xref: /linux/drivers/usb/gadget/function/f_fs.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <asm/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 
37 #include <linux/aio.h>
38 #include <linux/kthread.h>
39 #include <linux/poll.h>
40 #include <linux/eventfd.h>
41 
42 #include "u_fs.h"
43 #include "u_f.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 
49 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
50 
51 MODULE_IMPORT_NS(DMA_BUF);
52 
53 /* Reference counter handling */
54 static void ffs_data_get(struct ffs_data *ffs);
55 static void ffs_data_put(struct ffs_data *ffs);
56 /* Creates new ffs_data object. */
57 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
58 	__attribute__((malloc));
59 
60 /* Opened counter handling. */
61 static void ffs_data_opened(struct ffs_data *ffs);
62 static void ffs_data_closed(struct ffs_data *ffs);
63 
64 /* Called with ffs->mutex held; take over ownership of data. */
65 static int __must_check
66 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
67 static int __must_check
68 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
69 
70 
71 /* The function structure ***************************************************/
72 
73 struct ffs_ep;
74 
75 struct ffs_function {
76 	struct usb_configuration	*conf;
77 	struct usb_gadget		*gadget;
78 	struct ffs_data			*ffs;
79 
80 	struct ffs_ep			*eps;
81 	u8				eps_revmap[16];
82 	short				*interfaces_nums;
83 
84 	struct usb_function		function;
85 };
86 
87 
88 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
89 {
90 	return container_of(f, struct ffs_function, function);
91 }
92 
93 
94 static inline enum ffs_setup_state
95 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
96 {
97 	return (enum ffs_setup_state)
98 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
99 }
100 
101 
102 static void ffs_func_eps_disable(struct ffs_function *func);
103 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
104 
105 static int ffs_func_bind(struct usb_configuration *,
106 			 struct usb_function *);
107 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
108 static void ffs_func_disable(struct usb_function *);
109 static int ffs_func_setup(struct usb_function *,
110 			  const struct usb_ctrlrequest *);
111 static bool ffs_func_req_match(struct usb_function *,
112 			       const struct usb_ctrlrequest *,
113 			       bool config0);
114 static void ffs_func_suspend(struct usb_function *);
115 static void ffs_func_resume(struct usb_function *);
116 
117 
118 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
119 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
120 
121 
122 /* The endpoints structures *************************************************/
123 
124 struct ffs_ep {
125 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
126 	struct usb_request		*req;	/* P: epfile->mutex */
127 
128 	/* [0]: full speed, [1]: high speed, [2]: super speed */
129 	struct usb_endpoint_descriptor	*descs[3];
130 
131 	u8				num;
132 };
133 
134 struct ffs_dmabuf_priv {
135 	struct list_head entry;
136 	struct kref ref;
137 	struct ffs_data *ffs;
138 	struct dma_buf_attachment *attach;
139 	struct sg_table *sgt;
140 	enum dma_data_direction dir;
141 	spinlock_t lock;
142 	u64 context;
143 	struct usb_request *req;	/* P: ffs->eps_lock */
144 	struct usb_ep *ep;		/* P: ffs->eps_lock */
145 };
146 
147 struct ffs_dma_fence {
148 	struct dma_fence base;
149 	struct ffs_dmabuf_priv *priv;
150 	struct work_struct work;
151 };
152 
153 struct ffs_epfile {
154 	/* Protects ep->ep and ep->req. */
155 	struct mutex			mutex;
156 
157 	struct ffs_data			*ffs;
158 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
159 
160 	struct dentry			*dentry;
161 
162 	/*
163 	 * Buffer for holding data from partial reads which may happen since
164 	 * we’re rounding user read requests to a multiple of a max packet size.
165 	 *
166 	 * The pointer is initialised with NULL value and may be set by
167 	 * __ffs_epfile_read_data function to point to a temporary buffer.
168 	 *
169 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
170 	 * data from said buffer and eventually free it.  Importantly, while the
171 	 * function is using the buffer, it sets the pointer to NULL.  This is
172 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
173 	 * can never run concurrently (they are synchronised by epfile->mutex)
174 	 * so the latter will not assign a new value to the pointer.
175 	 *
176 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
177 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
178 	 * value is crux of the synchronisation between ffs_func_eps_disable and
179 	 * __ffs_epfile_read_data.
180 	 *
181 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
182 	 * pointer back to its old value (as described above), but seeing as the
183 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
184 	 * the buffer.
185 	 *
186 	 * == State transitions ==
187 	 *
188 	 * • ptr == NULL:  (initial state)
189 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
190 	 *   ◦ __ffs_epfile_read_buffered:    nop
191 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
192 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
193 	 * • ptr == DROP:
194 	 *   ◦ __ffs_epfile_read_buffer_free: nop
195 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
196 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
197 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
198 	 * • ptr == buf:
199 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
200 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
201 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
202 	 *                                    is always called first
203 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
204 	 * • ptr == NULL and reading:
205 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
206 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
207 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
208 	 *   ◦ reading finishes and …
209 	 *     … all data read:               free buf, go to ptr == NULL
210 	 *     … otherwise:                   go to ptr == buf and reading
211 	 * • ptr == DROP and reading:
212 	 *   ◦ __ffs_epfile_read_buffer_free: nop
213 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
214 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
215 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
216 	 */
217 	struct ffs_buffer		*read_buffer;
218 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
219 
220 	char				name[5];
221 
222 	unsigned char			in;	/* P: ffs->eps_lock */
223 	unsigned char			isoc;	/* P: ffs->eps_lock */
224 
225 	unsigned char			_pad;
226 
227 	/* Protects dmabufs */
228 	struct mutex			dmabufs_mutex;
229 	struct list_head		dmabufs; /* P: dmabufs_mutex */
230 	atomic_t			seqno;
231 };
232 
233 struct ffs_buffer {
234 	size_t length;
235 	char *data;
236 	char storage[] __counted_by(length);
237 };
238 
239 /*  ffs_io_data structure ***************************************************/
240 
241 struct ffs_io_data {
242 	bool aio;
243 	bool read;
244 
245 	struct kiocb *kiocb;
246 	struct iov_iter data;
247 	const void *to_free;
248 	char *buf;
249 
250 	struct mm_struct *mm;
251 	struct work_struct work;
252 
253 	struct usb_ep *ep;
254 	struct usb_request *req;
255 	struct sg_table sgt;
256 	bool use_sg;
257 
258 	struct ffs_data *ffs;
259 
260 	int status;
261 	struct completion done;
262 };
263 
264 struct ffs_desc_helper {
265 	struct ffs_data *ffs;
266 	unsigned interfaces_count;
267 	unsigned eps_count;
268 };
269 
270 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
271 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
272 
273 static struct dentry *
274 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
275 		   const struct file_operations *fops);
276 
277 /* Devices management *******************************************************/
278 
279 DEFINE_MUTEX(ffs_lock);
280 EXPORT_SYMBOL_GPL(ffs_lock);
281 
282 static struct ffs_dev *_ffs_find_dev(const char *name);
283 static struct ffs_dev *_ffs_alloc_dev(void);
284 static void _ffs_free_dev(struct ffs_dev *dev);
285 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
286 static void ffs_release_dev(struct ffs_dev *ffs_dev);
287 static int ffs_ready(struct ffs_data *ffs);
288 static void ffs_closed(struct ffs_data *ffs);
289 
290 /* Misc helper functions ****************************************************/
291 
292 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
293 	__attribute__((warn_unused_result, nonnull));
294 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
295 	__attribute__((warn_unused_result, nonnull));
296 
297 
298 /* Control file aka ep0 *****************************************************/
299 
300 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
301 {
302 	struct ffs_data *ffs = req->context;
303 
304 	complete(&ffs->ep0req_completion);
305 }
306 
307 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
308 	__releases(&ffs->ev.waitq.lock)
309 {
310 	struct usb_request *req = ffs->ep0req;
311 	int ret;
312 
313 	if (!req) {
314 		spin_unlock_irq(&ffs->ev.waitq.lock);
315 		return -EINVAL;
316 	}
317 
318 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
319 
320 	spin_unlock_irq(&ffs->ev.waitq.lock);
321 
322 	req->buf      = data;
323 	req->length   = len;
324 
325 	/*
326 	 * UDC layer requires to provide a buffer even for ZLP, but should
327 	 * not use it at all. Let's provide some poisoned pointer to catch
328 	 * possible bug in the driver.
329 	 */
330 	if (req->buf == NULL)
331 		req->buf = (void *)0xDEADBABE;
332 
333 	reinit_completion(&ffs->ep0req_completion);
334 
335 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
336 	if (ret < 0)
337 		return ret;
338 
339 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
340 	if (ret) {
341 		usb_ep_dequeue(ffs->gadget->ep0, req);
342 		return -EINTR;
343 	}
344 
345 	ffs->setup_state = FFS_NO_SETUP;
346 	return req->status ? req->status : req->actual;
347 }
348 
349 static int __ffs_ep0_stall(struct ffs_data *ffs)
350 {
351 	if (ffs->ev.can_stall) {
352 		pr_vdebug("ep0 stall\n");
353 		usb_ep_set_halt(ffs->gadget->ep0);
354 		ffs->setup_state = FFS_NO_SETUP;
355 		return -EL2HLT;
356 	} else {
357 		pr_debug("bogus ep0 stall!\n");
358 		return -ESRCH;
359 	}
360 }
361 
362 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
363 			     size_t len, loff_t *ptr)
364 {
365 	struct ffs_data *ffs = file->private_data;
366 	ssize_t ret;
367 	char *data;
368 
369 	/* Fast check if setup was canceled */
370 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
371 		return -EIDRM;
372 
373 	/* Acquire mutex */
374 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
375 	if (ret < 0)
376 		return ret;
377 
378 	/* Check state */
379 	switch (ffs->state) {
380 	case FFS_READ_DESCRIPTORS:
381 	case FFS_READ_STRINGS:
382 		/* Copy data */
383 		if (len < 16) {
384 			ret = -EINVAL;
385 			break;
386 		}
387 
388 		data = ffs_prepare_buffer(buf, len);
389 		if (IS_ERR(data)) {
390 			ret = PTR_ERR(data);
391 			break;
392 		}
393 
394 		/* Handle data */
395 		if (ffs->state == FFS_READ_DESCRIPTORS) {
396 			pr_info("read descriptors\n");
397 			ret = __ffs_data_got_descs(ffs, data, len);
398 			if (ret < 0)
399 				break;
400 
401 			ffs->state = FFS_READ_STRINGS;
402 			ret = len;
403 		} else {
404 			pr_info("read strings\n");
405 			ret = __ffs_data_got_strings(ffs, data, len);
406 			if (ret < 0)
407 				break;
408 
409 			ret = ffs_epfiles_create(ffs);
410 			if (ret) {
411 				ffs->state = FFS_CLOSING;
412 				break;
413 			}
414 
415 			ffs->state = FFS_ACTIVE;
416 			mutex_unlock(&ffs->mutex);
417 
418 			ret = ffs_ready(ffs);
419 			if (ret < 0) {
420 				ffs->state = FFS_CLOSING;
421 				return ret;
422 			}
423 
424 			return len;
425 		}
426 		break;
427 
428 	case FFS_ACTIVE:
429 		data = NULL;
430 		/*
431 		 * We're called from user space, we can use _irq
432 		 * rather then _irqsave
433 		 */
434 		spin_lock_irq(&ffs->ev.waitq.lock);
435 		switch (ffs_setup_state_clear_cancelled(ffs)) {
436 		case FFS_SETUP_CANCELLED:
437 			ret = -EIDRM;
438 			goto done_spin;
439 
440 		case FFS_NO_SETUP:
441 			ret = -ESRCH;
442 			goto done_spin;
443 
444 		case FFS_SETUP_PENDING:
445 			break;
446 		}
447 
448 		/* FFS_SETUP_PENDING */
449 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
450 			spin_unlock_irq(&ffs->ev.waitq.lock);
451 			ret = __ffs_ep0_stall(ffs);
452 			break;
453 		}
454 
455 		/* FFS_SETUP_PENDING and not stall */
456 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
457 
458 		spin_unlock_irq(&ffs->ev.waitq.lock);
459 
460 		data = ffs_prepare_buffer(buf, len);
461 		if (IS_ERR(data)) {
462 			ret = PTR_ERR(data);
463 			break;
464 		}
465 
466 		spin_lock_irq(&ffs->ev.waitq.lock);
467 
468 		/*
469 		 * We are guaranteed to be still in FFS_ACTIVE state
470 		 * but the state of setup could have changed from
471 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
472 		 * to check for that.  If that happened we copied data
473 		 * from user space in vain but it's unlikely.
474 		 *
475 		 * For sure we are not in FFS_NO_SETUP since this is
476 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
477 		 * transition can be performed and it's protected by
478 		 * mutex.
479 		 */
480 		if (ffs_setup_state_clear_cancelled(ffs) ==
481 		    FFS_SETUP_CANCELLED) {
482 			ret = -EIDRM;
483 done_spin:
484 			spin_unlock_irq(&ffs->ev.waitq.lock);
485 		} else {
486 			/* unlocks spinlock */
487 			ret = __ffs_ep0_queue_wait(ffs, data, len);
488 		}
489 		kfree(data);
490 		break;
491 
492 	default:
493 		ret = -EBADFD;
494 		break;
495 	}
496 
497 	mutex_unlock(&ffs->mutex);
498 	return ret;
499 }
500 
501 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
502 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
503 				     size_t n)
504 	__releases(&ffs->ev.waitq.lock)
505 {
506 	/*
507 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
508 	 * size of ffs->ev.types array (which is four) so that's how much space
509 	 * we reserve.
510 	 */
511 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
512 	const size_t size = n * sizeof *events;
513 	unsigned i = 0;
514 
515 	memset(events, 0, size);
516 
517 	do {
518 		events[i].type = ffs->ev.types[i];
519 		if (events[i].type == FUNCTIONFS_SETUP) {
520 			events[i].u.setup = ffs->ev.setup;
521 			ffs->setup_state = FFS_SETUP_PENDING;
522 		}
523 	} while (++i < n);
524 
525 	ffs->ev.count -= n;
526 	if (ffs->ev.count)
527 		memmove(ffs->ev.types, ffs->ev.types + n,
528 			ffs->ev.count * sizeof *ffs->ev.types);
529 
530 	spin_unlock_irq(&ffs->ev.waitq.lock);
531 	mutex_unlock(&ffs->mutex);
532 
533 	return copy_to_user(buf, events, size) ? -EFAULT : size;
534 }
535 
536 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
537 			    size_t len, loff_t *ptr)
538 {
539 	struct ffs_data *ffs = file->private_data;
540 	char *data = NULL;
541 	size_t n;
542 	int ret;
543 
544 	/* Fast check if setup was canceled */
545 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
546 		return -EIDRM;
547 
548 	/* Acquire mutex */
549 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
550 	if (ret < 0)
551 		return ret;
552 
553 	/* Check state */
554 	if (ffs->state != FFS_ACTIVE) {
555 		ret = -EBADFD;
556 		goto done_mutex;
557 	}
558 
559 	/*
560 	 * We're called from user space, we can use _irq rather then
561 	 * _irqsave
562 	 */
563 	spin_lock_irq(&ffs->ev.waitq.lock);
564 
565 	switch (ffs_setup_state_clear_cancelled(ffs)) {
566 	case FFS_SETUP_CANCELLED:
567 		ret = -EIDRM;
568 		break;
569 
570 	case FFS_NO_SETUP:
571 		n = len / sizeof(struct usb_functionfs_event);
572 		if (!n) {
573 			ret = -EINVAL;
574 			break;
575 		}
576 
577 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
578 			ret = -EAGAIN;
579 			break;
580 		}
581 
582 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
583 							ffs->ev.count)) {
584 			ret = -EINTR;
585 			break;
586 		}
587 
588 		/* unlocks spinlock */
589 		return __ffs_ep0_read_events(ffs, buf,
590 					     min(n, (size_t)ffs->ev.count));
591 
592 	case FFS_SETUP_PENDING:
593 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
594 			spin_unlock_irq(&ffs->ev.waitq.lock);
595 			ret = __ffs_ep0_stall(ffs);
596 			goto done_mutex;
597 		}
598 
599 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
600 
601 		spin_unlock_irq(&ffs->ev.waitq.lock);
602 
603 		if (len) {
604 			data = kmalloc(len, GFP_KERNEL);
605 			if (!data) {
606 				ret = -ENOMEM;
607 				goto done_mutex;
608 			}
609 		}
610 
611 		spin_lock_irq(&ffs->ev.waitq.lock);
612 
613 		/* See ffs_ep0_write() */
614 		if (ffs_setup_state_clear_cancelled(ffs) ==
615 		    FFS_SETUP_CANCELLED) {
616 			ret = -EIDRM;
617 			break;
618 		}
619 
620 		/* unlocks spinlock */
621 		ret = __ffs_ep0_queue_wait(ffs, data, len);
622 		if ((ret > 0) && (copy_to_user(buf, data, len)))
623 			ret = -EFAULT;
624 		goto done_mutex;
625 
626 	default:
627 		ret = -EBADFD;
628 		break;
629 	}
630 
631 	spin_unlock_irq(&ffs->ev.waitq.lock);
632 done_mutex:
633 	mutex_unlock(&ffs->mutex);
634 	kfree(data);
635 	return ret;
636 }
637 
638 static int ffs_ep0_open(struct inode *inode, struct file *file)
639 {
640 	struct ffs_data *ffs = inode->i_private;
641 
642 	if (ffs->state == FFS_CLOSING)
643 		return -EBUSY;
644 
645 	file->private_data = ffs;
646 	ffs_data_opened(ffs);
647 
648 	return stream_open(inode, file);
649 }
650 
651 static int ffs_ep0_release(struct inode *inode, struct file *file)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 
655 	ffs_data_closed(ffs);
656 
657 	return 0;
658 }
659 
660 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
661 {
662 	struct ffs_data *ffs = file->private_data;
663 	struct usb_gadget *gadget = ffs->gadget;
664 	long ret;
665 
666 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
667 		struct ffs_function *func = ffs->func;
668 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
669 	} else if (gadget && gadget->ops->ioctl) {
670 		ret = gadget->ops->ioctl(gadget, code, value);
671 	} else {
672 		ret = -ENOTTY;
673 	}
674 
675 	return ret;
676 }
677 
678 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
679 {
680 	struct ffs_data *ffs = file->private_data;
681 	__poll_t mask = EPOLLWRNORM;
682 	int ret;
683 
684 	poll_wait(file, &ffs->ev.waitq, wait);
685 
686 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
687 	if (ret < 0)
688 		return mask;
689 
690 	switch (ffs->state) {
691 	case FFS_READ_DESCRIPTORS:
692 	case FFS_READ_STRINGS:
693 		mask |= EPOLLOUT;
694 		break;
695 
696 	case FFS_ACTIVE:
697 		switch (ffs->setup_state) {
698 		case FFS_NO_SETUP:
699 			if (ffs->ev.count)
700 				mask |= EPOLLIN;
701 			break;
702 
703 		case FFS_SETUP_PENDING:
704 		case FFS_SETUP_CANCELLED:
705 			mask |= (EPOLLIN | EPOLLOUT);
706 			break;
707 		}
708 		break;
709 
710 	case FFS_CLOSING:
711 		break;
712 	case FFS_DEACTIVATED:
713 		break;
714 	}
715 
716 	mutex_unlock(&ffs->mutex);
717 
718 	return mask;
719 }
720 
721 static const struct file_operations ffs_ep0_operations = {
722 	.llseek =	no_llseek,
723 
724 	.open =		ffs_ep0_open,
725 	.write =	ffs_ep0_write,
726 	.read =		ffs_ep0_read,
727 	.release =	ffs_ep0_release,
728 	.unlocked_ioctl =	ffs_ep0_ioctl,
729 	.poll =		ffs_ep0_poll,
730 };
731 
732 
733 /* "Normal" endpoints operations ********************************************/
734 
735 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
736 {
737 	struct ffs_io_data *io_data = req->context;
738 
739 	if (req->status)
740 		io_data->status = req->status;
741 	else
742 		io_data->status = req->actual;
743 
744 	complete(&io_data->done);
745 }
746 
747 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
748 {
749 	ssize_t ret = copy_to_iter(data, data_len, iter);
750 	if (ret == data_len)
751 		return ret;
752 
753 	if (iov_iter_count(iter))
754 		return -EFAULT;
755 
756 	/*
757 	 * Dear user space developer!
758 	 *
759 	 * TL;DR: To stop getting below error message in your kernel log, change
760 	 * user space code using functionfs to align read buffers to a max
761 	 * packet size.
762 	 *
763 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
764 	 * packet size.  When unaligned buffer is passed to functionfs, it
765 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
766 	 *
767 	 * Unfortunately, this means that host may send more data than was
768 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
769 	 * that excess data so it simply drops it.
770 	 *
771 	 * Was the buffer aligned in the first place, no such problem would
772 	 * happen.
773 	 *
774 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
775 	 * by splitting a request into multiple parts.  This splitting may still
776 	 * be a problem though so it’s likely best to align the buffer
777 	 * regardless of it being AIO or not..
778 	 *
779 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
780 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
781 	 * affected.
782 	 */
783 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
784 	       "Align read buffer size to max packet size to avoid the problem.\n",
785 	       data_len, ret);
786 
787 	return ret;
788 }
789 
790 /*
791  * allocate a virtually contiguous buffer and create a scatterlist describing it
792  * @sg_table	- pointer to a place to be filled with sg_table contents
793  * @size	- required buffer size
794  */
795 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
796 {
797 	struct page **pages;
798 	void *vaddr, *ptr;
799 	unsigned int n_pages;
800 	int i;
801 
802 	vaddr = vmalloc(sz);
803 	if (!vaddr)
804 		return NULL;
805 
806 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
807 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
808 	if (!pages) {
809 		vfree(vaddr);
810 
811 		return NULL;
812 	}
813 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
814 		pages[i] = vmalloc_to_page(ptr);
815 
816 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
817 		kvfree(pages);
818 		vfree(vaddr);
819 
820 		return NULL;
821 	}
822 	kvfree(pages);
823 
824 	return vaddr;
825 }
826 
827 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
828 	size_t data_len)
829 {
830 	if (io_data->use_sg)
831 		return ffs_build_sg_list(&io_data->sgt, data_len);
832 
833 	return kmalloc(data_len, GFP_KERNEL);
834 }
835 
836 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
837 {
838 	if (!io_data->buf)
839 		return;
840 
841 	if (io_data->use_sg) {
842 		sg_free_table(&io_data->sgt);
843 		vfree(io_data->buf);
844 	} else {
845 		kfree(io_data->buf);
846 	}
847 }
848 
849 static void ffs_user_copy_worker(struct work_struct *work)
850 {
851 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
852 						   work);
853 	int ret = io_data->status;
854 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
855 	unsigned long flags;
856 
857 	if (io_data->read && ret > 0) {
858 		kthread_use_mm(io_data->mm);
859 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
860 		kthread_unuse_mm(io_data->mm);
861 	}
862 
863 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
864 
865 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
866 		eventfd_signal(io_data->ffs->ffs_eventfd);
867 
868 	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
869 	usb_ep_free_request(io_data->ep, io_data->req);
870 	io_data->req = NULL;
871 	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
872 
873 	if (io_data->read)
874 		kfree(io_data->to_free);
875 	ffs_free_buffer(io_data);
876 	kfree(io_data);
877 }
878 
879 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
880 					 struct usb_request *req)
881 {
882 	struct ffs_io_data *io_data = req->context;
883 	struct ffs_data *ffs = io_data->ffs;
884 
885 	io_data->status = req->status ? req->status : req->actual;
886 
887 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
888 	queue_work(ffs->io_completion_wq, &io_data->work);
889 }
890 
891 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
892 {
893 	/*
894 	 * See comment in struct ffs_epfile for full read_buffer pointer
895 	 * synchronisation story.
896 	 */
897 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
898 	if (buf && buf != READ_BUFFER_DROP)
899 		kfree(buf);
900 }
901 
902 /* Assumes epfile->mutex is held. */
903 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
904 					  struct iov_iter *iter)
905 {
906 	/*
907 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
908 	 * the buffer while we are using it.  See comment in struct ffs_epfile
909 	 * for full read_buffer pointer synchronisation story.
910 	 */
911 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
912 	ssize_t ret;
913 	if (!buf || buf == READ_BUFFER_DROP)
914 		return 0;
915 
916 	ret = copy_to_iter(buf->data, buf->length, iter);
917 	if (buf->length == ret) {
918 		kfree(buf);
919 		return ret;
920 	}
921 
922 	if (iov_iter_count(iter)) {
923 		ret = -EFAULT;
924 	} else {
925 		buf->length -= ret;
926 		buf->data += ret;
927 	}
928 
929 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
930 		kfree(buf);
931 
932 	return ret;
933 }
934 
935 /* Assumes epfile->mutex is held. */
936 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
937 				      void *data, int data_len,
938 				      struct iov_iter *iter)
939 {
940 	struct ffs_buffer *buf;
941 
942 	ssize_t ret = copy_to_iter(data, data_len, iter);
943 	if (data_len == ret)
944 		return ret;
945 
946 	if (iov_iter_count(iter))
947 		return -EFAULT;
948 
949 	/* See ffs_copy_to_iter for more context. */
950 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
951 		data_len, ret);
952 
953 	data_len -= ret;
954 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
955 	if (!buf)
956 		return -ENOMEM;
957 	buf->length = data_len;
958 	buf->data = buf->storage;
959 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
960 
961 	/*
962 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
963 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
964 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
965 	 * story.
966 	 */
967 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
968 		kfree(buf);
969 
970 	return ret;
971 }
972 
973 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
974 {
975 	struct ffs_epfile *epfile = file->private_data;
976 	struct ffs_ep *ep;
977 	int ret;
978 
979 	/* Wait for endpoint to be enabled */
980 	ep = epfile->ep;
981 	if (!ep) {
982 		if (file->f_flags & O_NONBLOCK)
983 			return ERR_PTR(-EAGAIN);
984 
985 		ret = wait_event_interruptible(
986 				epfile->ffs->wait, (ep = epfile->ep));
987 		if (ret)
988 			return ERR_PTR(-EINTR);
989 	}
990 
991 	return ep;
992 }
993 
994 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
995 {
996 	struct ffs_epfile *epfile = file->private_data;
997 	struct usb_request *req;
998 	struct ffs_ep *ep;
999 	char *data = NULL;
1000 	ssize_t ret, data_len = -EINVAL;
1001 	int halt;
1002 
1003 	/* Are we still active? */
1004 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1005 		return -ENODEV;
1006 
1007 	ep = ffs_epfile_wait_ep(file);
1008 	if (IS_ERR(ep))
1009 		return PTR_ERR(ep);
1010 
1011 	/* Do we halt? */
1012 	halt = (!io_data->read == !epfile->in);
1013 	if (halt && epfile->isoc)
1014 		return -EINVAL;
1015 
1016 	/* We will be using request and read_buffer */
1017 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1018 	if (ret)
1019 		goto error;
1020 
1021 	/* Allocate & copy */
1022 	if (!halt) {
1023 		struct usb_gadget *gadget;
1024 
1025 		/*
1026 		 * Do we have buffered data from previous partial read?  Check
1027 		 * that for synchronous case only because we do not have
1028 		 * facility to ‘wake up’ a pending asynchronous read and push
1029 		 * buffered data to it which we would need to make things behave
1030 		 * consistently.
1031 		 */
1032 		if (!io_data->aio && io_data->read) {
1033 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1034 			if (ret)
1035 				goto error_mutex;
1036 		}
1037 
1038 		/*
1039 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1040 		 * before the waiting completes, so do not assign to 'gadget'
1041 		 * earlier
1042 		 */
1043 		gadget = epfile->ffs->gadget;
1044 
1045 		spin_lock_irq(&epfile->ffs->eps_lock);
1046 		/* In the meantime, endpoint got disabled or changed. */
1047 		if (epfile->ep != ep) {
1048 			ret = -ESHUTDOWN;
1049 			goto error_lock;
1050 		}
1051 		data_len = iov_iter_count(&io_data->data);
1052 		/*
1053 		 * Controller may require buffer size to be aligned to
1054 		 * maxpacketsize of an out endpoint.
1055 		 */
1056 		if (io_data->read)
1057 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1058 
1059 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1060 		spin_unlock_irq(&epfile->ffs->eps_lock);
1061 
1062 		data = ffs_alloc_buffer(io_data, data_len);
1063 		if (!data) {
1064 			ret = -ENOMEM;
1065 			goto error_mutex;
1066 		}
1067 		if (!io_data->read &&
1068 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1069 			ret = -EFAULT;
1070 			goto error_mutex;
1071 		}
1072 	}
1073 
1074 	spin_lock_irq(&epfile->ffs->eps_lock);
1075 
1076 	if (epfile->ep != ep) {
1077 		/* In the meantime, endpoint got disabled or changed. */
1078 		ret = -ESHUTDOWN;
1079 	} else if (halt) {
1080 		ret = usb_ep_set_halt(ep->ep);
1081 		if (!ret)
1082 			ret = -EBADMSG;
1083 	} else if (data_len == -EINVAL) {
1084 		/*
1085 		 * Sanity Check: even though data_len can't be used
1086 		 * uninitialized at the time I write this comment, some
1087 		 * compilers complain about this situation.
1088 		 * In order to keep the code clean from warnings, data_len is
1089 		 * being initialized to -EINVAL during its declaration, which
1090 		 * means we can't rely on compiler anymore to warn no future
1091 		 * changes won't result in data_len being used uninitialized.
1092 		 * For such reason, we're adding this redundant sanity check
1093 		 * here.
1094 		 */
1095 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1096 		ret = -EINVAL;
1097 	} else if (!io_data->aio) {
1098 		bool interrupted = false;
1099 
1100 		req = ep->req;
1101 		if (io_data->use_sg) {
1102 			req->buf = NULL;
1103 			req->sg	= io_data->sgt.sgl;
1104 			req->num_sgs = io_data->sgt.nents;
1105 		} else {
1106 			req->buf = data;
1107 			req->num_sgs = 0;
1108 		}
1109 		req->length = data_len;
1110 
1111 		io_data->buf = data;
1112 
1113 		init_completion(&io_data->done);
1114 		req->context  = io_data;
1115 		req->complete = ffs_epfile_io_complete;
1116 
1117 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118 		if (ret < 0)
1119 			goto error_lock;
1120 
1121 		spin_unlock_irq(&epfile->ffs->eps_lock);
1122 
1123 		if (wait_for_completion_interruptible(&io_data->done)) {
1124 			spin_lock_irq(&epfile->ffs->eps_lock);
1125 			if (epfile->ep != ep) {
1126 				ret = -ESHUTDOWN;
1127 				goto error_lock;
1128 			}
1129 			/*
1130 			 * To avoid race condition with ffs_epfile_io_complete,
1131 			 * dequeue the request first then check
1132 			 * status. usb_ep_dequeue API should guarantee no race
1133 			 * condition with req->complete callback.
1134 			 */
1135 			usb_ep_dequeue(ep->ep, req);
1136 			spin_unlock_irq(&epfile->ffs->eps_lock);
1137 			wait_for_completion(&io_data->done);
1138 			interrupted = io_data->status < 0;
1139 		}
1140 
1141 		if (interrupted)
1142 			ret = -EINTR;
1143 		else if (io_data->read && io_data->status > 0)
1144 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1145 						     &io_data->data);
1146 		else
1147 			ret = io_data->status;
1148 		goto error_mutex;
1149 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1150 		ret = -ENOMEM;
1151 	} else {
1152 		if (io_data->use_sg) {
1153 			req->buf = NULL;
1154 			req->sg	= io_data->sgt.sgl;
1155 			req->num_sgs = io_data->sgt.nents;
1156 		} else {
1157 			req->buf = data;
1158 			req->num_sgs = 0;
1159 		}
1160 		req->length = data_len;
1161 
1162 		io_data->buf = data;
1163 		io_data->ep = ep->ep;
1164 		io_data->req = req;
1165 		io_data->ffs = epfile->ffs;
1166 
1167 		req->context  = io_data;
1168 		req->complete = ffs_epfile_async_io_complete;
1169 
1170 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1171 		if (ret) {
1172 			io_data->req = NULL;
1173 			usb_ep_free_request(ep->ep, req);
1174 			goto error_lock;
1175 		}
1176 
1177 		ret = -EIOCBQUEUED;
1178 		/*
1179 		 * Do not kfree the buffer in this function.  It will be freed
1180 		 * by ffs_user_copy_worker.
1181 		 */
1182 		data = NULL;
1183 	}
1184 
1185 error_lock:
1186 	spin_unlock_irq(&epfile->ffs->eps_lock);
1187 error_mutex:
1188 	mutex_unlock(&epfile->mutex);
1189 error:
1190 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1191 		ffs_free_buffer(io_data);
1192 	return ret;
1193 }
1194 
1195 static int
1196 ffs_epfile_open(struct inode *inode, struct file *file)
1197 {
1198 	struct ffs_epfile *epfile = inode->i_private;
1199 
1200 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1201 		return -ENODEV;
1202 
1203 	file->private_data = epfile;
1204 	ffs_data_opened(epfile->ffs);
1205 
1206 	return stream_open(inode, file);
1207 }
1208 
1209 static int ffs_aio_cancel(struct kiocb *kiocb)
1210 {
1211 	struct ffs_io_data *io_data = kiocb->private;
1212 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1213 	unsigned long flags;
1214 	int value;
1215 
1216 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1217 
1218 	if (io_data && io_data->ep && io_data->req)
1219 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1220 	else
1221 		value = -EINVAL;
1222 
1223 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1224 
1225 	return value;
1226 }
1227 
1228 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1229 {
1230 	struct ffs_io_data io_data, *p = &io_data;
1231 	ssize_t res;
1232 
1233 	if (!is_sync_kiocb(kiocb)) {
1234 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1235 		if (!p)
1236 			return -ENOMEM;
1237 		p->aio = true;
1238 	} else {
1239 		memset(p, 0, sizeof(*p));
1240 		p->aio = false;
1241 	}
1242 
1243 	p->read = false;
1244 	p->kiocb = kiocb;
1245 	p->data = *from;
1246 	p->mm = current->mm;
1247 
1248 	kiocb->private = p;
1249 
1250 	if (p->aio)
1251 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1252 
1253 	res = ffs_epfile_io(kiocb->ki_filp, p);
1254 	if (res == -EIOCBQUEUED)
1255 		return res;
1256 	if (p->aio)
1257 		kfree(p);
1258 	else
1259 		*from = p->data;
1260 	return res;
1261 }
1262 
1263 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1264 {
1265 	struct ffs_io_data io_data, *p = &io_data;
1266 	ssize_t res;
1267 
1268 	if (!is_sync_kiocb(kiocb)) {
1269 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1270 		if (!p)
1271 			return -ENOMEM;
1272 		p->aio = true;
1273 	} else {
1274 		memset(p, 0, sizeof(*p));
1275 		p->aio = false;
1276 	}
1277 
1278 	p->read = true;
1279 	p->kiocb = kiocb;
1280 	if (p->aio) {
1281 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1282 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1283 			kfree(p);
1284 			return -ENOMEM;
1285 		}
1286 	} else {
1287 		p->data = *to;
1288 		p->to_free = NULL;
1289 	}
1290 	p->mm = current->mm;
1291 
1292 	kiocb->private = p;
1293 
1294 	if (p->aio)
1295 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1296 
1297 	res = ffs_epfile_io(kiocb->ki_filp, p);
1298 	if (res == -EIOCBQUEUED)
1299 		return res;
1300 
1301 	if (p->aio) {
1302 		kfree(p->to_free);
1303 		kfree(p);
1304 	} else {
1305 		*to = p->data;
1306 	}
1307 	return res;
1308 }
1309 
1310 static void ffs_dmabuf_release(struct kref *ref)
1311 {
1312 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1313 	struct dma_buf_attachment *attach = priv->attach;
1314 	struct dma_buf *dmabuf = attach->dmabuf;
1315 
1316 	pr_vdebug("FFS DMABUF release\n");
1317 	dma_resv_lock(dmabuf->resv, NULL);
1318 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1319 	dma_resv_unlock(dmabuf->resv);
1320 
1321 	dma_buf_detach(attach->dmabuf, attach);
1322 	dma_buf_put(dmabuf);
1323 	kfree(priv);
1324 }
1325 
1326 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1327 {
1328 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1329 
1330 	kref_get(&priv->ref);
1331 }
1332 
1333 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1334 {
1335 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1336 
1337 	kref_put(&priv->ref, ffs_dmabuf_release);
1338 }
1339 
1340 static int
1341 ffs_epfile_release(struct inode *inode, struct file *file)
1342 {
1343 	struct ffs_epfile *epfile = inode->i_private;
1344 	struct ffs_dmabuf_priv *priv, *tmp;
1345 	struct ffs_data *ffs = epfile->ffs;
1346 
1347 	mutex_lock(&epfile->dmabufs_mutex);
1348 
1349 	/* Close all attached DMABUFs */
1350 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1351 		/* Cancel any pending transfer */
1352 		spin_lock_irq(&ffs->eps_lock);
1353 		if (priv->ep && priv->req)
1354 			usb_ep_dequeue(priv->ep, priv->req);
1355 		spin_unlock_irq(&ffs->eps_lock);
1356 
1357 		list_del(&priv->entry);
1358 		ffs_dmabuf_put(priv->attach);
1359 	}
1360 
1361 	mutex_unlock(&epfile->dmabufs_mutex);
1362 
1363 	__ffs_epfile_read_buffer_free(epfile);
1364 	ffs_data_closed(epfile->ffs);
1365 
1366 	return 0;
1367 }
1368 
1369 static void ffs_dmabuf_cleanup(struct work_struct *work)
1370 {
1371 	struct ffs_dma_fence *dma_fence =
1372 		container_of(work, struct ffs_dma_fence, work);
1373 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1374 	struct dma_buf_attachment *attach = priv->attach;
1375 	struct dma_fence *fence = &dma_fence->base;
1376 
1377 	ffs_dmabuf_put(attach);
1378 	dma_fence_put(fence);
1379 }
1380 
1381 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1382 {
1383 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1384 	struct dma_fence *fence = &dma_fence->base;
1385 	bool cookie = dma_fence_begin_signalling();
1386 
1387 	dma_fence_get(fence);
1388 	fence->error = ret;
1389 	dma_fence_signal(fence);
1390 	dma_fence_end_signalling(cookie);
1391 
1392 	/*
1393 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1394 	 * It can't be done here, as the unref functions might try to lock
1395 	 * the resv object, which would deadlock.
1396 	 */
1397 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1398 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1399 }
1400 
1401 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1402 					  struct usb_request *req)
1403 {
1404 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1405 	ffs_dmabuf_signal_done(req->context, req->status);
1406 	usb_ep_free_request(ep, req);
1407 }
1408 
1409 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1410 {
1411 	return "functionfs";
1412 }
1413 
1414 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1415 {
1416 	return "";
1417 }
1418 
1419 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1420 {
1421 	struct ffs_dma_fence *dma_fence =
1422 		container_of(fence, struct ffs_dma_fence, base);
1423 
1424 	kfree(dma_fence);
1425 }
1426 
1427 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1428 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1429 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1430 	.release		= ffs_dmabuf_fence_release,
1431 };
1432 
1433 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1434 {
1435 	if (!nonblock)
1436 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1437 
1438 	if (!dma_resv_trylock(dmabuf->resv))
1439 		return -EBUSY;
1440 
1441 	return 0;
1442 }
1443 
1444 static struct dma_buf_attachment *
1445 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1446 {
1447 	struct device *dev = epfile->ffs->gadget->dev.parent;
1448 	struct dma_buf_attachment *attach = NULL;
1449 	struct ffs_dmabuf_priv *priv;
1450 
1451 	mutex_lock(&epfile->dmabufs_mutex);
1452 
1453 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1454 		if (priv->attach->dev == dev
1455 		    && priv->attach->dmabuf == dmabuf) {
1456 			attach = priv->attach;
1457 			break;
1458 		}
1459 	}
1460 
1461 	if (attach)
1462 		ffs_dmabuf_get(attach);
1463 
1464 	mutex_unlock(&epfile->dmabufs_mutex);
1465 
1466 	return attach ?: ERR_PTR(-EPERM);
1467 }
1468 
1469 static int ffs_dmabuf_attach(struct file *file, int fd)
1470 {
1471 	bool nonblock = file->f_flags & O_NONBLOCK;
1472 	struct ffs_epfile *epfile = file->private_data;
1473 	struct usb_gadget *gadget = epfile->ffs->gadget;
1474 	struct dma_buf_attachment *attach;
1475 	struct ffs_dmabuf_priv *priv;
1476 	enum dma_data_direction dir;
1477 	struct sg_table *sg_table;
1478 	struct dma_buf *dmabuf;
1479 	int err;
1480 
1481 	if (!gadget || !gadget->sg_supported)
1482 		return -EPERM;
1483 
1484 	dmabuf = dma_buf_get(fd);
1485 	if (IS_ERR(dmabuf))
1486 		return PTR_ERR(dmabuf);
1487 
1488 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1489 	if (IS_ERR(attach)) {
1490 		err = PTR_ERR(attach);
1491 		goto err_dmabuf_put;
1492 	}
1493 
1494 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1495 	if (!priv) {
1496 		err = -ENOMEM;
1497 		goto err_dmabuf_detach;
1498 	}
1499 
1500 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1501 
1502 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1503 	if (err)
1504 		goto err_free_priv;
1505 
1506 	sg_table = dma_buf_map_attachment(attach, dir);
1507 	dma_resv_unlock(dmabuf->resv);
1508 
1509 	if (IS_ERR(sg_table)) {
1510 		err = PTR_ERR(sg_table);
1511 		goto err_free_priv;
1512 	}
1513 
1514 	attach->importer_priv = priv;
1515 
1516 	priv->sgt = sg_table;
1517 	priv->dir = dir;
1518 	priv->ffs = epfile->ffs;
1519 	priv->attach = attach;
1520 	spin_lock_init(&priv->lock);
1521 	kref_init(&priv->ref);
1522 	priv->context = dma_fence_context_alloc(1);
1523 
1524 	mutex_lock(&epfile->dmabufs_mutex);
1525 	list_add(&priv->entry, &epfile->dmabufs);
1526 	mutex_unlock(&epfile->dmabufs_mutex);
1527 
1528 	return 0;
1529 
1530 err_free_priv:
1531 	kfree(priv);
1532 err_dmabuf_detach:
1533 	dma_buf_detach(dmabuf, attach);
1534 err_dmabuf_put:
1535 	dma_buf_put(dmabuf);
1536 
1537 	return err;
1538 }
1539 
1540 static int ffs_dmabuf_detach(struct file *file, int fd)
1541 {
1542 	struct ffs_epfile *epfile = file->private_data;
1543 	struct ffs_data *ffs = epfile->ffs;
1544 	struct device *dev = ffs->gadget->dev.parent;
1545 	struct ffs_dmabuf_priv *priv, *tmp;
1546 	struct dma_buf *dmabuf;
1547 	int ret = -EPERM;
1548 
1549 	dmabuf = dma_buf_get(fd);
1550 	if (IS_ERR(dmabuf))
1551 		return PTR_ERR(dmabuf);
1552 
1553 	mutex_lock(&epfile->dmabufs_mutex);
1554 
1555 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1556 		if (priv->attach->dev == dev
1557 		    && priv->attach->dmabuf == dmabuf) {
1558 			/* Cancel any pending transfer */
1559 			spin_lock_irq(&ffs->eps_lock);
1560 			if (priv->ep && priv->req)
1561 				usb_ep_dequeue(priv->ep, priv->req);
1562 			spin_unlock_irq(&ffs->eps_lock);
1563 
1564 			list_del(&priv->entry);
1565 
1566 			/* Unref the reference from ffs_dmabuf_attach() */
1567 			ffs_dmabuf_put(priv->attach);
1568 			ret = 0;
1569 			break;
1570 		}
1571 	}
1572 
1573 	mutex_unlock(&epfile->dmabufs_mutex);
1574 	dma_buf_put(dmabuf);
1575 
1576 	return ret;
1577 }
1578 
1579 static int ffs_dmabuf_transfer(struct file *file,
1580 			       const struct usb_ffs_dmabuf_transfer_req *req)
1581 {
1582 	bool nonblock = file->f_flags & O_NONBLOCK;
1583 	struct ffs_epfile *epfile = file->private_data;
1584 	struct dma_buf_attachment *attach;
1585 	struct ffs_dmabuf_priv *priv;
1586 	struct ffs_dma_fence *fence;
1587 	struct usb_request *usb_req;
1588 	enum dma_resv_usage resv_dir;
1589 	struct dma_buf *dmabuf;
1590 	unsigned long timeout;
1591 	struct ffs_ep *ep;
1592 	bool cookie;
1593 	u32 seqno;
1594 	long retl;
1595 	int ret;
1596 
1597 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1598 		return -EINVAL;
1599 
1600 	dmabuf = dma_buf_get(req->fd);
1601 	if (IS_ERR(dmabuf))
1602 		return PTR_ERR(dmabuf);
1603 
1604 	if (req->length > dmabuf->size || req->length == 0) {
1605 		ret = -EINVAL;
1606 		goto err_dmabuf_put;
1607 	}
1608 
1609 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1610 	if (IS_ERR(attach)) {
1611 		ret = PTR_ERR(attach);
1612 		goto err_dmabuf_put;
1613 	}
1614 
1615 	priv = attach->importer_priv;
1616 
1617 	ep = ffs_epfile_wait_ep(file);
1618 	if (IS_ERR(ep)) {
1619 		ret = PTR_ERR(ep);
1620 		goto err_attachment_put;
1621 	}
1622 
1623 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1624 	if (ret)
1625 		goto err_attachment_put;
1626 
1627 	/* Make sure we don't have writers */
1628 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1629 	retl = dma_resv_wait_timeout(dmabuf->resv,
1630 				     dma_resv_usage_rw(epfile->in),
1631 				     true, timeout);
1632 	if (retl == 0)
1633 		retl = -EBUSY;
1634 	if (retl < 0) {
1635 		ret = (int)retl;
1636 		goto err_resv_unlock;
1637 	}
1638 
1639 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1640 	if (ret)
1641 		goto err_resv_unlock;
1642 
1643 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1644 	if (!fence) {
1645 		ret = -ENOMEM;
1646 		goto err_resv_unlock;
1647 	}
1648 
1649 	fence->priv = priv;
1650 
1651 	spin_lock_irq(&epfile->ffs->eps_lock);
1652 
1653 	/* In the meantime, endpoint got disabled or changed. */
1654 	if (epfile->ep != ep) {
1655 		ret = -ESHUTDOWN;
1656 		goto err_fence_put;
1657 	}
1658 
1659 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1660 	if (!usb_req) {
1661 		ret = -ENOMEM;
1662 		goto err_fence_put;
1663 	}
1664 
1665 	/*
1666 	 * usb_ep_queue() guarantees that all transfers are processed in the
1667 	 * order they are enqueued, so we can use a simple incrementing
1668 	 * sequence number for the dma_fence.
1669 	 */
1670 	seqno = atomic_add_return(1, &epfile->seqno);
1671 
1672 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1673 		       &priv->lock, priv->context, seqno);
1674 
1675 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1676 
1677 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1678 	dma_resv_unlock(dmabuf->resv);
1679 
1680 	/* Now that the dma_fence is in place, queue the transfer. */
1681 
1682 	usb_req->length = req->length;
1683 	usb_req->buf = NULL;
1684 	usb_req->sg = priv->sgt->sgl;
1685 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1686 	usb_req->sg_was_mapped = true;
1687 	usb_req->context  = fence;
1688 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1689 
1690 	cookie = dma_fence_begin_signalling();
1691 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1692 	dma_fence_end_signalling(cookie);
1693 	if (!ret) {
1694 		priv->req = usb_req;
1695 		priv->ep = ep->ep;
1696 	} else {
1697 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1698 		ffs_dmabuf_signal_done(fence, ret);
1699 		usb_ep_free_request(ep->ep, usb_req);
1700 	}
1701 
1702 	spin_unlock_irq(&epfile->ffs->eps_lock);
1703 	dma_buf_put(dmabuf);
1704 
1705 	return ret;
1706 
1707 err_fence_put:
1708 	spin_unlock_irq(&epfile->ffs->eps_lock);
1709 	dma_fence_put(&fence->base);
1710 err_resv_unlock:
1711 	dma_resv_unlock(dmabuf->resv);
1712 err_attachment_put:
1713 	ffs_dmabuf_put(attach);
1714 err_dmabuf_put:
1715 	dma_buf_put(dmabuf);
1716 
1717 	return ret;
1718 }
1719 
1720 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1721 			     unsigned long value)
1722 {
1723 	struct ffs_epfile *epfile = file->private_data;
1724 	struct ffs_ep *ep;
1725 	int ret;
1726 
1727 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1728 		return -ENODEV;
1729 
1730 	switch (code) {
1731 	case FUNCTIONFS_DMABUF_ATTACH:
1732 	{
1733 		int fd;
1734 
1735 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1736 			ret = -EFAULT;
1737 			break;
1738 		}
1739 
1740 		return ffs_dmabuf_attach(file, fd);
1741 	}
1742 	case FUNCTIONFS_DMABUF_DETACH:
1743 	{
1744 		int fd;
1745 
1746 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1747 			ret = -EFAULT;
1748 			break;
1749 		}
1750 
1751 		return ffs_dmabuf_detach(file, fd);
1752 	}
1753 	case FUNCTIONFS_DMABUF_TRANSFER:
1754 	{
1755 		struct usb_ffs_dmabuf_transfer_req req;
1756 
1757 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1758 			ret = -EFAULT;
1759 			break;
1760 		}
1761 
1762 		return ffs_dmabuf_transfer(file, &req);
1763 	}
1764 	default:
1765 		break;
1766 	}
1767 
1768 	/* Wait for endpoint to be enabled */
1769 	ep = ffs_epfile_wait_ep(file);
1770 	if (IS_ERR(ep))
1771 		return PTR_ERR(ep);
1772 
1773 	spin_lock_irq(&epfile->ffs->eps_lock);
1774 
1775 	/* In the meantime, endpoint got disabled or changed. */
1776 	if (epfile->ep != ep) {
1777 		spin_unlock_irq(&epfile->ffs->eps_lock);
1778 		return -ESHUTDOWN;
1779 	}
1780 
1781 	switch (code) {
1782 	case FUNCTIONFS_FIFO_STATUS:
1783 		ret = usb_ep_fifo_status(epfile->ep->ep);
1784 		break;
1785 	case FUNCTIONFS_FIFO_FLUSH:
1786 		usb_ep_fifo_flush(epfile->ep->ep);
1787 		ret = 0;
1788 		break;
1789 	case FUNCTIONFS_CLEAR_HALT:
1790 		ret = usb_ep_clear_halt(epfile->ep->ep);
1791 		break;
1792 	case FUNCTIONFS_ENDPOINT_REVMAP:
1793 		ret = epfile->ep->num;
1794 		break;
1795 	case FUNCTIONFS_ENDPOINT_DESC:
1796 	{
1797 		int desc_idx;
1798 		struct usb_endpoint_descriptor desc1, *desc;
1799 
1800 		switch (epfile->ffs->gadget->speed) {
1801 		case USB_SPEED_SUPER:
1802 		case USB_SPEED_SUPER_PLUS:
1803 			desc_idx = 2;
1804 			break;
1805 		case USB_SPEED_HIGH:
1806 			desc_idx = 1;
1807 			break;
1808 		default:
1809 			desc_idx = 0;
1810 		}
1811 
1812 		desc = epfile->ep->descs[desc_idx];
1813 		memcpy(&desc1, desc, desc->bLength);
1814 
1815 		spin_unlock_irq(&epfile->ffs->eps_lock);
1816 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1817 		if (ret)
1818 			ret = -EFAULT;
1819 		return ret;
1820 	}
1821 	default:
1822 		ret = -ENOTTY;
1823 	}
1824 	spin_unlock_irq(&epfile->ffs->eps_lock);
1825 
1826 	return ret;
1827 }
1828 
1829 static const struct file_operations ffs_epfile_operations = {
1830 	.llseek =	no_llseek,
1831 
1832 	.open =		ffs_epfile_open,
1833 	.write_iter =	ffs_epfile_write_iter,
1834 	.read_iter =	ffs_epfile_read_iter,
1835 	.release =	ffs_epfile_release,
1836 	.unlocked_ioctl =	ffs_epfile_ioctl,
1837 	.compat_ioctl = compat_ptr_ioctl,
1838 };
1839 
1840 
1841 /* File system and super block operations ***********************************/
1842 
1843 /*
1844  * Mounting the file system creates a controller file, used first for
1845  * function configuration then later for event monitoring.
1846  */
1847 
1848 static struct inode *__must_check
1849 ffs_sb_make_inode(struct super_block *sb, void *data,
1850 		  const struct file_operations *fops,
1851 		  const struct inode_operations *iops,
1852 		  struct ffs_file_perms *perms)
1853 {
1854 	struct inode *inode;
1855 
1856 	inode = new_inode(sb);
1857 
1858 	if (inode) {
1859 		struct timespec64 ts = inode_set_ctime_current(inode);
1860 
1861 		inode->i_ino	 = get_next_ino();
1862 		inode->i_mode    = perms->mode;
1863 		inode->i_uid     = perms->uid;
1864 		inode->i_gid     = perms->gid;
1865 		inode_set_atime_to_ts(inode, ts);
1866 		inode_set_mtime_to_ts(inode, ts);
1867 		inode->i_private = data;
1868 		if (fops)
1869 			inode->i_fop = fops;
1870 		if (iops)
1871 			inode->i_op  = iops;
1872 	}
1873 
1874 	return inode;
1875 }
1876 
1877 /* Create "regular" file */
1878 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1879 					const char *name, void *data,
1880 					const struct file_operations *fops)
1881 {
1882 	struct ffs_data	*ffs = sb->s_fs_info;
1883 	struct dentry	*dentry;
1884 	struct inode	*inode;
1885 
1886 	dentry = d_alloc_name(sb->s_root, name);
1887 	if (!dentry)
1888 		return NULL;
1889 
1890 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1891 	if (!inode) {
1892 		dput(dentry);
1893 		return NULL;
1894 	}
1895 
1896 	d_add(dentry, inode);
1897 	return dentry;
1898 }
1899 
1900 /* Super block */
1901 static const struct super_operations ffs_sb_operations = {
1902 	.statfs =	simple_statfs,
1903 	.drop_inode =	generic_delete_inode,
1904 };
1905 
1906 struct ffs_sb_fill_data {
1907 	struct ffs_file_perms perms;
1908 	umode_t root_mode;
1909 	const char *dev_name;
1910 	bool no_disconnect;
1911 	struct ffs_data *ffs_data;
1912 };
1913 
1914 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1915 {
1916 	struct ffs_sb_fill_data *data = fc->fs_private;
1917 	struct inode	*inode;
1918 	struct ffs_data	*ffs = data->ffs_data;
1919 
1920 	ffs->sb              = sb;
1921 	data->ffs_data       = NULL;
1922 	sb->s_fs_info        = ffs;
1923 	sb->s_blocksize      = PAGE_SIZE;
1924 	sb->s_blocksize_bits = PAGE_SHIFT;
1925 	sb->s_magic          = FUNCTIONFS_MAGIC;
1926 	sb->s_op             = &ffs_sb_operations;
1927 	sb->s_time_gran      = 1;
1928 
1929 	/* Root inode */
1930 	data->perms.mode = data->root_mode;
1931 	inode = ffs_sb_make_inode(sb, NULL,
1932 				  &simple_dir_operations,
1933 				  &simple_dir_inode_operations,
1934 				  &data->perms);
1935 	sb->s_root = d_make_root(inode);
1936 	if (!sb->s_root)
1937 		return -ENOMEM;
1938 
1939 	/* EP0 file */
1940 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1941 		return -ENOMEM;
1942 
1943 	return 0;
1944 }
1945 
1946 enum {
1947 	Opt_no_disconnect,
1948 	Opt_rmode,
1949 	Opt_fmode,
1950 	Opt_mode,
1951 	Opt_uid,
1952 	Opt_gid,
1953 };
1954 
1955 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1956 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1957 	fsparam_u32	("rmode",		Opt_rmode),
1958 	fsparam_u32	("fmode",		Opt_fmode),
1959 	fsparam_u32	("mode",		Opt_mode),
1960 	fsparam_u32	("uid",			Opt_uid),
1961 	fsparam_u32	("gid",			Opt_gid),
1962 	{}
1963 };
1964 
1965 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1966 {
1967 	struct ffs_sb_fill_data *data = fc->fs_private;
1968 	struct fs_parse_result result;
1969 	int opt;
1970 
1971 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1972 	if (opt < 0)
1973 		return opt;
1974 
1975 	switch (opt) {
1976 	case Opt_no_disconnect:
1977 		data->no_disconnect = result.boolean;
1978 		break;
1979 	case Opt_rmode:
1980 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1981 		break;
1982 	case Opt_fmode:
1983 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1984 		break;
1985 	case Opt_mode:
1986 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1987 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1988 		break;
1989 
1990 	case Opt_uid:
1991 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1992 		if (!uid_valid(data->perms.uid))
1993 			goto unmapped_value;
1994 		break;
1995 	case Opt_gid:
1996 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1997 		if (!gid_valid(data->perms.gid))
1998 			goto unmapped_value;
1999 		break;
2000 
2001 	default:
2002 		return -ENOPARAM;
2003 	}
2004 
2005 	return 0;
2006 
2007 unmapped_value:
2008 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2009 }
2010 
2011 /*
2012  * Set up the superblock for a mount.
2013  */
2014 static int ffs_fs_get_tree(struct fs_context *fc)
2015 {
2016 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2017 	struct ffs_data	*ffs;
2018 	int ret;
2019 
2020 	if (!fc->source)
2021 		return invalf(fc, "No source specified");
2022 
2023 	ffs = ffs_data_new(fc->source);
2024 	if (!ffs)
2025 		return -ENOMEM;
2026 	ffs->file_perms = ctx->perms;
2027 	ffs->no_disconnect = ctx->no_disconnect;
2028 
2029 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2030 	if (!ffs->dev_name) {
2031 		ffs_data_put(ffs);
2032 		return -ENOMEM;
2033 	}
2034 
2035 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2036 	if (ret) {
2037 		ffs_data_put(ffs);
2038 		return ret;
2039 	}
2040 
2041 	ctx->ffs_data = ffs;
2042 	return get_tree_nodev(fc, ffs_sb_fill);
2043 }
2044 
2045 static void ffs_fs_free_fc(struct fs_context *fc)
2046 {
2047 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2048 
2049 	if (ctx) {
2050 		if (ctx->ffs_data) {
2051 			ffs_data_put(ctx->ffs_data);
2052 		}
2053 
2054 		kfree(ctx);
2055 	}
2056 }
2057 
2058 static const struct fs_context_operations ffs_fs_context_ops = {
2059 	.free		= ffs_fs_free_fc,
2060 	.parse_param	= ffs_fs_parse_param,
2061 	.get_tree	= ffs_fs_get_tree,
2062 };
2063 
2064 static int ffs_fs_init_fs_context(struct fs_context *fc)
2065 {
2066 	struct ffs_sb_fill_data *ctx;
2067 
2068 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2069 	if (!ctx)
2070 		return -ENOMEM;
2071 
2072 	ctx->perms.mode = S_IFREG | 0600;
2073 	ctx->perms.uid = GLOBAL_ROOT_UID;
2074 	ctx->perms.gid = GLOBAL_ROOT_GID;
2075 	ctx->root_mode = S_IFDIR | 0500;
2076 	ctx->no_disconnect = false;
2077 
2078 	fc->fs_private = ctx;
2079 	fc->ops = &ffs_fs_context_ops;
2080 	return 0;
2081 }
2082 
2083 static void
2084 ffs_fs_kill_sb(struct super_block *sb)
2085 {
2086 	kill_litter_super(sb);
2087 	if (sb->s_fs_info)
2088 		ffs_data_closed(sb->s_fs_info);
2089 }
2090 
2091 static struct file_system_type ffs_fs_type = {
2092 	.owner		= THIS_MODULE,
2093 	.name		= "functionfs",
2094 	.init_fs_context = ffs_fs_init_fs_context,
2095 	.parameters	= ffs_fs_fs_parameters,
2096 	.kill_sb	= ffs_fs_kill_sb,
2097 };
2098 MODULE_ALIAS_FS("functionfs");
2099 
2100 
2101 /* Driver's main init/cleanup functions *************************************/
2102 
2103 static int functionfs_init(void)
2104 {
2105 	int ret;
2106 
2107 	ret = register_filesystem(&ffs_fs_type);
2108 	if (!ret)
2109 		pr_info("file system registered\n");
2110 	else
2111 		pr_err("failed registering file system (%d)\n", ret);
2112 
2113 	return ret;
2114 }
2115 
2116 static void functionfs_cleanup(void)
2117 {
2118 	pr_info("unloading\n");
2119 	unregister_filesystem(&ffs_fs_type);
2120 }
2121 
2122 
2123 /* ffs_data and ffs_function construction and destruction code **************/
2124 
2125 static void ffs_data_clear(struct ffs_data *ffs);
2126 static void ffs_data_reset(struct ffs_data *ffs);
2127 
2128 static void ffs_data_get(struct ffs_data *ffs)
2129 {
2130 	refcount_inc(&ffs->ref);
2131 }
2132 
2133 static void ffs_data_opened(struct ffs_data *ffs)
2134 {
2135 	refcount_inc(&ffs->ref);
2136 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2137 			ffs->state == FFS_DEACTIVATED) {
2138 		ffs->state = FFS_CLOSING;
2139 		ffs_data_reset(ffs);
2140 	}
2141 }
2142 
2143 static void ffs_data_put(struct ffs_data *ffs)
2144 {
2145 	if (refcount_dec_and_test(&ffs->ref)) {
2146 		pr_info("%s(): freeing\n", __func__);
2147 		ffs_data_clear(ffs);
2148 		ffs_release_dev(ffs->private_data);
2149 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2150 		       swait_active(&ffs->ep0req_completion.wait) ||
2151 		       waitqueue_active(&ffs->wait));
2152 		destroy_workqueue(ffs->io_completion_wq);
2153 		kfree(ffs->dev_name);
2154 		kfree(ffs);
2155 	}
2156 }
2157 
2158 static void ffs_data_closed(struct ffs_data *ffs)
2159 {
2160 	struct ffs_epfile *epfiles;
2161 	unsigned long flags;
2162 
2163 	if (atomic_dec_and_test(&ffs->opened)) {
2164 		if (ffs->no_disconnect) {
2165 			ffs->state = FFS_DEACTIVATED;
2166 			spin_lock_irqsave(&ffs->eps_lock, flags);
2167 			epfiles = ffs->epfiles;
2168 			ffs->epfiles = NULL;
2169 			spin_unlock_irqrestore(&ffs->eps_lock,
2170 							flags);
2171 
2172 			if (epfiles)
2173 				ffs_epfiles_destroy(epfiles,
2174 						 ffs->eps_count);
2175 
2176 			if (ffs->setup_state == FFS_SETUP_PENDING)
2177 				__ffs_ep0_stall(ffs);
2178 		} else {
2179 			ffs->state = FFS_CLOSING;
2180 			ffs_data_reset(ffs);
2181 		}
2182 	}
2183 	if (atomic_read(&ffs->opened) < 0) {
2184 		ffs->state = FFS_CLOSING;
2185 		ffs_data_reset(ffs);
2186 	}
2187 
2188 	ffs_data_put(ffs);
2189 }
2190 
2191 static struct ffs_data *ffs_data_new(const char *dev_name)
2192 {
2193 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2194 	if (!ffs)
2195 		return NULL;
2196 
2197 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2198 	if (!ffs->io_completion_wq) {
2199 		kfree(ffs);
2200 		return NULL;
2201 	}
2202 
2203 	refcount_set(&ffs->ref, 1);
2204 	atomic_set(&ffs->opened, 0);
2205 	ffs->state = FFS_READ_DESCRIPTORS;
2206 	mutex_init(&ffs->mutex);
2207 	spin_lock_init(&ffs->eps_lock);
2208 	init_waitqueue_head(&ffs->ev.waitq);
2209 	init_waitqueue_head(&ffs->wait);
2210 	init_completion(&ffs->ep0req_completion);
2211 
2212 	/* XXX REVISIT need to update it in some places, or do we? */
2213 	ffs->ev.can_stall = 1;
2214 
2215 	return ffs;
2216 }
2217 
2218 static void ffs_data_clear(struct ffs_data *ffs)
2219 {
2220 	struct ffs_epfile *epfiles;
2221 	unsigned long flags;
2222 
2223 	ffs_closed(ffs);
2224 
2225 	BUG_ON(ffs->gadget);
2226 
2227 	spin_lock_irqsave(&ffs->eps_lock, flags);
2228 	epfiles = ffs->epfiles;
2229 	ffs->epfiles = NULL;
2230 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2231 
2232 	/*
2233 	 * potential race possible between ffs_func_eps_disable
2234 	 * & ffs_epfile_release therefore maintaining a local
2235 	 * copy of epfile will save us from use-after-free.
2236 	 */
2237 	if (epfiles) {
2238 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2239 		ffs->epfiles = NULL;
2240 	}
2241 
2242 	if (ffs->ffs_eventfd) {
2243 		eventfd_ctx_put(ffs->ffs_eventfd);
2244 		ffs->ffs_eventfd = NULL;
2245 	}
2246 
2247 	kfree(ffs->raw_descs_data);
2248 	kfree(ffs->raw_strings);
2249 	kfree(ffs->stringtabs);
2250 }
2251 
2252 static void ffs_data_reset(struct ffs_data *ffs)
2253 {
2254 	ffs_data_clear(ffs);
2255 
2256 	ffs->raw_descs_data = NULL;
2257 	ffs->raw_descs = NULL;
2258 	ffs->raw_strings = NULL;
2259 	ffs->stringtabs = NULL;
2260 
2261 	ffs->raw_descs_length = 0;
2262 	ffs->fs_descs_count = 0;
2263 	ffs->hs_descs_count = 0;
2264 	ffs->ss_descs_count = 0;
2265 
2266 	ffs->strings_count = 0;
2267 	ffs->interfaces_count = 0;
2268 	ffs->eps_count = 0;
2269 
2270 	ffs->ev.count = 0;
2271 
2272 	ffs->state = FFS_READ_DESCRIPTORS;
2273 	ffs->setup_state = FFS_NO_SETUP;
2274 	ffs->flags = 0;
2275 
2276 	ffs->ms_os_descs_ext_prop_count = 0;
2277 	ffs->ms_os_descs_ext_prop_name_len = 0;
2278 	ffs->ms_os_descs_ext_prop_data_len = 0;
2279 }
2280 
2281 
2282 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2283 {
2284 	struct usb_gadget_strings **lang;
2285 	int first_id;
2286 
2287 	if (WARN_ON(ffs->state != FFS_ACTIVE
2288 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2289 		return -EBADFD;
2290 
2291 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2292 	if (first_id < 0)
2293 		return first_id;
2294 
2295 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2296 	if (!ffs->ep0req)
2297 		return -ENOMEM;
2298 	ffs->ep0req->complete = ffs_ep0_complete;
2299 	ffs->ep0req->context = ffs;
2300 
2301 	lang = ffs->stringtabs;
2302 	if (lang) {
2303 		for (; *lang; ++lang) {
2304 			struct usb_string *str = (*lang)->strings;
2305 			int id = first_id;
2306 			for (; str->s; ++id, ++str)
2307 				str->id = id;
2308 		}
2309 	}
2310 
2311 	ffs->gadget = cdev->gadget;
2312 	ffs_data_get(ffs);
2313 	return 0;
2314 }
2315 
2316 static void functionfs_unbind(struct ffs_data *ffs)
2317 {
2318 	if (!WARN_ON(!ffs->gadget)) {
2319 		/* dequeue before freeing ep0req */
2320 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2321 		mutex_lock(&ffs->mutex);
2322 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2323 		ffs->ep0req = NULL;
2324 		ffs->gadget = NULL;
2325 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2326 		mutex_unlock(&ffs->mutex);
2327 		ffs_data_put(ffs);
2328 	}
2329 }
2330 
2331 static int ffs_epfiles_create(struct ffs_data *ffs)
2332 {
2333 	struct ffs_epfile *epfile, *epfiles;
2334 	unsigned i, count;
2335 
2336 	count = ffs->eps_count;
2337 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2338 	if (!epfiles)
2339 		return -ENOMEM;
2340 
2341 	epfile = epfiles;
2342 	for (i = 1; i <= count; ++i, ++epfile) {
2343 		epfile->ffs = ffs;
2344 		mutex_init(&epfile->mutex);
2345 		mutex_init(&epfile->dmabufs_mutex);
2346 		INIT_LIST_HEAD(&epfile->dmabufs);
2347 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2348 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2349 		else
2350 			sprintf(epfile->name, "ep%u", i);
2351 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2352 						 epfile,
2353 						 &ffs_epfile_operations);
2354 		if (!epfile->dentry) {
2355 			ffs_epfiles_destroy(epfiles, i - 1);
2356 			return -ENOMEM;
2357 		}
2358 	}
2359 
2360 	ffs->epfiles = epfiles;
2361 	return 0;
2362 }
2363 
2364 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2365 {
2366 	struct ffs_epfile *epfile = epfiles;
2367 
2368 	for (; count; --count, ++epfile) {
2369 		BUG_ON(mutex_is_locked(&epfile->mutex));
2370 		if (epfile->dentry) {
2371 			d_delete(epfile->dentry);
2372 			dput(epfile->dentry);
2373 			epfile->dentry = NULL;
2374 		}
2375 	}
2376 
2377 	kfree(epfiles);
2378 }
2379 
2380 static void ffs_func_eps_disable(struct ffs_function *func)
2381 {
2382 	struct ffs_ep *ep;
2383 	struct ffs_epfile *epfile;
2384 	unsigned short count;
2385 	unsigned long flags;
2386 
2387 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2388 	count = func->ffs->eps_count;
2389 	epfile = func->ffs->epfiles;
2390 	ep = func->eps;
2391 	while (count--) {
2392 		/* pending requests get nuked */
2393 		if (ep->ep)
2394 			usb_ep_disable(ep->ep);
2395 		++ep;
2396 
2397 		if (epfile) {
2398 			epfile->ep = NULL;
2399 			__ffs_epfile_read_buffer_free(epfile);
2400 			++epfile;
2401 		}
2402 	}
2403 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2404 }
2405 
2406 static int ffs_func_eps_enable(struct ffs_function *func)
2407 {
2408 	struct ffs_data *ffs;
2409 	struct ffs_ep *ep;
2410 	struct ffs_epfile *epfile;
2411 	unsigned short count;
2412 	unsigned long flags;
2413 	int ret = 0;
2414 
2415 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2416 	ffs = func->ffs;
2417 	ep = func->eps;
2418 	epfile = ffs->epfiles;
2419 	count = ffs->eps_count;
2420 	while(count--) {
2421 		ep->ep->driver_data = ep;
2422 
2423 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2424 		if (ret) {
2425 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2426 					__func__, ep->ep->name, ret);
2427 			break;
2428 		}
2429 
2430 		ret = usb_ep_enable(ep->ep);
2431 		if (!ret) {
2432 			epfile->ep = ep;
2433 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2434 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2435 		} else {
2436 			break;
2437 		}
2438 
2439 		++ep;
2440 		++epfile;
2441 	}
2442 
2443 	wake_up_interruptible(&ffs->wait);
2444 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2445 
2446 	return ret;
2447 }
2448 
2449 
2450 /* Parsing and building descriptors and strings *****************************/
2451 
2452 /*
2453  * This validates if data pointed by data is a valid USB descriptor as
2454  * well as record how many interfaces, endpoints and strings are
2455  * required by given configuration.  Returns address after the
2456  * descriptor or NULL if data is invalid.
2457  */
2458 
2459 enum ffs_entity_type {
2460 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2461 };
2462 
2463 enum ffs_os_desc_type {
2464 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2465 };
2466 
2467 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2468 				   u8 *valuep,
2469 				   struct usb_descriptor_header *desc,
2470 				   void *priv);
2471 
2472 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2473 				    struct usb_os_desc_header *h, void *data,
2474 				    unsigned len, void *priv);
2475 
2476 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2477 					   ffs_entity_callback entity,
2478 					   void *priv, int *current_class)
2479 {
2480 	struct usb_descriptor_header *_ds = (void *)data;
2481 	u8 length;
2482 	int ret;
2483 
2484 	/* At least two bytes are required: length and type */
2485 	if (len < 2) {
2486 		pr_vdebug("descriptor too short\n");
2487 		return -EINVAL;
2488 	}
2489 
2490 	/* If we have at least as many bytes as the descriptor takes? */
2491 	length = _ds->bLength;
2492 	if (len < length) {
2493 		pr_vdebug("descriptor longer then available data\n");
2494 		return -EINVAL;
2495 	}
2496 
2497 #define __entity_check_INTERFACE(val)  1
2498 #define __entity_check_STRING(val)     (val)
2499 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2500 #define __entity(type, val) do {					\
2501 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2502 		if (!__entity_check_ ##type(val)) {			\
2503 			pr_vdebug("invalid entity's value\n");		\
2504 			return -EINVAL;					\
2505 		}							\
2506 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2507 		if (ret < 0) {						\
2508 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2509 				 (val), ret);				\
2510 			return ret;					\
2511 		}							\
2512 	} while (0)
2513 
2514 	/* Parse descriptor depending on type. */
2515 	switch (_ds->bDescriptorType) {
2516 	case USB_DT_DEVICE:
2517 	case USB_DT_CONFIG:
2518 	case USB_DT_STRING:
2519 	case USB_DT_DEVICE_QUALIFIER:
2520 		/* function can't have any of those */
2521 		pr_vdebug("descriptor reserved for gadget: %d\n",
2522 		      _ds->bDescriptorType);
2523 		return -EINVAL;
2524 
2525 	case USB_DT_INTERFACE: {
2526 		struct usb_interface_descriptor *ds = (void *)_ds;
2527 		pr_vdebug("interface descriptor\n");
2528 		if (length != sizeof *ds)
2529 			goto inv_length;
2530 
2531 		__entity(INTERFACE, ds->bInterfaceNumber);
2532 		if (ds->iInterface)
2533 			__entity(STRING, ds->iInterface);
2534 		*current_class = ds->bInterfaceClass;
2535 	}
2536 		break;
2537 
2538 	case USB_DT_ENDPOINT: {
2539 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2540 		pr_vdebug("endpoint descriptor\n");
2541 		if (length != USB_DT_ENDPOINT_SIZE &&
2542 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2543 			goto inv_length;
2544 		__entity(ENDPOINT, ds->bEndpointAddress);
2545 	}
2546 		break;
2547 
2548 	case USB_TYPE_CLASS | 0x01:
2549 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2550 			pr_vdebug("hid descriptor\n");
2551 			if (length != sizeof(struct hid_descriptor))
2552 				goto inv_length;
2553 			break;
2554 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2555 			pr_vdebug("ccid descriptor\n");
2556 			if (length != sizeof(struct ccid_descriptor))
2557 				goto inv_length;
2558 			break;
2559 		} else {
2560 			pr_vdebug("unknown descriptor: %d for class %d\n",
2561 			      _ds->bDescriptorType, *current_class);
2562 			return -EINVAL;
2563 		}
2564 
2565 	case USB_DT_OTG:
2566 		if (length != sizeof(struct usb_otg_descriptor))
2567 			goto inv_length;
2568 		break;
2569 
2570 	case USB_DT_INTERFACE_ASSOCIATION: {
2571 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2572 		pr_vdebug("interface association descriptor\n");
2573 		if (length != sizeof *ds)
2574 			goto inv_length;
2575 		if (ds->iFunction)
2576 			__entity(STRING, ds->iFunction);
2577 	}
2578 		break;
2579 
2580 	case USB_DT_SS_ENDPOINT_COMP:
2581 		pr_vdebug("EP SS companion descriptor\n");
2582 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2583 			goto inv_length;
2584 		break;
2585 
2586 	case USB_DT_OTHER_SPEED_CONFIG:
2587 	case USB_DT_INTERFACE_POWER:
2588 	case USB_DT_DEBUG:
2589 	case USB_DT_SECURITY:
2590 	case USB_DT_CS_RADIO_CONTROL:
2591 		/* TODO */
2592 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2593 		return -EINVAL;
2594 
2595 	default:
2596 		/* We should never be here */
2597 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2598 		return -EINVAL;
2599 
2600 inv_length:
2601 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2602 			  _ds->bLength, _ds->bDescriptorType);
2603 		return -EINVAL;
2604 	}
2605 
2606 #undef __entity
2607 #undef __entity_check_DESCRIPTOR
2608 #undef __entity_check_INTERFACE
2609 #undef __entity_check_STRING
2610 #undef __entity_check_ENDPOINT
2611 
2612 	return length;
2613 }
2614 
2615 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2616 				     ffs_entity_callback entity, void *priv)
2617 {
2618 	const unsigned _len = len;
2619 	unsigned long num = 0;
2620 	int current_class = -1;
2621 
2622 	for (;;) {
2623 		int ret;
2624 
2625 		if (num == count)
2626 			data = NULL;
2627 
2628 		/* Record "descriptor" entity */
2629 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2630 		if (ret < 0) {
2631 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2632 				 num, ret);
2633 			return ret;
2634 		}
2635 
2636 		if (!data)
2637 			return _len - len;
2638 
2639 		ret = ffs_do_single_desc(data, len, entity, priv,
2640 			&current_class);
2641 		if (ret < 0) {
2642 			pr_debug("%s returns %d\n", __func__, ret);
2643 			return ret;
2644 		}
2645 
2646 		len -= ret;
2647 		data += ret;
2648 		++num;
2649 	}
2650 }
2651 
2652 static int __ffs_data_do_entity(enum ffs_entity_type type,
2653 				u8 *valuep, struct usb_descriptor_header *desc,
2654 				void *priv)
2655 {
2656 	struct ffs_desc_helper *helper = priv;
2657 	struct usb_endpoint_descriptor *d;
2658 
2659 	switch (type) {
2660 	case FFS_DESCRIPTOR:
2661 		break;
2662 
2663 	case FFS_INTERFACE:
2664 		/*
2665 		 * Interfaces are indexed from zero so if we
2666 		 * encountered interface "n" then there are at least
2667 		 * "n+1" interfaces.
2668 		 */
2669 		if (*valuep >= helper->interfaces_count)
2670 			helper->interfaces_count = *valuep + 1;
2671 		break;
2672 
2673 	case FFS_STRING:
2674 		/*
2675 		 * Strings are indexed from 1 (0 is reserved
2676 		 * for languages list)
2677 		 */
2678 		if (*valuep > helper->ffs->strings_count)
2679 			helper->ffs->strings_count = *valuep;
2680 		break;
2681 
2682 	case FFS_ENDPOINT:
2683 		d = (void *)desc;
2684 		helper->eps_count++;
2685 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2686 			return -EINVAL;
2687 		/* Check if descriptors for any speed were already parsed */
2688 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2689 			helper->ffs->eps_addrmap[helper->eps_count] =
2690 				d->bEndpointAddress;
2691 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2692 				d->bEndpointAddress)
2693 			return -EINVAL;
2694 		break;
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2701 				   struct usb_os_desc_header *desc)
2702 {
2703 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2704 	u16 w_index = le16_to_cpu(desc->wIndex);
2705 
2706 	if (bcd_version == 0x1) {
2707 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2708 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2709 	} else if (bcd_version != 0x100) {
2710 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2711 			  bcd_version);
2712 		return -EINVAL;
2713 	}
2714 	switch (w_index) {
2715 	case 0x4:
2716 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2717 		break;
2718 	case 0x5:
2719 		*next_type = FFS_OS_DESC_EXT_PROP;
2720 		break;
2721 	default:
2722 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2723 		return -EINVAL;
2724 	}
2725 
2726 	return sizeof(*desc);
2727 }
2728 
2729 /*
2730  * Process all extended compatibility/extended property descriptors
2731  * of a feature descriptor
2732  */
2733 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2734 					      enum ffs_os_desc_type type,
2735 					      u16 feature_count,
2736 					      ffs_os_desc_callback entity,
2737 					      void *priv,
2738 					      struct usb_os_desc_header *h)
2739 {
2740 	int ret;
2741 	const unsigned _len = len;
2742 
2743 	/* loop over all ext compat/ext prop descriptors */
2744 	while (feature_count--) {
2745 		ret = entity(type, h, data, len, priv);
2746 		if (ret < 0) {
2747 			pr_debug("bad OS descriptor, type: %d\n", type);
2748 			return ret;
2749 		}
2750 		data += ret;
2751 		len -= ret;
2752 	}
2753 	return _len - len;
2754 }
2755 
2756 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2757 static int __must_check ffs_do_os_descs(unsigned count,
2758 					char *data, unsigned len,
2759 					ffs_os_desc_callback entity, void *priv)
2760 {
2761 	const unsigned _len = len;
2762 	unsigned long num = 0;
2763 
2764 	for (num = 0; num < count; ++num) {
2765 		int ret;
2766 		enum ffs_os_desc_type type;
2767 		u16 feature_count;
2768 		struct usb_os_desc_header *desc = (void *)data;
2769 
2770 		if (len < sizeof(*desc))
2771 			return -EINVAL;
2772 
2773 		/*
2774 		 * Record "descriptor" entity.
2775 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2776 		 * Move the data pointer to the beginning of extended
2777 		 * compatibilities proper or extended properties proper
2778 		 * portions of the data
2779 		 */
2780 		if (le32_to_cpu(desc->dwLength) > len)
2781 			return -EINVAL;
2782 
2783 		ret = __ffs_do_os_desc_header(&type, desc);
2784 		if (ret < 0) {
2785 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2786 				 num, ret);
2787 			return ret;
2788 		}
2789 		/*
2790 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2791 		 */
2792 		feature_count = le16_to_cpu(desc->wCount);
2793 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2794 		    (feature_count > 255 || desc->Reserved))
2795 				return -EINVAL;
2796 		len -= ret;
2797 		data += ret;
2798 
2799 		/*
2800 		 * Process all function/property descriptors
2801 		 * of this Feature Descriptor
2802 		 */
2803 		ret = ffs_do_single_os_desc(data, len, type,
2804 					    feature_count, entity, priv, desc);
2805 		if (ret < 0) {
2806 			pr_debug("%s returns %d\n", __func__, ret);
2807 			return ret;
2808 		}
2809 
2810 		len -= ret;
2811 		data += ret;
2812 	}
2813 	return _len - len;
2814 }
2815 
2816 /*
2817  * Validate contents of the buffer from userspace related to OS descriptors.
2818  */
2819 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2820 				 struct usb_os_desc_header *h, void *data,
2821 				 unsigned len, void *priv)
2822 {
2823 	struct ffs_data *ffs = priv;
2824 	u8 length;
2825 
2826 	switch (type) {
2827 	case FFS_OS_DESC_EXT_COMPAT: {
2828 		struct usb_ext_compat_desc *d = data;
2829 		int i;
2830 
2831 		if (len < sizeof(*d) ||
2832 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2833 			return -EINVAL;
2834 		if (d->Reserved1 != 1) {
2835 			/*
2836 			 * According to the spec, Reserved1 must be set to 1
2837 			 * but older kernels incorrectly rejected non-zero
2838 			 * values.  We fix it here to avoid returning EINVAL
2839 			 * in response to values we used to accept.
2840 			 */
2841 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2842 			d->Reserved1 = 1;
2843 		}
2844 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2845 			if (d->Reserved2[i])
2846 				return -EINVAL;
2847 
2848 		length = sizeof(struct usb_ext_compat_desc);
2849 	}
2850 		break;
2851 	case FFS_OS_DESC_EXT_PROP: {
2852 		struct usb_ext_prop_desc *d = data;
2853 		u32 type, pdl;
2854 		u16 pnl;
2855 
2856 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2857 			return -EINVAL;
2858 		length = le32_to_cpu(d->dwSize);
2859 		if (len < length)
2860 			return -EINVAL;
2861 		type = le32_to_cpu(d->dwPropertyDataType);
2862 		if (type < USB_EXT_PROP_UNICODE ||
2863 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2864 			pr_vdebug("unsupported os descriptor property type: %d",
2865 				  type);
2866 			return -EINVAL;
2867 		}
2868 		pnl = le16_to_cpu(d->wPropertyNameLength);
2869 		if (length < 14 + pnl) {
2870 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2871 				  length, pnl, type);
2872 			return -EINVAL;
2873 		}
2874 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2875 		if (length != 14 + pnl + pdl) {
2876 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2877 				  length, pnl, pdl, type);
2878 			return -EINVAL;
2879 		}
2880 		++ffs->ms_os_descs_ext_prop_count;
2881 		/* property name reported to the host as "WCHAR"s */
2882 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2883 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2884 	}
2885 		break;
2886 	default:
2887 		pr_vdebug("unknown descriptor: %d\n", type);
2888 		return -EINVAL;
2889 	}
2890 	return length;
2891 }
2892 
2893 static int __ffs_data_got_descs(struct ffs_data *ffs,
2894 				char *const _data, size_t len)
2895 {
2896 	char *data = _data, *raw_descs;
2897 	unsigned os_descs_count = 0, counts[3], flags;
2898 	int ret = -EINVAL, i;
2899 	struct ffs_desc_helper helper;
2900 
2901 	if (get_unaligned_le32(data + 4) != len)
2902 		goto error;
2903 
2904 	switch (get_unaligned_le32(data)) {
2905 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2906 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2907 		data += 8;
2908 		len  -= 8;
2909 		break;
2910 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2911 		flags = get_unaligned_le32(data + 8);
2912 		ffs->user_flags = flags;
2913 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2914 			      FUNCTIONFS_HAS_HS_DESC |
2915 			      FUNCTIONFS_HAS_SS_DESC |
2916 			      FUNCTIONFS_HAS_MS_OS_DESC |
2917 			      FUNCTIONFS_VIRTUAL_ADDR |
2918 			      FUNCTIONFS_EVENTFD |
2919 			      FUNCTIONFS_ALL_CTRL_RECIP |
2920 			      FUNCTIONFS_CONFIG0_SETUP)) {
2921 			ret = -ENOSYS;
2922 			goto error;
2923 		}
2924 		data += 12;
2925 		len  -= 12;
2926 		break;
2927 	default:
2928 		goto error;
2929 	}
2930 
2931 	if (flags & FUNCTIONFS_EVENTFD) {
2932 		if (len < 4)
2933 			goto error;
2934 		ffs->ffs_eventfd =
2935 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2936 		if (IS_ERR(ffs->ffs_eventfd)) {
2937 			ret = PTR_ERR(ffs->ffs_eventfd);
2938 			ffs->ffs_eventfd = NULL;
2939 			goto error;
2940 		}
2941 		data += 4;
2942 		len  -= 4;
2943 	}
2944 
2945 	/* Read fs_count, hs_count and ss_count (if present) */
2946 	for (i = 0; i < 3; ++i) {
2947 		if (!(flags & (1 << i))) {
2948 			counts[i] = 0;
2949 		} else if (len < 4) {
2950 			goto error;
2951 		} else {
2952 			counts[i] = get_unaligned_le32(data);
2953 			data += 4;
2954 			len  -= 4;
2955 		}
2956 	}
2957 	if (flags & (1 << i)) {
2958 		if (len < 4) {
2959 			goto error;
2960 		}
2961 		os_descs_count = get_unaligned_le32(data);
2962 		data += 4;
2963 		len -= 4;
2964 	}
2965 
2966 	/* Read descriptors */
2967 	raw_descs = data;
2968 	helper.ffs = ffs;
2969 	for (i = 0; i < 3; ++i) {
2970 		if (!counts[i])
2971 			continue;
2972 		helper.interfaces_count = 0;
2973 		helper.eps_count = 0;
2974 		ret = ffs_do_descs(counts[i], data, len,
2975 				   __ffs_data_do_entity, &helper);
2976 		if (ret < 0)
2977 			goto error;
2978 		if (!ffs->eps_count && !ffs->interfaces_count) {
2979 			ffs->eps_count = helper.eps_count;
2980 			ffs->interfaces_count = helper.interfaces_count;
2981 		} else {
2982 			if (ffs->eps_count != helper.eps_count) {
2983 				ret = -EINVAL;
2984 				goto error;
2985 			}
2986 			if (ffs->interfaces_count != helper.interfaces_count) {
2987 				ret = -EINVAL;
2988 				goto error;
2989 			}
2990 		}
2991 		data += ret;
2992 		len  -= ret;
2993 	}
2994 	if (os_descs_count) {
2995 		ret = ffs_do_os_descs(os_descs_count, data, len,
2996 				      __ffs_data_do_os_desc, ffs);
2997 		if (ret < 0)
2998 			goto error;
2999 		data += ret;
3000 		len -= ret;
3001 	}
3002 
3003 	if (raw_descs == data || len) {
3004 		ret = -EINVAL;
3005 		goto error;
3006 	}
3007 
3008 	ffs->raw_descs_data	= _data;
3009 	ffs->raw_descs		= raw_descs;
3010 	ffs->raw_descs_length	= data - raw_descs;
3011 	ffs->fs_descs_count	= counts[0];
3012 	ffs->hs_descs_count	= counts[1];
3013 	ffs->ss_descs_count	= counts[2];
3014 	ffs->ms_os_descs_count	= os_descs_count;
3015 
3016 	return 0;
3017 
3018 error:
3019 	kfree(_data);
3020 	return ret;
3021 }
3022 
3023 static int __ffs_data_got_strings(struct ffs_data *ffs,
3024 				  char *const _data, size_t len)
3025 {
3026 	u32 str_count, needed_count, lang_count;
3027 	struct usb_gadget_strings **stringtabs, *t;
3028 	const char *data = _data;
3029 	struct usb_string *s;
3030 
3031 	if (len < 16 ||
3032 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3033 	    get_unaligned_le32(data + 4) != len)
3034 		goto error;
3035 	str_count  = get_unaligned_le32(data + 8);
3036 	lang_count = get_unaligned_le32(data + 12);
3037 
3038 	/* if one is zero the other must be zero */
3039 	if (!str_count != !lang_count)
3040 		goto error;
3041 
3042 	/* Do we have at least as many strings as descriptors need? */
3043 	needed_count = ffs->strings_count;
3044 	if (str_count < needed_count)
3045 		goto error;
3046 
3047 	/*
3048 	 * If we don't need any strings just return and free all
3049 	 * memory.
3050 	 */
3051 	if (!needed_count) {
3052 		kfree(_data);
3053 		return 0;
3054 	}
3055 
3056 	/* Allocate everything in one chunk so there's less maintenance. */
3057 	{
3058 		unsigned i = 0;
3059 		vla_group(d);
3060 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3061 			size_add(lang_count, 1));
3062 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3063 		vla_item(d, struct usb_string, strings,
3064 			size_mul(lang_count, (needed_count + 1)));
3065 
3066 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3067 
3068 		if (!vlabuf) {
3069 			kfree(_data);
3070 			return -ENOMEM;
3071 		}
3072 
3073 		/* Initialize the VLA pointers */
3074 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3075 		t = vla_ptr(vlabuf, d, stringtab);
3076 		i = lang_count;
3077 		do {
3078 			*stringtabs++ = t++;
3079 		} while (--i);
3080 		*stringtabs = NULL;
3081 
3082 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3083 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3084 		t = vla_ptr(vlabuf, d, stringtab);
3085 		s = vla_ptr(vlabuf, d, strings);
3086 	}
3087 
3088 	/* For each language */
3089 	data += 16;
3090 	len -= 16;
3091 
3092 	do { /* lang_count > 0 so we can use do-while */
3093 		unsigned needed = needed_count;
3094 		u32 str_per_lang = str_count;
3095 
3096 		if (len < 3)
3097 			goto error_free;
3098 		t->language = get_unaligned_le16(data);
3099 		t->strings  = s;
3100 		++t;
3101 
3102 		data += 2;
3103 		len -= 2;
3104 
3105 		/* For each string */
3106 		do { /* str_count > 0 so we can use do-while */
3107 			size_t length = strnlen(data, len);
3108 
3109 			if (length == len)
3110 				goto error_free;
3111 
3112 			/*
3113 			 * User may provide more strings then we need,
3114 			 * if that's the case we simply ignore the
3115 			 * rest
3116 			 */
3117 			if (needed) {
3118 				/*
3119 				 * s->id will be set while adding
3120 				 * function to configuration so for
3121 				 * now just leave garbage here.
3122 				 */
3123 				s->s = data;
3124 				--needed;
3125 				++s;
3126 			}
3127 
3128 			data += length + 1;
3129 			len -= length + 1;
3130 		} while (--str_per_lang);
3131 
3132 		s->id = 0;   /* terminator */
3133 		s->s = NULL;
3134 		++s;
3135 
3136 	} while (--lang_count);
3137 
3138 	/* Some garbage left? */
3139 	if (len)
3140 		goto error_free;
3141 
3142 	/* Done! */
3143 	ffs->stringtabs = stringtabs;
3144 	ffs->raw_strings = _data;
3145 
3146 	return 0;
3147 
3148 error_free:
3149 	kfree(stringtabs);
3150 error:
3151 	kfree(_data);
3152 	return -EINVAL;
3153 }
3154 
3155 
3156 /* Events handling and management *******************************************/
3157 
3158 static void __ffs_event_add(struct ffs_data *ffs,
3159 			    enum usb_functionfs_event_type type)
3160 {
3161 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3162 	int neg = 0;
3163 
3164 	/*
3165 	 * Abort any unhandled setup
3166 	 *
3167 	 * We do not need to worry about some cmpxchg() changing value
3168 	 * of ffs->setup_state without holding the lock because when
3169 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3170 	 * the source does nothing.
3171 	 */
3172 	if (ffs->setup_state == FFS_SETUP_PENDING)
3173 		ffs->setup_state = FFS_SETUP_CANCELLED;
3174 
3175 	/*
3176 	 * Logic of this function guarantees that there are at most four pending
3177 	 * evens on ffs->ev.types queue.  This is important because the queue
3178 	 * has space for four elements only and __ffs_ep0_read_events function
3179 	 * depends on that limit as well.  If more event types are added, those
3180 	 * limits have to be revisited or guaranteed to still hold.
3181 	 */
3182 	switch (type) {
3183 	case FUNCTIONFS_RESUME:
3184 		rem_type2 = FUNCTIONFS_SUSPEND;
3185 		fallthrough;
3186 	case FUNCTIONFS_SUSPEND:
3187 	case FUNCTIONFS_SETUP:
3188 		rem_type1 = type;
3189 		/* Discard all similar events */
3190 		break;
3191 
3192 	case FUNCTIONFS_BIND:
3193 	case FUNCTIONFS_UNBIND:
3194 	case FUNCTIONFS_DISABLE:
3195 	case FUNCTIONFS_ENABLE:
3196 		/* Discard everything other then power management. */
3197 		rem_type1 = FUNCTIONFS_SUSPEND;
3198 		rem_type2 = FUNCTIONFS_RESUME;
3199 		neg = 1;
3200 		break;
3201 
3202 	default:
3203 		WARN(1, "%d: unknown event, this should not happen\n", type);
3204 		return;
3205 	}
3206 
3207 	{
3208 		u8 *ev  = ffs->ev.types, *out = ev;
3209 		unsigned n = ffs->ev.count;
3210 		for (; n; --n, ++ev)
3211 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3212 				*out++ = *ev;
3213 			else
3214 				pr_vdebug("purging event %d\n", *ev);
3215 		ffs->ev.count = out - ffs->ev.types;
3216 	}
3217 
3218 	pr_vdebug("adding event %d\n", type);
3219 	ffs->ev.types[ffs->ev.count++] = type;
3220 	wake_up_locked(&ffs->ev.waitq);
3221 	if (ffs->ffs_eventfd)
3222 		eventfd_signal(ffs->ffs_eventfd);
3223 }
3224 
3225 static void ffs_event_add(struct ffs_data *ffs,
3226 			  enum usb_functionfs_event_type type)
3227 {
3228 	unsigned long flags;
3229 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3230 	__ffs_event_add(ffs, type);
3231 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3232 }
3233 
3234 /* Bind/unbind USB function hooks *******************************************/
3235 
3236 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3237 {
3238 	int i;
3239 
3240 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3241 		if (ffs->eps_addrmap[i] == endpoint_address)
3242 			return i;
3243 	return -ENOENT;
3244 }
3245 
3246 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3247 				    struct usb_descriptor_header *desc,
3248 				    void *priv)
3249 {
3250 	struct usb_endpoint_descriptor *ds = (void *)desc;
3251 	struct ffs_function *func = priv;
3252 	struct ffs_ep *ffs_ep;
3253 	unsigned ep_desc_id;
3254 	int idx;
3255 	static const char *speed_names[] = { "full", "high", "super" };
3256 
3257 	if (type != FFS_DESCRIPTOR)
3258 		return 0;
3259 
3260 	/*
3261 	 * If ss_descriptors is not NULL, we are reading super speed
3262 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3263 	 * speed descriptors; otherwise, we are reading full speed
3264 	 * descriptors.
3265 	 */
3266 	if (func->function.ss_descriptors) {
3267 		ep_desc_id = 2;
3268 		func->function.ss_descriptors[(long)valuep] = desc;
3269 	} else if (func->function.hs_descriptors) {
3270 		ep_desc_id = 1;
3271 		func->function.hs_descriptors[(long)valuep] = desc;
3272 	} else {
3273 		ep_desc_id = 0;
3274 		func->function.fs_descriptors[(long)valuep]    = desc;
3275 	}
3276 
3277 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3278 		return 0;
3279 
3280 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3281 	if (idx < 0)
3282 		return idx;
3283 
3284 	ffs_ep = func->eps + idx;
3285 
3286 	if (ffs_ep->descs[ep_desc_id]) {
3287 		pr_err("two %sspeed descriptors for EP %d\n",
3288 			  speed_names[ep_desc_id],
3289 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3290 		return -EINVAL;
3291 	}
3292 	ffs_ep->descs[ep_desc_id] = ds;
3293 
3294 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3295 	if (ffs_ep->ep) {
3296 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3297 		if (!ds->wMaxPacketSize)
3298 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3299 	} else {
3300 		struct usb_request *req;
3301 		struct usb_ep *ep;
3302 		u8 bEndpointAddress;
3303 		u16 wMaxPacketSize;
3304 
3305 		/*
3306 		 * We back up bEndpointAddress because autoconfig overwrites
3307 		 * it with physical endpoint address.
3308 		 */
3309 		bEndpointAddress = ds->bEndpointAddress;
3310 		/*
3311 		 * We back up wMaxPacketSize because autoconfig treats
3312 		 * endpoint descriptors as if they were full speed.
3313 		 */
3314 		wMaxPacketSize = ds->wMaxPacketSize;
3315 		pr_vdebug("autoconfig\n");
3316 		ep = usb_ep_autoconfig(func->gadget, ds);
3317 		if (!ep)
3318 			return -ENOTSUPP;
3319 		ep->driver_data = func->eps + idx;
3320 
3321 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3322 		if (!req)
3323 			return -ENOMEM;
3324 
3325 		ffs_ep->ep  = ep;
3326 		ffs_ep->req = req;
3327 		func->eps_revmap[ds->bEndpointAddress &
3328 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3329 		/*
3330 		 * If we use virtual address mapping, we restore
3331 		 * original bEndpointAddress value.
3332 		 */
3333 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3334 			ds->bEndpointAddress = bEndpointAddress;
3335 		/*
3336 		 * Restore wMaxPacketSize which was potentially
3337 		 * overwritten by autoconfig.
3338 		 */
3339 		ds->wMaxPacketSize = wMaxPacketSize;
3340 	}
3341 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3342 
3343 	return 0;
3344 }
3345 
3346 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3347 				   struct usb_descriptor_header *desc,
3348 				   void *priv)
3349 {
3350 	struct ffs_function *func = priv;
3351 	unsigned idx;
3352 	u8 newValue;
3353 
3354 	switch (type) {
3355 	default:
3356 	case FFS_DESCRIPTOR:
3357 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3358 		return 0;
3359 
3360 	case FFS_INTERFACE:
3361 		idx = *valuep;
3362 		if (func->interfaces_nums[idx] < 0) {
3363 			int id = usb_interface_id(func->conf, &func->function);
3364 			if (id < 0)
3365 				return id;
3366 			func->interfaces_nums[idx] = id;
3367 		}
3368 		newValue = func->interfaces_nums[idx];
3369 		break;
3370 
3371 	case FFS_STRING:
3372 		/* String' IDs are allocated when fsf_data is bound to cdev */
3373 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3374 		break;
3375 
3376 	case FFS_ENDPOINT:
3377 		/*
3378 		 * USB_DT_ENDPOINT are handled in
3379 		 * __ffs_func_bind_do_descs().
3380 		 */
3381 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3382 			return 0;
3383 
3384 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3385 		if (!func->eps[idx].ep)
3386 			return -EINVAL;
3387 
3388 		{
3389 			struct usb_endpoint_descriptor **descs;
3390 			descs = func->eps[idx].descs;
3391 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3392 		}
3393 		break;
3394 	}
3395 
3396 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3397 	*valuep = newValue;
3398 	return 0;
3399 }
3400 
3401 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3402 				      struct usb_os_desc_header *h, void *data,
3403 				      unsigned len, void *priv)
3404 {
3405 	struct ffs_function *func = priv;
3406 	u8 length = 0;
3407 
3408 	switch (type) {
3409 	case FFS_OS_DESC_EXT_COMPAT: {
3410 		struct usb_ext_compat_desc *desc = data;
3411 		struct usb_os_desc_table *t;
3412 
3413 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3414 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3415 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3416 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3417 		length = sizeof(*desc);
3418 	}
3419 		break;
3420 	case FFS_OS_DESC_EXT_PROP: {
3421 		struct usb_ext_prop_desc *desc = data;
3422 		struct usb_os_desc_table *t;
3423 		struct usb_os_desc_ext_prop *ext_prop;
3424 		char *ext_prop_name;
3425 		char *ext_prop_data;
3426 
3427 		t = &func->function.os_desc_table[h->interface];
3428 		t->if_id = func->interfaces_nums[h->interface];
3429 
3430 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3431 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3432 
3433 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3434 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3435 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3436 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3437 		length = ext_prop->name_len + ext_prop->data_len + 14;
3438 
3439 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3440 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3441 			ext_prop->name_len;
3442 
3443 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3444 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3445 			ext_prop->data_len;
3446 		memcpy(ext_prop_data,
3447 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3448 		       ext_prop->data_len);
3449 		/* unicode data reported to the host as "WCHAR"s */
3450 		switch (ext_prop->type) {
3451 		case USB_EXT_PROP_UNICODE:
3452 		case USB_EXT_PROP_UNICODE_ENV:
3453 		case USB_EXT_PROP_UNICODE_LINK:
3454 		case USB_EXT_PROP_UNICODE_MULTI:
3455 			ext_prop->data_len *= 2;
3456 			break;
3457 		}
3458 		ext_prop->data = ext_prop_data;
3459 
3460 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3461 		       ext_prop->name_len);
3462 		/* property name reported to the host as "WCHAR"s */
3463 		ext_prop->name_len *= 2;
3464 		ext_prop->name = ext_prop_name;
3465 
3466 		t->os_desc->ext_prop_len +=
3467 			ext_prop->name_len + ext_prop->data_len + 14;
3468 		++t->os_desc->ext_prop_count;
3469 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3470 	}
3471 		break;
3472 	default:
3473 		pr_vdebug("unknown descriptor: %d\n", type);
3474 	}
3475 
3476 	return length;
3477 }
3478 
3479 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3480 						struct usb_configuration *c)
3481 {
3482 	struct ffs_function *func = ffs_func_from_usb(f);
3483 	struct f_fs_opts *ffs_opts =
3484 		container_of(f->fi, struct f_fs_opts, func_inst);
3485 	struct ffs_data *ffs_data;
3486 	int ret;
3487 
3488 	/*
3489 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3490 	 * which already uses locking; taking the same lock here would
3491 	 * cause a deadlock.
3492 	 *
3493 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3494 	 */
3495 	if (!ffs_opts->no_configfs)
3496 		ffs_dev_lock();
3497 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3498 	ffs_data = ffs_opts->dev->ffs_data;
3499 	if (!ffs_opts->no_configfs)
3500 		ffs_dev_unlock();
3501 	if (ret)
3502 		return ERR_PTR(ret);
3503 
3504 	func->ffs = ffs_data;
3505 	func->conf = c;
3506 	func->gadget = c->cdev->gadget;
3507 
3508 	/*
3509 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3510 	 * configurations are bound in sequence with list_for_each_entry,
3511 	 * in each configuration its functions are bound in sequence
3512 	 * with list_for_each_entry, so we assume no race condition
3513 	 * with regard to ffs_opts->bound access
3514 	 */
3515 	if (!ffs_opts->refcnt) {
3516 		ret = functionfs_bind(func->ffs, c->cdev);
3517 		if (ret)
3518 			return ERR_PTR(ret);
3519 	}
3520 	ffs_opts->refcnt++;
3521 	func->function.strings = func->ffs->stringtabs;
3522 
3523 	return ffs_opts;
3524 }
3525 
3526 static int _ffs_func_bind(struct usb_configuration *c,
3527 			  struct usb_function *f)
3528 {
3529 	struct ffs_function *func = ffs_func_from_usb(f);
3530 	struct ffs_data *ffs = func->ffs;
3531 
3532 	const int full = !!func->ffs->fs_descs_count;
3533 	const int high = !!func->ffs->hs_descs_count;
3534 	const int super = !!func->ffs->ss_descs_count;
3535 
3536 	int fs_len, hs_len, ss_len, ret, i;
3537 	struct ffs_ep *eps_ptr;
3538 
3539 	/* Make it a single chunk, less management later on */
3540 	vla_group(d);
3541 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3542 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3543 		full ? ffs->fs_descs_count + 1 : 0);
3544 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3545 		high ? ffs->hs_descs_count + 1 : 0);
3546 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3547 		super ? ffs->ss_descs_count + 1 : 0);
3548 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3549 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3550 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3551 	vla_item_with_sz(d, char[16], ext_compat,
3552 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3553 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3554 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3555 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3556 			 ffs->ms_os_descs_ext_prop_count);
3557 	vla_item_with_sz(d, char, ext_prop_name,
3558 			 ffs->ms_os_descs_ext_prop_name_len);
3559 	vla_item_with_sz(d, char, ext_prop_data,
3560 			 ffs->ms_os_descs_ext_prop_data_len);
3561 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3562 	char *vlabuf;
3563 
3564 	/* Has descriptors only for speeds gadget does not support */
3565 	if (!(full | high | super))
3566 		return -ENOTSUPP;
3567 
3568 	/* Allocate a single chunk, less management later on */
3569 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3570 	if (!vlabuf)
3571 		return -ENOMEM;
3572 
3573 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3574 	ffs->ms_os_descs_ext_prop_name_avail =
3575 		vla_ptr(vlabuf, d, ext_prop_name);
3576 	ffs->ms_os_descs_ext_prop_data_avail =
3577 		vla_ptr(vlabuf, d, ext_prop_data);
3578 
3579 	/* Copy descriptors  */
3580 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3581 	       ffs->raw_descs_length);
3582 
3583 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3584 	eps_ptr = vla_ptr(vlabuf, d, eps);
3585 	for (i = 0; i < ffs->eps_count; i++)
3586 		eps_ptr[i].num = -1;
3587 
3588 	/* Save pointers
3589 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3590 	*/
3591 	func->eps             = vla_ptr(vlabuf, d, eps);
3592 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3593 
3594 	/*
3595 	 * Go through all the endpoint descriptors and allocate
3596 	 * endpoints first, so that later we can rewrite the endpoint
3597 	 * numbers without worrying that it may be described later on.
3598 	 */
3599 	if (full) {
3600 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3601 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3602 				      vla_ptr(vlabuf, d, raw_descs),
3603 				      d_raw_descs__sz,
3604 				      __ffs_func_bind_do_descs, func);
3605 		if (fs_len < 0) {
3606 			ret = fs_len;
3607 			goto error;
3608 		}
3609 	} else {
3610 		fs_len = 0;
3611 	}
3612 
3613 	if (high) {
3614 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3615 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3616 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3617 				      d_raw_descs__sz - fs_len,
3618 				      __ffs_func_bind_do_descs, func);
3619 		if (hs_len < 0) {
3620 			ret = hs_len;
3621 			goto error;
3622 		}
3623 	} else {
3624 		hs_len = 0;
3625 	}
3626 
3627 	if (super) {
3628 		func->function.ss_descriptors = func->function.ssp_descriptors =
3629 			vla_ptr(vlabuf, d, ss_descs);
3630 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3631 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3632 				d_raw_descs__sz - fs_len - hs_len,
3633 				__ffs_func_bind_do_descs, func);
3634 		if (ss_len < 0) {
3635 			ret = ss_len;
3636 			goto error;
3637 		}
3638 	} else {
3639 		ss_len = 0;
3640 	}
3641 
3642 	/*
3643 	 * Now handle interface numbers allocation and interface and
3644 	 * endpoint numbers rewriting.  We can do that in one go
3645 	 * now.
3646 	 */
3647 	ret = ffs_do_descs(ffs->fs_descs_count +
3648 			   (high ? ffs->hs_descs_count : 0) +
3649 			   (super ? ffs->ss_descs_count : 0),
3650 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3651 			   __ffs_func_bind_do_nums, func);
3652 	if (ret < 0)
3653 		goto error;
3654 
3655 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3656 	if (c->cdev->use_os_string) {
3657 		for (i = 0; i < ffs->interfaces_count; ++i) {
3658 			struct usb_os_desc *desc;
3659 
3660 			desc = func->function.os_desc_table[i].os_desc =
3661 				vla_ptr(vlabuf, d, os_desc) +
3662 				i * sizeof(struct usb_os_desc);
3663 			desc->ext_compat_id =
3664 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3665 			INIT_LIST_HEAD(&desc->ext_prop);
3666 		}
3667 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3668 				      vla_ptr(vlabuf, d, raw_descs) +
3669 				      fs_len + hs_len + ss_len,
3670 				      d_raw_descs__sz - fs_len - hs_len -
3671 				      ss_len,
3672 				      __ffs_func_bind_do_os_desc, func);
3673 		if (ret < 0)
3674 			goto error;
3675 	}
3676 	func->function.os_desc_n =
3677 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3678 
3679 	/* And we're done */
3680 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3681 	return 0;
3682 
3683 error:
3684 	/* XXX Do we need to release all claimed endpoints here? */
3685 	return ret;
3686 }
3687 
3688 static int ffs_func_bind(struct usb_configuration *c,
3689 			 struct usb_function *f)
3690 {
3691 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3692 	struct ffs_function *func = ffs_func_from_usb(f);
3693 	int ret;
3694 
3695 	if (IS_ERR(ffs_opts))
3696 		return PTR_ERR(ffs_opts);
3697 
3698 	ret = _ffs_func_bind(c, f);
3699 	if (ret && !--ffs_opts->refcnt)
3700 		functionfs_unbind(func->ffs);
3701 
3702 	return ret;
3703 }
3704 
3705 
3706 /* Other USB function hooks *************************************************/
3707 
3708 static void ffs_reset_work(struct work_struct *work)
3709 {
3710 	struct ffs_data *ffs = container_of(work,
3711 		struct ffs_data, reset_work);
3712 	ffs_data_reset(ffs);
3713 }
3714 
3715 static int ffs_func_set_alt(struct usb_function *f,
3716 			    unsigned interface, unsigned alt)
3717 {
3718 	struct ffs_function *func = ffs_func_from_usb(f);
3719 	struct ffs_data *ffs = func->ffs;
3720 	int ret = 0, intf;
3721 
3722 	if (alt != (unsigned)-1) {
3723 		intf = ffs_func_revmap_intf(func, interface);
3724 		if (intf < 0)
3725 			return intf;
3726 	}
3727 
3728 	if (ffs->func)
3729 		ffs_func_eps_disable(ffs->func);
3730 
3731 	if (ffs->state == FFS_DEACTIVATED) {
3732 		ffs->state = FFS_CLOSING;
3733 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3734 		schedule_work(&ffs->reset_work);
3735 		return -ENODEV;
3736 	}
3737 
3738 	if (ffs->state != FFS_ACTIVE)
3739 		return -ENODEV;
3740 
3741 	if (alt == (unsigned)-1) {
3742 		ffs->func = NULL;
3743 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3744 		return 0;
3745 	}
3746 
3747 	ffs->func = func;
3748 	ret = ffs_func_eps_enable(func);
3749 	if (ret >= 0)
3750 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3751 	return ret;
3752 }
3753 
3754 static void ffs_func_disable(struct usb_function *f)
3755 {
3756 	ffs_func_set_alt(f, 0, (unsigned)-1);
3757 }
3758 
3759 static int ffs_func_setup(struct usb_function *f,
3760 			  const struct usb_ctrlrequest *creq)
3761 {
3762 	struct ffs_function *func = ffs_func_from_usb(f);
3763 	struct ffs_data *ffs = func->ffs;
3764 	unsigned long flags;
3765 	int ret;
3766 
3767 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3768 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3769 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3770 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3771 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3772 
3773 	/*
3774 	 * Most requests directed to interface go through here
3775 	 * (notable exceptions are set/get interface) so we need to
3776 	 * handle them.  All other either handled by composite or
3777 	 * passed to usb_configuration->setup() (if one is set).  No
3778 	 * matter, we will handle requests directed to endpoint here
3779 	 * as well (as it's straightforward).  Other request recipient
3780 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3781 	 * is being used.
3782 	 */
3783 	if (ffs->state != FFS_ACTIVE)
3784 		return -ENODEV;
3785 
3786 	switch (creq->bRequestType & USB_RECIP_MASK) {
3787 	case USB_RECIP_INTERFACE:
3788 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3789 		if (ret < 0)
3790 			return ret;
3791 		break;
3792 
3793 	case USB_RECIP_ENDPOINT:
3794 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3795 		if (ret < 0)
3796 			return ret;
3797 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3798 			ret = func->ffs->eps_addrmap[ret];
3799 		break;
3800 
3801 	default:
3802 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3803 			ret = le16_to_cpu(creq->wIndex);
3804 		else
3805 			return -EOPNOTSUPP;
3806 	}
3807 
3808 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3809 	ffs->ev.setup = *creq;
3810 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3811 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3812 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3813 
3814 	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3815 }
3816 
3817 static bool ffs_func_req_match(struct usb_function *f,
3818 			       const struct usb_ctrlrequest *creq,
3819 			       bool config0)
3820 {
3821 	struct ffs_function *func = ffs_func_from_usb(f);
3822 
3823 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3824 		return false;
3825 
3826 	switch (creq->bRequestType & USB_RECIP_MASK) {
3827 	case USB_RECIP_INTERFACE:
3828 		return (ffs_func_revmap_intf(func,
3829 					     le16_to_cpu(creq->wIndex)) >= 0);
3830 	case USB_RECIP_ENDPOINT:
3831 		return (ffs_func_revmap_ep(func,
3832 					   le16_to_cpu(creq->wIndex)) >= 0);
3833 	default:
3834 		return (bool) (func->ffs->user_flags &
3835 			       FUNCTIONFS_ALL_CTRL_RECIP);
3836 	}
3837 }
3838 
3839 static void ffs_func_suspend(struct usb_function *f)
3840 {
3841 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3842 }
3843 
3844 static void ffs_func_resume(struct usb_function *f)
3845 {
3846 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3847 }
3848 
3849 
3850 /* Endpoint and interface numbers reverse mapping ***************************/
3851 
3852 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3853 {
3854 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3855 	return num ? num : -EDOM;
3856 }
3857 
3858 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3859 {
3860 	short *nums = func->interfaces_nums;
3861 	unsigned count = func->ffs->interfaces_count;
3862 
3863 	for (; count; --count, ++nums) {
3864 		if (*nums >= 0 && *nums == intf)
3865 			return nums - func->interfaces_nums;
3866 	}
3867 
3868 	return -EDOM;
3869 }
3870 
3871 
3872 /* Devices management *******************************************************/
3873 
3874 static LIST_HEAD(ffs_devices);
3875 
3876 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3877 {
3878 	struct ffs_dev *dev;
3879 
3880 	if (!name)
3881 		return NULL;
3882 
3883 	list_for_each_entry(dev, &ffs_devices, entry) {
3884 		if (strcmp(dev->name, name) == 0)
3885 			return dev;
3886 	}
3887 
3888 	return NULL;
3889 }
3890 
3891 /*
3892  * ffs_lock must be taken by the caller of this function
3893  */
3894 static struct ffs_dev *_ffs_get_single_dev(void)
3895 {
3896 	struct ffs_dev *dev;
3897 
3898 	if (list_is_singular(&ffs_devices)) {
3899 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3900 		if (dev->single)
3901 			return dev;
3902 	}
3903 
3904 	return NULL;
3905 }
3906 
3907 /*
3908  * ffs_lock must be taken by the caller of this function
3909  */
3910 static struct ffs_dev *_ffs_find_dev(const char *name)
3911 {
3912 	struct ffs_dev *dev;
3913 
3914 	dev = _ffs_get_single_dev();
3915 	if (dev)
3916 		return dev;
3917 
3918 	return _ffs_do_find_dev(name);
3919 }
3920 
3921 /* Configfs support *********************************************************/
3922 
3923 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3924 {
3925 	return container_of(to_config_group(item), struct f_fs_opts,
3926 			    func_inst.group);
3927 }
3928 
3929 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3930 {
3931 	struct f_fs_opts *opts = to_ffs_opts(item);
3932 	int ready;
3933 
3934 	ffs_dev_lock();
3935 	ready = opts->dev->desc_ready;
3936 	ffs_dev_unlock();
3937 
3938 	return sprintf(page, "%d\n", ready);
3939 }
3940 
3941 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3942 
3943 static struct configfs_attribute *ffs_attrs[] = {
3944 	&f_fs_opts_attr_ready,
3945 	NULL,
3946 };
3947 
3948 static void ffs_attr_release(struct config_item *item)
3949 {
3950 	struct f_fs_opts *opts = to_ffs_opts(item);
3951 
3952 	usb_put_function_instance(&opts->func_inst);
3953 }
3954 
3955 static struct configfs_item_operations ffs_item_ops = {
3956 	.release	= ffs_attr_release,
3957 };
3958 
3959 static const struct config_item_type ffs_func_type = {
3960 	.ct_item_ops	= &ffs_item_ops,
3961 	.ct_attrs	= ffs_attrs,
3962 	.ct_owner	= THIS_MODULE,
3963 };
3964 
3965 
3966 /* Function registration interface ******************************************/
3967 
3968 static void ffs_free_inst(struct usb_function_instance *f)
3969 {
3970 	struct f_fs_opts *opts;
3971 
3972 	opts = to_f_fs_opts(f);
3973 	ffs_release_dev(opts->dev);
3974 	ffs_dev_lock();
3975 	_ffs_free_dev(opts->dev);
3976 	ffs_dev_unlock();
3977 	kfree(opts);
3978 }
3979 
3980 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3981 {
3982 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3983 		return -ENAMETOOLONG;
3984 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3985 }
3986 
3987 static struct usb_function_instance *ffs_alloc_inst(void)
3988 {
3989 	struct f_fs_opts *opts;
3990 	struct ffs_dev *dev;
3991 
3992 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3993 	if (!opts)
3994 		return ERR_PTR(-ENOMEM);
3995 
3996 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3997 	opts->func_inst.free_func_inst = ffs_free_inst;
3998 	ffs_dev_lock();
3999 	dev = _ffs_alloc_dev();
4000 	ffs_dev_unlock();
4001 	if (IS_ERR(dev)) {
4002 		kfree(opts);
4003 		return ERR_CAST(dev);
4004 	}
4005 	opts->dev = dev;
4006 	dev->opts = opts;
4007 
4008 	config_group_init_type_name(&opts->func_inst.group, "",
4009 				    &ffs_func_type);
4010 	return &opts->func_inst;
4011 }
4012 
4013 static void ffs_free(struct usb_function *f)
4014 {
4015 	kfree(ffs_func_from_usb(f));
4016 }
4017 
4018 static void ffs_func_unbind(struct usb_configuration *c,
4019 			    struct usb_function *f)
4020 {
4021 	struct ffs_function *func = ffs_func_from_usb(f);
4022 	struct ffs_data *ffs = func->ffs;
4023 	struct f_fs_opts *opts =
4024 		container_of(f->fi, struct f_fs_opts, func_inst);
4025 	struct ffs_ep *ep = func->eps;
4026 	unsigned count = ffs->eps_count;
4027 	unsigned long flags;
4028 
4029 	if (ffs->func == func) {
4030 		ffs_func_eps_disable(func);
4031 		ffs->func = NULL;
4032 	}
4033 
4034 	/* Drain any pending AIO completions */
4035 	drain_workqueue(ffs->io_completion_wq);
4036 
4037 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4038 	if (!--opts->refcnt)
4039 		functionfs_unbind(ffs);
4040 
4041 	/* cleanup after autoconfig */
4042 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4043 	while (count--) {
4044 		if (ep->ep && ep->req)
4045 			usb_ep_free_request(ep->ep, ep->req);
4046 		ep->req = NULL;
4047 		++ep;
4048 	}
4049 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4050 	kfree(func->eps);
4051 	func->eps = NULL;
4052 	/*
4053 	 * eps, descriptors and interfaces_nums are allocated in the
4054 	 * same chunk so only one free is required.
4055 	 */
4056 	func->function.fs_descriptors = NULL;
4057 	func->function.hs_descriptors = NULL;
4058 	func->function.ss_descriptors = NULL;
4059 	func->function.ssp_descriptors = NULL;
4060 	func->interfaces_nums = NULL;
4061 
4062 }
4063 
4064 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4065 {
4066 	struct ffs_function *func;
4067 
4068 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4069 	if (!func)
4070 		return ERR_PTR(-ENOMEM);
4071 
4072 	func->function.name    = "Function FS Gadget";
4073 
4074 	func->function.bind    = ffs_func_bind;
4075 	func->function.unbind  = ffs_func_unbind;
4076 	func->function.set_alt = ffs_func_set_alt;
4077 	func->function.disable = ffs_func_disable;
4078 	func->function.setup   = ffs_func_setup;
4079 	func->function.req_match = ffs_func_req_match;
4080 	func->function.suspend = ffs_func_suspend;
4081 	func->function.resume  = ffs_func_resume;
4082 	func->function.free_func = ffs_free;
4083 
4084 	return &func->function;
4085 }
4086 
4087 /*
4088  * ffs_lock must be taken by the caller of this function
4089  */
4090 static struct ffs_dev *_ffs_alloc_dev(void)
4091 {
4092 	struct ffs_dev *dev;
4093 	int ret;
4094 
4095 	if (_ffs_get_single_dev())
4096 			return ERR_PTR(-EBUSY);
4097 
4098 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4099 	if (!dev)
4100 		return ERR_PTR(-ENOMEM);
4101 
4102 	if (list_empty(&ffs_devices)) {
4103 		ret = functionfs_init();
4104 		if (ret) {
4105 			kfree(dev);
4106 			return ERR_PTR(ret);
4107 		}
4108 	}
4109 
4110 	list_add(&dev->entry, &ffs_devices);
4111 
4112 	return dev;
4113 }
4114 
4115 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4116 {
4117 	struct ffs_dev *existing;
4118 	int ret = 0;
4119 
4120 	ffs_dev_lock();
4121 
4122 	existing = _ffs_do_find_dev(name);
4123 	if (!existing)
4124 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4125 	else if (existing != dev)
4126 		ret = -EBUSY;
4127 
4128 	ffs_dev_unlock();
4129 
4130 	return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(ffs_name_dev);
4133 
4134 int ffs_single_dev(struct ffs_dev *dev)
4135 {
4136 	int ret;
4137 
4138 	ret = 0;
4139 	ffs_dev_lock();
4140 
4141 	if (!list_is_singular(&ffs_devices))
4142 		ret = -EBUSY;
4143 	else
4144 		dev->single = true;
4145 
4146 	ffs_dev_unlock();
4147 	return ret;
4148 }
4149 EXPORT_SYMBOL_GPL(ffs_single_dev);
4150 
4151 /*
4152  * ffs_lock must be taken by the caller of this function
4153  */
4154 static void _ffs_free_dev(struct ffs_dev *dev)
4155 {
4156 	list_del(&dev->entry);
4157 
4158 	kfree(dev);
4159 	if (list_empty(&ffs_devices))
4160 		functionfs_cleanup();
4161 }
4162 
4163 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4164 {
4165 	int ret = 0;
4166 	struct ffs_dev *ffs_dev;
4167 
4168 	ffs_dev_lock();
4169 
4170 	ffs_dev = _ffs_find_dev(dev_name);
4171 	if (!ffs_dev) {
4172 		ret = -ENOENT;
4173 	} else if (ffs_dev->mounted) {
4174 		ret = -EBUSY;
4175 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4176 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4177 		ret = -ENOENT;
4178 	} else {
4179 		ffs_dev->mounted = true;
4180 		ffs_dev->ffs_data = ffs_data;
4181 		ffs_data->private_data = ffs_dev;
4182 	}
4183 
4184 	ffs_dev_unlock();
4185 	return ret;
4186 }
4187 
4188 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4189 {
4190 	ffs_dev_lock();
4191 
4192 	if (ffs_dev && ffs_dev->mounted) {
4193 		ffs_dev->mounted = false;
4194 		if (ffs_dev->ffs_data) {
4195 			ffs_dev->ffs_data->private_data = NULL;
4196 			ffs_dev->ffs_data = NULL;
4197 		}
4198 
4199 		if (ffs_dev->ffs_release_dev_callback)
4200 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4201 	}
4202 
4203 	ffs_dev_unlock();
4204 }
4205 
4206 static int ffs_ready(struct ffs_data *ffs)
4207 {
4208 	struct ffs_dev *ffs_obj;
4209 	int ret = 0;
4210 
4211 	ffs_dev_lock();
4212 
4213 	ffs_obj = ffs->private_data;
4214 	if (!ffs_obj) {
4215 		ret = -EINVAL;
4216 		goto done;
4217 	}
4218 	if (WARN_ON(ffs_obj->desc_ready)) {
4219 		ret = -EBUSY;
4220 		goto done;
4221 	}
4222 
4223 	ffs_obj->desc_ready = true;
4224 
4225 	if (ffs_obj->ffs_ready_callback) {
4226 		ret = ffs_obj->ffs_ready_callback(ffs);
4227 		if (ret)
4228 			goto done;
4229 	}
4230 
4231 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4232 done:
4233 	ffs_dev_unlock();
4234 	return ret;
4235 }
4236 
4237 static void ffs_closed(struct ffs_data *ffs)
4238 {
4239 	struct ffs_dev *ffs_obj;
4240 	struct f_fs_opts *opts;
4241 	struct config_item *ci;
4242 
4243 	ffs_dev_lock();
4244 
4245 	ffs_obj = ffs->private_data;
4246 	if (!ffs_obj)
4247 		goto done;
4248 
4249 	ffs_obj->desc_ready = false;
4250 
4251 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4252 	    ffs_obj->ffs_closed_callback)
4253 		ffs_obj->ffs_closed_callback(ffs);
4254 
4255 	if (ffs_obj->opts)
4256 		opts = ffs_obj->opts;
4257 	else
4258 		goto done;
4259 
4260 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4261 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4262 		goto done;
4263 
4264 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4265 	ffs_dev_unlock();
4266 
4267 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4268 		unregister_gadget_item(ci);
4269 	return;
4270 done:
4271 	ffs_dev_unlock();
4272 }
4273 
4274 /* Misc helper functions ****************************************************/
4275 
4276 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4277 {
4278 	return nonblock
4279 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4280 		: mutex_lock_interruptible(mutex);
4281 }
4282 
4283 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4284 {
4285 	char *data;
4286 
4287 	if (!len)
4288 		return NULL;
4289 
4290 	data = memdup_user(buf, len);
4291 	if (IS_ERR(data))
4292 		return data;
4293 
4294 	pr_vdebug("Buffer from user space:\n");
4295 	ffs_dump_mem("", data, len);
4296 
4297 	return data;
4298 }
4299 
4300 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4301 MODULE_LICENSE("GPL");
4302 MODULE_AUTHOR("Michal Nazarewicz");
4303