1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/dma-buf.h> 19 #include <linux/dma-fence.h> 20 #include <linux/dma-resv.h> 21 #include <linux/pagemap.h> 22 #include <linux/export.h> 23 #include <linux/fs_parser.h> 24 #include <linux/hid.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/scatterlist.h> 28 #include <linux/sched/signal.h> 29 #include <linux/uio.h> 30 #include <linux/vmalloc.h> 31 #include <linux/unaligned.h> 32 33 #include <linux/usb/ccid.h> 34 #include <linux/usb/composite.h> 35 #include <linux/usb/functionfs.h> 36 #include <linux/usb/func_utils.h> 37 38 #include <linux/aio.h> 39 #include <linux/kthread.h> 40 #include <linux/poll.h> 41 #include <linux/eventfd.h> 42 43 #include "u_fs.h" 44 #include "u_os_desc.h" 45 #include "configfs.h" 46 47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 48 #define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */ 49 50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000 51 52 MODULE_IMPORT_NS("DMA_BUF"); 53 54 /* Reference counter handling */ 55 static void ffs_data_get(struct ffs_data *ffs); 56 static void ffs_data_put(struct ffs_data *ffs); 57 /* Creates new ffs_data object. */ 58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 59 __attribute__((malloc)); 60 61 /* Opened counter handling. */ 62 static void ffs_data_opened(struct ffs_data *ffs); 63 static void ffs_data_closed(struct ffs_data *ffs); 64 65 /* Called with ffs->mutex held; take over ownership of data. */ 66 static int __must_check 67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 68 static int __must_check 69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 70 71 72 /* The function structure ***************************************************/ 73 74 struct ffs_ep; 75 76 struct ffs_function { 77 struct usb_configuration *conf; 78 struct usb_gadget *gadget; 79 struct ffs_data *ffs; 80 81 struct ffs_ep *eps; 82 u8 eps_revmap[16]; 83 short *interfaces_nums; 84 85 struct usb_function function; 86 int cur_alt[MAX_CONFIG_INTERFACES]; 87 }; 88 89 90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 91 { 92 return container_of(f, struct ffs_function, function); 93 } 94 95 96 static inline enum ffs_setup_state 97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 98 { 99 return (enum ffs_setup_state) 100 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 101 } 102 103 104 static void ffs_func_eps_disable(struct ffs_function *func); 105 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 106 107 static int ffs_func_bind(struct usb_configuration *, 108 struct usb_function *); 109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf); 111 static void ffs_func_disable(struct usb_function *); 112 static int ffs_func_setup(struct usb_function *, 113 const struct usb_ctrlrequest *); 114 static bool ffs_func_req_match(struct usb_function *, 115 const struct usb_ctrlrequest *, 116 bool config0); 117 static void ffs_func_suspend(struct usb_function *); 118 static void ffs_func_resume(struct usb_function *); 119 120 121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 123 124 125 /* The endpoints structures *************************************************/ 126 127 struct ffs_ep { 128 struct usb_ep *ep; /* P: ffs->eps_lock */ 129 struct usb_request *req; /* P: epfile->mutex */ 130 131 /* [0]: full speed, [1]: high speed, [2]: super speed */ 132 struct usb_endpoint_descriptor *descs[3]; 133 134 u8 num; 135 }; 136 137 struct ffs_dmabuf_priv { 138 struct list_head entry; 139 struct kref ref; 140 struct ffs_data *ffs; 141 struct dma_buf_attachment *attach; 142 struct sg_table *sgt; 143 enum dma_data_direction dir; 144 spinlock_t lock; 145 u64 context; 146 struct usb_request *req; /* P: ffs->eps_lock */ 147 struct usb_ep *ep; /* P: ffs->eps_lock */ 148 }; 149 150 struct ffs_dma_fence { 151 struct dma_fence base; 152 struct ffs_dmabuf_priv *priv; 153 struct work_struct work; 154 }; 155 156 struct ffs_epfile { 157 /* Protects ep->ep and ep->req. */ 158 struct mutex mutex; 159 160 struct ffs_data *ffs; 161 struct ffs_ep *ep; /* P: ffs->eps_lock */ 162 163 /* 164 * Buffer for holding data from partial reads which may happen since 165 * we’re rounding user read requests to a multiple of a max packet size. 166 * 167 * The pointer is initialised with NULL value and may be set by 168 * __ffs_epfile_read_data function to point to a temporary buffer. 169 * 170 * In normal operation, calls to __ffs_epfile_read_buffered will consume 171 * data from said buffer and eventually free it. Importantly, while the 172 * function is using the buffer, it sets the pointer to NULL. This is 173 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 174 * can never run concurrently (they are synchronised by epfile->mutex) 175 * so the latter will not assign a new value to the pointer. 176 * 177 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 178 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 179 * value is crux of the synchronisation between ffs_func_eps_disable and 180 * __ffs_epfile_read_data. 181 * 182 * Once __ffs_epfile_read_data is about to finish it will try to set the 183 * pointer back to its old value (as described above), but seeing as the 184 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 185 * the buffer. 186 * 187 * == State transitions == 188 * 189 * • ptr == NULL: (initial state) 190 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 191 * ◦ __ffs_epfile_read_buffered: nop 192 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 193 * ◦ reading finishes: n/a, not in ‘and reading’ state 194 * • ptr == DROP: 195 * ◦ __ffs_epfile_read_buffer_free: nop 196 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 197 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 198 * ◦ reading finishes: n/a, not in ‘and reading’ state 199 * • ptr == buf: 200 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 201 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 202 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 203 * is always called first 204 * ◦ reading finishes: n/a, not in ‘and reading’ state 205 * • ptr == NULL and reading: 206 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 207 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 208 * ◦ __ffs_epfile_read_data: n/a, mutex is held 209 * ◦ reading finishes and … 210 * … all data read: free buf, go to ptr == NULL 211 * … otherwise: go to ptr == buf and reading 212 * • ptr == DROP and reading: 213 * ◦ __ffs_epfile_read_buffer_free: nop 214 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 215 * ◦ __ffs_epfile_read_data: n/a, mutex is held 216 * ◦ reading finishes: free buf, go to ptr == DROP 217 */ 218 struct ffs_buffer *read_buffer; 219 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 220 221 char name[5]; 222 223 unsigned char in; /* P: ffs->eps_lock */ 224 unsigned char isoc; /* P: ffs->eps_lock */ 225 226 unsigned char _pad; 227 228 /* Protects dmabufs */ 229 struct mutex dmabufs_mutex; 230 struct list_head dmabufs; /* P: dmabufs_mutex */ 231 atomic_t seqno; 232 }; 233 234 struct ffs_buffer { 235 size_t length; 236 char *data; 237 char storage[] __counted_by(length); 238 }; 239 240 /* ffs_io_data structure ***************************************************/ 241 242 struct ffs_io_data { 243 bool aio; 244 bool read; 245 246 struct kiocb *kiocb; 247 struct iov_iter data; 248 const void *to_free; 249 char *buf; 250 251 struct mm_struct *mm; 252 struct work_struct work; 253 254 struct usb_ep *ep; 255 struct usb_request *req; 256 struct sg_table sgt; 257 bool use_sg; 258 259 struct ffs_data *ffs; 260 261 int status; 262 struct completion done; 263 }; 264 265 struct ffs_desc_helper { 266 struct ffs_data *ffs; 267 unsigned interfaces_count; 268 unsigned eps_count; 269 }; 270 271 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 272 static void ffs_epfiles_destroy(struct super_block *sb, 273 struct ffs_epfile *epfiles, unsigned count); 274 275 static int ffs_sb_create_file(struct super_block *sb, const char *name, 276 void *data, const struct file_operations *fops); 277 278 /* Devices management *******************************************************/ 279 280 DEFINE_MUTEX(ffs_lock); 281 EXPORT_SYMBOL_GPL(ffs_lock); 282 283 static struct ffs_dev *_ffs_find_dev(const char *name); 284 static struct ffs_dev *_ffs_alloc_dev(void); 285 static void _ffs_free_dev(struct ffs_dev *dev); 286 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 287 static void ffs_release_dev(struct ffs_dev *ffs_dev); 288 static int ffs_ready(struct ffs_data *ffs); 289 static void ffs_closed(struct ffs_data *ffs); 290 291 /* Misc helper functions ****************************************************/ 292 293 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 294 __attribute__((warn_unused_result, nonnull)); 295 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 296 __attribute__((warn_unused_result, nonnull)); 297 298 299 /* Control file aka ep0 *****************************************************/ 300 301 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 302 { 303 struct ffs_data *ffs = req->context; 304 305 complete(&ffs->ep0req_completion); 306 } 307 308 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 309 __releases(&ffs->ev.waitq.lock) 310 { 311 struct usb_request *req = ffs->ep0req; 312 int ret; 313 314 if (!req) { 315 spin_unlock_irq(&ffs->ev.waitq.lock); 316 return -EINVAL; 317 } 318 319 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 320 321 spin_unlock_irq(&ffs->ev.waitq.lock); 322 323 req->buf = data; 324 req->length = len; 325 326 /* 327 * UDC layer requires to provide a buffer even for ZLP, but should 328 * not use it at all. Let's provide some poisoned pointer to catch 329 * possible bug in the driver. 330 */ 331 if (req->buf == NULL) 332 req->buf = (void *)0xDEADBABE; 333 334 reinit_completion(&ffs->ep0req_completion); 335 336 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 337 if (ret < 0) 338 return ret; 339 340 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 341 if (ret) { 342 usb_ep_dequeue(ffs->gadget->ep0, req); 343 return -EINTR; 344 } 345 346 ffs->setup_state = FFS_NO_SETUP; 347 return req->status ? req->status : req->actual; 348 } 349 350 static int __ffs_ep0_stall(struct ffs_data *ffs) 351 { 352 if (ffs->ev.can_stall) { 353 pr_vdebug("ep0 stall\n"); 354 usb_ep_set_halt(ffs->gadget->ep0); 355 ffs->setup_state = FFS_NO_SETUP; 356 return -EL2HLT; 357 } else { 358 pr_debug("bogus ep0 stall!\n"); 359 return -ESRCH; 360 } 361 } 362 363 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 364 size_t len, loff_t *ptr) 365 { 366 struct ffs_data *ffs = file->private_data; 367 ssize_t ret; 368 char *data; 369 370 /* Fast check if setup was canceled */ 371 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 372 return -EIDRM; 373 374 /* Acquire mutex */ 375 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 376 if (ret < 0) 377 return ret; 378 379 /* Check state */ 380 switch (ffs->state) { 381 case FFS_READ_DESCRIPTORS: 382 case FFS_READ_STRINGS: 383 /* Copy data */ 384 if (len < 16) { 385 ret = -EINVAL; 386 break; 387 } 388 389 data = ffs_prepare_buffer(buf, len); 390 if (IS_ERR(data)) { 391 ret = PTR_ERR(data); 392 break; 393 } 394 395 /* Handle data */ 396 if (ffs->state == FFS_READ_DESCRIPTORS) { 397 pr_info("read descriptors\n"); 398 ret = __ffs_data_got_descs(ffs, data, len); 399 if (ret < 0) 400 break; 401 402 ffs->state = FFS_READ_STRINGS; 403 ret = len; 404 } else { 405 pr_info("read strings\n"); 406 ret = __ffs_data_got_strings(ffs, data, len); 407 if (ret < 0) 408 break; 409 410 ret = ffs_epfiles_create(ffs); 411 if (ret) { 412 ffs->state = FFS_CLOSING; 413 break; 414 } 415 416 ffs->state = FFS_ACTIVE; 417 mutex_unlock(&ffs->mutex); 418 419 ret = ffs_ready(ffs); 420 if (ret < 0) { 421 ffs->state = FFS_CLOSING; 422 return ret; 423 } 424 425 return len; 426 } 427 break; 428 429 case FFS_ACTIVE: 430 data = NULL; 431 /* 432 * We're called from user space, we can use _irq 433 * rather then _irqsave 434 */ 435 spin_lock_irq(&ffs->ev.waitq.lock); 436 switch (ffs_setup_state_clear_cancelled(ffs)) { 437 case FFS_SETUP_CANCELLED: 438 ret = -EIDRM; 439 goto done_spin; 440 441 case FFS_NO_SETUP: 442 ret = -ESRCH; 443 goto done_spin; 444 445 case FFS_SETUP_PENDING: 446 break; 447 } 448 449 /* FFS_SETUP_PENDING */ 450 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 451 spin_unlock_irq(&ffs->ev.waitq.lock); 452 ret = __ffs_ep0_stall(ffs); 453 break; 454 } 455 456 /* FFS_SETUP_PENDING and not stall */ 457 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength)); 458 459 spin_unlock_irq(&ffs->ev.waitq.lock); 460 461 data = ffs_prepare_buffer(buf, len); 462 if (IS_ERR(data)) { 463 ret = PTR_ERR(data); 464 break; 465 } 466 467 spin_lock_irq(&ffs->ev.waitq.lock); 468 469 /* 470 * We are guaranteed to be still in FFS_ACTIVE state 471 * but the state of setup could have changed from 472 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 473 * to check for that. If that happened we copied data 474 * from user space in vain but it's unlikely. 475 * 476 * For sure we are not in FFS_NO_SETUP since this is 477 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 478 * transition can be performed and it's protected by 479 * mutex. 480 */ 481 if (ffs_setup_state_clear_cancelled(ffs) == 482 FFS_SETUP_CANCELLED) { 483 ret = -EIDRM; 484 done_spin: 485 spin_unlock_irq(&ffs->ev.waitq.lock); 486 } else { 487 /* unlocks spinlock */ 488 ret = __ffs_ep0_queue_wait(ffs, data, len); 489 } 490 kfree(data); 491 break; 492 493 default: 494 ret = -EBADFD; 495 break; 496 } 497 498 mutex_unlock(&ffs->mutex); 499 return ret; 500 } 501 502 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 503 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 504 size_t n) 505 __releases(&ffs->ev.waitq.lock) 506 { 507 /* 508 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 509 * size of ffs->ev.types array (which is four) so that's how much space 510 * we reserve. 511 */ 512 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 513 const size_t size = n * sizeof *events; 514 unsigned i = 0; 515 516 memset(events, 0, size); 517 518 do { 519 events[i].type = ffs->ev.types[i]; 520 if (events[i].type == FUNCTIONFS_SETUP) { 521 events[i].u.setup = ffs->ev.setup; 522 ffs->setup_state = FFS_SETUP_PENDING; 523 } 524 } while (++i < n); 525 526 ffs->ev.count -= n; 527 if (ffs->ev.count) 528 memmove(ffs->ev.types, ffs->ev.types + n, 529 ffs->ev.count * sizeof *ffs->ev.types); 530 531 spin_unlock_irq(&ffs->ev.waitq.lock); 532 mutex_unlock(&ffs->mutex); 533 534 return copy_to_user(buf, events, size) ? -EFAULT : size; 535 } 536 537 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 538 size_t len, loff_t *ptr) 539 { 540 struct ffs_data *ffs = file->private_data; 541 char *data = NULL; 542 size_t n; 543 int ret; 544 545 /* Fast check if setup was canceled */ 546 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 547 return -EIDRM; 548 549 /* Acquire mutex */ 550 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 551 if (ret < 0) 552 return ret; 553 554 /* Check state */ 555 if (ffs->state != FFS_ACTIVE) { 556 ret = -EBADFD; 557 goto done_mutex; 558 } 559 560 /* 561 * We're called from user space, we can use _irq rather then 562 * _irqsave 563 */ 564 spin_lock_irq(&ffs->ev.waitq.lock); 565 566 switch (ffs_setup_state_clear_cancelled(ffs)) { 567 case FFS_SETUP_CANCELLED: 568 ret = -EIDRM; 569 break; 570 571 case FFS_NO_SETUP: 572 n = len / sizeof(struct usb_functionfs_event); 573 if (!n) { 574 ret = -EINVAL; 575 break; 576 } 577 578 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 579 ret = -EAGAIN; 580 break; 581 } 582 583 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 584 ffs->ev.count)) { 585 ret = -EINTR; 586 break; 587 } 588 589 /* unlocks spinlock */ 590 return __ffs_ep0_read_events(ffs, buf, 591 min_t(size_t, n, ffs->ev.count)); 592 593 case FFS_SETUP_PENDING: 594 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 595 spin_unlock_irq(&ffs->ev.waitq.lock); 596 ret = __ffs_ep0_stall(ffs); 597 goto done_mutex; 598 } 599 600 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength)); 601 602 spin_unlock_irq(&ffs->ev.waitq.lock); 603 604 if (len) { 605 data = kmalloc(len, GFP_KERNEL); 606 if (!data) { 607 ret = -ENOMEM; 608 goto done_mutex; 609 } 610 } 611 612 spin_lock_irq(&ffs->ev.waitq.lock); 613 614 /* See ffs_ep0_write() */ 615 if (ffs_setup_state_clear_cancelled(ffs) == 616 FFS_SETUP_CANCELLED) { 617 ret = -EIDRM; 618 break; 619 } 620 621 /* unlocks spinlock */ 622 ret = __ffs_ep0_queue_wait(ffs, data, len); 623 if ((ret > 0) && (copy_to_user(buf, data, len))) 624 ret = -EFAULT; 625 goto done_mutex; 626 627 default: 628 ret = -EBADFD; 629 break; 630 } 631 632 spin_unlock_irq(&ffs->ev.waitq.lock); 633 done_mutex: 634 mutex_unlock(&ffs->mutex); 635 kfree(data); 636 return ret; 637 } 638 639 static int ffs_ep0_open(struct inode *inode, struct file *file) 640 { 641 struct ffs_data *ffs = inode->i_sb->s_fs_info; 642 int ret; 643 644 /* Acquire mutex */ 645 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 646 if (ret < 0) 647 return ret; 648 649 ffs_data_opened(ffs); 650 if (ffs->state == FFS_CLOSING) { 651 ffs_data_closed(ffs); 652 mutex_unlock(&ffs->mutex); 653 return -EBUSY; 654 } 655 mutex_unlock(&ffs->mutex); 656 file->private_data = ffs; 657 658 return stream_open(inode, file); 659 } 660 661 static int ffs_ep0_release(struct inode *inode, struct file *file) 662 { 663 struct ffs_data *ffs = file->private_data; 664 665 ffs_data_closed(ffs); 666 667 return 0; 668 } 669 670 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 671 { 672 struct ffs_data *ffs = file->private_data; 673 struct usb_gadget *gadget = ffs->gadget; 674 long ret; 675 676 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 677 struct ffs_function *func = ffs->func; 678 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 679 } else if (gadget && gadget->ops->ioctl) { 680 ret = gadget->ops->ioctl(gadget, code, value); 681 } else { 682 ret = -ENOTTY; 683 } 684 685 return ret; 686 } 687 688 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 689 { 690 struct ffs_data *ffs = file->private_data; 691 __poll_t mask = EPOLLWRNORM; 692 int ret; 693 694 poll_wait(file, &ffs->ev.waitq, wait); 695 696 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 697 if (ret < 0) 698 return mask; 699 700 switch (ffs->state) { 701 case FFS_READ_DESCRIPTORS: 702 case FFS_READ_STRINGS: 703 mask |= EPOLLOUT; 704 break; 705 706 case FFS_ACTIVE: 707 switch (ffs->setup_state) { 708 case FFS_NO_SETUP: 709 if (ffs->ev.count) 710 mask |= EPOLLIN; 711 break; 712 713 case FFS_SETUP_PENDING: 714 case FFS_SETUP_CANCELLED: 715 mask |= (EPOLLIN | EPOLLOUT); 716 break; 717 } 718 break; 719 720 case FFS_CLOSING: 721 break; 722 case FFS_DEACTIVATED: 723 break; 724 } 725 726 mutex_unlock(&ffs->mutex); 727 728 return mask; 729 } 730 731 static const struct file_operations ffs_ep0_operations = { 732 733 .open = ffs_ep0_open, 734 .write = ffs_ep0_write, 735 .read = ffs_ep0_read, 736 .release = ffs_ep0_release, 737 .unlocked_ioctl = ffs_ep0_ioctl, 738 .poll = ffs_ep0_poll, 739 }; 740 741 742 /* "Normal" endpoints operations ********************************************/ 743 744 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 745 { 746 struct ffs_io_data *io_data = req->context; 747 748 if (req->status) 749 io_data->status = req->status; 750 else 751 io_data->status = req->actual; 752 753 complete(&io_data->done); 754 } 755 756 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 757 { 758 ssize_t ret = copy_to_iter(data, data_len, iter); 759 if (ret == data_len) 760 return ret; 761 762 if (iov_iter_count(iter)) 763 return -EFAULT; 764 765 /* 766 * Dear user space developer! 767 * 768 * TL;DR: To stop getting below error message in your kernel log, change 769 * user space code using functionfs to align read buffers to a max 770 * packet size. 771 * 772 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 773 * packet size. When unaligned buffer is passed to functionfs, it 774 * internally uses a larger, aligned buffer so that such UDCs are happy. 775 * 776 * Unfortunately, this means that host may send more data than was 777 * requested in read(2) system call. f_fs doesn’t know what to do with 778 * that excess data so it simply drops it. 779 * 780 * Was the buffer aligned in the first place, no such problem would 781 * happen. 782 * 783 * Data may be dropped only in AIO reads. Synchronous reads are handled 784 * by splitting a request into multiple parts. This splitting may still 785 * be a problem though so it’s likely best to align the buffer 786 * regardless of it being AIO or not.. 787 * 788 * This only affects OUT endpoints, i.e. reading data with a read(2), 789 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 790 * affected. 791 */ 792 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 793 "Align read buffer size to max packet size to avoid the problem.\n", 794 data_len, ret); 795 796 return ret; 797 } 798 799 /* 800 * allocate a virtually contiguous buffer and create a scatterlist describing it 801 * @sg_table - pointer to a place to be filled with sg_table contents 802 * @size - required buffer size 803 */ 804 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 805 { 806 struct page **pages; 807 void *vaddr, *ptr; 808 unsigned int n_pages; 809 int i; 810 811 vaddr = vmalloc(sz); 812 if (!vaddr) 813 return NULL; 814 815 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 816 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 817 if (!pages) { 818 vfree(vaddr); 819 820 return NULL; 821 } 822 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 823 pages[i] = vmalloc_to_page(ptr); 824 825 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 826 kvfree(pages); 827 vfree(vaddr); 828 829 return NULL; 830 } 831 kvfree(pages); 832 833 return vaddr; 834 } 835 836 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 837 size_t data_len) 838 { 839 if (io_data->use_sg) 840 return ffs_build_sg_list(&io_data->sgt, data_len); 841 842 return kmalloc(data_len, GFP_KERNEL); 843 } 844 845 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 846 { 847 if (!io_data->buf) 848 return; 849 850 if (io_data->use_sg) { 851 sg_free_table(&io_data->sgt); 852 vfree(io_data->buf); 853 } else { 854 kfree(io_data->buf); 855 } 856 } 857 858 static void ffs_user_copy_worker(struct work_struct *work) 859 { 860 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 861 work); 862 int ret = io_data->status; 863 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 864 865 if (io_data->read && ret > 0) { 866 kthread_use_mm(io_data->mm); 867 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 868 kthread_unuse_mm(io_data->mm); 869 } 870 871 io_data->kiocb->ki_complete(io_data->kiocb, ret); 872 873 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 874 eventfd_signal(io_data->ffs->ffs_eventfd); 875 876 usb_ep_free_request(io_data->ep, io_data->req); 877 878 if (io_data->read) 879 kfree(io_data->to_free); 880 ffs_free_buffer(io_data); 881 kfree(io_data); 882 } 883 884 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 885 struct usb_request *req) 886 { 887 struct ffs_io_data *io_data = req->context; 888 struct ffs_data *ffs = io_data->ffs; 889 890 io_data->status = req->status ? req->status : req->actual; 891 892 INIT_WORK(&io_data->work, ffs_user_copy_worker); 893 queue_work(ffs->io_completion_wq, &io_data->work); 894 } 895 896 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 897 { 898 /* 899 * See comment in struct ffs_epfile for full read_buffer pointer 900 * synchronisation story. 901 */ 902 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 903 if (buf && buf != READ_BUFFER_DROP) 904 kfree(buf); 905 } 906 907 /* Assumes epfile->mutex is held. */ 908 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 909 struct iov_iter *iter) 910 { 911 /* 912 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 913 * the buffer while we are using it. See comment in struct ffs_epfile 914 * for full read_buffer pointer synchronisation story. 915 */ 916 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 917 ssize_t ret; 918 if (!buf || buf == READ_BUFFER_DROP) 919 return 0; 920 921 ret = copy_to_iter(buf->data, buf->length, iter); 922 if (buf->length == ret) { 923 kfree(buf); 924 return ret; 925 } 926 927 if (iov_iter_count(iter)) { 928 ret = -EFAULT; 929 } else { 930 buf->length -= ret; 931 buf->data += ret; 932 } 933 934 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 935 kfree(buf); 936 937 return ret; 938 } 939 940 /* Assumes epfile->mutex is held. */ 941 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 942 void *data, int data_len, 943 struct iov_iter *iter) 944 { 945 struct ffs_buffer *buf; 946 947 ssize_t ret = copy_to_iter(data, data_len, iter); 948 if (data_len == ret) 949 return ret; 950 951 if (iov_iter_count(iter)) 952 return -EFAULT; 953 954 /* See ffs_copy_to_iter for more context. */ 955 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 956 data_len, ret); 957 958 data_len -= ret; 959 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 960 if (!buf) 961 return -ENOMEM; 962 buf->length = data_len; 963 buf->data = buf->storage; 964 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 965 966 /* 967 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 968 * ffs_func_eps_disable has been called in the meanwhile). See comment 969 * in struct ffs_epfile for full read_buffer pointer synchronisation 970 * story. 971 */ 972 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 973 kfree(buf); 974 975 return ret; 976 } 977 978 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file) 979 { 980 struct ffs_epfile *epfile = file->private_data; 981 struct ffs_ep *ep; 982 int ret; 983 984 /* Wait for endpoint to be enabled */ 985 ep = epfile->ep; 986 if (!ep) { 987 if (file->f_flags & O_NONBLOCK) 988 return ERR_PTR(-EAGAIN); 989 990 ret = wait_event_interruptible( 991 epfile->ffs->wait, (ep = epfile->ep)); 992 if (ret) 993 return ERR_PTR(-EINTR); 994 } 995 996 return ep; 997 } 998 999 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 1000 { 1001 struct ffs_epfile *epfile = file->private_data; 1002 struct usb_request *req; 1003 struct ffs_ep *ep; 1004 char *data = NULL; 1005 ssize_t ret, data_len = -EINVAL; 1006 int halt; 1007 1008 /* Are we still active? */ 1009 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1010 return -ENODEV; 1011 1012 ep = ffs_epfile_wait_ep(file); 1013 if (IS_ERR(ep)) 1014 return PTR_ERR(ep); 1015 1016 /* Do we halt? */ 1017 halt = (!io_data->read == !epfile->in); 1018 if (halt && epfile->isoc) 1019 return -EINVAL; 1020 1021 /* We will be using request and read_buffer */ 1022 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 1023 if (ret) 1024 goto error; 1025 1026 /* Allocate & copy */ 1027 if (!halt) { 1028 struct usb_gadget *gadget; 1029 1030 /* 1031 * Do we have buffered data from previous partial read? Check 1032 * that for synchronous case only because we do not have 1033 * facility to ‘wake up’ a pending asynchronous read and push 1034 * buffered data to it which we would need to make things behave 1035 * consistently. 1036 */ 1037 if (!io_data->aio && io_data->read) { 1038 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 1039 if (ret) 1040 goto error_mutex; 1041 } 1042 1043 /* 1044 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1045 * before the waiting completes, so do not assign to 'gadget' 1046 * earlier 1047 */ 1048 gadget = epfile->ffs->gadget; 1049 1050 spin_lock_irq(&epfile->ffs->eps_lock); 1051 /* In the meantime, endpoint got disabled or changed. */ 1052 if (epfile->ep != ep) { 1053 ret = -ESHUTDOWN; 1054 goto error_lock; 1055 } 1056 data_len = iov_iter_count(&io_data->data); 1057 /* 1058 * Controller may require buffer size to be aligned to 1059 * maxpacketsize of an out endpoint. 1060 */ 1061 if (io_data->read) 1062 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1063 1064 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1065 spin_unlock_irq(&epfile->ffs->eps_lock); 1066 1067 data = ffs_alloc_buffer(io_data, data_len); 1068 if (!data) { 1069 ret = -ENOMEM; 1070 goto error_mutex; 1071 } 1072 if (!io_data->read && 1073 !copy_from_iter_full(data, data_len, &io_data->data)) { 1074 ret = -EFAULT; 1075 goto error_mutex; 1076 } 1077 } 1078 1079 spin_lock_irq(&epfile->ffs->eps_lock); 1080 1081 if (epfile->ep != ep) { 1082 /* In the meantime, endpoint got disabled or changed. */ 1083 ret = -ESHUTDOWN; 1084 } else if (halt) { 1085 ret = usb_ep_set_halt(ep->ep); 1086 if (!ret) 1087 ret = -EBADMSG; 1088 } else if (data_len == -EINVAL) { 1089 /* 1090 * Sanity Check: even though data_len can't be used 1091 * uninitialized at the time I write this comment, some 1092 * compilers complain about this situation. 1093 * In order to keep the code clean from warnings, data_len is 1094 * being initialized to -EINVAL during its declaration, which 1095 * means we can't rely on compiler anymore to warn no future 1096 * changes won't result in data_len being used uninitialized. 1097 * For such reason, we're adding this redundant sanity check 1098 * here. 1099 */ 1100 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1101 ret = -EINVAL; 1102 } else if (!io_data->aio) { 1103 bool interrupted = false; 1104 1105 req = ep->req; 1106 if (io_data->use_sg) { 1107 req->buf = NULL; 1108 req->sg = io_data->sgt.sgl; 1109 req->num_sgs = io_data->sgt.nents; 1110 } else { 1111 req->buf = data; 1112 req->num_sgs = 0; 1113 } 1114 req->length = data_len; 1115 1116 io_data->buf = data; 1117 1118 init_completion(&io_data->done); 1119 req->context = io_data; 1120 req->complete = ffs_epfile_io_complete; 1121 1122 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1123 if (ret < 0) 1124 goto error_lock; 1125 1126 spin_unlock_irq(&epfile->ffs->eps_lock); 1127 1128 if (wait_for_completion_interruptible(&io_data->done)) { 1129 spin_lock_irq(&epfile->ffs->eps_lock); 1130 if (epfile->ep != ep) { 1131 ret = -ESHUTDOWN; 1132 goto error_lock; 1133 } 1134 /* 1135 * To avoid race condition with ffs_epfile_io_complete, 1136 * dequeue the request first then check 1137 * status. usb_ep_dequeue API should guarantee no race 1138 * condition with req->complete callback. 1139 */ 1140 usb_ep_dequeue(ep->ep, req); 1141 spin_unlock_irq(&epfile->ffs->eps_lock); 1142 wait_for_completion(&io_data->done); 1143 interrupted = io_data->status < 0; 1144 } 1145 1146 if (interrupted) 1147 ret = -EINTR; 1148 else if (io_data->read && io_data->status > 0) 1149 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1150 &io_data->data); 1151 else 1152 ret = io_data->status; 1153 goto error_mutex; 1154 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1155 ret = -ENOMEM; 1156 } else { 1157 if (io_data->use_sg) { 1158 req->buf = NULL; 1159 req->sg = io_data->sgt.sgl; 1160 req->num_sgs = io_data->sgt.nents; 1161 } else { 1162 req->buf = data; 1163 req->num_sgs = 0; 1164 } 1165 req->length = data_len; 1166 1167 io_data->buf = data; 1168 io_data->ep = ep->ep; 1169 io_data->req = req; 1170 io_data->ffs = epfile->ffs; 1171 1172 req->context = io_data; 1173 req->complete = ffs_epfile_async_io_complete; 1174 1175 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1176 if (ret) { 1177 io_data->req = NULL; 1178 usb_ep_free_request(ep->ep, req); 1179 goto error_lock; 1180 } 1181 1182 ret = -EIOCBQUEUED; 1183 /* 1184 * Do not kfree the buffer in this function. It will be freed 1185 * by ffs_user_copy_worker. 1186 */ 1187 data = NULL; 1188 } 1189 1190 error_lock: 1191 spin_unlock_irq(&epfile->ffs->eps_lock); 1192 error_mutex: 1193 mutex_unlock(&epfile->mutex); 1194 error: 1195 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1196 ffs_free_buffer(io_data); 1197 return ret; 1198 } 1199 1200 static int 1201 ffs_epfile_open(struct inode *inode, struct file *file) 1202 { 1203 struct ffs_data *ffs = inode->i_sb->s_fs_info; 1204 struct ffs_epfile *epfile; 1205 int ret; 1206 1207 /* Acquire mutex */ 1208 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 1209 if (ret < 0) 1210 return ret; 1211 1212 if (!atomic_inc_not_zero(&ffs->opened)) { 1213 mutex_unlock(&ffs->mutex); 1214 return -ENODEV; 1215 } 1216 /* 1217 * we want the state to be FFS_ACTIVE; FFS_ACTIVE alone is 1218 * not enough, though - we might have been through FFS_CLOSING 1219 * and back to FFS_ACTIVE, with our file already removed. 1220 */ 1221 epfile = smp_load_acquire(&inode->i_private); 1222 if (unlikely(ffs->state != FFS_ACTIVE || !epfile)) { 1223 mutex_unlock(&ffs->mutex); 1224 ffs_data_closed(ffs); 1225 return -ENODEV; 1226 } 1227 mutex_unlock(&ffs->mutex); 1228 1229 file->private_data = epfile; 1230 return stream_open(inode, file); 1231 } 1232 1233 static int ffs_aio_cancel(struct kiocb *kiocb) 1234 { 1235 struct ffs_io_data *io_data = kiocb->private; 1236 int value; 1237 1238 if (io_data && io_data->ep && io_data->req) 1239 value = usb_ep_dequeue(io_data->ep, io_data->req); 1240 else 1241 value = -EINVAL; 1242 1243 return value; 1244 } 1245 1246 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1247 { 1248 struct ffs_io_data io_data, *p = &io_data; 1249 ssize_t res; 1250 1251 if (!is_sync_kiocb(kiocb)) { 1252 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1253 if (!p) 1254 return -ENOMEM; 1255 p->aio = true; 1256 } else { 1257 memset(p, 0, sizeof(*p)); 1258 p->aio = false; 1259 } 1260 1261 p->read = false; 1262 p->kiocb = kiocb; 1263 p->data = *from; 1264 p->mm = current->mm; 1265 1266 kiocb->private = p; 1267 1268 if (p->aio) 1269 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1270 1271 res = ffs_epfile_io(kiocb->ki_filp, p); 1272 if (res == -EIOCBQUEUED) 1273 return res; 1274 if (p->aio) 1275 kfree(p); 1276 else 1277 *from = p->data; 1278 return res; 1279 } 1280 1281 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1282 { 1283 struct ffs_io_data io_data, *p = &io_data; 1284 ssize_t res; 1285 1286 if (!is_sync_kiocb(kiocb)) { 1287 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1288 if (!p) 1289 return -ENOMEM; 1290 p->aio = true; 1291 } else { 1292 memset(p, 0, sizeof(*p)); 1293 p->aio = false; 1294 } 1295 1296 p->read = true; 1297 p->kiocb = kiocb; 1298 if (p->aio) { 1299 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1300 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1301 kfree(p); 1302 return -ENOMEM; 1303 } 1304 } else { 1305 p->data = *to; 1306 p->to_free = NULL; 1307 } 1308 p->mm = current->mm; 1309 1310 kiocb->private = p; 1311 1312 if (p->aio) 1313 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1314 1315 res = ffs_epfile_io(kiocb->ki_filp, p); 1316 if (res == -EIOCBQUEUED) 1317 return res; 1318 1319 if (p->aio) { 1320 kfree(p->to_free); 1321 kfree(p); 1322 } else { 1323 *to = p->data; 1324 } 1325 return res; 1326 } 1327 1328 static void ffs_dmabuf_release(struct kref *ref) 1329 { 1330 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref); 1331 struct dma_buf_attachment *attach = priv->attach; 1332 struct dma_buf *dmabuf = attach->dmabuf; 1333 1334 pr_vdebug("FFS DMABUF release\n"); 1335 dma_buf_unmap_attachment_unlocked(attach, priv->sgt, priv->dir); 1336 1337 dma_buf_detach(attach->dmabuf, attach); 1338 dma_buf_put(dmabuf); 1339 kfree(priv); 1340 } 1341 1342 static void ffs_dmabuf_get(struct dma_buf_attachment *attach) 1343 { 1344 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1345 1346 kref_get(&priv->ref); 1347 } 1348 1349 static void ffs_dmabuf_put(struct dma_buf_attachment *attach) 1350 { 1351 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1352 1353 kref_put(&priv->ref, ffs_dmabuf_release); 1354 } 1355 1356 static int 1357 ffs_epfile_release(struct inode *inode, struct file *file) 1358 { 1359 struct ffs_epfile *epfile = file->private_data; 1360 struct ffs_dmabuf_priv *priv, *tmp; 1361 struct ffs_data *ffs = epfile->ffs; 1362 1363 mutex_lock(&epfile->dmabufs_mutex); 1364 1365 /* Close all attached DMABUFs */ 1366 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1367 /* Cancel any pending transfer */ 1368 spin_lock_irq(&ffs->eps_lock); 1369 if (priv->ep && priv->req) 1370 usb_ep_dequeue(priv->ep, priv->req); 1371 spin_unlock_irq(&ffs->eps_lock); 1372 1373 list_del(&priv->entry); 1374 ffs_dmabuf_put(priv->attach); 1375 } 1376 1377 mutex_unlock(&epfile->dmabufs_mutex); 1378 1379 __ffs_epfile_read_buffer_free(epfile); 1380 ffs_data_closed(epfile->ffs); 1381 1382 return 0; 1383 } 1384 1385 static void ffs_dmabuf_cleanup(struct work_struct *work) 1386 { 1387 struct ffs_dma_fence *dma_fence = 1388 container_of(work, struct ffs_dma_fence, work); 1389 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1390 struct dma_buf_attachment *attach = priv->attach; 1391 struct dma_fence *fence = &dma_fence->base; 1392 1393 ffs_dmabuf_put(attach); 1394 dma_fence_put(fence); 1395 } 1396 1397 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret) 1398 { 1399 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1400 struct dma_fence *fence = &dma_fence->base; 1401 bool cookie = dma_fence_begin_signalling(); 1402 1403 dma_fence_get(fence); 1404 fence->error = ret; 1405 dma_fence_signal(fence); 1406 dma_fence_end_signalling(cookie); 1407 1408 /* 1409 * The fence will be unref'd in ffs_dmabuf_cleanup. 1410 * It can't be done here, as the unref functions might try to lock 1411 * the resv object, which would deadlock. 1412 */ 1413 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup); 1414 queue_work(priv->ffs->io_completion_wq, &dma_fence->work); 1415 } 1416 1417 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep, 1418 struct usb_request *req) 1419 { 1420 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status); 1421 ffs_dmabuf_signal_done(req->context, req->status); 1422 usb_ep_free_request(ep, req); 1423 } 1424 1425 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence) 1426 { 1427 return "functionfs"; 1428 } 1429 1430 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence) 1431 { 1432 return ""; 1433 } 1434 1435 static void ffs_dmabuf_fence_release(struct dma_fence *fence) 1436 { 1437 struct ffs_dma_fence *dma_fence = 1438 container_of(fence, struct ffs_dma_fence, base); 1439 1440 kfree(dma_fence); 1441 } 1442 1443 static const struct dma_fence_ops ffs_dmabuf_fence_ops = { 1444 .get_driver_name = ffs_dmabuf_get_driver_name, 1445 .get_timeline_name = ffs_dmabuf_get_timeline_name, 1446 .release = ffs_dmabuf_fence_release, 1447 }; 1448 1449 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock) 1450 { 1451 if (!nonblock) 1452 return dma_resv_lock_interruptible(dmabuf->resv, NULL); 1453 1454 if (!dma_resv_trylock(dmabuf->resv)) 1455 return -EBUSY; 1456 1457 return 0; 1458 } 1459 1460 static struct dma_buf_attachment * 1461 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf) 1462 { 1463 struct device *dev = epfile->ffs->gadget->dev.parent; 1464 struct dma_buf_attachment *attach = NULL; 1465 struct ffs_dmabuf_priv *priv; 1466 1467 mutex_lock(&epfile->dmabufs_mutex); 1468 1469 list_for_each_entry(priv, &epfile->dmabufs, entry) { 1470 if (priv->attach->dev == dev 1471 && priv->attach->dmabuf == dmabuf) { 1472 attach = priv->attach; 1473 break; 1474 } 1475 } 1476 1477 if (attach) 1478 ffs_dmabuf_get(attach); 1479 1480 mutex_unlock(&epfile->dmabufs_mutex); 1481 1482 return attach ?: ERR_PTR(-EPERM); 1483 } 1484 1485 static int ffs_dmabuf_attach(struct file *file, int fd) 1486 { 1487 bool nonblock = file->f_flags & O_NONBLOCK; 1488 struct ffs_epfile *epfile = file->private_data; 1489 struct usb_gadget *gadget = epfile->ffs->gadget; 1490 struct dma_buf_attachment *attach; 1491 struct ffs_dmabuf_priv *priv; 1492 enum dma_data_direction dir; 1493 struct sg_table *sg_table; 1494 struct dma_buf *dmabuf; 1495 int err; 1496 1497 if (!gadget || !gadget->sg_supported) 1498 return -EPERM; 1499 1500 dmabuf = dma_buf_get(fd); 1501 if (IS_ERR(dmabuf)) 1502 return PTR_ERR(dmabuf); 1503 1504 attach = dma_buf_attach(dmabuf, gadget->dev.parent); 1505 if (IS_ERR(attach)) { 1506 err = PTR_ERR(attach); 1507 goto err_dmabuf_put; 1508 } 1509 1510 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1511 if (!priv) { 1512 err = -ENOMEM; 1513 goto err_dmabuf_detach; 1514 } 1515 1516 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1517 1518 err = ffs_dma_resv_lock(dmabuf, nonblock); 1519 if (err) 1520 goto err_free_priv; 1521 1522 sg_table = dma_buf_map_attachment(attach, dir); 1523 dma_resv_unlock(dmabuf->resv); 1524 1525 if (IS_ERR(sg_table)) { 1526 err = PTR_ERR(sg_table); 1527 goto err_free_priv; 1528 } 1529 1530 attach->importer_priv = priv; 1531 1532 priv->sgt = sg_table; 1533 priv->dir = dir; 1534 priv->ffs = epfile->ffs; 1535 priv->attach = attach; 1536 spin_lock_init(&priv->lock); 1537 kref_init(&priv->ref); 1538 priv->context = dma_fence_context_alloc(1); 1539 1540 mutex_lock(&epfile->dmabufs_mutex); 1541 list_add(&priv->entry, &epfile->dmabufs); 1542 mutex_unlock(&epfile->dmabufs_mutex); 1543 1544 return 0; 1545 1546 err_free_priv: 1547 kfree(priv); 1548 err_dmabuf_detach: 1549 dma_buf_detach(dmabuf, attach); 1550 err_dmabuf_put: 1551 dma_buf_put(dmabuf); 1552 1553 return err; 1554 } 1555 1556 static int ffs_dmabuf_detach(struct file *file, int fd) 1557 { 1558 struct ffs_epfile *epfile = file->private_data; 1559 struct ffs_data *ffs = epfile->ffs; 1560 struct device *dev = ffs->gadget->dev.parent; 1561 struct ffs_dmabuf_priv *priv, *tmp; 1562 struct dma_buf *dmabuf; 1563 int ret = -EPERM; 1564 1565 dmabuf = dma_buf_get(fd); 1566 if (IS_ERR(dmabuf)) 1567 return PTR_ERR(dmabuf); 1568 1569 mutex_lock(&epfile->dmabufs_mutex); 1570 1571 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1572 if (priv->attach->dev == dev 1573 && priv->attach->dmabuf == dmabuf) { 1574 /* Cancel any pending transfer */ 1575 spin_lock_irq(&ffs->eps_lock); 1576 if (priv->ep && priv->req) 1577 usb_ep_dequeue(priv->ep, priv->req); 1578 spin_unlock_irq(&ffs->eps_lock); 1579 1580 list_del(&priv->entry); 1581 1582 /* Unref the reference from ffs_dmabuf_attach() */ 1583 ffs_dmabuf_put(priv->attach); 1584 ret = 0; 1585 break; 1586 } 1587 } 1588 1589 mutex_unlock(&epfile->dmabufs_mutex); 1590 dma_buf_put(dmabuf); 1591 1592 return ret; 1593 } 1594 1595 static int ffs_dmabuf_transfer(struct file *file, 1596 const struct usb_ffs_dmabuf_transfer_req *req) 1597 { 1598 bool nonblock = file->f_flags & O_NONBLOCK; 1599 struct ffs_epfile *epfile = file->private_data; 1600 struct dma_buf_attachment *attach; 1601 struct ffs_dmabuf_priv *priv; 1602 struct ffs_dma_fence *fence; 1603 struct usb_request *usb_req; 1604 enum dma_resv_usage resv_dir; 1605 struct dma_buf *dmabuf; 1606 unsigned long timeout; 1607 struct ffs_ep *ep; 1608 bool cookie; 1609 u32 seqno; 1610 long retl; 1611 int ret; 1612 1613 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK) 1614 return -EINVAL; 1615 1616 dmabuf = dma_buf_get(req->fd); 1617 if (IS_ERR(dmabuf)) 1618 return PTR_ERR(dmabuf); 1619 1620 if (req->length > dmabuf->size || req->length == 0) { 1621 ret = -EINVAL; 1622 goto err_dmabuf_put; 1623 } 1624 1625 attach = ffs_dmabuf_find_attachment(epfile, dmabuf); 1626 if (IS_ERR(attach)) { 1627 ret = PTR_ERR(attach); 1628 goto err_dmabuf_put; 1629 } 1630 1631 priv = attach->importer_priv; 1632 1633 ep = ffs_epfile_wait_ep(file); 1634 if (IS_ERR(ep)) { 1635 ret = PTR_ERR(ep); 1636 goto err_attachment_put; 1637 } 1638 1639 ret = ffs_dma_resv_lock(dmabuf, nonblock); 1640 if (ret) 1641 goto err_attachment_put; 1642 1643 /* Make sure we don't have writers */ 1644 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS); 1645 retl = dma_resv_wait_timeout(dmabuf->resv, 1646 dma_resv_usage_rw(epfile->in), 1647 true, timeout); 1648 if (retl == 0) 1649 retl = -EBUSY; 1650 if (retl < 0) { 1651 ret = (int)retl; 1652 goto err_resv_unlock; 1653 } 1654 1655 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 1656 if (ret) 1657 goto err_resv_unlock; 1658 1659 fence = kmalloc(sizeof(*fence), GFP_KERNEL); 1660 if (!fence) { 1661 ret = -ENOMEM; 1662 goto err_resv_unlock; 1663 } 1664 1665 fence->priv = priv; 1666 1667 spin_lock_irq(&epfile->ffs->eps_lock); 1668 1669 /* In the meantime, endpoint got disabled or changed. */ 1670 if (epfile->ep != ep) { 1671 ret = -ESHUTDOWN; 1672 goto err_fence_put; 1673 } 1674 1675 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC); 1676 if (!usb_req) { 1677 ret = -ENOMEM; 1678 goto err_fence_put; 1679 } 1680 1681 /* 1682 * usb_ep_queue() guarantees that all transfers are processed in the 1683 * order they are enqueued, so we can use a simple incrementing 1684 * sequence number for the dma_fence. 1685 */ 1686 seqno = atomic_add_return(1, &epfile->seqno); 1687 1688 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops, 1689 &priv->lock, priv->context, seqno); 1690 1691 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; 1692 1693 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir); 1694 dma_resv_unlock(dmabuf->resv); 1695 1696 /* Now that the dma_fence is in place, queue the transfer. */ 1697 1698 usb_req->length = req->length; 1699 usb_req->buf = NULL; 1700 usb_req->sg = priv->sgt->sgl; 1701 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length); 1702 usb_req->sg_was_mapped = true; 1703 usb_req->context = fence; 1704 usb_req->complete = ffs_epfile_dmabuf_io_complete; 1705 1706 cookie = dma_fence_begin_signalling(); 1707 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC); 1708 dma_fence_end_signalling(cookie); 1709 if (!ret) { 1710 priv->req = usb_req; 1711 priv->ep = ep->ep; 1712 } else { 1713 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret); 1714 ffs_dmabuf_signal_done(fence, ret); 1715 usb_ep_free_request(ep->ep, usb_req); 1716 } 1717 1718 spin_unlock_irq(&epfile->ffs->eps_lock); 1719 dma_buf_put(dmabuf); 1720 1721 return ret; 1722 1723 err_fence_put: 1724 spin_unlock_irq(&epfile->ffs->eps_lock); 1725 dma_fence_put(&fence->base); 1726 err_resv_unlock: 1727 dma_resv_unlock(dmabuf->resv); 1728 err_attachment_put: 1729 ffs_dmabuf_put(attach); 1730 err_dmabuf_put: 1731 dma_buf_put(dmabuf); 1732 1733 return ret; 1734 } 1735 1736 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1737 unsigned long value) 1738 { 1739 struct ffs_epfile *epfile = file->private_data; 1740 struct ffs_ep *ep; 1741 int ret; 1742 1743 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1744 return -ENODEV; 1745 1746 switch (code) { 1747 case FUNCTIONFS_DMABUF_ATTACH: 1748 { 1749 int fd; 1750 1751 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1752 ret = -EFAULT; 1753 break; 1754 } 1755 1756 return ffs_dmabuf_attach(file, fd); 1757 } 1758 case FUNCTIONFS_DMABUF_DETACH: 1759 { 1760 int fd; 1761 1762 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1763 ret = -EFAULT; 1764 break; 1765 } 1766 1767 return ffs_dmabuf_detach(file, fd); 1768 } 1769 case FUNCTIONFS_DMABUF_TRANSFER: 1770 { 1771 struct usb_ffs_dmabuf_transfer_req req; 1772 1773 if (copy_from_user(&req, (void __user *)value, sizeof(req))) { 1774 ret = -EFAULT; 1775 break; 1776 } 1777 1778 return ffs_dmabuf_transfer(file, &req); 1779 } 1780 default: 1781 break; 1782 } 1783 1784 /* Wait for endpoint to be enabled */ 1785 ep = ffs_epfile_wait_ep(file); 1786 if (IS_ERR(ep)) 1787 return PTR_ERR(ep); 1788 1789 spin_lock_irq(&epfile->ffs->eps_lock); 1790 1791 /* In the meantime, endpoint got disabled or changed. */ 1792 if (epfile->ep != ep) { 1793 spin_unlock_irq(&epfile->ffs->eps_lock); 1794 return -ESHUTDOWN; 1795 } 1796 1797 switch (code) { 1798 case FUNCTIONFS_FIFO_STATUS: 1799 ret = usb_ep_fifo_status(epfile->ep->ep); 1800 break; 1801 case FUNCTIONFS_FIFO_FLUSH: 1802 usb_ep_fifo_flush(epfile->ep->ep); 1803 ret = 0; 1804 break; 1805 case FUNCTIONFS_CLEAR_HALT: 1806 ret = usb_ep_clear_halt(epfile->ep->ep); 1807 break; 1808 case FUNCTIONFS_ENDPOINT_REVMAP: 1809 ret = epfile->ep->num; 1810 break; 1811 case FUNCTIONFS_ENDPOINT_DESC: 1812 { 1813 int desc_idx; 1814 struct usb_endpoint_descriptor desc1, *desc; 1815 1816 switch (epfile->ffs->gadget->speed) { 1817 case USB_SPEED_SUPER: 1818 case USB_SPEED_SUPER_PLUS: 1819 desc_idx = 2; 1820 break; 1821 case USB_SPEED_HIGH: 1822 desc_idx = 1; 1823 break; 1824 default: 1825 desc_idx = 0; 1826 } 1827 1828 desc = epfile->ep->descs[desc_idx]; 1829 memcpy(&desc1, desc, desc->bLength); 1830 1831 spin_unlock_irq(&epfile->ffs->eps_lock); 1832 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1833 if (ret) 1834 ret = -EFAULT; 1835 return ret; 1836 } 1837 default: 1838 ret = -ENOTTY; 1839 } 1840 spin_unlock_irq(&epfile->ffs->eps_lock); 1841 1842 return ret; 1843 } 1844 1845 static const struct file_operations ffs_epfile_operations = { 1846 1847 .open = ffs_epfile_open, 1848 .write_iter = ffs_epfile_write_iter, 1849 .read_iter = ffs_epfile_read_iter, 1850 .release = ffs_epfile_release, 1851 .unlocked_ioctl = ffs_epfile_ioctl, 1852 .compat_ioctl = compat_ptr_ioctl, 1853 }; 1854 1855 1856 /* File system and super block operations ***********************************/ 1857 1858 /* 1859 * Mounting the file system creates a controller file, used first for 1860 * function configuration then later for event monitoring. 1861 */ 1862 1863 static struct inode *__must_check 1864 ffs_sb_make_inode(struct super_block *sb, void *data, 1865 const struct file_operations *fops, 1866 const struct inode_operations *iops, 1867 struct ffs_file_perms *perms) 1868 { 1869 struct inode *inode; 1870 1871 inode = new_inode(sb); 1872 1873 if (inode) { 1874 struct timespec64 ts = inode_set_ctime_current(inode); 1875 1876 inode->i_ino = get_next_ino(); 1877 inode->i_mode = perms->mode; 1878 inode->i_uid = perms->uid; 1879 inode->i_gid = perms->gid; 1880 inode_set_atime_to_ts(inode, ts); 1881 inode_set_mtime_to_ts(inode, ts); 1882 inode->i_private = data; 1883 if (fops) 1884 inode->i_fop = fops; 1885 if (iops) 1886 inode->i_op = iops; 1887 } 1888 1889 return inode; 1890 } 1891 1892 /* Create "regular" file */ 1893 static int ffs_sb_create_file(struct super_block *sb, const char *name, 1894 void *data, const struct file_operations *fops) 1895 { 1896 struct ffs_data *ffs = sb->s_fs_info; 1897 struct dentry *dentry; 1898 struct inode *inode; 1899 1900 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1901 if (!inode) 1902 return -ENOMEM; 1903 dentry = simple_start_creating(sb->s_root, name); 1904 if (IS_ERR(dentry)) { 1905 iput(inode); 1906 return PTR_ERR(dentry); 1907 } 1908 1909 d_make_persistent(dentry, inode); 1910 1911 simple_done_creating(dentry); 1912 return 0; 1913 } 1914 1915 /* Super block */ 1916 static const struct super_operations ffs_sb_operations = { 1917 .statfs = simple_statfs, 1918 .drop_inode = inode_just_drop, 1919 }; 1920 1921 struct ffs_sb_fill_data { 1922 struct ffs_file_perms perms; 1923 umode_t root_mode; 1924 const char *dev_name; 1925 bool no_disconnect; 1926 struct ffs_data *ffs_data; 1927 }; 1928 1929 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1930 { 1931 struct ffs_sb_fill_data *data = fc->fs_private; 1932 struct inode *inode; 1933 struct ffs_data *ffs = data->ffs_data; 1934 1935 ffs->sb = sb; 1936 data->ffs_data = NULL; 1937 sb->s_fs_info = ffs; 1938 sb->s_blocksize = PAGE_SIZE; 1939 sb->s_blocksize_bits = PAGE_SHIFT; 1940 sb->s_magic = FUNCTIONFS_MAGIC; 1941 sb->s_op = &ffs_sb_operations; 1942 sb->s_time_gran = 1; 1943 1944 /* Root inode */ 1945 data->perms.mode = data->root_mode; 1946 inode = ffs_sb_make_inode(sb, NULL, 1947 &simple_dir_operations, 1948 &simple_dir_inode_operations, 1949 &data->perms); 1950 sb->s_root = d_make_root(inode); 1951 if (!sb->s_root) 1952 return -ENOMEM; 1953 1954 /* EP0 file */ 1955 return ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations); 1956 } 1957 1958 enum { 1959 Opt_no_disconnect, 1960 Opt_rmode, 1961 Opt_fmode, 1962 Opt_mode, 1963 Opt_uid, 1964 Opt_gid, 1965 }; 1966 1967 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1968 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1969 fsparam_u32 ("rmode", Opt_rmode), 1970 fsparam_u32 ("fmode", Opt_fmode), 1971 fsparam_u32 ("mode", Opt_mode), 1972 fsparam_u32 ("uid", Opt_uid), 1973 fsparam_u32 ("gid", Opt_gid), 1974 {} 1975 }; 1976 1977 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1978 { 1979 struct ffs_sb_fill_data *data = fc->fs_private; 1980 struct fs_parse_result result; 1981 int opt; 1982 1983 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1984 if (opt < 0) 1985 return opt; 1986 1987 switch (opt) { 1988 case Opt_no_disconnect: 1989 data->no_disconnect = result.boolean; 1990 break; 1991 case Opt_rmode: 1992 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1993 break; 1994 case Opt_fmode: 1995 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1996 break; 1997 case Opt_mode: 1998 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1999 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 2000 break; 2001 2002 case Opt_uid: 2003 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 2004 if (!uid_valid(data->perms.uid)) 2005 goto unmapped_value; 2006 break; 2007 case Opt_gid: 2008 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 2009 if (!gid_valid(data->perms.gid)) 2010 goto unmapped_value; 2011 break; 2012 2013 default: 2014 return -ENOPARAM; 2015 } 2016 2017 return 0; 2018 2019 unmapped_value: 2020 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 2021 } 2022 2023 /* 2024 * Set up the superblock for a mount. 2025 */ 2026 static int ffs_fs_get_tree(struct fs_context *fc) 2027 { 2028 struct ffs_sb_fill_data *ctx = fc->fs_private; 2029 struct ffs_data *ffs; 2030 int ret; 2031 2032 if (!fc->source) 2033 return invalf(fc, "No source specified"); 2034 2035 ffs = ffs_data_new(fc->source); 2036 if (!ffs) 2037 return -ENOMEM; 2038 ffs->file_perms = ctx->perms; 2039 ffs->no_disconnect = ctx->no_disconnect; 2040 2041 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 2042 if (!ffs->dev_name) { 2043 ffs_data_put(ffs); 2044 return -ENOMEM; 2045 } 2046 2047 ret = ffs_acquire_dev(ffs->dev_name, ffs); 2048 if (ret) { 2049 ffs_data_put(ffs); 2050 return ret; 2051 } 2052 2053 ctx->ffs_data = ffs; 2054 return get_tree_nodev(fc, ffs_sb_fill); 2055 } 2056 2057 static void ffs_fs_free_fc(struct fs_context *fc) 2058 { 2059 struct ffs_sb_fill_data *ctx = fc->fs_private; 2060 2061 if (ctx) { 2062 if (ctx->ffs_data) { 2063 ffs_data_put(ctx->ffs_data); 2064 } 2065 2066 kfree(ctx); 2067 } 2068 } 2069 2070 static const struct fs_context_operations ffs_fs_context_ops = { 2071 .free = ffs_fs_free_fc, 2072 .parse_param = ffs_fs_parse_param, 2073 .get_tree = ffs_fs_get_tree, 2074 }; 2075 2076 static int ffs_fs_init_fs_context(struct fs_context *fc) 2077 { 2078 struct ffs_sb_fill_data *ctx; 2079 2080 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 2081 if (!ctx) 2082 return -ENOMEM; 2083 2084 ctx->perms.mode = S_IFREG | 0600; 2085 ctx->perms.uid = GLOBAL_ROOT_UID; 2086 ctx->perms.gid = GLOBAL_ROOT_GID; 2087 ctx->root_mode = S_IFDIR | 0500; 2088 ctx->no_disconnect = false; 2089 2090 fc->fs_private = ctx; 2091 fc->ops = &ffs_fs_context_ops; 2092 return 0; 2093 } 2094 2095 static void ffs_data_reset(struct ffs_data *ffs); 2096 2097 static void 2098 ffs_fs_kill_sb(struct super_block *sb) 2099 { 2100 kill_anon_super(sb); 2101 if (sb->s_fs_info) { 2102 struct ffs_data *ffs = sb->s_fs_info; 2103 ffs->state = FFS_CLOSING; 2104 ffs_data_reset(ffs); 2105 // no configfs accesses from that point on, 2106 // so no further schedule_work() is possible 2107 cancel_work_sync(&ffs->reset_work); 2108 ffs_data_put(ffs); 2109 } 2110 } 2111 2112 static struct file_system_type ffs_fs_type = { 2113 .owner = THIS_MODULE, 2114 .name = "functionfs", 2115 .init_fs_context = ffs_fs_init_fs_context, 2116 .parameters = ffs_fs_fs_parameters, 2117 .kill_sb = ffs_fs_kill_sb, 2118 }; 2119 MODULE_ALIAS_FS("functionfs"); 2120 2121 2122 /* Driver's main init/cleanup functions *************************************/ 2123 2124 static int functionfs_init(void) 2125 { 2126 int ret; 2127 2128 ret = register_filesystem(&ffs_fs_type); 2129 if (!ret) 2130 pr_info("file system registered\n"); 2131 else 2132 pr_err("failed registering file system (%d)\n", ret); 2133 2134 return ret; 2135 } 2136 2137 static void functionfs_cleanup(void) 2138 { 2139 pr_info("unloading\n"); 2140 unregister_filesystem(&ffs_fs_type); 2141 } 2142 2143 2144 /* ffs_data and ffs_function construction and destruction code **************/ 2145 2146 static void ffs_data_clear(struct ffs_data *ffs); 2147 2148 static void ffs_data_get(struct ffs_data *ffs) 2149 { 2150 refcount_inc(&ffs->ref); 2151 } 2152 2153 static void ffs_data_opened(struct ffs_data *ffs) 2154 { 2155 if (atomic_add_return(1, &ffs->opened) == 1 && 2156 ffs->state == FFS_DEACTIVATED) { 2157 ffs->state = FFS_CLOSING; 2158 ffs_data_reset(ffs); 2159 } 2160 } 2161 2162 static void ffs_data_put(struct ffs_data *ffs) 2163 { 2164 if (refcount_dec_and_test(&ffs->ref)) { 2165 pr_info("%s(): freeing\n", __func__); 2166 ffs_data_clear(ffs); 2167 ffs_release_dev(ffs->private_data); 2168 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 2169 swait_active(&ffs->ep0req_completion.wait) || 2170 waitqueue_active(&ffs->wait)); 2171 destroy_workqueue(ffs->io_completion_wq); 2172 kfree(ffs->dev_name); 2173 kfree(ffs); 2174 } 2175 } 2176 2177 static void ffs_data_closed(struct ffs_data *ffs) 2178 { 2179 if (atomic_dec_and_test(&ffs->opened)) { 2180 if (ffs->no_disconnect) { 2181 struct ffs_epfile *epfiles; 2182 unsigned long flags; 2183 2184 ffs->state = FFS_DEACTIVATED; 2185 spin_lock_irqsave(&ffs->eps_lock, flags); 2186 epfiles = ffs->epfiles; 2187 ffs->epfiles = NULL; 2188 spin_unlock_irqrestore(&ffs->eps_lock, 2189 flags); 2190 2191 if (epfiles) 2192 ffs_epfiles_destroy(ffs->sb, epfiles, 2193 ffs->eps_count); 2194 2195 if (ffs->setup_state == FFS_SETUP_PENDING) 2196 __ffs_ep0_stall(ffs); 2197 } else { 2198 ffs->state = FFS_CLOSING; 2199 ffs_data_reset(ffs); 2200 } 2201 } 2202 } 2203 2204 static struct ffs_data *ffs_data_new(const char *dev_name) 2205 { 2206 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 2207 if (!ffs) 2208 return NULL; 2209 2210 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 2211 if (!ffs->io_completion_wq) { 2212 kfree(ffs); 2213 return NULL; 2214 } 2215 2216 refcount_set(&ffs->ref, 1); 2217 atomic_set(&ffs->opened, 0); 2218 ffs->state = FFS_READ_DESCRIPTORS; 2219 mutex_init(&ffs->mutex); 2220 spin_lock_init(&ffs->eps_lock); 2221 init_waitqueue_head(&ffs->ev.waitq); 2222 init_waitqueue_head(&ffs->wait); 2223 init_completion(&ffs->ep0req_completion); 2224 2225 /* XXX REVISIT need to update it in some places, or do we? */ 2226 ffs->ev.can_stall = 1; 2227 2228 return ffs; 2229 } 2230 2231 static void ffs_data_clear(struct ffs_data *ffs) 2232 { 2233 struct ffs_epfile *epfiles; 2234 unsigned long flags; 2235 2236 ffs_closed(ffs); 2237 2238 BUG_ON(ffs->gadget); 2239 2240 spin_lock_irqsave(&ffs->eps_lock, flags); 2241 epfiles = ffs->epfiles; 2242 ffs->epfiles = NULL; 2243 spin_unlock_irqrestore(&ffs->eps_lock, flags); 2244 2245 /* 2246 * potential race possible between ffs_func_eps_disable 2247 * & ffs_epfile_release therefore maintaining a local 2248 * copy of epfile will save us from use-after-free. 2249 */ 2250 if (epfiles) { 2251 ffs_epfiles_destroy(ffs->sb, epfiles, ffs->eps_count); 2252 ffs->epfiles = NULL; 2253 } 2254 2255 if (ffs->ffs_eventfd) { 2256 eventfd_ctx_put(ffs->ffs_eventfd); 2257 ffs->ffs_eventfd = NULL; 2258 } 2259 2260 kfree(ffs->raw_descs_data); 2261 kfree(ffs->raw_strings); 2262 kfree(ffs->stringtabs); 2263 } 2264 2265 static void ffs_data_reset(struct ffs_data *ffs) 2266 { 2267 ffs_data_clear(ffs); 2268 2269 ffs->raw_descs_data = NULL; 2270 ffs->raw_descs = NULL; 2271 ffs->raw_strings = NULL; 2272 ffs->stringtabs = NULL; 2273 2274 ffs->raw_descs_length = 0; 2275 ffs->fs_descs_count = 0; 2276 ffs->hs_descs_count = 0; 2277 ffs->ss_descs_count = 0; 2278 2279 ffs->strings_count = 0; 2280 ffs->interfaces_count = 0; 2281 ffs->eps_count = 0; 2282 2283 ffs->ev.count = 0; 2284 2285 ffs->state = FFS_READ_DESCRIPTORS; 2286 ffs->setup_state = FFS_NO_SETUP; 2287 ffs->flags = 0; 2288 2289 ffs->ms_os_descs_ext_prop_count = 0; 2290 ffs->ms_os_descs_ext_prop_name_len = 0; 2291 ffs->ms_os_descs_ext_prop_data_len = 0; 2292 } 2293 2294 2295 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 2296 { 2297 struct usb_gadget_strings **lang; 2298 int first_id; 2299 2300 if ((ffs->state != FFS_ACTIVE 2301 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 2302 return -EBADFD; 2303 2304 first_id = usb_string_ids_n(cdev, ffs->strings_count); 2305 if (first_id < 0) 2306 return first_id; 2307 2308 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 2309 if (!ffs->ep0req) 2310 return -ENOMEM; 2311 ffs->ep0req->complete = ffs_ep0_complete; 2312 ffs->ep0req->context = ffs; 2313 2314 lang = ffs->stringtabs; 2315 if (lang) { 2316 for (; *lang; ++lang) { 2317 struct usb_string *str = (*lang)->strings; 2318 int id = first_id; 2319 for (; str->s; ++id, ++str) 2320 str->id = id; 2321 } 2322 } 2323 2324 ffs->gadget = cdev->gadget; 2325 ffs_data_get(ffs); 2326 return 0; 2327 } 2328 2329 static void functionfs_unbind(struct ffs_data *ffs) 2330 { 2331 if (!WARN_ON(!ffs->gadget)) { 2332 /* dequeue before freeing ep0req */ 2333 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 2334 mutex_lock(&ffs->mutex); 2335 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 2336 ffs->ep0req = NULL; 2337 ffs->gadget = NULL; 2338 clear_bit(FFS_FL_BOUND, &ffs->flags); 2339 mutex_unlock(&ffs->mutex); 2340 ffs_data_put(ffs); 2341 } 2342 } 2343 2344 static int ffs_epfiles_create(struct ffs_data *ffs) 2345 { 2346 struct ffs_epfile *epfile, *epfiles; 2347 unsigned i, count; 2348 int err; 2349 2350 count = ffs->eps_count; 2351 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 2352 if (!epfiles) 2353 return -ENOMEM; 2354 2355 epfile = epfiles; 2356 for (i = 1; i <= count; ++i, ++epfile) { 2357 epfile->ffs = ffs; 2358 mutex_init(&epfile->mutex); 2359 mutex_init(&epfile->dmabufs_mutex); 2360 INIT_LIST_HEAD(&epfile->dmabufs); 2361 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2362 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 2363 else 2364 sprintf(epfile->name, "ep%u", i); 2365 err = ffs_sb_create_file(ffs->sb, epfile->name, 2366 epfile, &ffs_epfile_operations); 2367 if (err) { 2368 ffs_epfiles_destroy(ffs->sb, epfiles, i - 1); 2369 return err; 2370 } 2371 } 2372 2373 ffs->epfiles = epfiles; 2374 return 0; 2375 } 2376 2377 static void clear_one(struct dentry *dentry) 2378 { 2379 smp_store_release(&dentry->d_inode->i_private, NULL); 2380 } 2381 2382 static void ffs_epfiles_destroy(struct super_block *sb, 2383 struct ffs_epfile *epfiles, unsigned count) 2384 { 2385 struct ffs_epfile *epfile = epfiles; 2386 struct dentry *root = sb->s_root; 2387 2388 for (; count; --count, ++epfile) { 2389 BUG_ON(mutex_is_locked(&epfile->mutex)); 2390 simple_remove_by_name(root, epfile->name, clear_one); 2391 } 2392 2393 kfree(epfiles); 2394 } 2395 2396 static void ffs_func_eps_disable(struct ffs_function *func) 2397 { 2398 struct ffs_ep *ep; 2399 struct ffs_epfile *epfile; 2400 unsigned short count; 2401 unsigned long flags; 2402 2403 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2404 count = func->ffs->eps_count; 2405 epfile = func->ffs->epfiles; 2406 ep = func->eps; 2407 while (count--) { 2408 /* pending requests get nuked */ 2409 if (ep->ep) 2410 usb_ep_disable(ep->ep); 2411 ++ep; 2412 2413 if (epfile) { 2414 epfile->ep = NULL; 2415 __ffs_epfile_read_buffer_free(epfile); 2416 ++epfile; 2417 } 2418 } 2419 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2420 } 2421 2422 static int ffs_func_eps_enable(struct ffs_function *func) 2423 { 2424 struct ffs_data *ffs; 2425 struct ffs_ep *ep; 2426 struct ffs_epfile *epfile; 2427 unsigned short count; 2428 unsigned long flags; 2429 int ret = 0; 2430 2431 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2432 ffs = func->ffs; 2433 ep = func->eps; 2434 epfile = ffs->epfiles; 2435 count = ffs->eps_count; 2436 if (!epfile) { 2437 ret = -ENOMEM; 2438 goto done; 2439 } 2440 2441 while (count--) { 2442 ep->ep->driver_data = ep; 2443 2444 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2445 if (ret) { 2446 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2447 __func__, ep->ep->name, ret); 2448 break; 2449 } 2450 2451 ret = usb_ep_enable(ep->ep); 2452 if (!ret) { 2453 epfile->ep = ep; 2454 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2455 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2456 } else { 2457 break; 2458 } 2459 2460 ++ep; 2461 ++epfile; 2462 } 2463 2464 wake_up_interruptible(&ffs->wait); 2465 done: 2466 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2467 2468 return ret; 2469 } 2470 2471 2472 /* Parsing and building descriptors and strings *****************************/ 2473 2474 /* 2475 * This validates if data pointed by data is a valid USB descriptor as 2476 * well as record how many interfaces, endpoints and strings are 2477 * required by given configuration. Returns address after the 2478 * descriptor or NULL if data is invalid. 2479 */ 2480 2481 enum ffs_entity_type { 2482 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2483 }; 2484 2485 enum ffs_os_desc_type { 2486 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2487 }; 2488 2489 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2490 u8 *valuep, 2491 struct usb_descriptor_header *desc, 2492 void *priv); 2493 2494 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2495 struct usb_os_desc_header *h, void *data, 2496 unsigned len, void *priv); 2497 2498 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2499 ffs_entity_callback entity, 2500 void *priv, int *current_class, int *current_subclass) 2501 { 2502 struct usb_descriptor_header *_ds = (void *)data; 2503 u8 length; 2504 int ret; 2505 2506 /* At least two bytes are required: length and type */ 2507 if (len < 2) { 2508 pr_vdebug("descriptor too short\n"); 2509 return -EINVAL; 2510 } 2511 2512 /* If we have at least as many bytes as the descriptor takes? */ 2513 length = _ds->bLength; 2514 if (len < length) { 2515 pr_vdebug("descriptor longer then available data\n"); 2516 return -EINVAL; 2517 } 2518 2519 #define __entity_check_INTERFACE(val) 1 2520 #define __entity_check_STRING(val) (val) 2521 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2522 #define __entity(type, val) do { \ 2523 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2524 if (!__entity_check_ ##type(val)) { \ 2525 pr_vdebug("invalid entity's value\n"); \ 2526 return -EINVAL; \ 2527 } \ 2528 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2529 if (ret < 0) { \ 2530 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2531 (val), ret); \ 2532 return ret; \ 2533 } \ 2534 } while (0) 2535 2536 /* Parse descriptor depending on type. */ 2537 switch (_ds->bDescriptorType) { 2538 case USB_DT_DEVICE: 2539 case USB_DT_CONFIG: 2540 case USB_DT_STRING: 2541 case USB_DT_DEVICE_QUALIFIER: 2542 /* function can't have any of those */ 2543 pr_vdebug("descriptor reserved for gadget: %d\n", 2544 _ds->bDescriptorType); 2545 return -EINVAL; 2546 2547 case USB_DT_INTERFACE: { 2548 struct usb_interface_descriptor *ds = (void *)_ds; 2549 pr_vdebug("interface descriptor\n"); 2550 if (length != sizeof *ds) 2551 goto inv_length; 2552 2553 __entity(INTERFACE, ds->bInterfaceNumber); 2554 if (ds->iInterface) 2555 __entity(STRING, ds->iInterface); 2556 *current_class = ds->bInterfaceClass; 2557 *current_subclass = ds->bInterfaceSubClass; 2558 } 2559 break; 2560 2561 case USB_DT_ENDPOINT: { 2562 struct usb_endpoint_descriptor *ds = (void *)_ds; 2563 pr_vdebug("endpoint descriptor\n"); 2564 if (length != USB_DT_ENDPOINT_SIZE && 2565 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2566 goto inv_length; 2567 __entity(ENDPOINT, ds->bEndpointAddress); 2568 } 2569 break; 2570 2571 case USB_TYPE_CLASS | 0x01: 2572 if (*current_class == USB_INTERFACE_CLASS_HID) { 2573 pr_vdebug("hid descriptor\n"); 2574 if (length != sizeof(struct hid_descriptor)) 2575 goto inv_length; 2576 break; 2577 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2578 pr_vdebug("ccid descriptor\n"); 2579 if (length != sizeof(struct ccid_descriptor)) 2580 goto inv_length; 2581 break; 2582 } else if (*current_class == USB_CLASS_APP_SPEC && 2583 *current_subclass == USB_SUBCLASS_DFU) { 2584 pr_vdebug("dfu functional descriptor\n"); 2585 if (length != sizeof(struct usb_dfu_functional_descriptor)) 2586 goto inv_length; 2587 break; 2588 } else { 2589 pr_vdebug("unknown descriptor: %d for class %d\n", 2590 _ds->bDescriptorType, *current_class); 2591 return -EINVAL; 2592 } 2593 2594 case USB_DT_OTG: 2595 if (length != sizeof(struct usb_otg_descriptor)) 2596 goto inv_length; 2597 break; 2598 2599 case USB_DT_INTERFACE_ASSOCIATION: { 2600 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2601 pr_vdebug("interface association descriptor\n"); 2602 if (length != sizeof *ds) 2603 goto inv_length; 2604 if (ds->iFunction) 2605 __entity(STRING, ds->iFunction); 2606 } 2607 break; 2608 2609 case USB_DT_SS_ENDPOINT_COMP: 2610 pr_vdebug("EP SS companion descriptor\n"); 2611 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2612 goto inv_length; 2613 break; 2614 2615 case USB_DT_OTHER_SPEED_CONFIG: 2616 case USB_DT_INTERFACE_POWER: 2617 case USB_DT_DEBUG: 2618 case USB_DT_SECURITY: 2619 case USB_DT_CS_RADIO_CONTROL: 2620 /* TODO */ 2621 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2622 return -EINVAL; 2623 2624 default: 2625 /* We should never be here */ 2626 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2627 return -EINVAL; 2628 2629 inv_length: 2630 pr_vdebug("invalid length: %d (descriptor %d)\n", 2631 _ds->bLength, _ds->bDescriptorType); 2632 return -EINVAL; 2633 } 2634 2635 #undef __entity 2636 #undef __entity_check_DESCRIPTOR 2637 #undef __entity_check_INTERFACE 2638 #undef __entity_check_STRING 2639 #undef __entity_check_ENDPOINT 2640 2641 return length; 2642 } 2643 2644 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2645 ffs_entity_callback entity, void *priv) 2646 { 2647 const unsigned _len = len; 2648 unsigned long num = 0; 2649 int current_class = -1; 2650 int current_subclass = -1; 2651 2652 for (;;) { 2653 int ret; 2654 2655 if (num == count) 2656 data = NULL; 2657 2658 /* Record "descriptor" entity */ 2659 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2660 if (ret < 0) { 2661 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2662 num, ret); 2663 return ret; 2664 } 2665 2666 if (!data) 2667 return _len - len; 2668 2669 ret = ffs_do_single_desc(data, len, entity, priv, 2670 ¤t_class, ¤t_subclass); 2671 if (ret < 0) { 2672 pr_debug("%s returns %d\n", __func__, ret); 2673 return ret; 2674 } 2675 2676 len -= ret; 2677 data += ret; 2678 ++num; 2679 } 2680 } 2681 2682 static int __ffs_data_do_entity(enum ffs_entity_type type, 2683 u8 *valuep, struct usb_descriptor_header *desc, 2684 void *priv) 2685 { 2686 struct ffs_desc_helper *helper = priv; 2687 struct usb_endpoint_descriptor *d; 2688 2689 switch (type) { 2690 case FFS_DESCRIPTOR: 2691 break; 2692 2693 case FFS_INTERFACE: 2694 /* 2695 * Interfaces are indexed from zero so if we 2696 * encountered interface "n" then there are at least 2697 * "n+1" interfaces. 2698 */ 2699 if (*valuep >= helper->interfaces_count) 2700 helper->interfaces_count = *valuep + 1; 2701 break; 2702 2703 case FFS_STRING: 2704 /* 2705 * Strings are indexed from 1 (0 is reserved 2706 * for languages list) 2707 */ 2708 if (*valuep > helper->ffs->strings_count) 2709 helper->ffs->strings_count = *valuep; 2710 break; 2711 2712 case FFS_ENDPOINT: 2713 d = (void *)desc; 2714 helper->eps_count++; 2715 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2716 return -EINVAL; 2717 /* Check if descriptors for any speed were already parsed */ 2718 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2719 helper->ffs->eps_addrmap[helper->eps_count] = 2720 d->bEndpointAddress; 2721 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2722 d->bEndpointAddress) 2723 return -EINVAL; 2724 break; 2725 } 2726 2727 return 0; 2728 } 2729 2730 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2731 struct usb_os_desc_header *desc) 2732 { 2733 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2734 u16 w_index = le16_to_cpu(desc->wIndex); 2735 2736 if (bcd_version == 0x1) { 2737 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2738 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2739 } else if (bcd_version != 0x100) { 2740 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2741 bcd_version); 2742 return -EINVAL; 2743 } 2744 switch (w_index) { 2745 case 0x4: 2746 *next_type = FFS_OS_DESC_EXT_COMPAT; 2747 break; 2748 case 0x5: 2749 *next_type = FFS_OS_DESC_EXT_PROP; 2750 break; 2751 default: 2752 pr_vdebug("unsupported os descriptor type: %d", w_index); 2753 return -EINVAL; 2754 } 2755 2756 return sizeof(*desc); 2757 } 2758 2759 /* 2760 * Process all extended compatibility/extended property descriptors 2761 * of a feature descriptor 2762 */ 2763 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2764 enum ffs_os_desc_type type, 2765 u16 feature_count, 2766 ffs_os_desc_callback entity, 2767 void *priv, 2768 struct usb_os_desc_header *h) 2769 { 2770 int ret; 2771 const unsigned _len = len; 2772 2773 /* loop over all ext compat/ext prop descriptors */ 2774 while (feature_count--) { 2775 ret = entity(type, h, data, len, priv); 2776 if (ret < 0) { 2777 pr_debug("bad OS descriptor, type: %d\n", type); 2778 return ret; 2779 } 2780 data += ret; 2781 len -= ret; 2782 } 2783 return _len - len; 2784 } 2785 2786 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2787 static int __must_check ffs_do_os_descs(unsigned count, 2788 char *data, unsigned len, 2789 ffs_os_desc_callback entity, void *priv) 2790 { 2791 const unsigned _len = len; 2792 unsigned long num = 0; 2793 2794 for (num = 0; num < count; ++num) { 2795 int ret; 2796 enum ffs_os_desc_type type; 2797 u16 feature_count; 2798 struct usb_os_desc_header *desc = (void *)data; 2799 2800 if (len < sizeof(*desc)) 2801 return -EINVAL; 2802 2803 /* 2804 * Record "descriptor" entity. 2805 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2806 * Move the data pointer to the beginning of extended 2807 * compatibilities proper or extended properties proper 2808 * portions of the data 2809 */ 2810 if (le32_to_cpu(desc->dwLength) > len) 2811 return -EINVAL; 2812 2813 ret = __ffs_do_os_desc_header(&type, desc); 2814 if (ret < 0) { 2815 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2816 num, ret); 2817 return ret; 2818 } 2819 /* 2820 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2821 */ 2822 feature_count = le16_to_cpu(desc->wCount); 2823 if (type == FFS_OS_DESC_EXT_COMPAT && 2824 (feature_count > 255 || desc->Reserved)) 2825 return -EINVAL; 2826 len -= ret; 2827 data += ret; 2828 2829 /* 2830 * Process all function/property descriptors 2831 * of this Feature Descriptor 2832 */ 2833 ret = ffs_do_single_os_desc(data, len, type, 2834 feature_count, entity, priv, desc); 2835 if (ret < 0) { 2836 pr_debug("%s returns %d\n", __func__, ret); 2837 return ret; 2838 } 2839 2840 len -= ret; 2841 data += ret; 2842 } 2843 return _len - len; 2844 } 2845 2846 /* 2847 * Validate contents of the buffer from userspace related to OS descriptors. 2848 */ 2849 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2850 struct usb_os_desc_header *h, void *data, 2851 unsigned len, void *priv) 2852 { 2853 struct ffs_data *ffs = priv; 2854 u8 length; 2855 2856 switch (type) { 2857 case FFS_OS_DESC_EXT_COMPAT: { 2858 struct usb_ext_compat_desc *d = data; 2859 int i; 2860 2861 if (len < sizeof(*d) || 2862 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2863 return -EINVAL; 2864 if (d->Reserved1 != 1) { 2865 /* 2866 * According to the spec, Reserved1 must be set to 1 2867 * but older kernels incorrectly rejected non-zero 2868 * values. We fix it here to avoid returning EINVAL 2869 * in response to values we used to accept. 2870 */ 2871 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2872 d->Reserved1 = 1; 2873 } 2874 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2875 if (d->Reserved2[i]) 2876 return -EINVAL; 2877 2878 length = sizeof(struct usb_ext_compat_desc); 2879 } 2880 break; 2881 case FFS_OS_DESC_EXT_PROP: { 2882 struct usb_ext_prop_desc *d = data; 2883 u32 type, pdl; 2884 u16 pnl; 2885 2886 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2887 return -EINVAL; 2888 length = le32_to_cpu(d->dwSize); 2889 if (len < length) 2890 return -EINVAL; 2891 type = le32_to_cpu(d->dwPropertyDataType); 2892 if (type < USB_EXT_PROP_UNICODE || 2893 type > USB_EXT_PROP_UNICODE_MULTI) { 2894 pr_vdebug("unsupported os descriptor property type: %d", 2895 type); 2896 return -EINVAL; 2897 } 2898 pnl = le16_to_cpu(d->wPropertyNameLength); 2899 if (length < 14 + pnl) { 2900 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2901 length, pnl, type); 2902 return -EINVAL; 2903 } 2904 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2905 if (length != 14 + pnl + pdl) { 2906 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2907 length, pnl, pdl, type); 2908 return -EINVAL; 2909 } 2910 ++ffs->ms_os_descs_ext_prop_count; 2911 /* property name reported to the host as "WCHAR"s */ 2912 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2913 ffs->ms_os_descs_ext_prop_data_len += pdl; 2914 } 2915 break; 2916 default: 2917 pr_vdebug("unknown descriptor: %d\n", type); 2918 return -EINVAL; 2919 } 2920 return length; 2921 } 2922 2923 static int __ffs_data_got_descs(struct ffs_data *ffs, 2924 char *const _data, size_t len) 2925 { 2926 char *data = _data, *raw_descs; 2927 unsigned os_descs_count = 0, counts[3], flags; 2928 int ret = -EINVAL, i; 2929 struct ffs_desc_helper helper; 2930 2931 if (get_unaligned_le32(data + 4) != len) 2932 goto error; 2933 2934 switch (get_unaligned_le32(data)) { 2935 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2936 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2937 data += 8; 2938 len -= 8; 2939 break; 2940 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2941 flags = get_unaligned_le32(data + 8); 2942 ffs->user_flags = flags; 2943 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2944 FUNCTIONFS_HAS_HS_DESC | 2945 FUNCTIONFS_HAS_SS_DESC | 2946 FUNCTIONFS_HAS_MS_OS_DESC | 2947 FUNCTIONFS_VIRTUAL_ADDR | 2948 FUNCTIONFS_EVENTFD | 2949 FUNCTIONFS_ALL_CTRL_RECIP | 2950 FUNCTIONFS_CONFIG0_SETUP)) { 2951 ret = -ENOSYS; 2952 goto error; 2953 } 2954 data += 12; 2955 len -= 12; 2956 break; 2957 default: 2958 goto error; 2959 } 2960 2961 if (flags & FUNCTIONFS_EVENTFD) { 2962 if (len < 4) 2963 goto error; 2964 ffs->ffs_eventfd = 2965 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2966 if (IS_ERR(ffs->ffs_eventfd)) { 2967 ret = PTR_ERR(ffs->ffs_eventfd); 2968 ffs->ffs_eventfd = NULL; 2969 goto error; 2970 } 2971 data += 4; 2972 len -= 4; 2973 } 2974 2975 /* Read fs_count, hs_count and ss_count (if present) */ 2976 for (i = 0; i < 3; ++i) { 2977 if (!(flags & (1 << i))) { 2978 counts[i] = 0; 2979 } else if (len < 4) { 2980 goto error; 2981 } else { 2982 counts[i] = get_unaligned_le32(data); 2983 data += 4; 2984 len -= 4; 2985 } 2986 } 2987 if (flags & (1 << i)) { 2988 if (len < 4) { 2989 goto error; 2990 } 2991 os_descs_count = get_unaligned_le32(data); 2992 data += 4; 2993 len -= 4; 2994 } 2995 2996 /* Read descriptors */ 2997 raw_descs = data; 2998 helper.ffs = ffs; 2999 for (i = 0; i < 3; ++i) { 3000 if (!counts[i]) 3001 continue; 3002 helper.interfaces_count = 0; 3003 helper.eps_count = 0; 3004 ret = ffs_do_descs(counts[i], data, len, 3005 __ffs_data_do_entity, &helper); 3006 if (ret < 0) 3007 goto error; 3008 if (!ffs->eps_count && !ffs->interfaces_count) { 3009 ffs->eps_count = helper.eps_count; 3010 ffs->interfaces_count = helper.interfaces_count; 3011 } else { 3012 if (ffs->eps_count != helper.eps_count) { 3013 ret = -EINVAL; 3014 goto error; 3015 } 3016 if (ffs->interfaces_count != helper.interfaces_count) { 3017 ret = -EINVAL; 3018 goto error; 3019 } 3020 } 3021 data += ret; 3022 len -= ret; 3023 } 3024 if (os_descs_count) { 3025 ret = ffs_do_os_descs(os_descs_count, data, len, 3026 __ffs_data_do_os_desc, ffs); 3027 if (ret < 0) 3028 goto error; 3029 data += ret; 3030 len -= ret; 3031 } 3032 3033 if (raw_descs == data || len) { 3034 ret = -EINVAL; 3035 goto error; 3036 } 3037 3038 ffs->raw_descs_data = _data; 3039 ffs->raw_descs = raw_descs; 3040 ffs->raw_descs_length = data - raw_descs; 3041 ffs->fs_descs_count = counts[0]; 3042 ffs->hs_descs_count = counts[1]; 3043 ffs->ss_descs_count = counts[2]; 3044 ffs->ms_os_descs_count = os_descs_count; 3045 3046 return 0; 3047 3048 error: 3049 kfree(_data); 3050 return ret; 3051 } 3052 3053 static int __ffs_data_got_strings(struct ffs_data *ffs, 3054 char *const _data, size_t len) 3055 { 3056 u32 str_count, needed_count, lang_count; 3057 struct usb_gadget_strings **stringtabs, *t; 3058 const char *data = _data; 3059 struct usb_string *s; 3060 3061 if (len < 16 || 3062 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 3063 get_unaligned_le32(data + 4) != len) 3064 goto error; 3065 str_count = get_unaligned_le32(data + 8); 3066 lang_count = get_unaligned_le32(data + 12); 3067 3068 /* if one is zero the other must be zero */ 3069 if (!str_count != !lang_count) 3070 goto error; 3071 3072 /* Do we have at least as many strings as descriptors need? */ 3073 needed_count = ffs->strings_count; 3074 if (str_count < needed_count) 3075 goto error; 3076 3077 /* 3078 * If we don't need any strings just return and free all 3079 * memory. 3080 */ 3081 if (!needed_count) { 3082 kfree(_data); 3083 return 0; 3084 } 3085 3086 /* Allocate everything in one chunk so there's less maintenance. */ 3087 { 3088 unsigned i = 0; 3089 vla_group(d); 3090 vla_item(d, struct usb_gadget_strings *, stringtabs, 3091 size_add(lang_count, 1)); 3092 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 3093 vla_item(d, struct usb_string, strings, 3094 size_mul(lang_count, (needed_count + 1))); 3095 3096 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 3097 3098 if (!vlabuf) { 3099 kfree(_data); 3100 return -ENOMEM; 3101 } 3102 3103 /* Initialize the VLA pointers */ 3104 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3105 t = vla_ptr(vlabuf, d, stringtab); 3106 i = lang_count; 3107 do { 3108 *stringtabs++ = t++; 3109 } while (--i); 3110 *stringtabs = NULL; 3111 3112 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 3113 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3114 t = vla_ptr(vlabuf, d, stringtab); 3115 s = vla_ptr(vlabuf, d, strings); 3116 } 3117 3118 /* For each language */ 3119 data += 16; 3120 len -= 16; 3121 3122 do { /* lang_count > 0 so we can use do-while */ 3123 unsigned needed = needed_count; 3124 u32 str_per_lang = str_count; 3125 3126 if (len < 3) 3127 goto error_free; 3128 t->language = get_unaligned_le16(data); 3129 t->strings = s; 3130 ++t; 3131 3132 data += 2; 3133 len -= 2; 3134 3135 /* For each string */ 3136 do { /* str_count > 0 so we can use do-while */ 3137 size_t length = strnlen(data, len); 3138 3139 if (length == len) 3140 goto error_free; 3141 3142 /* 3143 * User may provide more strings then we need, 3144 * if that's the case we simply ignore the 3145 * rest 3146 */ 3147 if (needed) { 3148 /* 3149 * s->id will be set while adding 3150 * function to configuration so for 3151 * now just leave garbage here. 3152 */ 3153 s->s = data; 3154 --needed; 3155 ++s; 3156 } 3157 3158 data += length + 1; 3159 len -= length + 1; 3160 } while (--str_per_lang); 3161 3162 s->id = 0; /* terminator */ 3163 s->s = NULL; 3164 ++s; 3165 3166 } while (--lang_count); 3167 3168 /* Some garbage left? */ 3169 if (len) 3170 goto error_free; 3171 3172 /* Done! */ 3173 ffs->stringtabs = stringtabs; 3174 ffs->raw_strings = _data; 3175 3176 return 0; 3177 3178 error_free: 3179 kfree(stringtabs); 3180 error: 3181 kfree(_data); 3182 return -EINVAL; 3183 } 3184 3185 3186 /* Events handling and management *******************************************/ 3187 3188 static void __ffs_event_add(struct ffs_data *ffs, 3189 enum usb_functionfs_event_type type) 3190 { 3191 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 3192 int neg = 0; 3193 3194 /* 3195 * Abort any unhandled setup 3196 * 3197 * We do not need to worry about some cmpxchg() changing value 3198 * of ffs->setup_state without holding the lock because when 3199 * state is FFS_SETUP_PENDING cmpxchg() in several places in 3200 * the source does nothing. 3201 */ 3202 if (ffs->setup_state == FFS_SETUP_PENDING) 3203 ffs->setup_state = FFS_SETUP_CANCELLED; 3204 3205 /* 3206 * Logic of this function guarantees that there are at most four pending 3207 * evens on ffs->ev.types queue. This is important because the queue 3208 * has space for four elements only and __ffs_ep0_read_events function 3209 * depends on that limit as well. If more event types are added, those 3210 * limits have to be revisited or guaranteed to still hold. 3211 */ 3212 switch (type) { 3213 case FUNCTIONFS_RESUME: 3214 rem_type2 = FUNCTIONFS_SUSPEND; 3215 fallthrough; 3216 case FUNCTIONFS_SUSPEND: 3217 case FUNCTIONFS_SETUP: 3218 rem_type1 = type; 3219 /* Discard all similar events */ 3220 break; 3221 3222 case FUNCTIONFS_BIND: 3223 case FUNCTIONFS_UNBIND: 3224 case FUNCTIONFS_DISABLE: 3225 case FUNCTIONFS_ENABLE: 3226 /* Discard everything other then power management. */ 3227 rem_type1 = FUNCTIONFS_SUSPEND; 3228 rem_type2 = FUNCTIONFS_RESUME; 3229 neg = 1; 3230 break; 3231 3232 default: 3233 WARN(1, "%d: unknown event, this should not happen\n", type); 3234 return; 3235 } 3236 3237 { 3238 u8 *ev = ffs->ev.types, *out = ev; 3239 unsigned n = ffs->ev.count; 3240 for (; n; --n, ++ev) 3241 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 3242 *out++ = *ev; 3243 else 3244 pr_vdebug("purging event %d\n", *ev); 3245 ffs->ev.count = out - ffs->ev.types; 3246 } 3247 3248 pr_vdebug("adding event %d\n", type); 3249 ffs->ev.types[ffs->ev.count++] = type; 3250 wake_up_locked(&ffs->ev.waitq); 3251 if (ffs->ffs_eventfd) 3252 eventfd_signal(ffs->ffs_eventfd); 3253 } 3254 3255 static void ffs_event_add(struct ffs_data *ffs, 3256 enum usb_functionfs_event_type type) 3257 { 3258 unsigned long flags; 3259 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3260 __ffs_event_add(ffs, type); 3261 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3262 } 3263 3264 /* Bind/unbind USB function hooks *******************************************/ 3265 3266 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 3267 { 3268 int i; 3269 3270 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 3271 if (ffs->eps_addrmap[i] == endpoint_address) 3272 return i; 3273 return -ENOENT; 3274 } 3275 3276 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 3277 struct usb_descriptor_header *desc, 3278 void *priv) 3279 { 3280 struct usb_endpoint_descriptor *ds = (void *)desc; 3281 struct ffs_function *func = priv; 3282 struct ffs_ep *ffs_ep; 3283 unsigned ep_desc_id; 3284 int idx; 3285 static const char *speed_names[] = { "full", "high", "super" }; 3286 3287 if (type != FFS_DESCRIPTOR) 3288 return 0; 3289 3290 /* 3291 * If ss_descriptors is not NULL, we are reading super speed 3292 * descriptors; if hs_descriptors is not NULL, we are reading high 3293 * speed descriptors; otherwise, we are reading full speed 3294 * descriptors. 3295 */ 3296 if (func->function.ss_descriptors) { 3297 ep_desc_id = 2; 3298 func->function.ss_descriptors[(long)valuep] = desc; 3299 } else if (func->function.hs_descriptors) { 3300 ep_desc_id = 1; 3301 func->function.hs_descriptors[(long)valuep] = desc; 3302 } else { 3303 ep_desc_id = 0; 3304 func->function.fs_descriptors[(long)valuep] = desc; 3305 } 3306 3307 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 3308 return 0; 3309 3310 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 3311 if (idx < 0) 3312 return idx; 3313 3314 ffs_ep = func->eps + idx; 3315 3316 if (ffs_ep->descs[ep_desc_id]) { 3317 pr_err("two %sspeed descriptors for EP %d\n", 3318 speed_names[ep_desc_id], 3319 usb_endpoint_num(ds)); 3320 return -EINVAL; 3321 } 3322 ffs_ep->descs[ep_desc_id] = ds; 3323 3324 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 3325 if (ffs_ep->ep) { 3326 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 3327 if (!ds->wMaxPacketSize) 3328 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 3329 } else { 3330 struct usb_request *req; 3331 struct usb_ep *ep; 3332 u8 bEndpointAddress; 3333 u16 wMaxPacketSize; 3334 3335 /* 3336 * We back up bEndpointAddress because autoconfig overwrites 3337 * it with physical endpoint address. 3338 */ 3339 bEndpointAddress = ds->bEndpointAddress; 3340 /* 3341 * We back up wMaxPacketSize because autoconfig treats 3342 * endpoint descriptors as if they were full speed. 3343 */ 3344 wMaxPacketSize = ds->wMaxPacketSize; 3345 pr_vdebug("autoconfig\n"); 3346 ep = usb_ep_autoconfig(func->gadget, ds); 3347 if (!ep) 3348 return -ENOTSUPP; 3349 ep->driver_data = func->eps + idx; 3350 3351 req = usb_ep_alloc_request(ep, GFP_KERNEL); 3352 if (!req) 3353 return -ENOMEM; 3354 3355 ffs_ep->ep = ep; 3356 ffs_ep->req = req; 3357 func->eps_revmap[ds->bEndpointAddress & 3358 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 3359 /* 3360 * If we use virtual address mapping, we restore 3361 * original bEndpointAddress value. 3362 */ 3363 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3364 ds->bEndpointAddress = bEndpointAddress; 3365 /* 3366 * Restore wMaxPacketSize which was potentially 3367 * overwritten by autoconfig. 3368 */ 3369 ds->wMaxPacketSize = wMaxPacketSize; 3370 } 3371 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 3372 3373 return 0; 3374 } 3375 3376 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 3377 struct usb_descriptor_header *desc, 3378 void *priv) 3379 { 3380 struct ffs_function *func = priv; 3381 unsigned idx; 3382 u8 newValue; 3383 3384 switch (type) { 3385 default: 3386 case FFS_DESCRIPTOR: 3387 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 3388 return 0; 3389 3390 case FFS_INTERFACE: 3391 idx = *valuep; 3392 if (func->interfaces_nums[idx] < 0) { 3393 int id = usb_interface_id(func->conf, &func->function); 3394 if (id < 0) 3395 return id; 3396 func->interfaces_nums[idx] = id; 3397 } 3398 newValue = func->interfaces_nums[idx]; 3399 break; 3400 3401 case FFS_STRING: 3402 /* String' IDs are allocated when fsf_data is bound to cdev */ 3403 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 3404 break; 3405 3406 case FFS_ENDPOINT: 3407 /* 3408 * USB_DT_ENDPOINT are handled in 3409 * __ffs_func_bind_do_descs(). 3410 */ 3411 if (desc->bDescriptorType == USB_DT_ENDPOINT) 3412 return 0; 3413 3414 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 3415 if (!func->eps[idx].ep) 3416 return -EINVAL; 3417 3418 { 3419 struct usb_endpoint_descriptor **descs; 3420 descs = func->eps[idx].descs; 3421 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 3422 } 3423 break; 3424 } 3425 3426 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 3427 *valuep = newValue; 3428 return 0; 3429 } 3430 3431 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 3432 struct usb_os_desc_header *h, void *data, 3433 unsigned len, void *priv) 3434 { 3435 struct ffs_function *func = priv; 3436 u8 length = 0; 3437 3438 switch (type) { 3439 case FFS_OS_DESC_EXT_COMPAT: { 3440 struct usb_ext_compat_desc *desc = data; 3441 struct usb_os_desc_table *t; 3442 3443 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3444 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3445 memcpy(t->os_desc->ext_compat_id, &desc->IDs, 3446 sizeof_field(struct usb_ext_compat_desc, IDs)); 3447 length = sizeof(*desc); 3448 } 3449 break; 3450 case FFS_OS_DESC_EXT_PROP: { 3451 struct usb_ext_prop_desc *desc = data; 3452 struct usb_os_desc_table *t; 3453 struct usb_os_desc_ext_prop *ext_prop; 3454 char *ext_prop_name; 3455 char *ext_prop_data; 3456 3457 t = &func->function.os_desc_table[h->interface]; 3458 t->if_id = func->interfaces_nums[h->interface]; 3459 3460 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3461 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3462 3463 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3464 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3465 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3466 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3467 length = ext_prop->name_len + ext_prop->data_len + 14; 3468 3469 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3470 func->ffs->ms_os_descs_ext_prop_name_avail += 3471 ext_prop->name_len; 3472 3473 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3474 func->ffs->ms_os_descs_ext_prop_data_avail += 3475 ext_prop->data_len; 3476 memcpy(ext_prop_data, 3477 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3478 ext_prop->data_len); 3479 /* unicode data reported to the host as "WCHAR"s */ 3480 switch (ext_prop->type) { 3481 case USB_EXT_PROP_UNICODE: 3482 case USB_EXT_PROP_UNICODE_ENV: 3483 case USB_EXT_PROP_UNICODE_LINK: 3484 case USB_EXT_PROP_UNICODE_MULTI: 3485 ext_prop->data_len *= 2; 3486 break; 3487 } 3488 ext_prop->data = ext_prop_data; 3489 3490 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3491 ext_prop->name_len); 3492 /* property name reported to the host as "WCHAR"s */ 3493 ext_prop->name_len *= 2; 3494 ext_prop->name = ext_prop_name; 3495 3496 t->os_desc->ext_prop_len += 3497 ext_prop->name_len + ext_prop->data_len + 14; 3498 ++t->os_desc->ext_prop_count; 3499 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3500 } 3501 break; 3502 default: 3503 pr_vdebug("unknown descriptor: %d\n", type); 3504 } 3505 3506 return length; 3507 } 3508 3509 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3510 struct usb_configuration *c) 3511 { 3512 struct ffs_function *func = ffs_func_from_usb(f); 3513 struct f_fs_opts *ffs_opts = 3514 container_of(f->fi, struct f_fs_opts, func_inst); 3515 struct ffs_data *ffs_data; 3516 int ret; 3517 3518 /* 3519 * Legacy gadget triggers binding in functionfs_ready_callback, 3520 * which already uses locking; taking the same lock here would 3521 * cause a deadlock. 3522 * 3523 * Configfs-enabled gadgets however do need ffs_dev_lock. 3524 */ 3525 if (!ffs_opts->no_configfs) 3526 ffs_dev_lock(); 3527 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3528 ffs_data = ffs_opts->dev->ffs_data; 3529 if (!ffs_opts->no_configfs) 3530 ffs_dev_unlock(); 3531 if (ret) 3532 return ERR_PTR(ret); 3533 3534 func->ffs = ffs_data; 3535 func->conf = c; 3536 func->gadget = c->cdev->gadget; 3537 3538 /* 3539 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3540 * configurations are bound in sequence with list_for_each_entry, 3541 * in each configuration its functions are bound in sequence 3542 * with list_for_each_entry, so we assume no race condition 3543 * with regard to ffs_opts->bound access 3544 */ 3545 if (!ffs_opts->refcnt) { 3546 ret = functionfs_bind(func->ffs, c->cdev); 3547 if (ret) 3548 return ERR_PTR(ret); 3549 } 3550 ffs_opts->refcnt++; 3551 func->function.strings = func->ffs->stringtabs; 3552 3553 return ffs_opts; 3554 } 3555 3556 static int _ffs_func_bind(struct usb_configuration *c, 3557 struct usb_function *f) 3558 { 3559 struct ffs_function *func = ffs_func_from_usb(f); 3560 struct ffs_data *ffs = func->ffs; 3561 3562 const int full = !!func->ffs->fs_descs_count; 3563 const int high = !!func->ffs->hs_descs_count; 3564 const int super = !!func->ffs->ss_descs_count; 3565 3566 int fs_len, hs_len, ss_len, ret, i; 3567 struct ffs_ep *eps_ptr; 3568 3569 /* Make it a single chunk, less management later on */ 3570 vla_group(d); 3571 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3572 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3573 full ? ffs->fs_descs_count + 1 : 0); 3574 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3575 high ? ffs->hs_descs_count + 1 : 0); 3576 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3577 super ? ffs->ss_descs_count + 1 : 0); 3578 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3579 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3580 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3581 vla_item_with_sz(d, char[16], ext_compat, 3582 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3583 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3584 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3585 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3586 ffs->ms_os_descs_ext_prop_count); 3587 vla_item_with_sz(d, char, ext_prop_name, 3588 ffs->ms_os_descs_ext_prop_name_len); 3589 vla_item_with_sz(d, char, ext_prop_data, 3590 ffs->ms_os_descs_ext_prop_data_len); 3591 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3592 char *vlabuf; 3593 3594 /* Has descriptors only for speeds gadget does not support */ 3595 if (!(full | high | super)) 3596 return -ENOTSUPP; 3597 3598 /* Allocate a single chunk, less management later on */ 3599 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3600 if (!vlabuf) 3601 return -ENOMEM; 3602 3603 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3604 ffs->ms_os_descs_ext_prop_name_avail = 3605 vla_ptr(vlabuf, d, ext_prop_name); 3606 ffs->ms_os_descs_ext_prop_data_avail = 3607 vla_ptr(vlabuf, d, ext_prop_data); 3608 3609 /* Copy descriptors */ 3610 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3611 ffs->raw_descs_length); 3612 3613 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3614 eps_ptr = vla_ptr(vlabuf, d, eps); 3615 for (i = 0; i < ffs->eps_count; i++) 3616 eps_ptr[i].num = -1; 3617 3618 /* Save pointers 3619 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3620 */ 3621 func->eps = vla_ptr(vlabuf, d, eps); 3622 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3623 3624 /* 3625 * Go through all the endpoint descriptors and allocate 3626 * endpoints first, so that later we can rewrite the endpoint 3627 * numbers without worrying that it may be described later on. 3628 */ 3629 if (full) { 3630 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3631 fs_len = ffs_do_descs(ffs->fs_descs_count, 3632 vla_ptr(vlabuf, d, raw_descs), 3633 d_raw_descs__sz, 3634 __ffs_func_bind_do_descs, func); 3635 if (fs_len < 0) { 3636 ret = fs_len; 3637 goto error; 3638 } 3639 } else { 3640 fs_len = 0; 3641 } 3642 3643 if (high) { 3644 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3645 hs_len = ffs_do_descs(ffs->hs_descs_count, 3646 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3647 d_raw_descs__sz - fs_len, 3648 __ffs_func_bind_do_descs, func); 3649 if (hs_len < 0) { 3650 ret = hs_len; 3651 goto error; 3652 } 3653 } else { 3654 hs_len = 0; 3655 } 3656 3657 if (super) { 3658 func->function.ss_descriptors = func->function.ssp_descriptors = 3659 vla_ptr(vlabuf, d, ss_descs); 3660 ss_len = ffs_do_descs(ffs->ss_descs_count, 3661 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3662 d_raw_descs__sz - fs_len - hs_len, 3663 __ffs_func_bind_do_descs, func); 3664 if (ss_len < 0) { 3665 ret = ss_len; 3666 goto error; 3667 } 3668 } else { 3669 ss_len = 0; 3670 } 3671 3672 /* 3673 * Now handle interface numbers allocation and interface and 3674 * endpoint numbers rewriting. We can do that in one go 3675 * now. 3676 */ 3677 ret = ffs_do_descs(ffs->fs_descs_count + 3678 (high ? ffs->hs_descs_count : 0) + 3679 (super ? ffs->ss_descs_count : 0), 3680 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3681 __ffs_func_bind_do_nums, func); 3682 if (ret < 0) 3683 goto error; 3684 3685 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3686 if (c->cdev->use_os_string) { 3687 for (i = 0; i < ffs->interfaces_count; ++i) { 3688 struct usb_os_desc *desc; 3689 3690 desc = func->function.os_desc_table[i].os_desc = 3691 vla_ptr(vlabuf, d, os_desc) + 3692 i * sizeof(struct usb_os_desc); 3693 desc->ext_compat_id = 3694 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3695 INIT_LIST_HEAD(&desc->ext_prop); 3696 } 3697 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3698 vla_ptr(vlabuf, d, raw_descs) + 3699 fs_len + hs_len + ss_len, 3700 d_raw_descs__sz - fs_len - hs_len - 3701 ss_len, 3702 __ffs_func_bind_do_os_desc, func); 3703 if (ret < 0) 3704 goto error; 3705 } 3706 func->function.os_desc_n = 3707 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3708 3709 /* And we're done */ 3710 ffs_event_add(ffs, FUNCTIONFS_BIND); 3711 return 0; 3712 3713 error: 3714 /* XXX Do we need to release all claimed endpoints here? */ 3715 return ret; 3716 } 3717 3718 static int ffs_func_bind(struct usb_configuration *c, 3719 struct usb_function *f) 3720 { 3721 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3722 struct ffs_function *func = ffs_func_from_usb(f); 3723 int ret; 3724 3725 if (IS_ERR(ffs_opts)) 3726 return PTR_ERR(ffs_opts); 3727 3728 ret = _ffs_func_bind(c, f); 3729 if (ret && !--ffs_opts->refcnt) 3730 functionfs_unbind(func->ffs); 3731 3732 return ret; 3733 } 3734 3735 3736 /* Other USB function hooks *************************************************/ 3737 3738 static void ffs_reset_work(struct work_struct *work) 3739 { 3740 struct ffs_data *ffs = container_of(work, 3741 struct ffs_data, reset_work); 3742 ffs_data_reset(ffs); 3743 } 3744 3745 static int ffs_func_get_alt(struct usb_function *f, 3746 unsigned int interface) 3747 { 3748 struct ffs_function *func = ffs_func_from_usb(f); 3749 int intf = ffs_func_revmap_intf(func, interface); 3750 3751 return (intf < 0) ? intf : func->cur_alt[interface]; 3752 } 3753 3754 static int ffs_func_set_alt(struct usb_function *f, 3755 unsigned interface, unsigned alt) 3756 { 3757 struct ffs_function *func = ffs_func_from_usb(f); 3758 struct ffs_data *ffs = func->ffs; 3759 int ret = 0, intf; 3760 3761 if (alt > MAX_ALT_SETTINGS) 3762 return -EINVAL; 3763 3764 intf = ffs_func_revmap_intf(func, interface); 3765 if (intf < 0) 3766 return intf; 3767 3768 if (ffs->func) 3769 ffs_func_eps_disable(ffs->func); 3770 3771 if (ffs->state == FFS_DEACTIVATED) { 3772 ffs->state = FFS_CLOSING; 3773 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3774 schedule_work(&ffs->reset_work); 3775 return -ENODEV; 3776 } 3777 3778 if (ffs->state != FFS_ACTIVE) 3779 return -ENODEV; 3780 3781 ffs->func = func; 3782 ret = ffs_func_eps_enable(func); 3783 if (ret >= 0) { 3784 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3785 func->cur_alt[interface] = alt; 3786 } 3787 return ret; 3788 } 3789 3790 static void ffs_func_disable(struct usb_function *f) 3791 { 3792 struct ffs_function *func = ffs_func_from_usb(f); 3793 struct ffs_data *ffs = func->ffs; 3794 3795 if (ffs->func) 3796 ffs_func_eps_disable(ffs->func); 3797 3798 if (ffs->state == FFS_DEACTIVATED) { 3799 ffs->state = FFS_CLOSING; 3800 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3801 schedule_work(&ffs->reset_work); 3802 return; 3803 } 3804 3805 if (ffs->state == FFS_ACTIVE) { 3806 ffs->func = NULL; 3807 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3808 } 3809 } 3810 3811 static int ffs_func_setup(struct usb_function *f, 3812 const struct usb_ctrlrequest *creq) 3813 { 3814 struct ffs_function *func = ffs_func_from_usb(f); 3815 struct ffs_data *ffs = func->ffs; 3816 unsigned long flags; 3817 int ret; 3818 3819 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3820 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3821 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3822 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3823 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3824 3825 /* 3826 * Most requests directed to interface go through here 3827 * (notable exceptions are set/get interface) so we need to 3828 * handle them. All other either handled by composite or 3829 * passed to usb_configuration->setup() (if one is set). No 3830 * matter, we will handle requests directed to endpoint here 3831 * as well (as it's straightforward). Other request recipient 3832 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3833 * is being used. 3834 */ 3835 if (ffs->state != FFS_ACTIVE) 3836 return -ENODEV; 3837 3838 switch (creq->bRequestType & USB_RECIP_MASK) { 3839 case USB_RECIP_INTERFACE: 3840 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3841 if (ret < 0) 3842 return ret; 3843 break; 3844 3845 case USB_RECIP_ENDPOINT: 3846 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3847 if (ret < 0) 3848 return ret; 3849 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3850 ret = func->ffs->eps_addrmap[ret]; 3851 break; 3852 3853 default: 3854 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3855 ret = le16_to_cpu(creq->wIndex); 3856 else 3857 return -EOPNOTSUPP; 3858 } 3859 3860 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3861 ffs->ev.setup = *creq; 3862 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3863 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3864 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3865 3866 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3867 } 3868 3869 static bool ffs_func_req_match(struct usb_function *f, 3870 const struct usb_ctrlrequest *creq, 3871 bool config0) 3872 { 3873 struct ffs_function *func = ffs_func_from_usb(f); 3874 3875 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3876 return false; 3877 3878 switch (creq->bRequestType & USB_RECIP_MASK) { 3879 case USB_RECIP_INTERFACE: 3880 return (ffs_func_revmap_intf(func, 3881 le16_to_cpu(creq->wIndex)) >= 0); 3882 case USB_RECIP_ENDPOINT: 3883 return (ffs_func_revmap_ep(func, 3884 le16_to_cpu(creq->wIndex)) >= 0); 3885 default: 3886 return (bool) (func->ffs->user_flags & 3887 FUNCTIONFS_ALL_CTRL_RECIP); 3888 } 3889 } 3890 3891 static void ffs_func_suspend(struct usb_function *f) 3892 { 3893 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3894 } 3895 3896 static void ffs_func_resume(struct usb_function *f) 3897 { 3898 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3899 } 3900 3901 3902 /* Endpoint and interface numbers reverse mapping ***************************/ 3903 3904 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3905 { 3906 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3907 return num ? num : -EDOM; 3908 } 3909 3910 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3911 { 3912 short *nums = func->interfaces_nums; 3913 unsigned count = func->ffs->interfaces_count; 3914 3915 for (; count; --count, ++nums) { 3916 if (*nums >= 0 && *nums == intf) 3917 return nums - func->interfaces_nums; 3918 } 3919 3920 return -EDOM; 3921 } 3922 3923 3924 /* Devices management *******************************************************/ 3925 3926 static LIST_HEAD(ffs_devices); 3927 3928 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3929 { 3930 struct ffs_dev *dev; 3931 3932 if (!name) 3933 return NULL; 3934 3935 list_for_each_entry(dev, &ffs_devices, entry) { 3936 if (strcmp(dev->name, name) == 0) 3937 return dev; 3938 } 3939 3940 return NULL; 3941 } 3942 3943 /* 3944 * ffs_lock must be taken by the caller of this function 3945 */ 3946 static struct ffs_dev *_ffs_get_single_dev(void) 3947 { 3948 struct ffs_dev *dev; 3949 3950 if (list_is_singular(&ffs_devices)) { 3951 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3952 if (dev->single) 3953 return dev; 3954 } 3955 3956 return NULL; 3957 } 3958 3959 /* 3960 * ffs_lock must be taken by the caller of this function 3961 */ 3962 static struct ffs_dev *_ffs_find_dev(const char *name) 3963 { 3964 struct ffs_dev *dev; 3965 3966 dev = _ffs_get_single_dev(); 3967 if (dev) 3968 return dev; 3969 3970 return _ffs_do_find_dev(name); 3971 } 3972 3973 /* Configfs support *********************************************************/ 3974 3975 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3976 { 3977 return container_of(to_config_group(item), struct f_fs_opts, 3978 func_inst.group); 3979 } 3980 3981 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page) 3982 { 3983 struct f_fs_opts *opts = to_ffs_opts(item); 3984 int ready; 3985 3986 ffs_dev_lock(); 3987 ready = opts->dev->desc_ready; 3988 ffs_dev_unlock(); 3989 3990 return sprintf(page, "%d\n", ready); 3991 } 3992 3993 CONFIGFS_ATTR_RO(f_fs_opts_, ready); 3994 3995 static struct configfs_attribute *ffs_attrs[] = { 3996 &f_fs_opts_attr_ready, 3997 NULL, 3998 }; 3999 4000 static void ffs_attr_release(struct config_item *item) 4001 { 4002 struct f_fs_opts *opts = to_ffs_opts(item); 4003 4004 usb_put_function_instance(&opts->func_inst); 4005 } 4006 4007 static struct configfs_item_operations ffs_item_ops = { 4008 .release = ffs_attr_release, 4009 }; 4010 4011 static const struct config_item_type ffs_func_type = { 4012 .ct_item_ops = &ffs_item_ops, 4013 .ct_attrs = ffs_attrs, 4014 .ct_owner = THIS_MODULE, 4015 }; 4016 4017 4018 /* Function registration interface ******************************************/ 4019 4020 static void ffs_free_inst(struct usb_function_instance *f) 4021 { 4022 struct f_fs_opts *opts; 4023 4024 opts = to_f_fs_opts(f); 4025 ffs_release_dev(opts->dev); 4026 ffs_dev_lock(); 4027 _ffs_free_dev(opts->dev); 4028 ffs_dev_unlock(); 4029 kfree(opts); 4030 } 4031 4032 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 4033 { 4034 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 4035 return -ENAMETOOLONG; 4036 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 4037 } 4038 4039 static struct usb_function_instance *ffs_alloc_inst(void) 4040 { 4041 struct f_fs_opts *opts; 4042 struct ffs_dev *dev; 4043 4044 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 4045 if (!opts) 4046 return ERR_PTR(-ENOMEM); 4047 4048 opts->func_inst.set_inst_name = ffs_set_inst_name; 4049 opts->func_inst.free_func_inst = ffs_free_inst; 4050 ffs_dev_lock(); 4051 dev = _ffs_alloc_dev(); 4052 ffs_dev_unlock(); 4053 if (IS_ERR(dev)) { 4054 kfree(opts); 4055 return ERR_CAST(dev); 4056 } 4057 opts->dev = dev; 4058 dev->opts = opts; 4059 4060 config_group_init_type_name(&opts->func_inst.group, "", 4061 &ffs_func_type); 4062 return &opts->func_inst; 4063 } 4064 4065 static void ffs_free(struct usb_function *f) 4066 { 4067 kfree(ffs_func_from_usb(f)); 4068 } 4069 4070 static void ffs_func_unbind(struct usb_configuration *c, 4071 struct usb_function *f) 4072 { 4073 struct ffs_function *func = ffs_func_from_usb(f); 4074 struct ffs_data *ffs = func->ffs; 4075 struct f_fs_opts *opts = 4076 container_of(f->fi, struct f_fs_opts, func_inst); 4077 struct ffs_ep *ep = func->eps; 4078 unsigned count = ffs->eps_count; 4079 unsigned long flags; 4080 4081 if (ffs->func == func) { 4082 ffs_func_eps_disable(func); 4083 ffs->func = NULL; 4084 } 4085 4086 /* Drain any pending AIO completions */ 4087 drain_workqueue(ffs->io_completion_wq); 4088 4089 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 4090 if (!--opts->refcnt) 4091 functionfs_unbind(ffs); 4092 4093 /* cleanup after autoconfig */ 4094 spin_lock_irqsave(&func->ffs->eps_lock, flags); 4095 while (count--) { 4096 if (ep->ep && ep->req) 4097 usb_ep_free_request(ep->ep, ep->req); 4098 ep->req = NULL; 4099 ++ep; 4100 } 4101 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 4102 kfree(func->eps); 4103 func->eps = NULL; 4104 /* 4105 * eps, descriptors and interfaces_nums are allocated in the 4106 * same chunk so only one free is required. 4107 */ 4108 func->function.fs_descriptors = NULL; 4109 func->function.hs_descriptors = NULL; 4110 func->function.ss_descriptors = NULL; 4111 func->function.ssp_descriptors = NULL; 4112 func->interfaces_nums = NULL; 4113 4114 } 4115 4116 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 4117 { 4118 struct ffs_function *func; 4119 4120 func = kzalloc(sizeof(*func), GFP_KERNEL); 4121 if (!func) 4122 return ERR_PTR(-ENOMEM); 4123 4124 func->function.name = "Function FS Gadget"; 4125 4126 func->function.bind = ffs_func_bind; 4127 func->function.unbind = ffs_func_unbind; 4128 func->function.set_alt = ffs_func_set_alt; 4129 func->function.get_alt = ffs_func_get_alt; 4130 func->function.disable = ffs_func_disable; 4131 func->function.setup = ffs_func_setup; 4132 func->function.req_match = ffs_func_req_match; 4133 func->function.suspend = ffs_func_suspend; 4134 func->function.resume = ffs_func_resume; 4135 func->function.free_func = ffs_free; 4136 4137 return &func->function; 4138 } 4139 4140 /* 4141 * ffs_lock must be taken by the caller of this function 4142 */ 4143 static struct ffs_dev *_ffs_alloc_dev(void) 4144 { 4145 struct ffs_dev *dev; 4146 int ret; 4147 4148 if (_ffs_get_single_dev()) 4149 return ERR_PTR(-EBUSY); 4150 4151 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4152 if (!dev) 4153 return ERR_PTR(-ENOMEM); 4154 4155 if (list_empty(&ffs_devices)) { 4156 ret = functionfs_init(); 4157 if (ret) { 4158 kfree(dev); 4159 return ERR_PTR(ret); 4160 } 4161 } 4162 4163 list_add(&dev->entry, &ffs_devices); 4164 4165 return dev; 4166 } 4167 4168 int ffs_name_dev(struct ffs_dev *dev, const char *name) 4169 { 4170 struct ffs_dev *existing; 4171 int ret = 0; 4172 4173 ffs_dev_lock(); 4174 4175 existing = _ffs_do_find_dev(name); 4176 if (!existing) 4177 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 4178 else if (existing != dev) 4179 ret = -EBUSY; 4180 4181 ffs_dev_unlock(); 4182 4183 return ret; 4184 } 4185 EXPORT_SYMBOL_GPL(ffs_name_dev); 4186 4187 int ffs_single_dev(struct ffs_dev *dev) 4188 { 4189 int ret; 4190 4191 ret = 0; 4192 ffs_dev_lock(); 4193 4194 if (!list_is_singular(&ffs_devices)) 4195 ret = -EBUSY; 4196 else 4197 dev->single = true; 4198 4199 ffs_dev_unlock(); 4200 return ret; 4201 } 4202 EXPORT_SYMBOL_GPL(ffs_single_dev); 4203 4204 /* 4205 * ffs_lock must be taken by the caller of this function 4206 */ 4207 static void _ffs_free_dev(struct ffs_dev *dev) 4208 { 4209 list_del(&dev->entry); 4210 4211 kfree(dev); 4212 if (list_empty(&ffs_devices)) 4213 functionfs_cleanup(); 4214 } 4215 4216 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 4217 { 4218 int ret = 0; 4219 struct ffs_dev *ffs_dev; 4220 4221 ffs_dev_lock(); 4222 4223 ffs_dev = _ffs_find_dev(dev_name); 4224 if (!ffs_dev) { 4225 ret = -ENOENT; 4226 } else if (ffs_dev->mounted) { 4227 ret = -EBUSY; 4228 } else if (ffs_dev->ffs_acquire_dev_callback && 4229 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 4230 ret = -ENOENT; 4231 } else { 4232 ffs_dev->mounted = true; 4233 ffs_dev->ffs_data = ffs_data; 4234 ffs_data->private_data = ffs_dev; 4235 } 4236 4237 ffs_dev_unlock(); 4238 return ret; 4239 } 4240 4241 static void ffs_release_dev(struct ffs_dev *ffs_dev) 4242 { 4243 ffs_dev_lock(); 4244 4245 if (ffs_dev && ffs_dev->mounted) { 4246 ffs_dev->mounted = false; 4247 if (ffs_dev->ffs_data) { 4248 ffs_dev->ffs_data->private_data = NULL; 4249 ffs_dev->ffs_data = NULL; 4250 } 4251 4252 if (ffs_dev->ffs_release_dev_callback) 4253 ffs_dev->ffs_release_dev_callback(ffs_dev); 4254 } 4255 4256 ffs_dev_unlock(); 4257 } 4258 4259 static int ffs_ready(struct ffs_data *ffs) 4260 { 4261 struct ffs_dev *ffs_obj; 4262 int ret = 0; 4263 4264 ffs_dev_lock(); 4265 4266 ffs_obj = ffs->private_data; 4267 if (!ffs_obj) { 4268 ret = -EINVAL; 4269 goto done; 4270 } 4271 if (WARN_ON(ffs_obj->desc_ready)) { 4272 ret = -EBUSY; 4273 goto done; 4274 } 4275 4276 ffs_obj->desc_ready = true; 4277 4278 if (ffs_obj->ffs_ready_callback) { 4279 ret = ffs_obj->ffs_ready_callback(ffs); 4280 if (ret) 4281 goto done; 4282 } 4283 4284 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 4285 done: 4286 ffs_dev_unlock(); 4287 return ret; 4288 } 4289 4290 static void ffs_closed(struct ffs_data *ffs) 4291 { 4292 struct ffs_dev *ffs_obj; 4293 struct f_fs_opts *opts; 4294 struct config_item *ci; 4295 4296 ffs_dev_lock(); 4297 4298 ffs_obj = ffs->private_data; 4299 if (!ffs_obj) 4300 goto done; 4301 4302 ffs_obj->desc_ready = false; 4303 4304 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 4305 ffs_obj->ffs_closed_callback) 4306 ffs_obj->ffs_closed_callback(ffs); 4307 4308 if (ffs_obj->opts) 4309 opts = ffs_obj->opts; 4310 else 4311 goto done; 4312 4313 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 4314 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 4315 goto done; 4316 4317 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 4318 ffs_dev_unlock(); 4319 4320 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 4321 unregister_gadget_item(ci); 4322 return; 4323 done: 4324 ffs_dev_unlock(); 4325 } 4326 4327 /* Misc helper functions ****************************************************/ 4328 4329 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 4330 { 4331 return nonblock 4332 ? mutex_trylock(mutex) ? 0 : -EAGAIN 4333 : mutex_lock_interruptible(mutex); 4334 } 4335 4336 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 4337 { 4338 char *data; 4339 4340 if (!len) 4341 return NULL; 4342 4343 data = memdup_user(buf, len); 4344 if (IS_ERR(data)) 4345 return data; 4346 4347 pr_vdebug("Buffer from user space:\n"); 4348 ffs_dump_mem("", data, len); 4349 4350 return data; 4351 } 4352 4353 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 4354 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers"); 4355 MODULE_LICENSE("GPL"); 4356 MODULE_AUTHOR("Michal Nazarewicz"); 4357