xref: /linux/drivers/usb/gadget/function/f_fs.c (revision 9fffa4e9b3b158f63334e603e610da7d529a0f9a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <asm/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37 
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42 
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
49 
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51 
52 MODULE_IMPORT_NS(DMA_BUF);
53 
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 	__attribute__((malloc));
60 
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64 
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70 
71 
72 /* The function structure ***************************************************/
73 
74 struct ffs_ep;
75 
76 struct ffs_function {
77 	struct usb_configuration	*conf;
78 	struct usb_gadget		*gadget;
79 	struct ffs_data			*ffs;
80 
81 	struct ffs_ep			*eps;
82 	u8				eps_revmap[16];
83 	short				*interfaces_nums;
84 
85 	struct usb_function		function;
86 	int				cur_alt[MAX_CONFIG_INTERFACES];
87 };
88 
89 
90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92 	return container_of(f, struct ffs_function, function);
93 }
94 
95 
96 static inline enum ffs_setup_state
97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99 	return (enum ffs_setup_state)
100 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102 
103 
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106 
107 static int ffs_func_bind(struct usb_configuration *,
108 			 struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113 			  const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115 			       const struct usb_ctrlrequest *,
116 			       bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119 
120 
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123 
124 
125 /* The endpoints structures *************************************************/
126 
127 struct ffs_ep {
128 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
129 	struct usb_request		*req;	/* P: epfile->mutex */
130 
131 	/* [0]: full speed, [1]: high speed, [2]: super speed */
132 	struct usb_endpoint_descriptor	*descs[3];
133 
134 	u8				num;
135 };
136 
137 struct ffs_dmabuf_priv {
138 	struct list_head entry;
139 	struct kref ref;
140 	struct ffs_data *ffs;
141 	struct dma_buf_attachment *attach;
142 	struct sg_table *sgt;
143 	enum dma_data_direction dir;
144 	spinlock_t lock;
145 	u64 context;
146 	struct usb_request *req;	/* P: ffs->eps_lock */
147 	struct usb_ep *ep;		/* P: ffs->eps_lock */
148 };
149 
150 struct ffs_dma_fence {
151 	struct dma_fence base;
152 	struct ffs_dmabuf_priv *priv;
153 	struct work_struct work;
154 };
155 
156 struct ffs_epfile {
157 	/* Protects ep->ep and ep->req. */
158 	struct mutex			mutex;
159 
160 	struct ffs_data			*ffs;
161 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
162 
163 	struct dentry			*dentry;
164 
165 	/*
166 	 * Buffer for holding data from partial reads which may happen since
167 	 * we’re rounding user read requests to a multiple of a max packet size.
168 	 *
169 	 * The pointer is initialised with NULL value and may be set by
170 	 * __ffs_epfile_read_data function to point to a temporary buffer.
171 	 *
172 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
173 	 * data from said buffer and eventually free it.  Importantly, while the
174 	 * function is using the buffer, it sets the pointer to NULL.  This is
175 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
176 	 * can never run concurrently (they are synchronised by epfile->mutex)
177 	 * so the latter will not assign a new value to the pointer.
178 	 *
179 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
180 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
181 	 * value is crux of the synchronisation between ffs_func_eps_disable and
182 	 * __ffs_epfile_read_data.
183 	 *
184 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
185 	 * pointer back to its old value (as described above), but seeing as the
186 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
187 	 * the buffer.
188 	 *
189 	 * == State transitions ==
190 	 *
191 	 * • ptr == NULL:  (initial state)
192 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
193 	 *   ◦ __ffs_epfile_read_buffered:    nop
194 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
195 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
196 	 * • ptr == DROP:
197 	 *   ◦ __ffs_epfile_read_buffer_free: nop
198 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
199 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
200 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
201 	 * • ptr == buf:
202 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
203 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
204 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
205 	 *                                    is always called first
206 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
207 	 * • ptr == NULL and reading:
208 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
209 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
210 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
211 	 *   ◦ reading finishes and …
212 	 *     … all data read:               free buf, go to ptr == NULL
213 	 *     … otherwise:                   go to ptr == buf and reading
214 	 * • ptr == DROP and reading:
215 	 *   ◦ __ffs_epfile_read_buffer_free: nop
216 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
217 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
218 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
219 	 */
220 	struct ffs_buffer		*read_buffer;
221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
222 
223 	char				name[5];
224 
225 	unsigned char			in;	/* P: ffs->eps_lock */
226 	unsigned char			isoc;	/* P: ffs->eps_lock */
227 
228 	unsigned char			_pad;
229 
230 	/* Protects dmabufs */
231 	struct mutex			dmabufs_mutex;
232 	struct list_head		dmabufs; /* P: dmabufs_mutex */
233 	atomic_t			seqno;
234 };
235 
236 struct ffs_buffer {
237 	size_t length;
238 	char *data;
239 	char storage[] __counted_by(length);
240 };
241 
242 /*  ffs_io_data structure ***************************************************/
243 
244 struct ffs_io_data {
245 	bool aio;
246 	bool read;
247 
248 	struct kiocb *kiocb;
249 	struct iov_iter data;
250 	const void *to_free;
251 	char *buf;
252 
253 	struct mm_struct *mm;
254 	struct work_struct work;
255 
256 	struct usb_ep *ep;
257 	struct usb_request *req;
258 	struct sg_table sgt;
259 	bool use_sg;
260 
261 	struct ffs_data *ffs;
262 
263 	int status;
264 	struct completion done;
265 };
266 
267 struct ffs_desc_helper {
268 	struct ffs_data *ffs;
269 	unsigned interfaces_count;
270 	unsigned eps_count;
271 };
272 
273 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
275 
276 static struct dentry *
277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
278 		   const struct file_operations *fops);
279 
280 /* Devices management *******************************************************/
281 
282 DEFINE_MUTEX(ffs_lock);
283 EXPORT_SYMBOL_GPL(ffs_lock);
284 
285 static struct ffs_dev *_ffs_find_dev(const char *name);
286 static struct ffs_dev *_ffs_alloc_dev(void);
287 static void _ffs_free_dev(struct ffs_dev *dev);
288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
289 static void ffs_release_dev(struct ffs_dev *ffs_dev);
290 static int ffs_ready(struct ffs_data *ffs);
291 static void ffs_closed(struct ffs_data *ffs);
292 
293 /* Misc helper functions ****************************************************/
294 
295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
296 	__attribute__((warn_unused_result, nonnull));
297 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
298 	__attribute__((warn_unused_result, nonnull));
299 
300 
301 /* Control file aka ep0 *****************************************************/
302 
303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
304 {
305 	struct ffs_data *ffs = req->context;
306 
307 	complete(&ffs->ep0req_completion);
308 }
309 
310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
311 	__releases(&ffs->ev.waitq.lock)
312 {
313 	struct usb_request *req = ffs->ep0req;
314 	int ret;
315 
316 	if (!req) {
317 		spin_unlock_irq(&ffs->ev.waitq.lock);
318 		return -EINVAL;
319 	}
320 
321 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
322 
323 	spin_unlock_irq(&ffs->ev.waitq.lock);
324 
325 	req->buf      = data;
326 	req->length   = len;
327 
328 	/*
329 	 * UDC layer requires to provide a buffer even for ZLP, but should
330 	 * not use it at all. Let's provide some poisoned pointer to catch
331 	 * possible bug in the driver.
332 	 */
333 	if (req->buf == NULL)
334 		req->buf = (void *)0xDEADBABE;
335 
336 	reinit_completion(&ffs->ep0req_completion);
337 
338 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
339 	if (ret < 0)
340 		return ret;
341 
342 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
343 	if (ret) {
344 		usb_ep_dequeue(ffs->gadget->ep0, req);
345 		return -EINTR;
346 	}
347 
348 	ffs->setup_state = FFS_NO_SETUP;
349 	return req->status ? req->status : req->actual;
350 }
351 
352 static int __ffs_ep0_stall(struct ffs_data *ffs)
353 {
354 	if (ffs->ev.can_stall) {
355 		pr_vdebug("ep0 stall\n");
356 		usb_ep_set_halt(ffs->gadget->ep0);
357 		ffs->setup_state = FFS_NO_SETUP;
358 		return -EL2HLT;
359 	} else {
360 		pr_debug("bogus ep0 stall!\n");
361 		return -ESRCH;
362 	}
363 }
364 
365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
366 			     size_t len, loff_t *ptr)
367 {
368 	struct ffs_data *ffs = file->private_data;
369 	ssize_t ret;
370 	char *data;
371 
372 	/* Fast check if setup was canceled */
373 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
374 		return -EIDRM;
375 
376 	/* Acquire mutex */
377 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
378 	if (ret < 0)
379 		return ret;
380 
381 	/* Check state */
382 	switch (ffs->state) {
383 	case FFS_READ_DESCRIPTORS:
384 	case FFS_READ_STRINGS:
385 		/* Copy data */
386 		if (len < 16) {
387 			ret = -EINVAL;
388 			break;
389 		}
390 
391 		data = ffs_prepare_buffer(buf, len);
392 		if (IS_ERR(data)) {
393 			ret = PTR_ERR(data);
394 			break;
395 		}
396 
397 		/* Handle data */
398 		if (ffs->state == FFS_READ_DESCRIPTORS) {
399 			pr_info("read descriptors\n");
400 			ret = __ffs_data_got_descs(ffs, data, len);
401 			if (ret < 0)
402 				break;
403 
404 			ffs->state = FFS_READ_STRINGS;
405 			ret = len;
406 		} else {
407 			pr_info("read strings\n");
408 			ret = __ffs_data_got_strings(ffs, data, len);
409 			if (ret < 0)
410 				break;
411 
412 			ret = ffs_epfiles_create(ffs);
413 			if (ret) {
414 				ffs->state = FFS_CLOSING;
415 				break;
416 			}
417 
418 			ffs->state = FFS_ACTIVE;
419 			mutex_unlock(&ffs->mutex);
420 
421 			ret = ffs_ready(ffs);
422 			if (ret < 0) {
423 				ffs->state = FFS_CLOSING;
424 				return ret;
425 			}
426 
427 			return len;
428 		}
429 		break;
430 
431 	case FFS_ACTIVE:
432 		data = NULL;
433 		/*
434 		 * We're called from user space, we can use _irq
435 		 * rather then _irqsave
436 		 */
437 		spin_lock_irq(&ffs->ev.waitq.lock);
438 		switch (ffs_setup_state_clear_cancelled(ffs)) {
439 		case FFS_SETUP_CANCELLED:
440 			ret = -EIDRM;
441 			goto done_spin;
442 
443 		case FFS_NO_SETUP:
444 			ret = -ESRCH;
445 			goto done_spin;
446 
447 		case FFS_SETUP_PENDING:
448 			break;
449 		}
450 
451 		/* FFS_SETUP_PENDING */
452 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
453 			spin_unlock_irq(&ffs->ev.waitq.lock);
454 			ret = __ffs_ep0_stall(ffs);
455 			break;
456 		}
457 
458 		/* FFS_SETUP_PENDING and not stall */
459 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
460 
461 		spin_unlock_irq(&ffs->ev.waitq.lock);
462 
463 		data = ffs_prepare_buffer(buf, len);
464 		if (IS_ERR(data)) {
465 			ret = PTR_ERR(data);
466 			break;
467 		}
468 
469 		spin_lock_irq(&ffs->ev.waitq.lock);
470 
471 		/*
472 		 * We are guaranteed to be still in FFS_ACTIVE state
473 		 * but the state of setup could have changed from
474 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
475 		 * to check for that.  If that happened we copied data
476 		 * from user space in vain but it's unlikely.
477 		 *
478 		 * For sure we are not in FFS_NO_SETUP since this is
479 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
480 		 * transition can be performed and it's protected by
481 		 * mutex.
482 		 */
483 		if (ffs_setup_state_clear_cancelled(ffs) ==
484 		    FFS_SETUP_CANCELLED) {
485 			ret = -EIDRM;
486 done_spin:
487 			spin_unlock_irq(&ffs->ev.waitq.lock);
488 		} else {
489 			/* unlocks spinlock */
490 			ret = __ffs_ep0_queue_wait(ffs, data, len);
491 		}
492 		kfree(data);
493 		break;
494 
495 	default:
496 		ret = -EBADFD;
497 		break;
498 	}
499 
500 	mutex_unlock(&ffs->mutex);
501 	return ret;
502 }
503 
504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
506 				     size_t n)
507 	__releases(&ffs->ev.waitq.lock)
508 {
509 	/*
510 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
511 	 * size of ffs->ev.types array (which is four) so that's how much space
512 	 * we reserve.
513 	 */
514 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
515 	const size_t size = n * sizeof *events;
516 	unsigned i = 0;
517 
518 	memset(events, 0, size);
519 
520 	do {
521 		events[i].type = ffs->ev.types[i];
522 		if (events[i].type == FUNCTIONFS_SETUP) {
523 			events[i].u.setup = ffs->ev.setup;
524 			ffs->setup_state = FFS_SETUP_PENDING;
525 		}
526 	} while (++i < n);
527 
528 	ffs->ev.count -= n;
529 	if (ffs->ev.count)
530 		memmove(ffs->ev.types, ffs->ev.types + n,
531 			ffs->ev.count * sizeof *ffs->ev.types);
532 
533 	spin_unlock_irq(&ffs->ev.waitq.lock);
534 	mutex_unlock(&ffs->mutex);
535 
536 	return copy_to_user(buf, events, size) ? -EFAULT : size;
537 }
538 
539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
540 			    size_t len, loff_t *ptr)
541 {
542 	struct ffs_data *ffs = file->private_data;
543 	char *data = NULL;
544 	size_t n;
545 	int ret;
546 
547 	/* Fast check if setup was canceled */
548 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
549 		return -EIDRM;
550 
551 	/* Acquire mutex */
552 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
553 	if (ret < 0)
554 		return ret;
555 
556 	/* Check state */
557 	if (ffs->state != FFS_ACTIVE) {
558 		ret = -EBADFD;
559 		goto done_mutex;
560 	}
561 
562 	/*
563 	 * We're called from user space, we can use _irq rather then
564 	 * _irqsave
565 	 */
566 	spin_lock_irq(&ffs->ev.waitq.lock);
567 
568 	switch (ffs_setup_state_clear_cancelled(ffs)) {
569 	case FFS_SETUP_CANCELLED:
570 		ret = -EIDRM;
571 		break;
572 
573 	case FFS_NO_SETUP:
574 		n = len / sizeof(struct usb_functionfs_event);
575 		if (!n) {
576 			ret = -EINVAL;
577 			break;
578 		}
579 
580 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
581 			ret = -EAGAIN;
582 			break;
583 		}
584 
585 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
586 							ffs->ev.count)) {
587 			ret = -EINTR;
588 			break;
589 		}
590 
591 		/* unlocks spinlock */
592 		return __ffs_ep0_read_events(ffs, buf,
593 					     min(n, (size_t)ffs->ev.count));
594 
595 	case FFS_SETUP_PENDING:
596 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
597 			spin_unlock_irq(&ffs->ev.waitq.lock);
598 			ret = __ffs_ep0_stall(ffs);
599 			goto done_mutex;
600 		}
601 
602 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
603 
604 		spin_unlock_irq(&ffs->ev.waitq.lock);
605 
606 		if (len) {
607 			data = kmalloc(len, GFP_KERNEL);
608 			if (!data) {
609 				ret = -ENOMEM;
610 				goto done_mutex;
611 			}
612 		}
613 
614 		spin_lock_irq(&ffs->ev.waitq.lock);
615 
616 		/* See ffs_ep0_write() */
617 		if (ffs_setup_state_clear_cancelled(ffs) ==
618 		    FFS_SETUP_CANCELLED) {
619 			ret = -EIDRM;
620 			break;
621 		}
622 
623 		/* unlocks spinlock */
624 		ret = __ffs_ep0_queue_wait(ffs, data, len);
625 		if ((ret > 0) && (copy_to_user(buf, data, len)))
626 			ret = -EFAULT;
627 		goto done_mutex;
628 
629 	default:
630 		ret = -EBADFD;
631 		break;
632 	}
633 
634 	spin_unlock_irq(&ffs->ev.waitq.lock);
635 done_mutex:
636 	mutex_unlock(&ffs->mutex);
637 	kfree(data);
638 	return ret;
639 }
640 
641 static int ffs_ep0_open(struct inode *inode, struct file *file)
642 {
643 	struct ffs_data *ffs = inode->i_private;
644 
645 	if (ffs->state == FFS_CLOSING)
646 		return -EBUSY;
647 
648 	file->private_data = ffs;
649 	ffs_data_opened(ffs);
650 
651 	return stream_open(inode, file);
652 }
653 
654 static int ffs_ep0_release(struct inode *inode, struct file *file)
655 {
656 	struct ffs_data *ffs = file->private_data;
657 
658 	ffs_data_closed(ffs);
659 
660 	return 0;
661 }
662 
663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
664 {
665 	struct ffs_data *ffs = file->private_data;
666 	struct usb_gadget *gadget = ffs->gadget;
667 	long ret;
668 
669 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
670 		struct ffs_function *func = ffs->func;
671 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
672 	} else if (gadget && gadget->ops->ioctl) {
673 		ret = gadget->ops->ioctl(gadget, code, value);
674 	} else {
675 		ret = -ENOTTY;
676 	}
677 
678 	return ret;
679 }
680 
681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
682 {
683 	struct ffs_data *ffs = file->private_data;
684 	__poll_t mask = EPOLLWRNORM;
685 	int ret;
686 
687 	poll_wait(file, &ffs->ev.waitq, wait);
688 
689 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
690 	if (ret < 0)
691 		return mask;
692 
693 	switch (ffs->state) {
694 	case FFS_READ_DESCRIPTORS:
695 	case FFS_READ_STRINGS:
696 		mask |= EPOLLOUT;
697 		break;
698 
699 	case FFS_ACTIVE:
700 		switch (ffs->setup_state) {
701 		case FFS_NO_SETUP:
702 			if (ffs->ev.count)
703 				mask |= EPOLLIN;
704 			break;
705 
706 		case FFS_SETUP_PENDING:
707 		case FFS_SETUP_CANCELLED:
708 			mask |= (EPOLLIN | EPOLLOUT);
709 			break;
710 		}
711 		break;
712 
713 	case FFS_CLOSING:
714 		break;
715 	case FFS_DEACTIVATED:
716 		break;
717 	}
718 
719 	mutex_unlock(&ffs->mutex);
720 
721 	return mask;
722 }
723 
724 static const struct file_operations ffs_ep0_operations = {
725 	.llseek =	no_llseek,
726 
727 	.open =		ffs_ep0_open,
728 	.write =	ffs_ep0_write,
729 	.read =		ffs_ep0_read,
730 	.release =	ffs_ep0_release,
731 	.unlocked_ioctl =	ffs_ep0_ioctl,
732 	.poll =		ffs_ep0_poll,
733 };
734 
735 
736 /* "Normal" endpoints operations ********************************************/
737 
738 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
739 {
740 	struct ffs_io_data *io_data = req->context;
741 
742 	if (req->status)
743 		io_data->status = req->status;
744 	else
745 		io_data->status = req->actual;
746 
747 	complete(&io_data->done);
748 }
749 
750 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
751 {
752 	ssize_t ret = copy_to_iter(data, data_len, iter);
753 	if (ret == data_len)
754 		return ret;
755 
756 	if (iov_iter_count(iter))
757 		return -EFAULT;
758 
759 	/*
760 	 * Dear user space developer!
761 	 *
762 	 * TL;DR: To stop getting below error message in your kernel log, change
763 	 * user space code using functionfs to align read buffers to a max
764 	 * packet size.
765 	 *
766 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
767 	 * packet size.  When unaligned buffer is passed to functionfs, it
768 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
769 	 *
770 	 * Unfortunately, this means that host may send more data than was
771 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
772 	 * that excess data so it simply drops it.
773 	 *
774 	 * Was the buffer aligned in the first place, no such problem would
775 	 * happen.
776 	 *
777 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
778 	 * by splitting a request into multiple parts.  This splitting may still
779 	 * be a problem though so it’s likely best to align the buffer
780 	 * regardless of it being AIO or not..
781 	 *
782 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
783 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
784 	 * affected.
785 	 */
786 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
787 	       "Align read buffer size to max packet size to avoid the problem.\n",
788 	       data_len, ret);
789 
790 	return ret;
791 }
792 
793 /*
794  * allocate a virtually contiguous buffer and create a scatterlist describing it
795  * @sg_table	- pointer to a place to be filled with sg_table contents
796  * @size	- required buffer size
797  */
798 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
799 {
800 	struct page **pages;
801 	void *vaddr, *ptr;
802 	unsigned int n_pages;
803 	int i;
804 
805 	vaddr = vmalloc(sz);
806 	if (!vaddr)
807 		return NULL;
808 
809 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
810 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
811 	if (!pages) {
812 		vfree(vaddr);
813 
814 		return NULL;
815 	}
816 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
817 		pages[i] = vmalloc_to_page(ptr);
818 
819 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
820 		kvfree(pages);
821 		vfree(vaddr);
822 
823 		return NULL;
824 	}
825 	kvfree(pages);
826 
827 	return vaddr;
828 }
829 
830 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
831 	size_t data_len)
832 {
833 	if (io_data->use_sg)
834 		return ffs_build_sg_list(&io_data->sgt, data_len);
835 
836 	return kmalloc(data_len, GFP_KERNEL);
837 }
838 
839 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
840 {
841 	if (!io_data->buf)
842 		return;
843 
844 	if (io_data->use_sg) {
845 		sg_free_table(&io_data->sgt);
846 		vfree(io_data->buf);
847 	} else {
848 		kfree(io_data->buf);
849 	}
850 }
851 
852 static void ffs_user_copy_worker(struct work_struct *work)
853 {
854 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
855 						   work);
856 	int ret = io_data->status;
857 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
858 	unsigned long flags;
859 
860 	if (io_data->read && ret > 0) {
861 		kthread_use_mm(io_data->mm);
862 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
863 		kthread_unuse_mm(io_data->mm);
864 	}
865 
866 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
867 
868 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
869 		eventfd_signal(io_data->ffs->ffs_eventfd);
870 
871 	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
872 	usb_ep_free_request(io_data->ep, io_data->req);
873 	io_data->req = NULL;
874 	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
875 
876 	if (io_data->read)
877 		kfree(io_data->to_free);
878 	ffs_free_buffer(io_data);
879 	kfree(io_data);
880 }
881 
882 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
883 					 struct usb_request *req)
884 {
885 	struct ffs_io_data *io_data = req->context;
886 	struct ffs_data *ffs = io_data->ffs;
887 
888 	io_data->status = req->status ? req->status : req->actual;
889 
890 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
891 	queue_work(ffs->io_completion_wq, &io_data->work);
892 }
893 
894 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
895 {
896 	/*
897 	 * See comment in struct ffs_epfile for full read_buffer pointer
898 	 * synchronisation story.
899 	 */
900 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
901 	if (buf && buf != READ_BUFFER_DROP)
902 		kfree(buf);
903 }
904 
905 /* Assumes epfile->mutex is held. */
906 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
907 					  struct iov_iter *iter)
908 {
909 	/*
910 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
911 	 * the buffer while we are using it.  See comment in struct ffs_epfile
912 	 * for full read_buffer pointer synchronisation story.
913 	 */
914 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
915 	ssize_t ret;
916 	if (!buf || buf == READ_BUFFER_DROP)
917 		return 0;
918 
919 	ret = copy_to_iter(buf->data, buf->length, iter);
920 	if (buf->length == ret) {
921 		kfree(buf);
922 		return ret;
923 	}
924 
925 	if (iov_iter_count(iter)) {
926 		ret = -EFAULT;
927 	} else {
928 		buf->length -= ret;
929 		buf->data += ret;
930 	}
931 
932 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
933 		kfree(buf);
934 
935 	return ret;
936 }
937 
938 /* Assumes epfile->mutex is held. */
939 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
940 				      void *data, int data_len,
941 				      struct iov_iter *iter)
942 {
943 	struct ffs_buffer *buf;
944 
945 	ssize_t ret = copy_to_iter(data, data_len, iter);
946 	if (data_len == ret)
947 		return ret;
948 
949 	if (iov_iter_count(iter))
950 		return -EFAULT;
951 
952 	/* See ffs_copy_to_iter for more context. */
953 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
954 		data_len, ret);
955 
956 	data_len -= ret;
957 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
958 	if (!buf)
959 		return -ENOMEM;
960 	buf->length = data_len;
961 	buf->data = buf->storage;
962 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
963 
964 	/*
965 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
966 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
967 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
968 	 * story.
969 	 */
970 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
971 		kfree(buf);
972 
973 	return ret;
974 }
975 
976 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
977 {
978 	struct ffs_epfile *epfile = file->private_data;
979 	struct ffs_ep *ep;
980 	int ret;
981 
982 	/* Wait for endpoint to be enabled */
983 	ep = epfile->ep;
984 	if (!ep) {
985 		if (file->f_flags & O_NONBLOCK)
986 			return ERR_PTR(-EAGAIN);
987 
988 		ret = wait_event_interruptible(
989 				epfile->ffs->wait, (ep = epfile->ep));
990 		if (ret)
991 			return ERR_PTR(-EINTR);
992 	}
993 
994 	return ep;
995 }
996 
997 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
998 {
999 	struct ffs_epfile *epfile = file->private_data;
1000 	struct usb_request *req;
1001 	struct ffs_ep *ep;
1002 	char *data = NULL;
1003 	ssize_t ret, data_len = -EINVAL;
1004 	int halt;
1005 
1006 	/* Are we still active? */
1007 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1008 		return -ENODEV;
1009 
1010 	ep = ffs_epfile_wait_ep(file);
1011 	if (IS_ERR(ep))
1012 		return PTR_ERR(ep);
1013 
1014 	/* Do we halt? */
1015 	halt = (!io_data->read == !epfile->in);
1016 	if (halt && epfile->isoc)
1017 		return -EINVAL;
1018 
1019 	/* We will be using request and read_buffer */
1020 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1021 	if (ret)
1022 		goto error;
1023 
1024 	/* Allocate & copy */
1025 	if (!halt) {
1026 		struct usb_gadget *gadget;
1027 
1028 		/*
1029 		 * Do we have buffered data from previous partial read?  Check
1030 		 * that for synchronous case only because we do not have
1031 		 * facility to ‘wake up’ a pending asynchronous read and push
1032 		 * buffered data to it which we would need to make things behave
1033 		 * consistently.
1034 		 */
1035 		if (!io_data->aio && io_data->read) {
1036 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1037 			if (ret)
1038 				goto error_mutex;
1039 		}
1040 
1041 		/*
1042 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1043 		 * before the waiting completes, so do not assign to 'gadget'
1044 		 * earlier
1045 		 */
1046 		gadget = epfile->ffs->gadget;
1047 
1048 		spin_lock_irq(&epfile->ffs->eps_lock);
1049 		/* In the meantime, endpoint got disabled or changed. */
1050 		if (epfile->ep != ep) {
1051 			ret = -ESHUTDOWN;
1052 			goto error_lock;
1053 		}
1054 		data_len = iov_iter_count(&io_data->data);
1055 		/*
1056 		 * Controller may require buffer size to be aligned to
1057 		 * maxpacketsize of an out endpoint.
1058 		 */
1059 		if (io_data->read)
1060 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1061 
1062 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1063 		spin_unlock_irq(&epfile->ffs->eps_lock);
1064 
1065 		data = ffs_alloc_buffer(io_data, data_len);
1066 		if (!data) {
1067 			ret = -ENOMEM;
1068 			goto error_mutex;
1069 		}
1070 		if (!io_data->read &&
1071 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1072 			ret = -EFAULT;
1073 			goto error_mutex;
1074 		}
1075 	}
1076 
1077 	spin_lock_irq(&epfile->ffs->eps_lock);
1078 
1079 	if (epfile->ep != ep) {
1080 		/* In the meantime, endpoint got disabled or changed. */
1081 		ret = -ESHUTDOWN;
1082 	} else if (halt) {
1083 		ret = usb_ep_set_halt(ep->ep);
1084 		if (!ret)
1085 			ret = -EBADMSG;
1086 	} else if (data_len == -EINVAL) {
1087 		/*
1088 		 * Sanity Check: even though data_len can't be used
1089 		 * uninitialized at the time I write this comment, some
1090 		 * compilers complain about this situation.
1091 		 * In order to keep the code clean from warnings, data_len is
1092 		 * being initialized to -EINVAL during its declaration, which
1093 		 * means we can't rely on compiler anymore to warn no future
1094 		 * changes won't result in data_len being used uninitialized.
1095 		 * For such reason, we're adding this redundant sanity check
1096 		 * here.
1097 		 */
1098 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1099 		ret = -EINVAL;
1100 	} else if (!io_data->aio) {
1101 		bool interrupted = false;
1102 
1103 		req = ep->req;
1104 		if (io_data->use_sg) {
1105 			req->buf = NULL;
1106 			req->sg	= io_data->sgt.sgl;
1107 			req->num_sgs = io_data->sgt.nents;
1108 		} else {
1109 			req->buf = data;
1110 			req->num_sgs = 0;
1111 		}
1112 		req->length = data_len;
1113 
1114 		io_data->buf = data;
1115 
1116 		init_completion(&io_data->done);
1117 		req->context  = io_data;
1118 		req->complete = ffs_epfile_io_complete;
1119 
1120 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1121 		if (ret < 0)
1122 			goto error_lock;
1123 
1124 		spin_unlock_irq(&epfile->ffs->eps_lock);
1125 
1126 		if (wait_for_completion_interruptible(&io_data->done)) {
1127 			spin_lock_irq(&epfile->ffs->eps_lock);
1128 			if (epfile->ep != ep) {
1129 				ret = -ESHUTDOWN;
1130 				goto error_lock;
1131 			}
1132 			/*
1133 			 * To avoid race condition with ffs_epfile_io_complete,
1134 			 * dequeue the request first then check
1135 			 * status. usb_ep_dequeue API should guarantee no race
1136 			 * condition with req->complete callback.
1137 			 */
1138 			usb_ep_dequeue(ep->ep, req);
1139 			spin_unlock_irq(&epfile->ffs->eps_lock);
1140 			wait_for_completion(&io_data->done);
1141 			interrupted = io_data->status < 0;
1142 		}
1143 
1144 		if (interrupted)
1145 			ret = -EINTR;
1146 		else if (io_data->read && io_data->status > 0)
1147 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1148 						     &io_data->data);
1149 		else
1150 			ret = io_data->status;
1151 		goto error_mutex;
1152 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1153 		ret = -ENOMEM;
1154 	} else {
1155 		if (io_data->use_sg) {
1156 			req->buf = NULL;
1157 			req->sg	= io_data->sgt.sgl;
1158 			req->num_sgs = io_data->sgt.nents;
1159 		} else {
1160 			req->buf = data;
1161 			req->num_sgs = 0;
1162 		}
1163 		req->length = data_len;
1164 
1165 		io_data->buf = data;
1166 		io_data->ep = ep->ep;
1167 		io_data->req = req;
1168 		io_data->ffs = epfile->ffs;
1169 
1170 		req->context  = io_data;
1171 		req->complete = ffs_epfile_async_io_complete;
1172 
1173 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1174 		if (ret) {
1175 			io_data->req = NULL;
1176 			usb_ep_free_request(ep->ep, req);
1177 			goto error_lock;
1178 		}
1179 
1180 		ret = -EIOCBQUEUED;
1181 		/*
1182 		 * Do not kfree the buffer in this function.  It will be freed
1183 		 * by ffs_user_copy_worker.
1184 		 */
1185 		data = NULL;
1186 	}
1187 
1188 error_lock:
1189 	spin_unlock_irq(&epfile->ffs->eps_lock);
1190 error_mutex:
1191 	mutex_unlock(&epfile->mutex);
1192 error:
1193 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1194 		ffs_free_buffer(io_data);
1195 	return ret;
1196 }
1197 
1198 static int
1199 ffs_epfile_open(struct inode *inode, struct file *file)
1200 {
1201 	struct ffs_epfile *epfile = inode->i_private;
1202 
1203 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1204 		return -ENODEV;
1205 
1206 	file->private_data = epfile;
1207 	ffs_data_opened(epfile->ffs);
1208 
1209 	return stream_open(inode, file);
1210 }
1211 
1212 static int ffs_aio_cancel(struct kiocb *kiocb)
1213 {
1214 	struct ffs_io_data *io_data = kiocb->private;
1215 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1216 	unsigned long flags;
1217 	int value;
1218 
1219 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1220 
1221 	if (io_data && io_data->ep && io_data->req)
1222 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1223 	else
1224 		value = -EINVAL;
1225 
1226 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1227 
1228 	return value;
1229 }
1230 
1231 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1232 {
1233 	struct ffs_io_data io_data, *p = &io_data;
1234 	ssize_t res;
1235 
1236 	if (!is_sync_kiocb(kiocb)) {
1237 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1238 		if (!p)
1239 			return -ENOMEM;
1240 		p->aio = true;
1241 	} else {
1242 		memset(p, 0, sizeof(*p));
1243 		p->aio = false;
1244 	}
1245 
1246 	p->read = false;
1247 	p->kiocb = kiocb;
1248 	p->data = *from;
1249 	p->mm = current->mm;
1250 
1251 	kiocb->private = p;
1252 
1253 	if (p->aio)
1254 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1255 
1256 	res = ffs_epfile_io(kiocb->ki_filp, p);
1257 	if (res == -EIOCBQUEUED)
1258 		return res;
1259 	if (p->aio)
1260 		kfree(p);
1261 	else
1262 		*from = p->data;
1263 	return res;
1264 }
1265 
1266 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1267 {
1268 	struct ffs_io_data io_data, *p = &io_data;
1269 	ssize_t res;
1270 
1271 	if (!is_sync_kiocb(kiocb)) {
1272 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1273 		if (!p)
1274 			return -ENOMEM;
1275 		p->aio = true;
1276 	} else {
1277 		memset(p, 0, sizeof(*p));
1278 		p->aio = false;
1279 	}
1280 
1281 	p->read = true;
1282 	p->kiocb = kiocb;
1283 	if (p->aio) {
1284 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1285 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1286 			kfree(p);
1287 			return -ENOMEM;
1288 		}
1289 	} else {
1290 		p->data = *to;
1291 		p->to_free = NULL;
1292 	}
1293 	p->mm = current->mm;
1294 
1295 	kiocb->private = p;
1296 
1297 	if (p->aio)
1298 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1299 
1300 	res = ffs_epfile_io(kiocb->ki_filp, p);
1301 	if (res == -EIOCBQUEUED)
1302 		return res;
1303 
1304 	if (p->aio) {
1305 		kfree(p->to_free);
1306 		kfree(p);
1307 	} else {
1308 		*to = p->data;
1309 	}
1310 	return res;
1311 }
1312 
1313 static void ffs_dmabuf_release(struct kref *ref)
1314 {
1315 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1316 	struct dma_buf_attachment *attach = priv->attach;
1317 	struct dma_buf *dmabuf = attach->dmabuf;
1318 
1319 	pr_vdebug("FFS DMABUF release\n");
1320 	dma_resv_lock(dmabuf->resv, NULL);
1321 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1322 	dma_resv_unlock(dmabuf->resv);
1323 
1324 	dma_buf_detach(attach->dmabuf, attach);
1325 	dma_buf_put(dmabuf);
1326 	kfree(priv);
1327 }
1328 
1329 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1330 {
1331 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1332 
1333 	kref_get(&priv->ref);
1334 }
1335 
1336 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1337 {
1338 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1339 
1340 	kref_put(&priv->ref, ffs_dmabuf_release);
1341 }
1342 
1343 static int
1344 ffs_epfile_release(struct inode *inode, struct file *file)
1345 {
1346 	struct ffs_epfile *epfile = inode->i_private;
1347 	struct ffs_dmabuf_priv *priv, *tmp;
1348 	struct ffs_data *ffs = epfile->ffs;
1349 
1350 	mutex_lock(&epfile->dmabufs_mutex);
1351 
1352 	/* Close all attached DMABUFs */
1353 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1354 		/* Cancel any pending transfer */
1355 		spin_lock_irq(&ffs->eps_lock);
1356 		if (priv->ep && priv->req)
1357 			usb_ep_dequeue(priv->ep, priv->req);
1358 		spin_unlock_irq(&ffs->eps_lock);
1359 
1360 		list_del(&priv->entry);
1361 		ffs_dmabuf_put(priv->attach);
1362 	}
1363 
1364 	mutex_unlock(&epfile->dmabufs_mutex);
1365 
1366 	__ffs_epfile_read_buffer_free(epfile);
1367 	ffs_data_closed(epfile->ffs);
1368 
1369 	return 0;
1370 }
1371 
1372 static void ffs_dmabuf_cleanup(struct work_struct *work)
1373 {
1374 	struct ffs_dma_fence *dma_fence =
1375 		container_of(work, struct ffs_dma_fence, work);
1376 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1377 	struct dma_buf_attachment *attach = priv->attach;
1378 	struct dma_fence *fence = &dma_fence->base;
1379 
1380 	ffs_dmabuf_put(attach);
1381 	dma_fence_put(fence);
1382 }
1383 
1384 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1385 {
1386 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1387 	struct dma_fence *fence = &dma_fence->base;
1388 	bool cookie = dma_fence_begin_signalling();
1389 
1390 	dma_fence_get(fence);
1391 	fence->error = ret;
1392 	dma_fence_signal(fence);
1393 	dma_fence_end_signalling(cookie);
1394 
1395 	/*
1396 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1397 	 * It can't be done here, as the unref functions might try to lock
1398 	 * the resv object, which would deadlock.
1399 	 */
1400 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1401 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1402 }
1403 
1404 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1405 					  struct usb_request *req)
1406 {
1407 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1408 	ffs_dmabuf_signal_done(req->context, req->status);
1409 	usb_ep_free_request(ep, req);
1410 }
1411 
1412 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1413 {
1414 	return "functionfs";
1415 }
1416 
1417 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1418 {
1419 	return "";
1420 }
1421 
1422 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1423 {
1424 	struct ffs_dma_fence *dma_fence =
1425 		container_of(fence, struct ffs_dma_fence, base);
1426 
1427 	kfree(dma_fence);
1428 }
1429 
1430 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1431 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1432 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1433 	.release		= ffs_dmabuf_fence_release,
1434 };
1435 
1436 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1437 {
1438 	if (!nonblock)
1439 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1440 
1441 	if (!dma_resv_trylock(dmabuf->resv))
1442 		return -EBUSY;
1443 
1444 	return 0;
1445 }
1446 
1447 static struct dma_buf_attachment *
1448 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1449 {
1450 	struct device *dev = epfile->ffs->gadget->dev.parent;
1451 	struct dma_buf_attachment *attach = NULL;
1452 	struct ffs_dmabuf_priv *priv;
1453 
1454 	mutex_lock(&epfile->dmabufs_mutex);
1455 
1456 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1457 		if (priv->attach->dev == dev
1458 		    && priv->attach->dmabuf == dmabuf) {
1459 			attach = priv->attach;
1460 			break;
1461 		}
1462 	}
1463 
1464 	if (attach)
1465 		ffs_dmabuf_get(attach);
1466 
1467 	mutex_unlock(&epfile->dmabufs_mutex);
1468 
1469 	return attach ?: ERR_PTR(-EPERM);
1470 }
1471 
1472 static int ffs_dmabuf_attach(struct file *file, int fd)
1473 {
1474 	bool nonblock = file->f_flags & O_NONBLOCK;
1475 	struct ffs_epfile *epfile = file->private_data;
1476 	struct usb_gadget *gadget = epfile->ffs->gadget;
1477 	struct dma_buf_attachment *attach;
1478 	struct ffs_dmabuf_priv *priv;
1479 	enum dma_data_direction dir;
1480 	struct sg_table *sg_table;
1481 	struct dma_buf *dmabuf;
1482 	int err;
1483 
1484 	if (!gadget || !gadget->sg_supported)
1485 		return -EPERM;
1486 
1487 	dmabuf = dma_buf_get(fd);
1488 	if (IS_ERR(dmabuf))
1489 		return PTR_ERR(dmabuf);
1490 
1491 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1492 	if (IS_ERR(attach)) {
1493 		err = PTR_ERR(attach);
1494 		goto err_dmabuf_put;
1495 	}
1496 
1497 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1498 	if (!priv) {
1499 		err = -ENOMEM;
1500 		goto err_dmabuf_detach;
1501 	}
1502 
1503 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1504 
1505 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1506 	if (err)
1507 		goto err_free_priv;
1508 
1509 	sg_table = dma_buf_map_attachment(attach, dir);
1510 	dma_resv_unlock(dmabuf->resv);
1511 
1512 	if (IS_ERR(sg_table)) {
1513 		err = PTR_ERR(sg_table);
1514 		goto err_free_priv;
1515 	}
1516 
1517 	attach->importer_priv = priv;
1518 
1519 	priv->sgt = sg_table;
1520 	priv->dir = dir;
1521 	priv->ffs = epfile->ffs;
1522 	priv->attach = attach;
1523 	spin_lock_init(&priv->lock);
1524 	kref_init(&priv->ref);
1525 	priv->context = dma_fence_context_alloc(1);
1526 
1527 	mutex_lock(&epfile->dmabufs_mutex);
1528 	list_add(&priv->entry, &epfile->dmabufs);
1529 	mutex_unlock(&epfile->dmabufs_mutex);
1530 
1531 	return 0;
1532 
1533 err_free_priv:
1534 	kfree(priv);
1535 err_dmabuf_detach:
1536 	dma_buf_detach(dmabuf, attach);
1537 err_dmabuf_put:
1538 	dma_buf_put(dmabuf);
1539 
1540 	return err;
1541 }
1542 
1543 static int ffs_dmabuf_detach(struct file *file, int fd)
1544 {
1545 	struct ffs_epfile *epfile = file->private_data;
1546 	struct ffs_data *ffs = epfile->ffs;
1547 	struct device *dev = ffs->gadget->dev.parent;
1548 	struct ffs_dmabuf_priv *priv, *tmp;
1549 	struct dma_buf *dmabuf;
1550 	int ret = -EPERM;
1551 
1552 	dmabuf = dma_buf_get(fd);
1553 	if (IS_ERR(dmabuf))
1554 		return PTR_ERR(dmabuf);
1555 
1556 	mutex_lock(&epfile->dmabufs_mutex);
1557 
1558 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1559 		if (priv->attach->dev == dev
1560 		    && priv->attach->dmabuf == dmabuf) {
1561 			/* Cancel any pending transfer */
1562 			spin_lock_irq(&ffs->eps_lock);
1563 			if (priv->ep && priv->req)
1564 				usb_ep_dequeue(priv->ep, priv->req);
1565 			spin_unlock_irq(&ffs->eps_lock);
1566 
1567 			list_del(&priv->entry);
1568 
1569 			/* Unref the reference from ffs_dmabuf_attach() */
1570 			ffs_dmabuf_put(priv->attach);
1571 			ret = 0;
1572 			break;
1573 		}
1574 	}
1575 
1576 	mutex_unlock(&epfile->dmabufs_mutex);
1577 	dma_buf_put(dmabuf);
1578 
1579 	return ret;
1580 }
1581 
1582 static int ffs_dmabuf_transfer(struct file *file,
1583 			       const struct usb_ffs_dmabuf_transfer_req *req)
1584 {
1585 	bool nonblock = file->f_flags & O_NONBLOCK;
1586 	struct ffs_epfile *epfile = file->private_data;
1587 	struct dma_buf_attachment *attach;
1588 	struct ffs_dmabuf_priv *priv;
1589 	struct ffs_dma_fence *fence;
1590 	struct usb_request *usb_req;
1591 	enum dma_resv_usage resv_dir;
1592 	struct dma_buf *dmabuf;
1593 	unsigned long timeout;
1594 	struct ffs_ep *ep;
1595 	bool cookie;
1596 	u32 seqno;
1597 	long retl;
1598 	int ret;
1599 
1600 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1601 		return -EINVAL;
1602 
1603 	dmabuf = dma_buf_get(req->fd);
1604 	if (IS_ERR(dmabuf))
1605 		return PTR_ERR(dmabuf);
1606 
1607 	if (req->length > dmabuf->size || req->length == 0) {
1608 		ret = -EINVAL;
1609 		goto err_dmabuf_put;
1610 	}
1611 
1612 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1613 	if (IS_ERR(attach)) {
1614 		ret = PTR_ERR(attach);
1615 		goto err_dmabuf_put;
1616 	}
1617 
1618 	priv = attach->importer_priv;
1619 
1620 	ep = ffs_epfile_wait_ep(file);
1621 	if (IS_ERR(ep)) {
1622 		ret = PTR_ERR(ep);
1623 		goto err_attachment_put;
1624 	}
1625 
1626 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1627 	if (ret)
1628 		goto err_attachment_put;
1629 
1630 	/* Make sure we don't have writers */
1631 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1632 	retl = dma_resv_wait_timeout(dmabuf->resv,
1633 				     dma_resv_usage_rw(epfile->in),
1634 				     true, timeout);
1635 	if (retl == 0)
1636 		retl = -EBUSY;
1637 	if (retl < 0) {
1638 		ret = (int)retl;
1639 		goto err_resv_unlock;
1640 	}
1641 
1642 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1643 	if (ret)
1644 		goto err_resv_unlock;
1645 
1646 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1647 	if (!fence) {
1648 		ret = -ENOMEM;
1649 		goto err_resv_unlock;
1650 	}
1651 
1652 	fence->priv = priv;
1653 
1654 	spin_lock_irq(&epfile->ffs->eps_lock);
1655 
1656 	/* In the meantime, endpoint got disabled or changed. */
1657 	if (epfile->ep != ep) {
1658 		ret = -ESHUTDOWN;
1659 		goto err_fence_put;
1660 	}
1661 
1662 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1663 	if (!usb_req) {
1664 		ret = -ENOMEM;
1665 		goto err_fence_put;
1666 	}
1667 
1668 	/*
1669 	 * usb_ep_queue() guarantees that all transfers are processed in the
1670 	 * order they are enqueued, so we can use a simple incrementing
1671 	 * sequence number for the dma_fence.
1672 	 */
1673 	seqno = atomic_add_return(1, &epfile->seqno);
1674 
1675 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1676 		       &priv->lock, priv->context, seqno);
1677 
1678 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1679 
1680 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1681 	dma_resv_unlock(dmabuf->resv);
1682 
1683 	/* Now that the dma_fence is in place, queue the transfer. */
1684 
1685 	usb_req->length = req->length;
1686 	usb_req->buf = NULL;
1687 	usb_req->sg = priv->sgt->sgl;
1688 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1689 	usb_req->sg_was_mapped = true;
1690 	usb_req->context  = fence;
1691 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1692 
1693 	cookie = dma_fence_begin_signalling();
1694 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1695 	dma_fence_end_signalling(cookie);
1696 	if (!ret) {
1697 		priv->req = usb_req;
1698 		priv->ep = ep->ep;
1699 	} else {
1700 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1701 		ffs_dmabuf_signal_done(fence, ret);
1702 		usb_ep_free_request(ep->ep, usb_req);
1703 	}
1704 
1705 	spin_unlock_irq(&epfile->ffs->eps_lock);
1706 	dma_buf_put(dmabuf);
1707 
1708 	return ret;
1709 
1710 err_fence_put:
1711 	spin_unlock_irq(&epfile->ffs->eps_lock);
1712 	dma_fence_put(&fence->base);
1713 err_resv_unlock:
1714 	dma_resv_unlock(dmabuf->resv);
1715 err_attachment_put:
1716 	ffs_dmabuf_put(attach);
1717 err_dmabuf_put:
1718 	dma_buf_put(dmabuf);
1719 
1720 	return ret;
1721 }
1722 
1723 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1724 			     unsigned long value)
1725 {
1726 	struct ffs_epfile *epfile = file->private_data;
1727 	struct ffs_ep *ep;
1728 	int ret;
1729 
1730 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1731 		return -ENODEV;
1732 
1733 	switch (code) {
1734 	case FUNCTIONFS_DMABUF_ATTACH:
1735 	{
1736 		int fd;
1737 
1738 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1739 			ret = -EFAULT;
1740 			break;
1741 		}
1742 
1743 		return ffs_dmabuf_attach(file, fd);
1744 	}
1745 	case FUNCTIONFS_DMABUF_DETACH:
1746 	{
1747 		int fd;
1748 
1749 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1750 			ret = -EFAULT;
1751 			break;
1752 		}
1753 
1754 		return ffs_dmabuf_detach(file, fd);
1755 	}
1756 	case FUNCTIONFS_DMABUF_TRANSFER:
1757 	{
1758 		struct usb_ffs_dmabuf_transfer_req req;
1759 
1760 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1761 			ret = -EFAULT;
1762 			break;
1763 		}
1764 
1765 		return ffs_dmabuf_transfer(file, &req);
1766 	}
1767 	default:
1768 		break;
1769 	}
1770 
1771 	/* Wait for endpoint to be enabled */
1772 	ep = ffs_epfile_wait_ep(file);
1773 	if (IS_ERR(ep))
1774 		return PTR_ERR(ep);
1775 
1776 	spin_lock_irq(&epfile->ffs->eps_lock);
1777 
1778 	/* In the meantime, endpoint got disabled or changed. */
1779 	if (epfile->ep != ep) {
1780 		spin_unlock_irq(&epfile->ffs->eps_lock);
1781 		return -ESHUTDOWN;
1782 	}
1783 
1784 	switch (code) {
1785 	case FUNCTIONFS_FIFO_STATUS:
1786 		ret = usb_ep_fifo_status(epfile->ep->ep);
1787 		break;
1788 	case FUNCTIONFS_FIFO_FLUSH:
1789 		usb_ep_fifo_flush(epfile->ep->ep);
1790 		ret = 0;
1791 		break;
1792 	case FUNCTIONFS_CLEAR_HALT:
1793 		ret = usb_ep_clear_halt(epfile->ep->ep);
1794 		break;
1795 	case FUNCTIONFS_ENDPOINT_REVMAP:
1796 		ret = epfile->ep->num;
1797 		break;
1798 	case FUNCTIONFS_ENDPOINT_DESC:
1799 	{
1800 		int desc_idx;
1801 		struct usb_endpoint_descriptor desc1, *desc;
1802 
1803 		switch (epfile->ffs->gadget->speed) {
1804 		case USB_SPEED_SUPER:
1805 		case USB_SPEED_SUPER_PLUS:
1806 			desc_idx = 2;
1807 			break;
1808 		case USB_SPEED_HIGH:
1809 			desc_idx = 1;
1810 			break;
1811 		default:
1812 			desc_idx = 0;
1813 		}
1814 
1815 		desc = epfile->ep->descs[desc_idx];
1816 		memcpy(&desc1, desc, desc->bLength);
1817 
1818 		spin_unlock_irq(&epfile->ffs->eps_lock);
1819 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1820 		if (ret)
1821 			ret = -EFAULT;
1822 		return ret;
1823 	}
1824 	default:
1825 		ret = -ENOTTY;
1826 	}
1827 	spin_unlock_irq(&epfile->ffs->eps_lock);
1828 
1829 	return ret;
1830 }
1831 
1832 static const struct file_operations ffs_epfile_operations = {
1833 	.llseek =	no_llseek,
1834 
1835 	.open =		ffs_epfile_open,
1836 	.write_iter =	ffs_epfile_write_iter,
1837 	.read_iter =	ffs_epfile_read_iter,
1838 	.release =	ffs_epfile_release,
1839 	.unlocked_ioctl =	ffs_epfile_ioctl,
1840 	.compat_ioctl = compat_ptr_ioctl,
1841 };
1842 
1843 
1844 /* File system and super block operations ***********************************/
1845 
1846 /*
1847  * Mounting the file system creates a controller file, used first for
1848  * function configuration then later for event monitoring.
1849  */
1850 
1851 static struct inode *__must_check
1852 ffs_sb_make_inode(struct super_block *sb, void *data,
1853 		  const struct file_operations *fops,
1854 		  const struct inode_operations *iops,
1855 		  struct ffs_file_perms *perms)
1856 {
1857 	struct inode *inode;
1858 
1859 	inode = new_inode(sb);
1860 
1861 	if (inode) {
1862 		struct timespec64 ts = inode_set_ctime_current(inode);
1863 
1864 		inode->i_ino	 = get_next_ino();
1865 		inode->i_mode    = perms->mode;
1866 		inode->i_uid     = perms->uid;
1867 		inode->i_gid     = perms->gid;
1868 		inode_set_atime_to_ts(inode, ts);
1869 		inode_set_mtime_to_ts(inode, ts);
1870 		inode->i_private = data;
1871 		if (fops)
1872 			inode->i_fop = fops;
1873 		if (iops)
1874 			inode->i_op  = iops;
1875 	}
1876 
1877 	return inode;
1878 }
1879 
1880 /* Create "regular" file */
1881 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1882 					const char *name, void *data,
1883 					const struct file_operations *fops)
1884 {
1885 	struct ffs_data	*ffs = sb->s_fs_info;
1886 	struct dentry	*dentry;
1887 	struct inode	*inode;
1888 
1889 	dentry = d_alloc_name(sb->s_root, name);
1890 	if (!dentry)
1891 		return NULL;
1892 
1893 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1894 	if (!inode) {
1895 		dput(dentry);
1896 		return NULL;
1897 	}
1898 
1899 	d_add(dentry, inode);
1900 	return dentry;
1901 }
1902 
1903 /* Super block */
1904 static const struct super_operations ffs_sb_operations = {
1905 	.statfs =	simple_statfs,
1906 	.drop_inode =	generic_delete_inode,
1907 };
1908 
1909 struct ffs_sb_fill_data {
1910 	struct ffs_file_perms perms;
1911 	umode_t root_mode;
1912 	const char *dev_name;
1913 	bool no_disconnect;
1914 	struct ffs_data *ffs_data;
1915 };
1916 
1917 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1918 {
1919 	struct ffs_sb_fill_data *data = fc->fs_private;
1920 	struct inode	*inode;
1921 	struct ffs_data	*ffs = data->ffs_data;
1922 
1923 	ffs->sb              = sb;
1924 	data->ffs_data       = NULL;
1925 	sb->s_fs_info        = ffs;
1926 	sb->s_blocksize      = PAGE_SIZE;
1927 	sb->s_blocksize_bits = PAGE_SHIFT;
1928 	sb->s_magic          = FUNCTIONFS_MAGIC;
1929 	sb->s_op             = &ffs_sb_operations;
1930 	sb->s_time_gran      = 1;
1931 
1932 	/* Root inode */
1933 	data->perms.mode = data->root_mode;
1934 	inode = ffs_sb_make_inode(sb, NULL,
1935 				  &simple_dir_operations,
1936 				  &simple_dir_inode_operations,
1937 				  &data->perms);
1938 	sb->s_root = d_make_root(inode);
1939 	if (!sb->s_root)
1940 		return -ENOMEM;
1941 
1942 	/* EP0 file */
1943 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1944 		return -ENOMEM;
1945 
1946 	return 0;
1947 }
1948 
1949 enum {
1950 	Opt_no_disconnect,
1951 	Opt_rmode,
1952 	Opt_fmode,
1953 	Opt_mode,
1954 	Opt_uid,
1955 	Opt_gid,
1956 };
1957 
1958 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1959 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1960 	fsparam_u32	("rmode",		Opt_rmode),
1961 	fsparam_u32	("fmode",		Opt_fmode),
1962 	fsparam_u32	("mode",		Opt_mode),
1963 	fsparam_u32	("uid",			Opt_uid),
1964 	fsparam_u32	("gid",			Opt_gid),
1965 	{}
1966 };
1967 
1968 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1969 {
1970 	struct ffs_sb_fill_data *data = fc->fs_private;
1971 	struct fs_parse_result result;
1972 	int opt;
1973 
1974 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1975 	if (opt < 0)
1976 		return opt;
1977 
1978 	switch (opt) {
1979 	case Opt_no_disconnect:
1980 		data->no_disconnect = result.boolean;
1981 		break;
1982 	case Opt_rmode:
1983 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1984 		break;
1985 	case Opt_fmode:
1986 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1987 		break;
1988 	case Opt_mode:
1989 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1990 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1991 		break;
1992 
1993 	case Opt_uid:
1994 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1995 		if (!uid_valid(data->perms.uid))
1996 			goto unmapped_value;
1997 		break;
1998 	case Opt_gid:
1999 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
2000 		if (!gid_valid(data->perms.gid))
2001 			goto unmapped_value;
2002 		break;
2003 
2004 	default:
2005 		return -ENOPARAM;
2006 	}
2007 
2008 	return 0;
2009 
2010 unmapped_value:
2011 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2012 }
2013 
2014 /*
2015  * Set up the superblock for a mount.
2016  */
2017 static int ffs_fs_get_tree(struct fs_context *fc)
2018 {
2019 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2020 	struct ffs_data	*ffs;
2021 	int ret;
2022 
2023 	if (!fc->source)
2024 		return invalf(fc, "No source specified");
2025 
2026 	ffs = ffs_data_new(fc->source);
2027 	if (!ffs)
2028 		return -ENOMEM;
2029 	ffs->file_perms = ctx->perms;
2030 	ffs->no_disconnect = ctx->no_disconnect;
2031 
2032 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2033 	if (!ffs->dev_name) {
2034 		ffs_data_put(ffs);
2035 		return -ENOMEM;
2036 	}
2037 
2038 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2039 	if (ret) {
2040 		ffs_data_put(ffs);
2041 		return ret;
2042 	}
2043 
2044 	ctx->ffs_data = ffs;
2045 	return get_tree_nodev(fc, ffs_sb_fill);
2046 }
2047 
2048 static void ffs_fs_free_fc(struct fs_context *fc)
2049 {
2050 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2051 
2052 	if (ctx) {
2053 		if (ctx->ffs_data) {
2054 			ffs_data_put(ctx->ffs_data);
2055 		}
2056 
2057 		kfree(ctx);
2058 	}
2059 }
2060 
2061 static const struct fs_context_operations ffs_fs_context_ops = {
2062 	.free		= ffs_fs_free_fc,
2063 	.parse_param	= ffs_fs_parse_param,
2064 	.get_tree	= ffs_fs_get_tree,
2065 };
2066 
2067 static int ffs_fs_init_fs_context(struct fs_context *fc)
2068 {
2069 	struct ffs_sb_fill_data *ctx;
2070 
2071 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2072 	if (!ctx)
2073 		return -ENOMEM;
2074 
2075 	ctx->perms.mode = S_IFREG | 0600;
2076 	ctx->perms.uid = GLOBAL_ROOT_UID;
2077 	ctx->perms.gid = GLOBAL_ROOT_GID;
2078 	ctx->root_mode = S_IFDIR | 0500;
2079 	ctx->no_disconnect = false;
2080 
2081 	fc->fs_private = ctx;
2082 	fc->ops = &ffs_fs_context_ops;
2083 	return 0;
2084 }
2085 
2086 static void
2087 ffs_fs_kill_sb(struct super_block *sb)
2088 {
2089 	kill_litter_super(sb);
2090 	if (sb->s_fs_info)
2091 		ffs_data_closed(sb->s_fs_info);
2092 }
2093 
2094 static struct file_system_type ffs_fs_type = {
2095 	.owner		= THIS_MODULE,
2096 	.name		= "functionfs",
2097 	.init_fs_context = ffs_fs_init_fs_context,
2098 	.parameters	= ffs_fs_fs_parameters,
2099 	.kill_sb	= ffs_fs_kill_sb,
2100 };
2101 MODULE_ALIAS_FS("functionfs");
2102 
2103 
2104 /* Driver's main init/cleanup functions *************************************/
2105 
2106 static int functionfs_init(void)
2107 {
2108 	int ret;
2109 
2110 	ret = register_filesystem(&ffs_fs_type);
2111 	if (!ret)
2112 		pr_info("file system registered\n");
2113 	else
2114 		pr_err("failed registering file system (%d)\n", ret);
2115 
2116 	return ret;
2117 }
2118 
2119 static void functionfs_cleanup(void)
2120 {
2121 	pr_info("unloading\n");
2122 	unregister_filesystem(&ffs_fs_type);
2123 }
2124 
2125 
2126 /* ffs_data and ffs_function construction and destruction code **************/
2127 
2128 static void ffs_data_clear(struct ffs_data *ffs);
2129 static void ffs_data_reset(struct ffs_data *ffs);
2130 
2131 static void ffs_data_get(struct ffs_data *ffs)
2132 {
2133 	refcount_inc(&ffs->ref);
2134 }
2135 
2136 static void ffs_data_opened(struct ffs_data *ffs)
2137 {
2138 	refcount_inc(&ffs->ref);
2139 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2140 			ffs->state == FFS_DEACTIVATED) {
2141 		ffs->state = FFS_CLOSING;
2142 		ffs_data_reset(ffs);
2143 	}
2144 }
2145 
2146 static void ffs_data_put(struct ffs_data *ffs)
2147 {
2148 	if (refcount_dec_and_test(&ffs->ref)) {
2149 		pr_info("%s(): freeing\n", __func__);
2150 		ffs_data_clear(ffs);
2151 		ffs_release_dev(ffs->private_data);
2152 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2153 		       swait_active(&ffs->ep0req_completion.wait) ||
2154 		       waitqueue_active(&ffs->wait));
2155 		destroy_workqueue(ffs->io_completion_wq);
2156 		kfree(ffs->dev_name);
2157 		kfree(ffs);
2158 	}
2159 }
2160 
2161 static void ffs_data_closed(struct ffs_data *ffs)
2162 {
2163 	struct ffs_epfile *epfiles;
2164 	unsigned long flags;
2165 
2166 	if (atomic_dec_and_test(&ffs->opened)) {
2167 		if (ffs->no_disconnect) {
2168 			ffs->state = FFS_DEACTIVATED;
2169 			spin_lock_irqsave(&ffs->eps_lock, flags);
2170 			epfiles = ffs->epfiles;
2171 			ffs->epfiles = NULL;
2172 			spin_unlock_irqrestore(&ffs->eps_lock,
2173 							flags);
2174 
2175 			if (epfiles)
2176 				ffs_epfiles_destroy(epfiles,
2177 						 ffs->eps_count);
2178 
2179 			if (ffs->setup_state == FFS_SETUP_PENDING)
2180 				__ffs_ep0_stall(ffs);
2181 		} else {
2182 			ffs->state = FFS_CLOSING;
2183 			ffs_data_reset(ffs);
2184 		}
2185 	}
2186 	if (atomic_read(&ffs->opened) < 0) {
2187 		ffs->state = FFS_CLOSING;
2188 		ffs_data_reset(ffs);
2189 	}
2190 
2191 	ffs_data_put(ffs);
2192 }
2193 
2194 static struct ffs_data *ffs_data_new(const char *dev_name)
2195 {
2196 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2197 	if (!ffs)
2198 		return NULL;
2199 
2200 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2201 	if (!ffs->io_completion_wq) {
2202 		kfree(ffs);
2203 		return NULL;
2204 	}
2205 
2206 	refcount_set(&ffs->ref, 1);
2207 	atomic_set(&ffs->opened, 0);
2208 	ffs->state = FFS_READ_DESCRIPTORS;
2209 	mutex_init(&ffs->mutex);
2210 	spin_lock_init(&ffs->eps_lock);
2211 	init_waitqueue_head(&ffs->ev.waitq);
2212 	init_waitqueue_head(&ffs->wait);
2213 	init_completion(&ffs->ep0req_completion);
2214 
2215 	/* XXX REVISIT need to update it in some places, or do we? */
2216 	ffs->ev.can_stall = 1;
2217 
2218 	return ffs;
2219 }
2220 
2221 static void ffs_data_clear(struct ffs_data *ffs)
2222 {
2223 	struct ffs_epfile *epfiles;
2224 	unsigned long flags;
2225 
2226 	ffs_closed(ffs);
2227 
2228 	BUG_ON(ffs->gadget);
2229 
2230 	spin_lock_irqsave(&ffs->eps_lock, flags);
2231 	epfiles = ffs->epfiles;
2232 	ffs->epfiles = NULL;
2233 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2234 
2235 	/*
2236 	 * potential race possible between ffs_func_eps_disable
2237 	 * & ffs_epfile_release therefore maintaining a local
2238 	 * copy of epfile will save us from use-after-free.
2239 	 */
2240 	if (epfiles) {
2241 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2242 		ffs->epfiles = NULL;
2243 	}
2244 
2245 	if (ffs->ffs_eventfd) {
2246 		eventfd_ctx_put(ffs->ffs_eventfd);
2247 		ffs->ffs_eventfd = NULL;
2248 	}
2249 
2250 	kfree(ffs->raw_descs_data);
2251 	kfree(ffs->raw_strings);
2252 	kfree(ffs->stringtabs);
2253 }
2254 
2255 static void ffs_data_reset(struct ffs_data *ffs)
2256 {
2257 	ffs_data_clear(ffs);
2258 
2259 	ffs->raw_descs_data = NULL;
2260 	ffs->raw_descs = NULL;
2261 	ffs->raw_strings = NULL;
2262 	ffs->stringtabs = NULL;
2263 
2264 	ffs->raw_descs_length = 0;
2265 	ffs->fs_descs_count = 0;
2266 	ffs->hs_descs_count = 0;
2267 	ffs->ss_descs_count = 0;
2268 
2269 	ffs->strings_count = 0;
2270 	ffs->interfaces_count = 0;
2271 	ffs->eps_count = 0;
2272 
2273 	ffs->ev.count = 0;
2274 
2275 	ffs->state = FFS_READ_DESCRIPTORS;
2276 	ffs->setup_state = FFS_NO_SETUP;
2277 	ffs->flags = 0;
2278 
2279 	ffs->ms_os_descs_ext_prop_count = 0;
2280 	ffs->ms_os_descs_ext_prop_name_len = 0;
2281 	ffs->ms_os_descs_ext_prop_data_len = 0;
2282 }
2283 
2284 
2285 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2286 {
2287 	struct usb_gadget_strings **lang;
2288 	int first_id;
2289 
2290 	if (WARN_ON(ffs->state != FFS_ACTIVE
2291 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2292 		return -EBADFD;
2293 
2294 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2295 	if (first_id < 0)
2296 		return first_id;
2297 
2298 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2299 	if (!ffs->ep0req)
2300 		return -ENOMEM;
2301 	ffs->ep0req->complete = ffs_ep0_complete;
2302 	ffs->ep0req->context = ffs;
2303 
2304 	lang = ffs->stringtabs;
2305 	if (lang) {
2306 		for (; *lang; ++lang) {
2307 			struct usb_string *str = (*lang)->strings;
2308 			int id = first_id;
2309 			for (; str->s; ++id, ++str)
2310 				str->id = id;
2311 		}
2312 	}
2313 
2314 	ffs->gadget = cdev->gadget;
2315 	ffs_data_get(ffs);
2316 	return 0;
2317 }
2318 
2319 static void functionfs_unbind(struct ffs_data *ffs)
2320 {
2321 	if (!WARN_ON(!ffs->gadget)) {
2322 		/* dequeue before freeing ep0req */
2323 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2324 		mutex_lock(&ffs->mutex);
2325 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2326 		ffs->ep0req = NULL;
2327 		ffs->gadget = NULL;
2328 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2329 		mutex_unlock(&ffs->mutex);
2330 		ffs_data_put(ffs);
2331 	}
2332 }
2333 
2334 static int ffs_epfiles_create(struct ffs_data *ffs)
2335 {
2336 	struct ffs_epfile *epfile, *epfiles;
2337 	unsigned i, count;
2338 
2339 	count = ffs->eps_count;
2340 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2341 	if (!epfiles)
2342 		return -ENOMEM;
2343 
2344 	epfile = epfiles;
2345 	for (i = 1; i <= count; ++i, ++epfile) {
2346 		epfile->ffs = ffs;
2347 		mutex_init(&epfile->mutex);
2348 		mutex_init(&epfile->dmabufs_mutex);
2349 		INIT_LIST_HEAD(&epfile->dmabufs);
2350 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2351 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2352 		else
2353 			sprintf(epfile->name, "ep%u", i);
2354 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2355 						 epfile,
2356 						 &ffs_epfile_operations);
2357 		if (!epfile->dentry) {
2358 			ffs_epfiles_destroy(epfiles, i - 1);
2359 			return -ENOMEM;
2360 		}
2361 	}
2362 
2363 	ffs->epfiles = epfiles;
2364 	return 0;
2365 }
2366 
2367 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2368 {
2369 	struct ffs_epfile *epfile = epfiles;
2370 
2371 	for (; count; --count, ++epfile) {
2372 		BUG_ON(mutex_is_locked(&epfile->mutex));
2373 		if (epfile->dentry) {
2374 			d_delete(epfile->dentry);
2375 			dput(epfile->dentry);
2376 			epfile->dentry = NULL;
2377 		}
2378 	}
2379 
2380 	kfree(epfiles);
2381 }
2382 
2383 static void ffs_func_eps_disable(struct ffs_function *func)
2384 {
2385 	struct ffs_ep *ep;
2386 	struct ffs_epfile *epfile;
2387 	unsigned short count;
2388 	unsigned long flags;
2389 
2390 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2391 	count = func->ffs->eps_count;
2392 	epfile = func->ffs->epfiles;
2393 	ep = func->eps;
2394 	while (count--) {
2395 		/* pending requests get nuked */
2396 		if (ep->ep)
2397 			usb_ep_disable(ep->ep);
2398 		++ep;
2399 
2400 		if (epfile) {
2401 			epfile->ep = NULL;
2402 			__ffs_epfile_read_buffer_free(epfile);
2403 			++epfile;
2404 		}
2405 	}
2406 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2407 }
2408 
2409 static int ffs_func_eps_enable(struct ffs_function *func)
2410 {
2411 	struct ffs_data *ffs;
2412 	struct ffs_ep *ep;
2413 	struct ffs_epfile *epfile;
2414 	unsigned short count;
2415 	unsigned long flags;
2416 	int ret = 0;
2417 
2418 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2419 	ffs = func->ffs;
2420 	ep = func->eps;
2421 	epfile = ffs->epfiles;
2422 	count = ffs->eps_count;
2423 	while(count--) {
2424 		ep->ep->driver_data = ep;
2425 
2426 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2427 		if (ret) {
2428 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2429 					__func__, ep->ep->name, ret);
2430 			break;
2431 		}
2432 
2433 		ret = usb_ep_enable(ep->ep);
2434 		if (!ret) {
2435 			epfile->ep = ep;
2436 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2437 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2438 		} else {
2439 			break;
2440 		}
2441 
2442 		++ep;
2443 		++epfile;
2444 	}
2445 
2446 	wake_up_interruptible(&ffs->wait);
2447 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2448 
2449 	return ret;
2450 }
2451 
2452 
2453 /* Parsing and building descriptors and strings *****************************/
2454 
2455 /*
2456  * This validates if data pointed by data is a valid USB descriptor as
2457  * well as record how many interfaces, endpoints and strings are
2458  * required by given configuration.  Returns address after the
2459  * descriptor or NULL if data is invalid.
2460  */
2461 
2462 enum ffs_entity_type {
2463 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2464 };
2465 
2466 enum ffs_os_desc_type {
2467 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2468 };
2469 
2470 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2471 				   u8 *valuep,
2472 				   struct usb_descriptor_header *desc,
2473 				   void *priv);
2474 
2475 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2476 				    struct usb_os_desc_header *h, void *data,
2477 				    unsigned len, void *priv);
2478 
2479 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2480 					   ffs_entity_callback entity,
2481 					   void *priv, int *current_class, int *current_subclass)
2482 {
2483 	struct usb_descriptor_header *_ds = (void *)data;
2484 	u8 length;
2485 	int ret;
2486 
2487 	/* At least two bytes are required: length and type */
2488 	if (len < 2) {
2489 		pr_vdebug("descriptor too short\n");
2490 		return -EINVAL;
2491 	}
2492 
2493 	/* If we have at least as many bytes as the descriptor takes? */
2494 	length = _ds->bLength;
2495 	if (len < length) {
2496 		pr_vdebug("descriptor longer then available data\n");
2497 		return -EINVAL;
2498 	}
2499 
2500 #define __entity_check_INTERFACE(val)  1
2501 #define __entity_check_STRING(val)     (val)
2502 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2503 #define __entity(type, val) do {					\
2504 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2505 		if (!__entity_check_ ##type(val)) {			\
2506 			pr_vdebug("invalid entity's value\n");		\
2507 			return -EINVAL;					\
2508 		}							\
2509 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2510 		if (ret < 0) {						\
2511 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2512 				 (val), ret);				\
2513 			return ret;					\
2514 		}							\
2515 	} while (0)
2516 
2517 	/* Parse descriptor depending on type. */
2518 	switch (_ds->bDescriptorType) {
2519 	case USB_DT_DEVICE:
2520 	case USB_DT_CONFIG:
2521 	case USB_DT_STRING:
2522 	case USB_DT_DEVICE_QUALIFIER:
2523 		/* function can't have any of those */
2524 		pr_vdebug("descriptor reserved for gadget: %d\n",
2525 		      _ds->bDescriptorType);
2526 		return -EINVAL;
2527 
2528 	case USB_DT_INTERFACE: {
2529 		struct usb_interface_descriptor *ds = (void *)_ds;
2530 		pr_vdebug("interface descriptor\n");
2531 		if (length != sizeof *ds)
2532 			goto inv_length;
2533 
2534 		__entity(INTERFACE, ds->bInterfaceNumber);
2535 		if (ds->iInterface)
2536 			__entity(STRING, ds->iInterface);
2537 		*current_class = ds->bInterfaceClass;
2538 		*current_subclass = ds->bInterfaceSubClass;
2539 	}
2540 		break;
2541 
2542 	case USB_DT_ENDPOINT: {
2543 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2544 		pr_vdebug("endpoint descriptor\n");
2545 		if (length != USB_DT_ENDPOINT_SIZE &&
2546 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2547 			goto inv_length;
2548 		__entity(ENDPOINT, ds->bEndpointAddress);
2549 	}
2550 		break;
2551 
2552 	case USB_TYPE_CLASS | 0x01:
2553 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2554 			pr_vdebug("hid descriptor\n");
2555 			if (length != sizeof(struct hid_descriptor))
2556 				goto inv_length;
2557 			break;
2558 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2559 			pr_vdebug("ccid descriptor\n");
2560 			if (length != sizeof(struct ccid_descriptor))
2561 				goto inv_length;
2562 			break;
2563 		} else if (*current_class == USB_CLASS_APP_SPEC &&
2564 			   *current_subclass == USB_SUBCLASS_DFU) {
2565 			pr_vdebug("dfu functional descriptor\n");
2566 			if (length != sizeof(struct usb_dfu_functional_descriptor))
2567 				goto inv_length;
2568 			break;
2569 		} else {
2570 			pr_vdebug("unknown descriptor: %d for class %d\n",
2571 			      _ds->bDescriptorType, *current_class);
2572 			return -EINVAL;
2573 		}
2574 
2575 	case USB_DT_OTG:
2576 		if (length != sizeof(struct usb_otg_descriptor))
2577 			goto inv_length;
2578 		break;
2579 
2580 	case USB_DT_INTERFACE_ASSOCIATION: {
2581 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2582 		pr_vdebug("interface association descriptor\n");
2583 		if (length != sizeof *ds)
2584 			goto inv_length;
2585 		if (ds->iFunction)
2586 			__entity(STRING, ds->iFunction);
2587 	}
2588 		break;
2589 
2590 	case USB_DT_SS_ENDPOINT_COMP:
2591 		pr_vdebug("EP SS companion descriptor\n");
2592 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2593 			goto inv_length;
2594 		break;
2595 
2596 	case USB_DT_OTHER_SPEED_CONFIG:
2597 	case USB_DT_INTERFACE_POWER:
2598 	case USB_DT_DEBUG:
2599 	case USB_DT_SECURITY:
2600 	case USB_DT_CS_RADIO_CONTROL:
2601 		/* TODO */
2602 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2603 		return -EINVAL;
2604 
2605 	default:
2606 		/* We should never be here */
2607 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2608 		return -EINVAL;
2609 
2610 inv_length:
2611 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2612 			  _ds->bLength, _ds->bDescriptorType);
2613 		return -EINVAL;
2614 	}
2615 
2616 #undef __entity
2617 #undef __entity_check_DESCRIPTOR
2618 #undef __entity_check_INTERFACE
2619 #undef __entity_check_STRING
2620 #undef __entity_check_ENDPOINT
2621 
2622 	return length;
2623 }
2624 
2625 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2626 				     ffs_entity_callback entity, void *priv)
2627 {
2628 	const unsigned _len = len;
2629 	unsigned long num = 0;
2630 	int current_class = -1;
2631 	int current_subclass = -1;
2632 
2633 	for (;;) {
2634 		int ret;
2635 
2636 		if (num == count)
2637 			data = NULL;
2638 
2639 		/* Record "descriptor" entity */
2640 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2641 		if (ret < 0) {
2642 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2643 				 num, ret);
2644 			return ret;
2645 		}
2646 
2647 		if (!data)
2648 			return _len - len;
2649 
2650 		ret = ffs_do_single_desc(data, len, entity, priv,
2651 			&current_class, &current_subclass);
2652 		if (ret < 0) {
2653 			pr_debug("%s returns %d\n", __func__, ret);
2654 			return ret;
2655 		}
2656 
2657 		len -= ret;
2658 		data += ret;
2659 		++num;
2660 	}
2661 }
2662 
2663 static int __ffs_data_do_entity(enum ffs_entity_type type,
2664 				u8 *valuep, struct usb_descriptor_header *desc,
2665 				void *priv)
2666 {
2667 	struct ffs_desc_helper *helper = priv;
2668 	struct usb_endpoint_descriptor *d;
2669 
2670 	switch (type) {
2671 	case FFS_DESCRIPTOR:
2672 		break;
2673 
2674 	case FFS_INTERFACE:
2675 		/*
2676 		 * Interfaces are indexed from zero so if we
2677 		 * encountered interface "n" then there are at least
2678 		 * "n+1" interfaces.
2679 		 */
2680 		if (*valuep >= helper->interfaces_count)
2681 			helper->interfaces_count = *valuep + 1;
2682 		break;
2683 
2684 	case FFS_STRING:
2685 		/*
2686 		 * Strings are indexed from 1 (0 is reserved
2687 		 * for languages list)
2688 		 */
2689 		if (*valuep > helper->ffs->strings_count)
2690 			helper->ffs->strings_count = *valuep;
2691 		break;
2692 
2693 	case FFS_ENDPOINT:
2694 		d = (void *)desc;
2695 		helper->eps_count++;
2696 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2697 			return -EINVAL;
2698 		/* Check if descriptors for any speed were already parsed */
2699 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2700 			helper->ffs->eps_addrmap[helper->eps_count] =
2701 				d->bEndpointAddress;
2702 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2703 				d->bEndpointAddress)
2704 			return -EINVAL;
2705 		break;
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2712 				   struct usb_os_desc_header *desc)
2713 {
2714 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2715 	u16 w_index = le16_to_cpu(desc->wIndex);
2716 
2717 	if (bcd_version == 0x1) {
2718 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2719 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2720 	} else if (bcd_version != 0x100) {
2721 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2722 			  bcd_version);
2723 		return -EINVAL;
2724 	}
2725 	switch (w_index) {
2726 	case 0x4:
2727 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2728 		break;
2729 	case 0x5:
2730 		*next_type = FFS_OS_DESC_EXT_PROP;
2731 		break;
2732 	default:
2733 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2734 		return -EINVAL;
2735 	}
2736 
2737 	return sizeof(*desc);
2738 }
2739 
2740 /*
2741  * Process all extended compatibility/extended property descriptors
2742  * of a feature descriptor
2743  */
2744 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2745 					      enum ffs_os_desc_type type,
2746 					      u16 feature_count,
2747 					      ffs_os_desc_callback entity,
2748 					      void *priv,
2749 					      struct usb_os_desc_header *h)
2750 {
2751 	int ret;
2752 	const unsigned _len = len;
2753 
2754 	/* loop over all ext compat/ext prop descriptors */
2755 	while (feature_count--) {
2756 		ret = entity(type, h, data, len, priv);
2757 		if (ret < 0) {
2758 			pr_debug("bad OS descriptor, type: %d\n", type);
2759 			return ret;
2760 		}
2761 		data += ret;
2762 		len -= ret;
2763 	}
2764 	return _len - len;
2765 }
2766 
2767 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2768 static int __must_check ffs_do_os_descs(unsigned count,
2769 					char *data, unsigned len,
2770 					ffs_os_desc_callback entity, void *priv)
2771 {
2772 	const unsigned _len = len;
2773 	unsigned long num = 0;
2774 
2775 	for (num = 0; num < count; ++num) {
2776 		int ret;
2777 		enum ffs_os_desc_type type;
2778 		u16 feature_count;
2779 		struct usb_os_desc_header *desc = (void *)data;
2780 
2781 		if (len < sizeof(*desc))
2782 			return -EINVAL;
2783 
2784 		/*
2785 		 * Record "descriptor" entity.
2786 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2787 		 * Move the data pointer to the beginning of extended
2788 		 * compatibilities proper or extended properties proper
2789 		 * portions of the data
2790 		 */
2791 		if (le32_to_cpu(desc->dwLength) > len)
2792 			return -EINVAL;
2793 
2794 		ret = __ffs_do_os_desc_header(&type, desc);
2795 		if (ret < 0) {
2796 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2797 				 num, ret);
2798 			return ret;
2799 		}
2800 		/*
2801 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2802 		 */
2803 		feature_count = le16_to_cpu(desc->wCount);
2804 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2805 		    (feature_count > 255 || desc->Reserved))
2806 				return -EINVAL;
2807 		len -= ret;
2808 		data += ret;
2809 
2810 		/*
2811 		 * Process all function/property descriptors
2812 		 * of this Feature Descriptor
2813 		 */
2814 		ret = ffs_do_single_os_desc(data, len, type,
2815 					    feature_count, entity, priv, desc);
2816 		if (ret < 0) {
2817 			pr_debug("%s returns %d\n", __func__, ret);
2818 			return ret;
2819 		}
2820 
2821 		len -= ret;
2822 		data += ret;
2823 	}
2824 	return _len - len;
2825 }
2826 
2827 /*
2828  * Validate contents of the buffer from userspace related to OS descriptors.
2829  */
2830 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2831 				 struct usb_os_desc_header *h, void *data,
2832 				 unsigned len, void *priv)
2833 {
2834 	struct ffs_data *ffs = priv;
2835 	u8 length;
2836 
2837 	switch (type) {
2838 	case FFS_OS_DESC_EXT_COMPAT: {
2839 		struct usb_ext_compat_desc *d = data;
2840 		int i;
2841 
2842 		if (len < sizeof(*d) ||
2843 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2844 			return -EINVAL;
2845 		if (d->Reserved1 != 1) {
2846 			/*
2847 			 * According to the spec, Reserved1 must be set to 1
2848 			 * but older kernels incorrectly rejected non-zero
2849 			 * values.  We fix it here to avoid returning EINVAL
2850 			 * in response to values we used to accept.
2851 			 */
2852 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2853 			d->Reserved1 = 1;
2854 		}
2855 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2856 			if (d->Reserved2[i])
2857 				return -EINVAL;
2858 
2859 		length = sizeof(struct usb_ext_compat_desc);
2860 	}
2861 		break;
2862 	case FFS_OS_DESC_EXT_PROP: {
2863 		struct usb_ext_prop_desc *d = data;
2864 		u32 type, pdl;
2865 		u16 pnl;
2866 
2867 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2868 			return -EINVAL;
2869 		length = le32_to_cpu(d->dwSize);
2870 		if (len < length)
2871 			return -EINVAL;
2872 		type = le32_to_cpu(d->dwPropertyDataType);
2873 		if (type < USB_EXT_PROP_UNICODE ||
2874 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2875 			pr_vdebug("unsupported os descriptor property type: %d",
2876 				  type);
2877 			return -EINVAL;
2878 		}
2879 		pnl = le16_to_cpu(d->wPropertyNameLength);
2880 		if (length < 14 + pnl) {
2881 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2882 				  length, pnl, type);
2883 			return -EINVAL;
2884 		}
2885 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2886 		if (length != 14 + pnl + pdl) {
2887 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2888 				  length, pnl, pdl, type);
2889 			return -EINVAL;
2890 		}
2891 		++ffs->ms_os_descs_ext_prop_count;
2892 		/* property name reported to the host as "WCHAR"s */
2893 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2894 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2895 	}
2896 		break;
2897 	default:
2898 		pr_vdebug("unknown descriptor: %d\n", type);
2899 		return -EINVAL;
2900 	}
2901 	return length;
2902 }
2903 
2904 static int __ffs_data_got_descs(struct ffs_data *ffs,
2905 				char *const _data, size_t len)
2906 {
2907 	char *data = _data, *raw_descs;
2908 	unsigned os_descs_count = 0, counts[3], flags;
2909 	int ret = -EINVAL, i;
2910 	struct ffs_desc_helper helper;
2911 
2912 	if (get_unaligned_le32(data + 4) != len)
2913 		goto error;
2914 
2915 	switch (get_unaligned_le32(data)) {
2916 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2917 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2918 		data += 8;
2919 		len  -= 8;
2920 		break;
2921 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2922 		flags = get_unaligned_le32(data + 8);
2923 		ffs->user_flags = flags;
2924 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2925 			      FUNCTIONFS_HAS_HS_DESC |
2926 			      FUNCTIONFS_HAS_SS_DESC |
2927 			      FUNCTIONFS_HAS_MS_OS_DESC |
2928 			      FUNCTIONFS_VIRTUAL_ADDR |
2929 			      FUNCTIONFS_EVENTFD |
2930 			      FUNCTIONFS_ALL_CTRL_RECIP |
2931 			      FUNCTIONFS_CONFIG0_SETUP)) {
2932 			ret = -ENOSYS;
2933 			goto error;
2934 		}
2935 		data += 12;
2936 		len  -= 12;
2937 		break;
2938 	default:
2939 		goto error;
2940 	}
2941 
2942 	if (flags & FUNCTIONFS_EVENTFD) {
2943 		if (len < 4)
2944 			goto error;
2945 		ffs->ffs_eventfd =
2946 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2947 		if (IS_ERR(ffs->ffs_eventfd)) {
2948 			ret = PTR_ERR(ffs->ffs_eventfd);
2949 			ffs->ffs_eventfd = NULL;
2950 			goto error;
2951 		}
2952 		data += 4;
2953 		len  -= 4;
2954 	}
2955 
2956 	/* Read fs_count, hs_count and ss_count (if present) */
2957 	for (i = 0; i < 3; ++i) {
2958 		if (!(flags & (1 << i))) {
2959 			counts[i] = 0;
2960 		} else if (len < 4) {
2961 			goto error;
2962 		} else {
2963 			counts[i] = get_unaligned_le32(data);
2964 			data += 4;
2965 			len  -= 4;
2966 		}
2967 	}
2968 	if (flags & (1 << i)) {
2969 		if (len < 4) {
2970 			goto error;
2971 		}
2972 		os_descs_count = get_unaligned_le32(data);
2973 		data += 4;
2974 		len -= 4;
2975 	}
2976 
2977 	/* Read descriptors */
2978 	raw_descs = data;
2979 	helper.ffs = ffs;
2980 	for (i = 0; i < 3; ++i) {
2981 		if (!counts[i])
2982 			continue;
2983 		helper.interfaces_count = 0;
2984 		helper.eps_count = 0;
2985 		ret = ffs_do_descs(counts[i], data, len,
2986 				   __ffs_data_do_entity, &helper);
2987 		if (ret < 0)
2988 			goto error;
2989 		if (!ffs->eps_count && !ffs->interfaces_count) {
2990 			ffs->eps_count = helper.eps_count;
2991 			ffs->interfaces_count = helper.interfaces_count;
2992 		} else {
2993 			if (ffs->eps_count != helper.eps_count) {
2994 				ret = -EINVAL;
2995 				goto error;
2996 			}
2997 			if (ffs->interfaces_count != helper.interfaces_count) {
2998 				ret = -EINVAL;
2999 				goto error;
3000 			}
3001 		}
3002 		data += ret;
3003 		len  -= ret;
3004 	}
3005 	if (os_descs_count) {
3006 		ret = ffs_do_os_descs(os_descs_count, data, len,
3007 				      __ffs_data_do_os_desc, ffs);
3008 		if (ret < 0)
3009 			goto error;
3010 		data += ret;
3011 		len -= ret;
3012 	}
3013 
3014 	if (raw_descs == data || len) {
3015 		ret = -EINVAL;
3016 		goto error;
3017 	}
3018 
3019 	ffs->raw_descs_data	= _data;
3020 	ffs->raw_descs		= raw_descs;
3021 	ffs->raw_descs_length	= data - raw_descs;
3022 	ffs->fs_descs_count	= counts[0];
3023 	ffs->hs_descs_count	= counts[1];
3024 	ffs->ss_descs_count	= counts[2];
3025 	ffs->ms_os_descs_count	= os_descs_count;
3026 
3027 	return 0;
3028 
3029 error:
3030 	kfree(_data);
3031 	return ret;
3032 }
3033 
3034 static int __ffs_data_got_strings(struct ffs_data *ffs,
3035 				  char *const _data, size_t len)
3036 {
3037 	u32 str_count, needed_count, lang_count;
3038 	struct usb_gadget_strings **stringtabs, *t;
3039 	const char *data = _data;
3040 	struct usb_string *s;
3041 
3042 	if (len < 16 ||
3043 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3044 	    get_unaligned_le32(data + 4) != len)
3045 		goto error;
3046 	str_count  = get_unaligned_le32(data + 8);
3047 	lang_count = get_unaligned_le32(data + 12);
3048 
3049 	/* if one is zero the other must be zero */
3050 	if (!str_count != !lang_count)
3051 		goto error;
3052 
3053 	/* Do we have at least as many strings as descriptors need? */
3054 	needed_count = ffs->strings_count;
3055 	if (str_count < needed_count)
3056 		goto error;
3057 
3058 	/*
3059 	 * If we don't need any strings just return and free all
3060 	 * memory.
3061 	 */
3062 	if (!needed_count) {
3063 		kfree(_data);
3064 		return 0;
3065 	}
3066 
3067 	/* Allocate everything in one chunk so there's less maintenance. */
3068 	{
3069 		unsigned i = 0;
3070 		vla_group(d);
3071 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3072 			size_add(lang_count, 1));
3073 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3074 		vla_item(d, struct usb_string, strings,
3075 			size_mul(lang_count, (needed_count + 1)));
3076 
3077 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3078 
3079 		if (!vlabuf) {
3080 			kfree(_data);
3081 			return -ENOMEM;
3082 		}
3083 
3084 		/* Initialize the VLA pointers */
3085 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3086 		t = vla_ptr(vlabuf, d, stringtab);
3087 		i = lang_count;
3088 		do {
3089 			*stringtabs++ = t++;
3090 		} while (--i);
3091 		*stringtabs = NULL;
3092 
3093 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3094 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3095 		t = vla_ptr(vlabuf, d, stringtab);
3096 		s = vla_ptr(vlabuf, d, strings);
3097 	}
3098 
3099 	/* For each language */
3100 	data += 16;
3101 	len -= 16;
3102 
3103 	do { /* lang_count > 0 so we can use do-while */
3104 		unsigned needed = needed_count;
3105 		u32 str_per_lang = str_count;
3106 
3107 		if (len < 3)
3108 			goto error_free;
3109 		t->language = get_unaligned_le16(data);
3110 		t->strings  = s;
3111 		++t;
3112 
3113 		data += 2;
3114 		len -= 2;
3115 
3116 		/* For each string */
3117 		do { /* str_count > 0 so we can use do-while */
3118 			size_t length = strnlen(data, len);
3119 
3120 			if (length == len)
3121 				goto error_free;
3122 
3123 			/*
3124 			 * User may provide more strings then we need,
3125 			 * if that's the case we simply ignore the
3126 			 * rest
3127 			 */
3128 			if (needed) {
3129 				/*
3130 				 * s->id will be set while adding
3131 				 * function to configuration so for
3132 				 * now just leave garbage here.
3133 				 */
3134 				s->s = data;
3135 				--needed;
3136 				++s;
3137 			}
3138 
3139 			data += length + 1;
3140 			len -= length + 1;
3141 		} while (--str_per_lang);
3142 
3143 		s->id = 0;   /* terminator */
3144 		s->s = NULL;
3145 		++s;
3146 
3147 	} while (--lang_count);
3148 
3149 	/* Some garbage left? */
3150 	if (len)
3151 		goto error_free;
3152 
3153 	/* Done! */
3154 	ffs->stringtabs = stringtabs;
3155 	ffs->raw_strings = _data;
3156 
3157 	return 0;
3158 
3159 error_free:
3160 	kfree(stringtabs);
3161 error:
3162 	kfree(_data);
3163 	return -EINVAL;
3164 }
3165 
3166 
3167 /* Events handling and management *******************************************/
3168 
3169 static void __ffs_event_add(struct ffs_data *ffs,
3170 			    enum usb_functionfs_event_type type)
3171 {
3172 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3173 	int neg = 0;
3174 
3175 	/*
3176 	 * Abort any unhandled setup
3177 	 *
3178 	 * We do not need to worry about some cmpxchg() changing value
3179 	 * of ffs->setup_state without holding the lock because when
3180 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3181 	 * the source does nothing.
3182 	 */
3183 	if (ffs->setup_state == FFS_SETUP_PENDING)
3184 		ffs->setup_state = FFS_SETUP_CANCELLED;
3185 
3186 	/*
3187 	 * Logic of this function guarantees that there are at most four pending
3188 	 * evens on ffs->ev.types queue.  This is important because the queue
3189 	 * has space for four elements only and __ffs_ep0_read_events function
3190 	 * depends on that limit as well.  If more event types are added, those
3191 	 * limits have to be revisited or guaranteed to still hold.
3192 	 */
3193 	switch (type) {
3194 	case FUNCTIONFS_RESUME:
3195 		rem_type2 = FUNCTIONFS_SUSPEND;
3196 		fallthrough;
3197 	case FUNCTIONFS_SUSPEND:
3198 	case FUNCTIONFS_SETUP:
3199 		rem_type1 = type;
3200 		/* Discard all similar events */
3201 		break;
3202 
3203 	case FUNCTIONFS_BIND:
3204 	case FUNCTIONFS_UNBIND:
3205 	case FUNCTIONFS_DISABLE:
3206 	case FUNCTIONFS_ENABLE:
3207 		/* Discard everything other then power management. */
3208 		rem_type1 = FUNCTIONFS_SUSPEND;
3209 		rem_type2 = FUNCTIONFS_RESUME;
3210 		neg = 1;
3211 		break;
3212 
3213 	default:
3214 		WARN(1, "%d: unknown event, this should not happen\n", type);
3215 		return;
3216 	}
3217 
3218 	{
3219 		u8 *ev  = ffs->ev.types, *out = ev;
3220 		unsigned n = ffs->ev.count;
3221 		for (; n; --n, ++ev)
3222 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3223 				*out++ = *ev;
3224 			else
3225 				pr_vdebug("purging event %d\n", *ev);
3226 		ffs->ev.count = out - ffs->ev.types;
3227 	}
3228 
3229 	pr_vdebug("adding event %d\n", type);
3230 	ffs->ev.types[ffs->ev.count++] = type;
3231 	wake_up_locked(&ffs->ev.waitq);
3232 	if (ffs->ffs_eventfd)
3233 		eventfd_signal(ffs->ffs_eventfd);
3234 }
3235 
3236 static void ffs_event_add(struct ffs_data *ffs,
3237 			  enum usb_functionfs_event_type type)
3238 {
3239 	unsigned long flags;
3240 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3241 	__ffs_event_add(ffs, type);
3242 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3243 }
3244 
3245 /* Bind/unbind USB function hooks *******************************************/
3246 
3247 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3248 {
3249 	int i;
3250 
3251 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3252 		if (ffs->eps_addrmap[i] == endpoint_address)
3253 			return i;
3254 	return -ENOENT;
3255 }
3256 
3257 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3258 				    struct usb_descriptor_header *desc,
3259 				    void *priv)
3260 {
3261 	struct usb_endpoint_descriptor *ds = (void *)desc;
3262 	struct ffs_function *func = priv;
3263 	struct ffs_ep *ffs_ep;
3264 	unsigned ep_desc_id;
3265 	int idx;
3266 	static const char *speed_names[] = { "full", "high", "super" };
3267 
3268 	if (type != FFS_DESCRIPTOR)
3269 		return 0;
3270 
3271 	/*
3272 	 * If ss_descriptors is not NULL, we are reading super speed
3273 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3274 	 * speed descriptors; otherwise, we are reading full speed
3275 	 * descriptors.
3276 	 */
3277 	if (func->function.ss_descriptors) {
3278 		ep_desc_id = 2;
3279 		func->function.ss_descriptors[(long)valuep] = desc;
3280 	} else if (func->function.hs_descriptors) {
3281 		ep_desc_id = 1;
3282 		func->function.hs_descriptors[(long)valuep] = desc;
3283 	} else {
3284 		ep_desc_id = 0;
3285 		func->function.fs_descriptors[(long)valuep]    = desc;
3286 	}
3287 
3288 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3289 		return 0;
3290 
3291 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3292 	if (idx < 0)
3293 		return idx;
3294 
3295 	ffs_ep = func->eps + idx;
3296 
3297 	if (ffs_ep->descs[ep_desc_id]) {
3298 		pr_err("two %sspeed descriptors for EP %d\n",
3299 			  speed_names[ep_desc_id],
3300 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3301 		return -EINVAL;
3302 	}
3303 	ffs_ep->descs[ep_desc_id] = ds;
3304 
3305 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3306 	if (ffs_ep->ep) {
3307 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3308 		if (!ds->wMaxPacketSize)
3309 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3310 	} else {
3311 		struct usb_request *req;
3312 		struct usb_ep *ep;
3313 		u8 bEndpointAddress;
3314 		u16 wMaxPacketSize;
3315 
3316 		/*
3317 		 * We back up bEndpointAddress because autoconfig overwrites
3318 		 * it with physical endpoint address.
3319 		 */
3320 		bEndpointAddress = ds->bEndpointAddress;
3321 		/*
3322 		 * We back up wMaxPacketSize because autoconfig treats
3323 		 * endpoint descriptors as if they were full speed.
3324 		 */
3325 		wMaxPacketSize = ds->wMaxPacketSize;
3326 		pr_vdebug("autoconfig\n");
3327 		ep = usb_ep_autoconfig(func->gadget, ds);
3328 		if (!ep)
3329 			return -ENOTSUPP;
3330 		ep->driver_data = func->eps + idx;
3331 
3332 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3333 		if (!req)
3334 			return -ENOMEM;
3335 
3336 		ffs_ep->ep  = ep;
3337 		ffs_ep->req = req;
3338 		func->eps_revmap[ds->bEndpointAddress &
3339 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3340 		/*
3341 		 * If we use virtual address mapping, we restore
3342 		 * original bEndpointAddress value.
3343 		 */
3344 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3345 			ds->bEndpointAddress = bEndpointAddress;
3346 		/*
3347 		 * Restore wMaxPacketSize which was potentially
3348 		 * overwritten by autoconfig.
3349 		 */
3350 		ds->wMaxPacketSize = wMaxPacketSize;
3351 	}
3352 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3353 
3354 	return 0;
3355 }
3356 
3357 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3358 				   struct usb_descriptor_header *desc,
3359 				   void *priv)
3360 {
3361 	struct ffs_function *func = priv;
3362 	unsigned idx;
3363 	u8 newValue;
3364 
3365 	switch (type) {
3366 	default:
3367 	case FFS_DESCRIPTOR:
3368 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3369 		return 0;
3370 
3371 	case FFS_INTERFACE:
3372 		idx = *valuep;
3373 		if (func->interfaces_nums[idx] < 0) {
3374 			int id = usb_interface_id(func->conf, &func->function);
3375 			if (id < 0)
3376 				return id;
3377 			func->interfaces_nums[idx] = id;
3378 		}
3379 		newValue = func->interfaces_nums[idx];
3380 		break;
3381 
3382 	case FFS_STRING:
3383 		/* String' IDs are allocated when fsf_data is bound to cdev */
3384 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3385 		break;
3386 
3387 	case FFS_ENDPOINT:
3388 		/*
3389 		 * USB_DT_ENDPOINT are handled in
3390 		 * __ffs_func_bind_do_descs().
3391 		 */
3392 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3393 			return 0;
3394 
3395 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3396 		if (!func->eps[idx].ep)
3397 			return -EINVAL;
3398 
3399 		{
3400 			struct usb_endpoint_descriptor **descs;
3401 			descs = func->eps[idx].descs;
3402 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3403 		}
3404 		break;
3405 	}
3406 
3407 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3408 	*valuep = newValue;
3409 	return 0;
3410 }
3411 
3412 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3413 				      struct usb_os_desc_header *h, void *data,
3414 				      unsigned len, void *priv)
3415 {
3416 	struct ffs_function *func = priv;
3417 	u8 length = 0;
3418 
3419 	switch (type) {
3420 	case FFS_OS_DESC_EXT_COMPAT: {
3421 		struct usb_ext_compat_desc *desc = data;
3422 		struct usb_os_desc_table *t;
3423 
3424 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3425 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3426 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3427 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3428 		length = sizeof(*desc);
3429 	}
3430 		break;
3431 	case FFS_OS_DESC_EXT_PROP: {
3432 		struct usb_ext_prop_desc *desc = data;
3433 		struct usb_os_desc_table *t;
3434 		struct usb_os_desc_ext_prop *ext_prop;
3435 		char *ext_prop_name;
3436 		char *ext_prop_data;
3437 
3438 		t = &func->function.os_desc_table[h->interface];
3439 		t->if_id = func->interfaces_nums[h->interface];
3440 
3441 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3442 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3443 
3444 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3445 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3446 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3447 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3448 		length = ext_prop->name_len + ext_prop->data_len + 14;
3449 
3450 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3451 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3452 			ext_prop->name_len;
3453 
3454 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3455 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3456 			ext_prop->data_len;
3457 		memcpy(ext_prop_data,
3458 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3459 		       ext_prop->data_len);
3460 		/* unicode data reported to the host as "WCHAR"s */
3461 		switch (ext_prop->type) {
3462 		case USB_EXT_PROP_UNICODE:
3463 		case USB_EXT_PROP_UNICODE_ENV:
3464 		case USB_EXT_PROP_UNICODE_LINK:
3465 		case USB_EXT_PROP_UNICODE_MULTI:
3466 			ext_prop->data_len *= 2;
3467 			break;
3468 		}
3469 		ext_prop->data = ext_prop_data;
3470 
3471 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3472 		       ext_prop->name_len);
3473 		/* property name reported to the host as "WCHAR"s */
3474 		ext_prop->name_len *= 2;
3475 		ext_prop->name = ext_prop_name;
3476 
3477 		t->os_desc->ext_prop_len +=
3478 			ext_prop->name_len + ext_prop->data_len + 14;
3479 		++t->os_desc->ext_prop_count;
3480 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3481 	}
3482 		break;
3483 	default:
3484 		pr_vdebug("unknown descriptor: %d\n", type);
3485 	}
3486 
3487 	return length;
3488 }
3489 
3490 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3491 						struct usb_configuration *c)
3492 {
3493 	struct ffs_function *func = ffs_func_from_usb(f);
3494 	struct f_fs_opts *ffs_opts =
3495 		container_of(f->fi, struct f_fs_opts, func_inst);
3496 	struct ffs_data *ffs_data;
3497 	int ret;
3498 
3499 	/*
3500 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3501 	 * which already uses locking; taking the same lock here would
3502 	 * cause a deadlock.
3503 	 *
3504 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3505 	 */
3506 	if (!ffs_opts->no_configfs)
3507 		ffs_dev_lock();
3508 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3509 	ffs_data = ffs_opts->dev->ffs_data;
3510 	if (!ffs_opts->no_configfs)
3511 		ffs_dev_unlock();
3512 	if (ret)
3513 		return ERR_PTR(ret);
3514 
3515 	func->ffs = ffs_data;
3516 	func->conf = c;
3517 	func->gadget = c->cdev->gadget;
3518 
3519 	/*
3520 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3521 	 * configurations are bound in sequence with list_for_each_entry,
3522 	 * in each configuration its functions are bound in sequence
3523 	 * with list_for_each_entry, so we assume no race condition
3524 	 * with regard to ffs_opts->bound access
3525 	 */
3526 	if (!ffs_opts->refcnt) {
3527 		ret = functionfs_bind(func->ffs, c->cdev);
3528 		if (ret)
3529 			return ERR_PTR(ret);
3530 	}
3531 	ffs_opts->refcnt++;
3532 	func->function.strings = func->ffs->stringtabs;
3533 
3534 	return ffs_opts;
3535 }
3536 
3537 static int _ffs_func_bind(struct usb_configuration *c,
3538 			  struct usb_function *f)
3539 {
3540 	struct ffs_function *func = ffs_func_from_usb(f);
3541 	struct ffs_data *ffs = func->ffs;
3542 
3543 	const int full = !!func->ffs->fs_descs_count;
3544 	const int high = !!func->ffs->hs_descs_count;
3545 	const int super = !!func->ffs->ss_descs_count;
3546 
3547 	int fs_len, hs_len, ss_len, ret, i;
3548 	struct ffs_ep *eps_ptr;
3549 
3550 	/* Make it a single chunk, less management later on */
3551 	vla_group(d);
3552 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3553 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3554 		full ? ffs->fs_descs_count + 1 : 0);
3555 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3556 		high ? ffs->hs_descs_count + 1 : 0);
3557 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3558 		super ? ffs->ss_descs_count + 1 : 0);
3559 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3560 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3561 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3562 	vla_item_with_sz(d, char[16], ext_compat,
3563 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3564 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3565 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3566 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3567 			 ffs->ms_os_descs_ext_prop_count);
3568 	vla_item_with_sz(d, char, ext_prop_name,
3569 			 ffs->ms_os_descs_ext_prop_name_len);
3570 	vla_item_with_sz(d, char, ext_prop_data,
3571 			 ffs->ms_os_descs_ext_prop_data_len);
3572 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3573 	char *vlabuf;
3574 
3575 	/* Has descriptors only for speeds gadget does not support */
3576 	if (!(full | high | super))
3577 		return -ENOTSUPP;
3578 
3579 	/* Allocate a single chunk, less management later on */
3580 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3581 	if (!vlabuf)
3582 		return -ENOMEM;
3583 
3584 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3585 	ffs->ms_os_descs_ext_prop_name_avail =
3586 		vla_ptr(vlabuf, d, ext_prop_name);
3587 	ffs->ms_os_descs_ext_prop_data_avail =
3588 		vla_ptr(vlabuf, d, ext_prop_data);
3589 
3590 	/* Copy descriptors  */
3591 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3592 	       ffs->raw_descs_length);
3593 
3594 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3595 	eps_ptr = vla_ptr(vlabuf, d, eps);
3596 	for (i = 0; i < ffs->eps_count; i++)
3597 		eps_ptr[i].num = -1;
3598 
3599 	/* Save pointers
3600 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3601 	*/
3602 	func->eps             = vla_ptr(vlabuf, d, eps);
3603 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3604 
3605 	/*
3606 	 * Go through all the endpoint descriptors and allocate
3607 	 * endpoints first, so that later we can rewrite the endpoint
3608 	 * numbers without worrying that it may be described later on.
3609 	 */
3610 	if (full) {
3611 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3612 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3613 				      vla_ptr(vlabuf, d, raw_descs),
3614 				      d_raw_descs__sz,
3615 				      __ffs_func_bind_do_descs, func);
3616 		if (fs_len < 0) {
3617 			ret = fs_len;
3618 			goto error;
3619 		}
3620 	} else {
3621 		fs_len = 0;
3622 	}
3623 
3624 	if (high) {
3625 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3626 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3627 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3628 				      d_raw_descs__sz - fs_len,
3629 				      __ffs_func_bind_do_descs, func);
3630 		if (hs_len < 0) {
3631 			ret = hs_len;
3632 			goto error;
3633 		}
3634 	} else {
3635 		hs_len = 0;
3636 	}
3637 
3638 	if (super) {
3639 		func->function.ss_descriptors = func->function.ssp_descriptors =
3640 			vla_ptr(vlabuf, d, ss_descs);
3641 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3642 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3643 				d_raw_descs__sz - fs_len - hs_len,
3644 				__ffs_func_bind_do_descs, func);
3645 		if (ss_len < 0) {
3646 			ret = ss_len;
3647 			goto error;
3648 		}
3649 	} else {
3650 		ss_len = 0;
3651 	}
3652 
3653 	/*
3654 	 * Now handle interface numbers allocation and interface and
3655 	 * endpoint numbers rewriting.  We can do that in one go
3656 	 * now.
3657 	 */
3658 	ret = ffs_do_descs(ffs->fs_descs_count +
3659 			   (high ? ffs->hs_descs_count : 0) +
3660 			   (super ? ffs->ss_descs_count : 0),
3661 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3662 			   __ffs_func_bind_do_nums, func);
3663 	if (ret < 0)
3664 		goto error;
3665 
3666 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3667 	if (c->cdev->use_os_string) {
3668 		for (i = 0; i < ffs->interfaces_count; ++i) {
3669 			struct usb_os_desc *desc;
3670 
3671 			desc = func->function.os_desc_table[i].os_desc =
3672 				vla_ptr(vlabuf, d, os_desc) +
3673 				i * sizeof(struct usb_os_desc);
3674 			desc->ext_compat_id =
3675 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3676 			INIT_LIST_HEAD(&desc->ext_prop);
3677 		}
3678 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3679 				      vla_ptr(vlabuf, d, raw_descs) +
3680 				      fs_len + hs_len + ss_len,
3681 				      d_raw_descs__sz - fs_len - hs_len -
3682 				      ss_len,
3683 				      __ffs_func_bind_do_os_desc, func);
3684 		if (ret < 0)
3685 			goto error;
3686 	}
3687 	func->function.os_desc_n =
3688 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3689 
3690 	/* And we're done */
3691 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3692 	return 0;
3693 
3694 error:
3695 	/* XXX Do we need to release all claimed endpoints here? */
3696 	return ret;
3697 }
3698 
3699 static int ffs_func_bind(struct usb_configuration *c,
3700 			 struct usb_function *f)
3701 {
3702 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3703 	struct ffs_function *func = ffs_func_from_usb(f);
3704 	int ret;
3705 
3706 	if (IS_ERR(ffs_opts))
3707 		return PTR_ERR(ffs_opts);
3708 
3709 	ret = _ffs_func_bind(c, f);
3710 	if (ret && !--ffs_opts->refcnt)
3711 		functionfs_unbind(func->ffs);
3712 
3713 	return ret;
3714 }
3715 
3716 
3717 /* Other USB function hooks *************************************************/
3718 
3719 static void ffs_reset_work(struct work_struct *work)
3720 {
3721 	struct ffs_data *ffs = container_of(work,
3722 		struct ffs_data, reset_work);
3723 	ffs_data_reset(ffs);
3724 }
3725 
3726 static int ffs_func_get_alt(struct usb_function *f,
3727 			    unsigned int interface)
3728 {
3729 	struct ffs_function *func = ffs_func_from_usb(f);
3730 	int intf = ffs_func_revmap_intf(func, interface);
3731 
3732 	return (intf < 0) ? intf : func->cur_alt[interface];
3733 }
3734 
3735 static int ffs_func_set_alt(struct usb_function *f,
3736 			    unsigned interface, unsigned alt)
3737 {
3738 	struct ffs_function *func = ffs_func_from_usb(f);
3739 	struct ffs_data *ffs = func->ffs;
3740 	int ret = 0, intf;
3741 
3742 	if (alt > MAX_ALT_SETTINGS)
3743 		return -EINVAL;
3744 
3745 	intf = ffs_func_revmap_intf(func, interface);
3746 	if (intf < 0)
3747 		return intf;
3748 
3749 	if (ffs->func)
3750 		ffs_func_eps_disable(ffs->func);
3751 
3752 	if (ffs->state == FFS_DEACTIVATED) {
3753 		ffs->state = FFS_CLOSING;
3754 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3755 		schedule_work(&ffs->reset_work);
3756 		return -ENODEV;
3757 	}
3758 
3759 	if (ffs->state != FFS_ACTIVE)
3760 		return -ENODEV;
3761 
3762 	ffs->func = func;
3763 	ret = ffs_func_eps_enable(func);
3764 	if (ret >= 0) {
3765 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3766 		func->cur_alt[interface] = alt;
3767 	}
3768 	return ret;
3769 }
3770 
3771 static void ffs_func_disable(struct usb_function *f)
3772 {
3773 	struct ffs_function *func = ffs_func_from_usb(f);
3774 	struct ffs_data *ffs = func->ffs;
3775 
3776 	if (ffs->func)
3777 		ffs_func_eps_disable(ffs->func);
3778 
3779 	if (ffs->state == FFS_DEACTIVATED) {
3780 		ffs->state = FFS_CLOSING;
3781 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3782 		schedule_work(&ffs->reset_work);
3783 		return;
3784 	}
3785 
3786 	if (ffs->state == FFS_ACTIVE) {
3787 		ffs->func = NULL;
3788 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3789 	}
3790 }
3791 
3792 static int ffs_func_setup(struct usb_function *f,
3793 			  const struct usb_ctrlrequest *creq)
3794 {
3795 	struct ffs_function *func = ffs_func_from_usb(f);
3796 	struct ffs_data *ffs = func->ffs;
3797 	unsigned long flags;
3798 	int ret;
3799 
3800 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3801 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3802 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3803 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3804 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3805 
3806 	/*
3807 	 * Most requests directed to interface go through here
3808 	 * (notable exceptions are set/get interface) so we need to
3809 	 * handle them.  All other either handled by composite or
3810 	 * passed to usb_configuration->setup() (if one is set).  No
3811 	 * matter, we will handle requests directed to endpoint here
3812 	 * as well (as it's straightforward).  Other request recipient
3813 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3814 	 * is being used.
3815 	 */
3816 	if (ffs->state != FFS_ACTIVE)
3817 		return -ENODEV;
3818 
3819 	switch (creq->bRequestType & USB_RECIP_MASK) {
3820 	case USB_RECIP_INTERFACE:
3821 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3822 		if (ret < 0)
3823 			return ret;
3824 		break;
3825 
3826 	case USB_RECIP_ENDPOINT:
3827 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3828 		if (ret < 0)
3829 			return ret;
3830 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3831 			ret = func->ffs->eps_addrmap[ret];
3832 		break;
3833 
3834 	default:
3835 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3836 			ret = le16_to_cpu(creq->wIndex);
3837 		else
3838 			return -EOPNOTSUPP;
3839 	}
3840 
3841 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3842 	ffs->ev.setup = *creq;
3843 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3844 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3845 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3846 
3847 	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3848 }
3849 
3850 static bool ffs_func_req_match(struct usb_function *f,
3851 			       const struct usb_ctrlrequest *creq,
3852 			       bool config0)
3853 {
3854 	struct ffs_function *func = ffs_func_from_usb(f);
3855 
3856 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3857 		return false;
3858 
3859 	switch (creq->bRequestType & USB_RECIP_MASK) {
3860 	case USB_RECIP_INTERFACE:
3861 		return (ffs_func_revmap_intf(func,
3862 					     le16_to_cpu(creq->wIndex)) >= 0);
3863 	case USB_RECIP_ENDPOINT:
3864 		return (ffs_func_revmap_ep(func,
3865 					   le16_to_cpu(creq->wIndex)) >= 0);
3866 	default:
3867 		return (bool) (func->ffs->user_flags &
3868 			       FUNCTIONFS_ALL_CTRL_RECIP);
3869 	}
3870 }
3871 
3872 static void ffs_func_suspend(struct usb_function *f)
3873 {
3874 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3875 }
3876 
3877 static void ffs_func_resume(struct usb_function *f)
3878 {
3879 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3880 }
3881 
3882 
3883 /* Endpoint and interface numbers reverse mapping ***************************/
3884 
3885 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3886 {
3887 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3888 	return num ? num : -EDOM;
3889 }
3890 
3891 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3892 {
3893 	short *nums = func->interfaces_nums;
3894 	unsigned count = func->ffs->interfaces_count;
3895 
3896 	for (; count; --count, ++nums) {
3897 		if (*nums >= 0 && *nums == intf)
3898 			return nums - func->interfaces_nums;
3899 	}
3900 
3901 	return -EDOM;
3902 }
3903 
3904 
3905 /* Devices management *******************************************************/
3906 
3907 static LIST_HEAD(ffs_devices);
3908 
3909 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3910 {
3911 	struct ffs_dev *dev;
3912 
3913 	if (!name)
3914 		return NULL;
3915 
3916 	list_for_each_entry(dev, &ffs_devices, entry) {
3917 		if (strcmp(dev->name, name) == 0)
3918 			return dev;
3919 	}
3920 
3921 	return NULL;
3922 }
3923 
3924 /*
3925  * ffs_lock must be taken by the caller of this function
3926  */
3927 static struct ffs_dev *_ffs_get_single_dev(void)
3928 {
3929 	struct ffs_dev *dev;
3930 
3931 	if (list_is_singular(&ffs_devices)) {
3932 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3933 		if (dev->single)
3934 			return dev;
3935 	}
3936 
3937 	return NULL;
3938 }
3939 
3940 /*
3941  * ffs_lock must be taken by the caller of this function
3942  */
3943 static struct ffs_dev *_ffs_find_dev(const char *name)
3944 {
3945 	struct ffs_dev *dev;
3946 
3947 	dev = _ffs_get_single_dev();
3948 	if (dev)
3949 		return dev;
3950 
3951 	return _ffs_do_find_dev(name);
3952 }
3953 
3954 /* Configfs support *********************************************************/
3955 
3956 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3957 {
3958 	return container_of(to_config_group(item), struct f_fs_opts,
3959 			    func_inst.group);
3960 }
3961 
3962 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3963 {
3964 	struct f_fs_opts *opts = to_ffs_opts(item);
3965 	int ready;
3966 
3967 	ffs_dev_lock();
3968 	ready = opts->dev->desc_ready;
3969 	ffs_dev_unlock();
3970 
3971 	return sprintf(page, "%d\n", ready);
3972 }
3973 
3974 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3975 
3976 static struct configfs_attribute *ffs_attrs[] = {
3977 	&f_fs_opts_attr_ready,
3978 	NULL,
3979 };
3980 
3981 static void ffs_attr_release(struct config_item *item)
3982 {
3983 	struct f_fs_opts *opts = to_ffs_opts(item);
3984 
3985 	usb_put_function_instance(&opts->func_inst);
3986 }
3987 
3988 static struct configfs_item_operations ffs_item_ops = {
3989 	.release	= ffs_attr_release,
3990 };
3991 
3992 static const struct config_item_type ffs_func_type = {
3993 	.ct_item_ops	= &ffs_item_ops,
3994 	.ct_attrs	= ffs_attrs,
3995 	.ct_owner	= THIS_MODULE,
3996 };
3997 
3998 
3999 /* Function registration interface ******************************************/
4000 
4001 static void ffs_free_inst(struct usb_function_instance *f)
4002 {
4003 	struct f_fs_opts *opts;
4004 
4005 	opts = to_f_fs_opts(f);
4006 	ffs_release_dev(opts->dev);
4007 	ffs_dev_lock();
4008 	_ffs_free_dev(opts->dev);
4009 	ffs_dev_unlock();
4010 	kfree(opts);
4011 }
4012 
4013 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4014 {
4015 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4016 		return -ENAMETOOLONG;
4017 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4018 }
4019 
4020 static struct usb_function_instance *ffs_alloc_inst(void)
4021 {
4022 	struct f_fs_opts *opts;
4023 	struct ffs_dev *dev;
4024 
4025 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4026 	if (!opts)
4027 		return ERR_PTR(-ENOMEM);
4028 
4029 	opts->func_inst.set_inst_name = ffs_set_inst_name;
4030 	opts->func_inst.free_func_inst = ffs_free_inst;
4031 	ffs_dev_lock();
4032 	dev = _ffs_alloc_dev();
4033 	ffs_dev_unlock();
4034 	if (IS_ERR(dev)) {
4035 		kfree(opts);
4036 		return ERR_CAST(dev);
4037 	}
4038 	opts->dev = dev;
4039 	dev->opts = opts;
4040 
4041 	config_group_init_type_name(&opts->func_inst.group, "",
4042 				    &ffs_func_type);
4043 	return &opts->func_inst;
4044 }
4045 
4046 static void ffs_free(struct usb_function *f)
4047 {
4048 	kfree(ffs_func_from_usb(f));
4049 }
4050 
4051 static void ffs_func_unbind(struct usb_configuration *c,
4052 			    struct usb_function *f)
4053 {
4054 	struct ffs_function *func = ffs_func_from_usb(f);
4055 	struct ffs_data *ffs = func->ffs;
4056 	struct f_fs_opts *opts =
4057 		container_of(f->fi, struct f_fs_opts, func_inst);
4058 	struct ffs_ep *ep = func->eps;
4059 	unsigned count = ffs->eps_count;
4060 	unsigned long flags;
4061 
4062 	if (ffs->func == func) {
4063 		ffs_func_eps_disable(func);
4064 		ffs->func = NULL;
4065 	}
4066 
4067 	/* Drain any pending AIO completions */
4068 	drain_workqueue(ffs->io_completion_wq);
4069 
4070 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4071 	if (!--opts->refcnt)
4072 		functionfs_unbind(ffs);
4073 
4074 	/* cleanup after autoconfig */
4075 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4076 	while (count--) {
4077 		if (ep->ep && ep->req)
4078 			usb_ep_free_request(ep->ep, ep->req);
4079 		ep->req = NULL;
4080 		++ep;
4081 	}
4082 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4083 	kfree(func->eps);
4084 	func->eps = NULL;
4085 	/*
4086 	 * eps, descriptors and interfaces_nums are allocated in the
4087 	 * same chunk so only one free is required.
4088 	 */
4089 	func->function.fs_descriptors = NULL;
4090 	func->function.hs_descriptors = NULL;
4091 	func->function.ss_descriptors = NULL;
4092 	func->function.ssp_descriptors = NULL;
4093 	func->interfaces_nums = NULL;
4094 
4095 }
4096 
4097 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4098 {
4099 	struct ffs_function *func;
4100 
4101 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4102 	if (!func)
4103 		return ERR_PTR(-ENOMEM);
4104 
4105 	func->function.name    = "Function FS Gadget";
4106 
4107 	func->function.bind    = ffs_func_bind;
4108 	func->function.unbind  = ffs_func_unbind;
4109 	func->function.set_alt = ffs_func_set_alt;
4110 	func->function.get_alt = ffs_func_get_alt;
4111 	func->function.disable = ffs_func_disable;
4112 	func->function.setup   = ffs_func_setup;
4113 	func->function.req_match = ffs_func_req_match;
4114 	func->function.suspend = ffs_func_suspend;
4115 	func->function.resume  = ffs_func_resume;
4116 	func->function.free_func = ffs_free;
4117 
4118 	return &func->function;
4119 }
4120 
4121 /*
4122  * ffs_lock must be taken by the caller of this function
4123  */
4124 static struct ffs_dev *_ffs_alloc_dev(void)
4125 {
4126 	struct ffs_dev *dev;
4127 	int ret;
4128 
4129 	if (_ffs_get_single_dev())
4130 			return ERR_PTR(-EBUSY);
4131 
4132 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4133 	if (!dev)
4134 		return ERR_PTR(-ENOMEM);
4135 
4136 	if (list_empty(&ffs_devices)) {
4137 		ret = functionfs_init();
4138 		if (ret) {
4139 			kfree(dev);
4140 			return ERR_PTR(ret);
4141 		}
4142 	}
4143 
4144 	list_add(&dev->entry, &ffs_devices);
4145 
4146 	return dev;
4147 }
4148 
4149 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4150 {
4151 	struct ffs_dev *existing;
4152 	int ret = 0;
4153 
4154 	ffs_dev_lock();
4155 
4156 	existing = _ffs_do_find_dev(name);
4157 	if (!existing)
4158 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4159 	else if (existing != dev)
4160 		ret = -EBUSY;
4161 
4162 	ffs_dev_unlock();
4163 
4164 	return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(ffs_name_dev);
4167 
4168 int ffs_single_dev(struct ffs_dev *dev)
4169 {
4170 	int ret;
4171 
4172 	ret = 0;
4173 	ffs_dev_lock();
4174 
4175 	if (!list_is_singular(&ffs_devices))
4176 		ret = -EBUSY;
4177 	else
4178 		dev->single = true;
4179 
4180 	ffs_dev_unlock();
4181 	return ret;
4182 }
4183 EXPORT_SYMBOL_GPL(ffs_single_dev);
4184 
4185 /*
4186  * ffs_lock must be taken by the caller of this function
4187  */
4188 static void _ffs_free_dev(struct ffs_dev *dev)
4189 {
4190 	list_del(&dev->entry);
4191 
4192 	kfree(dev);
4193 	if (list_empty(&ffs_devices))
4194 		functionfs_cleanup();
4195 }
4196 
4197 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4198 {
4199 	int ret = 0;
4200 	struct ffs_dev *ffs_dev;
4201 
4202 	ffs_dev_lock();
4203 
4204 	ffs_dev = _ffs_find_dev(dev_name);
4205 	if (!ffs_dev) {
4206 		ret = -ENOENT;
4207 	} else if (ffs_dev->mounted) {
4208 		ret = -EBUSY;
4209 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4210 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4211 		ret = -ENOENT;
4212 	} else {
4213 		ffs_dev->mounted = true;
4214 		ffs_dev->ffs_data = ffs_data;
4215 		ffs_data->private_data = ffs_dev;
4216 	}
4217 
4218 	ffs_dev_unlock();
4219 	return ret;
4220 }
4221 
4222 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4223 {
4224 	ffs_dev_lock();
4225 
4226 	if (ffs_dev && ffs_dev->mounted) {
4227 		ffs_dev->mounted = false;
4228 		if (ffs_dev->ffs_data) {
4229 			ffs_dev->ffs_data->private_data = NULL;
4230 			ffs_dev->ffs_data = NULL;
4231 		}
4232 
4233 		if (ffs_dev->ffs_release_dev_callback)
4234 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4235 	}
4236 
4237 	ffs_dev_unlock();
4238 }
4239 
4240 static int ffs_ready(struct ffs_data *ffs)
4241 {
4242 	struct ffs_dev *ffs_obj;
4243 	int ret = 0;
4244 
4245 	ffs_dev_lock();
4246 
4247 	ffs_obj = ffs->private_data;
4248 	if (!ffs_obj) {
4249 		ret = -EINVAL;
4250 		goto done;
4251 	}
4252 	if (WARN_ON(ffs_obj->desc_ready)) {
4253 		ret = -EBUSY;
4254 		goto done;
4255 	}
4256 
4257 	ffs_obj->desc_ready = true;
4258 
4259 	if (ffs_obj->ffs_ready_callback) {
4260 		ret = ffs_obj->ffs_ready_callback(ffs);
4261 		if (ret)
4262 			goto done;
4263 	}
4264 
4265 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4266 done:
4267 	ffs_dev_unlock();
4268 	return ret;
4269 }
4270 
4271 static void ffs_closed(struct ffs_data *ffs)
4272 {
4273 	struct ffs_dev *ffs_obj;
4274 	struct f_fs_opts *opts;
4275 	struct config_item *ci;
4276 
4277 	ffs_dev_lock();
4278 
4279 	ffs_obj = ffs->private_data;
4280 	if (!ffs_obj)
4281 		goto done;
4282 
4283 	ffs_obj->desc_ready = false;
4284 
4285 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4286 	    ffs_obj->ffs_closed_callback)
4287 		ffs_obj->ffs_closed_callback(ffs);
4288 
4289 	if (ffs_obj->opts)
4290 		opts = ffs_obj->opts;
4291 	else
4292 		goto done;
4293 
4294 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4295 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4296 		goto done;
4297 
4298 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4299 	ffs_dev_unlock();
4300 
4301 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4302 		unregister_gadget_item(ci);
4303 	return;
4304 done:
4305 	ffs_dev_unlock();
4306 }
4307 
4308 /* Misc helper functions ****************************************************/
4309 
4310 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4311 {
4312 	return nonblock
4313 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4314 		: mutex_lock_interruptible(mutex);
4315 }
4316 
4317 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4318 {
4319 	char *data;
4320 
4321 	if (!len)
4322 		return NULL;
4323 
4324 	data = memdup_user(buf, len);
4325 	if (IS_ERR(data))
4326 		return data;
4327 
4328 	pr_vdebug("Buffer from user space:\n");
4329 	ffs_dump_mem("", data, len);
4330 
4331 	return data;
4332 }
4333 
4334 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4335 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4336 MODULE_LICENSE("GPL");
4337 MODULE_AUTHOR("Michal Nazarewicz");
4338