xref: /linux/drivers/usb/gadget/function/f_fs.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <asm/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 
37 #include <linux/aio.h>
38 #include <linux/kthread.h>
39 #include <linux/poll.h>
40 #include <linux/eventfd.h>
41 
42 #include "u_fs.h"
43 #include "u_f.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 
49 MODULE_IMPORT_NS(DMA_BUF);
50 
51 /* Reference counter handling */
52 static void ffs_data_get(struct ffs_data *ffs);
53 static void ffs_data_put(struct ffs_data *ffs);
54 /* Creates new ffs_data object. */
55 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
56 	__attribute__((malloc));
57 
58 /* Opened counter handling. */
59 static void ffs_data_opened(struct ffs_data *ffs);
60 static void ffs_data_closed(struct ffs_data *ffs);
61 
62 /* Called with ffs->mutex held; take over ownership of data. */
63 static int __must_check
64 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
65 static int __must_check
66 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
67 
68 
69 /* The function structure ***************************************************/
70 
71 struct ffs_ep;
72 
73 struct ffs_function {
74 	struct usb_configuration	*conf;
75 	struct usb_gadget		*gadget;
76 	struct ffs_data			*ffs;
77 
78 	struct ffs_ep			*eps;
79 	u8				eps_revmap[16];
80 	short				*interfaces_nums;
81 
82 	struct usb_function		function;
83 };
84 
85 
86 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
87 {
88 	return container_of(f, struct ffs_function, function);
89 }
90 
91 
92 static inline enum ffs_setup_state
93 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
94 {
95 	return (enum ffs_setup_state)
96 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
97 }
98 
99 
100 static void ffs_func_eps_disable(struct ffs_function *func);
101 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
102 
103 static int ffs_func_bind(struct usb_configuration *,
104 			 struct usb_function *);
105 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
106 static void ffs_func_disable(struct usb_function *);
107 static int ffs_func_setup(struct usb_function *,
108 			  const struct usb_ctrlrequest *);
109 static bool ffs_func_req_match(struct usb_function *,
110 			       const struct usb_ctrlrequest *,
111 			       bool config0);
112 static void ffs_func_suspend(struct usb_function *);
113 static void ffs_func_resume(struct usb_function *);
114 
115 
116 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
117 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
118 
119 
120 /* The endpoints structures *************************************************/
121 
122 struct ffs_ep {
123 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
124 	struct usb_request		*req;	/* P: epfile->mutex */
125 
126 	/* [0]: full speed, [1]: high speed, [2]: super speed */
127 	struct usb_endpoint_descriptor	*descs[3];
128 
129 	u8				num;
130 };
131 
132 struct ffs_dmabuf_priv {
133 	struct list_head entry;
134 	struct kref ref;
135 	struct ffs_data *ffs;
136 	struct dma_buf_attachment *attach;
137 	struct sg_table *sgt;
138 	enum dma_data_direction dir;
139 	spinlock_t lock;
140 	u64 context;
141 	struct usb_request *req;	/* P: ffs->eps_lock */
142 	struct usb_ep *ep;		/* P: ffs->eps_lock */
143 };
144 
145 struct ffs_dma_fence {
146 	struct dma_fence base;
147 	struct ffs_dmabuf_priv *priv;
148 	struct work_struct work;
149 };
150 
151 struct ffs_epfile {
152 	/* Protects ep->ep and ep->req. */
153 	struct mutex			mutex;
154 
155 	struct ffs_data			*ffs;
156 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
157 
158 	struct dentry			*dentry;
159 
160 	/*
161 	 * Buffer for holding data from partial reads which may happen since
162 	 * we’re rounding user read requests to a multiple of a max packet size.
163 	 *
164 	 * The pointer is initialised with NULL value and may be set by
165 	 * __ffs_epfile_read_data function to point to a temporary buffer.
166 	 *
167 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
168 	 * data from said buffer and eventually free it.  Importantly, while the
169 	 * function is using the buffer, it sets the pointer to NULL.  This is
170 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
171 	 * can never run concurrently (they are synchronised by epfile->mutex)
172 	 * so the latter will not assign a new value to the pointer.
173 	 *
174 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
175 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
176 	 * value is crux of the synchronisation between ffs_func_eps_disable and
177 	 * __ffs_epfile_read_data.
178 	 *
179 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
180 	 * pointer back to its old value (as described above), but seeing as the
181 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
182 	 * the buffer.
183 	 *
184 	 * == State transitions ==
185 	 *
186 	 * • ptr == NULL:  (initial state)
187 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
188 	 *   ◦ __ffs_epfile_read_buffered:    nop
189 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
190 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
191 	 * • ptr == DROP:
192 	 *   ◦ __ffs_epfile_read_buffer_free: nop
193 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
194 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
195 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
196 	 * • ptr == buf:
197 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
198 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
199 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
200 	 *                                    is always called first
201 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
202 	 * • ptr == NULL and reading:
203 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
204 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
205 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
206 	 *   ◦ reading finishes and …
207 	 *     … all data read:               free buf, go to ptr == NULL
208 	 *     … otherwise:                   go to ptr == buf and reading
209 	 * • ptr == DROP and reading:
210 	 *   ◦ __ffs_epfile_read_buffer_free: nop
211 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
212 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
213 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
214 	 */
215 	struct ffs_buffer		*read_buffer;
216 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
217 
218 	char				name[5];
219 
220 	unsigned char			in;	/* P: ffs->eps_lock */
221 	unsigned char			isoc;	/* P: ffs->eps_lock */
222 
223 	unsigned char			_pad;
224 
225 	/* Protects dmabufs */
226 	struct mutex			dmabufs_mutex;
227 	struct list_head		dmabufs; /* P: dmabufs_mutex */
228 	atomic_t			seqno;
229 };
230 
231 struct ffs_buffer {
232 	size_t length;
233 	char *data;
234 	char storage[] __counted_by(length);
235 };
236 
237 /*  ffs_io_data structure ***************************************************/
238 
239 struct ffs_io_data {
240 	bool aio;
241 	bool read;
242 
243 	struct kiocb *kiocb;
244 	struct iov_iter data;
245 	const void *to_free;
246 	char *buf;
247 
248 	struct mm_struct *mm;
249 	struct work_struct work;
250 
251 	struct usb_ep *ep;
252 	struct usb_request *req;
253 	struct sg_table sgt;
254 	bool use_sg;
255 
256 	struct ffs_data *ffs;
257 
258 	int status;
259 	struct completion done;
260 };
261 
262 struct ffs_desc_helper {
263 	struct ffs_data *ffs;
264 	unsigned interfaces_count;
265 	unsigned eps_count;
266 };
267 
268 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
269 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
270 
271 static struct dentry *
272 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
273 		   const struct file_operations *fops);
274 
275 /* Devices management *******************************************************/
276 
277 DEFINE_MUTEX(ffs_lock);
278 EXPORT_SYMBOL_GPL(ffs_lock);
279 
280 static struct ffs_dev *_ffs_find_dev(const char *name);
281 static struct ffs_dev *_ffs_alloc_dev(void);
282 static void _ffs_free_dev(struct ffs_dev *dev);
283 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
284 static void ffs_release_dev(struct ffs_dev *ffs_dev);
285 static int ffs_ready(struct ffs_data *ffs);
286 static void ffs_closed(struct ffs_data *ffs);
287 
288 /* Misc helper functions ****************************************************/
289 
290 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
291 	__attribute__((warn_unused_result, nonnull));
292 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
293 	__attribute__((warn_unused_result, nonnull));
294 
295 
296 /* Control file aka ep0 *****************************************************/
297 
298 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
299 {
300 	struct ffs_data *ffs = req->context;
301 
302 	complete(&ffs->ep0req_completion);
303 }
304 
305 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
306 	__releases(&ffs->ev.waitq.lock)
307 {
308 	struct usb_request *req = ffs->ep0req;
309 	int ret;
310 
311 	if (!req) {
312 		spin_unlock_irq(&ffs->ev.waitq.lock);
313 		return -EINVAL;
314 	}
315 
316 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
317 
318 	spin_unlock_irq(&ffs->ev.waitq.lock);
319 
320 	req->buf      = data;
321 	req->length   = len;
322 
323 	/*
324 	 * UDC layer requires to provide a buffer even for ZLP, but should
325 	 * not use it at all. Let's provide some poisoned pointer to catch
326 	 * possible bug in the driver.
327 	 */
328 	if (req->buf == NULL)
329 		req->buf = (void *)0xDEADBABE;
330 
331 	reinit_completion(&ffs->ep0req_completion);
332 
333 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
334 	if (ret < 0)
335 		return ret;
336 
337 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
338 	if (ret) {
339 		usb_ep_dequeue(ffs->gadget->ep0, req);
340 		return -EINTR;
341 	}
342 
343 	ffs->setup_state = FFS_NO_SETUP;
344 	return req->status ? req->status : req->actual;
345 }
346 
347 static int __ffs_ep0_stall(struct ffs_data *ffs)
348 {
349 	if (ffs->ev.can_stall) {
350 		pr_vdebug("ep0 stall\n");
351 		usb_ep_set_halt(ffs->gadget->ep0);
352 		ffs->setup_state = FFS_NO_SETUP;
353 		return -EL2HLT;
354 	} else {
355 		pr_debug("bogus ep0 stall!\n");
356 		return -ESRCH;
357 	}
358 }
359 
360 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
361 			     size_t len, loff_t *ptr)
362 {
363 	struct ffs_data *ffs = file->private_data;
364 	ssize_t ret;
365 	char *data;
366 
367 	/* Fast check if setup was canceled */
368 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
369 		return -EIDRM;
370 
371 	/* Acquire mutex */
372 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
373 	if (ret < 0)
374 		return ret;
375 
376 	/* Check state */
377 	switch (ffs->state) {
378 	case FFS_READ_DESCRIPTORS:
379 	case FFS_READ_STRINGS:
380 		/* Copy data */
381 		if (len < 16) {
382 			ret = -EINVAL;
383 			break;
384 		}
385 
386 		data = ffs_prepare_buffer(buf, len);
387 		if (IS_ERR(data)) {
388 			ret = PTR_ERR(data);
389 			break;
390 		}
391 
392 		/* Handle data */
393 		if (ffs->state == FFS_READ_DESCRIPTORS) {
394 			pr_info("read descriptors\n");
395 			ret = __ffs_data_got_descs(ffs, data, len);
396 			if (ret < 0)
397 				break;
398 
399 			ffs->state = FFS_READ_STRINGS;
400 			ret = len;
401 		} else {
402 			pr_info("read strings\n");
403 			ret = __ffs_data_got_strings(ffs, data, len);
404 			if (ret < 0)
405 				break;
406 
407 			ret = ffs_epfiles_create(ffs);
408 			if (ret) {
409 				ffs->state = FFS_CLOSING;
410 				break;
411 			}
412 
413 			ffs->state = FFS_ACTIVE;
414 			mutex_unlock(&ffs->mutex);
415 
416 			ret = ffs_ready(ffs);
417 			if (ret < 0) {
418 				ffs->state = FFS_CLOSING;
419 				return ret;
420 			}
421 
422 			return len;
423 		}
424 		break;
425 
426 	case FFS_ACTIVE:
427 		data = NULL;
428 		/*
429 		 * We're called from user space, we can use _irq
430 		 * rather then _irqsave
431 		 */
432 		spin_lock_irq(&ffs->ev.waitq.lock);
433 		switch (ffs_setup_state_clear_cancelled(ffs)) {
434 		case FFS_SETUP_CANCELLED:
435 			ret = -EIDRM;
436 			goto done_spin;
437 
438 		case FFS_NO_SETUP:
439 			ret = -ESRCH;
440 			goto done_spin;
441 
442 		case FFS_SETUP_PENDING:
443 			break;
444 		}
445 
446 		/* FFS_SETUP_PENDING */
447 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
448 			spin_unlock_irq(&ffs->ev.waitq.lock);
449 			ret = __ffs_ep0_stall(ffs);
450 			break;
451 		}
452 
453 		/* FFS_SETUP_PENDING and not stall */
454 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
455 
456 		spin_unlock_irq(&ffs->ev.waitq.lock);
457 
458 		data = ffs_prepare_buffer(buf, len);
459 		if (IS_ERR(data)) {
460 			ret = PTR_ERR(data);
461 			break;
462 		}
463 
464 		spin_lock_irq(&ffs->ev.waitq.lock);
465 
466 		/*
467 		 * We are guaranteed to be still in FFS_ACTIVE state
468 		 * but the state of setup could have changed from
469 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
470 		 * to check for that.  If that happened we copied data
471 		 * from user space in vain but it's unlikely.
472 		 *
473 		 * For sure we are not in FFS_NO_SETUP since this is
474 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
475 		 * transition can be performed and it's protected by
476 		 * mutex.
477 		 */
478 		if (ffs_setup_state_clear_cancelled(ffs) ==
479 		    FFS_SETUP_CANCELLED) {
480 			ret = -EIDRM;
481 done_spin:
482 			spin_unlock_irq(&ffs->ev.waitq.lock);
483 		} else {
484 			/* unlocks spinlock */
485 			ret = __ffs_ep0_queue_wait(ffs, data, len);
486 		}
487 		kfree(data);
488 		break;
489 
490 	default:
491 		ret = -EBADFD;
492 		break;
493 	}
494 
495 	mutex_unlock(&ffs->mutex);
496 	return ret;
497 }
498 
499 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
500 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
501 				     size_t n)
502 	__releases(&ffs->ev.waitq.lock)
503 {
504 	/*
505 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
506 	 * size of ffs->ev.types array (which is four) so that's how much space
507 	 * we reserve.
508 	 */
509 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
510 	const size_t size = n * sizeof *events;
511 	unsigned i = 0;
512 
513 	memset(events, 0, size);
514 
515 	do {
516 		events[i].type = ffs->ev.types[i];
517 		if (events[i].type == FUNCTIONFS_SETUP) {
518 			events[i].u.setup = ffs->ev.setup;
519 			ffs->setup_state = FFS_SETUP_PENDING;
520 		}
521 	} while (++i < n);
522 
523 	ffs->ev.count -= n;
524 	if (ffs->ev.count)
525 		memmove(ffs->ev.types, ffs->ev.types + n,
526 			ffs->ev.count * sizeof *ffs->ev.types);
527 
528 	spin_unlock_irq(&ffs->ev.waitq.lock);
529 	mutex_unlock(&ffs->mutex);
530 
531 	return copy_to_user(buf, events, size) ? -EFAULT : size;
532 }
533 
534 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
535 			    size_t len, loff_t *ptr)
536 {
537 	struct ffs_data *ffs = file->private_data;
538 	char *data = NULL;
539 	size_t n;
540 	int ret;
541 
542 	/* Fast check if setup was canceled */
543 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
544 		return -EIDRM;
545 
546 	/* Acquire mutex */
547 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
548 	if (ret < 0)
549 		return ret;
550 
551 	/* Check state */
552 	if (ffs->state != FFS_ACTIVE) {
553 		ret = -EBADFD;
554 		goto done_mutex;
555 	}
556 
557 	/*
558 	 * We're called from user space, we can use _irq rather then
559 	 * _irqsave
560 	 */
561 	spin_lock_irq(&ffs->ev.waitq.lock);
562 
563 	switch (ffs_setup_state_clear_cancelled(ffs)) {
564 	case FFS_SETUP_CANCELLED:
565 		ret = -EIDRM;
566 		break;
567 
568 	case FFS_NO_SETUP:
569 		n = len / sizeof(struct usb_functionfs_event);
570 		if (!n) {
571 			ret = -EINVAL;
572 			break;
573 		}
574 
575 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
576 			ret = -EAGAIN;
577 			break;
578 		}
579 
580 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
581 							ffs->ev.count)) {
582 			ret = -EINTR;
583 			break;
584 		}
585 
586 		/* unlocks spinlock */
587 		return __ffs_ep0_read_events(ffs, buf,
588 					     min(n, (size_t)ffs->ev.count));
589 
590 	case FFS_SETUP_PENDING:
591 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
592 			spin_unlock_irq(&ffs->ev.waitq.lock);
593 			ret = __ffs_ep0_stall(ffs);
594 			goto done_mutex;
595 		}
596 
597 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
598 
599 		spin_unlock_irq(&ffs->ev.waitq.lock);
600 
601 		if (len) {
602 			data = kmalloc(len, GFP_KERNEL);
603 			if (!data) {
604 				ret = -ENOMEM;
605 				goto done_mutex;
606 			}
607 		}
608 
609 		spin_lock_irq(&ffs->ev.waitq.lock);
610 
611 		/* See ffs_ep0_write() */
612 		if (ffs_setup_state_clear_cancelled(ffs) ==
613 		    FFS_SETUP_CANCELLED) {
614 			ret = -EIDRM;
615 			break;
616 		}
617 
618 		/* unlocks spinlock */
619 		ret = __ffs_ep0_queue_wait(ffs, data, len);
620 		if ((ret > 0) && (copy_to_user(buf, data, len)))
621 			ret = -EFAULT;
622 		goto done_mutex;
623 
624 	default:
625 		ret = -EBADFD;
626 		break;
627 	}
628 
629 	spin_unlock_irq(&ffs->ev.waitq.lock);
630 done_mutex:
631 	mutex_unlock(&ffs->mutex);
632 	kfree(data);
633 	return ret;
634 }
635 
636 static int ffs_ep0_open(struct inode *inode, struct file *file)
637 {
638 	struct ffs_data *ffs = inode->i_private;
639 
640 	if (ffs->state == FFS_CLOSING)
641 		return -EBUSY;
642 
643 	file->private_data = ffs;
644 	ffs_data_opened(ffs);
645 
646 	return stream_open(inode, file);
647 }
648 
649 static int ffs_ep0_release(struct inode *inode, struct file *file)
650 {
651 	struct ffs_data *ffs = file->private_data;
652 
653 	ffs_data_closed(ffs);
654 
655 	return 0;
656 }
657 
658 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
659 {
660 	struct ffs_data *ffs = file->private_data;
661 	struct usb_gadget *gadget = ffs->gadget;
662 	long ret;
663 
664 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
665 		struct ffs_function *func = ffs->func;
666 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
667 	} else if (gadget && gadget->ops->ioctl) {
668 		ret = gadget->ops->ioctl(gadget, code, value);
669 	} else {
670 		ret = -ENOTTY;
671 	}
672 
673 	return ret;
674 }
675 
676 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
677 {
678 	struct ffs_data *ffs = file->private_data;
679 	__poll_t mask = EPOLLWRNORM;
680 	int ret;
681 
682 	poll_wait(file, &ffs->ev.waitq, wait);
683 
684 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
685 	if (ret < 0)
686 		return mask;
687 
688 	switch (ffs->state) {
689 	case FFS_READ_DESCRIPTORS:
690 	case FFS_READ_STRINGS:
691 		mask |= EPOLLOUT;
692 		break;
693 
694 	case FFS_ACTIVE:
695 		switch (ffs->setup_state) {
696 		case FFS_NO_SETUP:
697 			if (ffs->ev.count)
698 				mask |= EPOLLIN;
699 			break;
700 
701 		case FFS_SETUP_PENDING:
702 		case FFS_SETUP_CANCELLED:
703 			mask |= (EPOLLIN | EPOLLOUT);
704 			break;
705 		}
706 		break;
707 
708 	case FFS_CLOSING:
709 		break;
710 	case FFS_DEACTIVATED:
711 		break;
712 	}
713 
714 	mutex_unlock(&ffs->mutex);
715 
716 	return mask;
717 }
718 
719 static const struct file_operations ffs_ep0_operations = {
720 	.llseek =	no_llseek,
721 
722 	.open =		ffs_ep0_open,
723 	.write =	ffs_ep0_write,
724 	.read =		ffs_ep0_read,
725 	.release =	ffs_ep0_release,
726 	.unlocked_ioctl =	ffs_ep0_ioctl,
727 	.poll =		ffs_ep0_poll,
728 };
729 
730 
731 /* "Normal" endpoints operations ********************************************/
732 
733 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
734 {
735 	struct ffs_io_data *io_data = req->context;
736 
737 	if (req->status)
738 		io_data->status = req->status;
739 	else
740 		io_data->status = req->actual;
741 
742 	complete(&io_data->done);
743 }
744 
745 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
746 {
747 	ssize_t ret = copy_to_iter(data, data_len, iter);
748 	if (ret == data_len)
749 		return ret;
750 
751 	if (iov_iter_count(iter))
752 		return -EFAULT;
753 
754 	/*
755 	 * Dear user space developer!
756 	 *
757 	 * TL;DR: To stop getting below error message in your kernel log, change
758 	 * user space code using functionfs to align read buffers to a max
759 	 * packet size.
760 	 *
761 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
762 	 * packet size.  When unaligned buffer is passed to functionfs, it
763 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
764 	 *
765 	 * Unfortunately, this means that host may send more data than was
766 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
767 	 * that excess data so it simply drops it.
768 	 *
769 	 * Was the buffer aligned in the first place, no such problem would
770 	 * happen.
771 	 *
772 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
773 	 * by splitting a request into multiple parts.  This splitting may still
774 	 * be a problem though so it’s likely best to align the buffer
775 	 * regardless of it being AIO or not..
776 	 *
777 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
778 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
779 	 * affected.
780 	 */
781 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
782 	       "Align read buffer size to max packet size to avoid the problem.\n",
783 	       data_len, ret);
784 
785 	return ret;
786 }
787 
788 /*
789  * allocate a virtually contiguous buffer and create a scatterlist describing it
790  * @sg_table	- pointer to a place to be filled with sg_table contents
791  * @size	- required buffer size
792  */
793 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
794 {
795 	struct page **pages;
796 	void *vaddr, *ptr;
797 	unsigned int n_pages;
798 	int i;
799 
800 	vaddr = vmalloc(sz);
801 	if (!vaddr)
802 		return NULL;
803 
804 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
805 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
806 	if (!pages) {
807 		vfree(vaddr);
808 
809 		return NULL;
810 	}
811 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
812 		pages[i] = vmalloc_to_page(ptr);
813 
814 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
815 		kvfree(pages);
816 		vfree(vaddr);
817 
818 		return NULL;
819 	}
820 	kvfree(pages);
821 
822 	return vaddr;
823 }
824 
825 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
826 	size_t data_len)
827 {
828 	if (io_data->use_sg)
829 		return ffs_build_sg_list(&io_data->sgt, data_len);
830 
831 	return kmalloc(data_len, GFP_KERNEL);
832 }
833 
834 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
835 {
836 	if (!io_data->buf)
837 		return;
838 
839 	if (io_data->use_sg) {
840 		sg_free_table(&io_data->sgt);
841 		vfree(io_data->buf);
842 	} else {
843 		kfree(io_data->buf);
844 	}
845 }
846 
847 static void ffs_user_copy_worker(struct work_struct *work)
848 {
849 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
850 						   work);
851 	int ret = io_data->status;
852 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
853 
854 	if (io_data->read && ret > 0) {
855 		kthread_use_mm(io_data->mm);
856 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
857 		kthread_unuse_mm(io_data->mm);
858 	}
859 
860 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
861 
862 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
863 		eventfd_signal(io_data->ffs->ffs_eventfd);
864 
865 	if (io_data->read)
866 		kfree(io_data->to_free);
867 	ffs_free_buffer(io_data);
868 	kfree(io_data);
869 }
870 
871 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
872 					 struct usb_request *req)
873 {
874 	struct ffs_io_data *io_data = req->context;
875 	struct ffs_data *ffs = io_data->ffs;
876 
877 	io_data->status = req->status ? req->status : req->actual;
878 	usb_ep_free_request(_ep, req);
879 
880 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
881 	queue_work(ffs->io_completion_wq, &io_data->work);
882 }
883 
884 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
885 {
886 	/*
887 	 * See comment in struct ffs_epfile for full read_buffer pointer
888 	 * synchronisation story.
889 	 */
890 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
891 	if (buf && buf != READ_BUFFER_DROP)
892 		kfree(buf);
893 }
894 
895 /* Assumes epfile->mutex is held. */
896 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
897 					  struct iov_iter *iter)
898 {
899 	/*
900 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
901 	 * the buffer while we are using it.  See comment in struct ffs_epfile
902 	 * for full read_buffer pointer synchronisation story.
903 	 */
904 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
905 	ssize_t ret;
906 	if (!buf || buf == READ_BUFFER_DROP)
907 		return 0;
908 
909 	ret = copy_to_iter(buf->data, buf->length, iter);
910 	if (buf->length == ret) {
911 		kfree(buf);
912 		return ret;
913 	}
914 
915 	if (iov_iter_count(iter)) {
916 		ret = -EFAULT;
917 	} else {
918 		buf->length -= ret;
919 		buf->data += ret;
920 	}
921 
922 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
923 		kfree(buf);
924 
925 	return ret;
926 }
927 
928 /* Assumes epfile->mutex is held. */
929 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
930 				      void *data, int data_len,
931 				      struct iov_iter *iter)
932 {
933 	struct ffs_buffer *buf;
934 
935 	ssize_t ret = copy_to_iter(data, data_len, iter);
936 	if (data_len == ret)
937 		return ret;
938 
939 	if (iov_iter_count(iter))
940 		return -EFAULT;
941 
942 	/* See ffs_copy_to_iter for more context. */
943 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
944 		data_len, ret);
945 
946 	data_len -= ret;
947 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
948 	if (!buf)
949 		return -ENOMEM;
950 	buf->length = data_len;
951 	buf->data = buf->storage;
952 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
953 
954 	/*
955 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
956 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
957 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
958 	 * story.
959 	 */
960 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
961 		kfree(buf);
962 
963 	return ret;
964 }
965 
966 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
967 {
968 	struct ffs_epfile *epfile = file->private_data;
969 	struct ffs_ep *ep;
970 	int ret;
971 
972 	/* Wait for endpoint to be enabled */
973 	ep = epfile->ep;
974 	if (!ep) {
975 		if (file->f_flags & O_NONBLOCK)
976 			return ERR_PTR(-EAGAIN);
977 
978 		ret = wait_event_interruptible(
979 				epfile->ffs->wait, (ep = epfile->ep));
980 		if (ret)
981 			return ERR_PTR(-EINTR);
982 	}
983 
984 	return ep;
985 }
986 
987 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
988 {
989 	struct ffs_epfile *epfile = file->private_data;
990 	struct usb_request *req;
991 	struct ffs_ep *ep;
992 	char *data = NULL;
993 	ssize_t ret, data_len = -EINVAL;
994 	int halt;
995 
996 	/* Are we still active? */
997 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
998 		return -ENODEV;
999 
1000 	ep = ffs_epfile_wait_ep(file);
1001 	if (IS_ERR(ep))
1002 		return PTR_ERR(ep);
1003 
1004 	/* Do we halt? */
1005 	halt = (!io_data->read == !epfile->in);
1006 	if (halt && epfile->isoc)
1007 		return -EINVAL;
1008 
1009 	/* We will be using request and read_buffer */
1010 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1011 	if (ret)
1012 		goto error;
1013 
1014 	/* Allocate & copy */
1015 	if (!halt) {
1016 		struct usb_gadget *gadget;
1017 
1018 		/*
1019 		 * Do we have buffered data from previous partial read?  Check
1020 		 * that for synchronous case only because we do not have
1021 		 * facility to ‘wake up’ a pending asynchronous read and push
1022 		 * buffered data to it which we would need to make things behave
1023 		 * consistently.
1024 		 */
1025 		if (!io_data->aio && io_data->read) {
1026 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1027 			if (ret)
1028 				goto error_mutex;
1029 		}
1030 
1031 		/*
1032 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1033 		 * before the waiting completes, so do not assign to 'gadget'
1034 		 * earlier
1035 		 */
1036 		gadget = epfile->ffs->gadget;
1037 
1038 		spin_lock_irq(&epfile->ffs->eps_lock);
1039 		/* In the meantime, endpoint got disabled or changed. */
1040 		if (epfile->ep != ep) {
1041 			ret = -ESHUTDOWN;
1042 			goto error_lock;
1043 		}
1044 		data_len = iov_iter_count(&io_data->data);
1045 		/*
1046 		 * Controller may require buffer size to be aligned to
1047 		 * maxpacketsize of an out endpoint.
1048 		 */
1049 		if (io_data->read)
1050 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1051 
1052 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1053 		spin_unlock_irq(&epfile->ffs->eps_lock);
1054 
1055 		data = ffs_alloc_buffer(io_data, data_len);
1056 		if (!data) {
1057 			ret = -ENOMEM;
1058 			goto error_mutex;
1059 		}
1060 		if (!io_data->read &&
1061 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1062 			ret = -EFAULT;
1063 			goto error_mutex;
1064 		}
1065 	}
1066 
1067 	spin_lock_irq(&epfile->ffs->eps_lock);
1068 
1069 	if (epfile->ep != ep) {
1070 		/* In the meantime, endpoint got disabled or changed. */
1071 		ret = -ESHUTDOWN;
1072 	} else if (halt) {
1073 		ret = usb_ep_set_halt(ep->ep);
1074 		if (!ret)
1075 			ret = -EBADMSG;
1076 	} else if (data_len == -EINVAL) {
1077 		/*
1078 		 * Sanity Check: even though data_len can't be used
1079 		 * uninitialized at the time I write this comment, some
1080 		 * compilers complain about this situation.
1081 		 * In order to keep the code clean from warnings, data_len is
1082 		 * being initialized to -EINVAL during its declaration, which
1083 		 * means we can't rely on compiler anymore to warn no future
1084 		 * changes won't result in data_len being used uninitialized.
1085 		 * For such reason, we're adding this redundant sanity check
1086 		 * here.
1087 		 */
1088 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1089 		ret = -EINVAL;
1090 	} else if (!io_data->aio) {
1091 		bool interrupted = false;
1092 
1093 		req = ep->req;
1094 		if (io_data->use_sg) {
1095 			req->buf = NULL;
1096 			req->sg	= io_data->sgt.sgl;
1097 			req->num_sgs = io_data->sgt.nents;
1098 		} else {
1099 			req->buf = data;
1100 			req->num_sgs = 0;
1101 		}
1102 		req->length = data_len;
1103 
1104 		io_data->buf = data;
1105 
1106 		init_completion(&io_data->done);
1107 		req->context  = io_data;
1108 		req->complete = ffs_epfile_io_complete;
1109 
1110 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1111 		if (ret < 0)
1112 			goto error_lock;
1113 
1114 		spin_unlock_irq(&epfile->ffs->eps_lock);
1115 
1116 		if (wait_for_completion_interruptible(&io_data->done)) {
1117 			spin_lock_irq(&epfile->ffs->eps_lock);
1118 			if (epfile->ep != ep) {
1119 				ret = -ESHUTDOWN;
1120 				goto error_lock;
1121 			}
1122 			/*
1123 			 * To avoid race condition with ffs_epfile_io_complete,
1124 			 * dequeue the request first then check
1125 			 * status. usb_ep_dequeue API should guarantee no race
1126 			 * condition with req->complete callback.
1127 			 */
1128 			usb_ep_dequeue(ep->ep, req);
1129 			spin_unlock_irq(&epfile->ffs->eps_lock);
1130 			wait_for_completion(&io_data->done);
1131 			interrupted = io_data->status < 0;
1132 		}
1133 
1134 		if (interrupted)
1135 			ret = -EINTR;
1136 		else if (io_data->read && io_data->status > 0)
1137 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1138 						     &io_data->data);
1139 		else
1140 			ret = io_data->status;
1141 		goto error_mutex;
1142 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1143 		ret = -ENOMEM;
1144 	} else {
1145 		if (io_data->use_sg) {
1146 			req->buf = NULL;
1147 			req->sg	= io_data->sgt.sgl;
1148 			req->num_sgs = io_data->sgt.nents;
1149 		} else {
1150 			req->buf = data;
1151 			req->num_sgs = 0;
1152 		}
1153 		req->length = data_len;
1154 
1155 		io_data->buf = data;
1156 		io_data->ep = ep->ep;
1157 		io_data->req = req;
1158 		io_data->ffs = epfile->ffs;
1159 
1160 		req->context  = io_data;
1161 		req->complete = ffs_epfile_async_io_complete;
1162 
1163 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1164 		if (ret) {
1165 			io_data->req = NULL;
1166 			usb_ep_free_request(ep->ep, req);
1167 			goto error_lock;
1168 		}
1169 
1170 		ret = -EIOCBQUEUED;
1171 		/*
1172 		 * Do not kfree the buffer in this function.  It will be freed
1173 		 * by ffs_user_copy_worker.
1174 		 */
1175 		data = NULL;
1176 	}
1177 
1178 error_lock:
1179 	spin_unlock_irq(&epfile->ffs->eps_lock);
1180 error_mutex:
1181 	mutex_unlock(&epfile->mutex);
1182 error:
1183 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1184 		ffs_free_buffer(io_data);
1185 	return ret;
1186 }
1187 
1188 static int
1189 ffs_epfile_open(struct inode *inode, struct file *file)
1190 {
1191 	struct ffs_epfile *epfile = inode->i_private;
1192 
1193 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1194 		return -ENODEV;
1195 
1196 	file->private_data = epfile;
1197 	ffs_data_opened(epfile->ffs);
1198 
1199 	return stream_open(inode, file);
1200 }
1201 
1202 static int ffs_aio_cancel(struct kiocb *kiocb)
1203 {
1204 	struct ffs_io_data *io_data = kiocb->private;
1205 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1206 	unsigned long flags;
1207 	int value;
1208 
1209 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1210 
1211 	if (io_data && io_data->ep && io_data->req)
1212 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1213 	else
1214 		value = -EINVAL;
1215 
1216 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1217 
1218 	return value;
1219 }
1220 
1221 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1222 {
1223 	struct ffs_io_data io_data, *p = &io_data;
1224 	ssize_t res;
1225 
1226 	if (!is_sync_kiocb(kiocb)) {
1227 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1228 		if (!p)
1229 			return -ENOMEM;
1230 		p->aio = true;
1231 	} else {
1232 		memset(p, 0, sizeof(*p));
1233 		p->aio = false;
1234 	}
1235 
1236 	p->read = false;
1237 	p->kiocb = kiocb;
1238 	p->data = *from;
1239 	p->mm = current->mm;
1240 
1241 	kiocb->private = p;
1242 
1243 	if (p->aio)
1244 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1245 
1246 	res = ffs_epfile_io(kiocb->ki_filp, p);
1247 	if (res == -EIOCBQUEUED)
1248 		return res;
1249 	if (p->aio)
1250 		kfree(p);
1251 	else
1252 		*from = p->data;
1253 	return res;
1254 }
1255 
1256 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1257 {
1258 	struct ffs_io_data io_data, *p = &io_data;
1259 	ssize_t res;
1260 
1261 	if (!is_sync_kiocb(kiocb)) {
1262 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1263 		if (!p)
1264 			return -ENOMEM;
1265 		p->aio = true;
1266 	} else {
1267 		memset(p, 0, sizeof(*p));
1268 		p->aio = false;
1269 	}
1270 
1271 	p->read = true;
1272 	p->kiocb = kiocb;
1273 	if (p->aio) {
1274 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1275 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1276 			kfree(p);
1277 			return -ENOMEM;
1278 		}
1279 	} else {
1280 		p->data = *to;
1281 		p->to_free = NULL;
1282 	}
1283 	p->mm = current->mm;
1284 
1285 	kiocb->private = p;
1286 
1287 	if (p->aio)
1288 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1289 
1290 	res = ffs_epfile_io(kiocb->ki_filp, p);
1291 	if (res == -EIOCBQUEUED)
1292 		return res;
1293 
1294 	if (p->aio) {
1295 		kfree(p->to_free);
1296 		kfree(p);
1297 	} else {
1298 		*to = p->data;
1299 	}
1300 	return res;
1301 }
1302 
1303 static void ffs_dmabuf_release(struct kref *ref)
1304 {
1305 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1306 	struct dma_buf_attachment *attach = priv->attach;
1307 	struct dma_buf *dmabuf = attach->dmabuf;
1308 
1309 	pr_vdebug("FFS DMABUF release\n");
1310 	dma_resv_lock(dmabuf->resv, NULL);
1311 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1312 	dma_resv_unlock(dmabuf->resv);
1313 
1314 	dma_buf_detach(attach->dmabuf, attach);
1315 	dma_buf_put(dmabuf);
1316 	kfree(priv);
1317 }
1318 
1319 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1320 {
1321 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1322 
1323 	kref_get(&priv->ref);
1324 }
1325 
1326 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1327 {
1328 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1329 
1330 	kref_put(&priv->ref, ffs_dmabuf_release);
1331 }
1332 
1333 static int
1334 ffs_epfile_release(struct inode *inode, struct file *file)
1335 {
1336 	struct ffs_epfile *epfile = inode->i_private;
1337 	struct ffs_dmabuf_priv *priv, *tmp;
1338 	struct ffs_data *ffs = epfile->ffs;
1339 
1340 	mutex_lock(&epfile->dmabufs_mutex);
1341 
1342 	/* Close all attached DMABUFs */
1343 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1344 		/* Cancel any pending transfer */
1345 		spin_lock_irq(&ffs->eps_lock);
1346 		if (priv->ep && priv->req)
1347 			usb_ep_dequeue(priv->ep, priv->req);
1348 		spin_unlock_irq(&ffs->eps_lock);
1349 
1350 		list_del(&priv->entry);
1351 		ffs_dmabuf_put(priv->attach);
1352 	}
1353 
1354 	mutex_unlock(&epfile->dmabufs_mutex);
1355 
1356 	__ffs_epfile_read_buffer_free(epfile);
1357 	ffs_data_closed(epfile->ffs);
1358 
1359 	return 0;
1360 }
1361 
1362 static void ffs_dmabuf_cleanup(struct work_struct *work)
1363 {
1364 	struct ffs_dma_fence *dma_fence =
1365 		container_of(work, struct ffs_dma_fence, work);
1366 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1367 	struct dma_buf_attachment *attach = priv->attach;
1368 	struct dma_fence *fence = &dma_fence->base;
1369 
1370 	ffs_dmabuf_put(attach);
1371 	dma_fence_put(fence);
1372 }
1373 
1374 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1375 {
1376 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1377 	struct dma_fence *fence = &dma_fence->base;
1378 	bool cookie = dma_fence_begin_signalling();
1379 
1380 	dma_fence_get(fence);
1381 	fence->error = ret;
1382 	dma_fence_signal(fence);
1383 	dma_fence_end_signalling(cookie);
1384 
1385 	/*
1386 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1387 	 * It can't be done here, as the unref functions might try to lock
1388 	 * the resv object, which would deadlock.
1389 	 */
1390 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1391 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1392 }
1393 
1394 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1395 					  struct usb_request *req)
1396 {
1397 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1398 	ffs_dmabuf_signal_done(req->context, req->status);
1399 	usb_ep_free_request(ep, req);
1400 }
1401 
1402 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1403 {
1404 	return "functionfs";
1405 }
1406 
1407 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1408 {
1409 	return "";
1410 }
1411 
1412 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1413 {
1414 	struct ffs_dma_fence *dma_fence =
1415 		container_of(fence, struct ffs_dma_fence, base);
1416 
1417 	kfree(dma_fence);
1418 }
1419 
1420 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1421 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1422 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1423 	.release		= ffs_dmabuf_fence_release,
1424 };
1425 
1426 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1427 {
1428 	if (!nonblock)
1429 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1430 
1431 	if (!dma_resv_trylock(dmabuf->resv))
1432 		return -EBUSY;
1433 
1434 	return 0;
1435 }
1436 
1437 static struct dma_buf_attachment *
1438 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1439 {
1440 	struct device *dev = epfile->ffs->gadget->dev.parent;
1441 	struct dma_buf_attachment *attach = NULL;
1442 	struct ffs_dmabuf_priv *priv;
1443 
1444 	mutex_lock(&epfile->dmabufs_mutex);
1445 
1446 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1447 		if (priv->attach->dev == dev
1448 		    && priv->attach->dmabuf == dmabuf) {
1449 			attach = priv->attach;
1450 			break;
1451 		}
1452 	}
1453 
1454 	if (attach)
1455 		ffs_dmabuf_get(attach);
1456 
1457 	mutex_unlock(&epfile->dmabufs_mutex);
1458 
1459 	return attach ?: ERR_PTR(-EPERM);
1460 }
1461 
1462 static int ffs_dmabuf_attach(struct file *file, int fd)
1463 {
1464 	bool nonblock = file->f_flags & O_NONBLOCK;
1465 	struct ffs_epfile *epfile = file->private_data;
1466 	struct usb_gadget *gadget = epfile->ffs->gadget;
1467 	struct dma_buf_attachment *attach;
1468 	struct ffs_dmabuf_priv *priv;
1469 	enum dma_data_direction dir;
1470 	struct sg_table *sg_table;
1471 	struct dma_buf *dmabuf;
1472 	int err;
1473 
1474 	if (!gadget || !gadget->sg_supported)
1475 		return -EPERM;
1476 
1477 	dmabuf = dma_buf_get(fd);
1478 	if (IS_ERR(dmabuf))
1479 		return PTR_ERR(dmabuf);
1480 
1481 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1482 	if (IS_ERR(attach)) {
1483 		err = PTR_ERR(attach);
1484 		goto err_dmabuf_put;
1485 	}
1486 
1487 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1488 	if (!priv) {
1489 		err = -ENOMEM;
1490 		goto err_dmabuf_detach;
1491 	}
1492 
1493 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1494 
1495 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1496 	if (err)
1497 		goto err_free_priv;
1498 
1499 	sg_table = dma_buf_map_attachment(attach, dir);
1500 	dma_resv_unlock(dmabuf->resv);
1501 
1502 	if (IS_ERR(sg_table)) {
1503 		err = PTR_ERR(sg_table);
1504 		goto err_free_priv;
1505 	}
1506 
1507 	attach->importer_priv = priv;
1508 
1509 	priv->sgt = sg_table;
1510 	priv->dir = dir;
1511 	priv->ffs = epfile->ffs;
1512 	priv->attach = attach;
1513 	spin_lock_init(&priv->lock);
1514 	kref_init(&priv->ref);
1515 	priv->context = dma_fence_context_alloc(1);
1516 
1517 	mutex_lock(&epfile->dmabufs_mutex);
1518 	list_add(&priv->entry, &epfile->dmabufs);
1519 	mutex_unlock(&epfile->dmabufs_mutex);
1520 
1521 	return 0;
1522 
1523 err_free_priv:
1524 	kfree(priv);
1525 err_dmabuf_detach:
1526 	dma_buf_detach(dmabuf, attach);
1527 err_dmabuf_put:
1528 	dma_buf_put(dmabuf);
1529 
1530 	return err;
1531 }
1532 
1533 static int ffs_dmabuf_detach(struct file *file, int fd)
1534 {
1535 	struct ffs_epfile *epfile = file->private_data;
1536 	struct ffs_data *ffs = epfile->ffs;
1537 	struct device *dev = ffs->gadget->dev.parent;
1538 	struct ffs_dmabuf_priv *priv, *tmp;
1539 	struct dma_buf *dmabuf;
1540 	int ret = -EPERM;
1541 
1542 	dmabuf = dma_buf_get(fd);
1543 	if (IS_ERR(dmabuf))
1544 		return PTR_ERR(dmabuf);
1545 
1546 	mutex_lock(&epfile->dmabufs_mutex);
1547 
1548 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1549 		if (priv->attach->dev == dev
1550 		    && priv->attach->dmabuf == dmabuf) {
1551 			/* Cancel any pending transfer */
1552 			spin_lock_irq(&ffs->eps_lock);
1553 			if (priv->ep && priv->req)
1554 				usb_ep_dequeue(priv->ep, priv->req);
1555 			spin_unlock_irq(&ffs->eps_lock);
1556 
1557 			list_del(&priv->entry);
1558 
1559 			/* Unref the reference from ffs_dmabuf_attach() */
1560 			ffs_dmabuf_put(priv->attach);
1561 			ret = 0;
1562 			break;
1563 		}
1564 	}
1565 
1566 	mutex_unlock(&epfile->dmabufs_mutex);
1567 	dma_buf_put(dmabuf);
1568 
1569 	return ret;
1570 }
1571 
1572 static int ffs_dmabuf_transfer(struct file *file,
1573 			       const struct usb_ffs_dmabuf_transfer_req *req)
1574 {
1575 	bool nonblock = file->f_flags & O_NONBLOCK;
1576 	struct ffs_epfile *epfile = file->private_data;
1577 	struct dma_buf_attachment *attach;
1578 	struct ffs_dmabuf_priv *priv;
1579 	struct ffs_dma_fence *fence;
1580 	struct usb_request *usb_req;
1581 	struct dma_buf *dmabuf;
1582 	struct ffs_ep *ep;
1583 	bool cookie;
1584 	u32 seqno;
1585 	int ret;
1586 
1587 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1588 		return -EINVAL;
1589 
1590 	dmabuf = dma_buf_get(req->fd);
1591 	if (IS_ERR(dmabuf))
1592 		return PTR_ERR(dmabuf);
1593 
1594 	if (req->length > dmabuf->size || req->length == 0) {
1595 		ret = -EINVAL;
1596 		goto err_dmabuf_put;
1597 	}
1598 
1599 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1600 	if (IS_ERR(attach)) {
1601 		ret = PTR_ERR(attach);
1602 		goto err_dmabuf_put;
1603 	}
1604 
1605 	priv = attach->importer_priv;
1606 
1607 	ep = ffs_epfile_wait_ep(file);
1608 	if (IS_ERR(ep)) {
1609 		ret = PTR_ERR(ep);
1610 		goto err_attachment_put;
1611 	}
1612 
1613 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1614 	if (ret)
1615 		goto err_attachment_put;
1616 
1617 	/* Make sure we don't have writers */
1618 	if (!dma_resv_test_signaled(dmabuf->resv, DMA_RESV_USAGE_WRITE)) {
1619 		pr_vdebug("FFS WRITE fence is not signaled\n");
1620 		ret = -EBUSY;
1621 		goto err_resv_unlock;
1622 	}
1623 
1624 	/* If we're writing to the DMABUF, make sure we don't have readers */
1625 	if (epfile->in &&
1626 	    !dma_resv_test_signaled(dmabuf->resv, DMA_RESV_USAGE_READ)) {
1627 		pr_vdebug("FFS READ fence is not signaled\n");
1628 		ret = -EBUSY;
1629 		goto err_resv_unlock;
1630 	}
1631 
1632 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1633 	if (ret)
1634 		goto err_resv_unlock;
1635 
1636 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1637 	if (!fence) {
1638 		ret = -ENOMEM;
1639 		goto err_resv_unlock;
1640 	}
1641 
1642 	fence->priv = priv;
1643 
1644 	spin_lock_irq(&epfile->ffs->eps_lock);
1645 
1646 	/* In the meantime, endpoint got disabled or changed. */
1647 	if (epfile->ep != ep) {
1648 		ret = -ESHUTDOWN;
1649 		goto err_fence_put;
1650 	}
1651 
1652 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1653 	if (!usb_req) {
1654 		ret = -ENOMEM;
1655 		goto err_fence_put;
1656 	}
1657 
1658 	/*
1659 	 * usb_ep_queue() guarantees that all transfers are processed in the
1660 	 * order they are enqueued, so we can use a simple incrementing
1661 	 * sequence number for the dma_fence.
1662 	 */
1663 	seqno = atomic_add_return(1, &epfile->seqno);
1664 
1665 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1666 		       &priv->lock, priv->context, seqno);
1667 
1668 	dma_resv_add_fence(dmabuf->resv, &fence->base,
1669 			   dma_resv_usage_rw(epfile->in));
1670 	dma_resv_unlock(dmabuf->resv);
1671 
1672 	/* Now that the dma_fence is in place, queue the transfer. */
1673 
1674 	usb_req->length = req->length;
1675 	usb_req->buf = NULL;
1676 	usb_req->sg = priv->sgt->sgl;
1677 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1678 	usb_req->sg_was_mapped = true;
1679 	usb_req->context  = fence;
1680 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1681 
1682 	cookie = dma_fence_begin_signalling();
1683 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1684 	dma_fence_end_signalling(cookie);
1685 	if (!ret) {
1686 		priv->req = usb_req;
1687 		priv->ep = ep->ep;
1688 	} else {
1689 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1690 		ffs_dmabuf_signal_done(fence, ret);
1691 		usb_ep_free_request(ep->ep, usb_req);
1692 	}
1693 
1694 	spin_unlock_irq(&epfile->ffs->eps_lock);
1695 	dma_buf_put(dmabuf);
1696 
1697 	return ret;
1698 
1699 err_fence_put:
1700 	spin_unlock_irq(&epfile->ffs->eps_lock);
1701 	dma_fence_put(&fence->base);
1702 err_resv_unlock:
1703 	dma_resv_unlock(dmabuf->resv);
1704 err_attachment_put:
1705 	ffs_dmabuf_put(attach);
1706 err_dmabuf_put:
1707 	dma_buf_put(dmabuf);
1708 
1709 	return ret;
1710 }
1711 
1712 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1713 			     unsigned long value)
1714 {
1715 	struct ffs_epfile *epfile = file->private_data;
1716 	struct ffs_ep *ep;
1717 	int ret;
1718 
1719 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1720 		return -ENODEV;
1721 
1722 	switch (code) {
1723 	case FUNCTIONFS_DMABUF_ATTACH:
1724 	{
1725 		int fd;
1726 
1727 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1728 			ret = -EFAULT;
1729 			break;
1730 		}
1731 
1732 		return ffs_dmabuf_attach(file, fd);
1733 	}
1734 	case FUNCTIONFS_DMABUF_DETACH:
1735 	{
1736 		int fd;
1737 
1738 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1739 			ret = -EFAULT;
1740 			break;
1741 		}
1742 
1743 		return ffs_dmabuf_detach(file, fd);
1744 	}
1745 	case FUNCTIONFS_DMABUF_TRANSFER:
1746 	{
1747 		struct usb_ffs_dmabuf_transfer_req req;
1748 
1749 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1750 			ret = -EFAULT;
1751 			break;
1752 		}
1753 
1754 		return ffs_dmabuf_transfer(file, &req);
1755 	}
1756 	default:
1757 		break;
1758 	}
1759 
1760 	/* Wait for endpoint to be enabled */
1761 	ep = ffs_epfile_wait_ep(file);
1762 	if (IS_ERR(ep))
1763 		return PTR_ERR(ep);
1764 
1765 	spin_lock_irq(&epfile->ffs->eps_lock);
1766 
1767 	/* In the meantime, endpoint got disabled or changed. */
1768 	if (epfile->ep != ep) {
1769 		spin_unlock_irq(&epfile->ffs->eps_lock);
1770 		return -ESHUTDOWN;
1771 	}
1772 
1773 	switch (code) {
1774 	case FUNCTIONFS_FIFO_STATUS:
1775 		ret = usb_ep_fifo_status(epfile->ep->ep);
1776 		break;
1777 	case FUNCTIONFS_FIFO_FLUSH:
1778 		usb_ep_fifo_flush(epfile->ep->ep);
1779 		ret = 0;
1780 		break;
1781 	case FUNCTIONFS_CLEAR_HALT:
1782 		ret = usb_ep_clear_halt(epfile->ep->ep);
1783 		break;
1784 	case FUNCTIONFS_ENDPOINT_REVMAP:
1785 		ret = epfile->ep->num;
1786 		break;
1787 	case FUNCTIONFS_ENDPOINT_DESC:
1788 	{
1789 		int desc_idx;
1790 		struct usb_endpoint_descriptor desc1, *desc;
1791 
1792 		switch (epfile->ffs->gadget->speed) {
1793 		case USB_SPEED_SUPER:
1794 		case USB_SPEED_SUPER_PLUS:
1795 			desc_idx = 2;
1796 			break;
1797 		case USB_SPEED_HIGH:
1798 			desc_idx = 1;
1799 			break;
1800 		default:
1801 			desc_idx = 0;
1802 		}
1803 
1804 		desc = epfile->ep->descs[desc_idx];
1805 		memcpy(&desc1, desc, desc->bLength);
1806 
1807 		spin_unlock_irq(&epfile->ffs->eps_lock);
1808 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1809 		if (ret)
1810 			ret = -EFAULT;
1811 		return ret;
1812 	}
1813 	default:
1814 		ret = -ENOTTY;
1815 	}
1816 	spin_unlock_irq(&epfile->ffs->eps_lock);
1817 
1818 	return ret;
1819 }
1820 
1821 static const struct file_operations ffs_epfile_operations = {
1822 	.llseek =	no_llseek,
1823 
1824 	.open =		ffs_epfile_open,
1825 	.write_iter =	ffs_epfile_write_iter,
1826 	.read_iter =	ffs_epfile_read_iter,
1827 	.release =	ffs_epfile_release,
1828 	.unlocked_ioctl =	ffs_epfile_ioctl,
1829 	.compat_ioctl = compat_ptr_ioctl,
1830 };
1831 
1832 
1833 /* File system and super block operations ***********************************/
1834 
1835 /*
1836  * Mounting the file system creates a controller file, used first for
1837  * function configuration then later for event monitoring.
1838  */
1839 
1840 static struct inode *__must_check
1841 ffs_sb_make_inode(struct super_block *sb, void *data,
1842 		  const struct file_operations *fops,
1843 		  const struct inode_operations *iops,
1844 		  struct ffs_file_perms *perms)
1845 {
1846 	struct inode *inode;
1847 
1848 	inode = new_inode(sb);
1849 
1850 	if (inode) {
1851 		struct timespec64 ts = inode_set_ctime_current(inode);
1852 
1853 		inode->i_ino	 = get_next_ino();
1854 		inode->i_mode    = perms->mode;
1855 		inode->i_uid     = perms->uid;
1856 		inode->i_gid     = perms->gid;
1857 		inode_set_atime_to_ts(inode, ts);
1858 		inode_set_mtime_to_ts(inode, ts);
1859 		inode->i_private = data;
1860 		if (fops)
1861 			inode->i_fop = fops;
1862 		if (iops)
1863 			inode->i_op  = iops;
1864 	}
1865 
1866 	return inode;
1867 }
1868 
1869 /* Create "regular" file */
1870 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1871 					const char *name, void *data,
1872 					const struct file_operations *fops)
1873 {
1874 	struct ffs_data	*ffs = sb->s_fs_info;
1875 	struct dentry	*dentry;
1876 	struct inode	*inode;
1877 
1878 	dentry = d_alloc_name(sb->s_root, name);
1879 	if (!dentry)
1880 		return NULL;
1881 
1882 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1883 	if (!inode) {
1884 		dput(dentry);
1885 		return NULL;
1886 	}
1887 
1888 	d_add(dentry, inode);
1889 	return dentry;
1890 }
1891 
1892 /* Super block */
1893 static const struct super_operations ffs_sb_operations = {
1894 	.statfs =	simple_statfs,
1895 	.drop_inode =	generic_delete_inode,
1896 };
1897 
1898 struct ffs_sb_fill_data {
1899 	struct ffs_file_perms perms;
1900 	umode_t root_mode;
1901 	const char *dev_name;
1902 	bool no_disconnect;
1903 	struct ffs_data *ffs_data;
1904 };
1905 
1906 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1907 {
1908 	struct ffs_sb_fill_data *data = fc->fs_private;
1909 	struct inode	*inode;
1910 	struct ffs_data	*ffs = data->ffs_data;
1911 
1912 	ffs->sb              = sb;
1913 	data->ffs_data       = NULL;
1914 	sb->s_fs_info        = ffs;
1915 	sb->s_blocksize      = PAGE_SIZE;
1916 	sb->s_blocksize_bits = PAGE_SHIFT;
1917 	sb->s_magic          = FUNCTIONFS_MAGIC;
1918 	sb->s_op             = &ffs_sb_operations;
1919 	sb->s_time_gran      = 1;
1920 
1921 	/* Root inode */
1922 	data->perms.mode = data->root_mode;
1923 	inode = ffs_sb_make_inode(sb, NULL,
1924 				  &simple_dir_operations,
1925 				  &simple_dir_inode_operations,
1926 				  &data->perms);
1927 	sb->s_root = d_make_root(inode);
1928 	if (!sb->s_root)
1929 		return -ENOMEM;
1930 
1931 	/* EP0 file */
1932 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1933 		return -ENOMEM;
1934 
1935 	return 0;
1936 }
1937 
1938 enum {
1939 	Opt_no_disconnect,
1940 	Opt_rmode,
1941 	Opt_fmode,
1942 	Opt_mode,
1943 	Opt_uid,
1944 	Opt_gid,
1945 };
1946 
1947 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1948 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1949 	fsparam_u32	("rmode",		Opt_rmode),
1950 	fsparam_u32	("fmode",		Opt_fmode),
1951 	fsparam_u32	("mode",		Opt_mode),
1952 	fsparam_u32	("uid",			Opt_uid),
1953 	fsparam_u32	("gid",			Opt_gid),
1954 	{}
1955 };
1956 
1957 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1958 {
1959 	struct ffs_sb_fill_data *data = fc->fs_private;
1960 	struct fs_parse_result result;
1961 	int opt;
1962 
1963 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1964 	if (opt < 0)
1965 		return opt;
1966 
1967 	switch (opt) {
1968 	case Opt_no_disconnect:
1969 		data->no_disconnect = result.boolean;
1970 		break;
1971 	case Opt_rmode:
1972 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1973 		break;
1974 	case Opt_fmode:
1975 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1976 		break;
1977 	case Opt_mode:
1978 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1979 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1980 		break;
1981 
1982 	case Opt_uid:
1983 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1984 		if (!uid_valid(data->perms.uid))
1985 			goto unmapped_value;
1986 		break;
1987 	case Opt_gid:
1988 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1989 		if (!gid_valid(data->perms.gid))
1990 			goto unmapped_value;
1991 		break;
1992 
1993 	default:
1994 		return -ENOPARAM;
1995 	}
1996 
1997 	return 0;
1998 
1999 unmapped_value:
2000 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2001 }
2002 
2003 /*
2004  * Set up the superblock for a mount.
2005  */
2006 static int ffs_fs_get_tree(struct fs_context *fc)
2007 {
2008 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2009 	struct ffs_data	*ffs;
2010 	int ret;
2011 
2012 	if (!fc->source)
2013 		return invalf(fc, "No source specified");
2014 
2015 	ffs = ffs_data_new(fc->source);
2016 	if (!ffs)
2017 		return -ENOMEM;
2018 	ffs->file_perms = ctx->perms;
2019 	ffs->no_disconnect = ctx->no_disconnect;
2020 
2021 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2022 	if (!ffs->dev_name) {
2023 		ffs_data_put(ffs);
2024 		return -ENOMEM;
2025 	}
2026 
2027 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2028 	if (ret) {
2029 		ffs_data_put(ffs);
2030 		return ret;
2031 	}
2032 
2033 	ctx->ffs_data = ffs;
2034 	return get_tree_nodev(fc, ffs_sb_fill);
2035 }
2036 
2037 static void ffs_fs_free_fc(struct fs_context *fc)
2038 {
2039 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2040 
2041 	if (ctx) {
2042 		if (ctx->ffs_data) {
2043 			ffs_data_put(ctx->ffs_data);
2044 		}
2045 
2046 		kfree(ctx);
2047 	}
2048 }
2049 
2050 static const struct fs_context_operations ffs_fs_context_ops = {
2051 	.free		= ffs_fs_free_fc,
2052 	.parse_param	= ffs_fs_parse_param,
2053 	.get_tree	= ffs_fs_get_tree,
2054 };
2055 
2056 static int ffs_fs_init_fs_context(struct fs_context *fc)
2057 {
2058 	struct ffs_sb_fill_data *ctx;
2059 
2060 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2061 	if (!ctx)
2062 		return -ENOMEM;
2063 
2064 	ctx->perms.mode = S_IFREG | 0600;
2065 	ctx->perms.uid = GLOBAL_ROOT_UID;
2066 	ctx->perms.gid = GLOBAL_ROOT_GID;
2067 	ctx->root_mode = S_IFDIR | 0500;
2068 	ctx->no_disconnect = false;
2069 
2070 	fc->fs_private = ctx;
2071 	fc->ops = &ffs_fs_context_ops;
2072 	return 0;
2073 }
2074 
2075 static void
2076 ffs_fs_kill_sb(struct super_block *sb)
2077 {
2078 	kill_litter_super(sb);
2079 	if (sb->s_fs_info)
2080 		ffs_data_closed(sb->s_fs_info);
2081 }
2082 
2083 static struct file_system_type ffs_fs_type = {
2084 	.owner		= THIS_MODULE,
2085 	.name		= "functionfs",
2086 	.init_fs_context = ffs_fs_init_fs_context,
2087 	.parameters	= ffs_fs_fs_parameters,
2088 	.kill_sb	= ffs_fs_kill_sb,
2089 };
2090 MODULE_ALIAS_FS("functionfs");
2091 
2092 
2093 /* Driver's main init/cleanup functions *************************************/
2094 
2095 static int functionfs_init(void)
2096 {
2097 	int ret;
2098 
2099 	ret = register_filesystem(&ffs_fs_type);
2100 	if (!ret)
2101 		pr_info("file system registered\n");
2102 	else
2103 		pr_err("failed registering file system (%d)\n", ret);
2104 
2105 	return ret;
2106 }
2107 
2108 static void functionfs_cleanup(void)
2109 {
2110 	pr_info("unloading\n");
2111 	unregister_filesystem(&ffs_fs_type);
2112 }
2113 
2114 
2115 /* ffs_data and ffs_function construction and destruction code **************/
2116 
2117 static void ffs_data_clear(struct ffs_data *ffs);
2118 static void ffs_data_reset(struct ffs_data *ffs);
2119 
2120 static void ffs_data_get(struct ffs_data *ffs)
2121 {
2122 	refcount_inc(&ffs->ref);
2123 }
2124 
2125 static void ffs_data_opened(struct ffs_data *ffs)
2126 {
2127 	refcount_inc(&ffs->ref);
2128 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2129 			ffs->state == FFS_DEACTIVATED) {
2130 		ffs->state = FFS_CLOSING;
2131 		ffs_data_reset(ffs);
2132 	}
2133 }
2134 
2135 static void ffs_data_put(struct ffs_data *ffs)
2136 {
2137 	if (refcount_dec_and_test(&ffs->ref)) {
2138 		pr_info("%s(): freeing\n", __func__);
2139 		ffs_data_clear(ffs);
2140 		ffs_release_dev(ffs->private_data);
2141 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2142 		       swait_active(&ffs->ep0req_completion.wait) ||
2143 		       waitqueue_active(&ffs->wait));
2144 		destroy_workqueue(ffs->io_completion_wq);
2145 		kfree(ffs->dev_name);
2146 		kfree(ffs);
2147 	}
2148 }
2149 
2150 static void ffs_data_closed(struct ffs_data *ffs)
2151 {
2152 	struct ffs_epfile *epfiles;
2153 	unsigned long flags;
2154 
2155 	if (atomic_dec_and_test(&ffs->opened)) {
2156 		if (ffs->no_disconnect) {
2157 			ffs->state = FFS_DEACTIVATED;
2158 			spin_lock_irqsave(&ffs->eps_lock, flags);
2159 			epfiles = ffs->epfiles;
2160 			ffs->epfiles = NULL;
2161 			spin_unlock_irqrestore(&ffs->eps_lock,
2162 							flags);
2163 
2164 			if (epfiles)
2165 				ffs_epfiles_destroy(epfiles,
2166 						 ffs->eps_count);
2167 
2168 			if (ffs->setup_state == FFS_SETUP_PENDING)
2169 				__ffs_ep0_stall(ffs);
2170 		} else {
2171 			ffs->state = FFS_CLOSING;
2172 			ffs_data_reset(ffs);
2173 		}
2174 	}
2175 	if (atomic_read(&ffs->opened) < 0) {
2176 		ffs->state = FFS_CLOSING;
2177 		ffs_data_reset(ffs);
2178 	}
2179 
2180 	ffs_data_put(ffs);
2181 }
2182 
2183 static struct ffs_data *ffs_data_new(const char *dev_name)
2184 {
2185 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2186 	if (!ffs)
2187 		return NULL;
2188 
2189 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2190 	if (!ffs->io_completion_wq) {
2191 		kfree(ffs);
2192 		return NULL;
2193 	}
2194 
2195 	refcount_set(&ffs->ref, 1);
2196 	atomic_set(&ffs->opened, 0);
2197 	ffs->state = FFS_READ_DESCRIPTORS;
2198 	mutex_init(&ffs->mutex);
2199 	spin_lock_init(&ffs->eps_lock);
2200 	init_waitqueue_head(&ffs->ev.waitq);
2201 	init_waitqueue_head(&ffs->wait);
2202 	init_completion(&ffs->ep0req_completion);
2203 
2204 	/* XXX REVISIT need to update it in some places, or do we? */
2205 	ffs->ev.can_stall = 1;
2206 
2207 	return ffs;
2208 }
2209 
2210 static void ffs_data_clear(struct ffs_data *ffs)
2211 {
2212 	struct ffs_epfile *epfiles;
2213 	unsigned long flags;
2214 
2215 	ffs_closed(ffs);
2216 
2217 	BUG_ON(ffs->gadget);
2218 
2219 	spin_lock_irqsave(&ffs->eps_lock, flags);
2220 	epfiles = ffs->epfiles;
2221 	ffs->epfiles = NULL;
2222 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2223 
2224 	/*
2225 	 * potential race possible between ffs_func_eps_disable
2226 	 * & ffs_epfile_release therefore maintaining a local
2227 	 * copy of epfile will save us from use-after-free.
2228 	 */
2229 	if (epfiles) {
2230 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2231 		ffs->epfiles = NULL;
2232 	}
2233 
2234 	if (ffs->ffs_eventfd) {
2235 		eventfd_ctx_put(ffs->ffs_eventfd);
2236 		ffs->ffs_eventfd = NULL;
2237 	}
2238 
2239 	kfree(ffs->raw_descs_data);
2240 	kfree(ffs->raw_strings);
2241 	kfree(ffs->stringtabs);
2242 }
2243 
2244 static void ffs_data_reset(struct ffs_data *ffs)
2245 {
2246 	ffs_data_clear(ffs);
2247 
2248 	ffs->raw_descs_data = NULL;
2249 	ffs->raw_descs = NULL;
2250 	ffs->raw_strings = NULL;
2251 	ffs->stringtabs = NULL;
2252 
2253 	ffs->raw_descs_length = 0;
2254 	ffs->fs_descs_count = 0;
2255 	ffs->hs_descs_count = 0;
2256 	ffs->ss_descs_count = 0;
2257 
2258 	ffs->strings_count = 0;
2259 	ffs->interfaces_count = 0;
2260 	ffs->eps_count = 0;
2261 
2262 	ffs->ev.count = 0;
2263 
2264 	ffs->state = FFS_READ_DESCRIPTORS;
2265 	ffs->setup_state = FFS_NO_SETUP;
2266 	ffs->flags = 0;
2267 
2268 	ffs->ms_os_descs_ext_prop_count = 0;
2269 	ffs->ms_os_descs_ext_prop_name_len = 0;
2270 	ffs->ms_os_descs_ext_prop_data_len = 0;
2271 }
2272 
2273 
2274 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2275 {
2276 	struct usb_gadget_strings **lang;
2277 	int first_id;
2278 
2279 	if (WARN_ON(ffs->state != FFS_ACTIVE
2280 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2281 		return -EBADFD;
2282 
2283 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2284 	if (first_id < 0)
2285 		return first_id;
2286 
2287 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2288 	if (!ffs->ep0req)
2289 		return -ENOMEM;
2290 	ffs->ep0req->complete = ffs_ep0_complete;
2291 	ffs->ep0req->context = ffs;
2292 
2293 	lang = ffs->stringtabs;
2294 	if (lang) {
2295 		for (; *lang; ++lang) {
2296 			struct usb_string *str = (*lang)->strings;
2297 			int id = first_id;
2298 			for (; str->s; ++id, ++str)
2299 				str->id = id;
2300 		}
2301 	}
2302 
2303 	ffs->gadget = cdev->gadget;
2304 	ffs_data_get(ffs);
2305 	return 0;
2306 }
2307 
2308 static void functionfs_unbind(struct ffs_data *ffs)
2309 {
2310 	if (!WARN_ON(!ffs->gadget)) {
2311 		/* dequeue before freeing ep0req */
2312 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2313 		mutex_lock(&ffs->mutex);
2314 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2315 		ffs->ep0req = NULL;
2316 		ffs->gadget = NULL;
2317 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2318 		mutex_unlock(&ffs->mutex);
2319 		ffs_data_put(ffs);
2320 	}
2321 }
2322 
2323 static int ffs_epfiles_create(struct ffs_data *ffs)
2324 {
2325 	struct ffs_epfile *epfile, *epfiles;
2326 	unsigned i, count;
2327 
2328 	count = ffs->eps_count;
2329 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2330 	if (!epfiles)
2331 		return -ENOMEM;
2332 
2333 	epfile = epfiles;
2334 	for (i = 1; i <= count; ++i, ++epfile) {
2335 		epfile->ffs = ffs;
2336 		mutex_init(&epfile->mutex);
2337 		mutex_init(&epfile->dmabufs_mutex);
2338 		INIT_LIST_HEAD(&epfile->dmabufs);
2339 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2340 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2341 		else
2342 			sprintf(epfile->name, "ep%u", i);
2343 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2344 						 epfile,
2345 						 &ffs_epfile_operations);
2346 		if (!epfile->dentry) {
2347 			ffs_epfiles_destroy(epfiles, i - 1);
2348 			return -ENOMEM;
2349 		}
2350 	}
2351 
2352 	ffs->epfiles = epfiles;
2353 	return 0;
2354 }
2355 
2356 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2357 {
2358 	struct ffs_epfile *epfile = epfiles;
2359 
2360 	for (; count; --count, ++epfile) {
2361 		BUG_ON(mutex_is_locked(&epfile->mutex));
2362 		if (epfile->dentry) {
2363 			d_delete(epfile->dentry);
2364 			dput(epfile->dentry);
2365 			epfile->dentry = NULL;
2366 		}
2367 	}
2368 
2369 	kfree(epfiles);
2370 }
2371 
2372 static void ffs_func_eps_disable(struct ffs_function *func)
2373 {
2374 	struct ffs_ep *ep;
2375 	struct ffs_epfile *epfile;
2376 	unsigned short count;
2377 	unsigned long flags;
2378 
2379 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2380 	count = func->ffs->eps_count;
2381 	epfile = func->ffs->epfiles;
2382 	ep = func->eps;
2383 	while (count--) {
2384 		/* pending requests get nuked */
2385 		if (ep->ep)
2386 			usb_ep_disable(ep->ep);
2387 		++ep;
2388 
2389 		if (epfile) {
2390 			epfile->ep = NULL;
2391 			__ffs_epfile_read_buffer_free(epfile);
2392 			++epfile;
2393 		}
2394 	}
2395 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2396 }
2397 
2398 static int ffs_func_eps_enable(struct ffs_function *func)
2399 {
2400 	struct ffs_data *ffs;
2401 	struct ffs_ep *ep;
2402 	struct ffs_epfile *epfile;
2403 	unsigned short count;
2404 	unsigned long flags;
2405 	int ret = 0;
2406 
2407 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2408 	ffs = func->ffs;
2409 	ep = func->eps;
2410 	epfile = ffs->epfiles;
2411 	count = ffs->eps_count;
2412 	while(count--) {
2413 		ep->ep->driver_data = ep;
2414 
2415 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2416 		if (ret) {
2417 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2418 					__func__, ep->ep->name, ret);
2419 			break;
2420 		}
2421 
2422 		ret = usb_ep_enable(ep->ep);
2423 		if (!ret) {
2424 			epfile->ep = ep;
2425 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2426 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2427 		} else {
2428 			break;
2429 		}
2430 
2431 		++ep;
2432 		++epfile;
2433 	}
2434 
2435 	wake_up_interruptible(&ffs->wait);
2436 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2437 
2438 	return ret;
2439 }
2440 
2441 
2442 /* Parsing and building descriptors and strings *****************************/
2443 
2444 /*
2445  * This validates if data pointed by data is a valid USB descriptor as
2446  * well as record how many interfaces, endpoints and strings are
2447  * required by given configuration.  Returns address after the
2448  * descriptor or NULL if data is invalid.
2449  */
2450 
2451 enum ffs_entity_type {
2452 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2453 };
2454 
2455 enum ffs_os_desc_type {
2456 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2457 };
2458 
2459 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2460 				   u8 *valuep,
2461 				   struct usb_descriptor_header *desc,
2462 				   void *priv);
2463 
2464 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2465 				    struct usb_os_desc_header *h, void *data,
2466 				    unsigned len, void *priv);
2467 
2468 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2469 					   ffs_entity_callback entity,
2470 					   void *priv, int *current_class)
2471 {
2472 	struct usb_descriptor_header *_ds = (void *)data;
2473 	u8 length;
2474 	int ret;
2475 
2476 	/* At least two bytes are required: length and type */
2477 	if (len < 2) {
2478 		pr_vdebug("descriptor too short\n");
2479 		return -EINVAL;
2480 	}
2481 
2482 	/* If we have at least as many bytes as the descriptor takes? */
2483 	length = _ds->bLength;
2484 	if (len < length) {
2485 		pr_vdebug("descriptor longer then available data\n");
2486 		return -EINVAL;
2487 	}
2488 
2489 #define __entity_check_INTERFACE(val)  1
2490 #define __entity_check_STRING(val)     (val)
2491 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2492 #define __entity(type, val) do {					\
2493 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2494 		if (!__entity_check_ ##type(val)) {			\
2495 			pr_vdebug("invalid entity's value\n");		\
2496 			return -EINVAL;					\
2497 		}							\
2498 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2499 		if (ret < 0) {						\
2500 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2501 				 (val), ret);				\
2502 			return ret;					\
2503 		}							\
2504 	} while (0)
2505 
2506 	/* Parse descriptor depending on type. */
2507 	switch (_ds->bDescriptorType) {
2508 	case USB_DT_DEVICE:
2509 	case USB_DT_CONFIG:
2510 	case USB_DT_STRING:
2511 	case USB_DT_DEVICE_QUALIFIER:
2512 		/* function can't have any of those */
2513 		pr_vdebug("descriptor reserved for gadget: %d\n",
2514 		      _ds->bDescriptorType);
2515 		return -EINVAL;
2516 
2517 	case USB_DT_INTERFACE: {
2518 		struct usb_interface_descriptor *ds = (void *)_ds;
2519 		pr_vdebug("interface descriptor\n");
2520 		if (length != sizeof *ds)
2521 			goto inv_length;
2522 
2523 		__entity(INTERFACE, ds->bInterfaceNumber);
2524 		if (ds->iInterface)
2525 			__entity(STRING, ds->iInterface);
2526 		*current_class = ds->bInterfaceClass;
2527 	}
2528 		break;
2529 
2530 	case USB_DT_ENDPOINT: {
2531 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2532 		pr_vdebug("endpoint descriptor\n");
2533 		if (length != USB_DT_ENDPOINT_SIZE &&
2534 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2535 			goto inv_length;
2536 		__entity(ENDPOINT, ds->bEndpointAddress);
2537 	}
2538 		break;
2539 
2540 	case USB_TYPE_CLASS | 0x01:
2541 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2542 			pr_vdebug("hid descriptor\n");
2543 			if (length != sizeof(struct hid_descriptor))
2544 				goto inv_length;
2545 			break;
2546 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2547 			pr_vdebug("ccid descriptor\n");
2548 			if (length != sizeof(struct ccid_descriptor))
2549 				goto inv_length;
2550 			break;
2551 		} else {
2552 			pr_vdebug("unknown descriptor: %d for class %d\n",
2553 			      _ds->bDescriptorType, *current_class);
2554 			return -EINVAL;
2555 		}
2556 
2557 	case USB_DT_OTG:
2558 		if (length != sizeof(struct usb_otg_descriptor))
2559 			goto inv_length;
2560 		break;
2561 
2562 	case USB_DT_INTERFACE_ASSOCIATION: {
2563 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2564 		pr_vdebug("interface association descriptor\n");
2565 		if (length != sizeof *ds)
2566 			goto inv_length;
2567 		if (ds->iFunction)
2568 			__entity(STRING, ds->iFunction);
2569 	}
2570 		break;
2571 
2572 	case USB_DT_SS_ENDPOINT_COMP:
2573 		pr_vdebug("EP SS companion descriptor\n");
2574 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2575 			goto inv_length;
2576 		break;
2577 
2578 	case USB_DT_OTHER_SPEED_CONFIG:
2579 	case USB_DT_INTERFACE_POWER:
2580 	case USB_DT_DEBUG:
2581 	case USB_DT_SECURITY:
2582 	case USB_DT_CS_RADIO_CONTROL:
2583 		/* TODO */
2584 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2585 		return -EINVAL;
2586 
2587 	default:
2588 		/* We should never be here */
2589 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2590 		return -EINVAL;
2591 
2592 inv_length:
2593 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2594 			  _ds->bLength, _ds->bDescriptorType);
2595 		return -EINVAL;
2596 	}
2597 
2598 #undef __entity
2599 #undef __entity_check_DESCRIPTOR
2600 #undef __entity_check_INTERFACE
2601 #undef __entity_check_STRING
2602 #undef __entity_check_ENDPOINT
2603 
2604 	return length;
2605 }
2606 
2607 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2608 				     ffs_entity_callback entity, void *priv)
2609 {
2610 	const unsigned _len = len;
2611 	unsigned long num = 0;
2612 	int current_class = -1;
2613 
2614 	for (;;) {
2615 		int ret;
2616 
2617 		if (num == count)
2618 			data = NULL;
2619 
2620 		/* Record "descriptor" entity */
2621 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2622 		if (ret < 0) {
2623 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2624 				 num, ret);
2625 			return ret;
2626 		}
2627 
2628 		if (!data)
2629 			return _len - len;
2630 
2631 		ret = ffs_do_single_desc(data, len, entity, priv,
2632 			&current_class);
2633 		if (ret < 0) {
2634 			pr_debug("%s returns %d\n", __func__, ret);
2635 			return ret;
2636 		}
2637 
2638 		len -= ret;
2639 		data += ret;
2640 		++num;
2641 	}
2642 }
2643 
2644 static int __ffs_data_do_entity(enum ffs_entity_type type,
2645 				u8 *valuep, struct usb_descriptor_header *desc,
2646 				void *priv)
2647 {
2648 	struct ffs_desc_helper *helper = priv;
2649 	struct usb_endpoint_descriptor *d;
2650 
2651 	switch (type) {
2652 	case FFS_DESCRIPTOR:
2653 		break;
2654 
2655 	case FFS_INTERFACE:
2656 		/*
2657 		 * Interfaces are indexed from zero so if we
2658 		 * encountered interface "n" then there are at least
2659 		 * "n+1" interfaces.
2660 		 */
2661 		if (*valuep >= helper->interfaces_count)
2662 			helper->interfaces_count = *valuep + 1;
2663 		break;
2664 
2665 	case FFS_STRING:
2666 		/*
2667 		 * Strings are indexed from 1 (0 is reserved
2668 		 * for languages list)
2669 		 */
2670 		if (*valuep > helper->ffs->strings_count)
2671 			helper->ffs->strings_count = *valuep;
2672 		break;
2673 
2674 	case FFS_ENDPOINT:
2675 		d = (void *)desc;
2676 		helper->eps_count++;
2677 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2678 			return -EINVAL;
2679 		/* Check if descriptors for any speed were already parsed */
2680 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2681 			helper->ffs->eps_addrmap[helper->eps_count] =
2682 				d->bEndpointAddress;
2683 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2684 				d->bEndpointAddress)
2685 			return -EINVAL;
2686 		break;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2693 				   struct usb_os_desc_header *desc)
2694 {
2695 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2696 	u16 w_index = le16_to_cpu(desc->wIndex);
2697 
2698 	if (bcd_version == 0x1) {
2699 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2700 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2701 	} else if (bcd_version != 0x100) {
2702 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2703 			  bcd_version);
2704 		return -EINVAL;
2705 	}
2706 	switch (w_index) {
2707 	case 0x4:
2708 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2709 		break;
2710 	case 0x5:
2711 		*next_type = FFS_OS_DESC_EXT_PROP;
2712 		break;
2713 	default:
2714 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2715 		return -EINVAL;
2716 	}
2717 
2718 	return sizeof(*desc);
2719 }
2720 
2721 /*
2722  * Process all extended compatibility/extended property descriptors
2723  * of a feature descriptor
2724  */
2725 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2726 					      enum ffs_os_desc_type type,
2727 					      u16 feature_count,
2728 					      ffs_os_desc_callback entity,
2729 					      void *priv,
2730 					      struct usb_os_desc_header *h)
2731 {
2732 	int ret;
2733 	const unsigned _len = len;
2734 
2735 	/* loop over all ext compat/ext prop descriptors */
2736 	while (feature_count--) {
2737 		ret = entity(type, h, data, len, priv);
2738 		if (ret < 0) {
2739 			pr_debug("bad OS descriptor, type: %d\n", type);
2740 			return ret;
2741 		}
2742 		data += ret;
2743 		len -= ret;
2744 	}
2745 	return _len - len;
2746 }
2747 
2748 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2749 static int __must_check ffs_do_os_descs(unsigned count,
2750 					char *data, unsigned len,
2751 					ffs_os_desc_callback entity, void *priv)
2752 {
2753 	const unsigned _len = len;
2754 	unsigned long num = 0;
2755 
2756 	for (num = 0; num < count; ++num) {
2757 		int ret;
2758 		enum ffs_os_desc_type type;
2759 		u16 feature_count;
2760 		struct usb_os_desc_header *desc = (void *)data;
2761 
2762 		if (len < sizeof(*desc))
2763 			return -EINVAL;
2764 
2765 		/*
2766 		 * Record "descriptor" entity.
2767 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2768 		 * Move the data pointer to the beginning of extended
2769 		 * compatibilities proper or extended properties proper
2770 		 * portions of the data
2771 		 */
2772 		if (le32_to_cpu(desc->dwLength) > len)
2773 			return -EINVAL;
2774 
2775 		ret = __ffs_do_os_desc_header(&type, desc);
2776 		if (ret < 0) {
2777 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2778 				 num, ret);
2779 			return ret;
2780 		}
2781 		/*
2782 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2783 		 */
2784 		feature_count = le16_to_cpu(desc->wCount);
2785 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2786 		    (feature_count > 255 || desc->Reserved))
2787 				return -EINVAL;
2788 		len -= ret;
2789 		data += ret;
2790 
2791 		/*
2792 		 * Process all function/property descriptors
2793 		 * of this Feature Descriptor
2794 		 */
2795 		ret = ffs_do_single_os_desc(data, len, type,
2796 					    feature_count, entity, priv, desc);
2797 		if (ret < 0) {
2798 			pr_debug("%s returns %d\n", __func__, ret);
2799 			return ret;
2800 		}
2801 
2802 		len -= ret;
2803 		data += ret;
2804 	}
2805 	return _len - len;
2806 }
2807 
2808 /*
2809  * Validate contents of the buffer from userspace related to OS descriptors.
2810  */
2811 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2812 				 struct usb_os_desc_header *h, void *data,
2813 				 unsigned len, void *priv)
2814 {
2815 	struct ffs_data *ffs = priv;
2816 	u8 length;
2817 
2818 	switch (type) {
2819 	case FFS_OS_DESC_EXT_COMPAT: {
2820 		struct usb_ext_compat_desc *d = data;
2821 		int i;
2822 
2823 		if (len < sizeof(*d) ||
2824 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2825 			return -EINVAL;
2826 		if (d->Reserved1 != 1) {
2827 			/*
2828 			 * According to the spec, Reserved1 must be set to 1
2829 			 * but older kernels incorrectly rejected non-zero
2830 			 * values.  We fix it here to avoid returning EINVAL
2831 			 * in response to values we used to accept.
2832 			 */
2833 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2834 			d->Reserved1 = 1;
2835 		}
2836 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2837 			if (d->Reserved2[i])
2838 				return -EINVAL;
2839 
2840 		length = sizeof(struct usb_ext_compat_desc);
2841 	}
2842 		break;
2843 	case FFS_OS_DESC_EXT_PROP: {
2844 		struct usb_ext_prop_desc *d = data;
2845 		u32 type, pdl;
2846 		u16 pnl;
2847 
2848 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2849 			return -EINVAL;
2850 		length = le32_to_cpu(d->dwSize);
2851 		if (len < length)
2852 			return -EINVAL;
2853 		type = le32_to_cpu(d->dwPropertyDataType);
2854 		if (type < USB_EXT_PROP_UNICODE ||
2855 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2856 			pr_vdebug("unsupported os descriptor property type: %d",
2857 				  type);
2858 			return -EINVAL;
2859 		}
2860 		pnl = le16_to_cpu(d->wPropertyNameLength);
2861 		if (length < 14 + pnl) {
2862 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2863 				  length, pnl, type);
2864 			return -EINVAL;
2865 		}
2866 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2867 		if (length != 14 + pnl + pdl) {
2868 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2869 				  length, pnl, pdl, type);
2870 			return -EINVAL;
2871 		}
2872 		++ffs->ms_os_descs_ext_prop_count;
2873 		/* property name reported to the host as "WCHAR"s */
2874 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2875 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2876 	}
2877 		break;
2878 	default:
2879 		pr_vdebug("unknown descriptor: %d\n", type);
2880 		return -EINVAL;
2881 	}
2882 	return length;
2883 }
2884 
2885 static int __ffs_data_got_descs(struct ffs_data *ffs,
2886 				char *const _data, size_t len)
2887 {
2888 	char *data = _data, *raw_descs;
2889 	unsigned os_descs_count = 0, counts[3], flags;
2890 	int ret = -EINVAL, i;
2891 	struct ffs_desc_helper helper;
2892 
2893 	if (get_unaligned_le32(data + 4) != len)
2894 		goto error;
2895 
2896 	switch (get_unaligned_le32(data)) {
2897 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2898 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2899 		data += 8;
2900 		len  -= 8;
2901 		break;
2902 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2903 		flags = get_unaligned_le32(data + 8);
2904 		ffs->user_flags = flags;
2905 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2906 			      FUNCTIONFS_HAS_HS_DESC |
2907 			      FUNCTIONFS_HAS_SS_DESC |
2908 			      FUNCTIONFS_HAS_MS_OS_DESC |
2909 			      FUNCTIONFS_VIRTUAL_ADDR |
2910 			      FUNCTIONFS_EVENTFD |
2911 			      FUNCTIONFS_ALL_CTRL_RECIP |
2912 			      FUNCTIONFS_CONFIG0_SETUP)) {
2913 			ret = -ENOSYS;
2914 			goto error;
2915 		}
2916 		data += 12;
2917 		len  -= 12;
2918 		break;
2919 	default:
2920 		goto error;
2921 	}
2922 
2923 	if (flags & FUNCTIONFS_EVENTFD) {
2924 		if (len < 4)
2925 			goto error;
2926 		ffs->ffs_eventfd =
2927 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2928 		if (IS_ERR(ffs->ffs_eventfd)) {
2929 			ret = PTR_ERR(ffs->ffs_eventfd);
2930 			ffs->ffs_eventfd = NULL;
2931 			goto error;
2932 		}
2933 		data += 4;
2934 		len  -= 4;
2935 	}
2936 
2937 	/* Read fs_count, hs_count and ss_count (if present) */
2938 	for (i = 0; i < 3; ++i) {
2939 		if (!(flags & (1 << i))) {
2940 			counts[i] = 0;
2941 		} else if (len < 4) {
2942 			goto error;
2943 		} else {
2944 			counts[i] = get_unaligned_le32(data);
2945 			data += 4;
2946 			len  -= 4;
2947 		}
2948 	}
2949 	if (flags & (1 << i)) {
2950 		if (len < 4) {
2951 			goto error;
2952 		}
2953 		os_descs_count = get_unaligned_le32(data);
2954 		data += 4;
2955 		len -= 4;
2956 	}
2957 
2958 	/* Read descriptors */
2959 	raw_descs = data;
2960 	helper.ffs = ffs;
2961 	for (i = 0; i < 3; ++i) {
2962 		if (!counts[i])
2963 			continue;
2964 		helper.interfaces_count = 0;
2965 		helper.eps_count = 0;
2966 		ret = ffs_do_descs(counts[i], data, len,
2967 				   __ffs_data_do_entity, &helper);
2968 		if (ret < 0)
2969 			goto error;
2970 		if (!ffs->eps_count && !ffs->interfaces_count) {
2971 			ffs->eps_count = helper.eps_count;
2972 			ffs->interfaces_count = helper.interfaces_count;
2973 		} else {
2974 			if (ffs->eps_count != helper.eps_count) {
2975 				ret = -EINVAL;
2976 				goto error;
2977 			}
2978 			if (ffs->interfaces_count != helper.interfaces_count) {
2979 				ret = -EINVAL;
2980 				goto error;
2981 			}
2982 		}
2983 		data += ret;
2984 		len  -= ret;
2985 	}
2986 	if (os_descs_count) {
2987 		ret = ffs_do_os_descs(os_descs_count, data, len,
2988 				      __ffs_data_do_os_desc, ffs);
2989 		if (ret < 0)
2990 			goto error;
2991 		data += ret;
2992 		len -= ret;
2993 	}
2994 
2995 	if (raw_descs == data || len) {
2996 		ret = -EINVAL;
2997 		goto error;
2998 	}
2999 
3000 	ffs->raw_descs_data	= _data;
3001 	ffs->raw_descs		= raw_descs;
3002 	ffs->raw_descs_length	= data - raw_descs;
3003 	ffs->fs_descs_count	= counts[0];
3004 	ffs->hs_descs_count	= counts[1];
3005 	ffs->ss_descs_count	= counts[2];
3006 	ffs->ms_os_descs_count	= os_descs_count;
3007 
3008 	return 0;
3009 
3010 error:
3011 	kfree(_data);
3012 	return ret;
3013 }
3014 
3015 static int __ffs_data_got_strings(struct ffs_data *ffs,
3016 				  char *const _data, size_t len)
3017 {
3018 	u32 str_count, needed_count, lang_count;
3019 	struct usb_gadget_strings **stringtabs, *t;
3020 	const char *data = _data;
3021 	struct usb_string *s;
3022 
3023 	if (len < 16 ||
3024 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3025 	    get_unaligned_le32(data + 4) != len)
3026 		goto error;
3027 	str_count  = get_unaligned_le32(data + 8);
3028 	lang_count = get_unaligned_le32(data + 12);
3029 
3030 	/* if one is zero the other must be zero */
3031 	if (!str_count != !lang_count)
3032 		goto error;
3033 
3034 	/* Do we have at least as many strings as descriptors need? */
3035 	needed_count = ffs->strings_count;
3036 	if (str_count < needed_count)
3037 		goto error;
3038 
3039 	/*
3040 	 * If we don't need any strings just return and free all
3041 	 * memory.
3042 	 */
3043 	if (!needed_count) {
3044 		kfree(_data);
3045 		return 0;
3046 	}
3047 
3048 	/* Allocate everything in one chunk so there's less maintenance. */
3049 	{
3050 		unsigned i = 0;
3051 		vla_group(d);
3052 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3053 			size_add(lang_count, 1));
3054 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3055 		vla_item(d, struct usb_string, strings,
3056 			size_mul(lang_count, (needed_count + 1)));
3057 
3058 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3059 
3060 		if (!vlabuf) {
3061 			kfree(_data);
3062 			return -ENOMEM;
3063 		}
3064 
3065 		/* Initialize the VLA pointers */
3066 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3067 		t = vla_ptr(vlabuf, d, stringtab);
3068 		i = lang_count;
3069 		do {
3070 			*stringtabs++ = t++;
3071 		} while (--i);
3072 		*stringtabs = NULL;
3073 
3074 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3075 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3076 		t = vla_ptr(vlabuf, d, stringtab);
3077 		s = vla_ptr(vlabuf, d, strings);
3078 	}
3079 
3080 	/* For each language */
3081 	data += 16;
3082 	len -= 16;
3083 
3084 	do { /* lang_count > 0 so we can use do-while */
3085 		unsigned needed = needed_count;
3086 		u32 str_per_lang = str_count;
3087 
3088 		if (len < 3)
3089 			goto error_free;
3090 		t->language = get_unaligned_le16(data);
3091 		t->strings  = s;
3092 		++t;
3093 
3094 		data += 2;
3095 		len -= 2;
3096 
3097 		/* For each string */
3098 		do { /* str_count > 0 so we can use do-while */
3099 			size_t length = strnlen(data, len);
3100 
3101 			if (length == len)
3102 				goto error_free;
3103 
3104 			/*
3105 			 * User may provide more strings then we need,
3106 			 * if that's the case we simply ignore the
3107 			 * rest
3108 			 */
3109 			if (needed) {
3110 				/*
3111 				 * s->id will be set while adding
3112 				 * function to configuration so for
3113 				 * now just leave garbage here.
3114 				 */
3115 				s->s = data;
3116 				--needed;
3117 				++s;
3118 			}
3119 
3120 			data += length + 1;
3121 			len -= length + 1;
3122 		} while (--str_per_lang);
3123 
3124 		s->id = 0;   /* terminator */
3125 		s->s = NULL;
3126 		++s;
3127 
3128 	} while (--lang_count);
3129 
3130 	/* Some garbage left? */
3131 	if (len)
3132 		goto error_free;
3133 
3134 	/* Done! */
3135 	ffs->stringtabs = stringtabs;
3136 	ffs->raw_strings = _data;
3137 
3138 	return 0;
3139 
3140 error_free:
3141 	kfree(stringtabs);
3142 error:
3143 	kfree(_data);
3144 	return -EINVAL;
3145 }
3146 
3147 
3148 /* Events handling and management *******************************************/
3149 
3150 static void __ffs_event_add(struct ffs_data *ffs,
3151 			    enum usb_functionfs_event_type type)
3152 {
3153 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3154 	int neg = 0;
3155 
3156 	/*
3157 	 * Abort any unhandled setup
3158 	 *
3159 	 * We do not need to worry about some cmpxchg() changing value
3160 	 * of ffs->setup_state without holding the lock because when
3161 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3162 	 * the source does nothing.
3163 	 */
3164 	if (ffs->setup_state == FFS_SETUP_PENDING)
3165 		ffs->setup_state = FFS_SETUP_CANCELLED;
3166 
3167 	/*
3168 	 * Logic of this function guarantees that there are at most four pending
3169 	 * evens on ffs->ev.types queue.  This is important because the queue
3170 	 * has space for four elements only and __ffs_ep0_read_events function
3171 	 * depends on that limit as well.  If more event types are added, those
3172 	 * limits have to be revisited or guaranteed to still hold.
3173 	 */
3174 	switch (type) {
3175 	case FUNCTIONFS_RESUME:
3176 		rem_type2 = FUNCTIONFS_SUSPEND;
3177 		fallthrough;
3178 	case FUNCTIONFS_SUSPEND:
3179 	case FUNCTIONFS_SETUP:
3180 		rem_type1 = type;
3181 		/* Discard all similar events */
3182 		break;
3183 
3184 	case FUNCTIONFS_BIND:
3185 	case FUNCTIONFS_UNBIND:
3186 	case FUNCTIONFS_DISABLE:
3187 	case FUNCTIONFS_ENABLE:
3188 		/* Discard everything other then power management. */
3189 		rem_type1 = FUNCTIONFS_SUSPEND;
3190 		rem_type2 = FUNCTIONFS_RESUME;
3191 		neg = 1;
3192 		break;
3193 
3194 	default:
3195 		WARN(1, "%d: unknown event, this should not happen\n", type);
3196 		return;
3197 	}
3198 
3199 	{
3200 		u8 *ev  = ffs->ev.types, *out = ev;
3201 		unsigned n = ffs->ev.count;
3202 		for (; n; --n, ++ev)
3203 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3204 				*out++ = *ev;
3205 			else
3206 				pr_vdebug("purging event %d\n", *ev);
3207 		ffs->ev.count = out - ffs->ev.types;
3208 	}
3209 
3210 	pr_vdebug("adding event %d\n", type);
3211 	ffs->ev.types[ffs->ev.count++] = type;
3212 	wake_up_locked(&ffs->ev.waitq);
3213 	if (ffs->ffs_eventfd)
3214 		eventfd_signal(ffs->ffs_eventfd);
3215 }
3216 
3217 static void ffs_event_add(struct ffs_data *ffs,
3218 			  enum usb_functionfs_event_type type)
3219 {
3220 	unsigned long flags;
3221 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3222 	__ffs_event_add(ffs, type);
3223 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3224 }
3225 
3226 /* Bind/unbind USB function hooks *******************************************/
3227 
3228 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3229 {
3230 	int i;
3231 
3232 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3233 		if (ffs->eps_addrmap[i] == endpoint_address)
3234 			return i;
3235 	return -ENOENT;
3236 }
3237 
3238 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3239 				    struct usb_descriptor_header *desc,
3240 				    void *priv)
3241 {
3242 	struct usb_endpoint_descriptor *ds = (void *)desc;
3243 	struct ffs_function *func = priv;
3244 	struct ffs_ep *ffs_ep;
3245 	unsigned ep_desc_id;
3246 	int idx;
3247 	static const char *speed_names[] = { "full", "high", "super" };
3248 
3249 	if (type != FFS_DESCRIPTOR)
3250 		return 0;
3251 
3252 	/*
3253 	 * If ss_descriptors is not NULL, we are reading super speed
3254 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3255 	 * speed descriptors; otherwise, we are reading full speed
3256 	 * descriptors.
3257 	 */
3258 	if (func->function.ss_descriptors) {
3259 		ep_desc_id = 2;
3260 		func->function.ss_descriptors[(long)valuep] = desc;
3261 	} else if (func->function.hs_descriptors) {
3262 		ep_desc_id = 1;
3263 		func->function.hs_descriptors[(long)valuep] = desc;
3264 	} else {
3265 		ep_desc_id = 0;
3266 		func->function.fs_descriptors[(long)valuep]    = desc;
3267 	}
3268 
3269 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3270 		return 0;
3271 
3272 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3273 	if (idx < 0)
3274 		return idx;
3275 
3276 	ffs_ep = func->eps + idx;
3277 
3278 	if (ffs_ep->descs[ep_desc_id]) {
3279 		pr_err("two %sspeed descriptors for EP %d\n",
3280 			  speed_names[ep_desc_id],
3281 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3282 		return -EINVAL;
3283 	}
3284 	ffs_ep->descs[ep_desc_id] = ds;
3285 
3286 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3287 	if (ffs_ep->ep) {
3288 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3289 		if (!ds->wMaxPacketSize)
3290 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3291 	} else {
3292 		struct usb_request *req;
3293 		struct usb_ep *ep;
3294 		u8 bEndpointAddress;
3295 		u16 wMaxPacketSize;
3296 
3297 		/*
3298 		 * We back up bEndpointAddress because autoconfig overwrites
3299 		 * it with physical endpoint address.
3300 		 */
3301 		bEndpointAddress = ds->bEndpointAddress;
3302 		/*
3303 		 * We back up wMaxPacketSize because autoconfig treats
3304 		 * endpoint descriptors as if they were full speed.
3305 		 */
3306 		wMaxPacketSize = ds->wMaxPacketSize;
3307 		pr_vdebug("autoconfig\n");
3308 		ep = usb_ep_autoconfig(func->gadget, ds);
3309 		if (!ep)
3310 			return -ENOTSUPP;
3311 		ep->driver_data = func->eps + idx;
3312 
3313 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3314 		if (!req)
3315 			return -ENOMEM;
3316 
3317 		ffs_ep->ep  = ep;
3318 		ffs_ep->req = req;
3319 		func->eps_revmap[ds->bEndpointAddress &
3320 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3321 		/*
3322 		 * If we use virtual address mapping, we restore
3323 		 * original bEndpointAddress value.
3324 		 */
3325 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3326 			ds->bEndpointAddress = bEndpointAddress;
3327 		/*
3328 		 * Restore wMaxPacketSize which was potentially
3329 		 * overwritten by autoconfig.
3330 		 */
3331 		ds->wMaxPacketSize = wMaxPacketSize;
3332 	}
3333 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3334 
3335 	return 0;
3336 }
3337 
3338 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3339 				   struct usb_descriptor_header *desc,
3340 				   void *priv)
3341 {
3342 	struct ffs_function *func = priv;
3343 	unsigned idx;
3344 	u8 newValue;
3345 
3346 	switch (type) {
3347 	default:
3348 	case FFS_DESCRIPTOR:
3349 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3350 		return 0;
3351 
3352 	case FFS_INTERFACE:
3353 		idx = *valuep;
3354 		if (func->interfaces_nums[idx] < 0) {
3355 			int id = usb_interface_id(func->conf, &func->function);
3356 			if (id < 0)
3357 				return id;
3358 			func->interfaces_nums[idx] = id;
3359 		}
3360 		newValue = func->interfaces_nums[idx];
3361 		break;
3362 
3363 	case FFS_STRING:
3364 		/* String' IDs are allocated when fsf_data is bound to cdev */
3365 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3366 		break;
3367 
3368 	case FFS_ENDPOINT:
3369 		/*
3370 		 * USB_DT_ENDPOINT are handled in
3371 		 * __ffs_func_bind_do_descs().
3372 		 */
3373 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3374 			return 0;
3375 
3376 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3377 		if (!func->eps[idx].ep)
3378 			return -EINVAL;
3379 
3380 		{
3381 			struct usb_endpoint_descriptor **descs;
3382 			descs = func->eps[idx].descs;
3383 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3384 		}
3385 		break;
3386 	}
3387 
3388 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3389 	*valuep = newValue;
3390 	return 0;
3391 }
3392 
3393 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3394 				      struct usb_os_desc_header *h, void *data,
3395 				      unsigned len, void *priv)
3396 {
3397 	struct ffs_function *func = priv;
3398 	u8 length = 0;
3399 
3400 	switch (type) {
3401 	case FFS_OS_DESC_EXT_COMPAT: {
3402 		struct usb_ext_compat_desc *desc = data;
3403 		struct usb_os_desc_table *t;
3404 
3405 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3406 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3407 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3408 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3409 		length = sizeof(*desc);
3410 	}
3411 		break;
3412 	case FFS_OS_DESC_EXT_PROP: {
3413 		struct usb_ext_prop_desc *desc = data;
3414 		struct usb_os_desc_table *t;
3415 		struct usb_os_desc_ext_prop *ext_prop;
3416 		char *ext_prop_name;
3417 		char *ext_prop_data;
3418 
3419 		t = &func->function.os_desc_table[h->interface];
3420 		t->if_id = func->interfaces_nums[h->interface];
3421 
3422 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3423 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3424 
3425 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3426 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3427 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3428 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3429 		length = ext_prop->name_len + ext_prop->data_len + 14;
3430 
3431 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3432 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3433 			ext_prop->name_len;
3434 
3435 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3436 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3437 			ext_prop->data_len;
3438 		memcpy(ext_prop_data,
3439 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3440 		       ext_prop->data_len);
3441 		/* unicode data reported to the host as "WCHAR"s */
3442 		switch (ext_prop->type) {
3443 		case USB_EXT_PROP_UNICODE:
3444 		case USB_EXT_PROP_UNICODE_ENV:
3445 		case USB_EXT_PROP_UNICODE_LINK:
3446 		case USB_EXT_PROP_UNICODE_MULTI:
3447 			ext_prop->data_len *= 2;
3448 			break;
3449 		}
3450 		ext_prop->data = ext_prop_data;
3451 
3452 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3453 		       ext_prop->name_len);
3454 		/* property name reported to the host as "WCHAR"s */
3455 		ext_prop->name_len *= 2;
3456 		ext_prop->name = ext_prop_name;
3457 
3458 		t->os_desc->ext_prop_len +=
3459 			ext_prop->name_len + ext_prop->data_len + 14;
3460 		++t->os_desc->ext_prop_count;
3461 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3462 	}
3463 		break;
3464 	default:
3465 		pr_vdebug("unknown descriptor: %d\n", type);
3466 	}
3467 
3468 	return length;
3469 }
3470 
3471 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3472 						struct usb_configuration *c)
3473 {
3474 	struct ffs_function *func = ffs_func_from_usb(f);
3475 	struct f_fs_opts *ffs_opts =
3476 		container_of(f->fi, struct f_fs_opts, func_inst);
3477 	struct ffs_data *ffs_data;
3478 	int ret;
3479 
3480 	/*
3481 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3482 	 * which already uses locking; taking the same lock here would
3483 	 * cause a deadlock.
3484 	 *
3485 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3486 	 */
3487 	if (!ffs_opts->no_configfs)
3488 		ffs_dev_lock();
3489 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3490 	ffs_data = ffs_opts->dev->ffs_data;
3491 	if (!ffs_opts->no_configfs)
3492 		ffs_dev_unlock();
3493 	if (ret)
3494 		return ERR_PTR(ret);
3495 
3496 	func->ffs = ffs_data;
3497 	func->conf = c;
3498 	func->gadget = c->cdev->gadget;
3499 
3500 	/*
3501 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3502 	 * configurations are bound in sequence with list_for_each_entry,
3503 	 * in each configuration its functions are bound in sequence
3504 	 * with list_for_each_entry, so we assume no race condition
3505 	 * with regard to ffs_opts->bound access
3506 	 */
3507 	if (!ffs_opts->refcnt) {
3508 		ret = functionfs_bind(func->ffs, c->cdev);
3509 		if (ret)
3510 			return ERR_PTR(ret);
3511 	}
3512 	ffs_opts->refcnt++;
3513 	func->function.strings = func->ffs->stringtabs;
3514 
3515 	return ffs_opts;
3516 }
3517 
3518 static int _ffs_func_bind(struct usb_configuration *c,
3519 			  struct usb_function *f)
3520 {
3521 	struct ffs_function *func = ffs_func_from_usb(f);
3522 	struct ffs_data *ffs = func->ffs;
3523 
3524 	const int full = !!func->ffs->fs_descs_count;
3525 	const int high = !!func->ffs->hs_descs_count;
3526 	const int super = !!func->ffs->ss_descs_count;
3527 
3528 	int fs_len, hs_len, ss_len, ret, i;
3529 	struct ffs_ep *eps_ptr;
3530 
3531 	/* Make it a single chunk, less management later on */
3532 	vla_group(d);
3533 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3534 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3535 		full ? ffs->fs_descs_count + 1 : 0);
3536 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3537 		high ? ffs->hs_descs_count + 1 : 0);
3538 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3539 		super ? ffs->ss_descs_count + 1 : 0);
3540 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3541 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3542 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3543 	vla_item_with_sz(d, char[16], ext_compat,
3544 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3545 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3546 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3547 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3548 			 ffs->ms_os_descs_ext_prop_count);
3549 	vla_item_with_sz(d, char, ext_prop_name,
3550 			 ffs->ms_os_descs_ext_prop_name_len);
3551 	vla_item_with_sz(d, char, ext_prop_data,
3552 			 ffs->ms_os_descs_ext_prop_data_len);
3553 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3554 	char *vlabuf;
3555 
3556 	/* Has descriptors only for speeds gadget does not support */
3557 	if (!(full | high | super))
3558 		return -ENOTSUPP;
3559 
3560 	/* Allocate a single chunk, less management later on */
3561 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3562 	if (!vlabuf)
3563 		return -ENOMEM;
3564 
3565 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3566 	ffs->ms_os_descs_ext_prop_name_avail =
3567 		vla_ptr(vlabuf, d, ext_prop_name);
3568 	ffs->ms_os_descs_ext_prop_data_avail =
3569 		vla_ptr(vlabuf, d, ext_prop_data);
3570 
3571 	/* Copy descriptors  */
3572 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3573 	       ffs->raw_descs_length);
3574 
3575 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3576 	eps_ptr = vla_ptr(vlabuf, d, eps);
3577 	for (i = 0; i < ffs->eps_count; i++)
3578 		eps_ptr[i].num = -1;
3579 
3580 	/* Save pointers
3581 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3582 	*/
3583 	func->eps             = vla_ptr(vlabuf, d, eps);
3584 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3585 
3586 	/*
3587 	 * Go through all the endpoint descriptors and allocate
3588 	 * endpoints first, so that later we can rewrite the endpoint
3589 	 * numbers without worrying that it may be described later on.
3590 	 */
3591 	if (full) {
3592 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3593 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3594 				      vla_ptr(vlabuf, d, raw_descs),
3595 				      d_raw_descs__sz,
3596 				      __ffs_func_bind_do_descs, func);
3597 		if (fs_len < 0) {
3598 			ret = fs_len;
3599 			goto error;
3600 		}
3601 	} else {
3602 		fs_len = 0;
3603 	}
3604 
3605 	if (high) {
3606 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3607 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3608 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3609 				      d_raw_descs__sz - fs_len,
3610 				      __ffs_func_bind_do_descs, func);
3611 		if (hs_len < 0) {
3612 			ret = hs_len;
3613 			goto error;
3614 		}
3615 	} else {
3616 		hs_len = 0;
3617 	}
3618 
3619 	if (super) {
3620 		func->function.ss_descriptors = func->function.ssp_descriptors =
3621 			vla_ptr(vlabuf, d, ss_descs);
3622 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3623 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3624 				d_raw_descs__sz - fs_len - hs_len,
3625 				__ffs_func_bind_do_descs, func);
3626 		if (ss_len < 0) {
3627 			ret = ss_len;
3628 			goto error;
3629 		}
3630 	} else {
3631 		ss_len = 0;
3632 	}
3633 
3634 	/*
3635 	 * Now handle interface numbers allocation and interface and
3636 	 * endpoint numbers rewriting.  We can do that in one go
3637 	 * now.
3638 	 */
3639 	ret = ffs_do_descs(ffs->fs_descs_count +
3640 			   (high ? ffs->hs_descs_count : 0) +
3641 			   (super ? ffs->ss_descs_count : 0),
3642 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3643 			   __ffs_func_bind_do_nums, func);
3644 	if (ret < 0)
3645 		goto error;
3646 
3647 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3648 	if (c->cdev->use_os_string) {
3649 		for (i = 0; i < ffs->interfaces_count; ++i) {
3650 			struct usb_os_desc *desc;
3651 
3652 			desc = func->function.os_desc_table[i].os_desc =
3653 				vla_ptr(vlabuf, d, os_desc) +
3654 				i * sizeof(struct usb_os_desc);
3655 			desc->ext_compat_id =
3656 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3657 			INIT_LIST_HEAD(&desc->ext_prop);
3658 		}
3659 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3660 				      vla_ptr(vlabuf, d, raw_descs) +
3661 				      fs_len + hs_len + ss_len,
3662 				      d_raw_descs__sz - fs_len - hs_len -
3663 				      ss_len,
3664 				      __ffs_func_bind_do_os_desc, func);
3665 		if (ret < 0)
3666 			goto error;
3667 	}
3668 	func->function.os_desc_n =
3669 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3670 
3671 	/* And we're done */
3672 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3673 	return 0;
3674 
3675 error:
3676 	/* XXX Do we need to release all claimed endpoints here? */
3677 	return ret;
3678 }
3679 
3680 static int ffs_func_bind(struct usb_configuration *c,
3681 			 struct usb_function *f)
3682 {
3683 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3684 	struct ffs_function *func = ffs_func_from_usb(f);
3685 	int ret;
3686 
3687 	if (IS_ERR(ffs_opts))
3688 		return PTR_ERR(ffs_opts);
3689 
3690 	ret = _ffs_func_bind(c, f);
3691 	if (ret && !--ffs_opts->refcnt)
3692 		functionfs_unbind(func->ffs);
3693 
3694 	return ret;
3695 }
3696 
3697 
3698 /* Other USB function hooks *************************************************/
3699 
3700 static void ffs_reset_work(struct work_struct *work)
3701 {
3702 	struct ffs_data *ffs = container_of(work,
3703 		struct ffs_data, reset_work);
3704 	ffs_data_reset(ffs);
3705 }
3706 
3707 static int ffs_func_set_alt(struct usb_function *f,
3708 			    unsigned interface, unsigned alt)
3709 {
3710 	struct ffs_function *func = ffs_func_from_usb(f);
3711 	struct ffs_data *ffs = func->ffs;
3712 	int ret = 0, intf;
3713 
3714 	if (alt != (unsigned)-1) {
3715 		intf = ffs_func_revmap_intf(func, interface);
3716 		if (intf < 0)
3717 			return intf;
3718 	}
3719 
3720 	if (ffs->func)
3721 		ffs_func_eps_disable(ffs->func);
3722 
3723 	if (ffs->state == FFS_DEACTIVATED) {
3724 		ffs->state = FFS_CLOSING;
3725 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3726 		schedule_work(&ffs->reset_work);
3727 		return -ENODEV;
3728 	}
3729 
3730 	if (ffs->state != FFS_ACTIVE)
3731 		return -ENODEV;
3732 
3733 	if (alt == (unsigned)-1) {
3734 		ffs->func = NULL;
3735 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3736 		return 0;
3737 	}
3738 
3739 	ffs->func = func;
3740 	ret = ffs_func_eps_enable(func);
3741 	if (ret >= 0)
3742 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3743 	return ret;
3744 }
3745 
3746 static void ffs_func_disable(struct usb_function *f)
3747 {
3748 	ffs_func_set_alt(f, 0, (unsigned)-1);
3749 }
3750 
3751 static int ffs_func_setup(struct usb_function *f,
3752 			  const struct usb_ctrlrequest *creq)
3753 {
3754 	struct ffs_function *func = ffs_func_from_usb(f);
3755 	struct ffs_data *ffs = func->ffs;
3756 	unsigned long flags;
3757 	int ret;
3758 
3759 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3760 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3761 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3762 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3763 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3764 
3765 	/*
3766 	 * Most requests directed to interface go through here
3767 	 * (notable exceptions are set/get interface) so we need to
3768 	 * handle them.  All other either handled by composite or
3769 	 * passed to usb_configuration->setup() (if one is set).  No
3770 	 * matter, we will handle requests directed to endpoint here
3771 	 * as well (as it's straightforward).  Other request recipient
3772 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3773 	 * is being used.
3774 	 */
3775 	if (ffs->state != FFS_ACTIVE)
3776 		return -ENODEV;
3777 
3778 	switch (creq->bRequestType & USB_RECIP_MASK) {
3779 	case USB_RECIP_INTERFACE:
3780 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3781 		if (ret < 0)
3782 			return ret;
3783 		break;
3784 
3785 	case USB_RECIP_ENDPOINT:
3786 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3787 		if (ret < 0)
3788 			return ret;
3789 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3790 			ret = func->ffs->eps_addrmap[ret];
3791 		break;
3792 
3793 	default:
3794 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3795 			ret = le16_to_cpu(creq->wIndex);
3796 		else
3797 			return -EOPNOTSUPP;
3798 	}
3799 
3800 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3801 	ffs->ev.setup = *creq;
3802 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3803 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3804 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3805 
3806 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3807 }
3808 
3809 static bool ffs_func_req_match(struct usb_function *f,
3810 			       const struct usb_ctrlrequest *creq,
3811 			       bool config0)
3812 {
3813 	struct ffs_function *func = ffs_func_from_usb(f);
3814 
3815 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3816 		return false;
3817 
3818 	switch (creq->bRequestType & USB_RECIP_MASK) {
3819 	case USB_RECIP_INTERFACE:
3820 		return (ffs_func_revmap_intf(func,
3821 					     le16_to_cpu(creq->wIndex)) >= 0);
3822 	case USB_RECIP_ENDPOINT:
3823 		return (ffs_func_revmap_ep(func,
3824 					   le16_to_cpu(creq->wIndex)) >= 0);
3825 	default:
3826 		return (bool) (func->ffs->user_flags &
3827 			       FUNCTIONFS_ALL_CTRL_RECIP);
3828 	}
3829 }
3830 
3831 static void ffs_func_suspend(struct usb_function *f)
3832 {
3833 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3834 }
3835 
3836 static void ffs_func_resume(struct usb_function *f)
3837 {
3838 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3839 }
3840 
3841 
3842 /* Endpoint and interface numbers reverse mapping ***************************/
3843 
3844 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3845 {
3846 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3847 	return num ? num : -EDOM;
3848 }
3849 
3850 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3851 {
3852 	short *nums = func->interfaces_nums;
3853 	unsigned count = func->ffs->interfaces_count;
3854 
3855 	for (; count; --count, ++nums) {
3856 		if (*nums >= 0 && *nums == intf)
3857 			return nums - func->interfaces_nums;
3858 	}
3859 
3860 	return -EDOM;
3861 }
3862 
3863 
3864 /* Devices management *******************************************************/
3865 
3866 static LIST_HEAD(ffs_devices);
3867 
3868 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3869 {
3870 	struct ffs_dev *dev;
3871 
3872 	if (!name)
3873 		return NULL;
3874 
3875 	list_for_each_entry(dev, &ffs_devices, entry) {
3876 		if (strcmp(dev->name, name) == 0)
3877 			return dev;
3878 	}
3879 
3880 	return NULL;
3881 }
3882 
3883 /*
3884  * ffs_lock must be taken by the caller of this function
3885  */
3886 static struct ffs_dev *_ffs_get_single_dev(void)
3887 {
3888 	struct ffs_dev *dev;
3889 
3890 	if (list_is_singular(&ffs_devices)) {
3891 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3892 		if (dev->single)
3893 			return dev;
3894 	}
3895 
3896 	return NULL;
3897 }
3898 
3899 /*
3900  * ffs_lock must be taken by the caller of this function
3901  */
3902 static struct ffs_dev *_ffs_find_dev(const char *name)
3903 {
3904 	struct ffs_dev *dev;
3905 
3906 	dev = _ffs_get_single_dev();
3907 	if (dev)
3908 		return dev;
3909 
3910 	return _ffs_do_find_dev(name);
3911 }
3912 
3913 /* Configfs support *********************************************************/
3914 
3915 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3916 {
3917 	return container_of(to_config_group(item), struct f_fs_opts,
3918 			    func_inst.group);
3919 }
3920 
3921 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3922 {
3923 	struct f_fs_opts *opts = to_ffs_opts(item);
3924 	int ready;
3925 
3926 	ffs_dev_lock();
3927 	ready = opts->dev->desc_ready;
3928 	ffs_dev_unlock();
3929 
3930 	return sprintf(page, "%d\n", ready);
3931 }
3932 
3933 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3934 
3935 static struct configfs_attribute *ffs_attrs[] = {
3936 	&f_fs_opts_attr_ready,
3937 	NULL,
3938 };
3939 
3940 static void ffs_attr_release(struct config_item *item)
3941 {
3942 	struct f_fs_opts *opts = to_ffs_opts(item);
3943 
3944 	usb_put_function_instance(&opts->func_inst);
3945 }
3946 
3947 static struct configfs_item_operations ffs_item_ops = {
3948 	.release	= ffs_attr_release,
3949 };
3950 
3951 static const struct config_item_type ffs_func_type = {
3952 	.ct_item_ops	= &ffs_item_ops,
3953 	.ct_attrs	= ffs_attrs,
3954 	.ct_owner	= THIS_MODULE,
3955 };
3956 
3957 
3958 /* Function registration interface ******************************************/
3959 
3960 static void ffs_free_inst(struct usb_function_instance *f)
3961 {
3962 	struct f_fs_opts *opts;
3963 
3964 	opts = to_f_fs_opts(f);
3965 	ffs_release_dev(opts->dev);
3966 	ffs_dev_lock();
3967 	_ffs_free_dev(opts->dev);
3968 	ffs_dev_unlock();
3969 	kfree(opts);
3970 }
3971 
3972 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3973 {
3974 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3975 		return -ENAMETOOLONG;
3976 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3977 }
3978 
3979 static struct usb_function_instance *ffs_alloc_inst(void)
3980 {
3981 	struct f_fs_opts *opts;
3982 	struct ffs_dev *dev;
3983 
3984 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3985 	if (!opts)
3986 		return ERR_PTR(-ENOMEM);
3987 
3988 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3989 	opts->func_inst.free_func_inst = ffs_free_inst;
3990 	ffs_dev_lock();
3991 	dev = _ffs_alloc_dev();
3992 	ffs_dev_unlock();
3993 	if (IS_ERR(dev)) {
3994 		kfree(opts);
3995 		return ERR_CAST(dev);
3996 	}
3997 	opts->dev = dev;
3998 	dev->opts = opts;
3999 
4000 	config_group_init_type_name(&opts->func_inst.group, "",
4001 				    &ffs_func_type);
4002 	return &opts->func_inst;
4003 }
4004 
4005 static void ffs_free(struct usb_function *f)
4006 {
4007 	kfree(ffs_func_from_usb(f));
4008 }
4009 
4010 static void ffs_func_unbind(struct usb_configuration *c,
4011 			    struct usb_function *f)
4012 {
4013 	struct ffs_function *func = ffs_func_from_usb(f);
4014 	struct ffs_data *ffs = func->ffs;
4015 	struct f_fs_opts *opts =
4016 		container_of(f->fi, struct f_fs_opts, func_inst);
4017 	struct ffs_ep *ep = func->eps;
4018 	unsigned count = ffs->eps_count;
4019 	unsigned long flags;
4020 
4021 	if (ffs->func == func) {
4022 		ffs_func_eps_disable(func);
4023 		ffs->func = NULL;
4024 	}
4025 
4026 	/* Drain any pending AIO completions */
4027 	drain_workqueue(ffs->io_completion_wq);
4028 
4029 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4030 	if (!--opts->refcnt)
4031 		functionfs_unbind(ffs);
4032 
4033 	/* cleanup after autoconfig */
4034 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4035 	while (count--) {
4036 		if (ep->ep && ep->req)
4037 			usb_ep_free_request(ep->ep, ep->req);
4038 		ep->req = NULL;
4039 		++ep;
4040 	}
4041 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4042 	kfree(func->eps);
4043 	func->eps = NULL;
4044 	/*
4045 	 * eps, descriptors and interfaces_nums are allocated in the
4046 	 * same chunk so only one free is required.
4047 	 */
4048 	func->function.fs_descriptors = NULL;
4049 	func->function.hs_descriptors = NULL;
4050 	func->function.ss_descriptors = NULL;
4051 	func->function.ssp_descriptors = NULL;
4052 	func->interfaces_nums = NULL;
4053 
4054 }
4055 
4056 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4057 {
4058 	struct ffs_function *func;
4059 
4060 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4061 	if (!func)
4062 		return ERR_PTR(-ENOMEM);
4063 
4064 	func->function.name    = "Function FS Gadget";
4065 
4066 	func->function.bind    = ffs_func_bind;
4067 	func->function.unbind  = ffs_func_unbind;
4068 	func->function.set_alt = ffs_func_set_alt;
4069 	func->function.disable = ffs_func_disable;
4070 	func->function.setup   = ffs_func_setup;
4071 	func->function.req_match = ffs_func_req_match;
4072 	func->function.suspend = ffs_func_suspend;
4073 	func->function.resume  = ffs_func_resume;
4074 	func->function.free_func = ffs_free;
4075 
4076 	return &func->function;
4077 }
4078 
4079 /*
4080  * ffs_lock must be taken by the caller of this function
4081  */
4082 static struct ffs_dev *_ffs_alloc_dev(void)
4083 {
4084 	struct ffs_dev *dev;
4085 	int ret;
4086 
4087 	if (_ffs_get_single_dev())
4088 			return ERR_PTR(-EBUSY);
4089 
4090 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4091 	if (!dev)
4092 		return ERR_PTR(-ENOMEM);
4093 
4094 	if (list_empty(&ffs_devices)) {
4095 		ret = functionfs_init();
4096 		if (ret) {
4097 			kfree(dev);
4098 			return ERR_PTR(ret);
4099 		}
4100 	}
4101 
4102 	list_add(&dev->entry, &ffs_devices);
4103 
4104 	return dev;
4105 }
4106 
4107 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4108 {
4109 	struct ffs_dev *existing;
4110 	int ret = 0;
4111 
4112 	ffs_dev_lock();
4113 
4114 	existing = _ffs_do_find_dev(name);
4115 	if (!existing)
4116 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4117 	else if (existing != dev)
4118 		ret = -EBUSY;
4119 
4120 	ffs_dev_unlock();
4121 
4122 	return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(ffs_name_dev);
4125 
4126 int ffs_single_dev(struct ffs_dev *dev)
4127 {
4128 	int ret;
4129 
4130 	ret = 0;
4131 	ffs_dev_lock();
4132 
4133 	if (!list_is_singular(&ffs_devices))
4134 		ret = -EBUSY;
4135 	else
4136 		dev->single = true;
4137 
4138 	ffs_dev_unlock();
4139 	return ret;
4140 }
4141 EXPORT_SYMBOL_GPL(ffs_single_dev);
4142 
4143 /*
4144  * ffs_lock must be taken by the caller of this function
4145  */
4146 static void _ffs_free_dev(struct ffs_dev *dev)
4147 {
4148 	list_del(&dev->entry);
4149 
4150 	kfree(dev);
4151 	if (list_empty(&ffs_devices))
4152 		functionfs_cleanup();
4153 }
4154 
4155 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4156 {
4157 	int ret = 0;
4158 	struct ffs_dev *ffs_dev;
4159 
4160 	ffs_dev_lock();
4161 
4162 	ffs_dev = _ffs_find_dev(dev_name);
4163 	if (!ffs_dev) {
4164 		ret = -ENOENT;
4165 	} else if (ffs_dev->mounted) {
4166 		ret = -EBUSY;
4167 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4168 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4169 		ret = -ENOENT;
4170 	} else {
4171 		ffs_dev->mounted = true;
4172 		ffs_dev->ffs_data = ffs_data;
4173 		ffs_data->private_data = ffs_dev;
4174 	}
4175 
4176 	ffs_dev_unlock();
4177 	return ret;
4178 }
4179 
4180 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4181 {
4182 	ffs_dev_lock();
4183 
4184 	if (ffs_dev && ffs_dev->mounted) {
4185 		ffs_dev->mounted = false;
4186 		if (ffs_dev->ffs_data) {
4187 			ffs_dev->ffs_data->private_data = NULL;
4188 			ffs_dev->ffs_data = NULL;
4189 		}
4190 
4191 		if (ffs_dev->ffs_release_dev_callback)
4192 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4193 	}
4194 
4195 	ffs_dev_unlock();
4196 }
4197 
4198 static int ffs_ready(struct ffs_data *ffs)
4199 {
4200 	struct ffs_dev *ffs_obj;
4201 	int ret = 0;
4202 
4203 	ffs_dev_lock();
4204 
4205 	ffs_obj = ffs->private_data;
4206 	if (!ffs_obj) {
4207 		ret = -EINVAL;
4208 		goto done;
4209 	}
4210 	if (WARN_ON(ffs_obj->desc_ready)) {
4211 		ret = -EBUSY;
4212 		goto done;
4213 	}
4214 
4215 	ffs_obj->desc_ready = true;
4216 
4217 	if (ffs_obj->ffs_ready_callback) {
4218 		ret = ffs_obj->ffs_ready_callback(ffs);
4219 		if (ret)
4220 			goto done;
4221 	}
4222 
4223 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4224 done:
4225 	ffs_dev_unlock();
4226 	return ret;
4227 }
4228 
4229 static void ffs_closed(struct ffs_data *ffs)
4230 {
4231 	struct ffs_dev *ffs_obj;
4232 	struct f_fs_opts *opts;
4233 	struct config_item *ci;
4234 
4235 	ffs_dev_lock();
4236 
4237 	ffs_obj = ffs->private_data;
4238 	if (!ffs_obj)
4239 		goto done;
4240 
4241 	ffs_obj->desc_ready = false;
4242 
4243 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4244 	    ffs_obj->ffs_closed_callback)
4245 		ffs_obj->ffs_closed_callback(ffs);
4246 
4247 	if (ffs_obj->opts)
4248 		opts = ffs_obj->opts;
4249 	else
4250 		goto done;
4251 
4252 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4253 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4254 		goto done;
4255 
4256 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4257 	ffs_dev_unlock();
4258 
4259 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4260 		unregister_gadget_item(ci);
4261 	return;
4262 done:
4263 	ffs_dev_unlock();
4264 }
4265 
4266 /* Misc helper functions ****************************************************/
4267 
4268 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4269 {
4270 	return nonblock
4271 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4272 		: mutex_lock_interruptible(mutex);
4273 }
4274 
4275 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4276 {
4277 	char *data;
4278 
4279 	if (!len)
4280 		return NULL;
4281 
4282 	data = memdup_user(buf, len);
4283 	if (IS_ERR(data))
4284 		return data;
4285 
4286 	pr_vdebug("Buffer from user space:\n");
4287 	ffs_dump_mem("", data, len);
4288 
4289 	return data;
4290 }
4291 
4292 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4293 MODULE_LICENSE("GPL");
4294 MODULE_AUTHOR("Michal Nazarewicz");
4295