv->req = usb_req; 1687 priv->ep = ep->ep; 1688 } else { 1689 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret); 1690 ffs_dmabuf_signal_done(fence, ret); 1691 usb_ep_free_request(ep->ep, usb_req); 1692 } 1693 1694 spin_unlock_irq(&epfile->ffs->eps_lock); 1695 dma_buf_put(dmabuf); 1696 1697 return ret; 1698 1699 err_fence_put: 1700 spin_unlock_irq(&epfile->ffs->eps_lock); 1701 dma_fence_put(&fence->base); 1702 err_resv_unlock: 1703 dma_resv_unlock(dmabuf->resv); 1704 err_attachment_put: 1705 ffs_dmabuf_put(attach); 1706 err_dmabuf_put: 1707 dma_buf_put(dmabuf); 1708 1709 return ret; 1710 } 1711 1712 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1713 unsigned long value) 1714 { 1715 struct ffs_epfile *epfile = file->private_data; 1716 struct ffs_ep *ep; 1717 int ret; 1718 1719 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1720 return -ENODEV; 1721 1722 switch (code) { 1723 case FUNCTIONFS_DMABUF_ATTACH: 1724 { 1725 int fd; 1726 1727 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1728 ret = -EFAULT; 1729 break; 1730 } 1731 1732 return ffs_dmabuf_attach(file, fd); 1733 } 1734 case FUNCTIONFS_DMABUF_DETACH: 1735 { 1736 int fd; 1737 1738 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1739 ret = -EFAULT; 1740 break; 1741 } 1742 1743 return ffs_dmabuf_detach(file, fd); 1744 } 1745 case FUNCTIONFS_DMABUF_TRANSFER: 1746 { 1747 struct usb_ffs_dmabuf_transfer_req req; 1748 1749 if (copy_from_user(&req, (void __user *)value, sizeof(req))) { 1750 ret = -EFAULT; 1751 break; 1752 } 1753 1754 return ffs_dmabuf_transfer(file, &req); 1755 } 1756 default: 1757 break; 1758 } 1759 1760 /* Wait for endpoint to be enabled */ 1761 ep = ffs_epfile_wait_ep(file); 1762 if (IS_ERR(ep)) 1763 return PTR_ERR(ep); 1764 1765 spin_lock_irq(&epfile->ffs->eps_lock); 1766 1767 /* In the meantime, endpoint got disabled or changed. */ 1768 if (epfile->ep != ep) { 1769 spin_unlock_irq(&epfile->ffs->eps_lock); 1770 return -ESHUTDOWN; 1771 } 1772 1773 switch (code) { 1774 case FUNCTIONFS_FIFO_STATUS: 1775 ret = usb_ep_fifo_status(epfile->ep->ep); 1776 break; 1777 case FUNCTIONFS_FIFO_FLUSH: 1778 usb_ep_fifo_flush(epfile->ep->ep); 1779 ret = 0; 1780 break; 1781 case FUNCTIONFS_CLEAR_HALT: 1782 ret = usb_ep_clear_halt(epfile->ep->ep); 1783 break; 1784 case FUNCTIONFS_ENDPOINT_REVMAP: 1785 ret = epfile->ep->num; 1786 break; 1787 case FUNCTIONFS_ENDPOINT_DESC: 1788 { 1789 int desc_idx; 1790 struct usb_endpoint_descriptor desc1, *desc; 1791 1792 switch (epfile->ffs->gadget->speed) { 1793 case USB_SPEED_SUPER: 1794 case USB_SPEED_SUPER_PLUS: 1795 desc_idx = 2; 1796 break; 1797 case USB_SPEED_HIGH: 1798 desc_idx = 1; 1799 break; 1800 default: 1801 desc_idx = 0; 1802 } 1803 1804 desc = epfile->ep->descs[desc_idx]; 1805 memcpy(&desc1, desc, desc->bLength); 1806 1807 spin_unlock_irq(&epfile->ffs->eps_lock); 1808 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1809 if (ret) 1810 ret = -EFAULT; 1811 return ret; 1812 } 1813 default: 1814 ret = -ENOTTY; 1815 } 1816 spin_unlock_irq(&epfile->ffs->eps_lock); 1817 1818 return ret; 1819 } 1820 1821 static const struct file_operations ffs_epfile_operations = { 1822 .llseek = no_llseek, 1823 1824 .open = ffs_epfile_open, 1825 .write_iter = ffs_epfile_write_iter, 1826 .read_iter = ffs_epfile_read_iter, 1827 .release = ffs_epfile_release, 1828 .unlocked_ioctl = ffs_epfile_ioctl, 1829 .compat_ioctl = compat_ptr_ioctl, 1830 }; 1831 1832 1833 /* File system and super block operations ***********************************/ 1834 1835 /* 1836 * Mounting the file system creates a controller file, used first for 1837 * function configuration then later for event monitoring. 1838 */ 1839 1840 static struct inode *__must_check 1841 ffs_sb_make_inode(struct super_block *sb, void *data, 1842 const struct file_operations *fops, 1843 const struct inode_operations *iops, 1844 struct ffs_file_perms *perms) 1845 { 1846 struct inode *inode; 1847 1848 inode = new_inode(sb); 1849 1850 if (inode) { 1851 struct timespec64 ts = inode_set_ctime_current(inode); 1852 1853 inode->i_ino = get_next_ino(); 1854 inode->i_mode = perms->mode; 1855 inode->i_uid = perms->uid; 1856 inode->i_gid = perms->gid; 1857 inode_set_atime_to_ts(inode, ts); 1858 inode_set_mtime_to_ts(inode, ts); 1859 inode->i_private = data; 1860 if (fops) 1861 inode->i_fop = fops; 1862 if (iops) 1863 inode->i_op = iops; 1864 } 1865 1866 return inode; 1867 } 1868 1869 /* Create "regular" file */ 1870 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1871 const char *name, void *data, 1872 const struct file_operations *fops) 1873 { 1874 struct ffs_data *ffs = sb->s_fs_info; 1875 struct dentry *dentry; 1876 struct inode *inode; 1877 1878 dentry = d_alloc_name(sb->s_root, name); 1879 if (!dentry) 1880 return NULL; 1881 1882 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1883 if (!inode) { 1884 dput(dentry); 1885 return NULL; 1886 } 1887 1888 d_add(dentry, inode); 1889 return dentry; 1890 } 1891 1892 /* Super block */ 1893 static const struct super_operations ffs_sb_operations = { 1894 .statfs = simple_statfs, 1895 .drop_inode = generic_delete_inode, 1896 }; 1897 1898 struct ffs_sb_fill_data { 1899 struct ffs_file_perms perms; 1900 umode_t root_mode; 1901 const char *dev_name; 1902 bool no_disconnect; 1903 struct ffs_data *ffs_data; 1904 }; 1905 1906 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1907 { 1908 struct ffs_sb_fill_data *data = fc->fs_private; 1909 struct inode *inode; 1910 struct ffs_data *ffs = data->ffs_data; 1911 1912 ffs->sb = sb; 1913 data->ffs_data = NULL; 1914 sb->s_fs_info = ffs; 1915 sb->s_blocksize = PAGE_SIZE; 1916 sb->s_blocksize_bits = PAGE_SHIFT; 1917 sb->s_magic = FUNCTIONFS_MAGIC; 1918 sb->s_op = &ffs_sb_operations; 1919 sb->s_time_gran = 1; 1920 1921 /* Root inode */ 1922 data->perms.mode = data->root_mode; 1923 inode = ffs_sb_make_inode(sb, NULL, 1924 &simple_dir_operations, 1925 &simple_dir_inode_operations, 1926 &data->perms); 1927 sb->s_root = d_make_root(inode); 1928 if (!sb->s_root) 1929 return -ENOMEM; 1930 1931 /* EP0 file */ 1932 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1933 return -ENOMEM; 1934 1935 return 0; 1936 } 1937 1938 enum { 1939 Opt_no_disconnect, 1940 Opt_rmode, 1941 Opt_fmode, 1942 Opt_mode, 1943 Opt_uid, 1944 Opt_gid, 1945 }; 1946 1947 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1948 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1949 fsparam_u32 ("rmode", Opt_rmode), 1950 fsparam_u32 ("fmode", Opt_fmode), 1951 fsparam_u32 ("mode", Opt_mode), 1952 fsparam_u32 ("uid", Opt_uid), 1953 fsparam_u32 ("gid", Opt_gid), 1954 {} 1955 }; 1956 1957 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1958 { 1959 struct ffs_sb_fill_data *data = fc->fs_private; 1960 struct fs_parse_result result; 1961 int opt; 1962 1963 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1964 if (opt < 0) 1965 return opt; 1966 1967 switch (opt) { 1968 case Opt_no_disconnect: 1969 data->no_disconnect = result.boolean; 1970 break; 1971 case Opt_rmode: 1972 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1973 break; 1974 case Opt_fmode: 1975 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1976 break; 1977 case Opt_mode: 1978 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1979 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1980 break; 1981 1982 case Opt_uid: 1983 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1984 if (!uid_valid(data->perms.uid)) 1985 goto unmapped_value; 1986 break; 1987 case Opt_gid: 1988 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1989 if (!gid_valid(data->perms.gid)) 1990 goto unmapped_value; 1991 break; 1992 1993 default: 1994 return -ENOPARAM; 1995 } 1996 1997 return 0; 1998 1999 unmapped_value: 2000 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 2001 } 2002 2003 /* 2004 * Set up the superblock for a mount. 2005 */ 2006 static int ffs_fs_get_tree(struct fs_context *fc) 2007 { 2008 struct ffs_sb_fill_data *ctx = fc->fs_private; 2009 struct ffs_data *ffs; 2010 int ret; 2011 2012 if (!fc->source) 2013 return invalf(fc, "No source specified"); 2014 2015 ffs = ffs_data_new(fc->source); 2016 if (!ffs) 2017 return -ENOMEM; 2018 ffs->file_perms = ctx->perms; 2019 ffs->no_disconnect = ctx->no_disconnect; 2020 2021 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 2022 if (!ffs->dev_name) { 2023 ffs_data_put(ffs); 2024 return -ENOMEM; 2025 } 2026 2027 ret = ffs_acquire_dev(ffs->dev_name, ffs); 2028 if (ret) { 2029 ffs_data_put(ffs); 2030 return ret; 2031 } 2032 2033 ctx->ffs_data = ffs; 2034 return get_tree_nodev(fc, ffs_sb_fill); 2035 } 2036 2037 static void ffs_fs_free_fc(struct fs_context *fc) 2038 { 2039 struct ffs_sb_fill_data *ctx = fc->fs_private; 2040 2041 if (ctx) { 2042 if (ctx->ffs_data) { 2043 ffs_data_put(ctx->ffs_data); 2044 } 2045 2046 kfree(ctx); 2047 } 2048 } 2049 2050 static const struct fs_context_operations ffs_fs_context_ops = { 2051 .free = ffs_fs_free_fc, 2052 .parse_param = ffs_fs_parse_param, 2053 .get_tree = ffs_fs_get_tree, 2054 }; 2055 2056 static int ffs_fs_init_fs_context(struct fs_context *fc) 2057 { 2058 struct ffs_sb_fill_data *ctx; 2059 2060 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 2061 if (!ctx) 2062 return -ENOMEM; 2063 2064 ctx->perms.mode = S_IFREG | 0600; 2065 ctx->perms.uid = GLOBAL_ROOT_UID; 2066 ctx->perms.gid = GLOBAL_ROOT_GID; 2067 ctx->root_mode = S_IFDIR | 0500; 2068 ctx->no_disconnect = false; 2069 2070 fc->fs_private = ctx; 2071 fc->ops = &ffs_fs_context_ops; 2072 return 0; 2073 } 2074 2075 static void 2076 ffs_fs_kill_sb(struct super_block *sb) 2077 { 2078 kill_litter_super(sb); 2079 if (sb->s_fs_info) 2080 ffs_data_closed(sb->s_fs_info); 2081 } 2082 2083 static struct file_system_type ffs_fs_type = { 2084 .owner = THIS_MODULE, 2085 .name = "functionfs", 2086 .init_fs_context = ffs_fs_init_fs_context, 2087 .parameters = ffs_fs_fs_parameters, 2088 .kill_sb = ffs_fs_kill_sb, 2089 }; 2090 MODULE_ALIAS_FS("functionfs"); 2091 2092 2093 /* Driver's main init/cleanup functions *************************************/ 2094 2095 static int functionfs_init(void) 2096 { 2097 int ret; 2098 2099 ret = register_filesystem(&ffs_fs_type); 2100 if (!ret) 2101 pr_info("file system registered\n"); 2102 else 2103 pr_err("failed registering file system (%d)\n", ret); 2104 2105 return ret; 2106 } 2107 2108 static void functionfs_cleanup(void) 2109 { 2110 pr_info("unloading\n"); 2111 unregister_filesystem(&ffs_fs_type); 2112 } 2113 2114 2115 /* ffs_data and ffs_function construction and destruction code **************/ 2116 2117 static void ffs_data_clear(struct ffs_data *ffs); 2118 static void ffs_data_reset(struct ffs_data *ffs); 2119 2120 static void ffs_data_get(struct ffs_data *ffs) 2121 { 2122 refcount_inc(&ffs->ref); 2123 } 2124 2125 static void ffs_data_opened(struct ffs_data *ffs) 2126 { 2127 refcount_inc(&ffs->ref); 2128 if (atomic_add_return(1, &ffs->opened) == 1 && 2129 ffs->state == FFS_DEACTIVATED) { 2130 ffs->state = FFS_CLOSING; 2131 ffs_data_reset(ffs); 2132 } 2133 } 2134 2135 static void ffs_data_put(struct ffs_data *ffs) 2136 { 2137 if (refcount_dec_and_test(&ffs->ref)) { 2138 pr_info("%s(): freeing\n", __func__); 2139 ffs_data_clear(ffs); 2140 ffs_release_dev(ffs->private_data); 2141 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 2142 swait_active(&ffs->ep0req_completion.wait) || 2143 waitqueue_active(&ffs->wait)); 2144 destroy_workqueue(ffs->io_completion_wq); 2145 kfree(ffs->dev_name); 2146 kfree(ffs); 2147 } 2148 } 2149 2150 static void ffs_data_closed(struct ffs_data *ffs) 2151 { 2152 struct ffs_epfile *epfiles; 2153 unsigned long flags; 2154 2155 if (atomic_dec_and_test(&ffs->opened)) { 2156 if (ffs->no_disconnect) { 2157 ffs->state = FFS_DEACTIVATED; 2158 spin_lock_irqsave(&ffs->eps_lock, flags); 2159 epfiles = ffs->epfiles; 2160 ffs->epfiles = NULL; 2161 spin_unlock_irqrestore(&ffs->eps_lock, 2162 flags); 2163 2164 if (epfiles) 2165 ffs_epfiles_destroy(epfiles, 2166 ffs->eps_count); 2167 2168 if (ffs->setup_state == FFS_SETUP_PENDING) 2169 __ffs_ep0_stall(ffs); 2170 } else { 2171 ffs->state = FFS_CLOSING; 2172 ffs_data_reset(ffs); 2173 } 2174 } 2175 if (atomic_read(&ffs->opened) < 0) { 2176 ffs->state = FFS_CLOSING; 2177 ffs_data_reset(ffs); 2178 } 2179 2180 ffs_data_put(ffs); 2181 } 2182 2183 static struct ffs_data *ffs_data_new(const char *dev_name) 2184 { 2185 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 2186 if (!ffs) 2187 return NULL; 2188 2189 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 2190 if (!ffs->io_completion_wq) { 2191 kfree(ffs); 2192 return NULL; 2193 } 2194 2195 refcount_set(&ffs->ref, 1); 2196 atomic_set(&ffs->opened, 0); 2197 ffs->state = FFS_READ_DESCRIPTORS; 2198 mutex_init(&ffs->mutex); 2199 spin_lock_init(&ffs->eps_lock); 2200 init_waitqueue_head(&ffs->ev.waitq); 2201 init_waitqueue_head(&ffs->wait); 2202 init_completion(&ffs->ep0req_completion); 2203 2204 /* XXX REVISIT need to update it in some places, or do we? */ 2205 ffs->ev.can_stall = 1; 2206 2207 return ffs; 2208 } 2209 2210 static void ffs_data_clear(struct ffs_data *ffs) 2211 { 2212 struct ffs_epfile *epfiles; 2213 unsigned long flags; 2214 2215 ffs_closed(ffs); 2216 2217 BUG_ON(ffs->gadget); 2218 2219 spin_lock_irqsave(&ffs->eps_lock, flags); 2220 epfiles = ffs->epfiles; 2221 ffs->epfiles = NULL; 2222 spin_unlock_irqrestore(&ffs->eps_lock, flags); 2223 2224 /* 2225 * potential race possible between ffs_func_eps_disable 2226 * & ffs_epfile_release therefore maintaining a local 2227 * copy of epfile will save us from use-after-free. 2228 */ 2229 if (epfiles) { 2230 ffs_epfiles_destroy(epfiles, ffs->eps_count); 2231 ffs->epfiles = NULL; 2232 } 2233 2234 if (ffs->ffs_eventfd) { 2235 eventfd_ctx_put(ffs->ffs_eventfd); 2236 ffs->ffs_eventfd = NULL; 2237 } 2238 2239 kfree(ffs->raw_descs_data); 2240 kfree(ffs->raw_strings); 2241 kfree(ffs->stringtabs); 2242 } 2243 2244 static void ffs_data_reset(struct ffs_data *ffs) 2245 { 2246 ffs_data_clear(ffs); 2247 2248 ffs->raw_descs_data = NULL; 2249 ffs->raw_descs = NULL; 2250 ffs->raw_strings = NULL; 2251 ffs->stringtabs = NULL; 2252 2253 ffs->raw_descs_length = 0; 2254 ffs->fs_descs_count = 0; 2255 ffs->hs_descs_count = 0; 2256 ffs->ss_descs_count = 0; 2257 2258 ffs->strings_count = 0; 2259 ffs->interfaces_count = 0; 2260 ffs->eps_count = 0; 2261 2262 ffs->ev.count = 0; 2263 2264 ffs->state = FFS_READ_DESCRIPTORS; 2265 ffs->setup_state = FFS_NO_SETUP; 2266 ffs->flags = 0; 2267 2268 ffs->ms_os_descs_ext_prop_count = 0; 2269 ffs->ms_os_descs_ext_prop_name_len = 0; 2270 ffs->ms_os_descs_ext_prop_data_len = 0; 2271 } 2272 2273 2274 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 2275 { 2276 struct usb_gadget_strings **lang; 2277 int first_id; 2278 2279 if (WARN_ON(ffs->state != FFS_ACTIVE 2280 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 2281 return -EBADFD; 2282 2283 first_id = usb_string_ids_n(cdev, ffs->strings_count); 2284 if (first_id < 0) 2285 return first_id; 2286 2287 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 2288 if (!ffs->ep0req) 2289 return -ENOMEM; 2290 ffs->ep0req->complete = ffs_ep0_complete; 2291 ffs->ep0req->context = ffs; 2292 2293 lang = ffs->stringtabs; 2294 if (lang) { 2295 for (; *lang; ++lang) { 2296 struct usb_string *str = (*lang)->strings; 2297 int id = first_id; 2298 for (; str->s; ++id, ++str) 2299 str->id = id; 2300 } 2301 } 2302 2303 ffs->gadget = cdev->gadget; 2304 ffs_data_get(ffs); 2305 return 0; 2306 } 2307 2308 static void functionfs_unbind(struct ffs_data *ffs) 2309 { 2310 if (!WARN_ON(!ffs->gadget)) { 2311 /* dequeue before freeing ep0req */ 2312 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 2313 mutex_lock(&ffs->mutex); 2314 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 2315 ffs->ep0req = NULL; 2316 ffs->gadget = NULL; 2317 clear_bit(FFS_FL_BOUND, &ffs->flags); 2318 mutex_unlock(&ffs->mutex); 2319 ffs_data_put(ffs); 2320 } 2321 } 2322 2323 static int ffs_epfiles_create(struct ffs_data *ffs) 2324 { 2325 struct ffs_epfile *epfile, *epfiles; 2326 unsigned i, count; 2327 2328 count = ffs->eps_count; 2329 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 2330 if (!epfiles) 2331 return -ENOMEM; 2332 2333 epfile = epfiles; 2334 for (i = 1; i <= count; ++i, ++epfile) { 2335 epfile->ffs = ffs; 2336 mutex_init(&epfile->mutex); 2337 mutex_init(&epfile->dmabufs_mutex); 2338 INIT_LIST_HEAD(&epfile->dmabufs); 2339 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2340 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 2341 else 2342 sprintf(epfile->name, "ep%u", i); 2343 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 2344 epfile, 2345 &ffs_epfile_operations); 2346 if (!epfile->dentry) { 2347 ffs_epfiles_destroy(epfiles, i - 1); 2348 return -ENOMEM; 2349 } 2350 } 2351 2352 ffs->epfiles = epfiles; 2353 return 0; 2354 } 2355 2356 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 2357 { 2358 struct ffs_epfile *epfile = epfiles; 2359 2360 for (; count; --count, ++epfile) { 2361 BUG_ON(mutex_is_locked(&epfile->mutex)); 2362 if (epfile->dentry) { 2363 d_delete(epfile->dentry); 2364 dput(epfile->dentry); 2365 epfile->dentry = NULL; 2366 } 2367 } 2368 2369 kfree(epfiles); 2370 } 2371 2372 static void ffs_func_eps_disable(struct ffs_function *func) 2373 { 2374 struct ffs_ep *ep; 2375 struct ffs_epfile *epfile; 2376 unsigned short count; 2377 unsigned long flags; 2378 2379 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2380 count = func->ffs->eps_count; 2381 epfile = func->ffs->epfiles; 2382 ep = func->eps; 2383 while (count--) { 2384 /* pending requests get nuked */ 2385 if (ep->ep) 2386 usb_ep_disable(ep->ep); 2387 ++ep; 2388 2389 if (epfile) { 2390 epfile->ep = NULL; 2391 __ffs_epfile_read_buffer_free(epfile); 2392 ++epfile; 2393 } 2394 } 2395 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2396 } 2397 2398 static int ffs_func_eps_enable(struct ffs_function *func) 2399 { 2400 struct ffs_data *ffs; 2401 struct ffs_ep *ep; 2402 struct ffs_epfile *epfile; 2403 unsigned short count; 2404 unsigned long flags; 2405 int ret = 0; 2406 2407 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2408 ffs = func->ffs; 2409 ep = func->eps; 2410 epfile = ffs->epfiles; 2411 count = ffs->eps_count; 2412 while(count--) { 2413 ep->ep->driver_data = ep; 2414 2415 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2416 if (ret) { 2417 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2418 __func__, ep->ep->name, ret); 2419 break; 2420 } 2421 2422 ret = usb_ep_enable(ep->ep); 2423 if (!ret) { 2424 epfile->ep = ep; 2425 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2426 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2427 } else { 2428 break; 2429 } 2430 2431 ++ep; 2432 ++epfile; 2433 } 2434 2435 wake_up_interruptible(&ffs->wait); 2436 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2437 2438 return ret; 2439 } 2440 2441 2442 /* Parsing and building descriptors and strings *****************************/ 2443 2444 /* 2445 * This validates if data pointed by data is a valid USB descriptor as 2446 * well as record how many interfaces, endpoints and strings are 2447 * required by given configuration. Returns address after the 2448 * descriptor or NULL if data is invalid. 2449 */ 2450 2451 enum ffs_entity_type { 2452 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2453 }; 2454 2455 enum ffs_os_desc_type { 2456 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2457 }; 2458 2459 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2460 u8 *valuep, 2461 struct usb_descriptor_header *desc, 2462 void *priv); 2463 2464 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2465 struct usb_os_desc_header *h, void *data, 2466 unsigned len, void *priv); 2467 2468 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2469 ffs_entity_callback entity, 2470 void *priv, int *current_class) 2471 { 2472 struct usb_descriptor_header *_ds = (void *)data; 2473 u8 length; 2474 int ret; 2475 2476 /* At least two bytes are required: length and type */ 2477 if (len < 2) { 2478 pr_vdebug("descriptor too short\n"); 2479 return -EINVAL; 2480 } 2481 2482 /* If we have at least as many bytes as the descriptor takes? */ 2483 length = _ds->bLength; 2484 if (len < length) { 2485 pr_vdebug("descriptor longer then available data\n"); 2486 return -EINVAL; 2487 } 2488 2489 #define __entity_check_INTERFACE(val) 1 2490 #define __entity_check_STRING(val) (val) 2491 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2492 #define __entity(type, val) do { \ 2493 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2494 if (!__entity_check_ ##type(val)) { \ 2495 pr_vdebug("invalid entity's value\n"); \ 2496 return -EINVAL; \ 2497 } \ 2498 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2499 if (ret < 0) { \ 2500 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2501 (val), ret); \ 2502 return ret; \ 2503 } \ 2504 } while (0) 2505 2506 /* Parse descriptor depending on type. */ 2507 switch (_ds->bDescriptorType) { 2508 case USB_DT_DEVICE: 2509 case USB_DT_CONFIG: 2510 case USB_DT_STRING: 2511 case USB_DT_DEVICE_QUALIFIER: 2512 /* function can't have any of those */ 2513 pr_vdebug("descriptor reserved for gadget: %d\n", 2514 _ds->bDescriptorType); 2515 return -EINVAL; 2516 2517 case USB_DT_INTERFACE: { 2518 struct usb_interface_descriptor *ds = (void *)_ds; 2519 pr_vdebug("interface descriptor\n"); 2520 if (length != sizeof *ds) 2521 goto inv_length; 2522 2523 __entity(INTERFACE, ds->bInterfaceNumber); 2524 if (ds->iInterface) 2525 __entity(STRING, ds->iInterface); 2526 *current_class = ds->bInterfaceClass; 2527 } 2528 break; 2529 2530 case USB_DT_ENDPOINT: { 2531 struct usb_endpoint_descriptor *ds = (void *)_ds; 2532 pr_vdebug("endpoint descriptor\n"); 2533 if (length != USB_DT_ENDPOINT_SIZE && 2534 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2535 goto inv_length; 2536 __entity(ENDPOINT, ds->bEndpointAddress); 2537 } 2538 break; 2539 2540 case USB_TYPE_CLASS | 0x01: 2541 if (*current_class == USB_INTERFACE_CLASS_HID) { 2542 pr_vdebug("hid descriptor\n"); 2543 if (length != sizeof(struct hid_descriptor)) 2544 goto inv_length; 2545 break; 2546 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2547 pr_vdebug("ccid descriptor\n"); 2548 if (length != sizeof(struct ccid_descriptor)) 2549 goto inv_length; 2550 break; 2551 } else { 2552 pr_vdebug("unknown descriptor: %d for class %d\n", 2553 _ds->bDescriptorType, *current_class); 2554 return -EINVAL; 2555 } 2556 2557 case USB_DT_OTG: 2558 if (length != sizeof(struct usb_otg_descriptor)) 2559 goto inv_length; 2560 break; 2561 2562 case USB_DT_INTERFACE_ASSOCIATION: { 2563 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2564 pr_vdebug("interface association descriptor\n"); 2565 if (length != sizeof *ds) 2566 goto inv_length; 2567 if (ds->iFunction) 2568 __entity(STRING, ds->iFunction); 2569 } 2570 break; 2571 2572 case USB_DT_SS_ENDPOINT_COMP: 2573 pr_vdebug("EP SS companion descriptor\n"); 2574 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2575 goto inv_length; 2576 break; 2577 2578 case USB_DT_OTHER_SPEED_CONFIG: 2579 case USB_DT_INTERFACE_POWER: 2580 case USB_DT_DEBUG: 2581 case USB_DT_SECURITY: 2582 case USB_DT_CS_RADIO_CONTROL: 2583 /* TODO */ 2584 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2585 return -EINVAL; 2586 2587 default: 2588 /* We should never be here */ 2589 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2590 return -EINVAL; 2591 2592 inv_length: 2593 pr_vdebug("invalid length: %d (descriptor %d)\n", 2594 _ds->bLength, _ds->bDescriptorType); 2595 return -EINVAL; 2596 } 2597 2598 #undef __entity 2599 #undef __entity_check_DESCRIPTOR 2600 #undef __entity_check_INTERFACE 2601 #undef __entity_check_STRING 2602 #undef __entity_check_ENDPOINT 2603 2604 return length; 2605 } 2606 2607 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2608 ffs_entity_callback entity, void *priv) 2609 { 2610 const unsigned _len = len; 2611 unsigned long num = 0; 2612 int current_class = -1; 2613 2614 for (;;) { 2615 int ret; 2616 2617 if (num == count) 2618 data = NULL; 2619 2620 /* Record "descriptor" entity */ 2621 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2622 if (ret < 0) { 2623 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2624 num, ret); 2625 return ret; 2626 } 2627 2628 if (!data) 2629 return _len - len; 2630 2631 ret = ffs_do_single_desc(data, len, entity, priv, 2632 ¤t_class); 2633 if (ret < 0) { 2634 pr_debug("%s returns %d\n", __func__, ret); 2635 return ret; 2636 } 2637 2638 len -= ret; 2639 data += ret; 2640 ++num; 2641 } 2642 } 2643 2644 static int __ffs_data_do_entity(enum ffs_entity_type type, 2645 u8 *valuep, struct usb_descriptor_header *desc, 2646 void *priv) 2647 { 2648 struct ffs_desc_helper *helper = priv; 2649 struct usb_endpoint_descriptor *d; 2650 2651 switch (type) { 2652 case FFS_DESCRIPTOR: 2653 break; 2654 2655 case FFS_INTERFACE: 2656 /* 2657 * Interfaces are indexed from zero so if we 2658 * encountered interface "n" then there are at least 2659 * "n+1" interfaces. 2660 */ 2661 if (*valuep >= helper->interfaces_count) 2662 helper->interfaces_count = *valuep + 1; 2663 break; 2664 2665 case FFS_STRING: 2666 /* 2667 * Strings are indexed from 1 (0 is reserved 2668 * for languages list) 2669 */ 2670 if (*valuep > helper->ffs->strings_count) 2671 helper->ffs->strings_count = *valuep; 2672 break; 2673 2674 case FFS_ENDPOINT: 2675 d = (void *)desc; 2676 helper->eps_count++; 2677 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2678 return -EINVAL; 2679 /* Check if descriptors for any speed were already parsed */ 2680 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2681 helper->ffs->eps_addrmap[helper->eps_count] = 2682 d->bEndpointAddress; 2683 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2684 d->bEndpointAddress) 2685 return -EINVAL; 2686 break; 2687 } 2688 2689 return 0; 2690 } 2691 2692 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2693 struct usb_os_desc_header *desc) 2694 { 2695 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2696 u16 w_index = le16_to_cpu(desc->wIndex); 2697 2698 if (bcd_version == 0x1) { 2699 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2700 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2701 } else if (bcd_version != 0x100) { 2702 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2703 bcd_version); 2704 return -EINVAL; 2705 } 2706 switch (w_index) { 2707 case 0x4: 2708 *next_type = FFS_OS_DESC_EXT_COMPAT; 2709 break; 2710 case 0x5: 2711 *next_type = FFS_OS_DESC_EXT_PROP; 2712 break; 2713 default: 2714 pr_vdebug("unsupported os descriptor type: %d", w_index); 2715 return -EINVAL; 2716 } 2717 2718 return sizeof(*desc); 2719 } 2720 2721 /* 2722 * Process all extended compatibility/extended property descriptors 2723 * of a feature descriptor 2724 */ 2725 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2726 enum ffs_os_desc_type type, 2727 u16 feature_count, 2728 ffs_os_desc_callback entity, 2729 void *priv, 2730 struct usb_os_desc_header *h) 2731 { 2732 int ret; 2733 const unsigned _len = len; 2734 2735 /* loop over all ext compat/ext prop descriptors */ 2736 while (feature_count--) { 2737 ret = entity(type, h, data, len, priv); 2738 if (ret < 0) { 2739 pr_debug("bad OS descriptor, type: %d\n", type); 2740 return ret; 2741 } 2742 data += ret; 2743 len -= ret; 2744 } 2745 return _len - len; 2746 } 2747 2748 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2749 static int __must_check ffs_do_os_descs(unsigned count, 2750 char *data, unsigned len, 2751 ffs_os_desc_callback entity, void *priv) 2752 { 2753 const unsigned _len = len; 2754 unsigned long num = 0; 2755 2756 for (num = 0; num < count; ++num) { 2757 int ret; 2758 enum ffs_os_desc_type type; 2759 u16 feature_count; 2760 struct usb_os_desc_header *desc = (void *)data; 2761 2762 if (len < sizeof(*desc)) 2763 return -EINVAL; 2764 2765 /* 2766 * Record "descriptor" entity. 2767 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2768 * Move the data pointer to the beginning of extended 2769 * compatibilities proper or extended properties proper 2770 * portions of the data 2771 */ 2772 if (le32_to_cpu(desc->dwLength) > len) 2773 return -EINVAL; 2774 2775 ret = __ffs_do_os_desc_header(&type, desc); 2776 if (ret < 0) { 2777 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2778 num, ret); 2779 return ret; 2780 } 2781 /* 2782 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2783 */ 2784 feature_count = le16_to_cpu(desc->wCount); 2785 if (type == FFS_OS_DESC_EXT_COMPAT && 2786 (feature_count > 255 || desc->Reserved)) 2787 return -EINVAL; 2788 len -= ret; 2789 data += ret; 2790 2791 /* 2792 * Process all function/property descriptors 2793 * of this Feature Descriptor 2794 */ 2795 ret = ffs_do_single_os_desc(data, len, type, 2796 feature_count, entity, priv, desc); 2797 if (ret < 0) { 2798 pr_debug("%s returns %d\n", __func__, ret); 2799 return ret; 2800 } 2801 2802 len -= ret; 2803 data += ret; 2804 } 2805 return _len - len; 2806 } 2807 2808 /* 2809 * Validate contents of the buffer from userspace related to OS descriptors. 2810 */ 2811 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2812 struct usb_os_desc_header *h, void *data, 2813 unsigned len, void *priv) 2814 { 2815 struct ffs_data *ffs = priv; 2816 u8 length; 2817 2818 switch (type) { 2819 case FFS_OS_DESC_EXT_COMPAT: { 2820 struct usb_ext_compat_desc *d = data; 2821 int i; 2822 2823 if (len < sizeof(*d) || 2824 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2825 return -EINVAL; 2826 if (d->Reserved1 != 1) { 2827 /* 2828 * According to the spec, Reserved1 must be set to 1 2829 * but older kernels incorrectly rejected non-zero 2830 * values. We fix it here to avoid returning EINVAL 2831 * in response to values we used to accept. 2832 */ 2833 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2834 d->Reserved1 = 1; 2835 } 2836 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2837 if (d->Reserved2[i]) 2838 return -EINVAL; 2839 2840 length = sizeof(struct usb_ext_compat_desc); 2841 } 2842 break; 2843 case FFS_OS_DESC_EXT_PROP: { 2844 struct usb_ext_prop_desc *d = data; 2845 u32 type, pdl; 2846 u16 pnl; 2847 2848 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2849 return -EINVAL; 2850 length = le32_to_cpu(d->dwSize); 2851 if (len < length) 2852 return -EINVAL; 2853 type = le32_to_cpu(d->dwPropertyDataType); 2854 if (type < USB_EXT_PROP_UNICODE || 2855 type > USB_EXT_PROP_UNICODE_MULTI) { 2856 pr_vdebug("unsupported os descriptor property type: %d", 2857 type); 2858 return -EINVAL; 2859 } 2860 pnl = le16_to_cpu(d->wPropertyNameLength); 2861 if (length < 14 + pnl) { 2862 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2863 length, pnl, type); 2864 return -EINVAL; 2865 } 2866 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2867 if (length != 14 + pnl + pdl) { 2868 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2869 length, pnl, pdl, type); 2870 return -EINVAL; 2871 } 2872 ++ffs->ms_os_descs_ext_prop_count; 2873 /* property name reported to the host as "WCHAR"s */ 2874 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2875 ffs->ms_os_descs_ext_prop_data_len += pdl; 2876 } 2877 break; 2878 default: 2879 pr_vdebug("unknown descriptor: %d\n", type); 2880 return -EINVAL; 2881 } 2882 return length; 2883 } 2884 2885 static int __ffs_data_got_descs(struct ffs_data *ffs, 2886 char *const _data, size_t len) 2887 { 2888 char *data = _data, *raw_descs; 2889 unsigned os_descs_count = 0, counts[3], flags; 2890 int ret = -EINVAL, i; 2891 struct ffs_desc_helper helper; 2892 2893 if (get_unaligned_le32(data + 4) != len) 2894 goto error; 2895 2896 switch (get_unaligned_le32(data)) { 2897 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2898 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2899 data += 8; 2900 len -= 8; 2901 break; 2902 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2903 flags = get_unaligned_le32(data + 8); 2904 ffs->user_flags = flags; 2905 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2906 FUNCTIONFS_HAS_HS_DESC | 2907 FUNCTIONFS_HAS_SS_DESC | 2908 FUNCTIONFS_HAS_MS_OS_DESC | 2909 FUNCTIONFS_VIRTUAL_ADDR | 2910 FUNCTIONFS_EVENTFD | 2911 FUNCTIONFS_ALL_CTRL_RECIP | 2912 FUNCTIONFS_CONFIG0_SETUP)) { 2913 ret = -ENOSYS; 2914 goto error; 2915 } 2916 data += 12; 2917 len -= 12; 2918 break; 2919 default: 2920 goto error; 2921 } 2922 2923 if (flags & FUNCTIONFS_EVENTFD) { 2924 if (len < 4) 2925 goto error; 2926 ffs->ffs_eventfd = 2927 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2928 if (IS_ERR(ffs->ffs_eventfd)) { 2929 ret = PTR_ERR(ffs->ffs_eventfd); 2930 ffs->ffs_eventfd = NULL; 2931 goto error; 2932 } 2933 data += 4; 2934 len -= 4; 2935 } 2936 2937 /* Read fs_count, hs_count and ss_count (if present) */ 2938 for (i = 0; i < 3; ++i) { 2939 if (!(flags & (1 << i))) { 2940 counts[i] = 0; 2941 } else if (len < 4) { 2942 goto error; 2943 } else { 2944 counts[i] = get_unaligned_le32(data); 2945 data += 4; 2946 len -= 4; 2947 } 2948 } 2949 if (flags & (1 << i)) { 2950 if (len < 4) { 2951 goto error; 2952 } 2953 os_descs_count = get_unaligned_le32(data); 2954 data += 4; 2955 len -= 4; 2956 } 2957 2958 /* Read descriptors */ 2959 raw_descs = data; 2960 helper.ffs = ffs; 2961 for (i = 0; i < 3; ++i) { 2962 if (!counts[i]) 2963 continue; 2964 helper.interfaces_count = 0; 2965 helper.eps_count = 0; 2966 ret = ffs_do_descs(counts[i], data, len, 2967 __ffs_data_do_entity, &helper); 2968 if (ret < 0) 2969 goto error; 2970 if (!ffs->eps_count && !ffs->interfaces_count) { 2971 ffs->eps_count = helper.eps_count; 2972 ffs->interfaces_count = helper.interfaces_count; 2973 } else { 2974 if (ffs->eps_count != helper.eps_count) { 2975 ret = -EINVAL; 2976 goto error; 2977 } 2978 if (ffs->interfaces_count != helper.interfaces_count) { 2979 ret = -EINVAL; 2980 goto error; 2981 } 2982 } 2983 data += ret; 2984 len -= ret; 2985 } 2986 if (os_descs_count) { 2987 ret = ffs_do_os_descs(os_descs_count, data, len, 2988 __ffs_data_do_os_desc, ffs); 2989 if (ret < 0) 2990 goto error; 2991 data += ret; 2992 len -= ret; 2993 } 2994 2995 if (raw_descs == data || len) { 2996 ret = -EINVAL; 2997 goto error; 2998 } 2999 3000 ffs->raw_descs_data = _data; 3001 ffs->raw_descs = raw_descs; 3002 ffs->raw_descs_length = data - raw_descs; 3003 ffs->fs_descs_count = counts[0]; 3004 ffs->hs_descs_count = counts[1]; 3005 ffs->ss_descs_count = counts[2]; 3006 ffs->ms_os_descs_count = os_descs_count; 3007 3008 return 0; 3009 3010 error: 3011 kfree(_data); 3012 return ret; 3013 } 3014 3015 static int __ffs_data_got_strings(struct ffs_data *ffs, 3016 char *const _data, size_t len) 3017 { 3018 u32 str_count, needed_count, lang_count; 3019 struct usb_gadget_strings **stringtabs, *t; 3020 const char *data = _data; 3021 struct usb_string *s; 3022 3023 if (len < 16 || 3024 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 3025 get_unaligned_le32(data + 4) != len) 3026 goto error; 3027 str_count = get_unaligned_le32(data + 8); 3028 lang_count = get_unaligned_le32(data + 12); 3029 3030 /* if one is zero the other must be zero */ 3031 if (!str_count != !lang_count) 3032 goto error; 3033 3034 /* Do we have at least as many strings as descriptors need? */ 3035 needed_count = ffs->strings_count; 3036 if (str_count < needed_count) 3037 goto error; 3038 3039 /* 3040 * If we don't need any strings just return and free all 3041 * memory. 3042 */ 3043 if (!needed_count) { 3044 kfree(_data); 3045 return 0; 3046 } 3047 3048 /* Allocate everything in one chunk so there's less maintenance. */ 3049 { 3050 unsigned i = 0; 3051 vla_group(d); 3052 vla_item(d, struct usb_gadget_strings *, stringtabs, 3053 size_add(lang_count, 1)); 3054 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 3055 vla_item(d, struct usb_string, strings, 3056 size_mul(lang_count, (needed_count + 1))); 3057 3058 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 3059 3060 if (!vlabuf) { 3061 kfree(_data); 3062 return -ENOMEM; 3063 } 3064 3065 /* Initialize the VLA pointers */ 3066 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3067 t = vla_ptr(vlabuf, d, stringtab); 3068 i = lang_count; 3069 do { 3070 *stringtabs++ = t++; 3071 } while (--i); 3072 *stringtabs = NULL; 3073 3074 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 3075 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3076 t = vla_ptr(vlabuf, d, stringtab); 3077 s = vla_ptr(vlabuf, d, strings); 3078 } 3079 3080 /* For each language */ 3081 data += 16; 3082 len -= 16; 3083 3084 do { /* lang_count > 0 so we can use do-while */ 3085 unsigned needed = needed_count; 3086 u32 str_per_lang = str_count; 3087 3088 if (len < 3) 3089 goto error_free; 3090 t->language = get_unaligned_le16(data); 3091 t->strings = s; 3092 ++t; 3093 3094 data += 2; 3095 len -= 2; 3096 3097 /* For each string */ 3098 do { /* str_count > 0 so we can use do-while */ 3099 size_t length = strnlen(data, len); 3100 3101 if (length == len) 3102 goto error_free; 3103 3104 /* 3105 * User may provide more strings then we need, 3106 * if that's the case we simply ignore the 3107 * rest 3108 */ 3109 if (needed) { 3110 /* 3111 * s->id will be set while adding 3112 * function to configuration so for 3113 * now just leave garbage here. 3114 */ 3115 s->s = data; 3116 --needed; 3117 ++s; 3118 } 3119 3120 data += length + 1; 3121 len -= length + 1; 3122 } while (--str_per_lang); 3123 3124 s->id = 0; /* terminator */ 3125 s->s = NULL; 3126 ++s; 3127 3128 } while (--lang_count); 3129 3130 /* Some garbage left? */ 3131 if (len) 3132 goto error_free; 3133 3134 /* Done! */ 3135 ffs->stringtabs = stringtabs; 3136 ffs->raw_strings = _data; 3137 3138 return 0; 3139 3140 error_free: 3141 kfree(stringtabs); 3142 error: 3143 kfree(_data); 3144 return -EINVAL; 3145 } 3146 3147 3148 /* Events handling and management *******************************************/ 3149 3150 static void __ffs_event_add(struct ffs_data *ffs, 3151 enum usb_functionfs_event_type type) 3152 { 3153 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 3154 int neg = 0; 3155 3156 /* 3157 * Abort any unhandled setup 3158 * 3159 * We do not need to worry about some cmpxchg() changing value 3160 * of ffs->setup_state without holding the lock because when 3161 * state is FFS_SETUP_PENDING cmpxchg() in several places in 3162 * the source does nothing. 3163 */ 3164 if (ffs->setup_state == FFS_SETUP_PENDING) 3165 ffs->setup_state = FFS_SETUP_CANCELLED; 3166 3167 /* 3168 * Logic of this function guarantees that there are at most four pending 3169 * evens on ffs->ev.types queue. This is important because the queue 3170 * has space for four elements only and __ffs_ep0_read_events function 3171 * depends on that limit as well. If more event types are added, those 3172 * limits have to be revisited or guaranteed to still hold. 3173 */ 3174 switch (type) { 3175 case FUNCTIONFS_RESUME: 3176 rem_type2 = FUNCTIONFS_SUSPEND; 3177 fallthrough; 3178 case FUNCTIONFS_SUSPEND: 3179 case FUNCTIONFS_SETUP: 3180 rem_type1 = type; 3181 /* Discard all similar events */ 3182 break; 3183 3184 case FUNCTIONFS_BIND: 3185 case FUNCTIONFS_UNBIND: 3186 case FUNCTIONFS_DISABLE: 3187 case FUNCTIONFS_ENABLE: 3188 /* Discard everything other then power management. */ 3189 rem_type1 = FUNCTIONFS_SUSPEND; 3190 rem_type2 = FUNCTIONFS_RESUME; 3191 neg = 1; 3192 break; 3193 3194 default: 3195 WARN(1, "%d: unknown event, this should not happen\n", type); 3196 return; 3197 } 3198 3199 { 3200 u8 *ev = ffs->ev.types, *out = ev; 3201 unsigned n = ffs->ev.count; 3202 for (; n; --n, ++ev) 3203 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 3204 *out++ = *ev; 3205 else 3206 pr_vdebug("purging event %d\n", *ev); 3207 ffs->ev.count = out - ffs->ev.types; 3208 } 3209 3210 pr_vdebug("adding event %d\n", type); 3211 ffs->ev.types[ffs->ev.count++] = type; 3212 wake_up_locked(&ffs->ev.waitq); 3213 if (ffs->ffs_eventfd) 3214 eventfd_signal(ffs->ffs_eventfd); 3215 } 3216 3217 static void ffs_event_add(struct ffs_data *ffs, 3218 enum usb_functionfs_event_type type) 3219 { 3220 unsigned long flags; 3221 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3222 __ffs_event_add(ffs, type); 3223 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3224 } 3225 3226 /* Bind/unbind USB function hooks *******************************************/ 3227 3228 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 3229 { 3230 int i; 3231 3232 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 3233 if (ffs->eps_addrmap[i] == endpoint_address) 3234 return i; 3235 return -ENOENT; 3236 } 3237 3238 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 3239 struct usb_descriptor_header *desc, 3240 void *priv) 3241 { 3242 struct usb_endpoint_descriptor *ds = (void *)desc; 3243 struct ffs_function *func = priv; 3244 struct ffs_ep *ffs_ep; 3245 unsigned ep_desc_id; 3246 int idx; 3247 static const char *speed_names[] = { "full", "high", "super" }; 3248 3249 if (type != FFS_DESCRIPTOR) 3250 return 0; 3251 3252 /* 3253 * If ss_descriptors is not NULL, we are reading super speed 3254 * descriptors; if hs_descriptors is not NULL, we are reading high 3255 * speed descriptors; otherwise, we are reading full speed 3256 * descriptors. 3257 */ 3258 if (func->function.ss_descriptors) { 3259 ep_desc_id = 2; 3260 func->function.ss_descriptors[(long)valuep] = desc; 3261 } else if (func->function.hs_descriptors) { 3262 ep_desc_id = 1; 3263 func->function.hs_descriptors[(long)valuep] = desc; 3264 } else { 3265 ep_desc_id = 0; 3266 func->function.fs_descriptors[(long)valuep] = desc; 3267 } 3268 3269 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 3270 return 0; 3271 3272 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 3273 if (idx < 0) 3274 return idx; 3275 3276 ffs_ep = func->eps + idx; 3277 3278 if (ffs_ep->descs[ep_desc_id]) { 3279 pr_err("two %sspeed descriptors for EP %d\n", 3280 speed_names[ep_desc_id], 3281 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 3282 return -EINVAL; 3283 } 3284 ffs_ep->descs[ep_desc_id] = ds; 3285 3286 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 3287 if (ffs_ep->ep) { 3288 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 3289 if (!ds->wMaxPacketSize) 3290 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 3291 } else { 3292 struct usb_request *req; 3293 struct usb_ep *ep; 3294 u8 bEndpointAddress; 3295 u16 wMaxPacketSize; 3296 3297 /* 3298 * We back up bEndpointAddress because autoconfig overwrites 3299 * it with physical endpoint address. 3300 */ 3301 bEndpointAddress = ds->bEndpointAddress; 3302 /* 3303 * We back up wMaxPacketSize because autoconfig treats 3304 * endpoint descriptors as if they were full speed. 3305 */ 3306 wMaxPacketSize = ds->wMaxPacketSize; 3307 pr_vdebug("autoconfig\n"); 3308 ep = usb_ep_autoconfig(func->gadget, ds); 3309 if (!ep) 3310 return -ENOTSUPP; 3311 ep->driver_data = func->eps + idx; 3312 3313 req = usb_ep_alloc_request(ep, GFP_KERNEL); 3314 if (!req) 3315 return -ENOMEM; 3316 3317 ffs_ep->ep = ep; 3318 ffs_ep->req = req; 3319 func->eps_revmap[ds->bEndpointAddress & 3320 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 3321 /* 3322 * If we use virtual address mapping, we restore 3323 * original bEndpointAddress value. 3324 */ 3325 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3326 ds->bEndpointAddress = bEndpointAddress; 3327 /* 3328 * Restore wMaxPacketSize which was potentially 3329 * overwritten by autoconfig. 3330 */ 3331 ds->wMaxPacketSize = wMaxPacketSize; 3332 } 3333 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 3334 3335 return 0; 3336 } 3337 3338 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 3339 struct usb_descriptor_header *desc, 3340 void *priv) 3341 { 3342 struct ffs_function *func = priv; 3343 unsigned idx; 3344 u8 newValue; 3345 3346 switch (type) { 3347 default: 3348 case FFS_DESCRIPTOR: 3349 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 3350 return 0; 3351 3352 case FFS_INTERFACE: 3353 idx = *valuep; 3354 if (func->interfaces_nums[idx] < 0) { 3355 int id = usb_interface_id(func->conf, &func->function); 3356 if (id < 0) 3357 return id; 3358 func->interfaces_nums[idx] = id; 3359 } 3360 newValue = func->interfaces_nums[idx]; 3361 break; 3362 3363 case FFS_STRING: 3364 /* String' IDs are allocated when fsf_data is bound to cdev */ 3365 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 3366 break; 3367 3368 case FFS_ENDPOINT: 3369 /* 3370 * USB_DT_ENDPOINT are handled in 3371 * __ffs_func_bind_do_descs(). 3372 */ 3373 if (desc->bDescriptorType == USB_DT_ENDPOINT) 3374 return 0; 3375 3376 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 3377 if (!func->eps[idx].ep) 3378 return -EINVAL; 3379 3380 { 3381 struct usb_endpoint_descriptor **descs; 3382 descs = func->eps[idx].descs; 3383 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 3384 } 3385 break; 3386 } 3387 3388 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 3389 *valuep = newValue; 3390 return 0; 3391 } 3392 3393 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 3394 struct usb_os_desc_header *h, void *data, 3395 unsigned len, void *priv) 3396 { 3397 struct ffs_function *func = priv; 3398 u8 length = 0; 3399 3400 switch (type) { 3401 case FFS_OS_DESC_EXT_COMPAT: { 3402 struct usb_ext_compat_desc *desc = data; 3403 struct usb_os_desc_table *t; 3404 3405 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3406 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3407 memcpy(t->os_desc->ext_compat_id, &desc->IDs, 3408 sizeof_field(struct usb_ext_compat_desc, IDs)); 3409 length = sizeof(*desc); 3410 } 3411 break; 3412 case FFS_OS_DESC_EXT_PROP: { 3413 struct usb_ext_prop_desc *desc = data; 3414 struct usb_os_desc_table *t; 3415 struct usb_os_desc_ext_prop *ext_prop; 3416 char *ext_prop_name; 3417 char *ext_prop_data; 3418 3419 t = &func->function.os_desc_table[h->interface]; 3420 t->if_id = func->interfaces_nums[h->interface]; 3421 3422 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3423 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3424 3425 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3426 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3427 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3428 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3429 length = ext_prop->name_len + ext_prop->data_len + 14; 3430 3431 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3432 func->ffs->ms_os_descs_ext_prop_name_avail += 3433 ext_prop->name_len; 3434 3435 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3436 func->ffs->ms_os_descs_ext_prop_data_avail += 3437 ext_prop->data_len; 3438 memcpy(ext_prop_data, 3439 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3440 ext_prop->data_len); 3441 /* unicode data reported to the host as "WCHAR"s */ 3442 switch (ext_prop->type) { 3443 case USB_EXT_PROP_UNICODE: 3444 case USB_EXT_PROP_UNICODE_ENV: 3445 case USB_EXT_PROP_UNICODE_LINK: 3446 case USB_EXT_PROP_UNICODE_MULTI: 3447 ext_prop->data_len *= 2; 3448 break; 3449 } 3450 ext_prop->data = ext_prop_data; 3451 3452 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3453 ext_prop->name_len); 3454 /* property name reported to the host as "WCHAR"s */ 3455 ext_prop->name_len *= 2; 3456 ext_prop->name = ext_prop_name; 3457 3458 t->os_desc->ext_prop_len += 3459 ext_prop->name_len + ext_prop->data_len + 14; 3460 ++t->os_desc->ext_prop_count; 3461 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3462 } 3463 break; 3464 default: 3465 pr_vdebug("unknown descriptor: %d\n", type); 3466 } 3467 3468 return length; 3469 } 3470 3471 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3472 struct usb_configuration *c) 3473 { 3474 struct ffs_function *func = ffs_func_from_usb(f); 3475 struct f_fs_opts *ffs_opts = 3476 container_of(f->fi, struct f_fs_opts, func_inst); 3477 struct ffs_data *ffs_data; 3478 int ret; 3479 3480 /* 3481 * Legacy gadget triggers binding in functionfs_ready_callback, 3482 * which already uses locking; taking the same lock here would 3483 * cause a deadlock. 3484 * 3485 * Configfs-enabled gadgets however do need ffs_dev_lock. 3486 */ 3487 if (!ffs_opts->no_configfs) 3488 ffs_dev_lock(); 3489 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3490 ffs_data = ffs_opts->dev->ffs_data; 3491 if (!ffs_opts->no_configfs) 3492 ffs_dev_unlock(); 3493 if (ret) 3494 return ERR_PTR(ret); 3495 3496 func->ffs = ffs_data; 3497 func->conf = c; 3498 func->gadget = c->cdev->gadget; 3499 3500 /* 3501 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3502 * configurations are bound in sequence with list_for_each_entry, 3503 * in each configuration its functions are bound in sequence 3504 * with list_for_each_entry, so we assume no race condition 3505 * with regard to ffs_opts->bound access 3506 */ 3507 if (!ffs_opts->refcnt) { 3508 ret = functionfs_bind(func->ffs, c->cdev); 3509 if (ret) 3510 return ERR_PTR(ret); 3511 } 3512 ffs_opts->refcnt++; 3513 func->function.strings = func->ffs->stringtabs; 3514 3515 return ffs_opts; 3516 } 3517 3518 static int _ffs_func_bind(struct usb_configuration *c, 3519 struct usb_function *f) 3520 { 3521 struct ffs_function *func = ffs_func_from_usb(f); 3522 struct ffs_data *ffs = func->ffs; 3523 3524 const int full = !!func->ffs->fs_descs_count; 3525 const int high = !!func->ffs->hs_descs_count; 3526 const int super = !!func->ffs->ss_descs_count; 3527 3528 int fs_len, hs_len, ss_len, ret, i; 3529 struct ffs_ep *eps_ptr; 3530 3531 /* Make it a single chunk, less management later on */ 3532 vla_group(d); 3533 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3534 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3535 full ? ffs->fs_descs_count + 1 : 0); 3536 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3537 high ? ffs->hs_descs_count + 1 : 0); 3538 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3539 super ? ffs->ss_descs_count + 1 : 0); 3540 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3541 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3542 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3543 vla_item_with_sz(d, char[16], ext_compat, 3544 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3545 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3546 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3547 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3548 ffs->ms_os_descs_ext_prop_count); 3549 vla_item_with_sz(d, char, ext_prop_name, 3550 ffs->ms_os_descs_ext_prop_name_len); 3551 vla_item_with_sz(d, char, ext_prop_data, 3552 ffs->ms_os_descs_ext_prop_data_len); 3553 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3554 char *vlabuf; 3555 3556 /* Has descriptors only for speeds gadget does not support */ 3557 if (!(full | high | super)) 3558 return -ENOTSUPP; 3559 3560 /* Allocate a single chunk, less management later on */ 3561 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3562 if (!vlabuf) 3563 return -ENOMEM; 3564 3565 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3566 ffs->ms_os_descs_ext_prop_name_avail = 3567 vla_ptr(vlabuf, d, ext_prop_name); 3568 ffs->ms_os_descs_ext_prop_data_avail = 3569 vla_ptr(vlabuf, d, ext_prop_data); 3570 3571 /* Copy descriptors */ 3572 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3573 ffs->raw_descs_length); 3574 3575 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3576 eps_ptr = vla_ptr(vlabuf, d, eps); 3577 for (i = 0; i < ffs->eps_count; i++) 3578 eps_ptr[i].num = -1; 3579 3580 /* Save pointers 3581 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3582 */ 3583 func->eps = vla_ptr(vlabuf, d, eps); 3584 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3585 3586 /* 3587 * Go through all the endpoint descriptors and allocate 3588 * endpoints first, so that later we can rewrite the endpoint 3589 * numbers without worrying that it may be described later on. 3590 */ 3591 if (full) { 3592 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3593 fs_len = ffs_do_descs(ffs->fs_descs_count, 3594 vla_ptr(vlabuf, d, raw_descs), 3595 d_raw_descs__sz, 3596 __ffs_func_bind_do_descs, func); 3597 if (fs_len < 0) { 3598 ret = fs_len; 3599 goto error; 3600 } 3601 } else { 3602 fs_len = 0; 3603 } 3604 3605 if (high) { 3606 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3607 hs_len = ffs_do_descs(ffs->hs_descs_count, 3608 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3609 d_raw_descs__sz - fs_len, 3610 __ffs_func_bind_do_descs, func); 3611 if (hs_len < 0) { 3612 ret = hs_len; 3613 goto error; 3614 } 3615 } else { 3616 hs_len = 0; 3617 } 3618 3619 if (super) { 3620 func->function.ss_descriptors = func->function.ssp_descriptors = 3621 vla_ptr(vlabuf, d, ss_descs); 3622 ss_len = ffs_do_descs(ffs->ss_descs_count, 3623 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3624 d_raw_descs__sz - fs_len - hs_len, 3625 __ffs_func_bind_do_descs, func); 3626 if (ss_len < 0) { 3627 ret = ss_len; 3628 goto error; 3629 } 3630 } else { 3631 ss_len = 0; 3632 } 3633 3634 /* 3635 * Now handle interface numbers allocation and interface and 3636 * endpoint numbers rewriting. We can do that in one go 3637 * now. 3638 */ 3639 ret = ffs_do_descs(ffs->fs_descs_count + 3640 (high ? ffs->hs_descs_count : 0) + 3641 (super ? ffs->ss_descs_count : 0), 3642 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3643 __ffs_func_bind_do_nums, func); 3644 if (ret < 0) 3645 goto error; 3646 3647 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3648 if (c->cdev->use_os_string) { 3649 for (i = 0; i < ffs->interfaces_count; ++i) { 3650 struct usb_os_desc *desc; 3651 3652 desc = func->function.os_desc_table[i].os_desc = 3653 vla_ptr(vlabuf, d, os_desc) + 3654 i * sizeof(struct usb_os_desc); 3655 desc->ext_compat_id = 3656 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3657 INIT_LIST_HEAD(&desc->ext_prop); 3658 } 3659 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3660 vla_ptr(vlabuf, d, raw_descs) + 3661 fs_len + hs_len + ss_len, 3662 d_raw_descs__sz - fs_len - hs_len - 3663 ss_len, 3664 __ffs_func_bind_do_os_desc, func); 3665 if (ret < 0) 3666 goto error; 3667 } 3668 func->function.os_desc_n = 3669 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3670 3671 /* And we're done */ 3672 ffs_event_add(ffs, FUNCTIONFS_BIND); 3673 return 0; 3674 3675 error: 3676 /* XXX Do we need to release all claimed endpoints here? */ 3677 return ret; 3678 } 3679 3680 static int ffs_func_bind(struct usb_configuration *c, 3681 struct usb_function *f) 3682 { 3683 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3684 struct ffs_function *func = ffs_func_from_usb(f); 3685 int ret; 3686 3687 if (IS_ERR(ffs_opts)) 3688 return PTR_ERR(ffs_opts); 3689 3690 ret = _ffs_func_bind(c, f); 3691 if (ret && !--ffs_opts->refcnt) 3692 functionfs_unbind(func->ffs); 3693 3694 return ret; 3695 } 3696 3697 3698 /* Other USB function hooks *************************************************/ 3699 3700 static void ffs_reset_work(struct work_struct *work) 3701 { 3702 struct ffs_data *ffs = container_of(work, 3703 struct ffs_data, reset_work); 3704 ffs_data_reset(ffs); 3705 } 3706 3707 static int ffs_func_set_alt(struct usb_function *f, 3708 unsigned interface, unsigned alt) 3709 { 3710 struct ffs_function *func = ffs_func_from_usb(f); 3711 struct ffs_data *ffs = func->ffs; 3712 int ret = 0, intf; 3713 3714 if (alt != (unsigned)-1) { 3715 intf = ffs_func_revmap_intf(func, interface); 3716 if (intf < 0) 3717 return intf; 3718 } 3719 3720 if (ffs->func) 3721 ffs_func_eps_disable(ffs->func); 3722 3723 if (ffs->state == FFS_DEACTIVATED) { 3724 ffs->state = FFS_CLOSING; 3725 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3726 schedule_work(&ffs->reset_work); 3727 return -ENODEV; 3728 } 3729 3730 if (ffs->state != FFS_ACTIVE) 3731 return -ENODEV; 3732 3733 if (alt == (unsigned)-1) { 3734 ffs->func = NULL; 3735 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3736 return 0; 3737 } 3738 3739 ffs->func = func; 3740 ret = ffs_func_eps_enable(func); 3741 if (ret >= 0) 3742 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3743 return ret; 3744 } 3745 3746 static void ffs_func_disable(struct usb_function *f) 3747 { 3748 ffs_func_set_alt(f, 0, (unsigned)-1); 3749 } 3750 3751 static int ffs_func_setup(struct usb_function *f, 3752 const struct usb_ctrlrequest *creq) 3753 { 3754 struct ffs_function *func = ffs_func_from_usb(f); 3755 struct ffs_data *ffs = func->ffs; 3756 unsigned long flags; 3757 int ret; 3758 3759 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3760 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3761 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3762 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3763 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3764 3765 /* 3766 * Most requests directed to interface go through here 3767 * (notable exceptions are set/get interface) so we need to 3768 * handle them. All other either handled by composite or 3769 * passed to usb_configuration->setup() (if one is set). No 3770 * matter, we will handle requests directed to endpoint here 3771 * as well (as it's straightforward). Other request recipient 3772 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3773 * is being used. 3774 */ 3775 if (ffs->state != FFS_ACTIVE) 3776 return -ENODEV; 3777 3778 switch (creq->bRequestType & USB_RECIP_MASK) { 3779 case USB_RECIP_INTERFACE: 3780 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3781 if (ret < 0) 3782 return ret; 3783 break; 3784 3785 case USB_RECIP_ENDPOINT: 3786 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3787 if (ret < 0) 3788 return ret; 3789 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3790 ret = func->ffs->eps_addrmap[ret]; 3791 break; 3792 3793 default: 3794 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3795 ret = le16_to_cpu(creq->wIndex); 3796 else 3797 return -EOPNOTSUPP; 3798 } 3799 3800 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3801 ffs->ev.setup = *creq; 3802 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3803 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3804 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3805 3806 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3807 } 3808 3809 static bool ffs_func_req_match(struct usb_function *f, 3810 const struct usb_ctrlrequest *creq, 3811 bool config0) 3812 { 3813 struct ffs_function *func = ffs_func_from_usb(f); 3814 3815 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3816 return false; 3817 3818 switch (creq->bRequestType & USB_RECIP_MASK) { 3819 case USB_RECIP_INTERFACE: 3820 return (ffs_func_revmap_intf(func, 3821 le16_to_cpu(creq->wIndex)) >= 0); 3822 case USB_RECIP_ENDPOINT: 3823 return (ffs_func_revmap_ep(func, 3824 le16_to_cpu(creq->wIndex)) >= 0); 3825 default: 3826 return (bool) (func->ffs->user_flags & 3827 FUNCTIONFS_ALL_CTRL_RECIP); 3828 } 3829 } 3830 3831 static void ffs_func_suspend(struct usb_function *f) 3832 { 3833 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3834 } 3835 3836 static void ffs_func_resume(struct usb_function *f) 3837 { 3838 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3839 } 3840 3841 3842 /* Endpoint and interface numbers reverse mapping ***************************/ 3843 3844 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3845 { 3846 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3847 return num ? num : -EDOM; 3848 } 3849 3850 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3851 { 3852 short *nums = func->interfaces_nums; 3853 unsigned count = func->ffs->interfaces_count; 3854 3855 for (; count; --count, ++nums) { 3856 if (*nums >= 0 && *nums == intf) 3857 return nums - func->interfaces_nums; 3858 } 3859 3860 return -EDOM; 3861 } 3862 3863 3864 /* Devices management *******************************************************/ 3865 3866 static LIST_HEAD(ffs_devices); 3867 3868 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3869 { 3870 struct ffs_dev *dev; 3871 3872 if (!name) 3873 return NULL; 3874 3875 list_for_each_entry(dev, &ffs_devices, entry) { 3876 if (strcmp(dev->name, name) == 0) 3877 return dev; 3878 } 3879 3880 return NULL; 3881 } 3882 3883 /* 3884 * ffs_lock must be taken by the caller of this function 3885 */ 3886 static struct ffs_dev *_ffs_get_single_dev(void) 3887 { 3888 struct ffs_dev *dev; 3889 3890 if (list_is_singular(&ffs_devices)) { 3891 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3892 if (dev->single) 3893 return dev; 3894 } 3895 3896 return NULL; 3897 } 3898 3899 /* 3900 * ffs_lock must be taken by the caller of this function 3901 */ 3902 static struct ffs_dev *_ffs_find_dev(const char *name) 3903 { 3904 struct ffs_dev *dev; 3905 3906 dev = _ffs_get_single_dev(); 3907 if (dev) 3908 return dev; 3909 3910 return _ffs_do_find_dev(name); 3911 } 3912 3913 /* Configfs support *********************************************************/ 3914 3915 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3916 { 3917 return container_of(to_config_group(item), struct f_fs_opts, 3918 func_inst.group); 3919 } 3920 3921 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page) 3922 { 3923 struct f_fs_opts *opts = to_ffs_opts(item); 3924 int ready; 3925 3926 ffs_dev_lock(); 3927 ready = opts->dev->desc_ready; 3928 ffs_dev_unlock(); 3929 3930 return sprintf(page, "%d\n", ready); 3931 } 3932 3933 CONFIGFS_ATTR_RO(f_fs_opts_, ready); 3934 3935 static struct configfs_attribute *ffs_attrs[] = { 3936 &f_fs_opts_attr_ready, 3937 NULL, 3938 }; 3939 3940 static void ffs_attr_release(struct config_item *item) 3941 { 3942 struct f_fs_opts *opts = to_ffs_opts(item); 3943 3944 usb_put_function_instance(&opts->func_inst); 3945 } 3946 3947 static struct configfs_item_operations ffs_item_ops = { 3948 .release = ffs_attr_release, 3949 }; 3950 3951 static const struct config_item_type ffs_func_type = { 3952 .ct_item_ops = &ffs_item_ops, 3953 .ct_attrs = ffs_attrs, 3954 .ct_owner = THIS_MODULE, 3955 }; 3956 3957 3958 /* Function registration interface ******************************************/ 3959 3960 static void ffs_free_inst(struct usb_function_instance *f) 3961 { 3962 struct f_fs_opts *opts; 3963 3964 opts = to_f_fs_opts(f); 3965 ffs_release_dev(opts->dev); 3966 ffs_dev_lock(); 3967 _ffs_free_dev(opts->dev); 3968 ffs_dev_unlock(); 3969 kfree(opts); 3970 } 3971 3972 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3973 { 3974 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3975 return -ENAMETOOLONG; 3976 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3977 } 3978 3979 static struct usb_function_instance *ffs_alloc_inst(void) 3980 { 3981 struct f_fs_opts *opts; 3982 struct ffs_dev *dev; 3983 3984 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3985 if (!opts) 3986 return ERR_PTR(-ENOMEM); 3987 3988 opts->func_inst.set_inst_name = ffs_set_inst_name; 3989 opts->func_inst.free_func_inst = ffs_free_inst; 3990 ffs_dev_lock(); 3991 dev = _ffs_alloc_dev(); 3992 ffs_dev_unlock(); 3993 if (IS_ERR(dev)) { 3994 kfree(opts); 3995 return ERR_CAST(dev); 3996 } 3997 opts->dev = dev; 3998 dev->opts = opts; 3999 4000 config_group_init_type_name(&opts->func_inst.group, "", 4001 &ffs_func_type); 4002 return &opts->func_inst; 4003 } 4004 4005 static void ffs_free(struct usb_function *f) 4006 { 4007 kfree(ffs_func_from_usb(f)); 4008 } 4009 4010 static void ffs_func_unbind(struct usb_configuration *c, 4011 struct usb_function *f) 4012 { 4013 struct ffs_function *func = ffs_func_from_usb(f); 4014 struct ffs_data *ffs = func->ffs; 4015 struct f_fs_opts *opts = 4016 container_of(f->fi, struct f_fs_opts, func_inst); 4017 struct ffs_ep *ep = func->eps; 4018 unsigned count = ffs->eps_count; 4019 unsigned long flags; 4020 4021 if (ffs->func == func) { 4022 ffs_func_eps_disable(func); 4023 ffs->func = NULL; 4024 } 4025 4026 /* Drain any pending AIO completions */ 4027 drain_workqueue(ffs->io_completion_wq); 4028 4029 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 4030 if (!--opts->refcnt) 4031 functionfs_unbind(ffs); 4032 4033 /* cleanup after autoconfig */ 4034 spin_lock_irqsave(&func->ffs->eps_lock, flags); 4035 while (count--) { 4036 if (ep->ep && ep->req) 4037 usb_ep_free_request(ep->ep, ep->req); 4038 ep->req = NULL; 4039 ++ep; 4040 } 4041 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 4042 kfree(func->eps); 4043 func->eps = NULL; 4044 /* 4045 * eps, descriptors and interfaces_nums are allocated in the 4046 * same chunk so only one free is required. 4047 */ 4048 func->function.fs_descriptors = NULL; 4049 func->function.hs_descriptors = NULL; 4050 func->function.ss_descriptors = NULL; 4051 func->function.ssp_descriptors = NULL; 4052 func->interfaces_nums = NULL; 4053 4054 } 4055 4056 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 4057 { 4058 struct ffs_function *func; 4059 4060 func = kzalloc(sizeof(*func), GFP_KERNEL); 4061 if (!func) 4062 return ERR_PTR(-ENOMEM); 4063 4064 func->function.name = "Function FS Gadget"; 4065 4066 func->function.bind = ffs_func_bind; 4067 func->function.unbind = ffs_func_unbind; 4068 func->function.set_alt = ffs_func_set_alt; 4069 func->function.disable = ffs_func_disable; 4070 func->function.setup = ffs_func_setup; 4071 func->function.req_match = ffs_func_req_match; 4072 func->function.suspend = ffs_func_suspend; 4073 func->function.resume = ffs_func_resume; 4074 func->function.free_func = ffs_free; 4075 4076 return &func->function; 4077 } 4078 4079 /* 4080 * ffs_lock must be taken by the caller of this function 4081 */ 4082 static struct ffs_dev *_ffs_alloc_dev(void) 4083 { 4084 struct ffs_dev *dev; 4085 int ret; 4086 4087 if (_ffs_get_single_dev()) 4088 return ERR_PTR(-EBUSY); 4089 4090 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4091 if (!dev) 4092 return ERR_PTR(-ENOMEM); 4093 4094 if (list_empty(&ffs_devices)) { 4095 ret = functionfs_init(); 4096 if (ret) { 4097 kfree(dev); 4098 return ERR_PTR(ret); 4099 } 4100 } 4101 4102 list_add(&dev->entry, &ffs_devices); 4103 4104 return dev; 4105 } 4106 4107 int ffs_name_dev(struct ffs_dev *dev, const char *name) 4108 { 4109 struct ffs_dev *existing; 4110 int ret = 0; 4111 4112 ffs_dev_lock(); 4113 4114 existing = _ffs_do_find_dev(name); 4115 if (!existing) 4116 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 4117 else if (existing != dev) 4118 ret = -EBUSY; 4119 4120 ffs_dev_unlock(); 4121 4122 return ret; 4123 } 4124 EXPORT_SYMBOL_GPL(ffs_name_dev); 4125 4126 int ffs_single_dev(struct ffs_dev *dev) 4127 { 4128 int ret; 4129 4130 ret = 0; 4131 ffs_dev_lock(); 4132 4133 if (!list_is_singular(&ffs_devices)) 4134 ret = -EBUSY; 4135 else 4136 dev->single = true; 4137 4138 ffs_dev_unlock(); 4139 return ret; 4140 } 4141 EXPORT_SYMBOL_GPL(ffs_single_dev); 4142 4143 /* 4144 * ffs_lock must be taken by the caller of this function 4145 */ 4146 static void _ffs_free_dev(struct ffs_dev *dev) 4147 { 4148 list_del(&dev->entry); 4149 4150 kfree(dev); 4151 if (list_empty(&ffs_devices)) 4152 functionfs_cleanup(); 4153 } 4154 4155 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 4156 { 4157 int ret = 0; 4158 struct ffs_dev *ffs_dev; 4159 4160 ffs_dev_lock(); 4161 4162 ffs_dev = _ffs_find_dev(dev_name); 4163 if (!ffs_dev) { 4164 ret = -ENOENT; 4165 } else if (ffs_dev->mounted) { 4166 ret = -EBUSY; 4167 } else if (ffs_dev->ffs_acquire_dev_callback && 4168 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 4169 ret = -ENOENT; 4170 } else { 4171 ffs_dev->mounted = true; 4172 ffs_dev->ffs_data = ffs_data; 4173 ffs_data->private_data = ffs_dev; 4174 } 4175 4176 ffs_dev_unlock(); 4177 return ret; 4178 } 4179 4180 static void ffs_release_dev(struct ffs_dev *ffs_dev) 4181 { 4182 ffs_dev_lock(); 4183 4184 if (ffs_dev && ffs_dev->mounted) { 4185 ffs_dev->mounted = false; 4186 if (ffs_dev->ffs_data) { 4187 ffs_dev->ffs_data->private_data = NULL; 4188 ffs_dev->ffs_data = NULL; 4189 } 4190 4191 if (ffs_dev->ffs_release_dev_callback) 4192 ffs_dev->ffs_release_dev_callback(ffs_dev); 4193 } 4194 4195 ffs_dev_unlock(); 4196 } 4197 4198 static int ffs_ready(struct ffs_data *ffs) 4199 { 4200 struct ffs_dev *ffs_obj; 4201 int ret = 0; 4202 4203 ffs_dev_lock(); 4204 4205 ffs_obj = ffs->private_data; 4206 if (!ffs_obj) { 4207 ret = -EINVAL; 4208 goto done; 4209 } 4210 if (WARN_ON(ffs_obj->desc_ready)) { 4211 ret = -EBUSY; 4212 goto done; 4213 } 4214 4215 ffs_obj->desc_ready = true; 4216 4217 if (ffs_obj->ffs_ready_callback) { 4218 ret = ffs_obj->ffs_ready_callback(ffs); 4219 if (ret) 4220 goto done; 4221 } 4222 4223 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 4224 done: 4225 ffs_dev_unlock(); 4226 return ret; 4227 } 4228 4229 static void ffs_closed(struct ffs_data *ffs) 4230 { 4231 struct ffs_dev *ffs_obj; 4232 struct f_fs_opts *opts; 4233 struct config_item *ci; 4234 4235 ffs_dev_lock(); 4236 4237 ffs_obj = ffs->private_data; 4238 if (!ffs_obj) 4239 goto done; 4240 4241 ffs_obj->desc_ready = false; 4242 4243 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 4244 ffs_obj->ffs_closed_callback) 4245 ffs_obj->ffs_closed_callback(ffs); 4246 4247 if (ffs_obj->opts) 4248 opts = ffs_obj->opts; 4249 else 4250 goto done; 4251 4252 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 4253 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 4254 goto done; 4255 4256 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 4257 ffs_dev_unlock(); 4258 4259 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 4260 unregister_gadget_item(ci); 4261 return; 4262 done: 4263 ffs_dev_unlock(); 4264 } 4265 4266 /* Misc helper functions ****************************************************/ 4267 4268 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 4269 { 4270 return nonblock 4271 ? mutex_trylock(mutex) ? 0 : -EAGAIN 4272 : mutex_lock_interruptible(mutex); 4273 } 4274 4275 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 4276 { 4277 char *data; 4278 4279 if (!len) 4280 return NULL; 4281 4282 data = memdup_user(buf, len); 4283 if (IS_ERR(data)) 4284 return data; 4285 4286 pr_vdebug("Buffer from user space:\n"); 4287 ffs_dump_mem("", data, len); 4288 4289 return data; 4290 } 4291 4292 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 4293 MODULE_LICENSE("GPL"); 4294 MODULE_AUTHOR("Michal Nazarewicz"); 4295