xref: /linux/drivers/usb/gadget/function/f_fs.c (revision 9c2f5b6eb8b7da05e13cde60c32e0a8b1f5873b0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <asm/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 
37 #include <linux/aio.h>
38 #include <linux/kthread.h>
39 #include <linux/poll.h>
40 #include <linux/eventfd.h>
41 
42 #include "u_fs.h"
43 #include "u_f.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 
49 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
50 
51 MODULE_IMPORT_NS(DMA_BUF);
52 
53 /* Reference counter handling */
54 static void ffs_data_get(struct ffs_data *ffs);
55 static void ffs_data_put(struct ffs_data *ffs);
56 /* Creates new ffs_data object. */
57 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
58 	__attribute__((malloc));
59 
60 /* Opened counter handling. */
61 static void ffs_data_opened(struct ffs_data *ffs);
62 static void ffs_data_closed(struct ffs_data *ffs);
63 
64 /* Called with ffs->mutex held; take over ownership of data. */
65 static int __must_check
66 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
67 static int __must_check
68 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
69 
70 
71 /* The function structure ***************************************************/
72 
73 struct ffs_ep;
74 
75 struct ffs_function {
76 	struct usb_configuration	*conf;
77 	struct usb_gadget		*gadget;
78 	struct ffs_data			*ffs;
79 
80 	struct ffs_ep			*eps;
81 	u8				eps_revmap[16];
82 	short				*interfaces_nums;
83 
84 	struct usb_function		function;
85 };
86 
87 
88 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
89 {
90 	return container_of(f, struct ffs_function, function);
91 }
92 
93 
94 static inline enum ffs_setup_state
95 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
96 {
97 	return (enum ffs_setup_state)
98 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
99 }
100 
101 
102 static void ffs_func_eps_disable(struct ffs_function *func);
103 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
104 
105 static int ffs_func_bind(struct usb_configuration *,
106 			 struct usb_function *);
107 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
108 static void ffs_func_disable(struct usb_function *);
109 static int ffs_func_setup(struct usb_function *,
110 			  const struct usb_ctrlrequest *);
111 static bool ffs_func_req_match(struct usb_function *,
112 			       const struct usb_ctrlrequest *,
113 			       bool config0);
114 static void ffs_func_suspend(struct usb_function *);
115 static void ffs_func_resume(struct usb_function *);
116 
117 
118 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
119 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
120 
121 
122 /* The endpoints structures *************************************************/
123 
124 struct ffs_ep {
125 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
126 	struct usb_request		*req;	/* P: epfile->mutex */
127 
128 	/* [0]: full speed, [1]: high speed, [2]: super speed */
129 	struct usb_endpoint_descriptor	*descs[3];
130 
131 	u8				num;
132 };
133 
134 struct ffs_dmabuf_priv {
135 	struct list_head entry;
136 	struct kref ref;
137 	struct ffs_data *ffs;
138 	struct dma_buf_attachment *attach;
139 	struct sg_table *sgt;
140 	enum dma_data_direction dir;
141 	spinlock_t lock;
142 	u64 context;
143 	struct usb_request *req;	/* P: ffs->eps_lock */
144 	struct usb_ep *ep;		/* P: ffs->eps_lock */
145 };
146 
147 struct ffs_dma_fence {
148 	struct dma_fence base;
149 	struct ffs_dmabuf_priv *priv;
150 	struct work_struct work;
151 };
152 
153 struct ffs_epfile {
154 	/* Protects ep->ep and ep->req. */
155 	struct mutex			mutex;
156 
157 	struct ffs_data			*ffs;
158 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
159 
160 	struct dentry			*dentry;
161 
162 	/*
163 	 * Buffer for holding data from partial reads which may happen since
164 	 * we’re rounding user read requests to a multiple of a max packet size.
165 	 *
166 	 * The pointer is initialised with NULL value and may be set by
167 	 * __ffs_epfile_read_data function to point to a temporary buffer.
168 	 *
169 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
170 	 * data from said buffer and eventually free it.  Importantly, while the
171 	 * function is using the buffer, it sets the pointer to NULL.  This is
172 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
173 	 * can never run concurrently (they are synchronised by epfile->mutex)
174 	 * so the latter will not assign a new value to the pointer.
175 	 *
176 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
177 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
178 	 * value is crux of the synchronisation between ffs_func_eps_disable and
179 	 * __ffs_epfile_read_data.
180 	 *
181 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
182 	 * pointer back to its old value (as described above), but seeing as the
183 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
184 	 * the buffer.
185 	 *
186 	 * == State transitions ==
187 	 *
188 	 * • ptr == NULL:  (initial state)
189 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
190 	 *   ◦ __ffs_epfile_read_buffered:    nop
191 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
192 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
193 	 * • ptr == DROP:
194 	 *   ◦ __ffs_epfile_read_buffer_free: nop
195 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
196 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
197 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
198 	 * • ptr == buf:
199 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
200 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
201 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
202 	 *                                    is always called first
203 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
204 	 * • ptr == NULL and reading:
205 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
206 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
207 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
208 	 *   ◦ reading finishes and …
209 	 *     … all data read:               free buf, go to ptr == NULL
210 	 *     … otherwise:                   go to ptr == buf and reading
211 	 * • ptr == DROP and reading:
212 	 *   ◦ __ffs_epfile_read_buffer_free: nop
213 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
214 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
215 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
216 	 */
217 	struct ffs_buffer		*read_buffer;
218 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
219 
220 	char				name[5];
221 
222 	unsigned char			in;	/* P: ffs->eps_lock */
223 	unsigned char			isoc;	/* P: ffs->eps_lock */
224 
225 	unsigned char			_pad;
226 
227 	/* Protects dmabufs */
228 	struct mutex			dmabufs_mutex;
229 	struct list_head		dmabufs; /* P: dmabufs_mutex */
230 	atomic_t			seqno;
231 };
232 
233 struct ffs_buffer {
234 	size_t length;
235 	char *data;
236 	char storage[] __counted_by(length);
237 };
238 
239 /*  ffs_io_data structure ***************************************************/
240 
241 struct ffs_io_data {
242 	bool aio;
243 	bool read;
244 
245 	struct kiocb *kiocb;
246 	struct iov_iter data;
247 	const void *to_free;
248 	char *buf;
249 
250 	struct mm_struct *mm;
251 	struct work_struct work;
252 
253 	struct usb_ep *ep;
254 	struct usb_request *req;
255 	struct sg_table sgt;
256 	bool use_sg;
257 
258 	struct ffs_data *ffs;
259 
260 	int status;
261 	struct completion done;
262 };
263 
264 struct ffs_desc_helper {
265 	struct ffs_data *ffs;
266 	unsigned interfaces_count;
267 	unsigned eps_count;
268 };
269 
270 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
271 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
272 
273 static struct dentry *
274 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
275 		   const struct file_operations *fops);
276 
277 /* Devices management *******************************************************/
278 
279 DEFINE_MUTEX(ffs_lock);
280 EXPORT_SYMBOL_GPL(ffs_lock);
281 
282 static struct ffs_dev *_ffs_find_dev(const char *name);
283 static struct ffs_dev *_ffs_alloc_dev(void);
284 static void _ffs_free_dev(struct ffs_dev *dev);
285 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
286 static void ffs_release_dev(struct ffs_dev *ffs_dev);
287 static int ffs_ready(struct ffs_data *ffs);
288 static void ffs_closed(struct ffs_data *ffs);
289 
290 /* Misc helper functions ****************************************************/
291 
292 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
293 	__attribute__((warn_unused_result, nonnull));
294 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
295 	__attribute__((warn_unused_result, nonnull));
296 
297 
298 /* Control file aka ep0 *****************************************************/
299 
300 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
301 {
302 	struct ffs_data *ffs = req->context;
303 
304 	complete(&ffs->ep0req_completion);
305 }
306 
307 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
308 	__releases(&ffs->ev.waitq.lock)
309 {
310 	struct usb_request *req = ffs->ep0req;
311 	int ret;
312 
313 	if (!req) {
314 		spin_unlock_irq(&ffs->ev.waitq.lock);
315 		return -EINVAL;
316 	}
317 
318 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
319 
320 	spin_unlock_irq(&ffs->ev.waitq.lock);
321 
322 	req->buf      = data;
323 	req->length   = len;
324 
325 	/*
326 	 * UDC layer requires to provide a buffer even for ZLP, but should
327 	 * not use it at all. Let's provide some poisoned pointer to catch
328 	 * possible bug in the driver.
329 	 */
330 	if (req->buf == NULL)
331 		req->buf = (void *)0xDEADBABE;
332 
333 	reinit_completion(&ffs->ep0req_completion);
334 
335 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
336 	if (ret < 0)
337 		return ret;
338 
339 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
340 	if (ret) {
341 		usb_ep_dequeue(ffs->gadget->ep0, req);
342 		return -EINTR;
343 	}
344 
345 	ffs->setup_state = FFS_NO_SETUP;
346 	return req->status ? req->status : req->actual;
347 }
348 
349 static int __ffs_ep0_stall(struct ffs_data *ffs)
350 {
351 	if (ffs->ev.can_stall) {
352 		pr_vdebug("ep0 stall\n");
353 		usb_ep_set_halt(ffs->gadget->ep0);
354 		ffs->setup_state = FFS_NO_SETUP;
355 		return -EL2HLT;
356 	} else {
357 		pr_debug("bogus ep0 stall!\n");
358 		return -ESRCH;
359 	}
360 }
361 
362 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
363 			     size_t len, loff_t *ptr)
364 {
365 	struct ffs_data *ffs = file->private_data;
366 	ssize_t ret;
367 	char *data;
368 
369 	/* Fast check if setup was canceled */
370 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
371 		return -EIDRM;
372 
373 	/* Acquire mutex */
374 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
375 	if (ret < 0)
376 		return ret;
377 
378 	/* Check state */
379 	switch (ffs->state) {
380 	case FFS_READ_DESCRIPTORS:
381 	case FFS_READ_STRINGS:
382 		/* Copy data */
383 		if (len < 16) {
384 			ret = -EINVAL;
385 			break;
386 		}
387 
388 		data = ffs_prepare_buffer(buf, len);
389 		if (IS_ERR(data)) {
390 			ret = PTR_ERR(data);
391 			break;
392 		}
393 
394 		/* Handle data */
395 		if (ffs->state == FFS_READ_DESCRIPTORS) {
396 			pr_info("read descriptors\n");
397 			ret = __ffs_data_got_descs(ffs, data, len);
398 			if (ret < 0)
399 				break;
400 
401 			ffs->state = FFS_READ_STRINGS;
402 			ret = len;
403 		} else {
404 			pr_info("read strings\n");
405 			ret = __ffs_data_got_strings(ffs, data, len);
406 			if (ret < 0)
407 				break;
408 
409 			ret = ffs_epfiles_create(ffs);
410 			if (ret) {
411 				ffs->state = FFS_CLOSING;
412 				break;
413 			}
414 
415 			ffs->state = FFS_ACTIVE;
416 			mutex_unlock(&ffs->mutex);
417 
418 			ret = ffs_ready(ffs);
419 			if (ret < 0) {
420 				ffs->state = FFS_CLOSING;
421 				return ret;
422 			}
423 
424 			return len;
425 		}
426 		break;
427 
428 	case FFS_ACTIVE:
429 		data = NULL;
430 		/*
431 		 * We're called from user space, we can use _irq
432 		 * rather then _irqsave
433 		 */
434 		spin_lock_irq(&ffs->ev.waitq.lock);
435 		switch (ffs_setup_state_clear_cancelled(ffs)) {
436 		case FFS_SETUP_CANCELLED:
437 			ret = -EIDRM;
438 			goto done_spin;
439 
440 		case FFS_NO_SETUP:
441 			ret = -ESRCH;
442 			goto done_spin;
443 
444 		case FFS_SETUP_PENDING:
445 			break;
446 		}
447 
448 		/* FFS_SETUP_PENDING */
449 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
450 			spin_unlock_irq(&ffs->ev.waitq.lock);
451 			ret = __ffs_ep0_stall(ffs);
452 			break;
453 		}
454 
455 		/* FFS_SETUP_PENDING and not stall */
456 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
457 
458 		spin_unlock_irq(&ffs->ev.waitq.lock);
459 
460 		data = ffs_prepare_buffer(buf, len);
461 		if (IS_ERR(data)) {
462 			ret = PTR_ERR(data);
463 			break;
464 		}
465 
466 		spin_lock_irq(&ffs->ev.waitq.lock);
467 
468 		/*
469 		 * We are guaranteed to be still in FFS_ACTIVE state
470 		 * but the state of setup could have changed from
471 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
472 		 * to check for that.  If that happened we copied data
473 		 * from user space in vain but it's unlikely.
474 		 *
475 		 * For sure we are not in FFS_NO_SETUP since this is
476 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
477 		 * transition can be performed and it's protected by
478 		 * mutex.
479 		 */
480 		if (ffs_setup_state_clear_cancelled(ffs) ==
481 		    FFS_SETUP_CANCELLED) {
482 			ret = -EIDRM;
483 done_spin:
484 			spin_unlock_irq(&ffs->ev.waitq.lock);
485 		} else {
486 			/* unlocks spinlock */
487 			ret = __ffs_ep0_queue_wait(ffs, data, len);
488 		}
489 		kfree(data);
490 		break;
491 
492 	default:
493 		ret = -EBADFD;
494 		break;
495 	}
496 
497 	mutex_unlock(&ffs->mutex);
498 	return ret;
499 }
500 
501 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
502 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
503 				     size_t n)
504 	__releases(&ffs->ev.waitq.lock)
505 {
506 	/*
507 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
508 	 * size of ffs->ev.types array (which is four) so that's how much space
509 	 * we reserve.
510 	 */
511 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
512 	const size_t size = n * sizeof *events;
513 	unsigned i = 0;
514 
515 	memset(events, 0, size);
516 
517 	do {
518 		events[i].type = ffs->ev.types[i];
519 		if (events[i].type == FUNCTIONFS_SETUP) {
520 			events[i].u.setup = ffs->ev.setup;
521 			ffs->setup_state = FFS_SETUP_PENDING;
522 		}
523 	} while (++i < n);
524 
525 	ffs->ev.count -= n;
526 	if (ffs->ev.count)
527 		memmove(ffs->ev.types, ffs->ev.types + n,
528 			ffs->ev.count * sizeof *ffs->ev.types);
529 
530 	spin_unlock_irq(&ffs->ev.waitq.lock);
531 	mutex_unlock(&ffs->mutex);
532 
533 	return copy_to_user(buf, events, size) ? -EFAULT : size;
534 }
535 
536 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
537 			    size_t len, loff_t *ptr)
538 {
539 	struct ffs_data *ffs = file->private_data;
540 	char *data = NULL;
541 	size_t n;
542 	int ret;
543 
544 	/* Fast check if setup was canceled */
545 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
546 		return -EIDRM;
547 
548 	/* Acquire mutex */
549 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
550 	if (ret < 0)
551 		return ret;
552 
553 	/* Check state */
554 	if (ffs->state != FFS_ACTIVE) {
555 		ret = -EBADFD;
556 		goto done_mutex;
557 	}
558 
559 	/*
560 	 * We're called from user space, we can use _irq rather then
561 	 * _irqsave
562 	 */
563 	spin_lock_irq(&ffs->ev.waitq.lock);
564 
565 	switch (ffs_setup_state_clear_cancelled(ffs)) {
566 	case FFS_SETUP_CANCELLED:
567 		ret = -EIDRM;
568 		break;
569 
570 	case FFS_NO_SETUP:
571 		n = len / sizeof(struct usb_functionfs_event);
572 		if (!n) {
573 			ret = -EINVAL;
574 			break;
575 		}
576 
577 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
578 			ret = -EAGAIN;
579 			break;
580 		}
581 
582 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
583 							ffs->ev.count)) {
584 			ret = -EINTR;
585 			break;
586 		}
587 
588 		/* unlocks spinlock */
589 		return __ffs_ep0_read_events(ffs, buf,
590 					     min(n, (size_t)ffs->ev.count));
591 
592 	case FFS_SETUP_PENDING:
593 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
594 			spin_unlock_irq(&ffs->ev.waitq.lock);
595 			ret = __ffs_ep0_stall(ffs);
596 			goto done_mutex;
597 		}
598 
599 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
600 
601 		spin_unlock_irq(&ffs->ev.waitq.lock);
602 
603 		if (len) {
604 			data = kmalloc(len, GFP_KERNEL);
605 			if (!data) {
606 				ret = -ENOMEM;
607 				goto done_mutex;
608 			}
609 		}
610 
611 		spin_lock_irq(&ffs->ev.waitq.lock);
612 
613 		/* See ffs_ep0_write() */
614 		if (ffs_setup_state_clear_cancelled(ffs) ==
615 		    FFS_SETUP_CANCELLED) {
616 			ret = -EIDRM;
617 			break;
618 		}
619 
620 		/* unlocks spinlock */
621 		ret = __ffs_ep0_queue_wait(ffs, data, len);
622 		if ((ret > 0) && (copy_to_user(buf, data, len)))
623 			ret = -EFAULT;
624 		goto done_mutex;
625 
626 	default:
627 		ret = -EBADFD;
628 		break;
629 	}
630 
631 	spin_unlock_irq(&ffs->ev.waitq.lock);
632 done_mutex:
633 	mutex_unlock(&ffs->mutex);
634 	kfree(data);
635 	return ret;
636 }
637 
638 static int ffs_ep0_open(struct inode *inode, struct file *file)
639 {
640 	struct ffs_data *ffs = inode->i_private;
641 
642 	if (ffs->state == FFS_CLOSING)
643 		return -EBUSY;
644 
645 	file->private_data = ffs;
646 	ffs_data_opened(ffs);
647 
648 	return stream_open(inode, file);
649 }
650 
651 static int ffs_ep0_release(struct inode *inode, struct file *file)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 
655 	ffs_data_closed(ffs);
656 
657 	return 0;
658 }
659 
660 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
661 {
662 	struct ffs_data *ffs = file->private_data;
663 	struct usb_gadget *gadget = ffs->gadget;
664 	long ret;
665 
666 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
667 		struct ffs_function *func = ffs->func;
668 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
669 	} else if (gadget && gadget->ops->ioctl) {
670 		ret = gadget->ops->ioctl(gadget, code, value);
671 	} else {
672 		ret = -ENOTTY;
673 	}
674 
675 	return ret;
676 }
677 
678 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
679 {
680 	struct ffs_data *ffs = file->private_data;
681 	__poll_t mask = EPOLLWRNORM;
682 	int ret;
683 
684 	poll_wait(file, &ffs->ev.waitq, wait);
685 
686 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
687 	if (ret < 0)
688 		return mask;
689 
690 	switch (ffs->state) {
691 	case FFS_READ_DESCRIPTORS:
692 	case FFS_READ_STRINGS:
693 		mask |= EPOLLOUT;
694 		break;
695 
696 	case FFS_ACTIVE:
697 		switch (ffs->setup_state) {
698 		case FFS_NO_SETUP:
699 			if (ffs->ev.count)
700 				mask |= EPOLLIN;
701 			break;
702 
703 		case FFS_SETUP_PENDING:
704 		case FFS_SETUP_CANCELLED:
705 			mask |= (EPOLLIN | EPOLLOUT);
706 			break;
707 		}
708 		break;
709 
710 	case FFS_CLOSING:
711 		break;
712 	case FFS_DEACTIVATED:
713 		break;
714 	}
715 
716 	mutex_unlock(&ffs->mutex);
717 
718 	return mask;
719 }
720 
721 static const struct file_operations ffs_ep0_operations = {
722 	.llseek =	no_llseek,
723 
724 	.open =		ffs_ep0_open,
725 	.write =	ffs_ep0_write,
726 	.read =		ffs_ep0_read,
727 	.release =	ffs_ep0_release,
728 	.unlocked_ioctl =	ffs_ep0_ioctl,
729 	.poll =		ffs_ep0_poll,
730 };
731 
732 
733 /* "Normal" endpoints operations ********************************************/
734 
735 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
736 {
737 	struct ffs_io_data *io_data = req->context;
738 
739 	if (req->status)
740 		io_data->status = req->status;
741 	else
742 		io_data->status = req->actual;
743 
744 	complete(&io_data->done);
745 }
746 
747 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
748 {
749 	ssize_t ret = copy_to_iter(data, data_len, iter);
750 	if (ret == data_len)
751 		return ret;
752 
753 	if (iov_iter_count(iter))
754 		return -EFAULT;
755 
756 	/*
757 	 * Dear user space developer!
758 	 *
759 	 * TL;DR: To stop getting below error message in your kernel log, change
760 	 * user space code using functionfs to align read buffers to a max
761 	 * packet size.
762 	 *
763 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
764 	 * packet size.  When unaligned buffer is passed to functionfs, it
765 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
766 	 *
767 	 * Unfortunately, this means that host may send more data than was
768 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
769 	 * that excess data so it simply drops it.
770 	 *
771 	 * Was the buffer aligned in the first place, no such problem would
772 	 * happen.
773 	 *
774 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
775 	 * by splitting a request into multiple parts.  This splitting may still
776 	 * be a problem though so it’s likely best to align the buffer
777 	 * regardless of it being AIO or not..
778 	 *
779 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
780 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
781 	 * affected.
782 	 */
783 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
784 	       "Align read buffer size to max packet size to avoid the problem.\n",
785 	       data_len, ret);
786 
787 	return ret;
788 }
789 
790 /*
791  * allocate a virtually contiguous buffer and create a scatterlist describing it
792  * @sg_table	- pointer to a place to be filled with sg_table contents
793  * @size	- required buffer size
794  */
795 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
796 {
797 	struct page **pages;
798 	void *vaddr, *ptr;
799 	unsigned int n_pages;
800 	int i;
801 
802 	vaddr = vmalloc(sz);
803 	if (!vaddr)
804 		return NULL;
805 
806 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
807 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
808 	if (!pages) {
809 		vfree(vaddr);
810 
811 		return NULL;
812 	}
813 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
814 		pages[i] = vmalloc_to_page(ptr);
815 
816 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
817 		kvfree(pages);
818 		vfree(vaddr);
819 
820 		return NULL;
821 	}
822 	kvfree(pages);
823 
824 	return vaddr;
825 }
826 
827 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
828 	size_t data_len)
829 {
830 	if (io_data->use_sg)
831 		return ffs_build_sg_list(&io_data->sgt, data_len);
832 
833 	return kmalloc(data_len, GFP_KERNEL);
834 }
835 
836 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
837 {
838 	if (!io_data->buf)
839 		return;
840 
841 	if (io_data->use_sg) {
842 		sg_free_table(&io_data->sgt);
843 		vfree(io_data->buf);
844 	} else {
845 		kfree(io_data->buf);
846 	}
847 }
848 
849 static void ffs_user_copy_worker(struct work_struct *work)
850 {
851 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
852 						   work);
853 	int ret = io_data->status;
854 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
855 
856 	if (io_data->read && ret > 0) {
857 		kthread_use_mm(io_data->mm);
858 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
859 		kthread_unuse_mm(io_data->mm);
860 	}
861 
862 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
863 
864 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
865 		eventfd_signal(io_data->ffs->ffs_eventfd);
866 
867 	if (io_data->read)
868 		kfree(io_data->to_free);
869 	ffs_free_buffer(io_data);
870 	kfree(io_data);
871 }
872 
873 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
874 					 struct usb_request *req)
875 {
876 	struct ffs_io_data *io_data = req->context;
877 	struct ffs_data *ffs = io_data->ffs;
878 
879 	io_data->status = req->status ? req->status : req->actual;
880 	usb_ep_free_request(_ep, req);
881 
882 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
883 	queue_work(ffs->io_completion_wq, &io_data->work);
884 }
885 
886 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
887 {
888 	/*
889 	 * See comment in struct ffs_epfile for full read_buffer pointer
890 	 * synchronisation story.
891 	 */
892 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
893 	if (buf && buf != READ_BUFFER_DROP)
894 		kfree(buf);
895 }
896 
897 /* Assumes epfile->mutex is held. */
898 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
899 					  struct iov_iter *iter)
900 {
901 	/*
902 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
903 	 * the buffer while we are using it.  See comment in struct ffs_epfile
904 	 * for full read_buffer pointer synchronisation story.
905 	 */
906 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
907 	ssize_t ret;
908 	if (!buf || buf == READ_BUFFER_DROP)
909 		return 0;
910 
911 	ret = copy_to_iter(buf->data, buf->length, iter);
912 	if (buf->length == ret) {
913 		kfree(buf);
914 		return ret;
915 	}
916 
917 	if (iov_iter_count(iter)) {
918 		ret = -EFAULT;
919 	} else {
920 		buf->length -= ret;
921 		buf->data += ret;
922 	}
923 
924 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
925 		kfree(buf);
926 
927 	return ret;
928 }
929 
930 /* Assumes epfile->mutex is held. */
931 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
932 				      void *data, int data_len,
933 				      struct iov_iter *iter)
934 {
935 	struct ffs_buffer *buf;
936 
937 	ssize_t ret = copy_to_iter(data, data_len, iter);
938 	if (data_len == ret)
939 		return ret;
940 
941 	if (iov_iter_count(iter))
942 		return -EFAULT;
943 
944 	/* See ffs_copy_to_iter for more context. */
945 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
946 		data_len, ret);
947 
948 	data_len -= ret;
949 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
950 	if (!buf)
951 		return -ENOMEM;
952 	buf->length = data_len;
953 	buf->data = buf->storage;
954 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
955 
956 	/*
957 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
958 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
959 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
960 	 * story.
961 	 */
962 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
963 		kfree(buf);
964 
965 	return ret;
966 }
967 
968 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
969 {
970 	struct ffs_epfile *epfile = file->private_data;
971 	struct ffs_ep *ep;
972 	int ret;
973 
974 	/* Wait for endpoint to be enabled */
975 	ep = epfile->ep;
976 	if (!ep) {
977 		if (file->f_flags & O_NONBLOCK)
978 			return ERR_PTR(-EAGAIN);
979 
980 		ret = wait_event_interruptible(
981 				epfile->ffs->wait, (ep = epfile->ep));
982 		if (ret)
983 			return ERR_PTR(-EINTR);
984 	}
985 
986 	return ep;
987 }
988 
989 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
990 {
991 	struct ffs_epfile *epfile = file->private_data;
992 	struct usb_request *req;
993 	struct ffs_ep *ep;
994 	char *data = NULL;
995 	ssize_t ret, data_len = -EINVAL;
996 	int halt;
997 
998 	/* Are we still active? */
999 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1000 		return -ENODEV;
1001 
1002 	ep = ffs_epfile_wait_ep(file);
1003 	if (IS_ERR(ep))
1004 		return PTR_ERR(ep);
1005 
1006 	/* Do we halt? */
1007 	halt = (!io_data->read == !epfile->in);
1008 	if (halt && epfile->isoc)
1009 		return -EINVAL;
1010 
1011 	/* We will be using request and read_buffer */
1012 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1013 	if (ret)
1014 		goto error;
1015 
1016 	/* Allocate & copy */
1017 	if (!halt) {
1018 		struct usb_gadget *gadget;
1019 
1020 		/*
1021 		 * Do we have buffered data from previous partial read?  Check
1022 		 * that for synchronous case only because we do not have
1023 		 * facility to ‘wake up’ a pending asynchronous read and push
1024 		 * buffered data to it which we would need to make things behave
1025 		 * consistently.
1026 		 */
1027 		if (!io_data->aio && io_data->read) {
1028 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1029 			if (ret)
1030 				goto error_mutex;
1031 		}
1032 
1033 		/*
1034 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1035 		 * before the waiting completes, so do not assign to 'gadget'
1036 		 * earlier
1037 		 */
1038 		gadget = epfile->ffs->gadget;
1039 
1040 		spin_lock_irq(&epfile->ffs->eps_lock);
1041 		/* In the meantime, endpoint got disabled or changed. */
1042 		if (epfile->ep != ep) {
1043 			ret = -ESHUTDOWN;
1044 			goto error_lock;
1045 		}
1046 		data_len = iov_iter_count(&io_data->data);
1047 		/*
1048 		 * Controller may require buffer size to be aligned to
1049 		 * maxpacketsize of an out endpoint.
1050 		 */
1051 		if (io_data->read)
1052 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1053 
1054 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1055 		spin_unlock_irq(&epfile->ffs->eps_lock);
1056 
1057 		data = ffs_alloc_buffer(io_data, data_len);
1058 		if (!data) {
1059 			ret = -ENOMEM;
1060 			goto error_mutex;
1061 		}
1062 		if (!io_data->read &&
1063 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1064 			ret = -EFAULT;
1065 			goto error_mutex;
1066 		}
1067 	}
1068 
1069 	spin_lock_irq(&epfile->ffs->eps_lock);
1070 
1071 	if (epfile->ep != ep) {
1072 		/* In the meantime, endpoint got disabled or changed. */
1073 		ret = -ESHUTDOWN;
1074 	} else if (halt) {
1075 		ret = usb_ep_set_halt(ep->ep);
1076 		if (!ret)
1077 			ret = -EBADMSG;
1078 	} else if (data_len == -EINVAL) {
1079 		/*
1080 		 * Sanity Check: even though data_len can't be used
1081 		 * uninitialized at the time I write this comment, some
1082 		 * compilers complain about this situation.
1083 		 * In order to keep the code clean from warnings, data_len is
1084 		 * being initialized to -EINVAL during its declaration, which
1085 		 * means we can't rely on compiler anymore to warn no future
1086 		 * changes won't result in data_len being used uninitialized.
1087 		 * For such reason, we're adding this redundant sanity check
1088 		 * here.
1089 		 */
1090 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1091 		ret = -EINVAL;
1092 	} else if (!io_data->aio) {
1093 		bool interrupted = false;
1094 
1095 		req = ep->req;
1096 		if (io_data->use_sg) {
1097 			req->buf = NULL;
1098 			req->sg	= io_data->sgt.sgl;
1099 			req->num_sgs = io_data->sgt.nents;
1100 		} else {
1101 			req->buf = data;
1102 			req->num_sgs = 0;
1103 		}
1104 		req->length = data_len;
1105 
1106 		io_data->buf = data;
1107 
1108 		init_completion(&io_data->done);
1109 		req->context  = io_data;
1110 		req->complete = ffs_epfile_io_complete;
1111 
1112 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1113 		if (ret < 0)
1114 			goto error_lock;
1115 
1116 		spin_unlock_irq(&epfile->ffs->eps_lock);
1117 
1118 		if (wait_for_completion_interruptible(&io_data->done)) {
1119 			spin_lock_irq(&epfile->ffs->eps_lock);
1120 			if (epfile->ep != ep) {
1121 				ret = -ESHUTDOWN;
1122 				goto error_lock;
1123 			}
1124 			/*
1125 			 * To avoid race condition with ffs_epfile_io_complete,
1126 			 * dequeue the request first then check
1127 			 * status. usb_ep_dequeue API should guarantee no race
1128 			 * condition with req->complete callback.
1129 			 */
1130 			usb_ep_dequeue(ep->ep, req);
1131 			spin_unlock_irq(&epfile->ffs->eps_lock);
1132 			wait_for_completion(&io_data->done);
1133 			interrupted = io_data->status < 0;
1134 		}
1135 
1136 		if (interrupted)
1137 			ret = -EINTR;
1138 		else if (io_data->read && io_data->status > 0)
1139 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1140 						     &io_data->data);
1141 		else
1142 			ret = io_data->status;
1143 		goto error_mutex;
1144 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1145 		ret = -ENOMEM;
1146 	} else {
1147 		if (io_data->use_sg) {
1148 			req->buf = NULL;
1149 			req->sg	= io_data->sgt.sgl;
1150 			req->num_sgs = io_data->sgt.nents;
1151 		} else {
1152 			req->buf = data;
1153 			req->num_sgs = 0;
1154 		}
1155 		req->length = data_len;
1156 
1157 		io_data->buf = data;
1158 		io_data->ep = ep->ep;
1159 		io_data->req = req;
1160 		io_data->ffs = epfile->ffs;
1161 
1162 		req->context  = io_data;
1163 		req->complete = ffs_epfile_async_io_complete;
1164 
1165 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1166 		if (ret) {
1167 			io_data->req = NULL;
1168 			usb_ep_free_request(ep->ep, req);
1169 			goto error_lock;
1170 		}
1171 
1172 		ret = -EIOCBQUEUED;
1173 		/*
1174 		 * Do not kfree the buffer in this function.  It will be freed
1175 		 * by ffs_user_copy_worker.
1176 		 */
1177 		data = NULL;
1178 	}
1179 
1180 error_lock:
1181 	spin_unlock_irq(&epfile->ffs->eps_lock);
1182 error_mutex:
1183 	mutex_unlock(&epfile->mutex);
1184 error:
1185 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1186 		ffs_free_buffer(io_data);
1187 	return ret;
1188 }
1189 
1190 static int
1191 ffs_epfile_open(struct inode *inode, struct file *file)
1192 {
1193 	struct ffs_epfile *epfile = inode->i_private;
1194 
1195 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1196 		return -ENODEV;
1197 
1198 	file->private_data = epfile;
1199 	ffs_data_opened(epfile->ffs);
1200 
1201 	return stream_open(inode, file);
1202 }
1203 
1204 static int ffs_aio_cancel(struct kiocb *kiocb)
1205 {
1206 	struct ffs_io_data *io_data = kiocb->private;
1207 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1208 	unsigned long flags;
1209 	int value;
1210 
1211 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1212 
1213 	if (io_data && io_data->ep && io_data->req)
1214 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1215 	else
1216 		value = -EINVAL;
1217 
1218 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1219 
1220 	return value;
1221 }
1222 
1223 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1224 {
1225 	struct ffs_io_data io_data, *p = &io_data;
1226 	ssize_t res;
1227 
1228 	if (!is_sync_kiocb(kiocb)) {
1229 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1230 		if (!p)
1231 			return -ENOMEM;
1232 		p->aio = true;
1233 	} else {
1234 		memset(p, 0, sizeof(*p));
1235 		p->aio = false;
1236 	}
1237 
1238 	p->read = false;
1239 	p->kiocb = kiocb;
1240 	p->data = *from;
1241 	p->mm = current->mm;
1242 
1243 	kiocb->private = p;
1244 
1245 	if (p->aio)
1246 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1247 
1248 	res = ffs_epfile_io(kiocb->ki_filp, p);
1249 	if (res == -EIOCBQUEUED)
1250 		return res;
1251 	if (p->aio)
1252 		kfree(p);
1253 	else
1254 		*from = p->data;
1255 	return res;
1256 }
1257 
1258 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1259 {
1260 	struct ffs_io_data io_data, *p = &io_data;
1261 	ssize_t res;
1262 
1263 	if (!is_sync_kiocb(kiocb)) {
1264 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1265 		if (!p)
1266 			return -ENOMEM;
1267 		p->aio = true;
1268 	} else {
1269 		memset(p, 0, sizeof(*p));
1270 		p->aio = false;
1271 	}
1272 
1273 	p->read = true;
1274 	p->kiocb = kiocb;
1275 	if (p->aio) {
1276 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1277 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1278 			kfree(p);
1279 			return -ENOMEM;
1280 		}
1281 	} else {
1282 		p->data = *to;
1283 		p->to_free = NULL;
1284 	}
1285 	p->mm = current->mm;
1286 
1287 	kiocb->private = p;
1288 
1289 	if (p->aio)
1290 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1291 
1292 	res = ffs_epfile_io(kiocb->ki_filp, p);
1293 	if (res == -EIOCBQUEUED)
1294 		return res;
1295 
1296 	if (p->aio) {
1297 		kfree(p->to_free);
1298 		kfree(p);
1299 	} else {
1300 		*to = p->data;
1301 	}
1302 	return res;
1303 }
1304 
1305 static void ffs_dmabuf_release(struct kref *ref)
1306 {
1307 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1308 	struct dma_buf_attachment *attach = priv->attach;
1309 	struct dma_buf *dmabuf = attach->dmabuf;
1310 
1311 	pr_vdebug("FFS DMABUF release\n");
1312 	dma_resv_lock(dmabuf->resv, NULL);
1313 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1314 	dma_resv_unlock(dmabuf->resv);
1315 
1316 	dma_buf_detach(attach->dmabuf, attach);
1317 	dma_buf_put(dmabuf);
1318 	kfree(priv);
1319 }
1320 
1321 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1322 {
1323 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1324 
1325 	kref_get(&priv->ref);
1326 }
1327 
1328 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1329 {
1330 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331 
1332 	kref_put(&priv->ref, ffs_dmabuf_release);
1333 }
1334 
1335 static int
1336 ffs_epfile_release(struct inode *inode, struct file *file)
1337 {
1338 	struct ffs_epfile *epfile = inode->i_private;
1339 	struct ffs_dmabuf_priv *priv, *tmp;
1340 	struct ffs_data *ffs = epfile->ffs;
1341 
1342 	mutex_lock(&epfile->dmabufs_mutex);
1343 
1344 	/* Close all attached DMABUFs */
1345 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1346 		/* Cancel any pending transfer */
1347 		spin_lock_irq(&ffs->eps_lock);
1348 		if (priv->ep && priv->req)
1349 			usb_ep_dequeue(priv->ep, priv->req);
1350 		spin_unlock_irq(&ffs->eps_lock);
1351 
1352 		list_del(&priv->entry);
1353 		ffs_dmabuf_put(priv->attach);
1354 	}
1355 
1356 	mutex_unlock(&epfile->dmabufs_mutex);
1357 
1358 	__ffs_epfile_read_buffer_free(epfile);
1359 	ffs_data_closed(epfile->ffs);
1360 
1361 	return 0;
1362 }
1363 
1364 static void ffs_dmabuf_cleanup(struct work_struct *work)
1365 {
1366 	struct ffs_dma_fence *dma_fence =
1367 		container_of(work, struct ffs_dma_fence, work);
1368 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1369 	struct dma_buf_attachment *attach = priv->attach;
1370 	struct dma_fence *fence = &dma_fence->base;
1371 
1372 	ffs_dmabuf_put(attach);
1373 	dma_fence_put(fence);
1374 }
1375 
1376 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1377 {
1378 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1379 	struct dma_fence *fence = &dma_fence->base;
1380 	bool cookie = dma_fence_begin_signalling();
1381 
1382 	dma_fence_get(fence);
1383 	fence->error = ret;
1384 	dma_fence_signal(fence);
1385 	dma_fence_end_signalling(cookie);
1386 
1387 	/*
1388 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1389 	 * It can't be done here, as the unref functions might try to lock
1390 	 * the resv object, which would deadlock.
1391 	 */
1392 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1393 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1394 }
1395 
1396 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1397 					  struct usb_request *req)
1398 {
1399 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1400 	ffs_dmabuf_signal_done(req->context, req->status);
1401 	usb_ep_free_request(ep, req);
1402 }
1403 
1404 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1405 {
1406 	return "functionfs";
1407 }
1408 
1409 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1410 {
1411 	return "";
1412 }
1413 
1414 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1415 {
1416 	struct ffs_dma_fence *dma_fence =
1417 		container_of(fence, struct ffs_dma_fence, base);
1418 
1419 	kfree(dma_fence);
1420 }
1421 
1422 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1423 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1424 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1425 	.release		= ffs_dmabuf_fence_release,
1426 };
1427 
1428 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1429 {
1430 	if (!nonblock)
1431 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1432 
1433 	if (!dma_resv_trylock(dmabuf->resv))
1434 		return -EBUSY;
1435 
1436 	return 0;
1437 }
1438 
1439 static struct dma_buf_attachment *
1440 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1441 {
1442 	struct device *dev = epfile->ffs->gadget->dev.parent;
1443 	struct dma_buf_attachment *attach = NULL;
1444 	struct ffs_dmabuf_priv *priv;
1445 
1446 	mutex_lock(&epfile->dmabufs_mutex);
1447 
1448 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1449 		if (priv->attach->dev == dev
1450 		    && priv->attach->dmabuf == dmabuf) {
1451 			attach = priv->attach;
1452 			break;
1453 		}
1454 	}
1455 
1456 	if (attach)
1457 		ffs_dmabuf_get(attach);
1458 
1459 	mutex_unlock(&epfile->dmabufs_mutex);
1460 
1461 	return attach ?: ERR_PTR(-EPERM);
1462 }
1463 
1464 static int ffs_dmabuf_attach(struct file *file, int fd)
1465 {
1466 	bool nonblock = file->f_flags & O_NONBLOCK;
1467 	struct ffs_epfile *epfile = file->private_data;
1468 	struct usb_gadget *gadget = epfile->ffs->gadget;
1469 	struct dma_buf_attachment *attach;
1470 	struct ffs_dmabuf_priv *priv;
1471 	enum dma_data_direction dir;
1472 	struct sg_table *sg_table;
1473 	struct dma_buf *dmabuf;
1474 	int err;
1475 
1476 	if (!gadget || !gadget->sg_supported)
1477 		return -EPERM;
1478 
1479 	dmabuf = dma_buf_get(fd);
1480 	if (IS_ERR(dmabuf))
1481 		return PTR_ERR(dmabuf);
1482 
1483 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1484 	if (IS_ERR(attach)) {
1485 		err = PTR_ERR(attach);
1486 		goto err_dmabuf_put;
1487 	}
1488 
1489 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1490 	if (!priv) {
1491 		err = -ENOMEM;
1492 		goto err_dmabuf_detach;
1493 	}
1494 
1495 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1496 
1497 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1498 	if (err)
1499 		goto err_free_priv;
1500 
1501 	sg_table = dma_buf_map_attachment(attach, dir);
1502 	dma_resv_unlock(dmabuf->resv);
1503 
1504 	if (IS_ERR(sg_table)) {
1505 		err = PTR_ERR(sg_table);
1506 		goto err_free_priv;
1507 	}
1508 
1509 	attach->importer_priv = priv;
1510 
1511 	priv->sgt = sg_table;
1512 	priv->dir = dir;
1513 	priv->ffs = epfile->ffs;
1514 	priv->attach = attach;
1515 	spin_lock_init(&priv->lock);
1516 	kref_init(&priv->ref);
1517 	priv->context = dma_fence_context_alloc(1);
1518 
1519 	mutex_lock(&epfile->dmabufs_mutex);
1520 	list_add(&priv->entry, &epfile->dmabufs);
1521 	mutex_unlock(&epfile->dmabufs_mutex);
1522 
1523 	return 0;
1524 
1525 err_free_priv:
1526 	kfree(priv);
1527 err_dmabuf_detach:
1528 	dma_buf_detach(dmabuf, attach);
1529 err_dmabuf_put:
1530 	dma_buf_put(dmabuf);
1531 
1532 	return err;
1533 }
1534 
1535 static int ffs_dmabuf_detach(struct file *file, int fd)
1536 {
1537 	struct ffs_epfile *epfile = file->private_data;
1538 	struct ffs_data *ffs = epfile->ffs;
1539 	struct device *dev = ffs->gadget->dev.parent;
1540 	struct ffs_dmabuf_priv *priv, *tmp;
1541 	struct dma_buf *dmabuf;
1542 	int ret = -EPERM;
1543 
1544 	dmabuf = dma_buf_get(fd);
1545 	if (IS_ERR(dmabuf))
1546 		return PTR_ERR(dmabuf);
1547 
1548 	mutex_lock(&epfile->dmabufs_mutex);
1549 
1550 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1551 		if (priv->attach->dev == dev
1552 		    && priv->attach->dmabuf == dmabuf) {
1553 			/* Cancel any pending transfer */
1554 			spin_lock_irq(&ffs->eps_lock);
1555 			if (priv->ep && priv->req)
1556 				usb_ep_dequeue(priv->ep, priv->req);
1557 			spin_unlock_irq(&ffs->eps_lock);
1558 
1559 			list_del(&priv->entry);
1560 
1561 			/* Unref the reference from ffs_dmabuf_attach() */
1562 			ffs_dmabuf_put(priv->attach);
1563 			ret = 0;
1564 			break;
1565 		}
1566 	}
1567 
1568 	mutex_unlock(&epfile->dmabufs_mutex);
1569 	dma_buf_put(dmabuf);
1570 
1571 	return ret;
1572 }
1573 
1574 static int ffs_dmabuf_transfer(struct file *file,
1575 			       const struct usb_ffs_dmabuf_transfer_req *req)
1576 {
1577 	bool nonblock = file->f_flags & O_NONBLOCK;
1578 	struct ffs_epfile *epfile = file->private_data;
1579 	struct dma_buf_attachment *attach;
1580 	struct ffs_dmabuf_priv *priv;
1581 	struct ffs_dma_fence *fence;
1582 	struct usb_request *usb_req;
1583 	enum dma_resv_usage resv_dir;
1584 	struct dma_buf *dmabuf;
1585 	unsigned long timeout;
1586 	struct ffs_ep *ep;
1587 	bool cookie;
1588 	u32 seqno;
1589 	long retl;
1590 	int ret;
1591 
1592 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1593 		return -EINVAL;
1594 
1595 	dmabuf = dma_buf_get(req->fd);
1596 	if (IS_ERR(dmabuf))
1597 		return PTR_ERR(dmabuf);
1598 
1599 	if (req->length > dmabuf->size || req->length == 0) {
1600 		ret = -EINVAL;
1601 		goto err_dmabuf_put;
1602 	}
1603 
1604 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1605 	if (IS_ERR(attach)) {
1606 		ret = PTR_ERR(attach);
1607 		goto err_dmabuf_put;
1608 	}
1609 
1610 	priv = attach->importer_priv;
1611 
1612 	ep = ffs_epfile_wait_ep(file);
1613 	if (IS_ERR(ep)) {
1614 		ret = PTR_ERR(ep);
1615 		goto err_attachment_put;
1616 	}
1617 
1618 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1619 	if (ret)
1620 		goto err_attachment_put;
1621 
1622 	/* Make sure we don't have writers */
1623 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1624 	retl = dma_resv_wait_timeout(dmabuf->resv,
1625 				     dma_resv_usage_rw(epfile->in),
1626 				     true, timeout);
1627 	if (retl == 0)
1628 		retl = -EBUSY;
1629 	if (retl < 0) {
1630 		ret = (int)retl;
1631 		goto err_resv_unlock;
1632 	}
1633 
1634 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1635 	if (ret)
1636 		goto err_resv_unlock;
1637 
1638 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1639 	if (!fence) {
1640 		ret = -ENOMEM;
1641 		goto err_resv_unlock;
1642 	}
1643 
1644 	fence->priv = priv;
1645 
1646 	spin_lock_irq(&epfile->ffs->eps_lock);
1647 
1648 	/* In the meantime, endpoint got disabled or changed. */
1649 	if (epfile->ep != ep) {
1650 		ret = -ESHUTDOWN;
1651 		goto err_fence_put;
1652 	}
1653 
1654 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1655 	if (!usb_req) {
1656 		ret = -ENOMEM;
1657 		goto err_fence_put;
1658 	}
1659 
1660 	/*
1661 	 * usb_ep_queue() guarantees that all transfers are processed in the
1662 	 * order they are enqueued, so we can use a simple incrementing
1663 	 * sequence number for the dma_fence.
1664 	 */
1665 	seqno = atomic_add_return(1, &epfile->seqno);
1666 
1667 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1668 		       &priv->lock, priv->context, seqno);
1669 
1670 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1671 
1672 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1673 	dma_resv_unlock(dmabuf->resv);
1674 
1675 	/* Now that the dma_fence is in place, queue the transfer. */
1676 
1677 	usb_req->length = req->length;
1678 	usb_req->buf = NULL;
1679 	usb_req->sg = priv->sgt->sgl;
1680 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1681 	usb_req->sg_was_mapped = true;
1682 	usb_req->context  = fence;
1683 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1684 
1685 	cookie = dma_fence_begin_signalling();
1686 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1687 	dma_fence_end_signalling(cookie);
1688 	if (!ret) {
1689 		priv->req = usb_req;
1690 		priv->ep = ep->ep;
1691 	} else {
1692 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1693 		ffs_dmabuf_signal_done(fence, ret);
1694 		usb_ep_free_request(ep->ep, usb_req);
1695 	}
1696 
1697 	spin_unlock_irq(&epfile->ffs->eps_lock);
1698 	dma_buf_put(dmabuf);
1699 
1700 	return ret;
1701 
1702 err_fence_put:
1703 	spin_unlock_irq(&epfile->ffs->eps_lock);
1704 	dma_fence_put(&fence->base);
1705 err_resv_unlock:
1706 	dma_resv_unlock(dmabuf->resv);
1707 err_attachment_put:
1708 	ffs_dmabuf_put(attach);
1709 err_dmabuf_put:
1710 	dma_buf_put(dmabuf);
1711 
1712 	return ret;
1713 }
1714 
1715 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1716 			     unsigned long value)
1717 {
1718 	struct ffs_epfile *epfile = file->private_data;
1719 	struct ffs_ep *ep;
1720 	int ret;
1721 
1722 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1723 		return -ENODEV;
1724 
1725 	switch (code) {
1726 	case FUNCTIONFS_DMABUF_ATTACH:
1727 	{
1728 		int fd;
1729 
1730 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1731 			ret = -EFAULT;
1732 			break;
1733 		}
1734 
1735 		return ffs_dmabuf_attach(file, fd);
1736 	}
1737 	case FUNCTIONFS_DMABUF_DETACH:
1738 	{
1739 		int fd;
1740 
1741 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1742 			ret = -EFAULT;
1743 			break;
1744 		}
1745 
1746 		return ffs_dmabuf_detach(file, fd);
1747 	}
1748 	case FUNCTIONFS_DMABUF_TRANSFER:
1749 	{
1750 		struct usb_ffs_dmabuf_transfer_req req;
1751 
1752 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1753 			ret = -EFAULT;
1754 			break;
1755 		}
1756 
1757 		return ffs_dmabuf_transfer(file, &req);
1758 	}
1759 	default:
1760 		break;
1761 	}
1762 
1763 	/* Wait for endpoint to be enabled */
1764 	ep = ffs_epfile_wait_ep(file);
1765 	if (IS_ERR(ep))
1766 		return PTR_ERR(ep);
1767 
1768 	spin_lock_irq(&epfile->ffs->eps_lock);
1769 
1770 	/* In the meantime, endpoint got disabled or changed. */
1771 	if (epfile->ep != ep) {
1772 		spin_unlock_irq(&epfile->ffs->eps_lock);
1773 		return -ESHUTDOWN;
1774 	}
1775 
1776 	switch (code) {
1777 	case FUNCTIONFS_FIFO_STATUS:
1778 		ret = usb_ep_fifo_status(epfile->ep->ep);
1779 		break;
1780 	case FUNCTIONFS_FIFO_FLUSH:
1781 		usb_ep_fifo_flush(epfile->ep->ep);
1782 		ret = 0;
1783 		break;
1784 	case FUNCTIONFS_CLEAR_HALT:
1785 		ret = usb_ep_clear_halt(epfile->ep->ep);
1786 		break;
1787 	case FUNCTIONFS_ENDPOINT_REVMAP:
1788 		ret = epfile->ep->num;
1789 		break;
1790 	case FUNCTIONFS_ENDPOINT_DESC:
1791 	{
1792 		int desc_idx;
1793 		struct usb_endpoint_descriptor desc1, *desc;
1794 
1795 		switch (epfile->ffs->gadget->speed) {
1796 		case USB_SPEED_SUPER:
1797 		case USB_SPEED_SUPER_PLUS:
1798 			desc_idx = 2;
1799 			break;
1800 		case USB_SPEED_HIGH:
1801 			desc_idx = 1;
1802 			break;
1803 		default:
1804 			desc_idx = 0;
1805 		}
1806 
1807 		desc = epfile->ep->descs[desc_idx];
1808 		memcpy(&desc1, desc, desc->bLength);
1809 
1810 		spin_unlock_irq(&epfile->ffs->eps_lock);
1811 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1812 		if (ret)
1813 			ret = -EFAULT;
1814 		return ret;
1815 	}
1816 	default:
1817 		ret = -ENOTTY;
1818 	}
1819 	spin_unlock_irq(&epfile->ffs->eps_lock);
1820 
1821 	return ret;
1822 }
1823 
1824 static const struct file_operations ffs_epfile_operations = {
1825 	.llseek =	no_llseek,
1826 
1827 	.open =		ffs_epfile_open,
1828 	.write_iter =	ffs_epfile_write_iter,
1829 	.read_iter =	ffs_epfile_read_iter,
1830 	.release =	ffs_epfile_release,
1831 	.unlocked_ioctl =	ffs_epfile_ioctl,
1832 	.compat_ioctl = compat_ptr_ioctl,
1833 };
1834 
1835 
1836 /* File system and super block operations ***********************************/
1837 
1838 /*
1839  * Mounting the file system creates a controller file, used first for
1840  * function configuration then later for event monitoring.
1841  */
1842 
1843 static struct inode *__must_check
1844 ffs_sb_make_inode(struct super_block *sb, void *data,
1845 		  const struct file_operations *fops,
1846 		  const struct inode_operations *iops,
1847 		  struct ffs_file_perms *perms)
1848 {
1849 	struct inode *inode;
1850 
1851 	inode = new_inode(sb);
1852 
1853 	if (inode) {
1854 		struct timespec64 ts = inode_set_ctime_current(inode);
1855 
1856 		inode->i_ino	 = get_next_ino();
1857 		inode->i_mode    = perms->mode;
1858 		inode->i_uid     = perms->uid;
1859 		inode->i_gid     = perms->gid;
1860 		inode_set_atime_to_ts(inode, ts);
1861 		inode_set_mtime_to_ts(inode, ts);
1862 		inode->i_private = data;
1863 		if (fops)
1864 			inode->i_fop = fops;
1865 		if (iops)
1866 			inode->i_op  = iops;
1867 	}
1868 
1869 	return inode;
1870 }
1871 
1872 /* Create "regular" file */
1873 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1874 					const char *name, void *data,
1875 					const struct file_operations *fops)
1876 {
1877 	struct ffs_data	*ffs = sb->s_fs_info;
1878 	struct dentry	*dentry;
1879 	struct inode	*inode;
1880 
1881 	dentry = d_alloc_name(sb->s_root, name);
1882 	if (!dentry)
1883 		return NULL;
1884 
1885 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1886 	if (!inode) {
1887 		dput(dentry);
1888 		return NULL;
1889 	}
1890 
1891 	d_add(dentry, inode);
1892 	return dentry;
1893 }
1894 
1895 /* Super block */
1896 static const struct super_operations ffs_sb_operations = {
1897 	.statfs =	simple_statfs,
1898 	.drop_inode =	generic_delete_inode,
1899 };
1900 
1901 struct ffs_sb_fill_data {
1902 	struct ffs_file_perms perms;
1903 	umode_t root_mode;
1904 	const char *dev_name;
1905 	bool no_disconnect;
1906 	struct ffs_data *ffs_data;
1907 };
1908 
1909 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1910 {
1911 	struct ffs_sb_fill_data *data = fc->fs_private;
1912 	struct inode	*inode;
1913 	struct ffs_data	*ffs = data->ffs_data;
1914 
1915 	ffs->sb              = sb;
1916 	data->ffs_data       = NULL;
1917 	sb->s_fs_info        = ffs;
1918 	sb->s_blocksize      = PAGE_SIZE;
1919 	sb->s_blocksize_bits = PAGE_SHIFT;
1920 	sb->s_magic          = FUNCTIONFS_MAGIC;
1921 	sb->s_op             = &ffs_sb_operations;
1922 	sb->s_time_gran      = 1;
1923 
1924 	/* Root inode */
1925 	data->perms.mode = data->root_mode;
1926 	inode = ffs_sb_make_inode(sb, NULL,
1927 				  &simple_dir_operations,
1928 				  &simple_dir_inode_operations,
1929 				  &data->perms);
1930 	sb->s_root = d_make_root(inode);
1931 	if (!sb->s_root)
1932 		return -ENOMEM;
1933 
1934 	/* EP0 file */
1935 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1936 		return -ENOMEM;
1937 
1938 	return 0;
1939 }
1940 
1941 enum {
1942 	Opt_no_disconnect,
1943 	Opt_rmode,
1944 	Opt_fmode,
1945 	Opt_mode,
1946 	Opt_uid,
1947 	Opt_gid,
1948 };
1949 
1950 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1951 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1952 	fsparam_u32	("rmode",		Opt_rmode),
1953 	fsparam_u32	("fmode",		Opt_fmode),
1954 	fsparam_u32	("mode",		Opt_mode),
1955 	fsparam_u32	("uid",			Opt_uid),
1956 	fsparam_u32	("gid",			Opt_gid),
1957 	{}
1958 };
1959 
1960 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1961 {
1962 	struct ffs_sb_fill_data *data = fc->fs_private;
1963 	struct fs_parse_result result;
1964 	int opt;
1965 
1966 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1967 	if (opt < 0)
1968 		return opt;
1969 
1970 	switch (opt) {
1971 	case Opt_no_disconnect:
1972 		data->no_disconnect = result.boolean;
1973 		break;
1974 	case Opt_rmode:
1975 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1976 		break;
1977 	case Opt_fmode:
1978 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1979 		break;
1980 	case Opt_mode:
1981 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1982 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1983 		break;
1984 
1985 	case Opt_uid:
1986 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1987 		if (!uid_valid(data->perms.uid))
1988 			goto unmapped_value;
1989 		break;
1990 	case Opt_gid:
1991 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1992 		if (!gid_valid(data->perms.gid))
1993 			goto unmapped_value;
1994 		break;
1995 
1996 	default:
1997 		return -ENOPARAM;
1998 	}
1999 
2000 	return 0;
2001 
2002 unmapped_value:
2003 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2004 }
2005 
2006 /*
2007  * Set up the superblock for a mount.
2008  */
2009 static int ffs_fs_get_tree(struct fs_context *fc)
2010 {
2011 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2012 	struct ffs_data	*ffs;
2013 	int ret;
2014 
2015 	if (!fc->source)
2016 		return invalf(fc, "No source specified");
2017 
2018 	ffs = ffs_data_new(fc->source);
2019 	if (!ffs)
2020 		return -ENOMEM;
2021 	ffs->file_perms = ctx->perms;
2022 	ffs->no_disconnect = ctx->no_disconnect;
2023 
2024 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2025 	if (!ffs->dev_name) {
2026 		ffs_data_put(ffs);
2027 		return -ENOMEM;
2028 	}
2029 
2030 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2031 	if (ret) {
2032 		ffs_data_put(ffs);
2033 		return ret;
2034 	}
2035 
2036 	ctx->ffs_data = ffs;
2037 	return get_tree_nodev(fc, ffs_sb_fill);
2038 }
2039 
2040 static void ffs_fs_free_fc(struct fs_context *fc)
2041 {
2042 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2043 
2044 	if (ctx) {
2045 		if (ctx->ffs_data) {
2046 			ffs_data_put(ctx->ffs_data);
2047 		}
2048 
2049 		kfree(ctx);
2050 	}
2051 }
2052 
2053 static const struct fs_context_operations ffs_fs_context_ops = {
2054 	.free		= ffs_fs_free_fc,
2055 	.parse_param	= ffs_fs_parse_param,
2056 	.get_tree	= ffs_fs_get_tree,
2057 };
2058 
2059 static int ffs_fs_init_fs_context(struct fs_context *fc)
2060 {
2061 	struct ffs_sb_fill_data *ctx;
2062 
2063 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2064 	if (!ctx)
2065 		return -ENOMEM;
2066 
2067 	ctx->perms.mode = S_IFREG | 0600;
2068 	ctx->perms.uid = GLOBAL_ROOT_UID;
2069 	ctx->perms.gid = GLOBAL_ROOT_GID;
2070 	ctx->root_mode = S_IFDIR | 0500;
2071 	ctx->no_disconnect = false;
2072 
2073 	fc->fs_private = ctx;
2074 	fc->ops = &ffs_fs_context_ops;
2075 	return 0;
2076 }
2077 
2078 static void
2079 ffs_fs_kill_sb(struct super_block *sb)
2080 {
2081 	kill_litter_super(sb);
2082 	if (sb->s_fs_info)
2083 		ffs_data_closed(sb->s_fs_info);
2084 }
2085 
2086 static struct file_system_type ffs_fs_type = {
2087 	.owner		= THIS_MODULE,
2088 	.name		= "functionfs",
2089 	.init_fs_context = ffs_fs_init_fs_context,
2090 	.parameters	= ffs_fs_fs_parameters,
2091 	.kill_sb	= ffs_fs_kill_sb,
2092 };
2093 MODULE_ALIAS_FS("functionfs");
2094 
2095 
2096 /* Driver's main init/cleanup functions *************************************/
2097 
2098 static int functionfs_init(void)
2099 {
2100 	int ret;
2101 
2102 	ret = register_filesystem(&ffs_fs_type);
2103 	if (!ret)
2104 		pr_info("file system registered\n");
2105 	else
2106 		pr_err("failed registering file system (%d)\n", ret);
2107 
2108 	return ret;
2109 }
2110 
2111 static void functionfs_cleanup(void)
2112 {
2113 	pr_info("unloading\n");
2114 	unregister_filesystem(&ffs_fs_type);
2115 }
2116 
2117 
2118 /* ffs_data and ffs_function construction and destruction code **************/
2119 
2120 static void ffs_data_clear(struct ffs_data *ffs);
2121 static void ffs_data_reset(struct ffs_data *ffs);
2122 
2123 static void ffs_data_get(struct ffs_data *ffs)
2124 {
2125 	refcount_inc(&ffs->ref);
2126 }
2127 
2128 static void ffs_data_opened(struct ffs_data *ffs)
2129 {
2130 	refcount_inc(&ffs->ref);
2131 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2132 			ffs->state == FFS_DEACTIVATED) {
2133 		ffs->state = FFS_CLOSING;
2134 		ffs_data_reset(ffs);
2135 	}
2136 }
2137 
2138 static void ffs_data_put(struct ffs_data *ffs)
2139 {
2140 	if (refcount_dec_and_test(&ffs->ref)) {
2141 		pr_info("%s(): freeing\n", __func__);
2142 		ffs_data_clear(ffs);
2143 		ffs_release_dev(ffs->private_data);
2144 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2145 		       swait_active(&ffs->ep0req_completion.wait) ||
2146 		       waitqueue_active(&ffs->wait));
2147 		destroy_workqueue(ffs->io_completion_wq);
2148 		kfree(ffs->dev_name);
2149 		kfree(ffs);
2150 	}
2151 }
2152 
2153 static void ffs_data_closed(struct ffs_data *ffs)
2154 {
2155 	struct ffs_epfile *epfiles;
2156 	unsigned long flags;
2157 
2158 	if (atomic_dec_and_test(&ffs->opened)) {
2159 		if (ffs->no_disconnect) {
2160 			ffs->state = FFS_DEACTIVATED;
2161 			spin_lock_irqsave(&ffs->eps_lock, flags);
2162 			epfiles = ffs->epfiles;
2163 			ffs->epfiles = NULL;
2164 			spin_unlock_irqrestore(&ffs->eps_lock,
2165 							flags);
2166 
2167 			if (epfiles)
2168 				ffs_epfiles_destroy(epfiles,
2169 						 ffs->eps_count);
2170 
2171 			if (ffs->setup_state == FFS_SETUP_PENDING)
2172 				__ffs_ep0_stall(ffs);
2173 		} else {
2174 			ffs->state = FFS_CLOSING;
2175 			ffs_data_reset(ffs);
2176 		}
2177 	}
2178 	if (atomic_read(&ffs->opened) < 0) {
2179 		ffs->state = FFS_CLOSING;
2180 		ffs_data_reset(ffs);
2181 	}
2182 
2183 	ffs_data_put(ffs);
2184 }
2185 
2186 static struct ffs_data *ffs_data_new(const char *dev_name)
2187 {
2188 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2189 	if (!ffs)
2190 		return NULL;
2191 
2192 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2193 	if (!ffs->io_completion_wq) {
2194 		kfree(ffs);
2195 		return NULL;
2196 	}
2197 
2198 	refcount_set(&ffs->ref, 1);
2199 	atomic_set(&ffs->opened, 0);
2200 	ffs->state = FFS_READ_DESCRIPTORS;
2201 	mutex_init(&ffs->mutex);
2202 	spin_lock_init(&ffs->eps_lock);
2203 	init_waitqueue_head(&ffs->ev.waitq);
2204 	init_waitqueue_head(&ffs->wait);
2205 	init_completion(&ffs->ep0req_completion);
2206 
2207 	/* XXX REVISIT need to update it in some places, or do we? */
2208 	ffs->ev.can_stall = 1;
2209 
2210 	return ffs;
2211 }
2212 
2213 static void ffs_data_clear(struct ffs_data *ffs)
2214 {
2215 	struct ffs_epfile *epfiles;
2216 	unsigned long flags;
2217 
2218 	ffs_closed(ffs);
2219 
2220 	BUG_ON(ffs->gadget);
2221 
2222 	spin_lock_irqsave(&ffs->eps_lock, flags);
2223 	epfiles = ffs->epfiles;
2224 	ffs->epfiles = NULL;
2225 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2226 
2227 	/*
2228 	 * potential race possible between ffs_func_eps_disable
2229 	 * & ffs_epfile_release therefore maintaining a local
2230 	 * copy of epfile will save us from use-after-free.
2231 	 */
2232 	if (epfiles) {
2233 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2234 		ffs->epfiles = NULL;
2235 	}
2236 
2237 	if (ffs->ffs_eventfd) {
2238 		eventfd_ctx_put(ffs->ffs_eventfd);
2239 		ffs->ffs_eventfd = NULL;
2240 	}
2241 
2242 	kfree(ffs->raw_descs_data);
2243 	kfree(ffs->raw_strings);
2244 	kfree(ffs->stringtabs);
2245 }
2246 
2247 static void ffs_data_reset(struct ffs_data *ffs)
2248 {
2249 	ffs_data_clear(ffs);
2250 
2251 	ffs->raw_descs_data = NULL;
2252 	ffs->raw_descs = NULL;
2253 	ffs->raw_strings = NULL;
2254 	ffs->stringtabs = NULL;
2255 
2256 	ffs->raw_descs_length = 0;
2257 	ffs->fs_descs_count = 0;
2258 	ffs->hs_descs_count = 0;
2259 	ffs->ss_descs_count = 0;
2260 
2261 	ffs->strings_count = 0;
2262 	ffs->interfaces_count = 0;
2263 	ffs->eps_count = 0;
2264 
2265 	ffs->ev.count = 0;
2266 
2267 	ffs->state = FFS_READ_DESCRIPTORS;
2268 	ffs->setup_state = FFS_NO_SETUP;
2269 	ffs->flags = 0;
2270 
2271 	ffs->ms_os_descs_ext_prop_count = 0;
2272 	ffs->ms_os_descs_ext_prop_name_len = 0;
2273 	ffs->ms_os_descs_ext_prop_data_len = 0;
2274 }
2275 
2276 
2277 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2278 {
2279 	struct usb_gadget_strings **lang;
2280 	int first_id;
2281 
2282 	if (WARN_ON(ffs->state != FFS_ACTIVE
2283 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2284 		return -EBADFD;
2285 
2286 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2287 	if (first_id < 0)
2288 		return first_id;
2289 
2290 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2291 	if (!ffs->ep0req)
2292 		return -ENOMEM;
2293 	ffs->ep0req->complete = ffs_ep0_complete;
2294 	ffs->ep0req->context = ffs;
2295 
2296 	lang = ffs->stringtabs;
2297 	if (lang) {
2298 		for (; *lang; ++lang) {
2299 			struct usb_string *str = (*lang)->strings;
2300 			int id = first_id;
2301 			for (; str->s; ++id, ++str)
2302 				str->id = id;
2303 		}
2304 	}
2305 
2306 	ffs->gadget = cdev->gadget;
2307 	ffs_data_get(ffs);
2308 	return 0;
2309 }
2310 
2311 static void functionfs_unbind(struct ffs_data *ffs)
2312 {
2313 	if (!WARN_ON(!ffs->gadget)) {
2314 		/* dequeue before freeing ep0req */
2315 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2316 		mutex_lock(&ffs->mutex);
2317 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2318 		ffs->ep0req = NULL;
2319 		ffs->gadget = NULL;
2320 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2321 		mutex_unlock(&ffs->mutex);
2322 		ffs_data_put(ffs);
2323 	}
2324 }
2325 
2326 static int ffs_epfiles_create(struct ffs_data *ffs)
2327 {
2328 	struct ffs_epfile *epfile, *epfiles;
2329 	unsigned i, count;
2330 
2331 	count = ffs->eps_count;
2332 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2333 	if (!epfiles)
2334 		return -ENOMEM;
2335 
2336 	epfile = epfiles;
2337 	for (i = 1; i <= count; ++i, ++epfile) {
2338 		epfile->ffs = ffs;
2339 		mutex_init(&epfile->mutex);
2340 		mutex_init(&epfile->dmabufs_mutex);
2341 		INIT_LIST_HEAD(&epfile->dmabufs);
2342 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2343 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2344 		else
2345 			sprintf(epfile->name, "ep%u", i);
2346 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2347 						 epfile,
2348 						 &ffs_epfile_operations);
2349 		if (!epfile->dentry) {
2350 			ffs_epfiles_destroy(epfiles, i - 1);
2351 			return -ENOMEM;
2352 		}
2353 	}
2354 
2355 	ffs->epfiles = epfiles;
2356 	return 0;
2357 }
2358 
2359 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2360 {
2361 	struct ffs_epfile *epfile = epfiles;
2362 
2363 	for (; count; --count, ++epfile) {
2364 		BUG_ON(mutex_is_locked(&epfile->mutex));
2365 		if (epfile->dentry) {
2366 			d_delete(epfile->dentry);
2367 			dput(epfile->dentry);
2368 			epfile->dentry = NULL;
2369 		}
2370 	}
2371 
2372 	kfree(epfiles);
2373 }
2374 
2375 static void ffs_func_eps_disable(struct ffs_function *func)
2376 {
2377 	struct ffs_ep *ep;
2378 	struct ffs_epfile *epfile;
2379 	unsigned short count;
2380 	unsigned long flags;
2381 
2382 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2383 	count = func->ffs->eps_count;
2384 	epfile = func->ffs->epfiles;
2385 	ep = func->eps;
2386 	while (count--) {
2387 		/* pending requests get nuked */
2388 		if (ep->ep)
2389 			usb_ep_disable(ep->ep);
2390 		++ep;
2391 
2392 		if (epfile) {
2393 			epfile->ep = NULL;
2394 			__ffs_epfile_read_buffer_free(epfile);
2395 			++epfile;
2396 		}
2397 	}
2398 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2399 }
2400 
2401 static int ffs_func_eps_enable(struct ffs_function *func)
2402 {
2403 	struct ffs_data *ffs;
2404 	struct ffs_ep *ep;
2405 	struct ffs_epfile *epfile;
2406 	unsigned short count;
2407 	unsigned long flags;
2408 	int ret = 0;
2409 
2410 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2411 	ffs = func->ffs;
2412 	ep = func->eps;
2413 	epfile = ffs->epfiles;
2414 	count = ffs->eps_count;
2415 	while(count--) {
2416 		ep->ep->driver_data = ep;
2417 
2418 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2419 		if (ret) {
2420 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2421 					__func__, ep->ep->name, ret);
2422 			break;
2423 		}
2424 
2425 		ret = usb_ep_enable(ep->ep);
2426 		if (!ret) {
2427 			epfile->ep = ep;
2428 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2429 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2430 		} else {
2431 			break;
2432 		}
2433 
2434 		++ep;
2435 		++epfile;
2436 	}
2437 
2438 	wake_up_interruptible(&ffs->wait);
2439 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2440 
2441 	return ret;
2442 }
2443 
2444 
2445 /* Parsing and building descriptors and strings *****************************/
2446 
2447 /*
2448  * This validates if data pointed by data is a valid USB descriptor as
2449  * well as record how many interfaces, endpoints and strings are
2450  * required by given configuration.  Returns address after the
2451  * descriptor or NULL if data is invalid.
2452  */
2453 
2454 enum ffs_entity_type {
2455 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2456 };
2457 
2458 enum ffs_os_desc_type {
2459 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2460 };
2461 
2462 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2463 				   u8 *valuep,
2464 				   struct usb_descriptor_header *desc,
2465 				   void *priv);
2466 
2467 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2468 				    struct usb_os_desc_header *h, void *data,
2469 				    unsigned len, void *priv);
2470 
2471 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2472 					   ffs_entity_callback entity,
2473 					   void *priv, int *current_class)
2474 {
2475 	struct usb_descriptor_header *_ds = (void *)data;
2476 	u8 length;
2477 	int ret;
2478 
2479 	/* At least two bytes are required: length and type */
2480 	if (len < 2) {
2481 		pr_vdebug("descriptor too short\n");
2482 		return -EINVAL;
2483 	}
2484 
2485 	/* If we have at least as many bytes as the descriptor takes? */
2486 	length = _ds->bLength;
2487 	if (len < length) {
2488 		pr_vdebug("descriptor longer then available data\n");
2489 		return -EINVAL;
2490 	}
2491 
2492 #define __entity_check_INTERFACE(val)  1
2493 #define __entity_check_STRING(val)     (val)
2494 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2495 #define __entity(type, val) do {					\
2496 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2497 		if (!__entity_check_ ##type(val)) {			\
2498 			pr_vdebug("invalid entity's value\n");		\
2499 			return -EINVAL;					\
2500 		}							\
2501 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2502 		if (ret < 0) {						\
2503 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2504 				 (val), ret);				\
2505 			return ret;					\
2506 		}							\
2507 	} while (0)
2508 
2509 	/* Parse descriptor depending on type. */
2510 	switch (_ds->bDescriptorType) {
2511 	case USB_DT_DEVICE:
2512 	case USB_DT_CONFIG:
2513 	case USB_DT_STRING:
2514 	case USB_DT_DEVICE_QUALIFIER:
2515 		/* function can't have any of those */
2516 		pr_vdebug("descriptor reserved for gadget: %d\n",
2517 		      _ds->bDescriptorType);
2518 		return -EINVAL;
2519 
2520 	case USB_DT_INTERFACE: {
2521 		struct usb_interface_descriptor *ds = (void *)_ds;
2522 		pr_vdebug("interface descriptor\n");
2523 		if (length != sizeof *ds)
2524 			goto inv_length;
2525 
2526 		__entity(INTERFACE, ds->bInterfaceNumber);
2527 		if (ds->iInterface)
2528 			__entity(STRING, ds->iInterface);
2529 		*current_class = ds->bInterfaceClass;
2530 	}
2531 		break;
2532 
2533 	case USB_DT_ENDPOINT: {
2534 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2535 		pr_vdebug("endpoint descriptor\n");
2536 		if (length != USB_DT_ENDPOINT_SIZE &&
2537 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2538 			goto inv_length;
2539 		__entity(ENDPOINT, ds->bEndpointAddress);
2540 	}
2541 		break;
2542 
2543 	case USB_TYPE_CLASS | 0x01:
2544 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2545 			pr_vdebug("hid descriptor\n");
2546 			if (length != sizeof(struct hid_descriptor))
2547 				goto inv_length;
2548 			break;
2549 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2550 			pr_vdebug("ccid descriptor\n");
2551 			if (length != sizeof(struct ccid_descriptor))
2552 				goto inv_length;
2553 			break;
2554 		} else {
2555 			pr_vdebug("unknown descriptor: %d for class %d\n",
2556 			      _ds->bDescriptorType, *current_class);
2557 			return -EINVAL;
2558 		}
2559 
2560 	case USB_DT_OTG:
2561 		if (length != sizeof(struct usb_otg_descriptor))
2562 			goto inv_length;
2563 		break;
2564 
2565 	case USB_DT_INTERFACE_ASSOCIATION: {
2566 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2567 		pr_vdebug("interface association descriptor\n");
2568 		if (length != sizeof *ds)
2569 			goto inv_length;
2570 		if (ds->iFunction)
2571 			__entity(STRING, ds->iFunction);
2572 	}
2573 		break;
2574 
2575 	case USB_DT_SS_ENDPOINT_COMP:
2576 		pr_vdebug("EP SS companion descriptor\n");
2577 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2578 			goto inv_length;
2579 		break;
2580 
2581 	case USB_DT_OTHER_SPEED_CONFIG:
2582 	case USB_DT_INTERFACE_POWER:
2583 	case USB_DT_DEBUG:
2584 	case USB_DT_SECURITY:
2585 	case USB_DT_CS_RADIO_CONTROL:
2586 		/* TODO */
2587 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2588 		return -EINVAL;
2589 
2590 	default:
2591 		/* We should never be here */
2592 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2593 		return -EINVAL;
2594 
2595 inv_length:
2596 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2597 			  _ds->bLength, _ds->bDescriptorType);
2598 		return -EINVAL;
2599 	}
2600 
2601 #undef __entity
2602 #undef __entity_check_DESCRIPTOR
2603 #undef __entity_check_INTERFACE
2604 #undef __entity_check_STRING
2605 #undef __entity_check_ENDPOINT
2606 
2607 	return length;
2608 }
2609 
2610 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2611 				     ffs_entity_callback entity, void *priv)
2612 {
2613 	const unsigned _len = len;
2614 	unsigned long num = 0;
2615 	int current_class = -1;
2616 
2617 	for (;;) {
2618 		int ret;
2619 
2620 		if (num == count)
2621 			data = NULL;
2622 
2623 		/* Record "descriptor" entity */
2624 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2625 		if (ret < 0) {
2626 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2627 				 num, ret);
2628 			return ret;
2629 		}
2630 
2631 		if (!data)
2632 			return _len - len;
2633 
2634 		ret = ffs_do_single_desc(data, len, entity, priv,
2635 			&current_class);
2636 		if (ret < 0) {
2637 			pr_debug("%s returns %d\n", __func__, ret);
2638 			return ret;
2639 		}
2640 
2641 		len -= ret;
2642 		data += ret;
2643 		++num;
2644 	}
2645 }
2646 
2647 static int __ffs_data_do_entity(enum ffs_entity_type type,
2648 				u8 *valuep, struct usb_descriptor_header *desc,
2649 				void *priv)
2650 {
2651 	struct ffs_desc_helper *helper = priv;
2652 	struct usb_endpoint_descriptor *d;
2653 
2654 	switch (type) {
2655 	case FFS_DESCRIPTOR:
2656 		break;
2657 
2658 	case FFS_INTERFACE:
2659 		/*
2660 		 * Interfaces are indexed from zero so if we
2661 		 * encountered interface "n" then there are at least
2662 		 * "n+1" interfaces.
2663 		 */
2664 		if (*valuep >= helper->interfaces_count)
2665 			helper->interfaces_count = *valuep + 1;
2666 		break;
2667 
2668 	case FFS_STRING:
2669 		/*
2670 		 * Strings are indexed from 1 (0 is reserved
2671 		 * for languages list)
2672 		 */
2673 		if (*valuep > helper->ffs->strings_count)
2674 			helper->ffs->strings_count = *valuep;
2675 		break;
2676 
2677 	case FFS_ENDPOINT:
2678 		d = (void *)desc;
2679 		helper->eps_count++;
2680 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2681 			return -EINVAL;
2682 		/* Check if descriptors for any speed were already parsed */
2683 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2684 			helper->ffs->eps_addrmap[helper->eps_count] =
2685 				d->bEndpointAddress;
2686 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2687 				d->bEndpointAddress)
2688 			return -EINVAL;
2689 		break;
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2696 				   struct usb_os_desc_header *desc)
2697 {
2698 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2699 	u16 w_index = le16_to_cpu(desc->wIndex);
2700 
2701 	if (bcd_version == 0x1) {
2702 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2703 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2704 	} else if (bcd_version != 0x100) {
2705 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2706 			  bcd_version);
2707 		return -EINVAL;
2708 	}
2709 	switch (w_index) {
2710 	case 0x4:
2711 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2712 		break;
2713 	case 0x5:
2714 		*next_type = FFS_OS_DESC_EXT_PROP;
2715 		break;
2716 	default:
2717 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2718 		return -EINVAL;
2719 	}
2720 
2721 	return sizeof(*desc);
2722 }
2723 
2724 /*
2725  * Process all extended compatibility/extended property descriptors
2726  * of a feature descriptor
2727  */
2728 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2729 					      enum ffs_os_desc_type type,
2730 					      u16 feature_count,
2731 					      ffs_os_desc_callback entity,
2732 					      void *priv,
2733 					      struct usb_os_desc_header *h)
2734 {
2735 	int ret;
2736 	const unsigned _len = len;
2737 
2738 	/* loop over all ext compat/ext prop descriptors */
2739 	while (feature_count--) {
2740 		ret = entity(type, h, data, len, priv);
2741 		if (ret < 0) {
2742 			pr_debug("bad OS descriptor, type: %d\n", type);
2743 			return ret;
2744 		}
2745 		data += ret;
2746 		len -= ret;
2747 	}
2748 	return _len - len;
2749 }
2750 
2751 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2752 static int __must_check ffs_do_os_descs(unsigned count,
2753 					char *data, unsigned len,
2754 					ffs_os_desc_callback entity, void *priv)
2755 {
2756 	const unsigned _len = len;
2757 	unsigned long num = 0;
2758 
2759 	for (num = 0; num < count; ++num) {
2760 		int ret;
2761 		enum ffs_os_desc_type type;
2762 		u16 feature_count;
2763 		struct usb_os_desc_header *desc = (void *)data;
2764 
2765 		if (len < sizeof(*desc))
2766 			return -EINVAL;
2767 
2768 		/*
2769 		 * Record "descriptor" entity.
2770 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2771 		 * Move the data pointer to the beginning of extended
2772 		 * compatibilities proper or extended properties proper
2773 		 * portions of the data
2774 		 */
2775 		if (le32_to_cpu(desc->dwLength) > len)
2776 			return -EINVAL;
2777 
2778 		ret = __ffs_do_os_desc_header(&type, desc);
2779 		if (ret < 0) {
2780 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2781 				 num, ret);
2782 			return ret;
2783 		}
2784 		/*
2785 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2786 		 */
2787 		feature_count = le16_to_cpu(desc->wCount);
2788 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2789 		    (feature_count > 255 || desc->Reserved))
2790 				return -EINVAL;
2791 		len -= ret;
2792 		data += ret;
2793 
2794 		/*
2795 		 * Process all function/property descriptors
2796 		 * of this Feature Descriptor
2797 		 */
2798 		ret = ffs_do_single_os_desc(data, len, type,
2799 					    feature_count, entity, priv, desc);
2800 		if (ret < 0) {
2801 			pr_debug("%s returns %d\n", __func__, ret);
2802 			return ret;
2803 		}
2804 
2805 		len -= ret;
2806 		data += ret;
2807 	}
2808 	return _len - len;
2809 }
2810 
2811 /*
2812  * Validate contents of the buffer from userspace related to OS descriptors.
2813  */
2814 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2815 				 struct usb_os_desc_header *h, void *data,
2816 				 unsigned len, void *priv)
2817 {
2818 	struct ffs_data *ffs = priv;
2819 	u8 length;
2820 
2821 	switch (type) {
2822 	case FFS_OS_DESC_EXT_COMPAT: {
2823 		struct usb_ext_compat_desc *d = data;
2824 		int i;
2825 
2826 		if (len < sizeof(*d) ||
2827 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2828 			return -EINVAL;
2829 		if (d->Reserved1 != 1) {
2830 			/*
2831 			 * According to the spec, Reserved1 must be set to 1
2832 			 * but older kernels incorrectly rejected non-zero
2833 			 * values.  We fix it here to avoid returning EINVAL
2834 			 * in response to values we used to accept.
2835 			 */
2836 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2837 			d->Reserved1 = 1;
2838 		}
2839 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2840 			if (d->Reserved2[i])
2841 				return -EINVAL;
2842 
2843 		length = sizeof(struct usb_ext_compat_desc);
2844 	}
2845 		break;
2846 	case FFS_OS_DESC_EXT_PROP: {
2847 		struct usb_ext_prop_desc *d = data;
2848 		u32 type, pdl;
2849 		u16 pnl;
2850 
2851 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2852 			return -EINVAL;
2853 		length = le32_to_cpu(d->dwSize);
2854 		if (len < length)
2855 			return -EINVAL;
2856 		type = le32_to_cpu(d->dwPropertyDataType);
2857 		if (type < USB_EXT_PROP_UNICODE ||
2858 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2859 			pr_vdebug("unsupported os descriptor property type: %d",
2860 				  type);
2861 			return -EINVAL;
2862 		}
2863 		pnl = le16_to_cpu(d->wPropertyNameLength);
2864 		if (length < 14 + pnl) {
2865 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2866 				  length, pnl, type);
2867 			return -EINVAL;
2868 		}
2869 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2870 		if (length != 14 + pnl + pdl) {
2871 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2872 				  length, pnl, pdl, type);
2873 			return -EINVAL;
2874 		}
2875 		++ffs->ms_os_descs_ext_prop_count;
2876 		/* property name reported to the host as "WCHAR"s */
2877 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2878 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2879 	}
2880 		break;
2881 	default:
2882 		pr_vdebug("unknown descriptor: %d\n", type);
2883 		return -EINVAL;
2884 	}
2885 	return length;
2886 }
2887 
2888 static int __ffs_data_got_descs(struct ffs_data *ffs,
2889 				char *const _data, size_t len)
2890 {
2891 	char *data = _data, *raw_descs;
2892 	unsigned os_descs_count = 0, counts[3], flags;
2893 	int ret = -EINVAL, i;
2894 	struct ffs_desc_helper helper;
2895 
2896 	if (get_unaligned_le32(data + 4) != len)
2897 		goto error;
2898 
2899 	switch (get_unaligned_le32(data)) {
2900 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2901 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2902 		data += 8;
2903 		len  -= 8;
2904 		break;
2905 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2906 		flags = get_unaligned_le32(data + 8);
2907 		ffs->user_flags = flags;
2908 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2909 			      FUNCTIONFS_HAS_HS_DESC |
2910 			      FUNCTIONFS_HAS_SS_DESC |
2911 			      FUNCTIONFS_HAS_MS_OS_DESC |
2912 			      FUNCTIONFS_VIRTUAL_ADDR |
2913 			      FUNCTIONFS_EVENTFD |
2914 			      FUNCTIONFS_ALL_CTRL_RECIP |
2915 			      FUNCTIONFS_CONFIG0_SETUP)) {
2916 			ret = -ENOSYS;
2917 			goto error;
2918 		}
2919 		data += 12;
2920 		len  -= 12;
2921 		break;
2922 	default:
2923 		goto error;
2924 	}
2925 
2926 	if (flags & FUNCTIONFS_EVENTFD) {
2927 		if (len < 4)
2928 			goto error;
2929 		ffs->ffs_eventfd =
2930 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2931 		if (IS_ERR(ffs->ffs_eventfd)) {
2932 			ret = PTR_ERR(ffs->ffs_eventfd);
2933 			ffs->ffs_eventfd = NULL;
2934 			goto error;
2935 		}
2936 		data += 4;
2937 		len  -= 4;
2938 	}
2939 
2940 	/* Read fs_count, hs_count and ss_count (if present) */
2941 	for (i = 0; i < 3; ++i) {
2942 		if (!(flags & (1 << i))) {
2943 			counts[i] = 0;
2944 		} else if (len < 4) {
2945 			goto error;
2946 		} else {
2947 			counts[i] = get_unaligned_le32(data);
2948 			data += 4;
2949 			len  -= 4;
2950 		}
2951 	}
2952 	if (flags & (1 << i)) {
2953 		if (len < 4) {
2954 			goto error;
2955 		}
2956 		os_descs_count = get_unaligned_le32(data);
2957 		data += 4;
2958 		len -= 4;
2959 	}
2960 
2961 	/* Read descriptors */
2962 	raw_descs = data;
2963 	helper.ffs = ffs;
2964 	for (i = 0; i < 3; ++i) {
2965 		if (!counts[i])
2966 			continue;
2967 		helper.interfaces_count = 0;
2968 		helper.eps_count = 0;
2969 		ret = ffs_do_descs(counts[i], data, len,
2970 				   __ffs_data_do_entity, &helper);
2971 		if (ret < 0)
2972 			goto error;
2973 		if (!ffs->eps_count && !ffs->interfaces_count) {
2974 			ffs->eps_count = helper.eps_count;
2975 			ffs->interfaces_count = helper.interfaces_count;
2976 		} else {
2977 			if (ffs->eps_count != helper.eps_count) {
2978 				ret = -EINVAL;
2979 				goto error;
2980 			}
2981 			if (ffs->interfaces_count != helper.interfaces_count) {
2982 				ret = -EINVAL;
2983 				goto error;
2984 			}
2985 		}
2986 		data += ret;
2987 		len  -= ret;
2988 	}
2989 	if (os_descs_count) {
2990 		ret = ffs_do_os_descs(os_descs_count, data, len,
2991 				      __ffs_data_do_os_desc, ffs);
2992 		if (ret < 0)
2993 			goto error;
2994 		data += ret;
2995 		len -= ret;
2996 	}
2997 
2998 	if (raw_descs == data || len) {
2999 		ret = -EINVAL;
3000 		goto error;
3001 	}
3002 
3003 	ffs->raw_descs_data	= _data;
3004 	ffs->raw_descs		= raw_descs;
3005 	ffs->raw_descs_length	= data - raw_descs;
3006 	ffs->fs_descs_count	= counts[0];
3007 	ffs->hs_descs_count	= counts[1];
3008 	ffs->ss_descs_count	= counts[2];
3009 	ffs->ms_os_descs_count	= os_descs_count;
3010 
3011 	return 0;
3012 
3013 error:
3014 	kfree(_data);
3015 	return ret;
3016 }
3017 
3018 static int __ffs_data_got_strings(struct ffs_data *ffs,
3019 				  char *const _data, size_t len)
3020 {
3021 	u32 str_count, needed_count, lang_count;
3022 	struct usb_gadget_strings **stringtabs, *t;
3023 	const char *data = _data;
3024 	struct usb_string *s;
3025 
3026 	if (len < 16 ||
3027 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3028 	    get_unaligned_le32(data + 4) != len)
3029 		goto error;
3030 	str_count  = get_unaligned_le32(data + 8);
3031 	lang_count = get_unaligned_le32(data + 12);
3032 
3033 	/* if one is zero the other must be zero */
3034 	if (!str_count != !lang_count)
3035 		goto error;
3036 
3037 	/* Do we have at least as many strings as descriptors need? */
3038 	needed_count = ffs->strings_count;
3039 	if (str_count < needed_count)
3040 		goto error;
3041 
3042 	/*
3043 	 * If we don't need any strings just return and free all
3044 	 * memory.
3045 	 */
3046 	if (!needed_count) {
3047 		kfree(_data);
3048 		return 0;
3049 	}
3050 
3051 	/* Allocate everything in one chunk so there's less maintenance. */
3052 	{
3053 		unsigned i = 0;
3054 		vla_group(d);
3055 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3056 			size_add(lang_count, 1));
3057 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3058 		vla_item(d, struct usb_string, strings,
3059 			size_mul(lang_count, (needed_count + 1)));
3060 
3061 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3062 
3063 		if (!vlabuf) {
3064 			kfree(_data);
3065 			return -ENOMEM;
3066 		}
3067 
3068 		/* Initialize the VLA pointers */
3069 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3070 		t = vla_ptr(vlabuf, d, stringtab);
3071 		i = lang_count;
3072 		do {
3073 			*stringtabs++ = t++;
3074 		} while (--i);
3075 		*stringtabs = NULL;
3076 
3077 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3078 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3079 		t = vla_ptr(vlabuf, d, stringtab);
3080 		s = vla_ptr(vlabuf, d, strings);
3081 	}
3082 
3083 	/* For each language */
3084 	data += 16;
3085 	len -= 16;
3086 
3087 	do { /* lang_count > 0 so we can use do-while */
3088 		unsigned needed = needed_count;
3089 		u32 str_per_lang = str_count;
3090 
3091 		if (len < 3)
3092 			goto error_free;
3093 		t->language = get_unaligned_le16(data);
3094 		t->strings  = s;
3095 		++t;
3096 
3097 		data += 2;
3098 		len -= 2;
3099 
3100 		/* For each string */
3101 		do { /* str_count > 0 so we can use do-while */
3102 			size_t length = strnlen(data, len);
3103 
3104 			if (length == len)
3105 				goto error_free;
3106 
3107 			/*
3108 			 * User may provide more strings then we need,
3109 			 * if that's the case we simply ignore the
3110 			 * rest
3111 			 */
3112 			if (needed) {
3113 				/*
3114 				 * s->id will be set while adding
3115 				 * function to configuration so for
3116 				 * now just leave garbage here.
3117 				 */
3118 				s->s = data;
3119 				--needed;
3120 				++s;
3121 			}
3122 
3123 			data += length + 1;
3124 			len -= length + 1;
3125 		} while (--str_per_lang);
3126 
3127 		s->id = 0;   /* terminator */
3128 		s->s = NULL;
3129 		++s;
3130 
3131 	} while (--lang_count);
3132 
3133 	/* Some garbage left? */
3134 	if (len)
3135 		goto error_free;
3136 
3137 	/* Done! */
3138 	ffs->stringtabs = stringtabs;
3139 	ffs->raw_strings = _data;
3140 
3141 	return 0;
3142 
3143 error_free:
3144 	kfree(stringtabs);
3145 error:
3146 	kfree(_data);
3147 	return -EINVAL;
3148 }
3149 
3150 
3151 /* Events handling and management *******************************************/
3152 
3153 static void __ffs_event_add(struct ffs_data *ffs,
3154 			    enum usb_functionfs_event_type type)
3155 {
3156 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3157 	int neg = 0;
3158 
3159 	/*
3160 	 * Abort any unhandled setup
3161 	 *
3162 	 * We do not need to worry about some cmpxchg() changing value
3163 	 * of ffs->setup_state without holding the lock because when
3164 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3165 	 * the source does nothing.
3166 	 */
3167 	if (ffs->setup_state == FFS_SETUP_PENDING)
3168 		ffs->setup_state = FFS_SETUP_CANCELLED;
3169 
3170 	/*
3171 	 * Logic of this function guarantees that there are at most four pending
3172 	 * evens on ffs->ev.types queue.  This is important because the queue
3173 	 * has space for four elements only and __ffs_ep0_read_events function
3174 	 * depends on that limit as well.  If more event types are added, those
3175 	 * limits have to be revisited or guaranteed to still hold.
3176 	 */
3177 	switch (type) {
3178 	case FUNCTIONFS_RESUME:
3179 		rem_type2 = FUNCTIONFS_SUSPEND;
3180 		fallthrough;
3181 	case FUNCTIONFS_SUSPEND:
3182 	case FUNCTIONFS_SETUP:
3183 		rem_type1 = type;
3184 		/* Discard all similar events */
3185 		break;
3186 
3187 	case FUNCTIONFS_BIND:
3188 	case FUNCTIONFS_UNBIND:
3189 	case FUNCTIONFS_DISABLE:
3190 	case FUNCTIONFS_ENABLE:
3191 		/* Discard everything other then power management. */
3192 		rem_type1 = FUNCTIONFS_SUSPEND;
3193 		rem_type2 = FUNCTIONFS_RESUME;
3194 		neg = 1;
3195 		break;
3196 
3197 	default:
3198 		WARN(1, "%d: unknown event, this should not happen\n", type);
3199 		return;
3200 	}
3201 
3202 	{
3203 		u8 *ev  = ffs->ev.types, *out = ev;
3204 		unsigned n = ffs->ev.count;
3205 		for (; n; --n, ++ev)
3206 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3207 				*out++ = *ev;
3208 			else
3209 				pr_vdebug("purging event %d\n", *ev);
3210 		ffs->ev.count = out - ffs->ev.types;
3211 	}
3212 
3213 	pr_vdebug("adding event %d\n", type);
3214 	ffs->ev.types[ffs->ev.count++] = type;
3215 	wake_up_locked(&ffs->ev.waitq);
3216 	if (ffs->ffs_eventfd)
3217 		eventfd_signal(ffs->ffs_eventfd);
3218 }
3219 
3220 static void ffs_event_add(struct ffs_data *ffs,
3221 			  enum usb_functionfs_event_type type)
3222 {
3223 	unsigned long flags;
3224 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3225 	__ffs_event_add(ffs, type);
3226 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3227 }
3228 
3229 /* Bind/unbind USB function hooks *******************************************/
3230 
3231 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3232 {
3233 	int i;
3234 
3235 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3236 		if (ffs->eps_addrmap[i] == endpoint_address)
3237 			return i;
3238 	return -ENOENT;
3239 }
3240 
3241 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3242 				    struct usb_descriptor_header *desc,
3243 				    void *priv)
3244 {
3245 	struct usb_endpoint_descriptor *ds = (void *)desc;
3246 	struct ffs_function *func = priv;
3247 	struct ffs_ep *ffs_ep;
3248 	unsigned ep_desc_id;
3249 	int idx;
3250 	static const char *speed_names[] = { "full", "high", "super" };
3251 
3252 	if (type != FFS_DESCRIPTOR)
3253 		return 0;
3254 
3255 	/*
3256 	 * If ss_descriptors is not NULL, we are reading super speed
3257 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3258 	 * speed descriptors; otherwise, we are reading full speed
3259 	 * descriptors.
3260 	 */
3261 	if (func->function.ss_descriptors) {
3262 		ep_desc_id = 2;
3263 		func->function.ss_descriptors[(long)valuep] = desc;
3264 	} else if (func->function.hs_descriptors) {
3265 		ep_desc_id = 1;
3266 		func->function.hs_descriptors[(long)valuep] = desc;
3267 	} else {
3268 		ep_desc_id = 0;
3269 		func->function.fs_descriptors[(long)valuep]    = desc;
3270 	}
3271 
3272 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3273 		return 0;
3274 
3275 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3276 	if (idx < 0)
3277 		return idx;
3278 
3279 	ffs_ep = func->eps + idx;
3280 
3281 	if (ffs_ep->descs[ep_desc_id]) {
3282 		pr_err("two %sspeed descriptors for EP %d\n",
3283 			  speed_names[ep_desc_id],
3284 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3285 		return -EINVAL;
3286 	}
3287 	ffs_ep->descs[ep_desc_id] = ds;
3288 
3289 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3290 	if (ffs_ep->ep) {
3291 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3292 		if (!ds->wMaxPacketSize)
3293 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3294 	} else {
3295 		struct usb_request *req;
3296 		struct usb_ep *ep;
3297 		u8 bEndpointAddress;
3298 		u16 wMaxPacketSize;
3299 
3300 		/*
3301 		 * We back up bEndpointAddress because autoconfig overwrites
3302 		 * it with physical endpoint address.
3303 		 */
3304 		bEndpointAddress = ds->bEndpointAddress;
3305 		/*
3306 		 * We back up wMaxPacketSize because autoconfig treats
3307 		 * endpoint descriptors as if they were full speed.
3308 		 */
3309 		wMaxPacketSize = ds->wMaxPacketSize;
3310 		pr_vdebug("autoconfig\n");
3311 		ep = usb_ep_autoconfig(func->gadget, ds);
3312 		if (!ep)
3313 			return -ENOTSUPP;
3314 		ep->driver_data = func->eps + idx;
3315 
3316 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3317 		if (!req)
3318 			return -ENOMEM;
3319 
3320 		ffs_ep->ep  = ep;
3321 		ffs_ep->req = req;
3322 		func->eps_revmap[ds->bEndpointAddress &
3323 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3324 		/*
3325 		 * If we use virtual address mapping, we restore
3326 		 * original bEndpointAddress value.
3327 		 */
3328 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3329 			ds->bEndpointAddress = bEndpointAddress;
3330 		/*
3331 		 * Restore wMaxPacketSize which was potentially
3332 		 * overwritten by autoconfig.
3333 		 */
3334 		ds->wMaxPacketSize = wMaxPacketSize;
3335 	}
3336 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3337 
3338 	return 0;
3339 }
3340 
3341 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3342 				   struct usb_descriptor_header *desc,
3343 				   void *priv)
3344 {
3345 	struct ffs_function *func = priv;
3346 	unsigned idx;
3347 	u8 newValue;
3348 
3349 	switch (type) {
3350 	default:
3351 	case FFS_DESCRIPTOR:
3352 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3353 		return 0;
3354 
3355 	case FFS_INTERFACE:
3356 		idx = *valuep;
3357 		if (func->interfaces_nums[idx] < 0) {
3358 			int id = usb_interface_id(func->conf, &func->function);
3359 			if (id < 0)
3360 				return id;
3361 			func->interfaces_nums[idx] = id;
3362 		}
3363 		newValue = func->interfaces_nums[idx];
3364 		break;
3365 
3366 	case FFS_STRING:
3367 		/* String' IDs are allocated when fsf_data is bound to cdev */
3368 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3369 		break;
3370 
3371 	case FFS_ENDPOINT:
3372 		/*
3373 		 * USB_DT_ENDPOINT are handled in
3374 		 * __ffs_func_bind_do_descs().
3375 		 */
3376 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3377 			return 0;
3378 
3379 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3380 		if (!func->eps[idx].ep)
3381 			return -EINVAL;
3382 
3383 		{
3384 			struct usb_endpoint_descriptor **descs;
3385 			descs = func->eps[idx].descs;
3386 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3387 		}
3388 		break;
3389 	}
3390 
3391 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3392 	*valuep = newValue;
3393 	return 0;
3394 }
3395 
3396 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3397 				      struct usb_os_desc_header *h, void *data,
3398 				      unsigned len, void *priv)
3399 {
3400 	struct ffs_function *func = priv;
3401 	u8 length = 0;
3402 
3403 	switch (type) {
3404 	case FFS_OS_DESC_EXT_COMPAT: {
3405 		struct usb_ext_compat_desc *desc = data;
3406 		struct usb_os_desc_table *t;
3407 
3408 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3409 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3410 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3411 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3412 		length = sizeof(*desc);
3413 	}
3414 		break;
3415 	case FFS_OS_DESC_EXT_PROP: {
3416 		struct usb_ext_prop_desc *desc = data;
3417 		struct usb_os_desc_table *t;
3418 		struct usb_os_desc_ext_prop *ext_prop;
3419 		char *ext_prop_name;
3420 		char *ext_prop_data;
3421 
3422 		t = &func->function.os_desc_table[h->interface];
3423 		t->if_id = func->interfaces_nums[h->interface];
3424 
3425 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3426 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3427 
3428 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3429 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3430 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3431 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3432 		length = ext_prop->name_len + ext_prop->data_len + 14;
3433 
3434 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3435 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3436 			ext_prop->name_len;
3437 
3438 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3439 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3440 			ext_prop->data_len;
3441 		memcpy(ext_prop_data,
3442 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3443 		       ext_prop->data_len);
3444 		/* unicode data reported to the host as "WCHAR"s */
3445 		switch (ext_prop->type) {
3446 		case USB_EXT_PROP_UNICODE:
3447 		case USB_EXT_PROP_UNICODE_ENV:
3448 		case USB_EXT_PROP_UNICODE_LINK:
3449 		case USB_EXT_PROP_UNICODE_MULTI:
3450 			ext_prop->data_len *= 2;
3451 			break;
3452 		}
3453 		ext_prop->data = ext_prop_data;
3454 
3455 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3456 		       ext_prop->name_len);
3457 		/* property name reported to the host as "WCHAR"s */
3458 		ext_prop->name_len *= 2;
3459 		ext_prop->name = ext_prop_name;
3460 
3461 		t->os_desc->ext_prop_len +=
3462 			ext_prop->name_len + ext_prop->data_len + 14;
3463 		++t->os_desc->ext_prop_count;
3464 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3465 	}
3466 		break;
3467 	default:
3468 		pr_vdebug("unknown descriptor: %d\n", type);
3469 	}
3470 
3471 	return length;
3472 }
3473 
3474 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3475 						struct usb_configuration *c)
3476 {
3477 	struct ffs_function *func = ffs_func_from_usb(f);
3478 	struct f_fs_opts *ffs_opts =
3479 		container_of(f->fi, struct f_fs_opts, func_inst);
3480 	struct ffs_data *ffs_data;
3481 	int ret;
3482 
3483 	/*
3484 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3485 	 * which already uses locking; taking the same lock here would
3486 	 * cause a deadlock.
3487 	 *
3488 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3489 	 */
3490 	if (!ffs_opts->no_configfs)
3491 		ffs_dev_lock();
3492 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3493 	ffs_data = ffs_opts->dev->ffs_data;
3494 	if (!ffs_opts->no_configfs)
3495 		ffs_dev_unlock();
3496 	if (ret)
3497 		return ERR_PTR(ret);
3498 
3499 	func->ffs = ffs_data;
3500 	func->conf = c;
3501 	func->gadget = c->cdev->gadget;
3502 
3503 	/*
3504 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3505 	 * configurations are bound in sequence with list_for_each_entry,
3506 	 * in each configuration its functions are bound in sequence
3507 	 * with list_for_each_entry, so we assume no race condition
3508 	 * with regard to ffs_opts->bound access
3509 	 */
3510 	if (!ffs_opts->refcnt) {
3511 		ret = functionfs_bind(func->ffs, c->cdev);
3512 		if (ret)
3513 			return ERR_PTR(ret);
3514 	}
3515 	ffs_opts->refcnt++;
3516 	func->function.strings = func->ffs->stringtabs;
3517 
3518 	return ffs_opts;
3519 }
3520 
3521 static int _ffs_func_bind(struct usb_configuration *c,
3522 			  struct usb_function *f)
3523 {
3524 	struct ffs_function *func = ffs_func_from_usb(f);
3525 	struct ffs_data *ffs = func->ffs;
3526 
3527 	const int full = !!func->ffs->fs_descs_count;
3528 	const int high = !!func->ffs->hs_descs_count;
3529 	const int super = !!func->ffs->ss_descs_count;
3530 
3531 	int fs_len, hs_len, ss_len, ret, i;
3532 	struct ffs_ep *eps_ptr;
3533 
3534 	/* Make it a single chunk, less management later on */
3535 	vla_group(d);
3536 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3537 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3538 		full ? ffs->fs_descs_count + 1 : 0);
3539 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3540 		high ? ffs->hs_descs_count + 1 : 0);
3541 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3542 		super ? ffs->ss_descs_count + 1 : 0);
3543 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3544 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3545 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3546 	vla_item_with_sz(d, char[16], ext_compat,
3547 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3548 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3549 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3550 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3551 			 ffs->ms_os_descs_ext_prop_count);
3552 	vla_item_with_sz(d, char, ext_prop_name,
3553 			 ffs->ms_os_descs_ext_prop_name_len);
3554 	vla_item_with_sz(d, char, ext_prop_data,
3555 			 ffs->ms_os_descs_ext_prop_data_len);
3556 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3557 	char *vlabuf;
3558 
3559 	/* Has descriptors only for speeds gadget does not support */
3560 	if (!(full | high | super))
3561 		return -ENOTSUPP;
3562 
3563 	/* Allocate a single chunk, less management later on */
3564 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3565 	if (!vlabuf)
3566 		return -ENOMEM;
3567 
3568 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3569 	ffs->ms_os_descs_ext_prop_name_avail =
3570 		vla_ptr(vlabuf, d, ext_prop_name);
3571 	ffs->ms_os_descs_ext_prop_data_avail =
3572 		vla_ptr(vlabuf, d, ext_prop_data);
3573 
3574 	/* Copy descriptors  */
3575 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3576 	       ffs->raw_descs_length);
3577 
3578 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3579 	eps_ptr = vla_ptr(vlabuf, d, eps);
3580 	for (i = 0; i < ffs->eps_count; i++)
3581 		eps_ptr[i].num = -1;
3582 
3583 	/* Save pointers
3584 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3585 	*/
3586 	func->eps             = vla_ptr(vlabuf, d, eps);
3587 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3588 
3589 	/*
3590 	 * Go through all the endpoint descriptors and allocate
3591 	 * endpoints first, so that later we can rewrite the endpoint
3592 	 * numbers without worrying that it may be described later on.
3593 	 */
3594 	if (full) {
3595 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3596 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3597 				      vla_ptr(vlabuf, d, raw_descs),
3598 				      d_raw_descs__sz,
3599 				      __ffs_func_bind_do_descs, func);
3600 		if (fs_len < 0) {
3601 			ret = fs_len;
3602 			goto error;
3603 		}
3604 	} else {
3605 		fs_len = 0;
3606 	}
3607 
3608 	if (high) {
3609 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3610 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3611 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3612 				      d_raw_descs__sz - fs_len,
3613 				      __ffs_func_bind_do_descs, func);
3614 		if (hs_len < 0) {
3615 			ret = hs_len;
3616 			goto error;
3617 		}
3618 	} else {
3619 		hs_len = 0;
3620 	}
3621 
3622 	if (super) {
3623 		func->function.ss_descriptors = func->function.ssp_descriptors =
3624 			vla_ptr(vlabuf, d, ss_descs);
3625 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3626 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3627 				d_raw_descs__sz - fs_len - hs_len,
3628 				__ffs_func_bind_do_descs, func);
3629 		if (ss_len < 0) {
3630 			ret = ss_len;
3631 			goto error;
3632 		}
3633 	} else {
3634 		ss_len = 0;
3635 	}
3636 
3637 	/*
3638 	 * Now handle interface numbers allocation and interface and
3639 	 * endpoint numbers rewriting.  We can do that in one go
3640 	 * now.
3641 	 */
3642 	ret = ffs_do_descs(ffs->fs_descs_count +
3643 			   (high ? ffs->hs_descs_count : 0) +
3644 			   (super ? ffs->ss_descs_count : 0),
3645 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3646 			   __ffs_func_bind_do_nums, func);
3647 	if (ret < 0)
3648 		goto error;
3649 
3650 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3651 	if (c->cdev->use_os_string) {
3652 		for (i = 0; i < ffs->interfaces_count; ++i) {
3653 			struct usb_os_desc *desc;
3654 
3655 			desc = func->function.os_desc_table[i].os_desc =
3656 				vla_ptr(vlabuf, d, os_desc) +
3657 				i * sizeof(struct usb_os_desc);
3658 			desc->ext_compat_id =
3659 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3660 			INIT_LIST_HEAD(&desc->ext_prop);
3661 		}
3662 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3663 				      vla_ptr(vlabuf, d, raw_descs) +
3664 				      fs_len + hs_len + ss_len,
3665 				      d_raw_descs__sz - fs_len - hs_len -
3666 				      ss_len,
3667 				      __ffs_func_bind_do_os_desc, func);
3668 		if (ret < 0)
3669 			goto error;
3670 	}
3671 	func->function.os_desc_n =
3672 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3673 
3674 	/* And we're done */
3675 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3676 	return 0;
3677 
3678 error:
3679 	/* XXX Do we need to release all claimed endpoints here? */
3680 	return ret;
3681 }
3682 
3683 static int ffs_func_bind(struct usb_configuration *c,
3684 			 struct usb_function *f)
3685 {
3686 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3687 	struct ffs_function *func = ffs_func_from_usb(f);
3688 	int ret;
3689 
3690 	if (IS_ERR(ffs_opts))
3691 		return PTR_ERR(ffs_opts);
3692 
3693 	ret = _ffs_func_bind(c, f);
3694 	if (ret && !--ffs_opts->refcnt)
3695 		functionfs_unbind(func->ffs);
3696 
3697 	return ret;
3698 }
3699 
3700 
3701 /* Other USB function hooks *************************************************/
3702 
3703 static void ffs_reset_work(struct work_struct *work)
3704 {
3705 	struct ffs_data *ffs = container_of(work,
3706 		struct ffs_data, reset_work);
3707 	ffs_data_reset(ffs);
3708 }
3709 
3710 static int ffs_func_set_alt(struct usb_function *f,
3711 			    unsigned interface, unsigned alt)
3712 {
3713 	struct ffs_function *func = ffs_func_from_usb(f);
3714 	struct ffs_data *ffs = func->ffs;
3715 	int ret = 0, intf;
3716 
3717 	if (alt != (unsigned)-1) {
3718 		intf = ffs_func_revmap_intf(func, interface);
3719 		if (intf < 0)
3720 			return intf;
3721 	}
3722 
3723 	if (ffs->func)
3724 		ffs_func_eps_disable(ffs->func);
3725 
3726 	if (ffs->state == FFS_DEACTIVATED) {
3727 		ffs->state = FFS_CLOSING;
3728 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3729 		schedule_work(&ffs->reset_work);
3730 		return -ENODEV;
3731 	}
3732 
3733 	if (ffs->state != FFS_ACTIVE)
3734 		return -ENODEV;
3735 
3736 	if (alt == (unsigned)-1) {
3737 		ffs->func = NULL;
3738 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3739 		return 0;
3740 	}
3741 
3742 	ffs->func = func;
3743 	ret = ffs_func_eps_enable(func);
3744 	if (ret >= 0)
3745 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3746 	return ret;
3747 }
3748 
3749 static void ffs_func_disable(struct usb_function *f)
3750 {
3751 	ffs_func_set_alt(f, 0, (unsigned)-1);
3752 }
3753 
3754 static int ffs_func_setup(struct usb_function *f,
3755 			  const struct usb_ctrlrequest *creq)
3756 {
3757 	struct ffs_function *func = ffs_func_from_usb(f);
3758 	struct ffs_data *ffs = func->ffs;
3759 	unsigned long flags;
3760 	int ret;
3761 
3762 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3763 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3764 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3765 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3766 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3767 
3768 	/*
3769 	 * Most requests directed to interface go through here
3770 	 * (notable exceptions are set/get interface) so we need to
3771 	 * handle them.  All other either handled by composite or
3772 	 * passed to usb_configuration->setup() (if one is set).  No
3773 	 * matter, we will handle requests directed to endpoint here
3774 	 * as well (as it's straightforward).  Other request recipient
3775 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3776 	 * is being used.
3777 	 */
3778 	if (ffs->state != FFS_ACTIVE)
3779 		return -ENODEV;
3780 
3781 	switch (creq->bRequestType & USB_RECIP_MASK) {
3782 	case USB_RECIP_INTERFACE:
3783 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3784 		if (ret < 0)
3785 			return ret;
3786 		break;
3787 
3788 	case USB_RECIP_ENDPOINT:
3789 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3790 		if (ret < 0)
3791 			return ret;
3792 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3793 			ret = func->ffs->eps_addrmap[ret];
3794 		break;
3795 
3796 	default:
3797 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3798 			ret = le16_to_cpu(creq->wIndex);
3799 		else
3800 			return -EOPNOTSUPP;
3801 	}
3802 
3803 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3804 	ffs->ev.setup = *creq;
3805 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3806 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3807 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3808 
3809 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3810 }
3811 
3812 static bool ffs_func_req_match(struct usb_function *f,
3813 			       const struct usb_ctrlrequest *creq,
3814 			       bool config0)
3815 {
3816 	struct ffs_function *func = ffs_func_from_usb(f);
3817 
3818 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3819 		return false;
3820 
3821 	switch (creq->bRequestType & USB_RECIP_MASK) {
3822 	case USB_RECIP_INTERFACE:
3823 		return (ffs_func_revmap_intf(func,
3824 					     le16_to_cpu(creq->wIndex)) >= 0);
3825 	case USB_RECIP_ENDPOINT:
3826 		return (ffs_func_revmap_ep(func,
3827 					   le16_to_cpu(creq->wIndex)) >= 0);
3828 	default:
3829 		return (bool) (func->ffs->user_flags &
3830 			       FUNCTIONFS_ALL_CTRL_RECIP);
3831 	}
3832 }
3833 
3834 static void ffs_func_suspend(struct usb_function *f)
3835 {
3836 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3837 }
3838 
3839 static void ffs_func_resume(struct usb_function *f)
3840 {
3841 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3842 }
3843 
3844 
3845 /* Endpoint and interface numbers reverse mapping ***************************/
3846 
3847 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3848 {
3849 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3850 	return num ? num : -EDOM;
3851 }
3852 
3853 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3854 {
3855 	short *nums = func->interfaces_nums;
3856 	unsigned count = func->ffs->interfaces_count;
3857 
3858 	for (; count; --count, ++nums) {
3859 		if (*nums >= 0 && *nums == intf)
3860 			return nums - func->interfaces_nums;
3861 	}
3862 
3863 	return -EDOM;
3864 }
3865 
3866 
3867 /* Devices management *******************************************************/
3868 
3869 static LIST_HEAD(ffs_devices);
3870 
3871 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3872 {
3873 	struct ffs_dev *dev;
3874 
3875 	if (!name)
3876 		return NULL;
3877 
3878 	list_for_each_entry(dev, &ffs_devices, entry) {
3879 		if (strcmp(dev->name, name) == 0)
3880 			return dev;
3881 	}
3882 
3883 	return NULL;
3884 }
3885 
3886 /*
3887  * ffs_lock must be taken by the caller of this function
3888  */
3889 static struct ffs_dev *_ffs_get_single_dev(void)
3890 {
3891 	struct ffs_dev *dev;
3892 
3893 	if (list_is_singular(&ffs_devices)) {
3894 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3895 		if (dev->single)
3896 			return dev;
3897 	}
3898 
3899 	return NULL;
3900 }
3901 
3902 /*
3903  * ffs_lock must be taken by the caller of this function
3904  */
3905 static struct ffs_dev *_ffs_find_dev(const char *name)
3906 {
3907 	struct ffs_dev *dev;
3908 
3909 	dev = _ffs_get_single_dev();
3910 	if (dev)
3911 		return dev;
3912 
3913 	return _ffs_do_find_dev(name);
3914 }
3915 
3916 /* Configfs support *********************************************************/
3917 
3918 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3919 {
3920 	return container_of(to_config_group(item), struct f_fs_opts,
3921 			    func_inst.group);
3922 }
3923 
3924 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3925 {
3926 	struct f_fs_opts *opts = to_ffs_opts(item);
3927 	int ready;
3928 
3929 	ffs_dev_lock();
3930 	ready = opts->dev->desc_ready;
3931 	ffs_dev_unlock();
3932 
3933 	return sprintf(page, "%d\n", ready);
3934 }
3935 
3936 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3937 
3938 static struct configfs_attribute *ffs_attrs[] = {
3939 	&f_fs_opts_attr_ready,
3940 	NULL,
3941 };
3942 
3943 static void ffs_attr_release(struct config_item *item)
3944 {
3945 	struct f_fs_opts *opts = to_ffs_opts(item);
3946 
3947 	usb_put_function_instance(&opts->func_inst);
3948 }
3949 
3950 static struct configfs_item_operations ffs_item_ops = {
3951 	.release	= ffs_attr_release,
3952 };
3953 
3954 static const struct config_item_type ffs_func_type = {
3955 	.ct_item_ops	= &ffs_item_ops,
3956 	.ct_attrs	= ffs_attrs,
3957 	.ct_owner	= THIS_MODULE,
3958 };
3959 
3960 
3961 /* Function registration interface ******************************************/
3962 
3963 static void ffs_free_inst(struct usb_function_instance *f)
3964 {
3965 	struct f_fs_opts *opts;
3966 
3967 	opts = to_f_fs_opts(f);
3968 	ffs_release_dev(opts->dev);
3969 	ffs_dev_lock();
3970 	_ffs_free_dev(opts->dev);
3971 	ffs_dev_unlock();
3972 	kfree(opts);
3973 }
3974 
3975 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3976 {
3977 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3978 		return -ENAMETOOLONG;
3979 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3980 }
3981 
3982 static struct usb_function_instance *ffs_alloc_inst(void)
3983 {
3984 	struct f_fs_opts *opts;
3985 	struct ffs_dev *dev;
3986 
3987 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3988 	if (!opts)
3989 		return ERR_PTR(-ENOMEM);
3990 
3991 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3992 	opts->func_inst.free_func_inst = ffs_free_inst;
3993 	ffs_dev_lock();
3994 	dev = _ffs_alloc_dev();
3995 	ffs_dev_unlock();
3996 	if (IS_ERR(dev)) {
3997 		kfree(opts);
3998 		return ERR_CAST(dev);
3999 	}
4000 	opts->dev = dev;
4001 	dev->opts = opts;
4002 
4003 	config_group_init_type_name(&opts->func_inst.group, "",
4004 				    &ffs_func_type);
4005 	return &opts->func_inst;
4006 }
4007 
4008 static void ffs_free(struct usb_function *f)
4009 {
4010 	kfree(ffs_func_from_usb(f));
4011 }
4012 
4013 static void ffs_func_unbind(struct usb_configuration *c,
4014 			    struct usb_function *f)
4015 {
4016 	struct ffs_function *func = ffs_func_from_usb(f);
4017 	struct ffs_data *ffs = func->ffs;
4018 	struct f_fs_opts *opts =
4019 		container_of(f->fi, struct f_fs_opts, func_inst);
4020 	struct ffs_ep *ep = func->eps;
4021 	unsigned count = ffs->eps_count;
4022 	unsigned long flags;
4023 
4024 	if (ffs->func == func) {
4025 		ffs_func_eps_disable(func);
4026 		ffs->func = NULL;
4027 	}
4028 
4029 	/* Drain any pending AIO completions */
4030 	drain_workqueue(ffs->io_completion_wq);
4031 
4032 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4033 	if (!--opts->refcnt)
4034 		functionfs_unbind(ffs);
4035 
4036 	/* cleanup after autoconfig */
4037 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4038 	while (count--) {
4039 		if (ep->ep && ep->req)
4040 			usb_ep_free_request(ep->ep, ep->req);
4041 		ep->req = NULL;
4042 		++ep;
4043 	}
4044 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4045 	kfree(func->eps);
4046 	func->eps = NULL;
4047 	/*
4048 	 * eps, descriptors and interfaces_nums are allocated in the
4049 	 * same chunk so only one free is required.
4050 	 */
4051 	func->function.fs_descriptors = NULL;
4052 	func->function.hs_descriptors = NULL;
4053 	func->function.ss_descriptors = NULL;
4054 	func->function.ssp_descriptors = NULL;
4055 	func->interfaces_nums = NULL;
4056 
4057 }
4058 
4059 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4060 {
4061 	struct ffs_function *func;
4062 
4063 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4064 	if (!func)
4065 		return ERR_PTR(-ENOMEM);
4066 
4067 	func->function.name    = "Function FS Gadget";
4068 
4069 	func->function.bind    = ffs_func_bind;
4070 	func->function.unbind  = ffs_func_unbind;
4071 	func->function.set_alt = ffs_func_set_alt;
4072 	func->function.disable = ffs_func_disable;
4073 	func->function.setup   = ffs_func_setup;
4074 	func->function.req_match = ffs_func_req_match;
4075 	func->function.suspend = ffs_func_suspend;
4076 	func->function.resume  = ffs_func_resume;
4077 	func->function.free_func = ffs_free;
4078 
4079 	return &func->function;
4080 }
4081 
4082 /*
4083  * ffs_lock must be taken by the caller of this function
4084  */
4085 static struct ffs_dev *_ffs_alloc_dev(void)
4086 {
4087 	struct ffs_dev *dev;
4088 	int ret;
4089 
4090 	if (_ffs_get_single_dev())
4091 			return ERR_PTR(-EBUSY);
4092 
4093 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4094 	if (!dev)
4095 		return ERR_PTR(-ENOMEM);
4096 
4097 	if (list_empty(&ffs_devices)) {
4098 		ret = functionfs_init();
4099 		if (ret) {
4100 			kfree(dev);
4101 			return ERR_PTR(ret);
4102 		}
4103 	}
4104 
4105 	list_add(&dev->entry, &ffs_devices);
4106 
4107 	return dev;
4108 }
4109 
4110 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4111 {
4112 	struct ffs_dev *existing;
4113 	int ret = 0;
4114 
4115 	ffs_dev_lock();
4116 
4117 	existing = _ffs_do_find_dev(name);
4118 	if (!existing)
4119 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4120 	else if (existing != dev)
4121 		ret = -EBUSY;
4122 
4123 	ffs_dev_unlock();
4124 
4125 	return ret;
4126 }
4127 EXPORT_SYMBOL_GPL(ffs_name_dev);
4128 
4129 int ffs_single_dev(struct ffs_dev *dev)
4130 {
4131 	int ret;
4132 
4133 	ret = 0;
4134 	ffs_dev_lock();
4135 
4136 	if (!list_is_singular(&ffs_devices))
4137 		ret = -EBUSY;
4138 	else
4139 		dev->single = true;
4140 
4141 	ffs_dev_unlock();
4142 	return ret;
4143 }
4144 EXPORT_SYMBOL_GPL(ffs_single_dev);
4145 
4146 /*
4147  * ffs_lock must be taken by the caller of this function
4148  */
4149 static void _ffs_free_dev(struct ffs_dev *dev)
4150 {
4151 	list_del(&dev->entry);
4152 
4153 	kfree(dev);
4154 	if (list_empty(&ffs_devices))
4155 		functionfs_cleanup();
4156 }
4157 
4158 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4159 {
4160 	int ret = 0;
4161 	struct ffs_dev *ffs_dev;
4162 
4163 	ffs_dev_lock();
4164 
4165 	ffs_dev = _ffs_find_dev(dev_name);
4166 	if (!ffs_dev) {
4167 		ret = -ENOENT;
4168 	} else if (ffs_dev->mounted) {
4169 		ret = -EBUSY;
4170 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4171 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4172 		ret = -ENOENT;
4173 	} else {
4174 		ffs_dev->mounted = true;
4175 		ffs_dev->ffs_data = ffs_data;
4176 		ffs_data->private_data = ffs_dev;
4177 	}
4178 
4179 	ffs_dev_unlock();
4180 	return ret;
4181 }
4182 
4183 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4184 {
4185 	ffs_dev_lock();
4186 
4187 	if (ffs_dev && ffs_dev->mounted) {
4188 		ffs_dev->mounted = false;
4189 		if (ffs_dev->ffs_data) {
4190 			ffs_dev->ffs_data->private_data = NULL;
4191 			ffs_dev->ffs_data = NULL;
4192 		}
4193 
4194 		if (ffs_dev->ffs_release_dev_callback)
4195 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4196 	}
4197 
4198 	ffs_dev_unlock();
4199 }
4200 
4201 static int ffs_ready(struct ffs_data *ffs)
4202 {
4203 	struct ffs_dev *ffs_obj;
4204 	int ret = 0;
4205 
4206 	ffs_dev_lock();
4207 
4208 	ffs_obj = ffs->private_data;
4209 	if (!ffs_obj) {
4210 		ret = -EINVAL;
4211 		goto done;
4212 	}
4213 	if (WARN_ON(ffs_obj->desc_ready)) {
4214 		ret = -EBUSY;
4215 		goto done;
4216 	}
4217 
4218 	ffs_obj->desc_ready = true;
4219 
4220 	if (ffs_obj->ffs_ready_callback) {
4221 		ret = ffs_obj->ffs_ready_callback(ffs);
4222 		if (ret)
4223 			goto done;
4224 	}
4225 
4226 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4227 done:
4228 	ffs_dev_unlock();
4229 	return ret;
4230 }
4231 
4232 static void ffs_closed(struct ffs_data *ffs)
4233 {
4234 	struct ffs_dev *ffs_obj;
4235 	struct f_fs_opts *opts;
4236 	struct config_item *ci;
4237 
4238 	ffs_dev_lock();
4239 
4240 	ffs_obj = ffs->private_data;
4241 	if (!ffs_obj)
4242 		goto done;
4243 
4244 	ffs_obj->desc_ready = false;
4245 
4246 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4247 	    ffs_obj->ffs_closed_callback)
4248 		ffs_obj->ffs_closed_callback(ffs);
4249 
4250 	if (ffs_obj->opts)
4251 		opts = ffs_obj->opts;
4252 	else
4253 		goto done;
4254 
4255 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4256 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4257 		goto done;
4258 
4259 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4260 	ffs_dev_unlock();
4261 
4262 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4263 		unregister_gadget_item(ci);
4264 	return;
4265 done:
4266 	ffs_dev_unlock();
4267 }
4268 
4269 /* Misc helper functions ****************************************************/
4270 
4271 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4272 {
4273 	return nonblock
4274 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4275 		: mutex_lock_interruptible(mutex);
4276 }
4277 
4278 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4279 {
4280 	char *data;
4281 
4282 	if (!len)
4283 		return NULL;
4284 
4285 	data = memdup_user(buf, len);
4286 	if (IS_ERR(data))
4287 		return data;
4288 
4289 	pr_vdebug("Buffer from user space:\n");
4290 	ffs_dump_mem("", data, len);
4291 
4292 	return data;
4293 }
4294 
4295 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4296 MODULE_LICENSE("GPL");
4297 MODULE_AUTHOR("Michal Nazarewicz");
4298