1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 */ 17 18 19 /* #define DEBUG */ 20 /* #define VERBOSE_DEBUG */ 21 22 #include <linux/blkdev.h> 23 #include <linux/pagemap.h> 24 #include <linux/export.h> 25 #include <linux/hid.h> 26 #include <linux/module.h> 27 #include <linux/sched/signal.h> 28 #include <linux/uio.h> 29 #include <asm/unaligned.h> 30 31 #include <linux/usb/composite.h> 32 #include <linux/usb/functionfs.h> 33 34 #include <linux/aio.h> 35 #include <linux/mmu_context.h> 36 #include <linux/poll.h> 37 #include <linux/eventfd.h> 38 39 #include "u_fs.h" 40 #include "u_f.h" 41 #include "u_os_desc.h" 42 #include "configfs.h" 43 44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 45 46 /* Reference counter handling */ 47 static void ffs_data_get(struct ffs_data *ffs); 48 static void ffs_data_put(struct ffs_data *ffs); 49 /* Creates new ffs_data object. */ 50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 51 __attribute__((malloc)); 52 53 /* Opened counter handling. */ 54 static void ffs_data_opened(struct ffs_data *ffs); 55 static void ffs_data_closed(struct ffs_data *ffs); 56 57 /* Called with ffs->mutex held; take over ownership of data. */ 58 static int __must_check 59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 60 static int __must_check 61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 62 63 64 /* The function structure ***************************************************/ 65 66 struct ffs_ep; 67 68 struct ffs_function { 69 struct usb_configuration *conf; 70 struct usb_gadget *gadget; 71 struct ffs_data *ffs; 72 73 struct ffs_ep *eps; 74 u8 eps_revmap[16]; 75 short *interfaces_nums; 76 77 struct usb_function function; 78 }; 79 80 81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 82 { 83 return container_of(f, struct ffs_function, function); 84 } 85 86 87 static inline enum ffs_setup_state 88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 89 { 90 return (enum ffs_setup_state) 91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 92 } 93 94 95 static void ffs_func_eps_disable(struct ffs_function *func); 96 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 97 98 static int ffs_func_bind(struct usb_configuration *, 99 struct usb_function *); 100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 101 static void ffs_func_disable(struct usb_function *); 102 static int ffs_func_setup(struct usb_function *, 103 const struct usb_ctrlrequest *); 104 static bool ffs_func_req_match(struct usb_function *, 105 const struct usb_ctrlrequest *, 106 bool config0); 107 static void ffs_func_suspend(struct usb_function *); 108 static void ffs_func_resume(struct usb_function *); 109 110 111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 113 114 115 /* The endpoints structures *************************************************/ 116 117 struct ffs_ep { 118 struct usb_ep *ep; /* P: ffs->eps_lock */ 119 struct usb_request *req; /* P: epfile->mutex */ 120 121 /* [0]: full speed, [1]: high speed, [2]: super speed */ 122 struct usb_endpoint_descriptor *descs[3]; 123 124 u8 num; 125 126 int status; /* P: epfile->mutex */ 127 }; 128 129 struct ffs_epfile { 130 /* Protects ep->ep and ep->req. */ 131 struct mutex mutex; 132 133 struct ffs_data *ffs; 134 struct ffs_ep *ep; /* P: ffs->eps_lock */ 135 136 struct dentry *dentry; 137 138 /* 139 * Buffer for holding data from partial reads which may happen since 140 * we’re rounding user read requests to a multiple of a max packet size. 141 * 142 * The pointer is initialised with NULL value and may be set by 143 * __ffs_epfile_read_data function to point to a temporary buffer. 144 * 145 * In normal operation, calls to __ffs_epfile_read_buffered will consume 146 * data from said buffer and eventually free it. Importantly, while the 147 * function is using the buffer, it sets the pointer to NULL. This is 148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 149 * can never run concurrently (they are synchronised by epfile->mutex) 150 * so the latter will not assign a new value to the pointer. 151 * 152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 154 * value is crux of the synchronisation between ffs_func_eps_disable and 155 * __ffs_epfile_read_data. 156 * 157 * Once __ffs_epfile_read_data is about to finish it will try to set the 158 * pointer back to its old value (as described above), but seeing as the 159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 160 * the buffer. 161 * 162 * == State transitions == 163 * 164 * • ptr == NULL: (initial state) 165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 166 * ◦ __ffs_epfile_read_buffered: nop 167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == DROP: 170 * ◦ __ffs_epfile_read_buffer_free: nop 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 173 * ◦ reading finishes: n/a, not in ‘and reading’ state 174 * • ptr == buf: 175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 178 * is always called first 179 * ◦ reading finishes: n/a, not in ‘and reading’ state 180 * • ptr == NULL and reading: 181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 183 * ◦ __ffs_epfile_read_data: n/a, mutex is held 184 * ◦ reading finishes and … 185 * … all data read: free buf, go to ptr == NULL 186 * … otherwise: go to ptr == buf and reading 187 * • ptr == DROP and reading: 188 * ◦ __ffs_epfile_read_buffer_free: nop 189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 190 * ◦ __ffs_epfile_read_data: n/a, mutex is held 191 * ◦ reading finishes: free buf, go to ptr == DROP 192 */ 193 struct ffs_buffer *read_buffer; 194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 195 196 char name[5]; 197 198 unsigned char in; /* P: ffs->eps_lock */ 199 unsigned char isoc; /* P: ffs->eps_lock */ 200 201 unsigned char _pad; 202 }; 203 204 struct ffs_buffer { 205 size_t length; 206 char *data; 207 char storage[]; 208 }; 209 210 /* ffs_io_data structure ***************************************************/ 211 212 struct ffs_io_data { 213 bool aio; 214 bool read; 215 216 struct kiocb *kiocb; 217 struct iov_iter data; 218 const void *to_free; 219 char *buf; 220 221 struct mm_struct *mm; 222 struct work_struct work; 223 224 struct usb_ep *ep; 225 struct usb_request *req; 226 227 struct ffs_data *ffs; 228 }; 229 230 struct ffs_desc_helper { 231 struct ffs_data *ffs; 232 unsigned interfaces_count; 233 unsigned eps_count; 234 }; 235 236 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 237 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 238 239 static struct dentry * 240 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 241 const struct file_operations *fops); 242 243 /* Devices management *******************************************************/ 244 245 DEFINE_MUTEX(ffs_lock); 246 EXPORT_SYMBOL_GPL(ffs_lock); 247 248 static struct ffs_dev *_ffs_find_dev(const char *name); 249 static struct ffs_dev *_ffs_alloc_dev(void); 250 static void _ffs_free_dev(struct ffs_dev *dev); 251 static void *ffs_acquire_dev(const char *dev_name); 252 static void ffs_release_dev(struct ffs_data *ffs_data); 253 static int ffs_ready(struct ffs_data *ffs); 254 static void ffs_closed(struct ffs_data *ffs); 255 256 /* Misc helper functions ****************************************************/ 257 258 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 259 __attribute__((warn_unused_result, nonnull)); 260 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 261 __attribute__((warn_unused_result, nonnull)); 262 263 264 /* Control file aka ep0 *****************************************************/ 265 266 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 267 { 268 struct ffs_data *ffs = req->context; 269 270 complete(&ffs->ep0req_completion); 271 } 272 273 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 274 { 275 struct usb_request *req = ffs->ep0req; 276 int ret; 277 278 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 279 280 spin_unlock_irq(&ffs->ev.waitq.lock); 281 282 req->buf = data; 283 req->length = len; 284 285 /* 286 * UDC layer requires to provide a buffer even for ZLP, but should 287 * not use it at all. Let's provide some poisoned pointer to catch 288 * possible bug in the driver. 289 */ 290 if (req->buf == NULL) 291 req->buf = (void *)0xDEADBABE; 292 293 reinit_completion(&ffs->ep0req_completion); 294 295 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 296 if (unlikely(ret < 0)) 297 return ret; 298 299 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 300 if (unlikely(ret)) { 301 usb_ep_dequeue(ffs->gadget->ep0, req); 302 return -EINTR; 303 } 304 305 ffs->setup_state = FFS_NO_SETUP; 306 return req->status ? req->status : req->actual; 307 } 308 309 static int __ffs_ep0_stall(struct ffs_data *ffs) 310 { 311 if (ffs->ev.can_stall) { 312 pr_vdebug("ep0 stall\n"); 313 usb_ep_set_halt(ffs->gadget->ep0); 314 ffs->setup_state = FFS_NO_SETUP; 315 return -EL2HLT; 316 } else { 317 pr_debug("bogus ep0 stall!\n"); 318 return -ESRCH; 319 } 320 } 321 322 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 323 size_t len, loff_t *ptr) 324 { 325 struct ffs_data *ffs = file->private_data; 326 ssize_t ret; 327 char *data; 328 329 ENTER(); 330 331 /* Fast check if setup was canceled */ 332 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 333 return -EIDRM; 334 335 /* Acquire mutex */ 336 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 337 if (unlikely(ret < 0)) 338 return ret; 339 340 /* Check state */ 341 switch (ffs->state) { 342 case FFS_READ_DESCRIPTORS: 343 case FFS_READ_STRINGS: 344 /* Copy data */ 345 if (unlikely(len < 16)) { 346 ret = -EINVAL; 347 break; 348 } 349 350 data = ffs_prepare_buffer(buf, len); 351 if (IS_ERR(data)) { 352 ret = PTR_ERR(data); 353 break; 354 } 355 356 /* Handle data */ 357 if (ffs->state == FFS_READ_DESCRIPTORS) { 358 pr_info("read descriptors\n"); 359 ret = __ffs_data_got_descs(ffs, data, len); 360 if (unlikely(ret < 0)) 361 break; 362 363 ffs->state = FFS_READ_STRINGS; 364 ret = len; 365 } else { 366 pr_info("read strings\n"); 367 ret = __ffs_data_got_strings(ffs, data, len); 368 if (unlikely(ret < 0)) 369 break; 370 371 ret = ffs_epfiles_create(ffs); 372 if (unlikely(ret)) { 373 ffs->state = FFS_CLOSING; 374 break; 375 } 376 377 ffs->state = FFS_ACTIVE; 378 mutex_unlock(&ffs->mutex); 379 380 ret = ffs_ready(ffs); 381 if (unlikely(ret < 0)) { 382 ffs->state = FFS_CLOSING; 383 return ret; 384 } 385 386 return len; 387 } 388 break; 389 390 case FFS_ACTIVE: 391 data = NULL; 392 /* 393 * We're called from user space, we can use _irq 394 * rather then _irqsave 395 */ 396 spin_lock_irq(&ffs->ev.waitq.lock); 397 switch (ffs_setup_state_clear_cancelled(ffs)) { 398 case FFS_SETUP_CANCELLED: 399 ret = -EIDRM; 400 goto done_spin; 401 402 case FFS_NO_SETUP: 403 ret = -ESRCH; 404 goto done_spin; 405 406 case FFS_SETUP_PENDING: 407 break; 408 } 409 410 /* FFS_SETUP_PENDING */ 411 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 412 spin_unlock_irq(&ffs->ev.waitq.lock); 413 ret = __ffs_ep0_stall(ffs); 414 break; 415 } 416 417 /* FFS_SETUP_PENDING and not stall */ 418 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 419 420 spin_unlock_irq(&ffs->ev.waitq.lock); 421 422 data = ffs_prepare_buffer(buf, len); 423 if (IS_ERR(data)) { 424 ret = PTR_ERR(data); 425 break; 426 } 427 428 spin_lock_irq(&ffs->ev.waitq.lock); 429 430 /* 431 * We are guaranteed to be still in FFS_ACTIVE state 432 * but the state of setup could have changed from 433 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 434 * to check for that. If that happened we copied data 435 * from user space in vain but it's unlikely. 436 * 437 * For sure we are not in FFS_NO_SETUP since this is 438 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 439 * transition can be performed and it's protected by 440 * mutex. 441 */ 442 if (ffs_setup_state_clear_cancelled(ffs) == 443 FFS_SETUP_CANCELLED) { 444 ret = -EIDRM; 445 done_spin: 446 spin_unlock_irq(&ffs->ev.waitq.lock); 447 } else { 448 /* unlocks spinlock */ 449 ret = __ffs_ep0_queue_wait(ffs, data, len); 450 } 451 kfree(data); 452 break; 453 454 default: 455 ret = -EBADFD; 456 break; 457 } 458 459 mutex_unlock(&ffs->mutex); 460 return ret; 461 } 462 463 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 464 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 465 size_t n) 466 { 467 /* 468 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 469 * size of ffs->ev.types array (which is four) so that's how much space 470 * we reserve. 471 */ 472 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 473 const size_t size = n * sizeof *events; 474 unsigned i = 0; 475 476 memset(events, 0, size); 477 478 do { 479 events[i].type = ffs->ev.types[i]; 480 if (events[i].type == FUNCTIONFS_SETUP) { 481 events[i].u.setup = ffs->ev.setup; 482 ffs->setup_state = FFS_SETUP_PENDING; 483 } 484 } while (++i < n); 485 486 ffs->ev.count -= n; 487 if (ffs->ev.count) 488 memmove(ffs->ev.types, ffs->ev.types + n, 489 ffs->ev.count * sizeof *ffs->ev.types); 490 491 spin_unlock_irq(&ffs->ev.waitq.lock); 492 mutex_unlock(&ffs->mutex); 493 494 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 495 } 496 497 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 498 size_t len, loff_t *ptr) 499 { 500 struct ffs_data *ffs = file->private_data; 501 char *data = NULL; 502 size_t n; 503 int ret; 504 505 ENTER(); 506 507 /* Fast check if setup was canceled */ 508 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 509 return -EIDRM; 510 511 /* Acquire mutex */ 512 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 513 if (unlikely(ret < 0)) 514 return ret; 515 516 /* Check state */ 517 if (ffs->state != FFS_ACTIVE) { 518 ret = -EBADFD; 519 goto done_mutex; 520 } 521 522 /* 523 * We're called from user space, we can use _irq rather then 524 * _irqsave 525 */ 526 spin_lock_irq(&ffs->ev.waitq.lock); 527 528 switch (ffs_setup_state_clear_cancelled(ffs)) { 529 case FFS_SETUP_CANCELLED: 530 ret = -EIDRM; 531 break; 532 533 case FFS_NO_SETUP: 534 n = len / sizeof(struct usb_functionfs_event); 535 if (unlikely(!n)) { 536 ret = -EINVAL; 537 break; 538 } 539 540 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 541 ret = -EAGAIN; 542 break; 543 } 544 545 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 546 ffs->ev.count)) { 547 ret = -EINTR; 548 break; 549 } 550 551 return __ffs_ep0_read_events(ffs, buf, 552 min(n, (size_t)ffs->ev.count)); 553 554 case FFS_SETUP_PENDING: 555 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 556 spin_unlock_irq(&ffs->ev.waitq.lock); 557 ret = __ffs_ep0_stall(ffs); 558 goto done_mutex; 559 } 560 561 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 562 563 spin_unlock_irq(&ffs->ev.waitq.lock); 564 565 if (likely(len)) { 566 data = kmalloc(len, GFP_KERNEL); 567 if (unlikely(!data)) { 568 ret = -ENOMEM; 569 goto done_mutex; 570 } 571 } 572 573 spin_lock_irq(&ffs->ev.waitq.lock); 574 575 /* See ffs_ep0_write() */ 576 if (ffs_setup_state_clear_cancelled(ffs) == 577 FFS_SETUP_CANCELLED) { 578 ret = -EIDRM; 579 break; 580 } 581 582 /* unlocks spinlock */ 583 ret = __ffs_ep0_queue_wait(ffs, data, len); 584 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 585 ret = -EFAULT; 586 goto done_mutex; 587 588 default: 589 ret = -EBADFD; 590 break; 591 } 592 593 spin_unlock_irq(&ffs->ev.waitq.lock); 594 done_mutex: 595 mutex_unlock(&ffs->mutex); 596 kfree(data); 597 return ret; 598 } 599 600 static int ffs_ep0_open(struct inode *inode, struct file *file) 601 { 602 struct ffs_data *ffs = inode->i_private; 603 604 ENTER(); 605 606 if (unlikely(ffs->state == FFS_CLOSING)) 607 return -EBUSY; 608 609 file->private_data = ffs; 610 ffs_data_opened(ffs); 611 612 return 0; 613 } 614 615 static int ffs_ep0_release(struct inode *inode, struct file *file) 616 { 617 struct ffs_data *ffs = file->private_data; 618 619 ENTER(); 620 621 ffs_data_closed(ffs); 622 623 return 0; 624 } 625 626 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 627 { 628 struct ffs_data *ffs = file->private_data; 629 struct usb_gadget *gadget = ffs->gadget; 630 long ret; 631 632 ENTER(); 633 634 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 635 struct ffs_function *func = ffs->func; 636 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 637 } else if (gadget && gadget->ops->ioctl) { 638 ret = gadget->ops->ioctl(gadget, code, value); 639 } else { 640 ret = -ENOTTY; 641 } 642 643 return ret; 644 } 645 646 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 647 { 648 struct ffs_data *ffs = file->private_data; 649 unsigned int mask = POLLWRNORM; 650 int ret; 651 652 poll_wait(file, &ffs->ev.waitq, wait); 653 654 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 655 if (unlikely(ret < 0)) 656 return mask; 657 658 switch (ffs->state) { 659 case FFS_READ_DESCRIPTORS: 660 case FFS_READ_STRINGS: 661 mask |= POLLOUT; 662 break; 663 664 case FFS_ACTIVE: 665 switch (ffs->setup_state) { 666 case FFS_NO_SETUP: 667 if (ffs->ev.count) 668 mask |= POLLIN; 669 break; 670 671 case FFS_SETUP_PENDING: 672 case FFS_SETUP_CANCELLED: 673 mask |= (POLLIN | POLLOUT); 674 break; 675 } 676 case FFS_CLOSING: 677 break; 678 case FFS_DEACTIVATED: 679 break; 680 } 681 682 mutex_unlock(&ffs->mutex); 683 684 return mask; 685 } 686 687 static const struct file_operations ffs_ep0_operations = { 688 .llseek = no_llseek, 689 690 .open = ffs_ep0_open, 691 .write = ffs_ep0_write, 692 .read = ffs_ep0_read, 693 .release = ffs_ep0_release, 694 .unlocked_ioctl = ffs_ep0_ioctl, 695 .poll = ffs_ep0_poll, 696 }; 697 698 699 /* "Normal" endpoints operations ********************************************/ 700 701 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 702 { 703 ENTER(); 704 if (likely(req->context)) { 705 struct ffs_ep *ep = _ep->driver_data; 706 ep->status = req->status ? req->status : req->actual; 707 complete(req->context); 708 } 709 } 710 711 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 712 { 713 ssize_t ret = copy_to_iter(data, data_len, iter); 714 if (likely(ret == data_len)) 715 return ret; 716 717 if (unlikely(iov_iter_count(iter))) 718 return -EFAULT; 719 720 /* 721 * Dear user space developer! 722 * 723 * TL;DR: To stop getting below error message in your kernel log, change 724 * user space code using functionfs to align read buffers to a max 725 * packet size. 726 * 727 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 728 * packet size. When unaligned buffer is passed to functionfs, it 729 * internally uses a larger, aligned buffer so that such UDCs are happy. 730 * 731 * Unfortunately, this means that host may send more data than was 732 * requested in read(2) system call. f_fs doesn’t know what to do with 733 * that excess data so it simply drops it. 734 * 735 * Was the buffer aligned in the first place, no such problem would 736 * happen. 737 * 738 * Data may be dropped only in AIO reads. Synchronous reads are handled 739 * by splitting a request into multiple parts. This splitting may still 740 * be a problem though so it’s likely best to align the buffer 741 * regardless of it being AIO or not.. 742 * 743 * This only affects OUT endpoints, i.e. reading data with a read(2), 744 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 745 * affected. 746 */ 747 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 748 "Align read buffer size to max packet size to avoid the problem.\n", 749 data_len, ret); 750 751 return ret; 752 } 753 754 static void ffs_user_copy_worker(struct work_struct *work) 755 { 756 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 757 work); 758 int ret = io_data->req->status ? io_data->req->status : 759 io_data->req->actual; 760 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 761 762 if (io_data->read && ret > 0) { 763 use_mm(io_data->mm); 764 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 765 unuse_mm(io_data->mm); 766 } 767 768 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 769 770 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 771 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 772 773 usb_ep_free_request(io_data->ep, io_data->req); 774 775 if (io_data->read) 776 kfree(io_data->to_free); 777 kfree(io_data->buf); 778 kfree(io_data); 779 } 780 781 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 782 struct usb_request *req) 783 { 784 struct ffs_io_data *io_data = req->context; 785 struct ffs_data *ffs = io_data->ffs; 786 787 ENTER(); 788 789 INIT_WORK(&io_data->work, ffs_user_copy_worker); 790 queue_work(ffs->io_completion_wq, &io_data->work); 791 } 792 793 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 794 { 795 /* 796 * See comment in struct ffs_epfile for full read_buffer pointer 797 * synchronisation story. 798 */ 799 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 800 if (buf && buf != READ_BUFFER_DROP) 801 kfree(buf); 802 } 803 804 /* Assumes epfile->mutex is held. */ 805 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 806 struct iov_iter *iter) 807 { 808 /* 809 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 810 * the buffer while we are using it. See comment in struct ffs_epfile 811 * for full read_buffer pointer synchronisation story. 812 */ 813 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 814 ssize_t ret; 815 if (!buf || buf == READ_BUFFER_DROP) 816 return 0; 817 818 ret = copy_to_iter(buf->data, buf->length, iter); 819 if (buf->length == ret) { 820 kfree(buf); 821 return ret; 822 } 823 824 if (unlikely(iov_iter_count(iter))) { 825 ret = -EFAULT; 826 } else { 827 buf->length -= ret; 828 buf->data += ret; 829 } 830 831 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 832 kfree(buf); 833 834 return ret; 835 } 836 837 /* Assumes epfile->mutex is held. */ 838 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 839 void *data, int data_len, 840 struct iov_iter *iter) 841 { 842 struct ffs_buffer *buf; 843 844 ssize_t ret = copy_to_iter(data, data_len, iter); 845 if (likely(data_len == ret)) 846 return ret; 847 848 if (unlikely(iov_iter_count(iter))) 849 return -EFAULT; 850 851 /* See ffs_copy_to_iter for more context. */ 852 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 853 data_len, ret); 854 855 data_len -= ret; 856 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 857 if (!buf) 858 return -ENOMEM; 859 buf->length = data_len; 860 buf->data = buf->storage; 861 memcpy(buf->storage, data + ret, data_len); 862 863 /* 864 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 865 * ffs_func_eps_disable has been called in the meanwhile). See comment 866 * in struct ffs_epfile for full read_buffer pointer synchronisation 867 * story. 868 */ 869 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 870 kfree(buf); 871 872 return ret; 873 } 874 875 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 876 { 877 struct ffs_epfile *epfile = file->private_data; 878 struct usb_request *req; 879 struct ffs_ep *ep; 880 char *data = NULL; 881 ssize_t ret, data_len = -EINVAL; 882 int halt; 883 884 /* Are we still active? */ 885 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 886 return -ENODEV; 887 888 /* Wait for endpoint to be enabled */ 889 ep = epfile->ep; 890 if (!ep) { 891 if (file->f_flags & O_NONBLOCK) 892 return -EAGAIN; 893 894 ret = wait_event_interruptible( 895 epfile->ffs->wait, (ep = epfile->ep)); 896 if (ret) 897 return -EINTR; 898 } 899 900 /* Do we halt? */ 901 halt = (!io_data->read == !epfile->in); 902 if (halt && epfile->isoc) 903 return -EINVAL; 904 905 /* We will be using request and read_buffer */ 906 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 907 if (unlikely(ret)) 908 goto error; 909 910 /* Allocate & copy */ 911 if (!halt) { 912 struct usb_gadget *gadget; 913 914 /* 915 * Do we have buffered data from previous partial read? Check 916 * that for synchronous case only because we do not have 917 * facility to ‘wake up’ a pending asynchronous read and push 918 * buffered data to it which we would need to make things behave 919 * consistently. 920 */ 921 if (!io_data->aio && io_data->read) { 922 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 923 if (ret) 924 goto error_mutex; 925 } 926 927 /* 928 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 929 * before the waiting completes, so do not assign to 'gadget' 930 * earlier 931 */ 932 gadget = epfile->ffs->gadget; 933 934 spin_lock_irq(&epfile->ffs->eps_lock); 935 /* In the meantime, endpoint got disabled or changed. */ 936 if (epfile->ep != ep) { 937 ret = -ESHUTDOWN; 938 goto error_lock; 939 } 940 data_len = iov_iter_count(&io_data->data); 941 /* 942 * Controller may require buffer size to be aligned to 943 * maxpacketsize of an out endpoint. 944 */ 945 if (io_data->read) 946 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 947 spin_unlock_irq(&epfile->ffs->eps_lock); 948 949 data = kmalloc(data_len, GFP_KERNEL); 950 if (unlikely(!data)) { 951 ret = -ENOMEM; 952 goto error_mutex; 953 } 954 if (!io_data->read && 955 !copy_from_iter_full(data, data_len, &io_data->data)) { 956 ret = -EFAULT; 957 goto error_mutex; 958 } 959 } 960 961 spin_lock_irq(&epfile->ffs->eps_lock); 962 963 if (epfile->ep != ep) { 964 /* In the meantime, endpoint got disabled or changed. */ 965 ret = -ESHUTDOWN; 966 } else if (halt) { 967 ret = usb_ep_set_halt(ep->ep); 968 if (!ret) 969 ret = -EBADMSG; 970 } else if (unlikely(data_len == -EINVAL)) { 971 /* 972 * Sanity Check: even though data_len can't be used 973 * uninitialized at the time I write this comment, some 974 * compilers complain about this situation. 975 * In order to keep the code clean from warnings, data_len is 976 * being initialized to -EINVAL during its declaration, which 977 * means we can't rely on compiler anymore to warn no future 978 * changes won't result in data_len being used uninitialized. 979 * For such reason, we're adding this redundant sanity check 980 * here. 981 */ 982 WARN(1, "%s: data_len == -EINVAL\n", __func__); 983 ret = -EINVAL; 984 } else if (!io_data->aio) { 985 DECLARE_COMPLETION_ONSTACK(done); 986 bool interrupted = false; 987 988 req = ep->req; 989 req->buf = data; 990 req->length = data_len; 991 992 req->context = &done; 993 req->complete = ffs_epfile_io_complete; 994 995 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 996 if (unlikely(ret < 0)) 997 goto error_lock; 998 999 spin_unlock_irq(&epfile->ffs->eps_lock); 1000 1001 if (unlikely(wait_for_completion_interruptible(&done))) { 1002 /* 1003 * To avoid race condition with ffs_epfile_io_complete, 1004 * dequeue the request first then check 1005 * status. usb_ep_dequeue API should guarantee no race 1006 * condition with req->complete callback. 1007 */ 1008 usb_ep_dequeue(ep->ep, req); 1009 interrupted = ep->status < 0; 1010 } 1011 1012 if (interrupted) 1013 ret = -EINTR; 1014 else if (io_data->read && ep->status > 0) 1015 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1016 &io_data->data); 1017 else 1018 ret = ep->status; 1019 goto error_mutex; 1020 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) { 1021 ret = -ENOMEM; 1022 } else { 1023 req->buf = data; 1024 req->length = data_len; 1025 1026 io_data->buf = data; 1027 io_data->ep = ep->ep; 1028 io_data->req = req; 1029 io_data->ffs = epfile->ffs; 1030 1031 req->context = io_data; 1032 req->complete = ffs_epfile_async_io_complete; 1033 1034 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1035 if (unlikely(ret)) { 1036 usb_ep_free_request(ep->ep, req); 1037 goto error_lock; 1038 } 1039 1040 ret = -EIOCBQUEUED; 1041 /* 1042 * Do not kfree the buffer in this function. It will be freed 1043 * by ffs_user_copy_worker. 1044 */ 1045 data = NULL; 1046 } 1047 1048 error_lock: 1049 spin_unlock_irq(&epfile->ffs->eps_lock); 1050 error_mutex: 1051 mutex_unlock(&epfile->mutex); 1052 error: 1053 kfree(data); 1054 return ret; 1055 } 1056 1057 static int 1058 ffs_epfile_open(struct inode *inode, struct file *file) 1059 { 1060 struct ffs_epfile *epfile = inode->i_private; 1061 1062 ENTER(); 1063 1064 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1065 return -ENODEV; 1066 1067 file->private_data = epfile; 1068 ffs_data_opened(epfile->ffs); 1069 1070 return 0; 1071 } 1072 1073 static int ffs_aio_cancel(struct kiocb *kiocb) 1074 { 1075 struct ffs_io_data *io_data = kiocb->private; 1076 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1077 int value; 1078 1079 ENTER(); 1080 1081 spin_lock_irq(&epfile->ffs->eps_lock); 1082 1083 if (likely(io_data && io_data->ep && io_data->req)) 1084 value = usb_ep_dequeue(io_data->ep, io_data->req); 1085 else 1086 value = -EINVAL; 1087 1088 spin_unlock_irq(&epfile->ffs->eps_lock); 1089 1090 return value; 1091 } 1092 1093 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1094 { 1095 struct ffs_io_data io_data, *p = &io_data; 1096 ssize_t res; 1097 1098 ENTER(); 1099 1100 if (!is_sync_kiocb(kiocb)) { 1101 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1102 if (unlikely(!p)) 1103 return -ENOMEM; 1104 p->aio = true; 1105 } else { 1106 p->aio = false; 1107 } 1108 1109 p->read = false; 1110 p->kiocb = kiocb; 1111 p->data = *from; 1112 p->mm = current->mm; 1113 1114 kiocb->private = p; 1115 1116 if (p->aio) 1117 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1118 1119 res = ffs_epfile_io(kiocb->ki_filp, p); 1120 if (res == -EIOCBQUEUED) 1121 return res; 1122 if (p->aio) 1123 kfree(p); 1124 else 1125 *from = p->data; 1126 return res; 1127 } 1128 1129 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1130 { 1131 struct ffs_io_data io_data, *p = &io_data; 1132 ssize_t res; 1133 1134 ENTER(); 1135 1136 if (!is_sync_kiocb(kiocb)) { 1137 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1138 if (unlikely(!p)) 1139 return -ENOMEM; 1140 p->aio = true; 1141 } else { 1142 p->aio = false; 1143 } 1144 1145 p->read = true; 1146 p->kiocb = kiocb; 1147 if (p->aio) { 1148 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1149 if (!p->to_free) { 1150 kfree(p); 1151 return -ENOMEM; 1152 } 1153 } else { 1154 p->data = *to; 1155 p->to_free = NULL; 1156 } 1157 p->mm = current->mm; 1158 1159 kiocb->private = p; 1160 1161 if (p->aio) 1162 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1163 1164 res = ffs_epfile_io(kiocb->ki_filp, p); 1165 if (res == -EIOCBQUEUED) 1166 return res; 1167 1168 if (p->aio) { 1169 kfree(p->to_free); 1170 kfree(p); 1171 } else { 1172 *to = p->data; 1173 } 1174 return res; 1175 } 1176 1177 static int 1178 ffs_epfile_release(struct inode *inode, struct file *file) 1179 { 1180 struct ffs_epfile *epfile = inode->i_private; 1181 1182 ENTER(); 1183 1184 __ffs_epfile_read_buffer_free(epfile); 1185 ffs_data_closed(epfile->ffs); 1186 1187 return 0; 1188 } 1189 1190 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1191 unsigned long value) 1192 { 1193 struct ffs_epfile *epfile = file->private_data; 1194 struct ffs_ep *ep; 1195 int ret; 1196 1197 ENTER(); 1198 1199 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1200 return -ENODEV; 1201 1202 /* Wait for endpoint to be enabled */ 1203 ep = epfile->ep; 1204 if (!ep) { 1205 if (file->f_flags & O_NONBLOCK) 1206 return -EAGAIN; 1207 1208 ret = wait_event_interruptible( 1209 epfile->ffs->wait, (ep = epfile->ep)); 1210 if (ret) 1211 return -EINTR; 1212 } 1213 1214 spin_lock_irq(&epfile->ffs->eps_lock); 1215 1216 /* In the meantime, endpoint got disabled or changed. */ 1217 if (epfile->ep != ep) { 1218 spin_unlock_irq(&epfile->ffs->eps_lock); 1219 return -ESHUTDOWN; 1220 } 1221 1222 switch (code) { 1223 case FUNCTIONFS_FIFO_STATUS: 1224 ret = usb_ep_fifo_status(epfile->ep->ep); 1225 break; 1226 case FUNCTIONFS_FIFO_FLUSH: 1227 usb_ep_fifo_flush(epfile->ep->ep); 1228 ret = 0; 1229 break; 1230 case FUNCTIONFS_CLEAR_HALT: 1231 ret = usb_ep_clear_halt(epfile->ep->ep); 1232 break; 1233 case FUNCTIONFS_ENDPOINT_REVMAP: 1234 ret = epfile->ep->num; 1235 break; 1236 case FUNCTIONFS_ENDPOINT_DESC: 1237 { 1238 int desc_idx; 1239 struct usb_endpoint_descriptor *desc; 1240 1241 switch (epfile->ffs->gadget->speed) { 1242 case USB_SPEED_SUPER: 1243 desc_idx = 2; 1244 break; 1245 case USB_SPEED_HIGH: 1246 desc_idx = 1; 1247 break; 1248 default: 1249 desc_idx = 0; 1250 } 1251 desc = epfile->ep->descs[desc_idx]; 1252 1253 spin_unlock_irq(&epfile->ffs->eps_lock); 1254 ret = copy_to_user((void *)value, desc, desc->bLength); 1255 if (ret) 1256 ret = -EFAULT; 1257 return ret; 1258 } 1259 default: 1260 ret = -ENOTTY; 1261 } 1262 spin_unlock_irq(&epfile->ffs->eps_lock); 1263 1264 return ret; 1265 } 1266 1267 static const struct file_operations ffs_epfile_operations = { 1268 .llseek = no_llseek, 1269 1270 .open = ffs_epfile_open, 1271 .write_iter = ffs_epfile_write_iter, 1272 .read_iter = ffs_epfile_read_iter, 1273 .release = ffs_epfile_release, 1274 .unlocked_ioctl = ffs_epfile_ioctl, 1275 }; 1276 1277 1278 /* File system and super block operations ***********************************/ 1279 1280 /* 1281 * Mounting the file system creates a controller file, used first for 1282 * function configuration then later for event monitoring. 1283 */ 1284 1285 static struct inode *__must_check 1286 ffs_sb_make_inode(struct super_block *sb, void *data, 1287 const struct file_operations *fops, 1288 const struct inode_operations *iops, 1289 struct ffs_file_perms *perms) 1290 { 1291 struct inode *inode; 1292 1293 ENTER(); 1294 1295 inode = new_inode(sb); 1296 1297 if (likely(inode)) { 1298 struct timespec ts = current_time(inode); 1299 1300 inode->i_ino = get_next_ino(); 1301 inode->i_mode = perms->mode; 1302 inode->i_uid = perms->uid; 1303 inode->i_gid = perms->gid; 1304 inode->i_atime = ts; 1305 inode->i_mtime = ts; 1306 inode->i_ctime = ts; 1307 inode->i_private = data; 1308 if (fops) 1309 inode->i_fop = fops; 1310 if (iops) 1311 inode->i_op = iops; 1312 } 1313 1314 return inode; 1315 } 1316 1317 /* Create "regular" file */ 1318 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1319 const char *name, void *data, 1320 const struct file_operations *fops) 1321 { 1322 struct ffs_data *ffs = sb->s_fs_info; 1323 struct dentry *dentry; 1324 struct inode *inode; 1325 1326 ENTER(); 1327 1328 dentry = d_alloc_name(sb->s_root, name); 1329 if (unlikely(!dentry)) 1330 return NULL; 1331 1332 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1333 if (unlikely(!inode)) { 1334 dput(dentry); 1335 return NULL; 1336 } 1337 1338 d_add(dentry, inode); 1339 return dentry; 1340 } 1341 1342 /* Super block */ 1343 static const struct super_operations ffs_sb_operations = { 1344 .statfs = simple_statfs, 1345 .drop_inode = generic_delete_inode, 1346 }; 1347 1348 struct ffs_sb_fill_data { 1349 struct ffs_file_perms perms; 1350 umode_t root_mode; 1351 const char *dev_name; 1352 bool no_disconnect; 1353 struct ffs_data *ffs_data; 1354 }; 1355 1356 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1357 { 1358 struct ffs_sb_fill_data *data = _data; 1359 struct inode *inode; 1360 struct ffs_data *ffs = data->ffs_data; 1361 1362 ENTER(); 1363 1364 ffs->sb = sb; 1365 data->ffs_data = NULL; 1366 sb->s_fs_info = ffs; 1367 sb->s_blocksize = PAGE_SIZE; 1368 sb->s_blocksize_bits = PAGE_SHIFT; 1369 sb->s_magic = FUNCTIONFS_MAGIC; 1370 sb->s_op = &ffs_sb_operations; 1371 sb->s_time_gran = 1; 1372 1373 /* Root inode */ 1374 data->perms.mode = data->root_mode; 1375 inode = ffs_sb_make_inode(sb, NULL, 1376 &simple_dir_operations, 1377 &simple_dir_inode_operations, 1378 &data->perms); 1379 sb->s_root = d_make_root(inode); 1380 if (unlikely(!sb->s_root)) 1381 return -ENOMEM; 1382 1383 /* EP0 file */ 1384 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1385 &ffs_ep0_operations))) 1386 return -ENOMEM; 1387 1388 return 0; 1389 } 1390 1391 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1392 { 1393 ENTER(); 1394 1395 if (!opts || !*opts) 1396 return 0; 1397 1398 for (;;) { 1399 unsigned long value; 1400 char *eq, *comma; 1401 1402 /* Option limit */ 1403 comma = strchr(opts, ','); 1404 if (comma) 1405 *comma = 0; 1406 1407 /* Value limit */ 1408 eq = strchr(opts, '='); 1409 if (unlikely(!eq)) { 1410 pr_err("'=' missing in %s\n", opts); 1411 return -EINVAL; 1412 } 1413 *eq = 0; 1414 1415 /* Parse value */ 1416 if (kstrtoul(eq + 1, 0, &value)) { 1417 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1418 return -EINVAL; 1419 } 1420 1421 /* Interpret option */ 1422 switch (eq - opts) { 1423 case 13: 1424 if (!memcmp(opts, "no_disconnect", 13)) 1425 data->no_disconnect = !!value; 1426 else 1427 goto invalid; 1428 break; 1429 case 5: 1430 if (!memcmp(opts, "rmode", 5)) 1431 data->root_mode = (value & 0555) | S_IFDIR; 1432 else if (!memcmp(opts, "fmode", 5)) 1433 data->perms.mode = (value & 0666) | S_IFREG; 1434 else 1435 goto invalid; 1436 break; 1437 1438 case 4: 1439 if (!memcmp(opts, "mode", 4)) { 1440 data->root_mode = (value & 0555) | S_IFDIR; 1441 data->perms.mode = (value & 0666) | S_IFREG; 1442 } else { 1443 goto invalid; 1444 } 1445 break; 1446 1447 case 3: 1448 if (!memcmp(opts, "uid", 3)) { 1449 data->perms.uid = make_kuid(current_user_ns(), value); 1450 if (!uid_valid(data->perms.uid)) { 1451 pr_err("%s: unmapped value: %lu\n", opts, value); 1452 return -EINVAL; 1453 } 1454 } else if (!memcmp(opts, "gid", 3)) { 1455 data->perms.gid = make_kgid(current_user_ns(), value); 1456 if (!gid_valid(data->perms.gid)) { 1457 pr_err("%s: unmapped value: %lu\n", opts, value); 1458 return -EINVAL; 1459 } 1460 } else { 1461 goto invalid; 1462 } 1463 break; 1464 1465 default: 1466 invalid: 1467 pr_err("%s: invalid option\n", opts); 1468 return -EINVAL; 1469 } 1470 1471 /* Next iteration */ 1472 if (!comma) 1473 break; 1474 opts = comma + 1; 1475 } 1476 1477 return 0; 1478 } 1479 1480 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1481 1482 static struct dentry * 1483 ffs_fs_mount(struct file_system_type *t, int flags, 1484 const char *dev_name, void *opts) 1485 { 1486 struct ffs_sb_fill_data data = { 1487 .perms = { 1488 .mode = S_IFREG | 0600, 1489 .uid = GLOBAL_ROOT_UID, 1490 .gid = GLOBAL_ROOT_GID, 1491 }, 1492 .root_mode = S_IFDIR | 0500, 1493 .no_disconnect = false, 1494 }; 1495 struct dentry *rv; 1496 int ret; 1497 void *ffs_dev; 1498 struct ffs_data *ffs; 1499 1500 ENTER(); 1501 1502 ret = ffs_fs_parse_opts(&data, opts); 1503 if (unlikely(ret < 0)) 1504 return ERR_PTR(ret); 1505 1506 ffs = ffs_data_new(dev_name); 1507 if (unlikely(!ffs)) 1508 return ERR_PTR(-ENOMEM); 1509 ffs->file_perms = data.perms; 1510 ffs->no_disconnect = data.no_disconnect; 1511 1512 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1513 if (unlikely(!ffs->dev_name)) { 1514 ffs_data_put(ffs); 1515 return ERR_PTR(-ENOMEM); 1516 } 1517 1518 ffs_dev = ffs_acquire_dev(dev_name); 1519 if (IS_ERR(ffs_dev)) { 1520 ffs_data_put(ffs); 1521 return ERR_CAST(ffs_dev); 1522 } 1523 ffs->private_data = ffs_dev; 1524 data.ffs_data = ffs; 1525 1526 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1527 if (IS_ERR(rv) && data.ffs_data) { 1528 ffs_release_dev(data.ffs_data); 1529 ffs_data_put(data.ffs_data); 1530 } 1531 return rv; 1532 } 1533 1534 static void 1535 ffs_fs_kill_sb(struct super_block *sb) 1536 { 1537 ENTER(); 1538 1539 kill_litter_super(sb); 1540 if (sb->s_fs_info) { 1541 ffs_release_dev(sb->s_fs_info); 1542 ffs_data_closed(sb->s_fs_info); 1543 ffs_data_put(sb->s_fs_info); 1544 } 1545 } 1546 1547 static struct file_system_type ffs_fs_type = { 1548 .owner = THIS_MODULE, 1549 .name = "functionfs", 1550 .mount = ffs_fs_mount, 1551 .kill_sb = ffs_fs_kill_sb, 1552 }; 1553 MODULE_ALIAS_FS("functionfs"); 1554 1555 1556 /* Driver's main init/cleanup functions *************************************/ 1557 1558 static int functionfs_init(void) 1559 { 1560 int ret; 1561 1562 ENTER(); 1563 1564 ret = register_filesystem(&ffs_fs_type); 1565 if (likely(!ret)) 1566 pr_info("file system registered\n"); 1567 else 1568 pr_err("failed registering file system (%d)\n", ret); 1569 1570 return ret; 1571 } 1572 1573 static void functionfs_cleanup(void) 1574 { 1575 ENTER(); 1576 1577 pr_info("unloading\n"); 1578 unregister_filesystem(&ffs_fs_type); 1579 } 1580 1581 1582 /* ffs_data and ffs_function construction and destruction code **************/ 1583 1584 static void ffs_data_clear(struct ffs_data *ffs); 1585 static void ffs_data_reset(struct ffs_data *ffs); 1586 1587 static void ffs_data_get(struct ffs_data *ffs) 1588 { 1589 ENTER(); 1590 1591 refcount_inc(&ffs->ref); 1592 } 1593 1594 static void ffs_data_opened(struct ffs_data *ffs) 1595 { 1596 ENTER(); 1597 1598 refcount_inc(&ffs->ref); 1599 if (atomic_add_return(1, &ffs->opened) == 1 && 1600 ffs->state == FFS_DEACTIVATED) { 1601 ffs->state = FFS_CLOSING; 1602 ffs_data_reset(ffs); 1603 } 1604 } 1605 1606 static void ffs_data_put(struct ffs_data *ffs) 1607 { 1608 ENTER(); 1609 1610 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1611 pr_info("%s(): freeing\n", __func__); 1612 ffs_data_clear(ffs); 1613 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1614 waitqueue_active(&ffs->ep0req_completion.wait) || 1615 waitqueue_active(&ffs->wait)); 1616 destroy_workqueue(ffs->io_completion_wq); 1617 kfree(ffs->dev_name); 1618 kfree(ffs); 1619 } 1620 } 1621 1622 static void ffs_data_closed(struct ffs_data *ffs) 1623 { 1624 ENTER(); 1625 1626 if (atomic_dec_and_test(&ffs->opened)) { 1627 if (ffs->no_disconnect) { 1628 ffs->state = FFS_DEACTIVATED; 1629 if (ffs->epfiles) { 1630 ffs_epfiles_destroy(ffs->epfiles, 1631 ffs->eps_count); 1632 ffs->epfiles = NULL; 1633 } 1634 if (ffs->setup_state == FFS_SETUP_PENDING) 1635 __ffs_ep0_stall(ffs); 1636 } else { 1637 ffs->state = FFS_CLOSING; 1638 ffs_data_reset(ffs); 1639 } 1640 } 1641 if (atomic_read(&ffs->opened) < 0) { 1642 ffs->state = FFS_CLOSING; 1643 ffs_data_reset(ffs); 1644 } 1645 1646 ffs_data_put(ffs); 1647 } 1648 1649 static struct ffs_data *ffs_data_new(const char *dev_name) 1650 { 1651 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1652 if (unlikely(!ffs)) 1653 return NULL; 1654 1655 ENTER(); 1656 1657 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1658 if (!ffs->io_completion_wq) { 1659 kfree(ffs); 1660 return NULL; 1661 } 1662 1663 refcount_set(&ffs->ref, 1); 1664 atomic_set(&ffs->opened, 0); 1665 ffs->state = FFS_READ_DESCRIPTORS; 1666 mutex_init(&ffs->mutex); 1667 spin_lock_init(&ffs->eps_lock); 1668 init_waitqueue_head(&ffs->ev.waitq); 1669 init_waitqueue_head(&ffs->wait); 1670 init_completion(&ffs->ep0req_completion); 1671 1672 /* XXX REVISIT need to update it in some places, or do we? */ 1673 ffs->ev.can_stall = 1; 1674 1675 return ffs; 1676 } 1677 1678 static void ffs_data_clear(struct ffs_data *ffs) 1679 { 1680 ENTER(); 1681 1682 ffs_closed(ffs); 1683 1684 BUG_ON(ffs->gadget); 1685 1686 if (ffs->epfiles) 1687 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1688 1689 if (ffs->ffs_eventfd) 1690 eventfd_ctx_put(ffs->ffs_eventfd); 1691 1692 kfree(ffs->raw_descs_data); 1693 kfree(ffs->raw_strings); 1694 kfree(ffs->stringtabs); 1695 } 1696 1697 static void ffs_data_reset(struct ffs_data *ffs) 1698 { 1699 ENTER(); 1700 1701 ffs_data_clear(ffs); 1702 1703 ffs->epfiles = NULL; 1704 ffs->raw_descs_data = NULL; 1705 ffs->raw_descs = NULL; 1706 ffs->raw_strings = NULL; 1707 ffs->stringtabs = NULL; 1708 1709 ffs->raw_descs_length = 0; 1710 ffs->fs_descs_count = 0; 1711 ffs->hs_descs_count = 0; 1712 ffs->ss_descs_count = 0; 1713 1714 ffs->strings_count = 0; 1715 ffs->interfaces_count = 0; 1716 ffs->eps_count = 0; 1717 1718 ffs->ev.count = 0; 1719 1720 ffs->state = FFS_READ_DESCRIPTORS; 1721 ffs->setup_state = FFS_NO_SETUP; 1722 ffs->flags = 0; 1723 } 1724 1725 1726 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1727 { 1728 struct usb_gadget_strings **lang; 1729 int first_id; 1730 1731 ENTER(); 1732 1733 if (WARN_ON(ffs->state != FFS_ACTIVE 1734 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1735 return -EBADFD; 1736 1737 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1738 if (unlikely(first_id < 0)) 1739 return first_id; 1740 1741 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1742 if (unlikely(!ffs->ep0req)) 1743 return -ENOMEM; 1744 ffs->ep0req->complete = ffs_ep0_complete; 1745 ffs->ep0req->context = ffs; 1746 1747 lang = ffs->stringtabs; 1748 if (lang) { 1749 for (; *lang; ++lang) { 1750 struct usb_string *str = (*lang)->strings; 1751 int id = first_id; 1752 for (; str->s; ++id, ++str) 1753 str->id = id; 1754 } 1755 } 1756 1757 ffs->gadget = cdev->gadget; 1758 ffs_data_get(ffs); 1759 return 0; 1760 } 1761 1762 static void functionfs_unbind(struct ffs_data *ffs) 1763 { 1764 ENTER(); 1765 1766 if (!WARN_ON(!ffs->gadget)) { 1767 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1768 ffs->ep0req = NULL; 1769 ffs->gadget = NULL; 1770 clear_bit(FFS_FL_BOUND, &ffs->flags); 1771 ffs_data_put(ffs); 1772 } 1773 } 1774 1775 static int ffs_epfiles_create(struct ffs_data *ffs) 1776 { 1777 struct ffs_epfile *epfile, *epfiles; 1778 unsigned i, count; 1779 1780 ENTER(); 1781 1782 count = ffs->eps_count; 1783 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1784 if (!epfiles) 1785 return -ENOMEM; 1786 1787 epfile = epfiles; 1788 for (i = 1; i <= count; ++i, ++epfile) { 1789 epfile->ffs = ffs; 1790 mutex_init(&epfile->mutex); 1791 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1792 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1793 else 1794 sprintf(epfile->name, "ep%u", i); 1795 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1796 epfile, 1797 &ffs_epfile_operations); 1798 if (unlikely(!epfile->dentry)) { 1799 ffs_epfiles_destroy(epfiles, i - 1); 1800 return -ENOMEM; 1801 } 1802 } 1803 1804 ffs->epfiles = epfiles; 1805 return 0; 1806 } 1807 1808 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1809 { 1810 struct ffs_epfile *epfile = epfiles; 1811 1812 ENTER(); 1813 1814 for (; count; --count, ++epfile) { 1815 BUG_ON(mutex_is_locked(&epfile->mutex)); 1816 if (epfile->dentry) { 1817 d_delete(epfile->dentry); 1818 dput(epfile->dentry); 1819 epfile->dentry = NULL; 1820 } 1821 } 1822 1823 kfree(epfiles); 1824 } 1825 1826 static void ffs_func_eps_disable(struct ffs_function *func) 1827 { 1828 struct ffs_ep *ep = func->eps; 1829 struct ffs_epfile *epfile = func->ffs->epfiles; 1830 unsigned count = func->ffs->eps_count; 1831 unsigned long flags; 1832 1833 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1834 while (count--) { 1835 /* pending requests get nuked */ 1836 if (likely(ep->ep)) 1837 usb_ep_disable(ep->ep); 1838 ++ep; 1839 1840 if (epfile) { 1841 epfile->ep = NULL; 1842 __ffs_epfile_read_buffer_free(epfile); 1843 ++epfile; 1844 } 1845 } 1846 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1847 } 1848 1849 static int ffs_func_eps_enable(struct ffs_function *func) 1850 { 1851 struct ffs_data *ffs = func->ffs; 1852 struct ffs_ep *ep = func->eps; 1853 struct ffs_epfile *epfile = ffs->epfiles; 1854 unsigned count = ffs->eps_count; 1855 unsigned long flags; 1856 int ret = 0; 1857 1858 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1859 while(count--) { 1860 struct usb_endpoint_descriptor *ds; 1861 struct usb_ss_ep_comp_descriptor *comp_desc = NULL; 1862 int needs_comp_desc = false; 1863 int desc_idx; 1864 1865 if (ffs->gadget->speed == USB_SPEED_SUPER) { 1866 desc_idx = 2; 1867 needs_comp_desc = true; 1868 } else if (ffs->gadget->speed == USB_SPEED_HIGH) 1869 desc_idx = 1; 1870 else 1871 desc_idx = 0; 1872 1873 /* fall-back to lower speed if desc missing for current speed */ 1874 do { 1875 ds = ep->descs[desc_idx]; 1876 } while (!ds && --desc_idx >= 0); 1877 1878 if (!ds) { 1879 ret = -EINVAL; 1880 break; 1881 } 1882 1883 ep->ep->driver_data = ep; 1884 ep->ep->desc = ds; 1885 1886 if (needs_comp_desc) { 1887 comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds + 1888 USB_DT_ENDPOINT_SIZE); 1889 ep->ep->maxburst = comp_desc->bMaxBurst + 1; 1890 ep->ep->comp_desc = comp_desc; 1891 } 1892 1893 ret = usb_ep_enable(ep->ep); 1894 if (likely(!ret)) { 1895 epfile->ep = ep; 1896 epfile->in = usb_endpoint_dir_in(ds); 1897 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1898 } else { 1899 break; 1900 } 1901 1902 ++ep; 1903 ++epfile; 1904 } 1905 1906 wake_up_interruptible(&ffs->wait); 1907 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1908 1909 return ret; 1910 } 1911 1912 1913 /* Parsing and building descriptors and strings *****************************/ 1914 1915 /* 1916 * This validates if data pointed by data is a valid USB descriptor as 1917 * well as record how many interfaces, endpoints and strings are 1918 * required by given configuration. Returns address after the 1919 * descriptor or NULL if data is invalid. 1920 */ 1921 1922 enum ffs_entity_type { 1923 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1924 }; 1925 1926 enum ffs_os_desc_type { 1927 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1928 }; 1929 1930 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1931 u8 *valuep, 1932 struct usb_descriptor_header *desc, 1933 void *priv); 1934 1935 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1936 struct usb_os_desc_header *h, void *data, 1937 unsigned len, void *priv); 1938 1939 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1940 ffs_entity_callback entity, 1941 void *priv) 1942 { 1943 struct usb_descriptor_header *_ds = (void *)data; 1944 u8 length; 1945 int ret; 1946 1947 ENTER(); 1948 1949 /* At least two bytes are required: length and type */ 1950 if (len < 2) { 1951 pr_vdebug("descriptor too short\n"); 1952 return -EINVAL; 1953 } 1954 1955 /* If we have at least as many bytes as the descriptor takes? */ 1956 length = _ds->bLength; 1957 if (len < length) { 1958 pr_vdebug("descriptor longer then available data\n"); 1959 return -EINVAL; 1960 } 1961 1962 #define __entity_check_INTERFACE(val) 1 1963 #define __entity_check_STRING(val) (val) 1964 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1965 #define __entity(type, val) do { \ 1966 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1967 if (unlikely(!__entity_check_ ##type(val))) { \ 1968 pr_vdebug("invalid entity's value\n"); \ 1969 return -EINVAL; \ 1970 } \ 1971 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1972 if (unlikely(ret < 0)) { \ 1973 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1974 (val), ret); \ 1975 return ret; \ 1976 } \ 1977 } while (0) 1978 1979 /* Parse descriptor depending on type. */ 1980 switch (_ds->bDescriptorType) { 1981 case USB_DT_DEVICE: 1982 case USB_DT_CONFIG: 1983 case USB_DT_STRING: 1984 case USB_DT_DEVICE_QUALIFIER: 1985 /* function can't have any of those */ 1986 pr_vdebug("descriptor reserved for gadget: %d\n", 1987 _ds->bDescriptorType); 1988 return -EINVAL; 1989 1990 case USB_DT_INTERFACE: { 1991 struct usb_interface_descriptor *ds = (void *)_ds; 1992 pr_vdebug("interface descriptor\n"); 1993 if (length != sizeof *ds) 1994 goto inv_length; 1995 1996 __entity(INTERFACE, ds->bInterfaceNumber); 1997 if (ds->iInterface) 1998 __entity(STRING, ds->iInterface); 1999 } 2000 break; 2001 2002 case USB_DT_ENDPOINT: { 2003 struct usb_endpoint_descriptor *ds = (void *)_ds; 2004 pr_vdebug("endpoint descriptor\n"); 2005 if (length != USB_DT_ENDPOINT_SIZE && 2006 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2007 goto inv_length; 2008 __entity(ENDPOINT, ds->bEndpointAddress); 2009 } 2010 break; 2011 2012 case HID_DT_HID: 2013 pr_vdebug("hid descriptor\n"); 2014 if (length != sizeof(struct hid_descriptor)) 2015 goto inv_length; 2016 break; 2017 2018 case USB_DT_OTG: 2019 if (length != sizeof(struct usb_otg_descriptor)) 2020 goto inv_length; 2021 break; 2022 2023 case USB_DT_INTERFACE_ASSOCIATION: { 2024 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2025 pr_vdebug("interface association descriptor\n"); 2026 if (length != sizeof *ds) 2027 goto inv_length; 2028 if (ds->iFunction) 2029 __entity(STRING, ds->iFunction); 2030 } 2031 break; 2032 2033 case USB_DT_SS_ENDPOINT_COMP: 2034 pr_vdebug("EP SS companion descriptor\n"); 2035 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2036 goto inv_length; 2037 break; 2038 2039 case USB_DT_OTHER_SPEED_CONFIG: 2040 case USB_DT_INTERFACE_POWER: 2041 case USB_DT_DEBUG: 2042 case USB_DT_SECURITY: 2043 case USB_DT_CS_RADIO_CONTROL: 2044 /* TODO */ 2045 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2046 return -EINVAL; 2047 2048 default: 2049 /* We should never be here */ 2050 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2051 return -EINVAL; 2052 2053 inv_length: 2054 pr_vdebug("invalid length: %d (descriptor %d)\n", 2055 _ds->bLength, _ds->bDescriptorType); 2056 return -EINVAL; 2057 } 2058 2059 #undef __entity 2060 #undef __entity_check_DESCRIPTOR 2061 #undef __entity_check_INTERFACE 2062 #undef __entity_check_STRING 2063 #undef __entity_check_ENDPOINT 2064 2065 return length; 2066 } 2067 2068 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2069 ffs_entity_callback entity, void *priv) 2070 { 2071 const unsigned _len = len; 2072 unsigned long num = 0; 2073 2074 ENTER(); 2075 2076 for (;;) { 2077 int ret; 2078 2079 if (num == count) 2080 data = NULL; 2081 2082 /* Record "descriptor" entity */ 2083 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2084 if (unlikely(ret < 0)) { 2085 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2086 num, ret); 2087 return ret; 2088 } 2089 2090 if (!data) 2091 return _len - len; 2092 2093 ret = ffs_do_single_desc(data, len, entity, priv); 2094 if (unlikely(ret < 0)) { 2095 pr_debug("%s returns %d\n", __func__, ret); 2096 return ret; 2097 } 2098 2099 len -= ret; 2100 data += ret; 2101 ++num; 2102 } 2103 } 2104 2105 static int __ffs_data_do_entity(enum ffs_entity_type type, 2106 u8 *valuep, struct usb_descriptor_header *desc, 2107 void *priv) 2108 { 2109 struct ffs_desc_helper *helper = priv; 2110 struct usb_endpoint_descriptor *d; 2111 2112 ENTER(); 2113 2114 switch (type) { 2115 case FFS_DESCRIPTOR: 2116 break; 2117 2118 case FFS_INTERFACE: 2119 /* 2120 * Interfaces are indexed from zero so if we 2121 * encountered interface "n" then there are at least 2122 * "n+1" interfaces. 2123 */ 2124 if (*valuep >= helper->interfaces_count) 2125 helper->interfaces_count = *valuep + 1; 2126 break; 2127 2128 case FFS_STRING: 2129 /* 2130 * Strings are indexed from 1 (0 is reserved 2131 * for languages list) 2132 */ 2133 if (*valuep > helper->ffs->strings_count) 2134 helper->ffs->strings_count = *valuep; 2135 break; 2136 2137 case FFS_ENDPOINT: 2138 d = (void *)desc; 2139 helper->eps_count++; 2140 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2141 return -EINVAL; 2142 /* Check if descriptors for any speed were already parsed */ 2143 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2144 helper->ffs->eps_addrmap[helper->eps_count] = 2145 d->bEndpointAddress; 2146 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2147 d->bEndpointAddress) 2148 return -EINVAL; 2149 break; 2150 } 2151 2152 return 0; 2153 } 2154 2155 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2156 struct usb_os_desc_header *desc) 2157 { 2158 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2159 u16 w_index = le16_to_cpu(desc->wIndex); 2160 2161 if (bcd_version != 1) { 2162 pr_vdebug("unsupported os descriptors version: %d", 2163 bcd_version); 2164 return -EINVAL; 2165 } 2166 switch (w_index) { 2167 case 0x4: 2168 *next_type = FFS_OS_DESC_EXT_COMPAT; 2169 break; 2170 case 0x5: 2171 *next_type = FFS_OS_DESC_EXT_PROP; 2172 break; 2173 default: 2174 pr_vdebug("unsupported os descriptor type: %d", w_index); 2175 return -EINVAL; 2176 } 2177 2178 return sizeof(*desc); 2179 } 2180 2181 /* 2182 * Process all extended compatibility/extended property descriptors 2183 * of a feature descriptor 2184 */ 2185 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2186 enum ffs_os_desc_type type, 2187 u16 feature_count, 2188 ffs_os_desc_callback entity, 2189 void *priv, 2190 struct usb_os_desc_header *h) 2191 { 2192 int ret; 2193 const unsigned _len = len; 2194 2195 ENTER(); 2196 2197 /* loop over all ext compat/ext prop descriptors */ 2198 while (feature_count--) { 2199 ret = entity(type, h, data, len, priv); 2200 if (unlikely(ret < 0)) { 2201 pr_debug("bad OS descriptor, type: %d\n", type); 2202 return ret; 2203 } 2204 data += ret; 2205 len -= ret; 2206 } 2207 return _len - len; 2208 } 2209 2210 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2211 static int __must_check ffs_do_os_descs(unsigned count, 2212 char *data, unsigned len, 2213 ffs_os_desc_callback entity, void *priv) 2214 { 2215 const unsigned _len = len; 2216 unsigned long num = 0; 2217 2218 ENTER(); 2219 2220 for (num = 0; num < count; ++num) { 2221 int ret; 2222 enum ffs_os_desc_type type; 2223 u16 feature_count; 2224 struct usb_os_desc_header *desc = (void *)data; 2225 2226 if (len < sizeof(*desc)) 2227 return -EINVAL; 2228 2229 /* 2230 * Record "descriptor" entity. 2231 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2232 * Move the data pointer to the beginning of extended 2233 * compatibilities proper or extended properties proper 2234 * portions of the data 2235 */ 2236 if (le32_to_cpu(desc->dwLength) > len) 2237 return -EINVAL; 2238 2239 ret = __ffs_do_os_desc_header(&type, desc); 2240 if (unlikely(ret < 0)) { 2241 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2242 num, ret); 2243 return ret; 2244 } 2245 /* 2246 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2247 */ 2248 feature_count = le16_to_cpu(desc->wCount); 2249 if (type == FFS_OS_DESC_EXT_COMPAT && 2250 (feature_count > 255 || desc->Reserved)) 2251 return -EINVAL; 2252 len -= ret; 2253 data += ret; 2254 2255 /* 2256 * Process all function/property descriptors 2257 * of this Feature Descriptor 2258 */ 2259 ret = ffs_do_single_os_desc(data, len, type, 2260 feature_count, entity, priv, desc); 2261 if (unlikely(ret < 0)) { 2262 pr_debug("%s returns %d\n", __func__, ret); 2263 return ret; 2264 } 2265 2266 len -= ret; 2267 data += ret; 2268 } 2269 return _len - len; 2270 } 2271 2272 /** 2273 * Validate contents of the buffer from userspace related to OS descriptors. 2274 */ 2275 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2276 struct usb_os_desc_header *h, void *data, 2277 unsigned len, void *priv) 2278 { 2279 struct ffs_data *ffs = priv; 2280 u8 length; 2281 2282 ENTER(); 2283 2284 switch (type) { 2285 case FFS_OS_DESC_EXT_COMPAT: { 2286 struct usb_ext_compat_desc *d = data; 2287 int i; 2288 2289 if (len < sizeof(*d) || 2290 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2291 !d->Reserved1) 2292 return -EINVAL; 2293 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2294 if (d->Reserved2[i]) 2295 return -EINVAL; 2296 2297 length = sizeof(struct usb_ext_compat_desc); 2298 } 2299 break; 2300 case FFS_OS_DESC_EXT_PROP: { 2301 struct usb_ext_prop_desc *d = data; 2302 u32 type, pdl; 2303 u16 pnl; 2304 2305 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2306 return -EINVAL; 2307 length = le32_to_cpu(d->dwSize); 2308 if (len < length) 2309 return -EINVAL; 2310 type = le32_to_cpu(d->dwPropertyDataType); 2311 if (type < USB_EXT_PROP_UNICODE || 2312 type > USB_EXT_PROP_UNICODE_MULTI) { 2313 pr_vdebug("unsupported os descriptor property type: %d", 2314 type); 2315 return -EINVAL; 2316 } 2317 pnl = le16_to_cpu(d->wPropertyNameLength); 2318 if (length < 14 + pnl) { 2319 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2320 length, pnl, type); 2321 return -EINVAL; 2322 } 2323 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2324 if (length != 14 + pnl + pdl) { 2325 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2326 length, pnl, pdl, type); 2327 return -EINVAL; 2328 } 2329 ++ffs->ms_os_descs_ext_prop_count; 2330 /* property name reported to the host as "WCHAR"s */ 2331 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2332 ffs->ms_os_descs_ext_prop_data_len += pdl; 2333 } 2334 break; 2335 default: 2336 pr_vdebug("unknown descriptor: %d\n", type); 2337 return -EINVAL; 2338 } 2339 return length; 2340 } 2341 2342 static int __ffs_data_got_descs(struct ffs_data *ffs, 2343 char *const _data, size_t len) 2344 { 2345 char *data = _data, *raw_descs; 2346 unsigned os_descs_count = 0, counts[3], flags; 2347 int ret = -EINVAL, i; 2348 struct ffs_desc_helper helper; 2349 2350 ENTER(); 2351 2352 if (get_unaligned_le32(data + 4) != len) 2353 goto error; 2354 2355 switch (get_unaligned_le32(data)) { 2356 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2357 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2358 data += 8; 2359 len -= 8; 2360 break; 2361 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2362 flags = get_unaligned_le32(data + 8); 2363 ffs->user_flags = flags; 2364 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2365 FUNCTIONFS_HAS_HS_DESC | 2366 FUNCTIONFS_HAS_SS_DESC | 2367 FUNCTIONFS_HAS_MS_OS_DESC | 2368 FUNCTIONFS_VIRTUAL_ADDR | 2369 FUNCTIONFS_EVENTFD | 2370 FUNCTIONFS_ALL_CTRL_RECIP | 2371 FUNCTIONFS_CONFIG0_SETUP)) { 2372 ret = -ENOSYS; 2373 goto error; 2374 } 2375 data += 12; 2376 len -= 12; 2377 break; 2378 default: 2379 goto error; 2380 } 2381 2382 if (flags & FUNCTIONFS_EVENTFD) { 2383 if (len < 4) 2384 goto error; 2385 ffs->ffs_eventfd = 2386 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2387 if (IS_ERR(ffs->ffs_eventfd)) { 2388 ret = PTR_ERR(ffs->ffs_eventfd); 2389 ffs->ffs_eventfd = NULL; 2390 goto error; 2391 } 2392 data += 4; 2393 len -= 4; 2394 } 2395 2396 /* Read fs_count, hs_count and ss_count (if present) */ 2397 for (i = 0; i < 3; ++i) { 2398 if (!(flags & (1 << i))) { 2399 counts[i] = 0; 2400 } else if (len < 4) { 2401 goto error; 2402 } else { 2403 counts[i] = get_unaligned_le32(data); 2404 data += 4; 2405 len -= 4; 2406 } 2407 } 2408 if (flags & (1 << i)) { 2409 if (len < 4) { 2410 goto error; 2411 } 2412 os_descs_count = get_unaligned_le32(data); 2413 data += 4; 2414 len -= 4; 2415 }; 2416 2417 /* Read descriptors */ 2418 raw_descs = data; 2419 helper.ffs = ffs; 2420 for (i = 0; i < 3; ++i) { 2421 if (!counts[i]) 2422 continue; 2423 helper.interfaces_count = 0; 2424 helper.eps_count = 0; 2425 ret = ffs_do_descs(counts[i], data, len, 2426 __ffs_data_do_entity, &helper); 2427 if (ret < 0) 2428 goto error; 2429 if (!ffs->eps_count && !ffs->interfaces_count) { 2430 ffs->eps_count = helper.eps_count; 2431 ffs->interfaces_count = helper.interfaces_count; 2432 } else { 2433 if (ffs->eps_count != helper.eps_count) { 2434 ret = -EINVAL; 2435 goto error; 2436 } 2437 if (ffs->interfaces_count != helper.interfaces_count) { 2438 ret = -EINVAL; 2439 goto error; 2440 } 2441 } 2442 data += ret; 2443 len -= ret; 2444 } 2445 if (os_descs_count) { 2446 ret = ffs_do_os_descs(os_descs_count, data, len, 2447 __ffs_data_do_os_desc, ffs); 2448 if (ret < 0) 2449 goto error; 2450 data += ret; 2451 len -= ret; 2452 } 2453 2454 if (raw_descs == data || len) { 2455 ret = -EINVAL; 2456 goto error; 2457 } 2458 2459 ffs->raw_descs_data = _data; 2460 ffs->raw_descs = raw_descs; 2461 ffs->raw_descs_length = data - raw_descs; 2462 ffs->fs_descs_count = counts[0]; 2463 ffs->hs_descs_count = counts[1]; 2464 ffs->ss_descs_count = counts[2]; 2465 ffs->ms_os_descs_count = os_descs_count; 2466 2467 return 0; 2468 2469 error: 2470 kfree(_data); 2471 return ret; 2472 } 2473 2474 static int __ffs_data_got_strings(struct ffs_data *ffs, 2475 char *const _data, size_t len) 2476 { 2477 u32 str_count, needed_count, lang_count; 2478 struct usb_gadget_strings **stringtabs, *t; 2479 const char *data = _data; 2480 struct usb_string *s; 2481 2482 ENTER(); 2483 2484 if (unlikely(len < 16 || 2485 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2486 get_unaligned_le32(data + 4) != len)) 2487 goto error; 2488 str_count = get_unaligned_le32(data + 8); 2489 lang_count = get_unaligned_le32(data + 12); 2490 2491 /* if one is zero the other must be zero */ 2492 if (unlikely(!str_count != !lang_count)) 2493 goto error; 2494 2495 /* Do we have at least as many strings as descriptors need? */ 2496 needed_count = ffs->strings_count; 2497 if (unlikely(str_count < needed_count)) 2498 goto error; 2499 2500 /* 2501 * If we don't need any strings just return and free all 2502 * memory. 2503 */ 2504 if (!needed_count) { 2505 kfree(_data); 2506 return 0; 2507 } 2508 2509 /* Allocate everything in one chunk so there's less maintenance. */ 2510 { 2511 unsigned i = 0; 2512 vla_group(d); 2513 vla_item(d, struct usb_gadget_strings *, stringtabs, 2514 lang_count + 1); 2515 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2516 vla_item(d, struct usb_string, strings, 2517 lang_count*(needed_count+1)); 2518 2519 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2520 2521 if (unlikely(!vlabuf)) { 2522 kfree(_data); 2523 return -ENOMEM; 2524 } 2525 2526 /* Initialize the VLA pointers */ 2527 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2528 t = vla_ptr(vlabuf, d, stringtab); 2529 i = lang_count; 2530 do { 2531 *stringtabs++ = t++; 2532 } while (--i); 2533 *stringtabs = NULL; 2534 2535 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2536 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2537 t = vla_ptr(vlabuf, d, stringtab); 2538 s = vla_ptr(vlabuf, d, strings); 2539 } 2540 2541 /* For each language */ 2542 data += 16; 2543 len -= 16; 2544 2545 do { /* lang_count > 0 so we can use do-while */ 2546 unsigned needed = needed_count; 2547 2548 if (unlikely(len < 3)) 2549 goto error_free; 2550 t->language = get_unaligned_le16(data); 2551 t->strings = s; 2552 ++t; 2553 2554 data += 2; 2555 len -= 2; 2556 2557 /* For each string */ 2558 do { /* str_count > 0 so we can use do-while */ 2559 size_t length = strnlen(data, len); 2560 2561 if (unlikely(length == len)) 2562 goto error_free; 2563 2564 /* 2565 * User may provide more strings then we need, 2566 * if that's the case we simply ignore the 2567 * rest 2568 */ 2569 if (likely(needed)) { 2570 /* 2571 * s->id will be set while adding 2572 * function to configuration so for 2573 * now just leave garbage here. 2574 */ 2575 s->s = data; 2576 --needed; 2577 ++s; 2578 } 2579 2580 data += length + 1; 2581 len -= length + 1; 2582 } while (--str_count); 2583 2584 s->id = 0; /* terminator */ 2585 s->s = NULL; 2586 ++s; 2587 2588 } while (--lang_count); 2589 2590 /* Some garbage left? */ 2591 if (unlikely(len)) 2592 goto error_free; 2593 2594 /* Done! */ 2595 ffs->stringtabs = stringtabs; 2596 ffs->raw_strings = _data; 2597 2598 return 0; 2599 2600 error_free: 2601 kfree(stringtabs); 2602 error: 2603 kfree(_data); 2604 return -EINVAL; 2605 } 2606 2607 2608 /* Events handling and management *******************************************/ 2609 2610 static void __ffs_event_add(struct ffs_data *ffs, 2611 enum usb_functionfs_event_type type) 2612 { 2613 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2614 int neg = 0; 2615 2616 /* 2617 * Abort any unhandled setup 2618 * 2619 * We do not need to worry about some cmpxchg() changing value 2620 * of ffs->setup_state without holding the lock because when 2621 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2622 * the source does nothing. 2623 */ 2624 if (ffs->setup_state == FFS_SETUP_PENDING) 2625 ffs->setup_state = FFS_SETUP_CANCELLED; 2626 2627 /* 2628 * Logic of this function guarantees that there are at most four pending 2629 * evens on ffs->ev.types queue. This is important because the queue 2630 * has space for four elements only and __ffs_ep0_read_events function 2631 * depends on that limit as well. If more event types are added, those 2632 * limits have to be revisited or guaranteed to still hold. 2633 */ 2634 switch (type) { 2635 case FUNCTIONFS_RESUME: 2636 rem_type2 = FUNCTIONFS_SUSPEND; 2637 /* FALL THROUGH */ 2638 case FUNCTIONFS_SUSPEND: 2639 case FUNCTIONFS_SETUP: 2640 rem_type1 = type; 2641 /* Discard all similar events */ 2642 break; 2643 2644 case FUNCTIONFS_BIND: 2645 case FUNCTIONFS_UNBIND: 2646 case FUNCTIONFS_DISABLE: 2647 case FUNCTIONFS_ENABLE: 2648 /* Discard everything other then power management. */ 2649 rem_type1 = FUNCTIONFS_SUSPEND; 2650 rem_type2 = FUNCTIONFS_RESUME; 2651 neg = 1; 2652 break; 2653 2654 default: 2655 WARN(1, "%d: unknown event, this should not happen\n", type); 2656 return; 2657 } 2658 2659 { 2660 u8 *ev = ffs->ev.types, *out = ev; 2661 unsigned n = ffs->ev.count; 2662 for (; n; --n, ++ev) 2663 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2664 *out++ = *ev; 2665 else 2666 pr_vdebug("purging event %d\n", *ev); 2667 ffs->ev.count = out - ffs->ev.types; 2668 } 2669 2670 pr_vdebug("adding event %d\n", type); 2671 ffs->ev.types[ffs->ev.count++] = type; 2672 wake_up_locked(&ffs->ev.waitq); 2673 if (ffs->ffs_eventfd) 2674 eventfd_signal(ffs->ffs_eventfd, 1); 2675 } 2676 2677 static void ffs_event_add(struct ffs_data *ffs, 2678 enum usb_functionfs_event_type type) 2679 { 2680 unsigned long flags; 2681 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2682 __ffs_event_add(ffs, type); 2683 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2684 } 2685 2686 /* Bind/unbind USB function hooks *******************************************/ 2687 2688 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2689 { 2690 int i; 2691 2692 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2693 if (ffs->eps_addrmap[i] == endpoint_address) 2694 return i; 2695 return -ENOENT; 2696 } 2697 2698 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2699 struct usb_descriptor_header *desc, 2700 void *priv) 2701 { 2702 struct usb_endpoint_descriptor *ds = (void *)desc; 2703 struct ffs_function *func = priv; 2704 struct ffs_ep *ffs_ep; 2705 unsigned ep_desc_id; 2706 int idx; 2707 static const char *speed_names[] = { "full", "high", "super" }; 2708 2709 if (type != FFS_DESCRIPTOR) 2710 return 0; 2711 2712 /* 2713 * If ss_descriptors is not NULL, we are reading super speed 2714 * descriptors; if hs_descriptors is not NULL, we are reading high 2715 * speed descriptors; otherwise, we are reading full speed 2716 * descriptors. 2717 */ 2718 if (func->function.ss_descriptors) { 2719 ep_desc_id = 2; 2720 func->function.ss_descriptors[(long)valuep] = desc; 2721 } else if (func->function.hs_descriptors) { 2722 ep_desc_id = 1; 2723 func->function.hs_descriptors[(long)valuep] = desc; 2724 } else { 2725 ep_desc_id = 0; 2726 func->function.fs_descriptors[(long)valuep] = desc; 2727 } 2728 2729 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2730 return 0; 2731 2732 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2733 if (idx < 0) 2734 return idx; 2735 2736 ffs_ep = func->eps + idx; 2737 2738 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2739 pr_err("two %sspeed descriptors for EP %d\n", 2740 speed_names[ep_desc_id], 2741 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2742 return -EINVAL; 2743 } 2744 ffs_ep->descs[ep_desc_id] = ds; 2745 2746 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2747 if (ffs_ep->ep) { 2748 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2749 if (!ds->wMaxPacketSize) 2750 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2751 } else { 2752 struct usb_request *req; 2753 struct usb_ep *ep; 2754 u8 bEndpointAddress; 2755 2756 /* 2757 * We back up bEndpointAddress because autoconfig overwrites 2758 * it with physical endpoint address. 2759 */ 2760 bEndpointAddress = ds->bEndpointAddress; 2761 pr_vdebug("autoconfig\n"); 2762 ep = usb_ep_autoconfig(func->gadget, ds); 2763 if (unlikely(!ep)) 2764 return -ENOTSUPP; 2765 ep->driver_data = func->eps + idx; 2766 2767 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2768 if (unlikely(!req)) 2769 return -ENOMEM; 2770 2771 ffs_ep->ep = ep; 2772 ffs_ep->req = req; 2773 func->eps_revmap[ds->bEndpointAddress & 2774 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2775 /* 2776 * If we use virtual address mapping, we restore 2777 * original bEndpointAddress value. 2778 */ 2779 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2780 ds->bEndpointAddress = bEndpointAddress; 2781 } 2782 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2783 2784 return 0; 2785 } 2786 2787 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2788 struct usb_descriptor_header *desc, 2789 void *priv) 2790 { 2791 struct ffs_function *func = priv; 2792 unsigned idx; 2793 u8 newValue; 2794 2795 switch (type) { 2796 default: 2797 case FFS_DESCRIPTOR: 2798 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2799 return 0; 2800 2801 case FFS_INTERFACE: 2802 idx = *valuep; 2803 if (func->interfaces_nums[idx] < 0) { 2804 int id = usb_interface_id(func->conf, &func->function); 2805 if (unlikely(id < 0)) 2806 return id; 2807 func->interfaces_nums[idx] = id; 2808 } 2809 newValue = func->interfaces_nums[idx]; 2810 break; 2811 2812 case FFS_STRING: 2813 /* String' IDs are allocated when fsf_data is bound to cdev */ 2814 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2815 break; 2816 2817 case FFS_ENDPOINT: 2818 /* 2819 * USB_DT_ENDPOINT are handled in 2820 * __ffs_func_bind_do_descs(). 2821 */ 2822 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2823 return 0; 2824 2825 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2826 if (unlikely(!func->eps[idx].ep)) 2827 return -EINVAL; 2828 2829 { 2830 struct usb_endpoint_descriptor **descs; 2831 descs = func->eps[idx].descs; 2832 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2833 } 2834 break; 2835 } 2836 2837 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2838 *valuep = newValue; 2839 return 0; 2840 } 2841 2842 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2843 struct usb_os_desc_header *h, void *data, 2844 unsigned len, void *priv) 2845 { 2846 struct ffs_function *func = priv; 2847 u8 length = 0; 2848 2849 switch (type) { 2850 case FFS_OS_DESC_EXT_COMPAT: { 2851 struct usb_ext_compat_desc *desc = data; 2852 struct usb_os_desc_table *t; 2853 2854 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2855 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2856 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2857 ARRAY_SIZE(desc->CompatibleID) + 2858 ARRAY_SIZE(desc->SubCompatibleID)); 2859 length = sizeof(*desc); 2860 } 2861 break; 2862 case FFS_OS_DESC_EXT_PROP: { 2863 struct usb_ext_prop_desc *desc = data; 2864 struct usb_os_desc_table *t; 2865 struct usb_os_desc_ext_prop *ext_prop; 2866 char *ext_prop_name; 2867 char *ext_prop_data; 2868 2869 t = &func->function.os_desc_table[h->interface]; 2870 t->if_id = func->interfaces_nums[h->interface]; 2871 2872 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2873 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2874 2875 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2876 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2877 ext_prop->data_len = le32_to_cpu(*(u32 *) 2878 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2879 length = ext_prop->name_len + ext_prop->data_len + 14; 2880 2881 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2882 func->ffs->ms_os_descs_ext_prop_name_avail += 2883 ext_prop->name_len; 2884 2885 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2886 func->ffs->ms_os_descs_ext_prop_data_avail += 2887 ext_prop->data_len; 2888 memcpy(ext_prop_data, 2889 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2890 ext_prop->data_len); 2891 /* unicode data reported to the host as "WCHAR"s */ 2892 switch (ext_prop->type) { 2893 case USB_EXT_PROP_UNICODE: 2894 case USB_EXT_PROP_UNICODE_ENV: 2895 case USB_EXT_PROP_UNICODE_LINK: 2896 case USB_EXT_PROP_UNICODE_MULTI: 2897 ext_prop->data_len *= 2; 2898 break; 2899 } 2900 ext_prop->data = ext_prop_data; 2901 2902 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2903 ext_prop->name_len); 2904 /* property name reported to the host as "WCHAR"s */ 2905 ext_prop->name_len *= 2; 2906 ext_prop->name = ext_prop_name; 2907 2908 t->os_desc->ext_prop_len += 2909 ext_prop->name_len + ext_prop->data_len + 14; 2910 ++t->os_desc->ext_prop_count; 2911 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2912 } 2913 break; 2914 default: 2915 pr_vdebug("unknown descriptor: %d\n", type); 2916 } 2917 2918 return length; 2919 } 2920 2921 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2922 struct usb_configuration *c) 2923 { 2924 struct ffs_function *func = ffs_func_from_usb(f); 2925 struct f_fs_opts *ffs_opts = 2926 container_of(f->fi, struct f_fs_opts, func_inst); 2927 int ret; 2928 2929 ENTER(); 2930 2931 /* 2932 * Legacy gadget triggers binding in functionfs_ready_callback, 2933 * which already uses locking; taking the same lock here would 2934 * cause a deadlock. 2935 * 2936 * Configfs-enabled gadgets however do need ffs_dev_lock. 2937 */ 2938 if (!ffs_opts->no_configfs) 2939 ffs_dev_lock(); 2940 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2941 func->ffs = ffs_opts->dev->ffs_data; 2942 if (!ffs_opts->no_configfs) 2943 ffs_dev_unlock(); 2944 if (ret) 2945 return ERR_PTR(ret); 2946 2947 func->conf = c; 2948 func->gadget = c->cdev->gadget; 2949 2950 /* 2951 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2952 * configurations are bound in sequence with list_for_each_entry, 2953 * in each configuration its functions are bound in sequence 2954 * with list_for_each_entry, so we assume no race condition 2955 * with regard to ffs_opts->bound access 2956 */ 2957 if (!ffs_opts->refcnt) { 2958 ret = functionfs_bind(func->ffs, c->cdev); 2959 if (ret) 2960 return ERR_PTR(ret); 2961 } 2962 ffs_opts->refcnt++; 2963 func->function.strings = func->ffs->stringtabs; 2964 2965 return ffs_opts; 2966 } 2967 2968 static int _ffs_func_bind(struct usb_configuration *c, 2969 struct usb_function *f) 2970 { 2971 struct ffs_function *func = ffs_func_from_usb(f); 2972 struct ffs_data *ffs = func->ffs; 2973 2974 const int full = !!func->ffs->fs_descs_count; 2975 const int high = gadget_is_dualspeed(func->gadget) && 2976 func->ffs->hs_descs_count; 2977 const int super = gadget_is_superspeed(func->gadget) && 2978 func->ffs->ss_descs_count; 2979 2980 int fs_len, hs_len, ss_len, ret, i; 2981 struct ffs_ep *eps_ptr; 2982 2983 /* Make it a single chunk, less management later on */ 2984 vla_group(d); 2985 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2986 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2987 full ? ffs->fs_descs_count + 1 : 0); 2988 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2989 high ? ffs->hs_descs_count + 1 : 0); 2990 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2991 super ? ffs->ss_descs_count + 1 : 0); 2992 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2993 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2994 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2995 vla_item_with_sz(d, char[16], ext_compat, 2996 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2997 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2998 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2999 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3000 ffs->ms_os_descs_ext_prop_count); 3001 vla_item_with_sz(d, char, ext_prop_name, 3002 ffs->ms_os_descs_ext_prop_name_len); 3003 vla_item_with_sz(d, char, ext_prop_data, 3004 ffs->ms_os_descs_ext_prop_data_len); 3005 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3006 char *vlabuf; 3007 3008 ENTER(); 3009 3010 /* Has descriptors only for speeds gadget does not support */ 3011 if (unlikely(!(full | high | super))) 3012 return -ENOTSUPP; 3013 3014 /* Allocate a single chunk, less management later on */ 3015 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3016 if (unlikely(!vlabuf)) 3017 return -ENOMEM; 3018 3019 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3020 ffs->ms_os_descs_ext_prop_name_avail = 3021 vla_ptr(vlabuf, d, ext_prop_name); 3022 ffs->ms_os_descs_ext_prop_data_avail = 3023 vla_ptr(vlabuf, d, ext_prop_data); 3024 3025 /* Copy descriptors */ 3026 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3027 ffs->raw_descs_length); 3028 3029 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3030 eps_ptr = vla_ptr(vlabuf, d, eps); 3031 for (i = 0; i < ffs->eps_count; i++) 3032 eps_ptr[i].num = -1; 3033 3034 /* Save pointers 3035 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3036 */ 3037 func->eps = vla_ptr(vlabuf, d, eps); 3038 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3039 3040 /* 3041 * Go through all the endpoint descriptors and allocate 3042 * endpoints first, so that later we can rewrite the endpoint 3043 * numbers without worrying that it may be described later on. 3044 */ 3045 if (likely(full)) { 3046 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3047 fs_len = ffs_do_descs(ffs->fs_descs_count, 3048 vla_ptr(vlabuf, d, raw_descs), 3049 d_raw_descs__sz, 3050 __ffs_func_bind_do_descs, func); 3051 if (unlikely(fs_len < 0)) { 3052 ret = fs_len; 3053 goto error; 3054 } 3055 } else { 3056 fs_len = 0; 3057 } 3058 3059 if (likely(high)) { 3060 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3061 hs_len = ffs_do_descs(ffs->hs_descs_count, 3062 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3063 d_raw_descs__sz - fs_len, 3064 __ffs_func_bind_do_descs, func); 3065 if (unlikely(hs_len < 0)) { 3066 ret = hs_len; 3067 goto error; 3068 } 3069 } else { 3070 hs_len = 0; 3071 } 3072 3073 if (likely(super)) { 3074 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3075 ss_len = ffs_do_descs(ffs->ss_descs_count, 3076 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3077 d_raw_descs__sz - fs_len - hs_len, 3078 __ffs_func_bind_do_descs, func); 3079 if (unlikely(ss_len < 0)) { 3080 ret = ss_len; 3081 goto error; 3082 } 3083 } else { 3084 ss_len = 0; 3085 } 3086 3087 /* 3088 * Now handle interface numbers allocation and interface and 3089 * endpoint numbers rewriting. We can do that in one go 3090 * now. 3091 */ 3092 ret = ffs_do_descs(ffs->fs_descs_count + 3093 (high ? ffs->hs_descs_count : 0) + 3094 (super ? ffs->ss_descs_count : 0), 3095 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3096 __ffs_func_bind_do_nums, func); 3097 if (unlikely(ret < 0)) 3098 goto error; 3099 3100 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3101 if (c->cdev->use_os_string) { 3102 for (i = 0; i < ffs->interfaces_count; ++i) { 3103 struct usb_os_desc *desc; 3104 3105 desc = func->function.os_desc_table[i].os_desc = 3106 vla_ptr(vlabuf, d, os_desc) + 3107 i * sizeof(struct usb_os_desc); 3108 desc->ext_compat_id = 3109 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3110 INIT_LIST_HEAD(&desc->ext_prop); 3111 } 3112 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3113 vla_ptr(vlabuf, d, raw_descs) + 3114 fs_len + hs_len + ss_len, 3115 d_raw_descs__sz - fs_len - hs_len - 3116 ss_len, 3117 __ffs_func_bind_do_os_desc, func); 3118 if (unlikely(ret < 0)) 3119 goto error; 3120 } 3121 func->function.os_desc_n = 3122 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3123 3124 /* And we're done */ 3125 ffs_event_add(ffs, FUNCTIONFS_BIND); 3126 return 0; 3127 3128 error: 3129 /* XXX Do we need to release all claimed endpoints here? */ 3130 return ret; 3131 } 3132 3133 static int ffs_func_bind(struct usb_configuration *c, 3134 struct usb_function *f) 3135 { 3136 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3137 struct ffs_function *func = ffs_func_from_usb(f); 3138 int ret; 3139 3140 if (IS_ERR(ffs_opts)) 3141 return PTR_ERR(ffs_opts); 3142 3143 ret = _ffs_func_bind(c, f); 3144 if (ret && !--ffs_opts->refcnt) 3145 functionfs_unbind(func->ffs); 3146 3147 return ret; 3148 } 3149 3150 3151 /* Other USB function hooks *************************************************/ 3152 3153 static void ffs_reset_work(struct work_struct *work) 3154 { 3155 struct ffs_data *ffs = container_of(work, 3156 struct ffs_data, reset_work); 3157 ffs_data_reset(ffs); 3158 } 3159 3160 static int ffs_func_set_alt(struct usb_function *f, 3161 unsigned interface, unsigned alt) 3162 { 3163 struct ffs_function *func = ffs_func_from_usb(f); 3164 struct ffs_data *ffs = func->ffs; 3165 int ret = 0, intf; 3166 3167 if (alt != (unsigned)-1) { 3168 intf = ffs_func_revmap_intf(func, interface); 3169 if (unlikely(intf < 0)) 3170 return intf; 3171 } 3172 3173 if (ffs->func) 3174 ffs_func_eps_disable(ffs->func); 3175 3176 if (ffs->state == FFS_DEACTIVATED) { 3177 ffs->state = FFS_CLOSING; 3178 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3179 schedule_work(&ffs->reset_work); 3180 return -ENODEV; 3181 } 3182 3183 if (ffs->state != FFS_ACTIVE) 3184 return -ENODEV; 3185 3186 if (alt == (unsigned)-1) { 3187 ffs->func = NULL; 3188 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3189 return 0; 3190 } 3191 3192 ffs->func = func; 3193 ret = ffs_func_eps_enable(func); 3194 if (likely(ret >= 0)) 3195 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3196 return ret; 3197 } 3198 3199 static void ffs_func_disable(struct usb_function *f) 3200 { 3201 ffs_func_set_alt(f, 0, (unsigned)-1); 3202 } 3203 3204 static int ffs_func_setup(struct usb_function *f, 3205 const struct usb_ctrlrequest *creq) 3206 { 3207 struct ffs_function *func = ffs_func_from_usb(f); 3208 struct ffs_data *ffs = func->ffs; 3209 unsigned long flags; 3210 int ret; 3211 3212 ENTER(); 3213 3214 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3215 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3216 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3217 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3218 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3219 3220 /* 3221 * Most requests directed to interface go through here 3222 * (notable exceptions are set/get interface) so we need to 3223 * handle them. All other either handled by composite or 3224 * passed to usb_configuration->setup() (if one is set). No 3225 * matter, we will handle requests directed to endpoint here 3226 * as well (as it's straightforward). Other request recipient 3227 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3228 * is being used. 3229 */ 3230 if (ffs->state != FFS_ACTIVE) 3231 return -ENODEV; 3232 3233 switch (creq->bRequestType & USB_RECIP_MASK) { 3234 case USB_RECIP_INTERFACE: 3235 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3236 if (unlikely(ret < 0)) 3237 return ret; 3238 break; 3239 3240 case USB_RECIP_ENDPOINT: 3241 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3242 if (unlikely(ret < 0)) 3243 return ret; 3244 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3245 ret = func->ffs->eps_addrmap[ret]; 3246 break; 3247 3248 default: 3249 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3250 ret = le16_to_cpu(creq->wIndex); 3251 else 3252 return -EOPNOTSUPP; 3253 } 3254 3255 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3256 ffs->ev.setup = *creq; 3257 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3258 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3259 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3260 3261 return 0; 3262 } 3263 3264 static bool ffs_func_req_match(struct usb_function *f, 3265 const struct usb_ctrlrequest *creq, 3266 bool config0) 3267 { 3268 struct ffs_function *func = ffs_func_from_usb(f); 3269 3270 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3271 return false; 3272 3273 switch (creq->bRequestType & USB_RECIP_MASK) { 3274 case USB_RECIP_INTERFACE: 3275 return (ffs_func_revmap_intf(func, 3276 le16_to_cpu(creq->wIndex)) >= 0); 3277 case USB_RECIP_ENDPOINT: 3278 return (ffs_func_revmap_ep(func, 3279 le16_to_cpu(creq->wIndex)) >= 0); 3280 default: 3281 return (bool) (func->ffs->user_flags & 3282 FUNCTIONFS_ALL_CTRL_RECIP); 3283 } 3284 } 3285 3286 static void ffs_func_suspend(struct usb_function *f) 3287 { 3288 ENTER(); 3289 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3290 } 3291 3292 static void ffs_func_resume(struct usb_function *f) 3293 { 3294 ENTER(); 3295 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3296 } 3297 3298 3299 /* Endpoint and interface numbers reverse mapping ***************************/ 3300 3301 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3302 { 3303 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3304 return num ? num : -EDOM; 3305 } 3306 3307 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3308 { 3309 short *nums = func->interfaces_nums; 3310 unsigned count = func->ffs->interfaces_count; 3311 3312 for (; count; --count, ++nums) { 3313 if (*nums >= 0 && *nums == intf) 3314 return nums - func->interfaces_nums; 3315 } 3316 3317 return -EDOM; 3318 } 3319 3320 3321 /* Devices management *******************************************************/ 3322 3323 static LIST_HEAD(ffs_devices); 3324 3325 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3326 { 3327 struct ffs_dev *dev; 3328 3329 if (!name) 3330 return NULL; 3331 3332 list_for_each_entry(dev, &ffs_devices, entry) { 3333 if (strcmp(dev->name, name) == 0) 3334 return dev; 3335 } 3336 3337 return NULL; 3338 } 3339 3340 /* 3341 * ffs_lock must be taken by the caller of this function 3342 */ 3343 static struct ffs_dev *_ffs_get_single_dev(void) 3344 { 3345 struct ffs_dev *dev; 3346 3347 if (list_is_singular(&ffs_devices)) { 3348 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3349 if (dev->single) 3350 return dev; 3351 } 3352 3353 return NULL; 3354 } 3355 3356 /* 3357 * ffs_lock must be taken by the caller of this function 3358 */ 3359 static struct ffs_dev *_ffs_find_dev(const char *name) 3360 { 3361 struct ffs_dev *dev; 3362 3363 dev = _ffs_get_single_dev(); 3364 if (dev) 3365 return dev; 3366 3367 return _ffs_do_find_dev(name); 3368 } 3369 3370 /* Configfs support *********************************************************/ 3371 3372 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3373 { 3374 return container_of(to_config_group(item), struct f_fs_opts, 3375 func_inst.group); 3376 } 3377 3378 static void ffs_attr_release(struct config_item *item) 3379 { 3380 struct f_fs_opts *opts = to_ffs_opts(item); 3381 3382 usb_put_function_instance(&opts->func_inst); 3383 } 3384 3385 static struct configfs_item_operations ffs_item_ops = { 3386 .release = ffs_attr_release, 3387 }; 3388 3389 static struct config_item_type ffs_func_type = { 3390 .ct_item_ops = &ffs_item_ops, 3391 .ct_owner = THIS_MODULE, 3392 }; 3393 3394 3395 /* Function registration interface ******************************************/ 3396 3397 static void ffs_free_inst(struct usb_function_instance *f) 3398 { 3399 struct f_fs_opts *opts; 3400 3401 opts = to_f_fs_opts(f); 3402 ffs_dev_lock(); 3403 _ffs_free_dev(opts->dev); 3404 ffs_dev_unlock(); 3405 kfree(opts); 3406 } 3407 3408 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3409 { 3410 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3411 return -ENAMETOOLONG; 3412 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3413 } 3414 3415 static struct usb_function_instance *ffs_alloc_inst(void) 3416 { 3417 struct f_fs_opts *opts; 3418 struct ffs_dev *dev; 3419 3420 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3421 if (!opts) 3422 return ERR_PTR(-ENOMEM); 3423 3424 opts->func_inst.set_inst_name = ffs_set_inst_name; 3425 opts->func_inst.free_func_inst = ffs_free_inst; 3426 ffs_dev_lock(); 3427 dev = _ffs_alloc_dev(); 3428 ffs_dev_unlock(); 3429 if (IS_ERR(dev)) { 3430 kfree(opts); 3431 return ERR_CAST(dev); 3432 } 3433 opts->dev = dev; 3434 dev->opts = opts; 3435 3436 config_group_init_type_name(&opts->func_inst.group, "", 3437 &ffs_func_type); 3438 return &opts->func_inst; 3439 } 3440 3441 static void ffs_free(struct usb_function *f) 3442 { 3443 kfree(ffs_func_from_usb(f)); 3444 } 3445 3446 static void ffs_func_unbind(struct usb_configuration *c, 3447 struct usb_function *f) 3448 { 3449 struct ffs_function *func = ffs_func_from_usb(f); 3450 struct ffs_data *ffs = func->ffs; 3451 struct f_fs_opts *opts = 3452 container_of(f->fi, struct f_fs_opts, func_inst); 3453 struct ffs_ep *ep = func->eps; 3454 unsigned count = ffs->eps_count; 3455 unsigned long flags; 3456 3457 ENTER(); 3458 if (ffs->func == func) { 3459 ffs_func_eps_disable(func); 3460 ffs->func = NULL; 3461 } 3462 3463 if (!--opts->refcnt) 3464 functionfs_unbind(ffs); 3465 3466 /* cleanup after autoconfig */ 3467 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3468 while (count--) { 3469 if (ep->ep && ep->req) 3470 usb_ep_free_request(ep->ep, ep->req); 3471 ep->req = NULL; 3472 ++ep; 3473 } 3474 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3475 kfree(func->eps); 3476 func->eps = NULL; 3477 /* 3478 * eps, descriptors and interfaces_nums are allocated in the 3479 * same chunk so only one free is required. 3480 */ 3481 func->function.fs_descriptors = NULL; 3482 func->function.hs_descriptors = NULL; 3483 func->function.ss_descriptors = NULL; 3484 func->interfaces_nums = NULL; 3485 3486 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3487 } 3488 3489 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3490 { 3491 struct ffs_function *func; 3492 3493 ENTER(); 3494 3495 func = kzalloc(sizeof(*func), GFP_KERNEL); 3496 if (unlikely(!func)) 3497 return ERR_PTR(-ENOMEM); 3498 3499 func->function.name = "Function FS Gadget"; 3500 3501 func->function.bind = ffs_func_bind; 3502 func->function.unbind = ffs_func_unbind; 3503 func->function.set_alt = ffs_func_set_alt; 3504 func->function.disable = ffs_func_disable; 3505 func->function.setup = ffs_func_setup; 3506 func->function.req_match = ffs_func_req_match; 3507 func->function.suspend = ffs_func_suspend; 3508 func->function.resume = ffs_func_resume; 3509 func->function.free_func = ffs_free; 3510 3511 return &func->function; 3512 } 3513 3514 /* 3515 * ffs_lock must be taken by the caller of this function 3516 */ 3517 static struct ffs_dev *_ffs_alloc_dev(void) 3518 { 3519 struct ffs_dev *dev; 3520 int ret; 3521 3522 if (_ffs_get_single_dev()) 3523 return ERR_PTR(-EBUSY); 3524 3525 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3526 if (!dev) 3527 return ERR_PTR(-ENOMEM); 3528 3529 if (list_empty(&ffs_devices)) { 3530 ret = functionfs_init(); 3531 if (ret) { 3532 kfree(dev); 3533 return ERR_PTR(ret); 3534 } 3535 } 3536 3537 list_add(&dev->entry, &ffs_devices); 3538 3539 return dev; 3540 } 3541 3542 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3543 { 3544 struct ffs_dev *existing; 3545 int ret = 0; 3546 3547 ffs_dev_lock(); 3548 3549 existing = _ffs_do_find_dev(name); 3550 if (!existing) 3551 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3552 else if (existing != dev) 3553 ret = -EBUSY; 3554 3555 ffs_dev_unlock(); 3556 3557 return ret; 3558 } 3559 EXPORT_SYMBOL_GPL(ffs_name_dev); 3560 3561 int ffs_single_dev(struct ffs_dev *dev) 3562 { 3563 int ret; 3564 3565 ret = 0; 3566 ffs_dev_lock(); 3567 3568 if (!list_is_singular(&ffs_devices)) 3569 ret = -EBUSY; 3570 else 3571 dev->single = true; 3572 3573 ffs_dev_unlock(); 3574 return ret; 3575 } 3576 EXPORT_SYMBOL_GPL(ffs_single_dev); 3577 3578 /* 3579 * ffs_lock must be taken by the caller of this function 3580 */ 3581 static void _ffs_free_dev(struct ffs_dev *dev) 3582 { 3583 list_del(&dev->entry); 3584 3585 /* Clear the private_data pointer to stop incorrect dev access */ 3586 if (dev->ffs_data) 3587 dev->ffs_data->private_data = NULL; 3588 3589 kfree(dev); 3590 if (list_empty(&ffs_devices)) 3591 functionfs_cleanup(); 3592 } 3593 3594 static void *ffs_acquire_dev(const char *dev_name) 3595 { 3596 struct ffs_dev *ffs_dev; 3597 3598 ENTER(); 3599 ffs_dev_lock(); 3600 3601 ffs_dev = _ffs_find_dev(dev_name); 3602 if (!ffs_dev) 3603 ffs_dev = ERR_PTR(-ENOENT); 3604 else if (ffs_dev->mounted) 3605 ffs_dev = ERR_PTR(-EBUSY); 3606 else if (ffs_dev->ffs_acquire_dev_callback && 3607 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3608 ffs_dev = ERR_PTR(-ENOENT); 3609 else 3610 ffs_dev->mounted = true; 3611 3612 ffs_dev_unlock(); 3613 return ffs_dev; 3614 } 3615 3616 static void ffs_release_dev(struct ffs_data *ffs_data) 3617 { 3618 struct ffs_dev *ffs_dev; 3619 3620 ENTER(); 3621 ffs_dev_lock(); 3622 3623 ffs_dev = ffs_data->private_data; 3624 if (ffs_dev) { 3625 ffs_dev->mounted = false; 3626 3627 if (ffs_dev->ffs_release_dev_callback) 3628 ffs_dev->ffs_release_dev_callback(ffs_dev); 3629 } 3630 3631 ffs_dev_unlock(); 3632 } 3633 3634 static int ffs_ready(struct ffs_data *ffs) 3635 { 3636 struct ffs_dev *ffs_obj; 3637 int ret = 0; 3638 3639 ENTER(); 3640 ffs_dev_lock(); 3641 3642 ffs_obj = ffs->private_data; 3643 if (!ffs_obj) { 3644 ret = -EINVAL; 3645 goto done; 3646 } 3647 if (WARN_ON(ffs_obj->desc_ready)) { 3648 ret = -EBUSY; 3649 goto done; 3650 } 3651 3652 ffs_obj->desc_ready = true; 3653 ffs_obj->ffs_data = ffs; 3654 3655 if (ffs_obj->ffs_ready_callback) { 3656 ret = ffs_obj->ffs_ready_callback(ffs); 3657 if (ret) 3658 goto done; 3659 } 3660 3661 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3662 done: 3663 ffs_dev_unlock(); 3664 return ret; 3665 } 3666 3667 static void ffs_closed(struct ffs_data *ffs) 3668 { 3669 struct ffs_dev *ffs_obj; 3670 struct f_fs_opts *opts; 3671 struct config_item *ci; 3672 3673 ENTER(); 3674 ffs_dev_lock(); 3675 3676 ffs_obj = ffs->private_data; 3677 if (!ffs_obj) 3678 goto done; 3679 3680 ffs_obj->desc_ready = false; 3681 3682 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3683 ffs_obj->ffs_closed_callback) 3684 ffs_obj->ffs_closed_callback(ffs); 3685 3686 if (ffs_obj->opts) 3687 opts = ffs_obj->opts; 3688 else 3689 goto done; 3690 3691 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3692 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3693 goto done; 3694 3695 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3696 ffs_dev_unlock(); 3697 3698 unregister_gadget_item(ci); 3699 return; 3700 done: 3701 ffs_dev_unlock(); 3702 } 3703 3704 /* Misc helper functions ****************************************************/ 3705 3706 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3707 { 3708 return nonblock 3709 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3710 : mutex_lock_interruptible(mutex); 3711 } 3712 3713 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3714 { 3715 char *data; 3716 3717 if (unlikely(!len)) 3718 return NULL; 3719 3720 data = kmalloc(len, GFP_KERNEL); 3721 if (unlikely(!data)) 3722 return ERR_PTR(-ENOMEM); 3723 3724 if (unlikely(copy_from_user(data, buf, len))) { 3725 kfree(data); 3726 return ERR_PTR(-EFAULT); 3727 } 3728 3729 pr_vdebug("Buffer from user space:\n"); 3730 ffs_dump_mem("", data, len); 3731 3732 return data; 3733 } 3734 3735 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3736 MODULE_LICENSE("GPL"); 3737 MODULE_AUTHOR("Michal Nazarewicz"); 3738