1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/dma-buf.h> 19 #include <linux/dma-fence.h> 20 #include <linux/dma-resv.h> 21 #include <linux/pagemap.h> 22 #include <linux/export.h> 23 #include <linux/fs_parser.h> 24 #include <linux/hid.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/scatterlist.h> 28 #include <linux/sched/signal.h> 29 #include <linux/uio.h> 30 #include <linux/vmalloc.h> 31 #include <asm/unaligned.h> 32 33 #include <linux/usb/ccid.h> 34 #include <linux/usb/composite.h> 35 #include <linux/usb/functionfs.h> 36 37 #include <linux/aio.h> 38 #include <linux/kthread.h> 39 #include <linux/poll.h> 40 #include <linux/eventfd.h> 41 42 #include "u_fs.h" 43 #include "u_f.h" 44 #include "u_os_desc.h" 45 #include "configfs.h" 46 47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 48 49 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000 50 51 MODULE_IMPORT_NS(DMA_BUF); 52 53 /* Reference counter handling */ 54 static void ffs_data_get(struct ffs_data *ffs); 55 static void ffs_data_put(struct ffs_data *ffs); 56 /* Creates new ffs_data object. */ 57 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 58 __attribute__((malloc)); 59 60 /* Opened counter handling. */ 61 static void ffs_data_opened(struct ffs_data *ffs); 62 static void ffs_data_closed(struct ffs_data *ffs); 63 64 /* Called with ffs->mutex held; take over ownership of data. */ 65 static int __must_check 66 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 67 static int __must_check 68 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 69 70 71 /* The function structure ***************************************************/ 72 73 struct ffs_ep; 74 75 struct ffs_function { 76 struct usb_configuration *conf; 77 struct usb_gadget *gadget; 78 struct ffs_data *ffs; 79 80 struct ffs_ep *eps; 81 u8 eps_revmap[16]; 82 short *interfaces_nums; 83 84 struct usb_function function; 85 }; 86 87 88 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 89 { 90 return container_of(f, struct ffs_function, function); 91 } 92 93 94 static inline enum ffs_setup_state 95 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 96 { 97 return (enum ffs_setup_state) 98 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 99 } 100 101 102 static void ffs_func_eps_disable(struct ffs_function *func); 103 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 104 105 static int ffs_func_bind(struct usb_configuration *, 106 struct usb_function *); 107 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 108 static void ffs_func_disable(struct usb_function *); 109 static int ffs_func_setup(struct usb_function *, 110 const struct usb_ctrlrequest *); 111 static bool ffs_func_req_match(struct usb_function *, 112 const struct usb_ctrlrequest *, 113 bool config0); 114 static void ffs_func_suspend(struct usb_function *); 115 static void ffs_func_resume(struct usb_function *); 116 117 118 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 119 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 120 121 122 /* The endpoints structures *************************************************/ 123 124 struct ffs_ep { 125 struct usb_ep *ep; /* P: ffs->eps_lock */ 126 struct usb_request *req; /* P: epfile->mutex */ 127 128 /* [0]: full speed, [1]: high speed, [2]: super speed */ 129 struct usb_endpoint_descriptor *descs[3]; 130 131 u8 num; 132 }; 133 134 struct ffs_dmabuf_priv { 135 struct list_head entry; 136 struct kref ref; 137 struct ffs_data *ffs; 138 struct dma_buf_attachment *attach; 139 struct sg_table *sgt; 140 enum dma_data_direction dir; 141 spinlock_t lock; 142 u64 context; 143 struct usb_request *req; /* P: ffs->eps_lock */ 144 struct usb_ep *ep; /* P: ffs->eps_lock */ 145 }; 146 147 struct ffs_dma_fence { 148 struct dma_fence base; 149 struct ffs_dmabuf_priv *priv; 150 struct work_struct work; 151 }; 152 153 struct ffs_epfile { 154 /* Protects ep->ep and ep->req. */ 155 struct mutex mutex; 156 157 struct ffs_data *ffs; 158 struct ffs_ep *ep; /* P: ffs->eps_lock */ 159 160 struct dentry *dentry; 161 162 /* 163 * Buffer for holding data from partial reads which may happen since 164 * we’re rounding user read requests to a multiple of a max packet size. 165 * 166 * The pointer is initialised with NULL value and may be set by 167 * __ffs_epfile_read_data function to point to a temporary buffer. 168 * 169 * In normal operation, calls to __ffs_epfile_read_buffered will consume 170 * data from said buffer and eventually free it. Importantly, while the 171 * function is using the buffer, it sets the pointer to NULL. This is 172 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 173 * can never run concurrently (they are synchronised by epfile->mutex) 174 * so the latter will not assign a new value to the pointer. 175 * 176 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 177 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 178 * value is crux of the synchronisation between ffs_func_eps_disable and 179 * __ffs_epfile_read_data. 180 * 181 * Once __ffs_epfile_read_data is about to finish it will try to set the 182 * pointer back to its old value (as described above), but seeing as the 183 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 184 * the buffer. 185 * 186 * == State transitions == 187 * 188 * • ptr == NULL: (initial state) 189 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 190 * ◦ __ffs_epfile_read_buffered: nop 191 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 192 * ◦ reading finishes: n/a, not in ‘and reading’ state 193 * • ptr == DROP: 194 * ◦ __ffs_epfile_read_buffer_free: nop 195 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 196 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 197 * ◦ reading finishes: n/a, not in ‘and reading’ state 198 * • ptr == buf: 199 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 200 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 201 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 202 * is always called first 203 * ◦ reading finishes: n/a, not in ‘and reading’ state 204 * • ptr == NULL and reading: 205 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 206 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 207 * ◦ __ffs_epfile_read_data: n/a, mutex is held 208 * ◦ reading finishes and … 209 * … all data read: free buf, go to ptr == NULL 210 * … otherwise: go to ptr == buf and reading 211 * • ptr == DROP and reading: 212 * ◦ __ffs_epfile_read_buffer_free: nop 213 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 214 * ◦ __ffs_epfile_read_data: n/a, mutex is held 215 * ◦ reading finishes: free buf, go to ptr == DROP 216 */ 217 struct ffs_buffer *read_buffer; 218 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 219 220 char name[5]; 221 222 unsigned char in; /* P: ffs->eps_lock */ 223 unsigned char isoc; /* P: ffs->eps_lock */ 224 225 unsigned char _pad; 226 227 /* Protects dmabufs */ 228 struct mutex dmabufs_mutex; 229 struct list_head dmabufs; /* P: dmabufs_mutex */ 230 atomic_t seqno; 231 }; 232 233 struct ffs_buffer { 234 size_t length; 235 char *data; 236 char storage[] __counted_by(length); 237 }; 238 239 /* ffs_io_data structure ***************************************************/ 240 241 struct ffs_io_data { 242 bool aio; 243 bool read; 244 245 struct kiocb *kiocb; 246 struct iov_iter data; 247 const void *to_free; 248 char *buf; 249 250 struct mm_struct *mm; 251 struct work_struct work; 252 253 struct usb_ep *ep; 254 struct usb_request *req; 255 struct sg_table sgt; 256 bool use_sg; 257 258 struct ffs_data *ffs; 259 260 int status; 261 struct completion done; 262 }; 263 264 struct ffs_desc_helper { 265 struct ffs_data *ffs; 266 unsigned interfaces_count; 267 unsigned eps_count; 268 }; 269 270 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 271 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 272 273 static struct dentry * 274 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 275 const struct file_operations *fops); 276 277 /* Devices management *******************************************************/ 278 279 DEFINE_MUTEX(ffs_lock); 280 EXPORT_SYMBOL_GPL(ffs_lock); 281 282 static struct ffs_dev *_ffs_find_dev(const char *name); 283 static struct ffs_dev *_ffs_alloc_dev(void); 284 static void _ffs_free_dev(struct ffs_dev *dev); 285 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 286 static void ffs_release_dev(struct ffs_dev *ffs_dev); 287 static int ffs_ready(struct ffs_data *ffs); 288 static void ffs_closed(struct ffs_data *ffs); 289 290 /* Misc helper functions ****************************************************/ 291 292 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 293 __attribute__((warn_unused_result, nonnull)); 294 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 295 __attribute__((warn_unused_result, nonnull)); 296 297 298 /* Control file aka ep0 *****************************************************/ 299 300 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 301 { 302 struct ffs_data *ffs = req->context; 303 304 complete(&ffs->ep0req_completion); 305 } 306 307 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 308 __releases(&ffs->ev.waitq.lock) 309 { 310 struct usb_request *req = ffs->ep0req; 311 int ret; 312 313 if (!req) { 314 spin_unlock_irq(&ffs->ev.waitq.lock); 315 return -EINVAL; 316 } 317 318 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 319 320 spin_unlock_irq(&ffs->ev.waitq.lock); 321 322 req->buf = data; 323 req->length = len; 324 325 /* 326 * UDC layer requires to provide a buffer even for ZLP, but should 327 * not use it at all. Let's provide some poisoned pointer to catch 328 * possible bug in the driver. 329 */ 330 if (req->buf == NULL) 331 req->buf = (void *)0xDEADBABE; 332 333 reinit_completion(&ffs->ep0req_completion); 334 335 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 336 if (ret < 0) 337 return ret; 338 339 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 340 if (ret) { 341 usb_ep_dequeue(ffs->gadget->ep0, req); 342 return -EINTR; 343 } 344 345 ffs->setup_state = FFS_NO_SETUP; 346 return req->status ? req->status : req->actual; 347 } 348 349 static int __ffs_ep0_stall(struct ffs_data *ffs) 350 { 351 if (ffs->ev.can_stall) { 352 pr_vdebug("ep0 stall\n"); 353 usb_ep_set_halt(ffs->gadget->ep0); 354 ffs->setup_state = FFS_NO_SETUP; 355 return -EL2HLT; 356 } else { 357 pr_debug("bogus ep0 stall!\n"); 358 return -ESRCH; 359 } 360 } 361 362 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 363 size_t len, loff_t *ptr) 364 { 365 struct ffs_data *ffs = file->private_data; 366 ssize_t ret; 367 char *data; 368 369 /* Fast check if setup was canceled */ 370 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 371 return -EIDRM; 372 373 /* Acquire mutex */ 374 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 375 if (ret < 0) 376 return ret; 377 378 /* Check state */ 379 switch (ffs->state) { 380 case FFS_READ_DESCRIPTORS: 381 case FFS_READ_STRINGS: 382 /* Copy data */ 383 if (len < 16) { 384 ret = -EINVAL; 385 break; 386 } 387 388 data = ffs_prepare_buffer(buf, len); 389 if (IS_ERR(data)) { 390 ret = PTR_ERR(data); 391 break; 392 } 393 394 /* Handle data */ 395 if (ffs->state == FFS_READ_DESCRIPTORS) { 396 pr_info("read descriptors\n"); 397 ret = __ffs_data_got_descs(ffs, data, len); 398 if (ret < 0) 399 break; 400 401 ffs->state = FFS_READ_STRINGS; 402 ret = len; 403 } else { 404 pr_info("read strings\n"); 405 ret = __ffs_data_got_strings(ffs, data, len); 406 if (ret < 0) 407 break; 408 409 ret = ffs_epfiles_create(ffs); 410 if (ret) { 411 ffs->state = FFS_CLOSING; 412 break; 413 } 414 415 ffs->state = FFS_ACTIVE; 416 mutex_unlock(&ffs->mutex); 417 418 ret = ffs_ready(ffs); 419 if (ret < 0) { 420 ffs->state = FFS_CLOSING; 421 return ret; 422 } 423 424 return len; 425 } 426 break; 427 428 case FFS_ACTIVE: 429 data = NULL; 430 /* 431 * We're called from user space, we can use _irq 432 * rather then _irqsave 433 */ 434 spin_lock_irq(&ffs->ev.waitq.lock); 435 switch (ffs_setup_state_clear_cancelled(ffs)) { 436 case FFS_SETUP_CANCELLED: 437 ret = -EIDRM; 438 goto done_spin; 439 440 case FFS_NO_SETUP: 441 ret = -ESRCH; 442 goto done_spin; 443 444 case FFS_SETUP_PENDING: 445 break; 446 } 447 448 /* FFS_SETUP_PENDING */ 449 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 450 spin_unlock_irq(&ffs->ev.waitq.lock); 451 ret = __ffs_ep0_stall(ffs); 452 break; 453 } 454 455 /* FFS_SETUP_PENDING and not stall */ 456 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 457 458 spin_unlock_irq(&ffs->ev.waitq.lock); 459 460 data = ffs_prepare_buffer(buf, len); 461 if (IS_ERR(data)) { 462 ret = PTR_ERR(data); 463 break; 464 } 465 466 spin_lock_irq(&ffs->ev.waitq.lock); 467 468 /* 469 * We are guaranteed to be still in FFS_ACTIVE state 470 * but the state of setup could have changed from 471 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 472 * to check for that. If that happened we copied data 473 * from user space in vain but it's unlikely. 474 * 475 * For sure we are not in FFS_NO_SETUP since this is 476 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 477 * transition can be performed and it's protected by 478 * mutex. 479 */ 480 if (ffs_setup_state_clear_cancelled(ffs) == 481 FFS_SETUP_CANCELLED) { 482 ret = -EIDRM; 483 done_spin: 484 spin_unlock_irq(&ffs->ev.waitq.lock); 485 } else { 486 /* unlocks spinlock */ 487 ret = __ffs_ep0_queue_wait(ffs, data, len); 488 } 489 kfree(data); 490 break; 491 492 default: 493 ret = -EBADFD; 494 break; 495 } 496 497 mutex_unlock(&ffs->mutex); 498 return ret; 499 } 500 501 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 502 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 503 size_t n) 504 __releases(&ffs->ev.waitq.lock) 505 { 506 /* 507 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 508 * size of ffs->ev.types array (which is four) so that's how much space 509 * we reserve. 510 */ 511 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 512 const size_t size = n * sizeof *events; 513 unsigned i = 0; 514 515 memset(events, 0, size); 516 517 do { 518 events[i].type = ffs->ev.types[i]; 519 if (events[i].type == FUNCTIONFS_SETUP) { 520 events[i].u.setup = ffs->ev.setup; 521 ffs->setup_state = FFS_SETUP_PENDING; 522 } 523 } while (++i < n); 524 525 ffs->ev.count -= n; 526 if (ffs->ev.count) 527 memmove(ffs->ev.types, ffs->ev.types + n, 528 ffs->ev.count * sizeof *ffs->ev.types); 529 530 spin_unlock_irq(&ffs->ev.waitq.lock); 531 mutex_unlock(&ffs->mutex); 532 533 return copy_to_user(buf, events, size) ? -EFAULT : size; 534 } 535 536 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 537 size_t len, loff_t *ptr) 538 { 539 struct ffs_data *ffs = file->private_data; 540 char *data = NULL; 541 size_t n; 542 int ret; 543 544 /* Fast check if setup was canceled */ 545 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 546 return -EIDRM; 547 548 /* Acquire mutex */ 549 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 550 if (ret < 0) 551 return ret; 552 553 /* Check state */ 554 if (ffs->state != FFS_ACTIVE) { 555 ret = -EBADFD; 556 goto done_mutex; 557 } 558 559 /* 560 * We're called from user space, we can use _irq rather then 561 * _irqsave 562 */ 563 spin_lock_irq(&ffs->ev.waitq.lock); 564 565 switch (ffs_setup_state_clear_cancelled(ffs)) { 566 case FFS_SETUP_CANCELLED: 567 ret = -EIDRM; 568 break; 569 570 case FFS_NO_SETUP: 571 n = len / sizeof(struct usb_functionfs_event); 572 if (!n) { 573 ret = -EINVAL; 574 break; 575 } 576 577 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 578 ret = -EAGAIN; 579 break; 580 } 581 582 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 583 ffs->ev.count)) { 584 ret = -EINTR; 585 break; 586 } 587 588 /* unlocks spinlock */ 589 return __ffs_ep0_read_events(ffs, buf, 590 min(n, (size_t)ffs->ev.count)); 591 592 case FFS_SETUP_PENDING: 593 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 594 spin_unlock_irq(&ffs->ev.waitq.lock); 595 ret = __ffs_ep0_stall(ffs); 596 goto done_mutex; 597 } 598 599 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 600 601 spin_unlock_irq(&ffs->ev.waitq.lock); 602 603 if (len) { 604 data = kmalloc(len, GFP_KERNEL); 605 if (!data) { 606 ret = -ENOMEM; 607 goto done_mutex; 608 } 609 } 610 611 spin_lock_irq(&ffs->ev.waitq.lock); 612 613 /* See ffs_ep0_write() */ 614 if (ffs_setup_state_clear_cancelled(ffs) == 615 FFS_SETUP_CANCELLED) { 616 ret = -EIDRM; 617 break; 618 } 619 620 /* unlocks spinlock */ 621 ret = __ffs_ep0_queue_wait(ffs, data, len); 622 if ((ret > 0) && (copy_to_user(buf, data, len))) 623 ret = -EFAULT; 624 goto done_mutex; 625 626 default: 627 ret = -EBADFD; 628 break; 629 } 630 631 spin_unlock_irq(&ffs->ev.waitq.lock); 632 done_mutex: 633 mutex_unlock(&ffs->mutex); 634 kfree(data); 635 return ret; 636 } 637 638 static int ffs_ep0_open(struct inode *inode, struct file *file) 639 { 640 struct ffs_data *ffs = inode->i_private; 641 642 if (ffs->state == FFS_CLOSING) 643 return -EBUSY; 644 645 file->private_data = ffs; 646 ffs_data_opened(ffs); 647 648 return stream_open(inode, file); 649 } 650 651 static int ffs_ep0_release(struct inode *inode, struct file *file) 652 { 653 struct ffs_data *ffs = file->private_data; 654 655 ffs_data_closed(ffs); 656 657 return 0; 658 } 659 660 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 661 { 662 struct ffs_data *ffs = file->private_data; 663 struct usb_gadget *gadget = ffs->gadget; 664 long ret; 665 666 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 667 struct ffs_function *func = ffs->func; 668 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 669 } else if (gadget && gadget->ops->ioctl) { 670 ret = gadget->ops->ioctl(gadget, code, value); 671 } else { 672 ret = -ENOTTY; 673 } 674 675 return ret; 676 } 677 678 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 679 { 680 struct ffs_data *ffs = file->private_data; 681 __poll_t mask = EPOLLWRNORM; 682 int ret; 683 684 poll_wait(file, &ffs->ev.waitq, wait); 685 686 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 687 if (ret < 0) 688 return mask; 689 690 switch (ffs->state) { 691 case FFS_READ_DESCRIPTORS: 692 case FFS_READ_STRINGS: 693 mask |= EPOLLOUT; 694 break; 695 696 case FFS_ACTIVE: 697 switch (ffs->setup_state) { 698 case FFS_NO_SETUP: 699 if (ffs->ev.count) 700 mask |= EPOLLIN; 701 break; 702 703 case FFS_SETUP_PENDING: 704 case FFS_SETUP_CANCELLED: 705 mask |= (EPOLLIN | EPOLLOUT); 706 break; 707 } 708 break; 709 710 case FFS_CLOSING: 711 break; 712 case FFS_DEACTIVATED: 713 break; 714 } 715 716 mutex_unlock(&ffs->mutex); 717 718 return mask; 719 } 720 721 static const struct file_operations ffs_ep0_operations = { 722 .llseek = no_llseek, 723 724 .open = ffs_ep0_open, 725 .write = ffs_ep0_write, 726 .read = ffs_ep0_read, 727 .release = ffs_ep0_release, 728 .unlocked_ioctl = ffs_ep0_ioctl, 729 .poll = ffs_ep0_poll, 730 }; 731 732 733 /* "Normal" endpoints operations ********************************************/ 734 735 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 736 { 737 struct ffs_io_data *io_data = req->context; 738 739 if (req->status) 740 io_data->status = req->status; 741 else 742 io_data->status = req->actual; 743 744 complete(&io_data->done); 745 } 746 747 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 748 { 749 ssize_t ret = copy_to_iter(data, data_len, iter); 750 if (ret == data_len) 751 return ret; 752 753 if (iov_iter_count(iter)) 754 return -EFAULT; 755 756 /* 757 * Dear user space developer! 758 * 759 * TL;DR: To stop getting below error message in your kernel log, change 760 * user space code using functionfs to align read buffers to a max 761 * packet size. 762 * 763 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 764 * packet size. When unaligned buffer is passed to functionfs, it 765 * internally uses a larger, aligned buffer so that such UDCs are happy. 766 * 767 * Unfortunately, this means that host may send more data than was 768 * requested in read(2) system call. f_fs doesn’t know what to do with 769 * that excess data so it simply drops it. 770 * 771 * Was the buffer aligned in the first place, no such problem would 772 * happen. 773 * 774 * Data may be dropped only in AIO reads. Synchronous reads are handled 775 * by splitting a request into multiple parts. This splitting may still 776 * be a problem though so it’s likely best to align the buffer 777 * regardless of it being AIO or not.. 778 * 779 * This only affects OUT endpoints, i.e. reading data with a read(2), 780 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 781 * affected. 782 */ 783 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 784 "Align read buffer size to max packet size to avoid the problem.\n", 785 data_len, ret); 786 787 return ret; 788 } 789 790 /* 791 * allocate a virtually contiguous buffer and create a scatterlist describing it 792 * @sg_table - pointer to a place to be filled with sg_table contents 793 * @size - required buffer size 794 */ 795 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 796 { 797 struct page **pages; 798 void *vaddr, *ptr; 799 unsigned int n_pages; 800 int i; 801 802 vaddr = vmalloc(sz); 803 if (!vaddr) 804 return NULL; 805 806 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 807 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 808 if (!pages) { 809 vfree(vaddr); 810 811 return NULL; 812 } 813 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 814 pages[i] = vmalloc_to_page(ptr); 815 816 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 817 kvfree(pages); 818 vfree(vaddr); 819 820 return NULL; 821 } 822 kvfree(pages); 823 824 return vaddr; 825 } 826 827 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 828 size_t data_len) 829 { 830 if (io_data->use_sg) 831 return ffs_build_sg_list(&io_data->sgt, data_len); 832 833 return kmalloc(data_len, GFP_KERNEL); 834 } 835 836 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 837 { 838 if (!io_data->buf) 839 return; 840 841 if (io_data->use_sg) { 842 sg_free_table(&io_data->sgt); 843 vfree(io_data->buf); 844 } else { 845 kfree(io_data->buf); 846 } 847 } 848 849 static void ffs_user_copy_worker(struct work_struct *work) 850 { 851 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 852 work); 853 int ret = io_data->status; 854 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 855 unsigned long flags; 856 857 if (io_data->read && ret > 0) { 858 kthread_use_mm(io_data->mm); 859 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 860 kthread_unuse_mm(io_data->mm); 861 } 862 863 io_data->kiocb->ki_complete(io_data->kiocb, ret); 864 865 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 866 eventfd_signal(io_data->ffs->ffs_eventfd); 867 868 spin_lock_irqsave(&io_data->ffs->eps_lock, flags); 869 usb_ep_free_request(io_data->ep, io_data->req); 870 io_data->req = NULL; 871 spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags); 872 873 if (io_data->read) 874 kfree(io_data->to_free); 875 ffs_free_buffer(io_data); 876 kfree(io_data); 877 } 878 879 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 880 struct usb_request *req) 881 { 882 struct ffs_io_data *io_data = req->context; 883 struct ffs_data *ffs = io_data->ffs; 884 885 io_data->status = req->status ? req->status : req->actual; 886 887 INIT_WORK(&io_data->work, ffs_user_copy_worker); 888 queue_work(ffs->io_completion_wq, &io_data->work); 889 } 890 891 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 892 { 893 /* 894 * See comment in struct ffs_epfile for full read_buffer pointer 895 * synchronisation story. 896 */ 897 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 898 if (buf && buf != READ_BUFFER_DROP) 899 kfree(buf); 900 } 901 902 /* Assumes epfile->mutex is held. */ 903 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 904 struct iov_iter *iter) 905 { 906 /* 907 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 908 * the buffer while we are using it. See comment in struct ffs_epfile 909 * for full read_buffer pointer synchronisation story. 910 */ 911 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 912 ssize_t ret; 913 if (!buf || buf == READ_BUFFER_DROP) 914 return 0; 915 916 ret = copy_to_iter(buf->data, buf->length, iter); 917 if (buf->length == ret) { 918 kfree(buf); 919 return ret; 920 } 921 922 if (iov_iter_count(iter)) { 923 ret = -EFAULT; 924 } else { 925 buf->length -= ret; 926 buf->data += ret; 927 } 928 929 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 930 kfree(buf); 931 932 return ret; 933 } 934 935 /* Assumes epfile->mutex is held. */ 936 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 937 void *data, int data_len, 938 struct iov_iter *iter) 939 { 940 struct ffs_buffer *buf; 941 942 ssize_t ret = copy_to_iter(data, data_len, iter); 943 if (data_len == ret) 944 return ret; 945 946 if (iov_iter_count(iter)) 947 return -EFAULT; 948 949 /* See ffs_copy_to_iter for more context. */ 950 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 951 data_len, ret); 952 953 data_len -= ret; 954 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 955 if (!buf) 956 return -ENOMEM; 957 buf->length = data_len; 958 buf->data = buf->storage; 959 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 960 961 /* 962 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 963 * ffs_func_eps_disable has been called in the meanwhile). See comment 964 * in struct ffs_epfile for full read_buffer pointer synchronisation 965 * story. 966 */ 967 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 968 kfree(buf); 969 970 return ret; 971 } 972 973 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file) 974 { 975 struct ffs_epfile *epfile = file->private_data; 976 struct ffs_ep *ep; 977 int ret; 978 979 /* Wait for endpoint to be enabled */ 980 ep = epfile->ep; 981 if (!ep) { 982 if (file->f_flags & O_NONBLOCK) 983 return ERR_PTR(-EAGAIN); 984 985 ret = wait_event_interruptible( 986 epfile->ffs->wait, (ep = epfile->ep)); 987 if (ret) 988 return ERR_PTR(-EINTR); 989 } 990 991 return ep; 992 } 993 994 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 995 { 996 struct ffs_epfile *epfile = file->private_data; 997 struct usb_request *req; 998 struct ffs_ep *ep; 999 char *data = NULL; 1000 ssize_t ret, data_len = -EINVAL; 1001 int halt; 1002 1003 /* Are we still active? */ 1004 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1005 return -ENODEV; 1006 1007 ep = ffs_epfile_wait_ep(file); 1008 if (IS_ERR(ep)) 1009 return PTR_ERR(ep); 1010 1011 /* Do we halt? */ 1012 halt = (!io_data->read == !epfile->in); 1013 if (halt && epfile->isoc) 1014 return -EINVAL; 1015 1016 /* We will be using request and read_buffer */ 1017 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 1018 if (ret) 1019 goto error; 1020 1021 /* Allocate & copy */ 1022 if (!halt) { 1023 struct usb_gadget *gadget; 1024 1025 /* 1026 * Do we have buffered data from previous partial read? Check 1027 * that for synchronous case only because we do not have 1028 * facility to ‘wake up’ a pending asynchronous read and push 1029 * buffered data to it which we would need to make things behave 1030 * consistently. 1031 */ 1032 if (!io_data->aio && io_data->read) { 1033 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 1034 if (ret) 1035 goto error_mutex; 1036 } 1037 1038 /* 1039 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1040 * before the waiting completes, so do not assign to 'gadget' 1041 * earlier 1042 */ 1043 gadget = epfile->ffs->gadget; 1044 1045 spin_lock_irq(&epfile->ffs->eps_lock); 1046 /* In the meantime, endpoint got disabled or changed. */ 1047 if (epfile->ep != ep) { 1048 ret = -ESHUTDOWN; 1049 goto error_lock; 1050 } 1051 data_len = iov_iter_count(&io_data->data); 1052 /* 1053 * Controller may require buffer size to be aligned to 1054 * maxpacketsize of an out endpoint. 1055 */ 1056 if (io_data->read) 1057 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1058 1059 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1060 spin_unlock_irq(&epfile->ffs->eps_lock); 1061 1062 data = ffs_alloc_buffer(io_data, data_len); 1063 if (!data) { 1064 ret = -ENOMEM; 1065 goto error_mutex; 1066 } 1067 if (!io_data->read && 1068 !copy_from_iter_full(data, data_len, &io_data->data)) { 1069 ret = -EFAULT; 1070 goto error_mutex; 1071 } 1072 } 1073 1074 spin_lock_irq(&epfile->ffs->eps_lock); 1075 1076 if (epfile->ep != ep) { 1077 /* In the meantime, endpoint got disabled or changed. */ 1078 ret = -ESHUTDOWN; 1079 } else if (halt) { 1080 ret = usb_ep_set_halt(ep->ep); 1081 if (!ret) 1082 ret = -EBADMSG; 1083 } else if (data_len == -EINVAL) { 1084 /* 1085 * Sanity Check: even though data_len can't be used 1086 * uninitialized at the time I write this comment, some 1087 * compilers complain about this situation. 1088 * In order to keep the code clean from warnings, data_len is 1089 * being initialized to -EINVAL during its declaration, which 1090 * means we can't rely on compiler anymore to warn no future 1091 * changes won't result in data_len being used uninitialized. 1092 * For such reason, we're adding this redundant sanity check 1093 * here. 1094 */ 1095 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1096 ret = -EINVAL; 1097 } else if (!io_data->aio) { 1098 bool interrupted = false; 1099 1100 req = ep->req; 1101 if (io_data->use_sg) { 1102 req->buf = NULL; 1103 req->sg = io_data->sgt.sgl; 1104 req->num_sgs = io_data->sgt.nents; 1105 } else { 1106 req->buf = data; 1107 req->num_sgs = 0; 1108 } 1109 req->length = data_len; 1110 1111 io_data->buf = data; 1112 1113 init_completion(&io_data->done); 1114 req->context = io_data; 1115 req->complete = ffs_epfile_io_complete; 1116 1117 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1118 if (ret < 0) 1119 goto error_lock; 1120 1121 spin_unlock_irq(&epfile->ffs->eps_lock); 1122 1123 if (wait_for_completion_interruptible(&io_data->done)) { 1124 spin_lock_irq(&epfile->ffs->eps_lock); 1125 if (epfile->ep != ep) { 1126 ret = -ESHUTDOWN; 1127 goto error_lock; 1128 } 1129 /* 1130 * To avoid race condition with ffs_epfile_io_complete, 1131 * dequeue the request first then check 1132 * status. usb_ep_dequeue API should guarantee no race 1133 * condition with req->complete callback. 1134 */ 1135 usb_ep_dequeue(ep->ep, req); 1136 spin_unlock_irq(&epfile->ffs->eps_lock); 1137 wait_for_completion(&io_data->done); 1138 interrupted = io_data->status < 0; 1139 } 1140 1141 if (interrupted) 1142 ret = -EINTR; 1143 else if (io_data->read && io_data->status > 0) 1144 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1145 &io_data->data); 1146 else 1147 ret = io_data->status; 1148 goto error_mutex; 1149 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1150 ret = -ENOMEM; 1151 } else { 1152 if (io_data->use_sg) { 1153 req->buf = NULL; 1154 req->sg = io_data->sgt.sgl; 1155 req->num_sgs = io_data->sgt.nents; 1156 } else { 1157 req->buf = data; 1158 req->num_sgs = 0; 1159 } 1160 req->length = data_len; 1161 1162 io_data->buf = data; 1163 io_data->ep = ep->ep; 1164 io_data->req = req; 1165 io_data->ffs = epfile->ffs; 1166 1167 req->context = io_data; 1168 req->complete = ffs_epfile_async_io_complete; 1169 1170 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1171 if (ret) { 1172 io_data->req = NULL; 1173 usb_ep_free_request(ep->ep, req); 1174 goto error_lock; 1175 } 1176 1177 ret = -EIOCBQUEUED; 1178 /* 1179 * Do not kfree the buffer in this function. It will be freed 1180 * by ffs_user_copy_worker. 1181 */ 1182 data = NULL; 1183 } 1184 1185 error_lock: 1186 spin_unlock_irq(&epfile->ffs->eps_lock); 1187 error_mutex: 1188 mutex_unlock(&epfile->mutex); 1189 error: 1190 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1191 ffs_free_buffer(io_data); 1192 return ret; 1193 } 1194 1195 static int 1196 ffs_epfile_open(struct inode *inode, struct file *file) 1197 { 1198 struct ffs_epfile *epfile = inode->i_private; 1199 1200 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1201 return -ENODEV; 1202 1203 file->private_data = epfile; 1204 ffs_data_opened(epfile->ffs); 1205 1206 return stream_open(inode, file); 1207 } 1208 1209 static int ffs_aio_cancel(struct kiocb *kiocb) 1210 { 1211 struct ffs_io_data *io_data = kiocb->private; 1212 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1213 unsigned long flags; 1214 int value; 1215 1216 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1217 1218 if (io_data && io_data->ep && io_data->req) 1219 value = usb_ep_dequeue(io_data->ep, io_data->req); 1220 else 1221 value = -EINVAL; 1222 1223 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1224 1225 return value; 1226 } 1227 1228 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1229 { 1230 struct ffs_io_data io_data, *p = &io_data; 1231 ssize_t res; 1232 1233 if (!is_sync_kiocb(kiocb)) { 1234 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1235 if (!p) 1236 return -ENOMEM; 1237 p->aio = true; 1238 } else { 1239 memset(p, 0, sizeof(*p)); 1240 p->aio = false; 1241 } 1242 1243 p->read = false; 1244 p->kiocb = kiocb; 1245 p->data = *from; 1246 p->mm = current->mm; 1247 1248 kiocb->private = p; 1249 1250 if (p->aio) 1251 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1252 1253 res = ffs_epfile_io(kiocb->ki_filp, p); 1254 if (res == -EIOCBQUEUED) 1255 return res; 1256 if (p->aio) 1257 kfree(p); 1258 else 1259 *from = p->data; 1260 return res; 1261 } 1262 1263 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1264 { 1265 struct ffs_io_data io_data, *p = &io_data; 1266 ssize_t res; 1267 1268 if (!is_sync_kiocb(kiocb)) { 1269 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1270 if (!p) 1271 return -ENOMEM; 1272 p->aio = true; 1273 } else { 1274 memset(p, 0, sizeof(*p)); 1275 p->aio = false; 1276 } 1277 1278 p->read = true; 1279 p->kiocb = kiocb; 1280 if (p->aio) { 1281 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1282 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1283 kfree(p); 1284 return -ENOMEM; 1285 } 1286 } else { 1287 p->data = *to; 1288 p->to_free = NULL; 1289 } 1290 p->mm = current->mm; 1291 1292 kiocb->private = p; 1293 1294 if (p->aio) 1295 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1296 1297 res = ffs_epfile_io(kiocb->ki_filp, p); 1298 if (res == -EIOCBQUEUED) 1299 return res; 1300 1301 if (p->aio) { 1302 kfree(p->to_free); 1303 kfree(p); 1304 } else { 1305 *to = p->data; 1306 } 1307 return res; 1308 } 1309 1310 static void ffs_dmabuf_release(struct kref *ref) 1311 { 1312 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref); 1313 struct dma_buf_attachment *attach = priv->attach; 1314 struct dma_buf *dmabuf = attach->dmabuf; 1315 1316 pr_vdebug("FFS DMABUF release\n"); 1317 dma_resv_lock(dmabuf->resv, NULL); 1318 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir); 1319 dma_resv_unlock(dmabuf->resv); 1320 1321 dma_buf_detach(attach->dmabuf, attach); 1322 dma_buf_put(dmabuf); 1323 kfree(priv); 1324 } 1325 1326 static void ffs_dmabuf_get(struct dma_buf_attachment *attach) 1327 { 1328 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1329 1330 kref_get(&priv->ref); 1331 } 1332 1333 static void ffs_dmabuf_put(struct dma_buf_attachment *attach) 1334 { 1335 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1336 1337 kref_put(&priv->ref, ffs_dmabuf_release); 1338 } 1339 1340 static int 1341 ffs_epfile_release(struct inode *inode, struct file *file) 1342 { 1343 struct ffs_epfile *epfile = inode->i_private; 1344 struct ffs_dmabuf_priv *priv, *tmp; 1345 struct ffs_data *ffs = epfile->ffs; 1346 1347 mutex_lock(&epfile->dmabufs_mutex); 1348 1349 /* Close all attached DMABUFs */ 1350 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1351 /* Cancel any pending transfer */ 1352 spin_lock_irq(&ffs->eps_lock); 1353 if (priv->ep && priv->req) 1354 usb_ep_dequeue(priv->ep, priv->req); 1355 spin_unlock_irq(&ffs->eps_lock); 1356 1357 list_del(&priv->entry); 1358 ffs_dmabuf_put(priv->attach); 1359 } 1360 1361 mutex_unlock(&epfile->dmabufs_mutex); 1362 1363 __ffs_epfile_read_buffer_free(epfile); 1364 ffs_data_closed(epfile->ffs); 1365 1366 return 0; 1367 } 1368 1369 static void ffs_dmabuf_cleanup(struct work_struct *work) 1370 { 1371 struct ffs_dma_fence *dma_fence = 1372 container_of(work, struct ffs_dma_fence, work); 1373 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1374 struct dma_buf_attachment *attach = priv->attach; 1375 struct dma_fence *fence = &dma_fence->base; 1376 1377 ffs_dmabuf_put(attach); 1378 dma_fence_put(fence); 1379 } 1380 1381 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret) 1382 { 1383 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1384 struct dma_fence *fence = &dma_fence->base; 1385 bool cookie = dma_fence_begin_signalling(); 1386 1387 dma_fence_get(fence); 1388 fence->error = ret; 1389 dma_fence_signal(fence); 1390 dma_fence_end_signalling(cookie); 1391 1392 /* 1393 * The fence will be unref'd in ffs_dmabuf_cleanup. 1394 * It can't be done here, as the unref functions might try to lock 1395 * the resv object, which would deadlock. 1396 */ 1397 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup); 1398 queue_work(priv->ffs->io_completion_wq, &dma_fence->work); 1399 } 1400 1401 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep, 1402 struct usb_request *req) 1403 { 1404 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status); 1405 ffs_dmabuf_signal_done(req->context, req->status); 1406 usb_ep_free_request(ep, req); 1407 } 1408 1409 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence) 1410 { 1411 return "functionfs"; 1412 } 1413 1414 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence) 1415 { 1416 return ""; 1417 } 1418 1419 static void ffs_dmabuf_fence_release(struct dma_fence *fence) 1420 { 1421 struct ffs_dma_fence *dma_fence = 1422 container_of(fence, struct ffs_dma_fence, base); 1423 1424 kfree(dma_fence); 1425 } 1426 1427 static const struct dma_fence_ops ffs_dmabuf_fence_ops = { 1428 .get_driver_name = ffs_dmabuf_get_driver_name, 1429 .get_timeline_name = ffs_dmabuf_get_timeline_name, 1430 .release = ffs_dmabuf_fence_release, 1431 }; 1432 1433 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock) 1434 { 1435 if (!nonblock) 1436 return dma_resv_lock_interruptible(dmabuf->resv, NULL); 1437 1438 if (!dma_resv_trylock(dmabuf->resv)) 1439 return -EBUSY; 1440 1441 return 0; 1442 } 1443 1444 static struct dma_buf_attachment * 1445 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf) 1446 { 1447 struct device *dev = epfile->ffs->gadget->dev.parent; 1448 struct dma_buf_attachment *attach = NULL; 1449 struct ffs_dmabuf_priv *priv; 1450 1451 mutex_lock(&epfile->dmabufs_mutex); 1452 1453 list_for_each_entry(priv, &epfile->dmabufs, entry) { 1454 if (priv->attach->dev == dev 1455 && priv->attach->dmabuf == dmabuf) { 1456 attach = priv->attach; 1457 break; 1458 } 1459 } 1460 1461 if (attach) 1462 ffs_dmabuf_get(attach); 1463 1464 mutex_unlock(&epfile->dmabufs_mutex); 1465 1466 return attach ?: ERR_PTR(-EPERM); 1467 } 1468 1469 static int ffs_dmabuf_attach(struct file *file, int fd) 1470 { 1471 bool nonblock = file->f_flags & O_NONBLOCK; 1472 struct ffs_epfile *epfile = file->private_data; 1473 struct usb_gadget *gadget = epfile->ffs->gadget; 1474 struct dma_buf_attachment *attach; 1475 struct ffs_dmabuf_priv *priv; 1476 enum dma_data_direction dir; 1477 struct sg_table *sg_table; 1478 struct dma_buf *dmabuf; 1479 int err; 1480 1481 if (!gadget || !gadget->sg_supported) 1482 return -EPERM; 1483 1484 dmabuf = dma_buf_get(fd); 1485 if (IS_ERR(dmabuf)) 1486 return PTR_ERR(dmabuf); 1487 1488 attach = dma_buf_attach(dmabuf, gadget->dev.parent); 1489 if (IS_ERR(attach)) { 1490 err = PTR_ERR(attach); 1491 goto err_dmabuf_put; 1492 } 1493 1494 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1495 if (!priv) { 1496 err = -ENOMEM; 1497 goto err_dmabuf_detach; 1498 } 1499 1500 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1501 1502 err = ffs_dma_resv_lock(dmabuf, nonblock); 1503 if (err) 1504 goto err_free_priv; 1505 1506 sg_table = dma_buf_map_attachment(attach, dir); 1507 dma_resv_unlock(dmabuf->resv); 1508 1509 if (IS_ERR(sg_table)) { 1510 err = PTR_ERR(sg_table); 1511 goto err_free_priv; 1512 } 1513 1514 attach->importer_priv = priv; 1515 1516 priv->sgt = sg_table; 1517 priv->dir = dir; 1518 priv->ffs = epfile->ffs; 1519 priv->attach = attach; 1520 spin_lock_init(&priv->lock); 1521 kref_init(&priv->ref); 1522 priv->context = dma_fence_context_alloc(1); 1523 1524 mutex_lock(&epfile->dmabufs_mutex); 1525 list_add(&priv->entry, &epfile->dmabufs); 1526 mutex_unlock(&epfile->dmabufs_mutex); 1527 1528 return 0; 1529 1530 err_free_priv: 1531 kfree(priv); 1532 err_dmabuf_detach: 1533 dma_buf_detach(dmabuf, attach); 1534 err_dmabuf_put: 1535 dma_buf_put(dmabuf); 1536 1537 return err; 1538 } 1539 1540 static int ffs_dmabuf_detach(struct file *file, int fd) 1541 { 1542 struct ffs_epfile *epfile = file->private_data; 1543 struct ffs_data *ffs = epfile->ffs; 1544 struct device *dev = ffs->gadget->dev.parent; 1545 struct ffs_dmabuf_priv *priv, *tmp; 1546 struct dma_buf *dmabuf; 1547 int ret = -EPERM; 1548 1549 dmabuf = dma_buf_get(fd); 1550 if (IS_ERR(dmabuf)) 1551 return PTR_ERR(dmabuf); 1552 1553 mutex_lock(&epfile->dmabufs_mutex); 1554 1555 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1556 if (priv->attach->dev == dev 1557 && priv->attach->dmabuf == dmabuf) { 1558 /* Cancel any pending transfer */ 1559 spin_lock_irq(&ffs->eps_lock); 1560 if (priv->ep && priv->req) 1561 usb_ep_dequeue(priv->ep, priv->req); 1562 spin_unlock_irq(&ffs->eps_lock); 1563 1564 list_del(&priv->entry); 1565 1566 /* Unref the reference from ffs_dmabuf_attach() */ 1567 ffs_dmabuf_put(priv->attach); 1568 ret = 0; 1569 break; 1570 } 1571 } 1572 1573 mutex_unlock(&epfile->dmabufs_mutex); 1574 dma_buf_put(dmabuf); 1575 1576 return ret; 1577 } 1578 1579 static int ffs_dmabuf_transfer(struct file *file, 1580 const struct usb_ffs_dmabuf_transfer_req *req) 1581 { 1582 bool nonblock = file->f_flags & O_NONBLOCK; 1583 struct ffs_epfile *epfile = file->private_data; 1584 struct dma_buf_attachment *attach; 1585 struct ffs_dmabuf_priv *priv; 1586 struct ffs_dma_fence *fence; 1587 struct usb_request *usb_req; 1588 enum dma_resv_usage resv_dir; 1589 struct dma_buf *dmabuf; 1590 unsigned long timeout; 1591 struct ffs_ep *ep; 1592 bool cookie; 1593 u32 seqno; 1594 long retl; 1595 int ret; 1596 1597 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK) 1598 return -EINVAL; 1599 1600 dmabuf = dma_buf_get(req->fd); 1601 if (IS_ERR(dmabuf)) 1602 return PTR_ERR(dmabuf); 1603 1604 if (req->length > dmabuf->size || req->length == 0) { 1605 ret = -EINVAL; 1606 goto err_dmabuf_put; 1607 } 1608 1609 attach = ffs_dmabuf_find_attachment(epfile, dmabuf); 1610 if (IS_ERR(attach)) { 1611 ret = PTR_ERR(attach); 1612 goto err_dmabuf_put; 1613 } 1614 1615 priv = attach->importer_priv; 1616 1617 ep = ffs_epfile_wait_ep(file); 1618 if (IS_ERR(ep)) { 1619 ret = PTR_ERR(ep); 1620 goto err_attachment_put; 1621 } 1622 1623 ret = ffs_dma_resv_lock(dmabuf, nonblock); 1624 if (ret) 1625 goto err_attachment_put; 1626 1627 /* Make sure we don't have writers */ 1628 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS); 1629 retl = dma_resv_wait_timeout(dmabuf->resv, 1630 dma_resv_usage_rw(epfile->in), 1631 true, timeout); 1632 if (retl == 0) 1633 retl = -EBUSY; 1634 if (retl < 0) { 1635 ret = (int)retl; 1636 goto err_resv_unlock; 1637 } 1638 1639 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 1640 if (ret) 1641 goto err_resv_unlock; 1642 1643 fence = kmalloc(sizeof(*fence), GFP_KERNEL); 1644 if (!fence) { 1645 ret = -ENOMEM; 1646 goto err_resv_unlock; 1647 } 1648 1649 fence->priv = priv; 1650 1651 spin_lock_irq(&epfile->ffs->eps_lock); 1652 1653 /* In the meantime, endpoint got disabled or changed. */ 1654 if (epfile->ep != ep) { 1655 ret = -ESHUTDOWN; 1656 goto err_fence_put; 1657 } 1658 1659 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC); 1660 if (!usb_req) { 1661 ret = -ENOMEM; 1662 goto err_fence_put; 1663 } 1664 1665 /* 1666 * usb_ep_queue() guarantees that all transfers are processed in the 1667 * order they are enqueued, so we can use a simple incrementing 1668 * sequence number for the dma_fence. 1669 */ 1670 seqno = atomic_add_return(1, &epfile->seqno); 1671 1672 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops, 1673 &priv->lock, priv->context, seqno); 1674 1675 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; 1676 1677 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir); 1678 dma_resv_unlock(dmabuf->resv); 1679 1680 /* Now that the dma_fence is in place, queue the transfer. */ 1681 1682 usb_req->length = req->length; 1683 usb_req->buf = NULL; 1684 usb_req->sg = priv->sgt->sgl; 1685 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length); 1686 usb_req->sg_was_mapped = true; 1687 usb_req->context = fence; 1688 usb_req->complete = ffs_epfile_dmabuf_io_complete; 1689 1690 cookie = dma_fence_begin_signalling(); 1691 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC); 1692 dma_fence_end_signalling(cookie); 1693 if (!ret) { 1694 priv->req = usb_req; 1695 priv->ep = ep->ep; 1696 } else { 1697 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret); 1698 ffs_dmabuf_signal_done(fence, ret); 1699 usb_ep_free_request(ep->ep, usb_req); 1700 } 1701 1702 spin_unlock_irq(&epfile->ffs->eps_lock); 1703 dma_buf_put(dmabuf); 1704 1705 return ret; 1706 1707 err_fence_put: 1708 spin_unlock_irq(&epfile->ffs->eps_lock); 1709 dma_fence_put(&fence->base); 1710 err_resv_unlock: 1711 dma_resv_unlock(dmabuf->resv); 1712 err_attachment_put: 1713 ffs_dmabuf_put(attach); 1714 err_dmabuf_put: 1715 dma_buf_put(dmabuf); 1716 1717 return ret; 1718 } 1719 1720 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1721 unsigned long value) 1722 { 1723 struct ffs_epfile *epfile = file->private_data; 1724 struct ffs_ep *ep; 1725 int ret; 1726 1727 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1728 return -ENODEV; 1729 1730 switch (code) { 1731 case FUNCTIONFS_DMABUF_ATTACH: 1732 { 1733 int fd; 1734 1735 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1736 ret = -EFAULT; 1737 break; 1738 } 1739 1740 return ffs_dmabuf_attach(file, fd); 1741 } 1742 case FUNCTIONFS_DMABUF_DETACH: 1743 { 1744 int fd; 1745 1746 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1747 ret = -EFAULT; 1748 break; 1749 } 1750 1751 return ffs_dmabuf_detach(file, fd); 1752 } 1753 case FUNCTIONFS_DMABUF_TRANSFER: 1754 { 1755 struct usb_ffs_dmabuf_transfer_req req; 1756 1757 if (copy_from_user(&req, (void __user *)value, sizeof(req))) { 1758 ret = -EFAULT; 1759 break; 1760 } 1761 1762 return ffs_dmabuf_transfer(file, &req); 1763 } 1764 default: 1765 break; 1766 } 1767 1768 /* Wait for endpoint to be enabled */ 1769 ep = ffs_epfile_wait_ep(file); 1770 if (IS_ERR(ep)) 1771 return PTR_ERR(ep); 1772 1773 spin_lock_irq(&epfile->ffs->eps_lock); 1774 1775 /* In the meantime, endpoint got disabled or changed. */ 1776 if (epfile->ep != ep) { 1777 spin_unlock_irq(&epfile->ffs->eps_lock); 1778 return -ESHUTDOWN; 1779 } 1780 1781 switch (code) { 1782 case FUNCTIONFS_FIFO_STATUS: 1783 ret = usb_ep_fifo_status(epfile->ep->ep); 1784 break; 1785 case FUNCTIONFS_FIFO_FLUSH: 1786 usb_ep_fifo_flush(epfile->ep->ep); 1787 ret = 0; 1788 break; 1789 case FUNCTIONFS_CLEAR_HALT: 1790 ret = usb_ep_clear_halt(epfile->ep->ep); 1791 break; 1792 case FUNCTIONFS_ENDPOINT_REVMAP: 1793 ret = epfile->ep->num; 1794 break; 1795 case FUNCTIONFS_ENDPOINT_DESC: 1796 { 1797 int desc_idx; 1798 struct usb_endpoint_descriptor desc1, *desc; 1799 1800 switch (epfile->ffs->gadget->speed) { 1801 case USB_SPEED_SUPER: 1802 case USB_SPEED_SUPER_PLUS: 1803 desc_idx = 2; 1804 break; 1805 case USB_SPEED_HIGH: 1806 desc_idx = 1; 1807 break; 1808 default: 1809 desc_idx = 0; 1810 } 1811 1812 desc = epfile->ep->descs[desc_idx]; 1813 memcpy(&desc1, desc, desc->bLength); 1814 1815 spin_unlock_irq(&epfile->ffs->eps_lock); 1816 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1817 if (ret) 1818 ret = -EFAULT; 1819 return ret; 1820 } 1821 default: 1822 ret = -ENOTTY; 1823 } 1824 spin_unlock_irq(&epfile->ffs->eps_lock); 1825 1826 return ret; 1827 } 1828 1829 static const struct file_operations ffs_epfile_operations = { 1830 .llseek = no_llseek, 1831 1832 .open = ffs_epfile_open, 1833 .write_iter = ffs_epfile_write_iter, 1834 .read_iter = ffs_epfile_read_iter, 1835 .release = ffs_epfile_release, 1836 .unlocked_ioctl = ffs_epfile_ioctl, 1837 .compat_ioctl = compat_ptr_ioctl, 1838 }; 1839 1840 1841 /* File system and super block operations ***********************************/ 1842 1843 /* 1844 * Mounting the file system creates a controller file, used first for 1845 * function configuration then later for event monitoring. 1846 */ 1847 1848 static struct inode *__must_check 1849 ffs_sb_make_inode(struct super_block *sb, void *data, 1850 const struct file_operations *fops, 1851 const struct inode_operations *iops, 1852 struct ffs_file_perms *perms) 1853 { 1854 struct inode *inode; 1855 1856 inode = new_inode(sb); 1857 1858 if (inode) { 1859 struct timespec64 ts = inode_set_ctime_current(inode); 1860 1861 inode->i_ino = get_next_ino(); 1862 inode->i_mode = perms->mode; 1863 inode->i_uid = perms->uid; 1864 inode->i_gid = perms->gid; 1865 inode_set_atime_to_ts(inode, ts); 1866 inode_set_mtime_to_ts(inode, ts); 1867 inode->i_private = data; 1868 if (fops) 1869 inode->i_fop = fops; 1870 if (iops) 1871 inode->i_op = iops; 1872 } 1873 1874 return inode; 1875 } 1876 1877 /* Create "regular" file */ 1878 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1879 const char *name, void *data, 1880 const struct file_operations *fops) 1881 { 1882 struct ffs_data *ffs = sb->s_fs_info; 1883 struct dentry *dentry; 1884 struct inode *inode; 1885 1886 dentry = d_alloc_name(sb->s_root, name); 1887 if (!dentry) 1888 return NULL; 1889 1890 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1891 if (!inode) { 1892 dput(dentry); 1893 return NULL; 1894 } 1895 1896 d_add(dentry, inode); 1897 return dentry; 1898 } 1899 1900 /* Super block */ 1901 static const struct super_operations ffs_sb_operations = { 1902 .statfs = simple_statfs, 1903 .drop_inode = generic_delete_inode, 1904 }; 1905 1906 struct ffs_sb_fill_data { 1907 struct ffs_file_perms perms; 1908 umode_t root_mode; 1909 const char *dev_name; 1910 bool no_disconnect; 1911 struct ffs_data *ffs_data; 1912 }; 1913 1914 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1915 { 1916 struct ffs_sb_fill_data *data = fc->fs_private; 1917 struct inode *inode; 1918 struct ffs_data *ffs = data->ffs_data; 1919 1920 ffs->sb = sb; 1921 data->ffs_data = NULL; 1922 sb->s_fs_info = ffs; 1923 sb->s_blocksize = PAGE_SIZE; 1924 sb->s_blocksize_bits = PAGE_SHIFT; 1925 sb->s_magic = FUNCTIONFS_MAGIC; 1926 sb->s_op = &ffs_sb_operations; 1927 sb->s_time_gran = 1; 1928 1929 /* Root inode */ 1930 data->perms.mode = data->root_mode; 1931 inode = ffs_sb_make_inode(sb, NULL, 1932 &simple_dir_operations, 1933 &simple_dir_inode_operations, 1934 &data->perms); 1935 sb->s_root = d_make_root(inode); 1936 if (!sb->s_root) 1937 return -ENOMEM; 1938 1939 /* EP0 file */ 1940 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1941 return -ENOMEM; 1942 1943 return 0; 1944 } 1945 1946 enum { 1947 Opt_no_disconnect, 1948 Opt_rmode, 1949 Opt_fmode, 1950 Opt_mode, 1951 Opt_uid, 1952 Opt_gid, 1953 }; 1954 1955 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1956 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1957 fsparam_u32 ("rmode", Opt_rmode), 1958 fsparam_u32 ("fmode", Opt_fmode), 1959 fsparam_u32 ("mode", Opt_mode), 1960 fsparam_u32 ("uid", Opt_uid), 1961 fsparam_u32 ("gid", Opt_gid), 1962 {} 1963 }; 1964 1965 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1966 { 1967 struct ffs_sb_fill_data *data = fc->fs_private; 1968 struct fs_parse_result result; 1969 int opt; 1970 1971 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1972 if (opt < 0) 1973 return opt; 1974 1975 switch (opt) { 1976 case Opt_no_disconnect: 1977 data->no_disconnect = result.boolean; 1978 break; 1979 case Opt_rmode: 1980 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1981 break; 1982 case Opt_fmode: 1983 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1984 break; 1985 case Opt_mode: 1986 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1987 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1988 break; 1989 1990 case Opt_uid: 1991 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1992 if (!uid_valid(data->perms.uid)) 1993 goto unmapped_value; 1994 break; 1995 case Opt_gid: 1996 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1997 if (!gid_valid(data->perms.gid)) 1998 goto unmapped_value; 1999 break; 2000 2001 default: 2002 return -ENOPARAM; 2003 } 2004 2005 return 0; 2006 2007 unmapped_value: 2008 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 2009 } 2010 2011 /* 2012 * Set up the superblock for a mount. 2013 */ 2014 static int ffs_fs_get_tree(struct fs_context *fc) 2015 { 2016 struct ffs_sb_fill_data *ctx = fc->fs_private; 2017 struct ffs_data *ffs; 2018 int ret; 2019 2020 if (!fc->source) 2021 return invalf(fc, "No source specified"); 2022 2023 ffs = ffs_data_new(fc->source); 2024 if (!ffs) 2025 return -ENOMEM; 2026 ffs->file_perms = ctx->perms; 2027 ffs->no_disconnect = ctx->no_disconnect; 2028 2029 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 2030 if (!ffs->dev_name) { 2031 ffs_data_put(ffs); 2032 return -ENOMEM; 2033 } 2034 2035 ret = ffs_acquire_dev(ffs->dev_name, ffs); 2036 if (ret) { 2037 ffs_data_put(ffs); 2038 return ret; 2039 } 2040 2041 ctx->ffs_data = ffs; 2042 return get_tree_nodev(fc, ffs_sb_fill); 2043 } 2044 2045 static void ffs_fs_free_fc(struct fs_context *fc) 2046 { 2047 struct ffs_sb_fill_data *ctx = fc->fs_private; 2048 2049 if (ctx) { 2050 if (ctx->ffs_data) { 2051 ffs_data_put(ctx->ffs_data); 2052 } 2053 2054 kfree(ctx); 2055 } 2056 } 2057 2058 static const struct fs_context_operations ffs_fs_context_ops = { 2059 .free = ffs_fs_free_fc, 2060 .parse_param = ffs_fs_parse_param, 2061 .get_tree = ffs_fs_get_tree, 2062 }; 2063 2064 static int ffs_fs_init_fs_context(struct fs_context *fc) 2065 { 2066 struct ffs_sb_fill_data *ctx; 2067 2068 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 2069 if (!ctx) 2070 return -ENOMEM; 2071 2072 ctx->perms.mode = S_IFREG | 0600; 2073 ctx->perms.uid = GLOBAL_ROOT_UID; 2074 ctx->perms.gid = GLOBAL_ROOT_GID; 2075 ctx->root_mode = S_IFDIR | 0500; 2076 ctx->no_disconnect = false; 2077 2078 fc->fs_private = ctx; 2079 fc->ops = &ffs_fs_context_ops; 2080 return 0; 2081 } 2082 2083 static void 2084 ffs_fs_kill_sb(struct super_block *sb) 2085 { 2086 kill_litter_super(sb); 2087 if (sb->s_fs_info) 2088 ffs_data_closed(sb->s_fs_info); 2089 } 2090 2091 static struct file_system_type ffs_fs_type = { 2092 .owner = THIS_MODULE, 2093 .name = "functionfs", 2094 .init_fs_context = ffs_fs_init_fs_context, 2095 .parameters = ffs_fs_fs_parameters, 2096 .kill_sb = ffs_fs_kill_sb, 2097 }; 2098 MODULE_ALIAS_FS("functionfs"); 2099 2100 2101 /* Driver's main init/cleanup functions *************************************/ 2102 2103 static int functionfs_init(void) 2104 { 2105 int ret; 2106 2107 ret = register_filesystem(&ffs_fs_type); 2108 if (!ret) 2109 pr_info("file system registered\n"); 2110 else 2111 pr_err("failed registering file system (%d)\n", ret); 2112 2113 return ret; 2114 } 2115 2116 static void functionfs_cleanup(void) 2117 { 2118 pr_info("unloading\n"); 2119 unregister_filesystem(&ffs_fs_type); 2120 } 2121 2122 2123 /* ffs_data and ffs_function construction and destruction code **************/ 2124 2125 static void ffs_data_clear(struct ffs_data *ffs); 2126 static void ffs_data_reset(struct ffs_data *ffs); 2127 2128 static void ffs_data_get(struct ffs_data *ffs) 2129 { 2130 refcount_inc(&ffs->ref); 2131 } 2132 2133 static void ffs_data_opened(struct ffs_data *ffs) 2134 { 2135 refcount_inc(&ffs->ref); 2136 if (atomic_add_return(1, &ffs->opened) == 1 && 2137 ffs->state == FFS_DEACTIVATED) { 2138 ffs->state = FFS_CLOSING; 2139 ffs_data_reset(ffs); 2140 } 2141 } 2142 2143 static void ffs_data_put(struct ffs_data *ffs) 2144 { 2145 if (refcount_dec_and_test(&ffs->ref)) { 2146 pr_info("%s(): freeing\n", __func__); 2147 ffs_data_clear(ffs); 2148 ffs_release_dev(ffs->private_data); 2149 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 2150 swait_active(&ffs->ep0req_completion.wait) || 2151 waitqueue_active(&ffs->wait)); 2152 destroy_workqueue(ffs->io_completion_wq); 2153 kfree(ffs->dev_name); 2154 kfree(ffs); 2155 } 2156 } 2157 2158 static void ffs_data_closed(struct ffs_data *ffs) 2159 { 2160 struct ffs_epfile *epfiles; 2161 unsigned long flags; 2162 2163 if (atomic_dec_and_test(&ffs->opened)) { 2164 if (ffs->no_disconnect) { 2165 ffs->state = FFS_DEACTIVATED; 2166 spin_lock_irqsave(&ffs->eps_lock, flags); 2167 epfiles = ffs->epfiles; 2168 ffs->epfiles = NULL; 2169 spin_unlock_irqrestore(&ffs->eps_lock, 2170 flags); 2171 2172 if (epfiles) 2173 ffs_epfiles_destroy(epfiles, 2174 ffs->eps_count); 2175 2176 if (ffs->setup_state == FFS_SETUP_PENDING) 2177 __ffs_ep0_stall(ffs); 2178 } else { 2179 ffs->state = FFS_CLOSING; 2180 ffs_data_reset(ffs); 2181 } 2182 } 2183 if (atomic_read(&ffs->opened) < 0) { 2184 ffs->state = FFS_CLOSING; 2185 ffs_data_reset(ffs); 2186 } 2187 2188 ffs_data_put(ffs); 2189 } 2190 2191 static struct ffs_data *ffs_data_new(const char *dev_name) 2192 { 2193 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 2194 if (!ffs) 2195 return NULL; 2196 2197 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 2198 if (!ffs->io_completion_wq) { 2199 kfree(ffs); 2200 return NULL; 2201 } 2202 2203 refcount_set(&ffs->ref, 1); 2204 atomic_set(&ffs->opened, 0); 2205 ffs->state = FFS_READ_DESCRIPTORS; 2206 mutex_init(&ffs->mutex); 2207 spin_lock_init(&ffs->eps_lock); 2208 init_waitqueue_head(&ffs->ev.waitq); 2209 init_waitqueue_head(&ffs->wait); 2210 init_completion(&ffs->ep0req_completion); 2211 2212 /* XXX REVISIT need to update it in some places, or do we? */ 2213 ffs->ev.can_stall = 1; 2214 2215 return ffs; 2216 } 2217 2218 static void ffs_data_clear(struct ffs_data *ffs) 2219 { 2220 struct ffs_epfile *epfiles; 2221 unsigned long flags; 2222 2223 ffs_closed(ffs); 2224 2225 BUG_ON(ffs->gadget); 2226 2227 spin_lock_irqsave(&ffs->eps_lock, flags); 2228 epfiles = ffs->epfiles; 2229 ffs->epfiles = NULL; 2230 spin_unlock_irqrestore(&ffs->eps_lock, flags); 2231 2232 /* 2233 * potential race possible between ffs_func_eps_disable 2234 * & ffs_epfile_release therefore maintaining a local 2235 * copy of epfile will save us from use-after-free. 2236 */ 2237 if (epfiles) { 2238 ffs_epfiles_destroy(epfiles, ffs->eps_count); 2239 ffs->epfiles = NULL; 2240 } 2241 2242 if (ffs->ffs_eventfd) { 2243 eventfd_ctx_put(ffs->ffs_eventfd); 2244 ffs->ffs_eventfd = NULL; 2245 } 2246 2247 kfree(ffs->raw_descs_data); 2248 kfree(ffs->raw_strings); 2249 kfree(ffs->stringtabs); 2250 } 2251 2252 static void ffs_data_reset(struct ffs_data *ffs) 2253 { 2254 ffs_data_clear(ffs); 2255 2256 ffs->raw_descs_data = NULL; 2257 ffs->raw_descs = NULL; 2258 ffs->raw_strings = NULL; 2259 ffs->stringtabs = NULL; 2260 2261 ffs->raw_descs_length = 0; 2262 ffs->fs_descs_count = 0; 2263 ffs->hs_descs_count = 0; 2264 ffs->ss_descs_count = 0; 2265 2266 ffs->strings_count = 0; 2267 ffs->interfaces_count = 0; 2268 ffs->eps_count = 0; 2269 2270 ffs->ev.count = 0; 2271 2272 ffs->state = FFS_READ_DESCRIPTORS; 2273 ffs->setup_state = FFS_NO_SETUP; 2274 ffs->flags = 0; 2275 2276 ffs->ms_os_descs_ext_prop_count = 0; 2277 ffs->ms_os_descs_ext_prop_name_len = 0; 2278 ffs->ms_os_descs_ext_prop_data_len = 0; 2279 } 2280 2281 2282 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 2283 { 2284 struct usb_gadget_strings **lang; 2285 int first_id; 2286 2287 if (WARN_ON(ffs->state != FFS_ACTIVE 2288 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 2289 return -EBADFD; 2290 2291 first_id = usb_string_ids_n(cdev, ffs->strings_count); 2292 if (first_id < 0) 2293 return first_id; 2294 2295 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 2296 if (!ffs->ep0req) 2297 return -ENOMEM; 2298 ffs->ep0req->complete = ffs_ep0_complete; 2299 ffs->ep0req->context = ffs; 2300 2301 lang = ffs->stringtabs; 2302 if (lang) { 2303 for (; *lang; ++lang) { 2304 struct usb_string *str = (*lang)->strings; 2305 int id = first_id; 2306 for (; str->s; ++id, ++str) 2307 str->id = id; 2308 } 2309 } 2310 2311 ffs->gadget = cdev->gadget; 2312 ffs_data_get(ffs); 2313 return 0; 2314 } 2315 2316 static void functionfs_unbind(struct ffs_data *ffs) 2317 { 2318 if (!WARN_ON(!ffs->gadget)) { 2319 /* dequeue before freeing ep0req */ 2320 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 2321 mutex_lock(&ffs->mutex); 2322 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 2323 ffs->ep0req = NULL; 2324 ffs->gadget = NULL; 2325 clear_bit(FFS_FL_BOUND, &ffs->flags); 2326 mutex_unlock(&ffs->mutex); 2327 ffs_data_put(ffs); 2328 } 2329 } 2330 2331 static int ffs_epfiles_create(struct ffs_data *ffs) 2332 { 2333 struct ffs_epfile *epfile, *epfiles; 2334 unsigned i, count; 2335 2336 count = ffs->eps_count; 2337 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 2338 if (!epfiles) 2339 return -ENOMEM; 2340 2341 epfile = epfiles; 2342 for (i = 1; i <= count; ++i, ++epfile) { 2343 epfile->ffs = ffs; 2344 mutex_init(&epfile->mutex); 2345 mutex_init(&epfile->dmabufs_mutex); 2346 INIT_LIST_HEAD(&epfile->dmabufs); 2347 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2348 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 2349 else 2350 sprintf(epfile->name, "ep%u", i); 2351 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 2352 epfile, 2353 &ffs_epfile_operations); 2354 if (!epfile->dentry) { 2355 ffs_epfiles_destroy(epfiles, i - 1); 2356 return -ENOMEM; 2357 } 2358 } 2359 2360 ffs->epfiles = epfiles; 2361 return 0; 2362 } 2363 2364 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 2365 { 2366 struct ffs_epfile *epfile = epfiles; 2367 2368 for (; count; --count, ++epfile) { 2369 BUG_ON(mutex_is_locked(&epfile->mutex)); 2370 if (epfile->dentry) { 2371 d_delete(epfile->dentry); 2372 dput(epfile->dentry); 2373 epfile->dentry = NULL; 2374 } 2375 } 2376 2377 kfree(epfiles); 2378 } 2379 2380 static void ffs_func_eps_disable(struct ffs_function *func) 2381 { 2382 struct ffs_ep *ep; 2383 struct ffs_epfile *epfile; 2384 unsigned short count; 2385 unsigned long flags; 2386 2387 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2388 count = func->ffs->eps_count; 2389 epfile = func->ffs->epfiles; 2390 ep = func->eps; 2391 while (count--) { 2392 /* pending requests get nuked */ 2393 if (ep->ep) 2394 usb_ep_disable(ep->ep); 2395 ++ep; 2396 2397 if (epfile) { 2398 epfile->ep = NULL; 2399 __ffs_epfile_read_buffer_free(epfile); 2400 ++epfile; 2401 } 2402 } 2403 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2404 } 2405 2406 static int ffs_func_eps_enable(struct ffs_function *func) 2407 { 2408 struct ffs_data *ffs; 2409 struct ffs_ep *ep; 2410 struct ffs_epfile *epfile; 2411 unsigned short count; 2412 unsigned long flags; 2413 int ret = 0; 2414 2415 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2416 ffs = func->ffs; 2417 ep = func->eps; 2418 epfile = ffs->epfiles; 2419 count = ffs->eps_count; 2420 while(count--) { 2421 ep->ep->driver_data = ep; 2422 2423 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2424 if (ret) { 2425 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2426 __func__, ep->ep->name, ret); 2427 break; 2428 } 2429 2430 ret = usb_ep_enable(ep->ep); 2431 if (!ret) { 2432 epfile->ep = ep; 2433 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2434 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2435 } else { 2436 break; 2437 } 2438 2439 ++ep; 2440 ++epfile; 2441 } 2442 2443 wake_up_interruptible(&ffs->wait); 2444 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2445 2446 return ret; 2447 } 2448 2449 2450 /* Parsing and building descriptors and strings *****************************/ 2451 2452 /* 2453 * This validates if data pointed by data is a valid USB descriptor as 2454 * well as record how many interfaces, endpoints and strings are 2455 * required by given configuration. Returns address after the 2456 * descriptor or NULL if data is invalid. 2457 */ 2458 2459 enum ffs_entity_type { 2460 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2461 }; 2462 2463 enum ffs_os_desc_type { 2464 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2465 }; 2466 2467 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2468 u8 *valuep, 2469 struct usb_descriptor_header *desc, 2470 void *priv); 2471 2472 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2473 struct usb_os_desc_header *h, void *data, 2474 unsigned len, void *priv); 2475 2476 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2477 ffs_entity_callback entity, 2478 void *priv, int *current_class) 2479 { 2480 struct usb_descriptor_header *_ds = (void *)data; 2481 u8 length; 2482 int ret; 2483 2484 /* At least two bytes are required: length and type */ 2485 if (len < 2) { 2486 pr_vdebug("descriptor too short\n"); 2487 return -EINVAL; 2488 } 2489 2490 /* If we have at least as many bytes as the descriptor takes? */ 2491 length = _ds->bLength; 2492 if (len < length) { 2493 pr_vdebug("descriptor longer then available data\n"); 2494 return -EINVAL; 2495 } 2496 2497 #define __entity_check_INTERFACE(val) 1 2498 #define __entity_check_STRING(val) (val) 2499 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2500 #define __entity(type, val) do { \ 2501 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2502 if (!__entity_check_ ##type(val)) { \ 2503 pr_vdebug("invalid entity's value\n"); \ 2504 return -EINVAL; \ 2505 } \ 2506 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2507 if (ret < 0) { \ 2508 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2509 (val), ret); \ 2510 return ret; \ 2511 } \ 2512 } while (0) 2513 2514 /* Parse descriptor depending on type. */ 2515 switch (_ds->bDescriptorType) { 2516 case USB_DT_DEVICE: 2517 case USB_DT_CONFIG: 2518 case USB_DT_STRING: 2519 case USB_DT_DEVICE_QUALIFIER: 2520 /* function can't have any of those */ 2521 pr_vdebug("descriptor reserved for gadget: %d\n", 2522 _ds->bDescriptorType); 2523 return -EINVAL; 2524 2525 case USB_DT_INTERFACE: { 2526 struct usb_interface_descriptor *ds = (void *)_ds; 2527 pr_vdebug("interface descriptor\n"); 2528 if (length != sizeof *ds) 2529 goto inv_length; 2530 2531 __entity(INTERFACE, ds->bInterfaceNumber); 2532 if (ds->iInterface) 2533 __entity(STRING, ds->iInterface); 2534 *current_class = ds->bInterfaceClass; 2535 } 2536 break; 2537 2538 case USB_DT_ENDPOINT: { 2539 struct usb_endpoint_descriptor *ds = (void *)_ds; 2540 pr_vdebug("endpoint descriptor\n"); 2541 if (length != USB_DT_ENDPOINT_SIZE && 2542 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2543 goto inv_length; 2544 __entity(ENDPOINT, ds->bEndpointAddress); 2545 } 2546 break; 2547 2548 case USB_TYPE_CLASS | 0x01: 2549 if (*current_class == USB_INTERFACE_CLASS_HID) { 2550 pr_vdebug("hid descriptor\n"); 2551 if (length != sizeof(struct hid_descriptor)) 2552 goto inv_length; 2553 break; 2554 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2555 pr_vdebug("ccid descriptor\n"); 2556 if (length != sizeof(struct ccid_descriptor)) 2557 goto inv_length; 2558 break; 2559 } else { 2560 pr_vdebug("unknown descriptor: %d for class %d\n", 2561 _ds->bDescriptorType, *current_class); 2562 return -EINVAL; 2563 } 2564 2565 case USB_DT_OTG: 2566 if (length != sizeof(struct usb_otg_descriptor)) 2567 goto inv_length; 2568 break; 2569 2570 case USB_DT_INTERFACE_ASSOCIATION: { 2571 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2572 pr_vdebug("interface association descriptor\n"); 2573 if (length != sizeof *ds) 2574 goto inv_length; 2575 if (ds->iFunction) 2576 __entity(STRING, ds->iFunction); 2577 } 2578 break; 2579 2580 case USB_DT_SS_ENDPOINT_COMP: 2581 pr_vdebug("EP SS companion descriptor\n"); 2582 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2583 goto inv_length; 2584 break; 2585 2586 case USB_DT_OTHER_SPEED_CONFIG: 2587 case USB_DT_INTERFACE_POWER: 2588 case USB_DT_DEBUG: 2589 case USB_DT_SECURITY: 2590 case USB_DT_CS_RADIO_CONTROL: 2591 /* TODO */ 2592 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2593 return -EINVAL; 2594 2595 default: 2596 /* We should never be here */ 2597 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2598 return -EINVAL; 2599 2600 inv_length: 2601 pr_vdebug("invalid length: %d (descriptor %d)\n", 2602 _ds->bLength, _ds->bDescriptorType); 2603 return -EINVAL; 2604 } 2605 2606 #undef __entity 2607 #undef __entity_check_DESCRIPTOR 2608 #undef __entity_check_INTERFACE 2609 #undef __entity_check_STRING 2610 #undef __entity_check_ENDPOINT 2611 2612 return length; 2613 } 2614 2615 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2616 ffs_entity_callback entity, void *priv) 2617 { 2618 const unsigned _len = len; 2619 unsigned long num = 0; 2620 int current_class = -1; 2621 2622 for (;;) { 2623 int ret; 2624 2625 if (num == count) 2626 data = NULL; 2627 2628 /* Record "descriptor" entity */ 2629 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2630 if (ret < 0) { 2631 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2632 num, ret); 2633 return ret; 2634 } 2635 2636 if (!data) 2637 return _len - len; 2638 2639 ret = ffs_do_single_desc(data, len, entity, priv, 2640 ¤t_class); 2641 if (ret < 0) { 2642 pr_debug("%s returns %d\n", __func__, ret); 2643 return ret; 2644 } 2645 2646 len -= ret; 2647 data += ret; 2648 ++num; 2649 } 2650 } 2651 2652 static int __ffs_data_do_entity(enum ffs_entity_type type, 2653 u8 *valuep, struct usb_descriptor_header *desc, 2654 void *priv) 2655 { 2656 struct ffs_desc_helper *helper = priv; 2657 struct usb_endpoint_descriptor *d; 2658 2659 switch (type) { 2660 case FFS_DESCRIPTOR: 2661 break; 2662 2663 case FFS_INTERFACE: 2664 /* 2665 * Interfaces are indexed from zero so if we 2666 * encountered interface "n" then there are at least 2667 * "n+1" interfaces. 2668 */ 2669 if (*valuep >= helper->interfaces_count) 2670 helper->interfaces_count = *valuep + 1; 2671 break; 2672 2673 case FFS_STRING: 2674 /* 2675 * Strings are indexed from 1 (0 is reserved 2676 * for languages list) 2677 */ 2678 if (*valuep > helper->ffs->strings_count) 2679 helper->ffs->strings_count = *valuep; 2680 break; 2681 2682 case FFS_ENDPOINT: 2683 d = (void *)desc; 2684 helper->eps_count++; 2685 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2686 return -EINVAL; 2687 /* Check if descriptors for any speed were already parsed */ 2688 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2689 helper->ffs->eps_addrmap[helper->eps_count] = 2690 d->bEndpointAddress; 2691 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2692 d->bEndpointAddress) 2693 return -EINVAL; 2694 break; 2695 } 2696 2697 return 0; 2698 } 2699 2700 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2701 struct usb_os_desc_header *desc) 2702 { 2703 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2704 u16 w_index = le16_to_cpu(desc->wIndex); 2705 2706 if (bcd_version == 0x1) { 2707 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2708 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2709 } else if (bcd_version != 0x100) { 2710 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2711 bcd_version); 2712 return -EINVAL; 2713 } 2714 switch (w_index) { 2715 case 0x4: 2716 *next_type = FFS_OS_DESC_EXT_COMPAT; 2717 break; 2718 case 0x5: 2719 *next_type = FFS_OS_DESC_EXT_PROP; 2720 break; 2721 default: 2722 pr_vdebug("unsupported os descriptor type: %d", w_index); 2723 return -EINVAL; 2724 } 2725 2726 return sizeof(*desc); 2727 } 2728 2729 /* 2730 * Process all extended compatibility/extended property descriptors 2731 * of a feature descriptor 2732 */ 2733 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2734 enum ffs_os_desc_type type, 2735 u16 feature_count, 2736 ffs_os_desc_callback entity, 2737 void *priv, 2738 struct usb_os_desc_header *h) 2739 { 2740 int ret; 2741 const unsigned _len = len; 2742 2743 /* loop over all ext compat/ext prop descriptors */ 2744 while (feature_count--) { 2745 ret = entity(type, h, data, len, priv); 2746 if (ret < 0) { 2747 pr_debug("bad OS descriptor, type: %d\n", type); 2748 return ret; 2749 } 2750 data += ret; 2751 len -= ret; 2752 } 2753 return _len - len; 2754 } 2755 2756 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2757 static int __must_check ffs_do_os_descs(unsigned count, 2758 char *data, unsigned len, 2759 ffs_os_desc_callback entity, void *priv) 2760 { 2761 const unsigned _len = len; 2762 unsigned long num = 0; 2763 2764 for (num = 0; num < count; ++num) { 2765 int ret; 2766 enum ffs_os_desc_type type; 2767 u16 feature_count; 2768 struct usb_os_desc_header *desc = (void *)data; 2769 2770 if (len < sizeof(*desc)) 2771 return -EINVAL; 2772 2773 /* 2774 * Record "descriptor" entity. 2775 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2776 * Move the data pointer to the beginning of extended 2777 * compatibilities proper or extended properties proper 2778 * portions of the data 2779 */ 2780 if (le32_to_cpu(desc->dwLength) > len) 2781 return -EINVAL; 2782 2783 ret = __ffs_do_os_desc_header(&type, desc); 2784 if (ret < 0) { 2785 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2786 num, ret); 2787 return ret; 2788 } 2789 /* 2790 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2791 */ 2792 feature_count = le16_to_cpu(desc->wCount); 2793 if (type == FFS_OS_DESC_EXT_COMPAT && 2794 (feature_count > 255 || desc->Reserved)) 2795 return -EINVAL; 2796 len -= ret; 2797 data += ret; 2798 2799 /* 2800 * Process all function/property descriptors 2801 * of this Feature Descriptor 2802 */ 2803 ret = ffs_do_single_os_desc(data, len, type, 2804 feature_count, entity, priv, desc); 2805 if (ret < 0) { 2806 pr_debug("%s returns %d\n", __func__, ret); 2807 return ret; 2808 } 2809 2810 len -= ret; 2811 data += ret; 2812 } 2813 return _len - len; 2814 } 2815 2816 /* 2817 * Validate contents of the buffer from userspace related to OS descriptors. 2818 */ 2819 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2820 struct usb_os_desc_header *h, void *data, 2821 unsigned len, void *priv) 2822 { 2823 struct ffs_data *ffs = priv; 2824 u8 length; 2825 2826 switch (type) { 2827 case FFS_OS_DESC_EXT_COMPAT: { 2828 struct usb_ext_compat_desc *d = data; 2829 int i; 2830 2831 if (len < sizeof(*d) || 2832 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2833 return -EINVAL; 2834 if (d->Reserved1 != 1) { 2835 /* 2836 * According to the spec, Reserved1 must be set to 1 2837 * but older kernels incorrectly rejected non-zero 2838 * values. We fix it here to avoid returning EINVAL 2839 * in response to values we used to accept. 2840 */ 2841 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2842 d->Reserved1 = 1; 2843 } 2844 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2845 if (d->Reserved2[i]) 2846 return -EINVAL; 2847 2848 length = sizeof(struct usb_ext_compat_desc); 2849 } 2850 break; 2851 case FFS_OS_DESC_EXT_PROP: { 2852 struct usb_ext_prop_desc *d = data; 2853 u32 type, pdl; 2854 u16 pnl; 2855 2856 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2857 return -EINVAL; 2858 length = le32_to_cpu(d->dwSize); 2859 if (len < length) 2860 return -EINVAL; 2861 type = le32_to_cpu(d->dwPropertyDataType); 2862 if (type < USB_EXT_PROP_UNICODE || 2863 type > USB_EXT_PROP_UNICODE_MULTI) { 2864 pr_vdebug("unsupported os descriptor property type: %d", 2865 type); 2866 return -EINVAL; 2867 } 2868 pnl = le16_to_cpu(d->wPropertyNameLength); 2869 if (length < 14 + pnl) { 2870 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2871 length, pnl, type); 2872 return -EINVAL; 2873 } 2874 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2875 if (length != 14 + pnl + pdl) { 2876 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2877 length, pnl, pdl, type); 2878 return -EINVAL; 2879 } 2880 ++ffs->ms_os_descs_ext_prop_count; 2881 /* property name reported to the host as "WCHAR"s */ 2882 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2883 ffs->ms_os_descs_ext_prop_data_len += pdl; 2884 } 2885 break; 2886 default: 2887 pr_vdebug("unknown descriptor: %d\n", type); 2888 return -EINVAL; 2889 } 2890 return length; 2891 } 2892 2893 static int __ffs_data_got_descs(struct ffs_data *ffs, 2894 char *const _data, size_t len) 2895 { 2896 char *data = _data, *raw_descs; 2897 unsigned os_descs_count = 0, counts[3], flags; 2898 int ret = -EINVAL, i; 2899 struct ffs_desc_helper helper; 2900 2901 if (get_unaligned_le32(data + 4) != len) 2902 goto error; 2903 2904 switch (get_unaligned_le32(data)) { 2905 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2906 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2907 data += 8; 2908 len -= 8; 2909 break; 2910 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2911 flags = get_unaligned_le32(data + 8); 2912 ffs->user_flags = flags; 2913 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2914 FUNCTIONFS_HAS_HS_DESC | 2915 FUNCTIONFS_HAS_SS_DESC | 2916 FUNCTIONFS_HAS_MS_OS_DESC | 2917 FUNCTIONFS_VIRTUAL_ADDR | 2918 FUNCTIONFS_EVENTFD | 2919 FUNCTIONFS_ALL_CTRL_RECIP | 2920 FUNCTIONFS_CONFIG0_SETUP)) { 2921 ret = -ENOSYS; 2922 goto error; 2923 } 2924 data += 12; 2925 len -= 12; 2926 break; 2927 default: 2928 goto error; 2929 } 2930 2931 if (flags & FUNCTIONFS_EVENTFD) { 2932 if (len < 4) 2933 goto error; 2934 ffs->ffs_eventfd = 2935 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2936 if (IS_ERR(ffs->ffs_eventfd)) { 2937 ret = PTR_ERR(ffs->ffs_eventfd); 2938 ffs->ffs_eventfd = NULL; 2939 goto error; 2940 } 2941 data += 4; 2942 len -= 4; 2943 } 2944 2945 /* Read fs_count, hs_count and ss_count (if present) */ 2946 for (i = 0; i < 3; ++i) { 2947 if (!(flags & (1 << i))) { 2948 counts[i] = 0; 2949 } else if (len < 4) { 2950 goto error; 2951 } else { 2952 counts[i] = get_unaligned_le32(data); 2953 data += 4; 2954 len -= 4; 2955 } 2956 } 2957 if (flags & (1 << i)) { 2958 if (len < 4) { 2959 goto error; 2960 } 2961 os_descs_count = get_unaligned_le32(data); 2962 data += 4; 2963 len -= 4; 2964 } 2965 2966 /* Read descriptors */ 2967 raw_descs = data; 2968 helper.ffs = ffs; 2969 for (i = 0; i < 3; ++i) { 2970 if (!counts[i]) 2971 continue; 2972 helper.interfaces_count = 0; 2973 helper.eps_count = 0; 2974 ret = ffs_do_descs(counts[i], data, len, 2975 __ffs_data_do_entity, &helper); 2976 if (ret < 0) 2977 goto error; 2978 if (!ffs->eps_count && !ffs->interfaces_count) { 2979 ffs->eps_count = helper.eps_count; 2980 ffs->interfaces_count = helper.interfaces_count; 2981 } else { 2982 if (ffs->eps_count != helper.eps_count) { 2983 ret = -EINVAL; 2984 goto error; 2985 } 2986 if (ffs->interfaces_count != helper.interfaces_count) { 2987 ret = -EINVAL; 2988 goto error; 2989 } 2990 } 2991 data += ret; 2992 len -= ret; 2993 } 2994 if (os_descs_count) { 2995 ret = ffs_do_os_descs(os_descs_count, data, len, 2996 __ffs_data_do_os_desc, ffs); 2997 if (ret < 0) 2998 goto error; 2999 data += ret; 3000 len -= ret; 3001 } 3002 3003 if (raw_descs == data || len) { 3004 ret = -EINVAL; 3005 goto error; 3006 } 3007 3008 ffs->raw_descs_data = _data; 3009 ffs->raw_descs = raw_descs; 3010 ffs->raw_descs_length = data - raw_descs; 3011 ffs->fs_descs_count = counts[0]; 3012 ffs->hs_descs_count = counts[1]; 3013 ffs->ss_descs_count = counts[2]; 3014 ffs->ms_os_descs_count = os_descs_count; 3015 3016 return 0; 3017 3018 error: 3019 kfree(_data); 3020 return ret; 3021 } 3022 3023 static int __ffs_data_got_strings(struct ffs_data *ffs, 3024 char *const _data, size_t len) 3025 { 3026 u32 str_count, needed_count, lang_count; 3027 struct usb_gadget_strings **stringtabs, *t; 3028 const char *data = _data; 3029 struct usb_string *s; 3030 3031 if (len < 16 || 3032 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 3033 get_unaligned_le32(data + 4) != len) 3034 goto error; 3035 str_count = get_unaligned_le32(data + 8); 3036 lang_count = get_unaligned_le32(data + 12); 3037 3038 /* if one is zero the other must be zero */ 3039 if (!str_count != !lang_count) 3040 goto error; 3041 3042 /* Do we have at least as many strings as descriptors need? */ 3043 needed_count = ffs->strings_count; 3044 if (str_count < needed_count) 3045 goto error; 3046 3047 /* 3048 * If we don't need any strings just return and free all 3049 * memory. 3050 */ 3051 if (!needed_count) { 3052 kfree(_data); 3053 return 0; 3054 } 3055 3056 /* Allocate everything in one chunk so there's less maintenance. */ 3057 { 3058 unsigned i = 0; 3059 vla_group(d); 3060 vla_item(d, struct usb_gadget_strings *, stringtabs, 3061 size_add(lang_count, 1)); 3062 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 3063 vla_item(d, struct usb_string, strings, 3064 size_mul(lang_count, (needed_count + 1))); 3065 3066 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 3067 3068 if (!vlabuf) { 3069 kfree(_data); 3070 return -ENOMEM; 3071 } 3072 3073 /* Initialize the VLA pointers */ 3074 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3075 t = vla_ptr(vlabuf, d, stringtab); 3076 i = lang_count; 3077 do { 3078 *stringtabs++ = t++; 3079 } while (--i); 3080 *stringtabs = NULL; 3081 3082 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 3083 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3084 t = vla_ptr(vlabuf, d, stringtab); 3085 s = vla_ptr(vlabuf, d, strings); 3086 } 3087 3088 /* For each language */ 3089 data += 16; 3090 len -= 16; 3091 3092 do { /* lang_count > 0 so we can use do-while */ 3093 unsigned needed = needed_count; 3094 u32 str_per_lang = str_count; 3095 3096 if (len < 3) 3097 goto error_free; 3098 t->language = get_unaligned_le16(data); 3099 t->strings = s; 3100 ++t; 3101 3102 data += 2; 3103 len -= 2; 3104 3105 /* For each string */ 3106 do { /* str_count > 0 so we can use do-while */ 3107 size_t length = strnlen(data, len); 3108 3109 if (length == len) 3110 goto error_free; 3111 3112 /* 3113 * User may provide more strings then we need, 3114 * if that's the case we simply ignore the 3115 * rest 3116 */ 3117 if (needed) { 3118 /* 3119 * s->id will be set while adding 3120 * function to configuration so for 3121 * now just leave garbage here. 3122 */ 3123 s->s = data; 3124 --needed; 3125 ++s; 3126 } 3127 3128 data += length + 1; 3129 len -= length + 1; 3130 } while (--str_per_lang); 3131 3132 s->id = 0; /* terminator */ 3133 s->s = NULL; 3134 ++s; 3135 3136 } while (--lang_count); 3137 3138 /* Some garbage left? */ 3139 if (len) 3140 goto error_free; 3141 3142 /* Done! */ 3143 ffs->stringtabs = stringtabs; 3144 ffs->raw_strings = _data; 3145 3146 return 0; 3147 3148 error_free: 3149 kfree(stringtabs); 3150 error: 3151 kfree(_data); 3152 return -EINVAL; 3153 } 3154 3155 3156 /* Events handling and management *******************************************/ 3157 3158 static void __ffs_event_add(struct ffs_data *ffs, 3159 enum usb_functionfs_event_type type) 3160 { 3161 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 3162 int neg = 0; 3163 3164 /* 3165 * Abort any unhandled setup 3166 * 3167 * We do not need to worry about some cmpxchg() changing value 3168 * of ffs->setup_state without holding the lock because when 3169 * state is FFS_SETUP_PENDING cmpxchg() in several places in 3170 * the source does nothing. 3171 */ 3172 if (ffs->setup_state == FFS_SETUP_PENDING) 3173 ffs->setup_state = FFS_SETUP_CANCELLED; 3174 3175 /* 3176 * Logic of this function guarantees that there are at most four pending 3177 * evens on ffs->ev.types queue. This is important because the queue 3178 * has space for four elements only and __ffs_ep0_read_events function 3179 * depends on that limit as well. If more event types are added, those 3180 * limits have to be revisited or guaranteed to still hold. 3181 */ 3182 switch (type) { 3183 case FUNCTIONFS_RESUME: 3184 rem_type2 = FUNCTIONFS_SUSPEND; 3185 fallthrough; 3186 case FUNCTIONFS_SUSPEND: 3187 case FUNCTIONFS_SETUP: 3188 rem_type1 = type; 3189 /* Discard all similar events */ 3190 break; 3191 3192 case FUNCTIONFS_BIND: 3193 case FUNCTIONFS_UNBIND: 3194 case FUNCTIONFS_DISABLE: 3195 case FUNCTIONFS_ENABLE: 3196 /* Discard everything other then power management. */ 3197 rem_type1 = FUNCTIONFS_SUSPEND; 3198 rem_type2 = FUNCTIONFS_RESUME; 3199 neg = 1; 3200 break; 3201 3202 default: 3203 WARN(1, "%d: unknown event, this should not happen\n", type); 3204 return; 3205 } 3206 3207 { 3208 u8 *ev = ffs->ev.types, *out = ev; 3209 unsigned n = ffs->ev.count; 3210 for (; n; --n, ++ev) 3211 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 3212 *out++ = *ev; 3213 else 3214 pr_vdebug("purging event %d\n", *ev); 3215 ffs->ev.count = out - ffs->ev.types; 3216 } 3217 3218 pr_vdebug("adding event %d\n", type); 3219 ffs->ev.types[ffs->ev.count++] = type; 3220 wake_up_locked(&ffs->ev.waitq); 3221 if (ffs->ffs_eventfd) 3222 eventfd_signal(ffs->ffs_eventfd); 3223 } 3224 3225 static void ffs_event_add(struct ffs_data *ffs, 3226 enum usb_functionfs_event_type type) 3227 { 3228 unsigned long flags; 3229 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3230 __ffs_event_add(ffs, type); 3231 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3232 } 3233 3234 /* Bind/unbind USB function hooks *******************************************/ 3235 3236 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 3237 { 3238 int i; 3239 3240 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 3241 if (ffs->eps_addrmap[i] == endpoint_address) 3242 return i; 3243 return -ENOENT; 3244 } 3245 3246 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 3247 struct usb_descriptor_header *desc, 3248 void *priv) 3249 { 3250 struct usb_endpoint_descriptor *ds = (void *)desc; 3251 struct ffs_function *func = priv; 3252 struct ffs_ep *ffs_ep; 3253 unsigned ep_desc_id; 3254 int idx; 3255 static const char *speed_names[] = { "full", "high", "super" }; 3256 3257 if (type != FFS_DESCRIPTOR) 3258 return 0; 3259 3260 /* 3261 * If ss_descriptors is not NULL, we are reading super speed 3262 * descriptors; if hs_descriptors is not NULL, we are reading high 3263 * speed descriptors; otherwise, we are reading full speed 3264 * descriptors. 3265 */ 3266 if (func->function.ss_descriptors) { 3267 ep_desc_id = 2; 3268 func->function.ss_descriptors[(long)valuep] = desc; 3269 } else if (func->function.hs_descriptors) { 3270 ep_desc_id = 1; 3271 func->function.hs_descriptors[(long)valuep] = desc; 3272 } else { 3273 ep_desc_id = 0; 3274 func->function.fs_descriptors[(long)valuep] = desc; 3275 } 3276 3277 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 3278 return 0; 3279 3280 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 3281 if (idx < 0) 3282 return idx; 3283 3284 ffs_ep = func->eps + idx; 3285 3286 if (ffs_ep->descs[ep_desc_id]) { 3287 pr_err("two %sspeed descriptors for EP %d\n", 3288 speed_names[ep_desc_id], 3289 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 3290 return -EINVAL; 3291 } 3292 ffs_ep->descs[ep_desc_id] = ds; 3293 3294 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 3295 if (ffs_ep->ep) { 3296 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 3297 if (!ds->wMaxPacketSize) 3298 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 3299 } else { 3300 struct usb_request *req; 3301 struct usb_ep *ep; 3302 u8 bEndpointAddress; 3303 u16 wMaxPacketSize; 3304 3305 /* 3306 * We back up bEndpointAddress because autoconfig overwrites 3307 * it with physical endpoint address. 3308 */ 3309 bEndpointAddress = ds->bEndpointAddress; 3310 /* 3311 * We back up wMaxPacketSize because autoconfig treats 3312 * endpoint descriptors as if they were full speed. 3313 */ 3314 wMaxPacketSize = ds->wMaxPacketSize; 3315 pr_vdebug("autoconfig\n"); 3316 ep = usb_ep_autoconfig(func->gadget, ds); 3317 if (!ep) 3318 return -ENOTSUPP; 3319 ep->driver_data = func->eps + idx; 3320 3321 req = usb_ep_alloc_request(ep, GFP_KERNEL); 3322 if (!req) 3323 return -ENOMEM; 3324 3325 ffs_ep->ep = ep; 3326 ffs_ep->req = req; 3327 func->eps_revmap[ds->bEndpointAddress & 3328 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 3329 /* 3330 * If we use virtual address mapping, we restore 3331 * original bEndpointAddress value. 3332 */ 3333 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3334 ds->bEndpointAddress = bEndpointAddress; 3335 /* 3336 * Restore wMaxPacketSize which was potentially 3337 * overwritten by autoconfig. 3338 */ 3339 ds->wMaxPacketSize = wMaxPacketSize; 3340 } 3341 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 3342 3343 return 0; 3344 } 3345 3346 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 3347 struct usb_descriptor_header *desc, 3348 void *priv) 3349 { 3350 struct ffs_function *func = priv; 3351 unsigned idx; 3352 u8 newValue; 3353 3354 switch (type) { 3355 default: 3356 case FFS_DESCRIPTOR: 3357 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 3358 return 0; 3359 3360 case FFS_INTERFACE: 3361 idx = *valuep; 3362 if (func->interfaces_nums[idx] < 0) { 3363 int id = usb_interface_id(func->conf, &func->function); 3364 if (id < 0) 3365 return id; 3366 func->interfaces_nums[idx] = id; 3367 } 3368 newValue = func->interfaces_nums[idx]; 3369 break; 3370 3371 case FFS_STRING: 3372 /* String' IDs are allocated when fsf_data is bound to cdev */ 3373 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 3374 break; 3375 3376 case FFS_ENDPOINT: 3377 /* 3378 * USB_DT_ENDPOINT are handled in 3379 * __ffs_func_bind_do_descs(). 3380 */ 3381 if (desc->bDescriptorType == USB_DT_ENDPOINT) 3382 return 0; 3383 3384 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 3385 if (!func->eps[idx].ep) 3386 return -EINVAL; 3387 3388 { 3389 struct usb_endpoint_descriptor **descs; 3390 descs = func->eps[idx].descs; 3391 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 3392 } 3393 break; 3394 } 3395 3396 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 3397 *valuep = newValue; 3398 return 0; 3399 } 3400 3401 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 3402 struct usb_os_desc_header *h, void *data, 3403 unsigned len, void *priv) 3404 { 3405 struct ffs_function *func = priv; 3406 u8 length = 0; 3407 3408 switch (type) { 3409 case FFS_OS_DESC_EXT_COMPAT: { 3410 struct usb_ext_compat_desc *desc = data; 3411 struct usb_os_desc_table *t; 3412 3413 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3414 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3415 memcpy(t->os_desc->ext_compat_id, &desc->IDs, 3416 sizeof_field(struct usb_ext_compat_desc, IDs)); 3417 length = sizeof(*desc); 3418 } 3419 break; 3420 case FFS_OS_DESC_EXT_PROP: { 3421 struct usb_ext_prop_desc *desc = data; 3422 struct usb_os_desc_table *t; 3423 struct usb_os_desc_ext_prop *ext_prop; 3424 char *ext_prop_name; 3425 char *ext_prop_data; 3426 3427 t = &func->function.os_desc_table[h->interface]; 3428 t->if_id = func->interfaces_nums[h->interface]; 3429 3430 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3431 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3432 3433 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3434 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3435 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3436 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3437 length = ext_prop->name_len + ext_prop->data_len + 14; 3438 3439 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3440 func->ffs->ms_os_descs_ext_prop_name_avail += 3441 ext_prop->name_len; 3442 3443 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3444 func->ffs->ms_os_descs_ext_prop_data_avail += 3445 ext_prop->data_len; 3446 memcpy(ext_prop_data, 3447 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3448 ext_prop->data_len); 3449 /* unicode data reported to the host as "WCHAR"s */ 3450 switch (ext_prop->type) { 3451 case USB_EXT_PROP_UNICODE: 3452 case USB_EXT_PROP_UNICODE_ENV: 3453 case USB_EXT_PROP_UNICODE_LINK: 3454 case USB_EXT_PROP_UNICODE_MULTI: 3455 ext_prop->data_len *= 2; 3456 break; 3457 } 3458 ext_prop->data = ext_prop_data; 3459 3460 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3461 ext_prop->name_len); 3462 /* property name reported to the host as "WCHAR"s */ 3463 ext_prop->name_len *= 2; 3464 ext_prop->name = ext_prop_name; 3465 3466 t->os_desc->ext_prop_len += 3467 ext_prop->name_len + ext_prop->data_len + 14; 3468 ++t->os_desc->ext_prop_count; 3469 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3470 } 3471 break; 3472 default: 3473 pr_vdebug("unknown descriptor: %d\n", type); 3474 } 3475 3476 return length; 3477 } 3478 3479 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3480 struct usb_configuration *c) 3481 { 3482 struct ffs_function *func = ffs_func_from_usb(f); 3483 struct f_fs_opts *ffs_opts = 3484 container_of(f->fi, struct f_fs_opts, func_inst); 3485 struct ffs_data *ffs_data; 3486 int ret; 3487 3488 /* 3489 * Legacy gadget triggers binding in functionfs_ready_callback, 3490 * which already uses locking; taking the same lock here would 3491 * cause a deadlock. 3492 * 3493 * Configfs-enabled gadgets however do need ffs_dev_lock. 3494 */ 3495 if (!ffs_opts->no_configfs) 3496 ffs_dev_lock(); 3497 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3498 ffs_data = ffs_opts->dev->ffs_data; 3499 if (!ffs_opts->no_configfs) 3500 ffs_dev_unlock(); 3501 if (ret) 3502 return ERR_PTR(ret); 3503 3504 func->ffs = ffs_data; 3505 func->conf = c; 3506 func->gadget = c->cdev->gadget; 3507 3508 /* 3509 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3510 * configurations are bound in sequence with list_for_each_entry, 3511 * in each configuration its functions are bound in sequence 3512 * with list_for_each_entry, so we assume no race condition 3513 * with regard to ffs_opts->bound access 3514 */ 3515 if (!ffs_opts->refcnt) { 3516 ret = functionfs_bind(func->ffs, c->cdev); 3517 if (ret) 3518 return ERR_PTR(ret); 3519 } 3520 ffs_opts->refcnt++; 3521 func->function.strings = func->ffs->stringtabs; 3522 3523 return ffs_opts; 3524 } 3525 3526 static int _ffs_func_bind(struct usb_configuration *c, 3527 struct usb_function *f) 3528 { 3529 struct ffs_function *func = ffs_func_from_usb(f); 3530 struct ffs_data *ffs = func->ffs; 3531 3532 const int full = !!func->ffs->fs_descs_count; 3533 const int high = !!func->ffs->hs_descs_count; 3534 const int super = !!func->ffs->ss_descs_count; 3535 3536 int fs_len, hs_len, ss_len, ret, i; 3537 struct ffs_ep *eps_ptr; 3538 3539 /* Make it a single chunk, less management later on */ 3540 vla_group(d); 3541 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3542 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3543 full ? ffs->fs_descs_count + 1 : 0); 3544 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3545 high ? ffs->hs_descs_count + 1 : 0); 3546 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3547 super ? ffs->ss_descs_count + 1 : 0); 3548 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3549 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3550 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3551 vla_item_with_sz(d, char[16], ext_compat, 3552 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3553 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3554 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3555 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3556 ffs->ms_os_descs_ext_prop_count); 3557 vla_item_with_sz(d, char, ext_prop_name, 3558 ffs->ms_os_descs_ext_prop_name_len); 3559 vla_item_with_sz(d, char, ext_prop_data, 3560 ffs->ms_os_descs_ext_prop_data_len); 3561 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3562 char *vlabuf; 3563 3564 /* Has descriptors only for speeds gadget does not support */ 3565 if (!(full | high | super)) 3566 return -ENOTSUPP; 3567 3568 /* Allocate a single chunk, less management later on */ 3569 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3570 if (!vlabuf) 3571 return -ENOMEM; 3572 3573 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3574 ffs->ms_os_descs_ext_prop_name_avail = 3575 vla_ptr(vlabuf, d, ext_prop_name); 3576 ffs->ms_os_descs_ext_prop_data_avail = 3577 vla_ptr(vlabuf, d, ext_prop_data); 3578 3579 /* Copy descriptors */ 3580 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3581 ffs->raw_descs_length); 3582 3583 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3584 eps_ptr = vla_ptr(vlabuf, d, eps); 3585 for (i = 0; i < ffs->eps_count; i++) 3586 eps_ptr[i].num = -1; 3587 3588 /* Save pointers 3589 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3590 */ 3591 func->eps = vla_ptr(vlabuf, d, eps); 3592 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3593 3594 /* 3595 * Go through all the endpoint descriptors and allocate 3596 * endpoints first, so that later we can rewrite the endpoint 3597 * numbers without worrying that it may be described later on. 3598 */ 3599 if (full) { 3600 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3601 fs_len = ffs_do_descs(ffs->fs_descs_count, 3602 vla_ptr(vlabuf, d, raw_descs), 3603 d_raw_descs__sz, 3604 __ffs_func_bind_do_descs, func); 3605 if (fs_len < 0) { 3606 ret = fs_len; 3607 goto error; 3608 } 3609 } else { 3610 fs_len = 0; 3611 } 3612 3613 if (high) { 3614 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3615 hs_len = ffs_do_descs(ffs->hs_descs_count, 3616 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3617 d_raw_descs__sz - fs_len, 3618 __ffs_func_bind_do_descs, func); 3619 if (hs_len < 0) { 3620 ret = hs_len; 3621 goto error; 3622 } 3623 } else { 3624 hs_len = 0; 3625 } 3626 3627 if (super) { 3628 func->function.ss_descriptors = func->function.ssp_descriptors = 3629 vla_ptr(vlabuf, d, ss_descs); 3630 ss_len = ffs_do_descs(ffs->ss_descs_count, 3631 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3632 d_raw_descs__sz - fs_len - hs_len, 3633 __ffs_func_bind_do_descs, func); 3634 if (ss_len < 0) { 3635 ret = ss_len; 3636 goto error; 3637 } 3638 } else { 3639 ss_len = 0; 3640 } 3641 3642 /* 3643 * Now handle interface numbers allocation and interface and 3644 * endpoint numbers rewriting. We can do that in one go 3645 * now. 3646 */ 3647 ret = ffs_do_descs(ffs->fs_descs_count + 3648 (high ? ffs->hs_descs_count : 0) + 3649 (super ? ffs->ss_descs_count : 0), 3650 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3651 __ffs_func_bind_do_nums, func); 3652 if (ret < 0) 3653 goto error; 3654 3655 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3656 if (c->cdev->use_os_string) { 3657 for (i = 0; i < ffs->interfaces_count; ++i) { 3658 struct usb_os_desc *desc; 3659 3660 desc = func->function.os_desc_table[i].os_desc = 3661 vla_ptr(vlabuf, d, os_desc) + 3662 i * sizeof(struct usb_os_desc); 3663 desc->ext_compat_id = 3664 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3665 INIT_LIST_HEAD(&desc->ext_prop); 3666 } 3667 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3668 vla_ptr(vlabuf, d, raw_descs) + 3669 fs_len + hs_len + ss_len, 3670 d_raw_descs__sz - fs_len - hs_len - 3671 ss_len, 3672 __ffs_func_bind_do_os_desc, func); 3673 if (ret < 0) 3674 goto error; 3675 } 3676 func->function.os_desc_n = 3677 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3678 3679 /* And we're done */ 3680 ffs_event_add(ffs, FUNCTIONFS_BIND); 3681 return 0; 3682 3683 error: 3684 /* XXX Do we need to release all claimed endpoints here? */ 3685 return ret; 3686 } 3687 3688 static int ffs_func_bind(struct usb_configuration *c, 3689 struct usb_function *f) 3690 { 3691 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3692 struct ffs_function *func = ffs_func_from_usb(f); 3693 int ret; 3694 3695 if (IS_ERR(ffs_opts)) 3696 return PTR_ERR(ffs_opts); 3697 3698 ret = _ffs_func_bind(c, f); 3699 if (ret && !--ffs_opts->refcnt) 3700 functionfs_unbind(func->ffs); 3701 3702 return ret; 3703 } 3704 3705 3706 /* Other USB function hooks *************************************************/ 3707 3708 static void ffs_reset_work(struct work_struct *work) 3709 { 3710 struct ffs_data *ffs = container_of(work, 3711 struct ffs_data, reset_work); 3712 ffs_data_reset(ffs); 3713 } 3714 3715 static int ffs_func_set_alt(struct usb_function *f, 3716 unsigned interface, unsigned alt) 3717 { 3718 struct ffs_function *func = ffs_func_from_usb(f); 3719 struct ffs_data *ffs = func->ffs; 3720 int ret = 0, intf; 3721 3722 if (alt != (unsigned)-1) { 3723 intf = ffs_func_revmap_intf(func, interface); 3724 if (intf < 0) 3725 return intf; 3726 } 3727 3728 if (ffs->func) 3729 ffs_func_eps_disable(ffs->func); 3730 3731 if (ffs->state == FFS_DEACTIVATED) { 3732 ffs->state = FFS_CLOSING; 3733 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3734 schedule_work(&ffs->reset_work); 3735 return -ENODEV; 3736 } 3737 3738 if (ffs->state != FFS_ACTIVE) 3739 return -ENODEV; 3740 3741 if (alt == (unsigned)-1) { 3742 ffs->func = NULL; 3743 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3744 return 0; 3745 } 3746 3747 ffs->func = func; 3748 ret = ffs_func_eps_enable(func); 3749 if (ret >= 0) 3750 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3751 return ret; 3752 } 3753 3754 static void ffs_func_disable(struct usb_function *f) 3755 { 3756 ffs_func_set_alt(f, 0, (unsigned)-1); 3757 } 3758 3759 static int ffs_func_setup(struct usb_function *f, 3760 const struct usb_ctrlrequest *creq) 3761 { 3762 struct ffs_function *func = ffs_func_from_usb(f); 3763 struct ffs_data *ffs = func->ffs; 3764 unsigned long flags; 3765 int ret; 3766 3767 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3768 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3769 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3770 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3771 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3772 3773 /* 3774 * Most requests directed to interface go through here 3775 * (notable exceptions are set/get interface) so we need to 3776 * handle them. All other either handled by composite or 3777 * passed to usb_configuration->setup() (if one is set). No 3778 * matter, we will handle requests directed to endpoint here 3779 * as well (as it's straightforward). Other request recipient 3780 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3781 * is being used. 3782 */ 3783 if (ffs->state != FFS_ACTIVE) 3784 return -ENODEV; 3785 3786 switch (creq->bRequestType & USB_RECIP_MASK) { 3787 case USB_RECIP_INTERFACE: 3788 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3789 if (ret < 0) 3790 return ret; 3791 break; 3792 3793 case USB_RECIP_ENDPOINT: 3794 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3795 if (ret < 0) 3796 return ret; 3797 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3798 ret = func->ffs->eps_addrmap[ret]; 3799 break; 3800 3801 default: 3802 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3803 ret = le16_to_cpu(creq->wIndex); 3804 else 3805 return -EOPNOTSUPP; 3806 } 3807 3808 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3809 ffs->ev.setup = *creq; 3810 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3811 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3812 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3813 3814 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3815 } 3816 3817 static bool ffs_func_req_match(struct usb_function *f, 3818 const struct usb_ctrlrequest *creq, 3819 bool config0) 3820 { 3821 struct ffs_function *func = ffs_func_from_usb(f); 3822 3823 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3824 return false; 3825 3826 switch (creq->bRequestType & USB_RECIP_MASK) { 3827 case USB_RECIP_INTERFACE: 3828 return (ffs_func_revmap_intf(func, 3829 le16_to_cpu(creq->wIndex)) >= 0); 3830 case USB_RECIP_ENDPOINT: 3831 return (ffs_func_revmap_ep(func, 3832 le16_to_cpu(creq->wIndex)) >= 0); 3833 default: 3834 return (bool) (func->ffs->user_flags & 3835 FUNCTIONFS_ALL_CTRL_RECIP); 3836 } 3837 } 3838 3839 static void ffs_func_suspend(struct usb_function *f) 3840 { 3841 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3842 } 3843 3844 static void ffs_func_resume(struct usb_function *f) 3845 { 3846 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3847 } 3848 3849 3850 /* Endpoint and interface numbers reverse mapping ***************************/ 3851 3852 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3853 { 3854 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3855 return num ? num : -EDOM; 3856 } 3857 3858 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3859 { 3860 short *nums = func->interfaces_nums; 3861 unsigned count = func->ffs->interfaces_count; 3862 3863 for (; count; --count, ++nums) { 3864 if (*nums >= 0 && *nums == intf) 3865 return nums - func->interfaces_nums; 3866 } 3867 3868 return -EDOM; 3869 } 3870 3871 3872 /* Devices management *******************************************************/ 3873 3874 static LIST_HEAD(ffs_devices); 3875 3876 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3877 { 3878 struct ffs_dev *dev; 3879 3880 if (!name) 3881 return NULL; 3882 3883 list_for_each_entry(dev, &ffs_devices, entry) { 3884 if (strcmp(dev->name, name) == 0) 3885 return dev; 3886 } 3887 3888 return NULL; 3889 } 3890 3891 /* 3892 * ffs_lock must be taken by the caller of this function 3893 */ 3894 static struct ffs_dev *_ffs_get_single_dev(void) 3895 { 3896 struct ffs_dev *dev; 3897 3898 if (list_is_singular(&ffs_devices)) { 3899 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3900 if (dev->single) 3901 return dev; 3902 } 3903 3904 return NULL; 3905 } 3906 3907 /* 3908 * ffs_lock must be taken by the caller of this function 3909 */ 3910 static struct ffs_dev *_ffs_find_dev(const char *name) 3911 { 3912 struct ffs_dev *dev; 3913 3914 dev = _ffs_get_single_dev(); 3915 if (dev) 3916 return dev; 3917 3918 return _ffs_do_find_dev(name); 3919 } 3920 3921 /* Configfs support *********************************************************/ 3922 3923 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3924 { 3925 return container_of(to_config_group(item), struct f_fs_opts, 3926 func_inst.group); 3927 } 3928 3929 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page) 3930 { 3931 struct f_fs_opts *opts = to_ffs_opts(item); 3932 int ready; 3933 3934 ffs_dev_lock(); 3935 ready = opts->dev->desc_ready; 3936 ffs_dev_unlock(); 3937 3938 return sprintf(page, "%d\n", ready); 3939 } 3940 3941 CONFIGFS_ATTR_RO(f_fs_opts_, ready); 3942 3943 static struct configfs_attribute *ffs_attrs[] = { 3944 &f_fs_opts_attr_ready, 3945 NULL, 3946 }; 3947 3948 static void ffs_attr_release(struct config_item *item) 3949 { 3950 struct f_fs_opts *opts = to_ffs_opts(item); 3951 3952 usb_put_function_instance(&opts->func_inst); 3953 } 3954 3955 static struct configfs_item_operations ffs_item_ops = { 3956 .release = ffs_attr_release, 3957 }; 3958 3959 static const struct config_item_type ffs_func_type = { 3960 .ct_item_ops = &ffs_item_ops, 3961 .ct_attrs = ffs_attrs, 3962 .ct_owner = THIS_MODULE, 3963 }; 3964 3965 3966 /* Function registration interface ******************************************/ 3967 3968 static void ffs_free_inst(struct usb_function_instance *f) 3969 { 3970 struct f_fs_opts *opts; 3971 3972 opts = to_f_fs_opts(f); 3973 ffs_release_dev(opts->dev); 3974 ffs_dev_lock(); 3975 _ffs_free_dev(opts->dev); 3976 ffs_dev_unlock(); 3977 kfree(opts); 3978 } 3979 3980 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3981 { 3982 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 3983 return -ENAMETOOLONG; 3984 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3985 } 3986 3987 static struct usb_function_instance *ffs_alloc_inst(void) 3988 { 3989 struct f_fs_opts *opts; 3990 struct ffs_dev *dev; 3991 3992 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3993 if (!opts) 3994 return ERR_PTR(-ENOMEM); 3995 3996 opts->func_inst.set_inst_name = ffs_set_inst_name; 3997 opts->func_inst.free_func_inst = ffs_free_inst; 3998 ffs_dev_lock(); 3999 dev = _ffs_alloc_dev(); 4000 ffs_dev_unlock(); 4001 if (IS_ERR(dev)) { 4002 kfree(opts); 4003 return ERR_CAST(dev); 4004 } 4005 opts->dev = dev; 4006 dev->opts = opts; 4007 4008 config_group_init_type_name(&opts->func_inst.group, "", 4009 &ffs_func_type); 4010 return &opts->func_inst; 4011 } 4012 4013 static void ffs_free(struct usb_function *f) 4014 { 4015 kfree(ffs_func_from_usb(f)); 4016 } 4017 4018 static void ffs_func_unbind(struct usb_configuration *c, 4019 struct usb_function *f) 4020 { 4021 struct ffs_function *func = ffs_func_from_usb(f); 4022 struct ffs_data *ffs = func->ffs; 4023 struct f_fs_opts *opts = 4024 container_of(f->fi, struct f_fs_opts, func_inst); 4025 struct ffs_ep *ep = func->eps; 4026 unsigned count = ffs->eps_count; 4027 unsigned long flags; 4028 4029 if (ffs->func == func) { 4030 ffs_func_eps_disable(func); 4031 ffs->func = NULL; 4032 } 4033 4034 /* Drain any pending AIO completions */ 4035 drain_workqueue(ffs->io_completion_wq); 4036 4037 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 4038 if (!--opts->refcnt) 4039 functionfs_unbind(ffs); 4040 4041 /* cleanup after autoconfig */ 4042 spin_lock_irqsave(&func->ffs->eps_lock, flags); 4043 while (count--) { 4044 if (ep->ep && ep->req) 4045 usb_ep_free_request(ep->ep, ep->req); 4046 ep->req = NULL; 4047 ++ep; 4048 } 4049 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 4050 kfree(func->eps); 4051 func->eps = NULL; 4052 /* 4053 * eps, descriptors and interfaces_nums are allocated in the 4054 * same chunk so only one free is required. 4055 */ 4056 func->function.fs_descriptors = NULL; 4057 func->function.hs_descriptors = NULL; 4058 func->function.ss_descriptors = NULL; 4059 func->function.ssp_descriptors = NULL; 4060 func->interfaces_nums = NULL; 4061 4062 } 4063 4064 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 4065 { 4066 struct ffs_function *func; 4067 4068 func = kzalloc(sizeof(*func), GFP_KERNEL); 4069 if (!func) 4070 return ERR_PTR(-ENOMEM); 4071 4072 func->function.name = "Function FS Gadget"; 4073 4074 func->function.bind = ffs_func_bind; 4075 func->function.unbind = ffs_func_unbind; 4076 func->function.set_alt = ffs_func_set_alt; 4077 func->function.disable = ffs_func_disable; 4078 func->function.setup = ffs_func_setup; 4079 func->function.req_match = ffs_func_req_match; 4080 func->function.suspend = ffs_func_suspend; 4081 func->function.resume = ffs_func_resume; 4082 func->function.free_func = ffs_free; 4083 4084 return &func->function; 4085 } 4086 4087 /* 4088 * ffs_lock must be taken by the caller of this function 4089 */ 4090 static struct ffs_dev *_ffs_alloc_dev(void) 4091 { 4092 struct ffs_dev *dev; 4093 int ret; 4094 4095 if (_ffs_get_single_dev()) 4096 return ERR_PTR(-EBUSY); 4097 4098 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4099 if (!dev) 4100 return ERR_PTR(-ENOMEM); 4101 4102 if (list_empty(&ffs_devices)) { 4103 ret = functionfs_init(); 4104 if (ret) { 4105 kfree(dev); 4106 return ERR_PTR(ret); 4107 } 4108 } 4109 4110 list_add(&dev->entry, &ffs_devices); 4111 4112 return dev; 4113 } 4114 4115 int ffs_name_dev(struct ffs_dev *dev, const char *name) 4116 { 4117 struct ffs_dev *existing; 4118 int ret = 0; 4119 4120 ffs_dev_lock(); 4121 4122 existing = _ffs_do_find_dev(name); 4123 if (!existing) 4124 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 4125 else if (existing != dev) 4126 ret = -EBUSY; 4127 4128 ffs_dev_unlock(); 4129 4130 return ret; 4131 } 4132 EXPORT_SYMBOL_GPL(ffs_name_dev); 4133 4134 int ffs_single_dev(struct ffs_dev *dev) 4135 { 4136 int ret; 4137 4138 ret = 0; 4139 ffs_dev_lock(); 4140 4141 if (!list_is_singular(&ffs_devices)) 4142 ret = -EBUSY; 4143 else 4144 dev->single = true; 4145 4146 ffs_dev_unlock(); 4147 return ret; 4148 } 4149 EXPORT_SYMBOL_GPL(ffs_single_dev); 4150 4151 /* 4152 * ffs_lock must be taken by the caller of this function 4153 */ 4154 static void _ffs_free_dev(struct ffs_dev *dev) 4155 { 4156 list_del(&dev->entry); 4157 4158 kfree(dev); 4159 if (list_empty(&ffs_devices)) 4160 functionfs_cleanup(); 4161 } 4162 4163 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 4164 { 4165 int ret = 0; 4166 struct ffs_dev *ffs_dev; 4167 4168 ffs_dev_lock(); 4169 4170 ffs_dev = _ffs_find_dev(dev_name); 4171 if (!ffs_dev) { 4172 ret = -ENOENT; 4173 } else if (ffs_dev->mounted) { 4174 ret = -EBUSY; 4175 } else if (ffs_dev->ffs_acquire_dev_callback && 4176 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 4177 ret = -ENOENT; 4178 } else { 4179 ffs_dev->mounted = true; 4180 ffs_dev->ffs_data = ffs_data; 4181 ffs_data->private_data = ffs_dev; 4182 } 4183 4184 ffs_dev_unlock(); 4185 return ret; 4186 } 4187 4188 static void ffs_release_dev(struct ffs_dev *ffs_dev) 4189 { 4190 ffs_dev_lock(); 4191 4192 if (ffs_dev && ffs_dev->mounted) { 4193 ffs_dev->mounted = false; 4194 if (ffs_dev->ffs_data) { 4195 ffs_dev->ffs_data->private_data = NULL; 4196 ffs_dev->ffs_data = NULL; 4197 } 4198 4199 if (ffs_dev->ffs_release_dev_callback) 4200 ffs_dev->ffs_release_dev_callback(ffs_dev); 4201 } 4202 4203 ffs_dev_unlock(); 4204 } 4205 4206 static int ffs_ready(struct ffs_data *ffs) 4207 { 4208 struct ffs_dev *ffs_obj; 4209 int ret = 0; 4210 4211 ffs_dev_lock(); 4212 4213 ffs_obj = ffs->private_data; 4214 if (!ffs_obj) { 4215 ret = -EINVAL; 4216 goto done; 4217 } 4218 if (WARN_ON(ffs_obj->desc_ready)) { 4219 ret = -EBUSY; 4220 goto done; 4221 } 4222 4223 ffs_obj->desc_ready = true; 4224 4225 if (ffs_obj->ffs_ready_callback) { 4226 ret = ffs_obj->ffs_ready_callback(ffs); 4227 if (ret) 4228 goto done; 4229 } 4230 4231 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 4232 done: 4233 ffs_dev_unlock(); 4234 return ret; 4235 } 4236 4237 static void ffs_closed(struct ffs_data *ffs) 4238 { 4239 struct ffs_dev *ffs_obj; 4240 struct f_fs_opts *opts; 4241 struct config_item *ci; 4242 4243 ffs_dev_lock(); 4244 4245 ffs_obj = ffs->private_data; 4246 if (!ffs_obj) 4247 goto done; 4248 4249 ffs_obj->desc_ready = false; 4250 4251 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 4252 ffs_obj->ffs_closed_callback) 4253 ffs_obj->ffs_closed_callback(ffs); 4254 4255 if (ffs_obj->opts) 4256 opts = ffs_obj->opts; 4257 else 4258 goto done; 4259 4260 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 4261 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 4262 goto done; 4263 4264 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 4265 ffs_dev_unlock(); 4266 4267 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 4268 unregister_gadget_item(ci); 4269 return; 4270 done: 4271 ffs_dev_unlock(); 4272 } 4273 4274 /* Misc helper functions ****************************************************/ 4275 4276 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 4277 { 4278 return nonblock 4279 ? mutex_trylock(mutex) ? 0 : -EAGAIN 4280 : mutex_lock_interruptible(mutex); 4281 } 4282 4283 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 4284 { 4285 char *data; 4286 4287 if (!len) 4288 return NULL; 4289 4290 data = memdup_user(buf, len); 4291 if (IS_ERR(data)) 4292 return data; 4293 4294 pr_vdebug("Buffer from user space:\n"); 4295 ffs_dump_mem("", data, len); 4296 4297 return data; 4298 } 4299 4300 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 4301 MODULE_LICENSE("GPL"); 4302 MODULE_AUTHOR("Michal Nazarewicz"); 4303