1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/dma-buf.h> 19 #include <linux/dma-fence.h> 20 #include <linux/dma-resv.h> 21 #include <linux/pagemap.h> 22 #include <linux/export.h> 23 #include <linux/fs_parser.h> 24 #include <linux/hid.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/scatterlist.h> 28 #include <linux/sched/signal.h> 29 #include <linux/uio.h> 30 #include <linux/vmalloc.h> 31 #include <linux/unaligned.h> 32 33 #include <linux/usb/ccid.h> 34 #include <linux/usb/composite.h> 35 #include <linux/usb/functionfs.h> 36 #include <linux/usb/func_utils.h> 37 38 #include <linux/aio.h> 39 #include <linux/kthread.h> 40 #include <linux/poll.h> 41 #include <linux/eventfd.h> 42 43 #include "u_fs.h" 44 #include "u_os_desc.h" 45 #include "configfs.h" 46 47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 48 #define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */ 49 50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000 51 52 MODULE_IMPORT_NS(DMA_BUF); 53 54 /* Reference counter handling */ 55 static void ffs_data_get(struct ffs_data *ffs); 56 static void ffs_data_put(struct ffs_data *ffs); 57 /* Creates new ffs_data object. */ 58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 59 __attribute__((malloc)); 60 61 /* Opened counter handling. */ 62 static void ffs_data_opened(struct ffs_data *ffs); 63 static void ffs_data_closed(struct ffs_data *ffs); 64 65 /* Called with ffs->mutex held; take over ownership of data. */ 66 static int __must_check 67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 68 static int __must_check 69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 70 71 72 /* The function structure ***************************************************/ 73 74 struct ffs_ep; 75 76 struct ffs_function { 77 struct usb_configuration *conf; 78 struct usb_gadget *gadget; 79 struct ffs_data *ffs; 80 81 struct ffs_ep *eps; 82 u8 eps_revmap[16]; 83 short *interfaces_nums; 84 85 struct usb_function function; 86 int cur_alt[MAX_CONFIG_INTERFACES]; 87 }; 88 89 90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 91 { 92 return container_of(f, struct ffs_function, function); 93 } 94 95 96 static inline enum ffs_setup_state 97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 98 { 99 return (enum ffs_setup_state) 100 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 101 } 102 103 104 static void ffs_func_eps_disable(struct ffs_function *func); 105 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 106 107 static int ffs_func_bind(struct usb_configuration *, 108 struct usb_function *); 109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf); 111 static void ffs_func_disable(struct usb_function *); 112 static int ffs_func_setup(struct usb_function *, 113 const struct usb_ctrlrequest *); 114 static bool ffs_func_req_match(struct usb_function *, 115 const struct usb_ctrlrequest *, 116 bool config0); 117 static void ffs_func_suspend(struct usb_function *); 118 static void ffs_func_resume(struct usb_function *); 119 120 121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 123 124 125 /* The endpoints structures *************************************************/ 126 127 struct ffs_ep { 128 struct usb_ep *ep; /* P: ffs->eps_lock */ 129 struct usb_request *req; /* P: epfile->mutex */ 130 131 /* [0]: full speed, [1]: high speed, [2]: super speed */ 132 struct usb_endpoint_descriptor *descs[3]; 133 134 u8 num; 135 }; 136 137 struct ffs_dmabuf_priv { 138 struct list_head entry; 139 struct kref ref; 140 struct ffs_data *ffs; 141 struct dma_buf_attachment *attach; 142 struct sg_table *sgt; 143 enum dma_data_direction dir; 144 spinlock_t lock; 145 u64 context; 146 struct usb_request *req; /* P: ffs->eps_lock */ 147 struct usb_ep *ep; /* P: ffs->eps_lock */ 148 }; 149 150 struct ffs_dma_fence { 151 struct dma_fence base; 152 struct ffs_dmabuf_priv *priv; 153 struct work_struct work; 154 }; 155 156 struct ffs_epfile { 157 /* Protects ep->ep and ep->req. */ 158 struct mutex mutex; 159 160 struct ffs_data *ffs; 161 struct ffs_ep *ep; /* P: ffs->eps_lock */ 162 163 struct dentry *dentry; 164 165 /* 166 * Buffer for holding data from partial reads which may happen since 167 * we’re rounding user read requests to a multiple of a max packet size. 168 * 169 * The pointer is initialised with NULL value and may be set by 170 * __ffs_epfile_read_data function to point to a temporary buffer. 171 * 172 * In normal operation, calls to __ffs_epfile_read_buffered will consume 173 * data from said buffer and eventually free it. Importantly, while the 174 * function is using the buffer, it sets the pointer to NULL. This is 175 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 176 * can never run concurrently (they are synchronised by epfile->mutex) 177 * so the latter will not assign a new value to the pointer. 178 * 179 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 180 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 181 * value is crux of the synchronisation between ffs_func_eps_disable and 182 * __ffs_epfile_read_data. 183 * 184 * Once __ffs_epfile_read_data is about to finish it will try to set the 185 * pointer back to its old value (as described above), but seeing as the 186 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 187 * the buffer. 188 * 189 * == State transitions == 190 * 191 * • ptr == NULL: (initial state) 192 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 193 * ◦ __ffs_epfile_read_buffered: nop 194 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 195 * ◦ reading finishes: n/a, not in ‘and reading’ state 196 * • ptr == DROP: 197 * ◦ __ffs_epfile_read_buffer_free: nop 198 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 199 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 200 * ◦ reading finishes: n/a, not in ‘and reading’ state 201 * • ptr == buf: 202 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 203 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 204 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 205 * is always called first 206 * ◦ reading finishes: n/a, not in ‘and reading’ state 207 * • ptr == NULL and reading: 208 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 209 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 210 * ◦ __ffs_epfile_read_data: n/a, mutex is held 211 * ◦ reading finishes and … 212 * … all data read: free buf, go to ptr == NULL 213 * … otherwise: go to ptr == buf and reading 214 * • ptr == DROP and reading: 215 * ◦ __ffs_epfile_read_buffer_free: nop 216 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 217 * ◦ __ffs_epfile_read_data: n/a, mutex is held 218 * ◦ reading finishes: free buf, go to ptr == DROP 219 */ 220 struct ffs_buffer *read_buffer; 221 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 222 223 char name[5]; 224 225 unsigned char in; /* P: ffs->eps_lock */ 226 unsigned char isoc; /* P: ffs->eps_lock */ 227 228 unsigned char _pad; 229 230 /* Protects dmabufs */ 231 struct mutex dmabufs_mutex; 232 struct list_head dmabufs; /* P: dmabufs_mutex */ 233 atomic_t seqno; 234 }; 235 236 struct ffs_buffer { 237 size_t length; 238 char *data; 239 char storage[] __counted_by(length); 240 }; 241 242 /* ffs_io_data structure ***************************************************/ 243 244 struct ffs_io_data { 245 bool aio; 246 bool read; 247 248 struct kiocb *kiocb; 249 struct iov_iter data; 250 const void *to_free; 251 char *buf; 252 253 struct mm_struct *mm; 254 struct work_struct work; 255 256 struct usb_ep *ep; 257 struct usb_request *req; 258 struct sg_table sgt; 259 bool use_sg; 260 261 struct ffs_data *ffs; 262 263 int status; 264 struct completion done; 265 }; 266 267 struct ffs_desc_helper { 268 struct ffs_data *ffs; 269 unsigned interfaces_count; 270 unsigned eps_count; 271 }; 272 273 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 274 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 275 276 static struct dentry * 277 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 278 const struct file_operations *fops); 279 280 /* Devices management *******************************************************/ 281 282 DEFINE_MUTEX(ffs_lock); 283 EXPORT_SYMBOL_GPL(ffs_lock); 284 285 static struct ffs_dev *_ffs_find_dev(const char *name); 286 static struct ffs_dev *_ffs_alloc_dev(void); 287 static void _ffs_free_dev(struct ffs_dev *dev); 288 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 289 static void ffs_release_dev(struct ffs_dev *ffs_dev); 290 static int ffs_ready(struct ffs_data *ffs); 291 static void ffs_closed(struct ffs_data *ffs); 292 293 /* Misc helper functions ****************************************************/ 294 295 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 296 __attribute__((warn_unused_result, nonnull)); 297 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 298 __attribute__((warn_unused_result, nonnull)); 299 300 301 /* Control file aka ep0 *****************************************************/ 302 303 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 304 { 305 struct ffs_data *ffs = req->context; 306 307 complete(&ffs->ep0req_completion); 308 } 309 310 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 311 __releases(&ffs->ev.waitq.lock) 312 { 313 struct usb_request *req = ffs->ep0req; 314 int ret; 315 316 if (!req) { 317 spin_unlock_irq(&ffs->ev.waitq.lock); 318 return -EINVAL; 319 } 320 321 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 322 323 spin_unlock_irq(&ffs->ev.waitq.lock); 324 325 req->buf = data; 326 req->length = len; 327 328 /* 329 * UDC layer requires to provide a buffer even for ZLP, but should 330 * not use it at all. Let's provide some poisoned pointer to catch 331 * possible bug in the driver. 332 */ 333 if (req->buf == NULL) 334 req->buf = (void *)0xDEADBABE; 335 336 reinit_completion(&ffs->ep0req_completion); 337 338 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 339 if (ret < 0) 340 return ret; 341 342 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 343 if (ret) { 344 usb_ep_dequeue(ffs->gadget->ep0, req); 345 return -EINTR; 346 } 347 348 ffs->setup_state = FFS_NO_SETUP; 349 return req->status ? req->status : req->actual; 350 } 351 352 static int __ffs_ep0_stall(struct ffs_data *ffs) 353 { 354 if (ffs->ev.can_stall) { 355 pr_vdebug("ep0 stall\n"); 356 usb_ep_set_halt(ffs->gadget->ep0); 357 ffs->setup_state = FFS_NO_SETUP; 358 return -EL2HLT; 359 } else { 360 pr_debug("bogus ep0 stall!\n"); 361 return -ESRCH; 362 } 363 } 364 365 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 366 size_t len, loff_t *ptr) 367 { 368 struct ffs_data *ffs = file->private_data; 369 ssize_t ret; 370 char *data; 371 372 /* Fast check if setup was canceled */ 373 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 374 return -EIDRM; 375 376 /* Acquire mutex */ 377 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 378 if (ret < 0) 379 return ret; 380 381 /* Check state */ 382 switch (ffs->state) { 383 case FFS_READ_DESCRIPTORS: 384 case FFS_READ_STRINGS: 385 /* Copy data */ 386 if (len < 16) { 387 ret = -EINVAL; 388 break; 389 } 390 391 data = ffs_prepare_buffer(buf, len); 392 if (IS_ERR(data)) { 393 ret = PTR_ERR(data); 394 break; 395 } 396 397 /* Handle data */ 398 if (ffs->state == FFS_READ_DESCRIPTORS) { 399 pr_info("read descriptors\n"); 400 ret = __ffs_data_got_descs(ffs, data, len); 401 if (ret < 0) 402 break; 403 404 ffs->state = FFS_READ_STRINGS; 405 ret = len; 406 } else { 407 pr_info("read strings\n"); 408 ret = __ffs_data_got_strings(ffs, data, len); 409 if (ret < 0) 410 break; 411 412 ret = ffs_epfiles_create(ffs); 413 if (ret) { 414 ffs->state = FFS_CLOSING; 415 break; 416 } 417 418 ffs->state = FFS_ACTIVE; 419 mutex_unlock(&ffs->mutex); 420 421 ret = ffs_ready(ffs); 422 if (ret < 0) { 423 ffs->state = FFS_CLOSING; 424 return ret; 425 } 426 427 return len; 428 } 429 break; 430 431 case FFS_ACTIVE: 432 data = NULL; 433 /* 434 * We're called from user space, we can use _irq 435 * rather then _irqsave 436 */ 437 spin_lock_irq(&ffs->ev.waitq.lock); 438 switch (ffs_setup_state_clear_cancelled(ffs)) { 439 case FFS_SETUP_CANCELLED: 440 ret = -EIDRM; 441 goto done_spin; 442 443 case FFS_NO_SETUP: 444 ret = -ESRCH; 445 goto done_spin; 446 447 case FFS_SETUP_PENDING: 448 break; 449 } 450 451 /* FFS_SETUP_PENDING */ 452 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 453 spin_unlock_irq(&ffs->ev.waitq.lock); 454 ret = __ffs_ep0_stall(ffs); 455 break; 456 } 457 458 /* FFS_SETUP_PENDING and not stall */ 459 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 460 461 spin_unlock_irq(&ffs->ev.waitq.lock); 462 463 data = ffs_prepare_buffer(buf, len); 464 if (IS_ERR(data)) { 465 ret = PTR_ERR(data); 466 break; 467 } 468 469 spin_lock_irq(&ffs->ev.waitq.lock); 470 471 /* 472 * We are guaranteed to be still in FFS_ACTIVE state 473 * but the state of setup could have changed from 474 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 475 * to check for that. If that happened we copied data 476 * from user space in vain but it's unlikely. 477 * 478 * For sure we are not in FFS_NO_SETUP since this is 479 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 480 * transition can be performed and it's protected by 481 * mutex. 482 */ 483 if (ffs_setup_state_clear_cancelled(ffs) == 484 FFS_SETUP_CANCELLED) { 485 ret = -EIDRM; 486 done_spin: 487 spin_unlock_irq(&ffs->ev.waitq.lock); 488 } else { 489 /* unlocks spinlock */ 490 ret = __ffs_ep0_queue_wait(ffs, data, len); 491 } 492 kfree(data); 493 break; 494 495 default: 496 ret = -EBADFD; 497 break; 498 } 499 500 mutex_unlock(&ffs->mutex); 501 return ret; 502 } 503 504 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 505 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 506 size_t n) 507 __releases(&ffs->ev.waitq.lock) 508 { 509 /* 510 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 511 * size of ffs->ev.types array (which is four) so that's how much space 512 * we reserve. 513 */ 514 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 515 const size_t size = n * sizeof *events; 516 unsigned i = 0; 517 518 memset(events, 0, size); 519 520 do { 521 events[i].type = ffs->ev.types[i]; 522 if (events[i].type == FUNCTIONFS_SETUP) { 523 events[i].u.setup = ffs->ev.setup; 524 ffs->setup_state = FFS_SETUP_PENDING; 525 } 526 } while (++i < n); 527 528 ffs->ev.count -= n; 529 if (ffs->ev.count) 530 memmove(ffs->ev.types, ffs->ev.types + n, 531 ffs->ev.count * sizeof *ffs->ev.types); 532 533 spin_unlock_irq(&ffs->ev.waitq.lock); 534 mutex_unlock(&ffs->mutex); 535 536 return copy_to_user(buf, events, size) ? -EFAULT : size; 537 } 538 539 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 540 size_t len, loff_t *ptr) 541 { 542 struct ffs_data *ffs = file->private_data; 543 char *data = NULL; 544 size_t n; 545 int ret; 546 547 /* Fast check if setup was canceled */ 548 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 549 return -EIDRM; 550 551 /* Acquire mutex */ 552 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 553 if (ret < 0) 554 return ret; 555 556 /* Check state */ 557 if (ffs->state != FFS_ACTIVE) { 558 ret = -EBADFD; 559 goto done_mutex; 560 } 561 562 /* 563 * We're called from user space, we can use _irq rather then 564 * _irqsave 565 */ 566 spin_lock_irq(&ffs->ev.waitq.lock); 567 568 switch (ffs_setup_state_clear_cancelled(ffs)) { 569 case FFS_SETUP_CANCELLED: 570 ret = -EIDRM; 571 break; 572 573 case FFS_NO_SETUP: 574 n = len / sizeof(struct usb_functionfs_event); 575 if (!n) { 576 ret = -EINVAL; 577 break; 578 } 579 580 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 581 ret = -EAGAIN; 582 break; 583 } 584 585 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 586 ffs->ev.count)) { 587 ret = -EINTR; 588 break; 589 } 590 591 /* unlocks spinlock */ 592 return __ffs_ep0_read_events(ffs, buf, 593 min(n, (size_t)ffs->ev.count)); 594 595 case FFS_SETUP_PENDING: 596 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 597 spin_unlock_irq(&ffs->ev.waitq.lock); 598 ret = __ffs_ep0_stall(ffs); 599 goto done_mutex; 600 } 601 602 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 603 604 spin_unlock_irq(&ffs->ev.waitq.lock); 605 606 if (len) { 607 data = kmalloc(len, GFP_KERNEL); 608 if (!data) { 609 ret = -ENOMEM; 610 goto done_mutex; 611 } 612 } 613 614 spin_lock_irq(&ffs->ev.waitq.lock); 615 616 /* See ffs_ep0_write() */ 617 if (ffs_setup_state_clear_cancelled(ffs) == 618 FFS_SETUP_CANCELLED) { 619 ret = -EIDRM; 620 break; 621 } 622 623 /* unlocks spinlock */ 624 ret = __ffs_ep0_queue_wait(ffs, data, len); 625 if ((ret > 0) && (copy_to_user(buf, data, len))) 626 ret = -EFAULT; 627 goto done_mutex; 628 629 default: 630 ret = -EBADFD; 631 break; 632 } 633 634 spin_unlock_irq(&ffs->ev.waitq.lock); 635 done_mutex: 636 mutex_unlock(&ffs->mutex); 637 kfree(data); 638 return ret; 639 } 640 641 static int ffs_ep0_open(struct inode *inode, struct file *file) 642 { 643 struct ffs_data *ffs = inode->i_private; 644 645 if (ffs->state == FFS_CLOSING) 646 return -EBUSY; 647 648 file->private_data = ffs; 649 ffs_data_opened(ffs); 650 651 return stream_open(inode, file); 652 } 653 654 static int ffs_ep0_release(struct inode *inode, struct file *file) 655 { 656 struct ffs_data *ffs = file->private_data; 657 658 ffs_data_closed(ffs); 659 660 return 0; 661 } 662 663 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 664 { 665 struct ffs_data *ffs = file->private_data; 666 struct usb_gadget *gadget = ffs->gadget; 667 long ret; 668 669 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 670 struct ffs_function *func = ffs->func; 671 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 672 } else if (gadget && gadget->ops->ioctl) { 673 ret = gadget->ops->ioctl(gadget, code, value); 674 } else { 675 ret = -ENOTTY; 676 } 677 678 return ret; 679 } 680 681 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 682 { 683 struct ffs_data *ffs = file->private_data; 684 __poll_t mask = EPOLLWRNORM; 685 int ret; 686 687 poll_wait(file, &ffs->ev.waitq, wait); 688 689 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 690 if (ret < 0) 691 return mask; 692 693 switch (ffs->state) { 694 case FFS_READ_DESCRIPTORS: 695 case FFS_READ_STRINGS: 696 mask |= EPOLLOUT; 697 break; 698 699 case FFS_ACTIVE: 700 switch (ffs->setup_state) { 701 case FFS_NO_SETUP: 702 if (ffs->ev.count) 703 mask |= EPOLLIN; 704 break; 705 706 case FFS_SETUP_PENDING: 707 case FFS_SETUP_CANCELLED: 708 mask |= (EPOLLIN | EPOLLOUT); 709 break; 710 } 711 break; 712 713 case FFS_CLOSING: 714 break; 715 case FFS_DEACTIVATED: 716 break; 717 } 718 719 mutex_unlock(&ffs->mutex); 720 721 return mask; 722 } 723 724 static const struct file_operations ffs_ep0_operations = { 725 726 .open = ffs_ep0_open, 727 .write = ffs_ep0_write, 728 .read = ffs_ep0_read, 729 .release = ffs_ep0_release, 730 .unlocked_ioctl = ffs_ep0_ioctl, 731 .poll = ffs_ep0_poll, 732 }; 733 734 735 /* "Normal" endpoints operations ********************************************/ 736 737 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 738 { 739 struct ffs_io_data *io_data = req->context; 740 741 if (req->status) 742 io_data->status = req->status; 743 else 744 io_data->status = req->actual; 745 746 complete(&io_data->done); 747 } 748 749 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 750 { 751 ssize_t ret = copy_to_iter(data, data_len, iter); 752 if (ret == data_len) 753 return ret; 754 755 if (iov_iter_count(iter)) 756 return -EFAULT; 757 758 /* 759 * Dear user space developer! 760 * 761 * TL;DR: To stop getting below error message in your kernel log, change 762 * user space code using functionfs to align read buffers to a max 763 * packet size. 764 * 765 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 766 * packet size. When unaligned buffer is passed to functionfs, it 767 * internally uses a larger, aligned buffer so that such UDCs are happy. 768 * 769 * Unfortunately, this means that host may send more data than was 770 * requested in read(2) system call. f_fs doesn’t know what to do with 771 * that excess data so it simply drops it. 772 * 773 * Was the buffer aligned in the first place, no such problem would 774 * happen. 775 * 776 * Data may be dropped only in AIO reads. Synchronous reads are handled 777 * by splitting a request into multiple parts. This splitting may still 778 * be a problem though so it’s likely best to align the buffer 779 * regardless of it being AIO or not.. 780 * 781 * This only affects OUT endpoints, i.e. reading data with a read(2), 782 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 783 * affected. 784 */ 785 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 786 "Align read buffer size to max packet size to avoid the problem.\n", 787 data_len, ret); 788 789 return ret; 790 } 791 792 /* 793 * allocate a virtually contiguous buffer and create a scatterlist describing it 794 * @sg_table - pointer to a place to be filled with sg_table contents 795 * @size - required buffer size 796 */ 797 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 798 { 799 struct page **pages; 800 void *vaddr, *ptr; 801 unsigned int n_pages; 802 int i; 803 804 vaddr = vmalloc(sz); 805 if (!vaddr) 806 return NULL; 807 808 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 809 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 810 if (!pages) { 811 vfree(vaddr); 812 813 return NULL; 814 } 815 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 816 pages[i] = vmalloc_to_page(ptr); 817 818 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 819 kvfree(pages); 820 vfree(vaddr); 821 822 return NULL; 823 } 824 kvfree(pages); 825 826 return vaddr; 827 } 828 829 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 830 size_t data_len) 831 { 832 if (io_data->use_sg) 833 return ffs_build_sg_list(&io_data->sgt, data_len); 834 835 return kmalloc(data_len, GFP_KERNEL); 836 } 837 838 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 839 { 840 if (!io_data->buf) 841 return; 842 843 if (io_data->use_sg) { 844 sg_free_table(&io_data->sgt); 845 vfree(io_data->buf); 846 } else { 847 kfree(io_data->buf); 848 } 849 } 850 851 static void ffs_user_copy_worker(struct work_struct *work) 852 { 853 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 854 work); 855 int ret = io_data->status; 856 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 857 unsigned long flags; 858 859 if (io_data->read && ret > 0) { 860 kthread_use_mm(io_data->mm); 861 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 862 kthread_unuse_mm(io_data->mm); 863 } 864 865 io_data->kiocb->ki_complete(io_data->kiocb, ret); 866 867 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 868 eventfd_signal(io_data->ffs->ffs_eventfd); 869 870 spin_lock_irqsave(&io_data->ffs->eps_lock, flags); 871 usb_ep_free_request(io_data->ep, io_data->req); 872 io_data->req = NULL; 873 spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags); 874 875 if (io_data->read) 876 kfree(io_data->to_free); 877 ffs_free_buffer(io_data); 878 kfree(io_data); 879 } 880 881 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 882 struct usb_request *req) 883 { 884 struct ffs_io_data *io_data = req->context; 885 struct ffs_data *ffs = io_data->ffs; 886 887 io_data->status = req->status ? req->status : req->actual; 888 889 INIT_WORK(&io_data->work, ffs_user_copy_worker); 890 queue_work(ffs->io_completion_wq, &io_data->work); 891 } 892 893 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 894 { 895 /* 896 * See comment in struct ffs_epfile for full read_buffer pointer 897 * synchronisation story. 898 */ 899 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 900 if (buf && buf != READ_BUFFER_DROP) 901 kfree(buf); 902 } 903 904 /* Assumes epfile->mutex is held. */ 905 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 906 struct iov_iter *iter) 907 { 908 /* 909 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 910 * the buffer while we are using it. See comment in struct ffs_epfile 911 * for full read_buffer pointer synchronisation story. 912 */ 913 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 914 ssize_t ret; 915 if (!buf || buf == READ_BUFFER_DROP) 916 return 0; 917 918 ret = copy_to_iter(buf->data, buf->length, iter); 919 if (buf->length == ret) { 920 kfree(buf); 921 return ret; 922 } 923 924 if (iov_iter_count(iter)) { 925 ret = -EFAULT; 926 } else { 927 buf->length -= ret; 928 buf->data += ret; 929 } 930 931 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 932 kfree(buf); 933 934 return ret; 935 } 936 937 /* Assumes epfile->mutex is held. */ 938 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 939 void *data, int data_len, 940 struct iov_iter *iter) 941 { 942 struct ffs_buffer *buf; 943 944 ssize_t ret = copy_to_iter(data, data_len, iter); 945 if (data_len == ret) 946 return ret; 947 948 if (iov_iter_count(iter)) 949 return -EFAULT; 950 951 /* See ffs_copy_to_iter for more context. */ 952 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 953 data_len, ret); 954 955 data_len -= ret; 956 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 957 if (!buf) 958 return -ENOMEM; 959 buf->length = data_len; 960 buf->data = buf->storage; 961 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 962 963 /* 964 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 965 * ffs_func_eps_disable has been called in the meanwhile). See comment 966 * in struct ffs_epfile for full read_buffer pointer synchronisation 967 * story. 968 */ 969 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 970 kfree(buf); 971 972 return ret; 973 } 974 975 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file) 976 { 977 struct ffs_epfile *epfile = file->private_data; 978 struct ffs_ep *ep; 979 int ret; 980 981 /* Wait for endpoint to be enabled */ 982 ep = epfile->ep; 983 if (!ep) { 984 if (file->f_flags & O_NONBLOCK) 985 return ERR_PTR(-EAGAIN); 986 987 ret = wait_event_interruptible( 988 epfile->ffs->wait, (ep = epfile->ep)); 989 if (ret) 990 return ERR_PTR(-EINTR); 991 } 992 993 return ep; 994 } 995 996 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 997 { 998 struct ffs_epfile *epfile = file->private_data; 999 struct usb_request *req; 1000 struct ffs_ep *ep; 1001 char *data = NULL; 1002 ssize_t ret, data_len = -EINVAL; 1003 int halt; 1004 1005 /* Are we still active? */ 1006 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1007 return -ENODEV; 1008 1009 ep = ffs_epfile_wait_ep(file); 1010 if (IS_ERR(ep)) 1011 return PTR_ERR(ep); 1012 1013 /* Do we halt? */ 1014 halt = (!io_data->read == !epfile->in); 1015 if (halt && epfile->isoc) 1016 return -EINVAL; 1017 1018 /* We will be using request and read_buffer */ 1019 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 1020 if (ret) 1021 goto error; 1022 1023 /* Allocate & copy */ 1024 if (!halt) { 1025 struct usb_gadget *gadget; 1026 1027 /* 1028 * Do we have buffered data from previous partial read? Check 1029 * that for synchronous case only because we do not have 1030 * facility to ‘wake up’ a pending asynchronous read and push 1031 * buffered data to it which we would need to make things behave 1032 * consistently. 1033 */ 1034 if (!io_data->aio && io_data->read) { 1035 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 1036 if (ret) 1037 goto error_mutex; 1038 } 1039 1040 /* 1041 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1042 * before the waiting completes, so do not assign to 'gadget' 1043 * earlier 1044 */ 1045 gadget = epfile->ffs->gadget; 1046 1047 spin_lock_irq(&epfile->ffs->eps_lock); 1048 /* In the meantime, endpoint got disabled or changed. */ 1049 if (epfile->ep != ep) { 1050 ret = -ESHUTDOWN; 1051 goto error_lock; 1052 } 1053 data_len = iov_iter_count(&io_data->data); 1054 /* 1055 * Controller may require buffer size to be aligned to 1056 * maxpacketsize of an out endpoint. 1057 */ 1058 if (io_data->read) 1059 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1060 1061 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1062 spin_unlock_irq(&epfile->ffs->eps_lock); 1063 1064 data = ffs_alloc_buffer(io_data, data_len); 1065 if (!data) { 1066 ret = -ENOMEM; 1067 goto error_mutex; 1068 } 1069 if (!io_data->read && 1070 !copy_from_iter_full(data, data_len, &io_data->data)) { 1071 ret = -EFAULT; 1072 goto error_mutex; 1073 } 1074 } 1075 1076 spin_lock_irq(&epfile->ffs->eps_lock); 1077 1078 if (epfile->ep != ep) { 1079 /* In the meantime, endpoint got disabled or changed. */ 1080 ret = -ESHUTDOWN; 1081 } else if (halt) { 1082 ret = usb_ep_set_halt(ep->ep); 1083 if (!ret) 1084 ret = -EBADMSG; 1085 } else if (data_len == -EINVAL) { 1086 /* 1087 * Sanity Check: even though data_len can't be used 1088 * uninitialized at the time I write this comment, some 1089 * compilers complain about this situation. 1090 * In order to keep the code clean from warnings, data_len is 1091 * being initialized to -EINVAL during its declaration, which 1092 * means we can't rely on compiler anymore to warn no future 1093 * changes won't result in data_len being used uninitialized. 1094 * For such reason, we're adding this redundant sanity check 1095 * here. 1096 */ 1097 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1098 ret = -EINVAL; 1099 } else if (!io_data->aio) { 1100 bool interrupted = false; 1101 1102 req = ep->req; 1103 if (io_data->use_sg) { 1104 req->buf = NULL; 1105 req->sg = io_data->sgt.sgl; 1106 req->num_sgs = io_data->sgt.nents; 1107 } else { 1108 req->buf = data; 1109 req->num_sgs = 0; 1110 } 1111 req->length = data_len; 1112 1113 io_data->buf = data; 1114 1115 init_completion(&io_data->done); 1116 req->context = io_data; 1117 req->complete = ffs_epfile_io_complete; 1118 1119 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1120 if (ret < 0) 1121 goto error_lock; 1122 1123 spin_unlock_irq(&epfile->ffs->eps_lock); 1124 1125 if (wait_for_completion_interruptible(&io_data->done)) { 1126 spin_lock_irq(&epfile->ffs->eps_lock); 1127 if (epfile->ep != ep) { 1128 ret = -ESHUTDOWN; 1129 goto error_lock; 1130 } 1131 /* 1132 * To avoid race condition with ffs_epfile_io_complete, 1133 * dequeue the request first then check 1134 * status. usb_ep_dequeue API should guarantee no race 1135 * condition with req->complete callback. 1136 */ 1137 usb_ep_dequeue(ep->ep, req); 1138 spin_unlock_irq(&epfile->ffs->eps_lock); 1139 wait_for_completion(&io_data->done); 1140 interrupted = io_data->status < 0; 1141 } 1142 1143 if (interrupted) 1144 ret = -EINTR; 1145 else if (io_data->read && io_data->status > 0) 1146 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1147 &io_data->data); 1148 else 1149 ret = io_data->status; 1150 goto error_mutex; 1151 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1152 ret = -ENOMEM; 1153 } else { 1154 if (io_data->use_sg) { 1155 req->buf = NULL; 1156 req->sg = io_data->sgt.sgl; 1157 req->num_sgs = io_data->sgt.nents; 1158 } else { 1159 req->buf = data; 1160 req->num_sgs = 0; 1161 } 1162 req->length = data_len; 1163 1164 io_data->buf = data; 1165 io_data->ep = ep->ep; 1166 io_data->req = req; 1167 io_data->ffs = epfile->ffs; 1168 1169 req->context = io_data; 1170 req->complete = ffs_epfile_async_io_complete; 1171 1172 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1173 if (ret) { 1174 io_data->req = NULL; 1175 usb_ep_free_request(ep->ep, req); 1176 goto error_lock; 1177 } 1178 1179 ret = -EIOCBQUEUED; 1180 /* 1181 * Do not kfree the buffer in this function. It will be freed 1182 * by ffs_user_copy_worker. 1183 */ 1184 data = NULL; 1185 } 1186 1187 error_lock: 1188 spin_unlock_irq(&epfile->ffs->eps_lock); 1189 error_mutex: 1190 mutex_unlock(&epfile->mutex); 1191 error: 1192 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1193 ffs_free_buffer(io_data); 1194 return ret; 1195 } 1196 1197 static int 1198 ffs_epfile_open(struct inode *inode, struct file *file) 1199 { 1200 struct ffs_epfile *epfile = inode->i_private; 1201 1202 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1203 return -ENODEV; 1204 1205 file->private_data = epfile; 1206 ffs_data_opened(epfile->ffs); 1207 1208 return stream_open(inode, file); 1209 } 1210 1211 static int ffs_aio_cancel(struct kiocb *kiocb) 1212 { 1213 struct ffs_io_data *io_data = kiocb->private; 1214 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1215 unsigned long flags; 1216 int value; 1217 1218 spin_lock_irqsave(&epfile->ffs->eps_lock, flags); 1219 1220 if (io_data && io_data->ep && io_data->req) 1221 value = usb_ep_dequeue(io_data->ep, io_data->req); 1222 else 1223 value = -EINVAL; 1224 1225 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags); 1226 1227 return value; 1228 } 1229 1230 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1231 { 1232 struct ffs_io_data io_data, *p = &io_data; 1233 ssize_t res; 1234 1235 if (!is_sync_kiocb(kiocb)) { 1236 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1237 if (!p) 1238 return -ENOMEM; 1239 p->aio = true; 1240 } else { 1241 memset(p, 0, sizeof(*p)); 1242 p->aio = false; 1243 } 1244 1245 p->read = false; 1246 p->kiocb = kiocb; 1247 p->data = *from; 1248 p->mm = current->mm; 1249 1250 kiocb->private = p; 1251 1252 if (p->aio) 1253 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1254 1255 res = ffs_epfile_io(kiocb->ki_filp, p); 1256 if (res == -EIOCBQUEUED) 1257 return res; 1258 if (p->aio) 1259 kfree(p); 1260 else 1261 *from = p->data; 1262 return res; 1263 } 1264 1265 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1266 { 1267 struct ffs_io_data io_data, *p = &io_data; 1268 ssize_t res; 1269 1270 if (!is_sync_kiocb(kiocb)) { 1271 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1272 if (!p) 1273 return -ENOMEM; 1274 p->aio = true; 1275 } else { 1276 memset(p, 0, sizeof(*p)); 1277 p->aio = false; 1278 } 1279 1280 p->read = true; 1281 p->kiocb = kiocb; 1282 if (p->aio) { 1283 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1284 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1285 kfree(p); 1286 return -ENOMEM; 1287 } 1288 } else { 1289 p->data = *to; 1290 p->to_free = NULL; 1291 } 1292 p->mm = current->mm; 1293 1294 kiocb->private = p; 1295 1296 if (p->aio) 1297 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1298 1299 res = ffs_epfile_io(kiocb->ki_filp, p); 1300 if (res == -EIOCBQUEUED) 1301 return res; 1302 1303 if (p->aio) { 1304 kfree(p->to_free); 1305 kfree(p); 1306 } else { 1307 *to = p->data; 1308 } 1309 return res; 1310 } 1311 1312 static void ffs_dmabuf_release(struct kref *ref) 1313 { 1314 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref); 1315 struct dma_buf_attachment *attach = priv->attach; 1316 struct dma_buf *dmabuf = attach->dmabuf; 1317 1318 pr_vdebug("FFS DMABUF release\n"); 1319 dma_resv_lock(dmabuf->resv, NULL); 1320 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir); 1321 dma_resv_unlock(dmabuf->resv); 1322 1323 dma_buf_detach(attach->dmabuf, attach); 1324 dma_buf_put(dmabuf); 1325 kfree(priv); 1326 } 1327 1328 static void ffs_dmabuf_get(struct dma_buf_attachment *attach) 1329 { 1330 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1331 1332 kref_get(&priv->ref); 1333 } 1334 1335 static void ffs_dmabuf_put(struct dma_buf_attachment *attach) 1336 { 1337 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1338 1339 kref_put(&priv->ref, ffs_dmabuf_release); 1340 } 1341 1342 static int 1343 ffs_epfile_release(struct inode *inode, struct file *file) 1344 { 1345 struct ffs_epfile *epfile = inode->i_private; 1346 struct ffs_dmabuf_priv *priv, *tmp; 1347 struct ffs_data *ffs = epfile->ffs; 1348 1349 mutex_lock(&epfile->dmabufs_mutex); 1350 1351 /* Close all attached DMABUFs */ 1352 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1353 /* Cancel any pending transfer */ 1354 spin_lock_irq(&ffs->eps_lock); 1355 if (priv->ep && priv->req) 1356 usb_ep_dequeue(priv->ep, priv->req); 1357 spin_unlock_irq(&ffs->eps_lock); 1358 1359 list_del(&priv->entry); 1360 ffs_dmabuf_put(priv->attach); 1361 } 1362 1363 mutex_unlock(&epfile->dmabufs_mutex); 1364 1365 __ffs_epfile_read_buffer_free(epfile); 1366 ffs_data_closed(epfile->ffs); 1367 1368 return 0; 1369 } 1370 1371 static void ffs_dmabuf_cleanup(struct work_struct *work) 1372 { 1373 struct ffs_dma_fence *dma_fence = 1374 container_of(work, struct ffs_dma_fence, work); 1375 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1376 struct dma_buf_attachment *attach = priv->attach; 1377 struct dma_fence *fence = &dma_fence->base; 1378 1379 ffs_dmabuf_put(attach); 1380 dma_fence_put(fence); 1381 } 1382 1383 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret) 1384 { 1385 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1386 struct dma_fence *fence = &dma_fence->base; 1387 bool cookie = dma_fence_begin_signalling(); 1388 1389 dma_fence_get(fence); 1390 fence->error = ret; 1391 dma_fence_signal(fence); 1392 dma_fence_end_signalling(cookie); 1393 1394 /* 1395 * The fence will be unref'd in ffs_dmabuf_cleanup. 1396 * It can't be done here, as the unref functions might try to lock 1397 * the resv object, which would deadlock. 1398 */ 1399 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup); 1400 queue_work(priv->ffs->io_completion_wq, &dma_fence->work); 1401 } 1402 1403 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep, 1404 struct usb_request *req) 1405 { 1406 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status); 1407 ffs_dmabuf_signal_done(req->context, req->status); 1408 usb_ep_free_request(ep, req); 1409 } 1410 1411 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence) 1412 { 1413 return "functionfs"; 1414 } 1415 1416 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence) 1417 { 1418 return ""; 1419 } 1420 1421 static void ffs_dmabuf_fence_release(struct dma_fence *fence) 1422 { 1423 struct ffs_dma_fence *dma_fence = 1424 container_of(fence, struct ffs_dma_fence, base); 1425 1426 kfree(dma_fence); 1427 } 1428 1429 static const struct dma_fence_ops ffs_dmabuf_fence_ops = { 1430 .get_driver_name = ffs_dmabuf_get_driver_name, 1431 .get_timeline_name = ffs_dmabuf_get_timeline_name, 1432 .release = ffs_dmabuf_fence_release, 1433 }; 1434 1435 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock) 1436 { 1437 if (!nonblock) 1438 return dma_resv_lock_interruptible(dmabuf->resv, NULL); 1439 1440 if (!dma_resv_trylock(dmabuf->resv)) 1441 return -EBUSY; 1442 1443 return 0; 1444 } 1445 1446 static struct dma_buf_attachment * 1447 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf) 1448 { 1449 struct device *dev = epfile->ffs->gadget->dev.parent; 1450 struct dma_buf_attachment *attach = NULL; 1451 struct ffs_dmabuf_priv *priv; 1452 1453 mutex_lock(&epfile->dmabufs_mutex); 1454 1455 list_for_each_entry(priv, &epfile->dmabufs, entry) { 1456 if (priv->attach->dev == dev 1457 && priv->attach->dmabuf == dmabuf) { 1458 attach = priv->attach; 1459 break; 1460 } 1461 } 1462 1463 if (attach) 1464 ffs_dmabuf_get(attach); 1465 1466 mutex_unlock(&epfile->dmabufs_mutex); 1467 1468 return attach ?: ERR_PTR(-EPERM); 1469 } 1470 1471 static int ffs_dmabuf_attach(struct file *file, int fd) 1472 { 1473 bool nonblock = file->f_flags & O_NONBLOCK; 1474 struct ffs_epfile *epfile = file->private_data; 1475 struct usb_gadget *gadget = epfile->ffs->gadget; 1476 struct dma_buf_attachment *attach; 1477 struct ffs_dmabuf_priv *priv; 1478 enum dma_data_direction dir; 1479 struct sg_table *sg_table; 1480 struct dma_buf *dmabuf; 1481 int err; 1482 1483 if (!gadget || !gadget->sg_supported) 1484 return -EPERM; 1485 1486 dmabuf = dma_buf_get(fd); 1487 if (IS_ERR(dmabuf)) 1488 return PTR_ERR(dmabuf); 1489 1490 attach = dma_buf_attach(dmabuf, gadget->dev.parent); 1491 if (IS_ERR(attach)) { 1492 err = PTR_ERR(attach); 1493 goto err_dmabuf_put; 1494 } 1495 1496 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1497 if (!priv) { 1498 err = -ENOMEM; 1499 goto err_dmabuf_detach; 1500 } 1501 1502 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1503 1504 err = ffs_dma_resv_lock(dmabuf, nonblock); 1505 if (err) 1506 goto err_free_priv; 1507 1508 sg_table = dma_buf_map_attachment(attach, dir); 1509 dma_resv_unlock(dmabuf->resv); 1510 1511 if (IS_ERR(sg_table)) { 1512 err = PTR_ERR(sg_table); 1513 goto err_free_priv; 1514 } 1515 1516 attach->importer_priv = priv; 1517 1518 priv->sgt = sg_table; 1519 priv->dir = dir; 1520 priv->ffs = epfile->ffs; 1521 priv->attach = attach; 1522 spin_lock_init(&priv->lock); 1523 kref_init(&priv->ref); 1524 priv->context = dma_fence_context_alloc(1); 1525 1526 mutex_lock(&epfile->dmabufs_mutex); 1527 list_add(&priv->entry, &epfile->dmabufs); 1528 mutex_unlock(&epfile->dmabufs_mutex); 1529 1530 return 0; 1531 1532 err_free_priv: 1533 kfree(priv); 1534 err_dmabuf_detach: 1535 dma_buf_detach(dmabuf, attach); 1536 err_dmabuf_put: 1537 dma_buf_put(dmabuf); 1538 1539 return err; 1540 } 1541 1542 static int ffs_dmabuf_detach(struct file *file, int fd) 1543 { 1544 struct ffs_epfile *epfile = file->private_data; 1545 struct ffs_data *ffs = epfile->ffs; 1546 struct device *dev = ffs->gadget->dev.parent; 1547 struct ffs_dmabuf_priv *priv, *tmp; 1548 struct dma_buf *dmabuf; 1549 int ret = -EPERM; 1550 1551 dmabuf = dma_buf_get(fd); 1552 if (IS_ERR(dmabuf)) 1553 return PTR_ERR(dmabuf); 1554 1555 mutex_lock(&epfile->dmabufs_mutex); 1556 1557 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1558 if (priv->attach->dev == dev 1559 && priv->attach->dmabuf == dmabuf) { 1560 /* Cancel any pending transfer */ 1561 spin_lock_irq(&ffs->eps_lock); 1562 if (priv->ep && priv->req) 1563 usb_ep_dequeue(priv->ep, priv->req); 1564 spin_unlock_irq(&ffs->eps_lock); 1565 1566 list_del(&priv->entry); 1567 1568 /* Unref the reference from ffs_dmabuf_attach() */ 1569 ffs_dmabuf_put(priv->attach); 1570 ret = 0; 1571 break; 1572 } 1573 } 1574 1575 mutex_unlock(&epfile->dmabufs_mutex); 1576 dma_buf_put(dmabuf); 1577 1578 return ret; 1579 } 1580 1581 static int ffs_dmabuf_transfer(struct file *file, 1582 const struct usb_ffs_dmabuf_transfer_req *req) 1583 { 1584 bool nonblock = file->f_flags & O_NONBLOCK; 1585 struct ffs_epfile *epfile = file->private_data; 1586 struct dma_buf_attachment *attach; 1587 struct ffs_dmabuf_priv *priv; 1588 struct ffs_dma_fence *fence; 1589 struct usb_request *usb_req; 1590 enum dma_resv_usage resv_dir; 1591 struct dma_buf *dmabuf; 1592 unsigned long timeout; 1593 struct ffs_ep *ep; 1594 bool cookie; 1595 u32 seqno; 1596 long retl; 1597 int ret; 1598 1599 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK) 1600 return -EINVAL; 1601 1602 dmabuf = dma_buf_get(req->fd); 1603 if (IS_ERR(dmabuf)) 1604 return PTR_ERR(dmabuf); 1605 1606 if (req->length > dmabuf->size || req->length == 0) { 1607 ret = -EINVAL; 1608 goto err_dmabuf_put; 1609 } 1610 1611 attach = ffs_dmabuf_find_attachment(epfile, dmabuf); 1612 if (IS_ERR(attach)) { 1613 ret = PTR_ERR(attach); 1614 goto err_dmabuf_put; 1615 } 1616 1617 priv = attach->importer_priv; 1618 1619 ep = ffs_epfile_wait_ep(file); 1620 if (IS_ERR(ep)) { 1621 ret = PTR_ERR(ep); 1622 goto err_attachment_put; 1623 } 1624 1625 ret = ffs_dma_resv_lock(dmabuf, nonblock); 1626 if (ret) 1627 goto err_attachment_put; 1628 1629 /* Make sure we don't have writers */ 1630 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS); 1631 retl = dma_resv_wait_timeout(dmabuf->resv, 1632 dma_resv_usage_rw(epfile->in), 1633 true, timeout); 1634 if (retl == 0) 1635 retl = -EBUSY; 1636 if (retl < 0) { 1637 ret = (int)retl; 1638 goto err_resv_unlock; 1639 } 1640 1641 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 1642 if (ret) 1643 goto err_resv_unlock; 1644 1645 fence = kmalloc(sizeof(*fence), GFP_KERNEL); 1646 if (!fence) { 1647 ret = -ENOMEM; 1648 goto err_resv_unlock; 1649 } 1650 1651 fence->priv = priv; 1652 1653 spin_lock_irq(&epfile->ffs->eps_lock); 1654 1655 /* In the meantime, endpoint got disabled or changed. */ 1656 if (epfile->ep != ep) { 1657 ret = -ESHUTDOWN; 1658 goto err_fence_put; 1659 } 1660 1661 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC); 1662 if (!usb_req) { 1663 ret = -ENOMEM; 1664 goto err_fence_put; 1665 } 1666 1667 /* 1668 * usb_ep_queue() guarantees that all transfers are processed in the 1669 * order they are enqueued, so we can use a simple incrementing 1670 * sequence number for the dma_fence. 1671 */ 1672 seqno = atomic_add_return(1, &epfile->seqno); 1673 1674 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops, 1675 &priv->lock, priv->context, seqno); 1676 1677 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; 1678 1679 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir); 1680 dma_resv_unlock(dmabuf->resv); 1681 1682 /* Now that the dma_fence is in place, queue the transfer. */ 1683 1684 usb_req->length = req->length; 1685 usb_req->buf = NULL; 1686 usb_req->sg = priv->sgt->sgl; 1687 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length); 1688 usb_req->sg_was_mapped = true; 1689 usb_req->context = fence; 1690 usb_req->complete = ffs_epfile_dmabuf_io_complete; 1691 1692 cookie = dma_fence_begin_signalling(); 1693 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC); 1694 dma_fence_end_signalling(cookie); 1695 if (!ret) { 1696 priv->req = usb_req; 1697 priv->ep = ep->ep; 1698 } else { 1699 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret); 1700 ffs_dmabuf_signal_done(fence, ret); 1701 usb_ep_free_request(ep->ep, usb_req); 1702 } 1703 1704 spin_unlock_irq(&epfile->ffs->eps_lock); 1705 dma_buf_put(dmabuf); 1706 1707 return ret; 1708 1709 err_fence_put: 1710 spin_unlock_irq(&epfile->ffs->eps_lock); 1711 dma_fence_put(&fence->base); 1712 err_resv_unlock: 1713 dma_resv_unlock(dmabuf->resv); 1714 err_attachment_put: 1715 ffs_dmabuf_put(attach); 1716 err_dmabuf_put: 1717 dma_buf_put(dmabuf); 1718 1719 return ret; 1720 } 1721 1722 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1723 unsigned long value) 1724 { 1725 struct ffs_epfile *epfile = file->private_data; 1726 struct ffs_ep *ep; 1727 int ret; 1728 1729 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1730 return -ENODEV; 1731 1732 switch (code) { 1733 case FUNCTIONFS_DMABUF_ATTACH: 1734 { 1735 int fd; 1736 1737 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1738 ret = -EFAULT; 1739 break; 1740 } 1741 1742 return ffs_dmabuf_attach(file, fd); 1743 } 1744 case FUNCTIONFS_DMABUF_DETACH: 1745 { 1746 int fd; 1747 1748 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1749 ret = -EFAULT; 1750 break; 1751 } 1752 1753 return ffs_dmabuf_detach(file, fd); 1754 } 1755 case FUNCTIONFS_DMABUF_TRANSFER: 1756 { 1757 struct usb_ffs_dmabuf_transfer_req req; 1758 1759 if (copy_from_user(&req, (void __user *)value, sizeof(req))) { 1760 ret = -EFAULT; 1761 break; 1762 } 1763 1764 return ffs_dmabuf_transfer(file, &req); 1765 } 1766 default: 1767 break; 1768 } 1769 1770 /* Wait for endpoint to be enabled */ 1771 ep = ffs_epfile_wait_ep(file); 1772 if (IS_ERR(ep)) 1773 return PTR_ERR(ep); 1774 1775 spin_lock_irq(&epfile->ffs->eps_lock); 1776 1777 /* In the meantime, endpoint got disabled or changed. */ 1778 if (epfile->ep != ep) { 1779 spin_unlock_irq(&epfile->ffs->eps_lock); 1780 return -ESHUTDOWN; 1781 } 1782 1783 switch (code) { 1784 case FUNCTIONFS_FIFO_STATUS: 1785 ret = usb_ep_fifo_status(epfile->ep->ep); 1786 break; 1787 case FUNCTIONFS_FIFO_FLUSH: 1788 usb_ep_fifo_flush(epfile->ep->ep); 1789 ret = 0; 1790 break; 1791 case FUNCTIONFS_CLEAR_HALT: 1792 ret = usb_ep_clear_halt(epfile->ep->ep); 1793 break; 1794 case FUNCTIONFS_ENDPOINT_REVMAP: 1795 ret = epfile->ep->num; 1796 break; 1797 case FUNCTIONFS_ENDPOINT_DESC: 1798 { 1799 int desc_idx; 1800 struct usb_endpoint_descriptor desc1, *desc; 1801 1802 switch (epfile->ffs->gadget->speed) { 1803 case USB_SPEED_SUPER: 1804 case USB_SPEED_SUPER_PLUS: 1805 desc_idx = 2; 1806 break; 1807 case USB_SPEED_HIGH: 1808 desc_idx = 1; 1809 break; 1810 default: 1811 desc_idx = 0; 1812 } 1813 1814 desc = epfile->ep->descs[desc_idx]; 1815 memcpy(&desc1, desc, desc->bLength); 1816 1817 spin_unlock_irq(&epfile->ffs->eps_lock); 1818 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1819 if (ret) 1820 ret = -EFAULT; 1821 return ret; 1822 } 1823 default: 1824 ret = -ENOTTY; 1825 } 1826 spin_unlock_irq(&epfile->ffs->eps_lock); 1827 1828 return ret; 1829 } 1830 1831 static const struct file_operations ffs_epfile_operations = { 1832 1833 .open = ffs_epfile_open, 1834 .write_iter = ffs_epfile_write_iter, 1835 .read_iter = ffs_epfile_read_iter, 1836 .release = ffs_epfile_release, 1837 .unlocked_ioctl = ffs_epfile_ioctl, 1838 .compat_ioctl = compat_ptr_ioctl, 1839 }; 1840 1841 1842 /* File system and super block operations ***********************************/ 1843 1844 /* 1845 * Mounting the file system creates a controller file, used first for 1846 * function configuration then later for event monitoring. 1847 */ 1848 1849 static struct inode *__must_check 1850 ffs_sb_make_inode(struct super_block *sb, void *data, 1851 const struct file_operations *fops, 1852 const struct inode_operations *iops, 1853 struct ffs_file_perms *perms) 1854 { 1855 struct inode *inode; 1856 1857 inode = new_inode(sb); 1858 1859 if (inode) { 1860 struct timespec64 ts = inode_set_ctime_current(inode); 1861 1862 inode->i_ino = get_next_ino(); 1863 inode->i_mode = perms->mode; 1864 inode->i_uid = perms->uid; 1865 inode->i_gid = perms->gid; 1866 inode_set_atime_to_ts(inode, ts); 1867 inode_set_mtime_to_ts(inode, ts); 1868 inode->i_private = data; 1869 if (fops) 1870 inode->i_fop = fops; 1871 if (iops) 1872 inode->i_op = iops; 1873 } 1874 1875 return inode; 1876 } 1877 1878 /* Create "regular" file */ 1879 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1880 const char *name, void *data, 1881 const struct file_operations *fops) 1882 { 1883 struct ffs_data *ffs = sb->s_fs_info; 1884 struct dentry *dentry; 1885 struct inode *inode; 1886 1887 dentry = d_alloc_name(sb->s_root, name); 1888 if (!dentry) 1889 return NULL; 1890 1891 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1892 if (!inode) { 1893 dput(dentry); 1894 return NULL; 1895 } 1896 1897 d_add(dentry, inode); 1898 return dentry; 1899 } 1900 1901 /* Super block */ 1902 static const struct super_operations ffs_sb_operations = { 1903 .statfs = simple_statfs, 1904 .drop_inode = generic_delete_inode, 1905 }; 1906 1907 struct ffs_sb_fill_data { 1908 struct ffs_file_perms perms; 1909 umode_t root_mode; 1910 const char *dev_name; 1911 bool no_disconnect; 1912 struct ffs_data *ffs_data; 1913 }; 1914 1915 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1916 { 1917 struct ffs_sb_fill_data *data = fc->fs_private; 1918 struct inode *inode; 1919 struct ffs_data *ffs = data->ffs_data; 1920 1921 ffs->sb = sb; 1922 data->ffs_data = NULL; 1923 sb->s_fs_info = ffs; 1924 sb->s_blocksize = PAGE_SIZE; 1925 sb->s_blocksize_bits = PAGE_SHIFT; 1926 sb->s_magic = FUNCTIONFS_MAGIC; 1927 sb->s_op = &ffs_sb_operations; 1928 sb->s_time_gran = 1; 1929 1930 /* Root inode */ 1931 data->perms.mode = data->root_mode; 1932 inode = ffs_sb_make_inode(sb, NULL, 1933 &simple_dir_operations, 1934 &simple_dir_inode_operations, 1935 &data->perms); 1936 sb->s_root = d_make_root(inode); 1937 if (!sb->s_root) 1938 return -ENOMEM; 1939 1940 /* EP0 file */ 1941 if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations)) 1942 return -ENOMEM; 1943 1944 return 0; 1945 } 1946 1947 enum { 1948 Opt_no_disconnect, 1949 Opt_rmode, 1950 Opt_fmode, 1951 Opt_mode, 1952 Opt_uid, 1953 Opt_gid, 1954 }; 1955 1956 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1957 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1958 fsparam_u32 ("rmode", Opt_rmode), 1959 fsparam_u32 ("fmode", Opt_fmode), 1960 fsparam_u32 ("mode", Opt_mode), 1961 fsparam_u32 ("uid", Opt_uid), 1962 fsparam_u32 ("gid", Opt_gid), 1963 {} 1964 }; 1965 1966 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1967 { 1968 struct ffs_sb_fill_data *data = fc->fs_private; 1969 struct fs_parse_result result; 1970 int opt; 1971 1972 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1973 if (opt < 0) 1974 return opt; 1975 1976 switch (opt) { 1977 case Opt_no_disconnect: 1978 data->no_disconnect = result.boolean; 1979 break; 1980 case Opt_rmode: 1981 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1982 break; 1983 case Opt_fmode: 1984 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1985 break; 1986 case Opt_mode: 1987 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1988 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1989 break; 1990 1991 case Opt_uid: 1992 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 1993 if (!uid_valid(data->perms.uid)) 1994 goto unmapped_value; 1995 break; 1996 case Opt_gid: 1997 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 1998 if (!gid_valid(data->perms.gid)) 1999 goto unmapped_value; 2000 break; 2001 2002 default: 2003 return -ENOPARAM; 2004 } 2005 2006 return 0; 2007 2008 unmapped_value: 2009 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 2010 } 2011 2012 /* 2013 * Set up the superblock for a mount. 2014 */ 2015 static int ffs_fs_get_tree(struct fs_context *fc) 2016 { 2017 struct ffs_sb_fill_data *ctx = fc->fs_private; 2018 struct ffs_data *ffs; 2019 int ret; 2020 2021 if (!fc->source) 2022 return invalf(fc, "No source specified"); 2023 2024 ffs = ffs_data_new(fc->source); 2025 if (!ffs) 2026 return -ENOMEM; 2027 ffs->file_perms = ctx->perms; 2028 ffs->no_disconnect = ctx->no_disconnect; 2029 2030 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 2031 if (!ffs->dev_name) { 2032 ffs_data_put(ffs); 2033 return -ENOMEM; 2034 } 2035 2036 ret = ffs_acquire_dev(ffs->dev_name, ffs); 2037 if (ret) { 2038 ffs_data_put(ffs); 2039 return ret; 2040 } 2041 2042 ctx->ffs_data = ffs; 2043 return get_tree_nodev(fc, ffs_sb_fill); 2044 } 2045 2046 static void ffs_fs_free_fc(struct fs_context *fc) 2047 { 2048 struct ffs_sb_fill_data *ctx = fc->fs_private; 2049 2050 if (ctx) { 2051 if (ctx->ffs_data) { 2052 ffs_data_put(ctx->ffs_data); 2053 } 2054 2055 kfree(ctx); 2056 } 2057 } 2058 2059 static const struct fs_context_operations ffs_fs_context_ops = { 2060 .free = ffs_fs_free_fc, 2061 .parse_param = ffs_fs_parse_param, 2062 .get_tree = ffs_fs_get_tree, 2063 }; 2064 2065 static int ffs_fs_init_fs_context(struct fs_context *fc) 2066 { 2067 struct ffs_sb_fill_data *ctx; 2068 2069 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 2070 if (!ctx) 2071 return -ENOMEM; 2072 2073 ctx->perms.mode = S_IFREG | 0600; 2074 ctx->perms.uid = GLOBAL_ROOT_UID; 2075 ctx->perms.gid = GLOBAL_ROOT_GID; 2076 ctx->root_mode = S_IFDIR | 0500; 2077 ctx->no_disconnect = false; 2078 2079 fc->fs_private = ctx; 2080 fc->ops = &ffs_fs_context_ops; 2081 return 0; 2082 } 2083 2084 static void 2085 ffs_fs_kill_sb(struct super_block *sb) 2086 { 2087 kill_litter_super(sb); 2088 if (sb->s_fs_info) 2089 ffs_data_closed(sb->s_fs_info); 2090 } 2091 2092 static struct file_system_type ffs_fs_type = { 2093 .owner = THIS_MODULE, 2094 .name = "functionfs", 2095 .init_fs_context = ffs_fs_init_fs_context, 2096 .parameters = ffs_fs_fs_parameters, 2097 .kill_sb = ffs_fs_kill_sb, 2098 }; 2099 MODULE_ALIAS_FS("functionfs"); 2100 2101 2102 /* Driver's main init/cleanup functions *************************************/ 2103 2104 static int functionfs_init(void) 2105 { 2106 int ret; 2107 2108 ret = register_filesystem(&ffs_fs_type); 2109 if (!ret) 2110 pr_info("file system registered\n"); 2111 else 2112 pr_err("failed registering file system (%d)\n", ret); 2113 2114 return ret; 2115 } 2116 2117 static void functionfs_cleanup(void) 2118 { 2119 pr_info("unloading\n"); 2120 unregister_filesystem(&ffs_fs_type); 2121 } 2122 2123 2124 /* ffs_data and ffs_function construction and destruction code **************/ 2125 2126 static void ffs_data_clear(struct ffs_data *ffs); 2127 static void ffs_data_reset(struct ffs_data *ffs); 2128 2129 static void ffs_data_get(struct ffs_data *ffs) 2130 { 2131 refcount_inc(&ffs->ref); 2132 } 2133 2134 static void ffs_data_opened(struct ffs_data *ffs) 2135 { 2136 refcount_inc(&ffs->ref); 2137 if (atomic_add_return(1, &ffs->opened) == 1 && 2138 ffs->state == FFS_DEACTIVATED) { 2139 ffs->state = FFS_CLOSING; 2140 ffs_data_reset(ffs); 2141 } 2142 } 2143 2144 static void ffs_data_put(struct ffs_data *ffs) 2145 { 2146 if (refcount_dec_and_test(&ffs->ref)) { 2147 pr_info("%s(): freeing\n", __func__); 2148 ffs_data_clear(ffs); 2149 ffs_release_dev(ffs->private_data); 2150 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 2151 swait_active(&ffs->ep0req_completion.wait) || 2152 waitqueue_active(&ffs->wait)); 2153 destroy_workqueue(ffs->io_completion_wq); 2154 kfree(ffs->dev_name); 2155 kfree(ffs); 2156 } 2157 } 2158 2159 static void ffs_data_closed(struct ffs_data *ffs) 2160 { 2161 struct ffs_epfile *epfiles; 2162 unsigned long flags; 2163 2164 if (atomic_dec_and_test(&ffs->opened)) { 2165 if (ffs->no_disconnect) { 2166 ffs->state = FFS_DEACTIVATED; 2167 spin_lock_irqsave(&ffs->eps_lock, flags); 2168 epfiles = ffs->epfiles; 2169 ffs->epfiles = NULL; 2170 spin_unlock_irqrestore(&ffs->eps_lock, 2171 flags); 2172 2173 if (epfiles) 2174 ffs_epfiles_destroy(epfiles, 2175 ffs->eps_count); 2176 2177 if (ffs->setup_state == FFS_SETUP_PENDING) 2178 __ffs_ep0_stall(ffs); 2179 } else { 2180 ffs->state = FFS_CLOSING; 2181 ffs_data_reset(ffs); 2182 } 2183 } 2184 if (atomic_read(&ffs->opened) < 0) { 2185 ffs->state = FFS_CLOSING; 2186 ffs_data_reset(ffs); 2187 } 2188 2189 ffs_data_put(ffs); 2190 } 2191 2192 static struct ffs_data *ffs_data_new(const char *dev_name) 2193 { 2194 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 2195 if (!ffs) 2196 return NULL; 2197 2198 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 2199 if (!ffs->io_completion_wq) { 2200 kfree(ffs); 2201 return NULL; 2202 } 2203 2204 refcount_set(&ffs->ref, 1); 2205 atomic_set(&ffs->opened, 0); 2206 ffs->state = FFS_READ_DESCRIPTORS; 2207 mutex_init(&ffs->mutex); 2208 spin_lock_init(&ffs->eps_lock); 2209 init_waitqueue_head(&ffs->ev.waitq); 2210 init_waitqueue_head(&ffs->wait); 2211 init_completion(&ffs->ep0req_completion); 2212 2213 /* XXX REVISIT need to update it in some places, or do we? */ 2214 ffs->ev.can_stall = 1; 2215 2216 return ffs; 2217 } 2218 2219 static void ffs_data_clear(struct ffs_data *ffs) 2220 { 2221 struct ffs_epfile *epfiles; 2222 unsigned long flags; 2223 2224 ffs_closed(ffs); 2225 2226 BUG_ON(ffs->gadget); 2227 2228 spin_lock_irqsave(&ffs->eps_lock, flags); 2229 epfiles = ffs->epfiles; 2230 ffs->epfiles = NULL; 2231 spin_unlock_irqrestore(&ffs->eps_lock, flags); 2232 2233 /* 2234 * potential race possible between ffs_func_eps_disable 2235 * & ffs_epfile_release therefore maintaining a local 2236 * copy of epfile will save us from use-after-free. 2237 */ 2238 if (epfiles) { 2239 ffs_epfiles_destroy(epfiles, ffs->eps_count); 2240 ffs->epfiles = NULL; 2241 } 2242 2243 if (ffs->ffs_eventfd) { 2244 eventfd_ctx_put(ffs->ffs_eventfd); 2245 ffs->ffs_eventfd = NULL; 2246 } 2247 2248 kfree(ffs->raw_descs_data); 2249 kfree(ffs->raw_strings); 2250 kfree(ffs->stringtabs); 2251 } 2252 2253 static void ffs_data_reset(struct ffs_data *ffs) 2254 { 2255 ffs_data_clear(ffs); 2256 2257 ffs->raw_descs_data = NULL; 2258 ffs->raw_descs = NULL; 2259 ffs->raw_strings = NULL; 2260 ffs->stringtabs = NULL; 2261 2262 ffs->raw_descs_length = 0; 2263 ffs->fs_descs_count = 0; 2264 ffs->hs_descs_count = 0; 2265 ffs->ss_descs_count = 0; 2266 2267 ffs->strings_count = 0; 2268 ffs->interfaces_count = 0; 2269 ffs->eps_count = 0; 2270 2271 ffs->ev.count = 0; 2272 2273 ffs->state = FFS_READ_DESCRIPTORS; 2274 ffs->setup_state = FFS_NO_SETUP; 2275 ffs->flags = 0; 2276 2277 ffs->ms_os_descs_ext_prop_count = 0; 2278 ffs->ms_os_descs_ext_prop_name_len = 0; 2279 ffs->ms_os_descs_ext_prop_data_len = 0; 2280 } 2281 2282 2283 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 2284 { 2285 struct usb_gadget_strings **lang; 2286 int first_id; 2287 2288 if (WARN_ON(ffs->state != FFS_ACTIVE 2289 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 2290 return -EBADFD; 2291 2292 first_id = usb_string_ids_n(cdev, ffs->strings_count); 2293 if (first_id < 0) 2294 return first_id; 2295 2296 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 2297 if (!ffs->ep0req) 2298 return -ENOMEM; 2299 ffs->ep0req->complete = ffs_ep0_complete; 2300 ffs->ep0req->context = ffs; 2301 2302 lang = ffs->stringtabs; 2303 if (lang) { 2304 for (; *lang; ++lang) { 2305 struct usb_string *str = (*lang)->strings; 2306 int id = first_id; 2307 for (; str->s; ++id, ++str) 2308 str->id = id; 2309 } 2310 } 2311 2312 ffs->gadget = cdev->gadget; 2313 ffs_data_get(ffs); 2314 return 0; 2315 } 2316 2317 static void functionfs_unbind(struct ffs_data *ffs) 2318 { 2319 if (!WARN_ON(!ffs->gadget)) { 2320 /* dequeue before freeing ep0req */ 2321 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 2322 mutex_lock(&ffs->mutex); 2323 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 2324 ffs->ep0req = NULL; 2325 ffs->gadget = NULL; 2326 clear_bit(FFS_FL_BOUND, &ffs->flags); 2327 mutex_unlock(&ffs->mutex); 2328 ffs_data_put(ffs); 2329 } 2330 } 2331 2332 static int ffs_epfiles_create(struct ffs_data *ffs) 2333 { 2334 struct ffs_epfile *epfile, *epfiles; 2335 unsigned i, count; 2336 2337 count = ffs->eps_count; 2338 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 2339 if (!epfiles) 2340 return -ENOMEM; 2341 2342 epfile = epfiles; 2343 for (i = 1; i <= count; ++i, ++epfile) { 2344 epfile->ffs = ffs; 2345 mutex_init(&epfile->mutex); 2346 mutex_init(&epfile->dmabufs_mutex); 2347 INIT_LIST_HEAD(&epfile->dmabufs); 2348 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2349 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 2350 else 2351 sprintf(epfile->name, "ep%u", i); 2352 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 2353 epfile, 2354 &ffs_epfile_operations); 2355 if (!epfile->dentry) { 2356 ffs_epfiles_destroy(epfiles, i - 1); 2357 return -ENOMEM; 2358 } 2359 } 2360 2361 ffs->epfiles = epfiles; 2362 return 0; 2363 } 2364 2365 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 2366 { 2367 struct ffs_epfile *epfile = epfiles; 2368 2369 for (; count; --count, ++epfile) { 2370 BUG_ON(mutex_is_locked(&epfile->mutex)); 2371 if (epfile->dentry) { 2372 d_delete(epfile->dentry); 2373 dput(epfile->dentry); 2374 epfile->dentry = NULL; 2375 } 2376 } 2377 2378 kfree(epfiles); 2379 } 2380 2381 static void ffs_func_eps_disable(struct ffs_function *func) 2382 { 2383 struct ffs_ep *ep; 2384 struct ffs_epfile *epfile; 2385 unsigned short count; 2386 unsigned long flags; 2387 2388 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2389 count = func->ffs->eps_count; 2390 epfile = func->ffs->epfiles; 2391 ep = func->eps; 2392 while (count--) { 2393 /* pending requests get nuked */ 2394 if (ep->ep) 2395 usb_ep_disable(ep->ep); 2396 ++ep; 2397 2398 if (epfile) { 2399 epfile->ep = NULL; 2400 __ffs_epfile_read_buffer_free(epfile); 2401 ++epfile; 2402 } 2403 } 2404 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2405 } 2406 2407 static int ffs_func_eps_enable(struct ffs_function *func) 2408 { 2409 struct ffs_data *ffs; 2410 struct ffs_ep *ep; 2411 struct ffs_epfile *epfile; 2412 unsigned short count; 2413 unsigned long flags; 2414 int ret = 0; 2415 2416 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2417 ffs = func->ffs; 2418 ep = func->eps; 2419 epfile = ffs->epfiles; 2420 count = ffs->eps_count; 2421 while(count--) { 2422 ep->ep->driver_data = ep; 2423 2424 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2425 if (ret) { 2426 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2427 __func__, ep->ep->name, ret); 2428 break; 2429 } 2430 2431 ret = usb_ep_enable(ep->ep); 2432 if (!ret) { 2433 epfile->ep = ep; 2434 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2435 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2436 } else { 2437 break; 2438 } 2439 2440 ++ep; 2441 ++epfile; 2442 } 2443 2444 wake_up_interruptible(&ffs->wait); 2445 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2446 2447 return ret; 2448 } 2449 2450 2451 /* Parsing and building descriptors and strings *****************************/ 2452 2453 /* 2454 * This validates if data pointed by data is a valid USB descriptor as 2455 * well as record how many interfaces, endpoints and strings are 2456 * required by given configuration. Returns address after the 2457 * descriptor or NULL if data is invalid. 2458 */ 2459 2460 enum ffs_entity_type { 2461 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2462 }; 2463 2464 enum ffs_os_desc_type { 2465 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2466 }; 2467 2468 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2469 u8 *valuep, 2470 struct usb_descriptor_header *desc, 2471 void *priv); 2472 2473 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2474 struct usb_os_desc_header *h, void *data, 2475 unsigned len, void *priv); 2476 2477 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2478 ffs_entity_callback entity, 2479 void *priv, int *current_class, int *current_subclass) 2480 { 2481 struct usb_descriptor_header *_ds = (void *)data; 2482 u8 length; 2483 int ret; 2484 2485 /* At least two bytes are required: length and type */ 2486 if (len < 2) { 2487 pr_vdebug("descriptor too short\n"); 2488 return -EINVAL; 2489 } 2490 2491 /* If we have at least as many bytes as the descriptor takes? */ 2492 length = _ds->bLength; 2493 if (len < length) { 2494 pr_vdebug("descriptor longer then available data\n"); 2495 return -EINVAL; 2496 } 2497 2498 #define __entity_check_INTERFACE(val) 1 2499 #define __entity_check_STRING(val) (val) 2500 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2501 #define __entity(type, val) do { \ 2502 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2503 if (!__entity_check_ ##type(val)) { \ 2504 pr_vdebug("invalid entity's value\n"); \ 2505 return -EINVAL; \ 2506 } \ 2507 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2508 if (ret < 0) { \ 2509 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2510 (val), ret); \ 2511 return ret; \ 2512 } \ 2513 } while (0) 2514 2515 /* Parse descriptor depending on type. */ 2516 switch (_ds->bDescriptorType) { 2517 case USB_DT_DEVICE: 2518 case USB_DT_CONFIG: 2519 case USB_DT_STRING: 2520 case USB_DT_DEVICE_QUALIFIER: 2521 /* function can't have any of those */ 2522 pr_vdebug("descriptor reserved for gadget: %d\n", 2523 _ds->bDescriptorType); 2524 return -EINVAL; 2525 2526 case USB_DT_INTERFACE: { 2527 struct usb_interface_descriptor *ds = (void *)_ds; 2528 pr_vdebug("interface descriptor\n"); 2529 if (length != sizeof *ds) 2530 goto inv_length; 2531 2532 __entity(INTERFACE, ds->bInterfaceNumber); 2533 if (ds->iInterface) 2534 __entity(STRING, ds->iInterface); 2535 *current_class = ds->bInterfaceClass; 2536 *current_subclass = ds->bInterfaceSubClass; 2537 } 2538 break; 2539 2540 case USB_DT_ENDPOINT: { 2541 struct usb_endpoint_descriptor *ds = (void *)_ds; 2542 pr_vdebug("endpoint descriptor\n"); 2543 if (length != USB_DT_ENDPOINT_SIZE && 2544 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2545 goto inv_length; 2546 __entity(ENDPOINT, ds->bEndpointAddress); 2547 } 2548 break; 2549 2550 case USB_TYPE_CLASS | 0x01: 2551 if (*current_class == USB_INTERFACE_CLASS_HID) { 2552 pr_vdebug("hid descriptor\n"); 2553 if (length != sizeof(struct hid_descriptor)) 2554 goto inv_length; 2555 break; 2556 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2557 pr_vdebug("ccid descriptor\n"); 2558 if (length != sizeof(struct ccid_descriptor)) 2559 goto inv_length; 2560 break; 2561 } else if (*current_class == USB_CLASS_APP_SPEC && 2562 *current_subclass == USB_SUBCLASS_DFU) { 2563 pr_vdebug("dfu functional descriptor\n"); 2564 if (length != sizeof(struct usb_dfu_functional_descriptor)) 2565 goto inv_length; 2566 break; 2567 } else { 2568 pr_vdebug("unknown descriptor: %d for class %d\n", 2569 _ds->bDescriptorType, *current_class); 2570 return -EINVAL; 2571 } 2572 2573 case USB_DT_OTG: 2574 if (length != sizeof(struct usb_otg_descriptor)) 2575 goto inv_length; 2576 break; 2577 2578 case USB_DT_INTERFACE_ASSOCIATION: { 2579 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2580 pr_vdebug("interface association descriptor\n"); 2581 if (length != sizeof *ds) 2582 goto inv_length; 2583 if (ds->iFunction) 2584 __entity(STRING, ds->iFunction); 2585 } 2586 break; 2587 2588 case USB_DT_SS_ENDPOINT_COMP: 2589 pr_vdebug("EP SS companion descriptor\n"); 2590 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2591 goto inv_length; 2592 break; 2593 2594 case USB_DT_OTHER_SPEED_CONFIG: 2595 case USB_DT_INTERFACE_POWER: 2596 case USB_DT_DEBUG: 2597 case USB_DT_SECURITY: 2598 case USB_DT_CS_RADIO_CONTROL: 2599 /* TODO */ 2600 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2601 return -EINVAL; 2602 2603 default: 2604 /* We should never be here */ 2605 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2606 return -EINVAL; 2607 2608 inv_length: 2609 pr_vdebug("invalid length: %d (descriptor %d)\n", 2610 _ds->bLength, _ds->bDescriptorType); 2611 return -EINVAL; 2612 } 2613 2614 #undef __entity 2615 #undef __entity_check_DESCRIPTOR 2616 #undef __entity_check_INTERFACE 2617 #undef __entity_check_STRING 2618 #undef __entity_check_ENDPOINT 2619 2620 return length; 2621 } 2622 2623 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2624 ffs_entity_callback entity, void *priv) 2625 { 2626 const unsigned _len = len; 2627 unsigned long num = 0; 2628 int current_class = -1; 2629 int current_subclass = -1; 2630 2631 for (;;) { 2632 int ret; 2633 2634 if (num == count) 2635 data = NULL; 2636 2637 /* Record "descriptor" entity */ 2638 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2639 if (ret < 0) { 2640 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2641 num, ret); 2642 return ret; 2643 } 2644 2645 if (!data) 2646 return _len - len; 2647 2648 ret = ffs_do_single_desc(data, len, entity, priv, 2649 ¤t_class, ¤t_subclass); 2650 if (ret < 0) { 2651 pr_debug("%s returns %d\n", __func__, ret); 2652 return ret; 2653 } 2654 2655 len -= ret; 2656 data += ret; 2657 ++num; 2658 } 2659 } 2660 2661 static int __ffs_data_do_entity(enum ffs_entity_type type, 2662 u8 *valuep, struct usb_descriptor_header *desc, 2663 void *priv) 2664 { 2665 struct ffs_desc_helper *helper = priv; 2666 struct usb_endpoint_descriptor *d; 2667 2668 switch (type) { 2669 case FFS_DESCRIPTOR: 2670 break; 2671 2672 case FFS_INTERFACE: 2673 /* 2674 * Interfaces are indexed from zero so if we 2675 * encountered interface "n" then there are at least 2676 * "n+1" interfaces. 2677 */ 2678 if (*valuep >= helper->interfaces_count) 2679 helper->interfaces_count = *valuep + 1; 2680 break; 2681 2682 case FFS_STRING: 2683 /* 2684 * Strings are indexed from 1 (0 is reserved 2685 * for languages list) 2686 */ 2687 if (*valuep > helper->ffs->strings_count) 2688 helper->ffs->strings_count = *valuep; 2689 break; 2690 2691 case FFS_ENDPOINT: 2692 d = (void *)desc; 2693 helper->eps_count++; 2694 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2695 return -EINVAL; 2696 /* Check if descriptors for any speed were already parsed */ 2697 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2698 helper->ffs->eps_addrmap[helper->eps_count] = 2699 d->bEndpointAddress; 2700 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2701 d->bEndpointAddress) 2702 return -EINVAL; 2703 break; 2704 } 2705 2706 return 0; 2707 } 2708 2709 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2710 struct usb_os_desc_header *desc) 2711 { 2712 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2713 u16 w_index = le16_to_cpu(desc->wIndex); 2714 2715 if (bcd_version == 0x1) { 2716 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2717 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2718 } else if (bcd_version != 0x100) { 2719 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2720 bcd_version); 2721 return -EINVAL; 2722 } 2723 switch (w_index) { 2724 case 0x4: 2725 *next_type = FFS_OS_DESC_EXT_COMPAT; 2726 break; 2727 case 0x5: 2728 *next_type = FFS_OS_DESC_EXT_PROP; 2729 break; 2730 default: 2731 pr_vdebug("unsupported os descriptor type: %d", w_index); 2732 return -EINVAL; 2733 } 2734 2735 return sizeof(*desc); 2736 } 2737 2738 /* 2739 * Process all extended compatibility/extended property descriptors 2740 * of a feature descriptor 2741 */ 2742 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2743 enum ffs_os_desc_type type, 2744 u16 feature_count, 2745 ffs_os_desc_callback entity, 2746 void *priv, 2747 struct usb_os_desc_header *h) 2748 { 2749 int ret; 2750 const unsigned _len = len; 2751 2752 /* loop over all ext compat/ext prop descriptors */ 2753 while (feature_count--) { 2754 ret = entity(type, h, data, len, priv); 2755 if (ret < 0) { 2756 pr_debug("bad OS descriptor, type: %d\n", type); 2757 return ret; 2758 } 2759 data += ret; 2760 len -= ret; 2761 } 2762 return _len - len; 2763 } 2764 2765 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2766 static int __must_check ffs_do_os_descs(unsigned count, 2767 char *data, unsigned len, 2768 ffs_os_desc_callback entity, void *priv) 2769 { 2770 const unsigned _len = len; 2771 unsigned long num = 0; 2772 2773 for (num = 0; num < count; ++num) { 2774 int ret; 2775 enum ffs_os_desc_type type; 2776 u16 feature_count; 2777 struct usb_os_desc_header *desc = (void *)data; 2778 2779 if (len < sizeof(*desc)) 2780 return -EINVAL; 2781 2782 /* 2783 * Record "descriptor" entity. 2784 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2785 * Move the data pointer to the beginning of extended 2786 * compatibilities proper or extended properties proper 2787 * portions of the data 2788 */ 2789 if (le32_to_cpu(desc->dwLength) > len) 2790 return -EINVAL; 2791 2792 ret = __ffs_do_os_desc_header(&type, desc); 2793 if (ret < 0) { 2794 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2795 num, ret); 2796 return ret; 2797 } 2798 /* 2799 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2800 */ 2801 feature_count = le16_to_cpu(desc->wCount); 2802 if (type == FFS_OS_DESC_EXT_COMPAT && 2803 (feature_count > 255 || desc->Reserved)) 2804 return -EINVAL; 2805 len -= ret; 2806 data += ret; 2807 2808 /* 2809 * Process all function/property descriptors 2810 * of this Feature Descriptor 2811 */ 2812 ret = ffs_do_single_os_desc(data, len, type, 2813 feature_count, entity, priv, desc); 2814 if (ret < 0) { 2815 pr_debug("%s returns %d\n", __func__, ret); 2816 return ret; 2817 } 2818 2819 len -= ret; 2820 data += ret; 2821 } 2822 return _len - len; 2823 } 2824 2825 /* 2826 * Validate contents of the buffer from userspace related to OS descriptors. 2827 */ 2828 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2829 struct usb_os_desc_header *h, void *data, 2830 unsigned len, void *priv) 2831 { 2832 struct ffs_data *ffs = priv; 2833 u8 length; 2834 2835 switch (type) { 2836 case FFS_OS_DESC_EXT_COMPAT: { 2837 struct usb_ext_compat_desc *d = data; 2838 int i; 2839 2840 if (len < sizeof(*d) || 2841 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2842 return -EINVAL; 2843 if (d->Reserved1 != 1) { 2844 /* 2845 * According to the spec, Reserved1 must be set to 1 2846 * but older kernels incorrectly rejected non-zero 2847 * values. We fix it here to avoid returning EINVAL 2848 * in response to values we used to accept. 2849 */ 2850 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2851 d->Reserved1 = 1; 2852 } 2853 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2854 if (d->Reserved2[i]) 2855 return -EINVAL; 2856 2857 length = sizeof(struct usb_ext_compat_desc); 2858 } 2859 break; 2860 case FFS_OS_DESC_EXT_PROP: { 2861 struct usb_ext_prop_desc *d = data; 2862 u32 type, pdl; 2863 u16 pnl; 2864 2865 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2866 return -EINVAL; 2867 length = le32_to_cpu(d->dwSize); 2868 if (len < length) 2869 return -EINVAL; 2870 type = le32_to_cpu(d->dwPropertyDataType); 2871 if (type < USB_EXT_PROP_UNICODE || 2872 type > USB_EXT_PROP_UNICODE_MULTI) { 2873 pr_vdebug("unsupported os descriptor property type: %d", 2874 type); 2875 return -EINVAL; 2876 } 2877 pnl = le16_to_cpu(d->wPropertyNameLength); 2878 if (length < 14 + pnl) { 2879 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2880 length, pnl, type); 2881 return -EINVAL; 2882 } 2883 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2884 if (length != 14 + pnl + pdl) { 2885 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2886 length, pnl, pdl, type); 2887 return -EINVAL; 2888 } 2889 ++ffs->ms_os_descs_ext_prop_count; 2890 /* property name reported to the host as "WCHAR"s */ 2891 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2892 ffs->ms_os_descs_ext_prop_data_len += pdl; 2893 } 2894 break; 2895 default: 2896 pr_vdebug("unknown descriptor: %d\n", type); 2897 return -EINVAL; 2898 } 2899 return length; 2900 } 2901 2902 static int __ffs_data_got_descs(struct ffs_data *ffs, 2903 char *const _data, size_t len) 2904 { 2905 char *data = _data, *raw_descs; 2906 unsigned os_descs_count = 0, counts[3], flags; 2907 int ret = -EINVAL, i; 2908 struct ffs_desc_helper helper; 2909 2910 if (get_unaligned_le32(data + 4) != len) 2911 goto error; 2912 2913 switch (get_unaligned_le32(data)) { 2914 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2915 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2916 data += 8; 2917 len -= 8; 2918 break; 2919 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2920 flags = get_unaligned_le32(data + 8); 2921 ffs->user_flags = flags; 2922 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2923 FUNCTIONFS_HAS_HS_DESC | 2924 FUNCTIONFS_HAS_SS_DESC | 2925 FUNCTIONFS_HAS_MS_OS_DESC | 2926 FUNCTIONFS_VIRTUAL_ADDR | 2927 FUNCTIONFS_EVENTFD | 2928 FUNCTIONFS_ALL_CTRL_RECIP | 2929 FUNCTIONFS_CONFIG0_SETUP)) { 2930 ret = -ENOSYS; 2931 goto error; 2932 } 2933 data += 12; 2934 len -= 12; 2935 break; 2936 default: 2937 goto error; 2938 } 2939 2940 if (flags & FUNCTIONFS_EVENTFD) { 2941 if (len < 4) 2942 goto error; 2943 ffs->ffs_eventfd = 2944 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2945 if (IS_ERR(ffs->ffs_eventfd)) { 2946 ret = PTR_ERR(ffs->ffs_eventfd); 2947 ffs->ffs_eventfd = NULL; 2948 goto error; 2949 } 2950 data += 4; 2951 len -= 4; 2952 } 2953 2954 /* Read fs_count, hs_count and ss_count (if present) */ 2955 for (i = 0; i < 3; ++i) { 2956 if (!(flags & (1 << i))) { 2957 counts[i] = 0; 2958 } else if (len < 4) { 2959 goto error; 2960 } else { 2961 counts[i] = get_unaligned_le32(data); 2962 data += 4; 2963 len -= 4; 2964 } 2965 } 2966 if (flags & (1 << i)) { 2967 if (len < 4) { 2968 goto error; 2969 } 2970 os_descs_count = get_unaligned_le32(data); 2971 data += 4; 2972 len -= 4; 2973 } 2974 2975 /* Read descriptors */ 2976 raw_descs = data; 2977 helper.ffs = ffs; 2978 for (i = 0; i < 3; ++i) { 2979 if (!counts[i]) 2980 continue; 2981 helper.interfaces_count = 0; 2982 helper.eps_count = 0; 2983 ret = ffs_do_descs(counts[i], data, len, 2984 __ffs_data_do_entity, &helper); 2985 if (ret < 0) 2986 goto error; 2987 if (!ffs->eps_count && !ffs->interfaces_count) { 2988 ffs->eps_count = helper.eps_count; 2989 ffs->interfaces_count = helper.interfaces_count; 2990 } else { 2991 if (ffs->eps_count != helper.eps_count) { 2992 ret = -EINVAL; 2993 goto error; 2994 } 2995 if (ffs->interfaces_count != helper.interfaces_count) { 2996 ret = -EINVAL; 2997 goto error; 2998 } 2999 } 3000 data += ret; 3001 len -= ret; 3002 } 3003 if (os_descs_count) { 3004 ret = ffs_do_os_descs(os_descs_count, data, len, 3005 __ffs_data_do_os_desc, ffs); 3006 if (ret < 0) 3007 goto error; 3008 data += ret; 3009 len -= ret; 3010 } 3011 3012 if (raw_descs == data || len) { 3013 ret = -EINVAL; 3014 goto error; 3015 } 3016 3017 ffs->raw_descs_data = _data; 3018 ffs->raw_descs = raw_descs; 3019 ffs->raw_descs_length = data - raw_descs; 3020 ffs->fs_descs_count = counts[0]; 3021 ffs->hs_descs_count = counts[1]; 3022 ffs->ss_descs_count = counts[2]; 3023 ffs->ms_os_descs_count = os_descs_count; 3024 3025 return 0; 3026 3027 error: 3028 kfree(_data); 3029 return ret; 3030 } 3031 3032 static int __ffs_data_got_strings(struct ffs_data *ffs, 3033 char *const _data, size_t len) 3034 { 3035 u32 str_count, needed_count, lang_count; 3036 struct usb_gadget_strings **stringtabs, *t; 3037 const char *data = _data; 3038 struct usb_string *s; 3039 3040 if (len < 16 || 3041 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 3042 get_unaligned_le32(data + 4) != len) 3043 goto error; 3044 str_count = get_unaligned_le32(data + 8); 3045 lang_count = get_unaligned_le32(data + 12); 3046 3047 /* if one is zero the other must be zero */ 3048 if (!str_count != !lang_count) 3049 goto error; 3050 3051 /* Do we have at least as many strings as descriptors need? */ 3052 needed_count = ffs->strings_count; 3053 if (str_count < needed_count) 3054 goto error; 3055 3056 /* 3057 * If we don't need any strings just return and free all 3058 * memory. 3059 */ 3060 if (!needed_count) { 3061 kfree(_data); 3062 return 0; 3063 } 3064 3065 /* Allocate everything in one chunk so there's less maintenance. */ 3066 { 3067 unsigned i = 0; 3068 vla_group(d); 3069 vla_item(d, struct usb_gadget_strings *, stringtabs, 3070 size_add(lang_count, 1)); 3071 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 3072 vla_item(d, struct usb_string, strings, 3073 size_mul(lang_count, (needed_count + 1))); 3074 3075 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 3076 3077 if (!vlabuf) { 3078 kfree(_data); 3079 return -ENOMEM; 3080 } 3081 3082 /* Initialize the VLA pointers */ 3083 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3084 t = vla_ptr(vlabuf, d, stringtab); 3085 i = lang_count; 3086 do { 3087 *stringtabs++ = t++; 3088 } while (--i); 3089 *stringtabs = NULL; 3090 3091 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 3092 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3093 t = vla_ptr(vlabuf, d, stringtab); 3094 s = vla_ptr(vlabuf, d, strings); 3095 } 3096 3097 /* For each language */ 3098 data += 16; 3099 len -= 16; 3100 3101 do { /* lang_count > 0 so we can use do-while */ 3102 unsigned needed = needed_count; 3103 u32 str_per_lang = str_count; 3104 3105 if (len < 3) 3106 goto error_free; 3107 t->language = get_unaligned_le16(data); 3108 t->strings = s; 3109 ++t; 3110 3111 data += 2; 3112 len -= 2; 3113 3114 /* For each string */ 3115 do { /* str_count > 0 so we can use do-while */ 3116 size_t length = strnlen(data, len); 3117 3118 if (length == len) 3119 goto error_free; 3120 3121 /* 3122 * User may provide more strings then we need, 3123 * if that's the case we simply ignore the 3124 * rest 3125 */ 3126 if (needed) { 3127 /* 3128 * s->id will be set while adding 3129 * function to configuration so for 3130 * now just leave garbage here. 3131 */ 3132 s->s = data; 3133 --needed; 3134 ++s; 3135 } 3136 3137 data += length + 1; 3138 len -= length + 1; 3139 } while (--str_per_lang); 3140 3141 s->id = 0; /* terminator */ 3142 s->s = NULL; 3143 ++s; 3144 3145 } while (--lang_count); 3146 3147 /* Some garbage left? */ 3148 if (len) 3149 goto error_free; 3150 3151 /* Done! */ 3152 ffs->stringtabs = stringtabs; 3153 ffs->raw_strings = _data; 3154 3155 return 0; 3156 3157 error_free: 3158 kfree(stringtabs); 3159 error: 3160 kfree(_data); 3161 return -EINVAL; 3162 } 3163 3164 3165 /* Events handling and management *******************************************/ 3166 3167 static void __ffs_event_add(struct ffs_data *ffs, 3168 enum usb_functionfs_event_type type) 3169 { 3170 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 3171 int neg = 0; 3172 3173 /* 3174 * Abort any unhandled setup 3175 * 3176 * We do not need to worry about some cmpxchg() changing value 3177 * of ffs->setup_state without holding the lock because when 3178 * state is FFS_SETUP_PENDING cmpxchg() in several places in 3179 * the source does nothing. 3180 */ 3181 if (ffs->setup_state == FFS_SETUP_PENDING) 3182 ffs->setup_state = FFS_SETUP_CANCELLED; 3183 3184 /* 3185 * Logic of this function guarantees that there are at most four pending 3186 * evens on ffs->ev.types queue. This is important because the queue 3187 * has space for four elements only and __ffs_ep0_read_events function 3188 * depends on that limit as well. If more event types are added, those 3189 * limits have to be revisited or guaranteed to still hold. 3190 */ 3191 switch (type) { 3192 case FUNCTIONFS_RESUME: 3193 rem_type2 = FUNCTIONFS_SUSPEND; 3194 fallthrough; 3195 case FUNCTIONFS_SUSPEND: 3196 case FUNCTIONFS_SETUP: 3197 rem_type1 = type; 3198 /* Discard all similar events */ 3199 break; 3200 3201 case FUNCTIONFS_BIND: 3202 case FUNCTIONFS_UNBIND: 3203 case FUNCTIONFS_DISABLE: 3204 case FUNCTIONFS_ENABLE: 3205 /* Discard everything other then power management. */ 3206 rem_type1 = FUNCTIONFS_SUSPEND; 3207 rem_type2 = FUNCTIONFS_RESUME; 3208 neg = 1; 3209 break; 3210 3211 default: 3212 WARN(1, "%d: unknown event, this should not happen\n", type); 3213 return; 3214 } 3215 3216 { 3217 u8 *ev = ffs->ev.types, *out = ev; 3218 unsigned n = ffs->ev.count; 3219 for (; n; --n, ++ev) 3220 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 3221 *out++ = *ev; 3222 else 3223 pr_vdebug("purging event %d\n", *ev); 3224 ffs->ev.count = out - ffs->ev.types; 3225 } 3226 3227 pr_vdebug("adding event %d\n", type); 3228 ffs->ev.types[ffs->ev.count++] = type; 3229 wake_up_locked(&ffs->ev.waitq); 3230 if (ffs->ffs_eventfd) 3231 eventfd_signal(ffs->ffs_eventfd); 3232 } 3233 3234 static void ffs_event_add(struct ffs_data *ffs, 3235 enum usb_functionfs_event_type type) 3236 { 3237 unsigned long flags; 3238 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3239 __ffs_event_add(ffs, type); 3240 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3241 } 3242 3243 /* Bind/unbind USB function hooks *******************************************/ 3244 3245 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 3246 { 3247 int i; 3248 3249 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 3250 if (ffs->eps_addrmap[i] == endpoint_address) 3251 return i; 3252 return -ENOENT; 3253 } 3254 3255 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 3256 struct usb_descriptor_header *desc, 3257 void *priv) 3258 { 3259 struct usb_endpoint_descriptor *ds = (void *)desc; 3260 struct ffs_function *func = priv; 3261 struct ffs_ep *ffs_ep; 3262 unsigned ep_desc_id; 3263 int idx; 3264 static const char *speed_names[] = { "full", "high", "super" }; 3265 3266 if (type != FFS_DESCRIPTOR) 3267 return 0; 3268 3269 /* 3270 * If ss_descriptors is not NULL, we are reading super speed 3271 * descriptors; if hs_descriptors is not NULL, we are reading high 3272 * speed descriptors; otherwise, we are reading full speed 3273 * descriptors. 3274 */ 3275 if (func->function.ss_descriptors) { 3276 ep_desc_id = 2; 3277 func->function.ss_descriptors[(long)valuep] = desc; 3278 } else if (func->function.hs_descriptors) { 3279 ep_desc_id = 1; 3280 func->function.hs_descriptors[(long)valuep] = desc; 3281 } else { 3282 ep_desc_id = 0; 3283 func->function.fs_descriptors[(long)valuep] = desc; 3284 } 3285 3286 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 3287 return 0; 3288 3289 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 3290 if (idx < 0) 3291 return idx; 3292 3293 ffs_ep = func->eps + idx; 3294 3295 if (ffs_ep->descs[ep_desc_id]) { 3296 pr_err("two %sspeed descriptors for EP %d\n", 3297 speed_names[ep_desc_id], 3298 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 3299 return -EINVAL; 3300 } 3301 ffs_ep->descs[ep_desc_id] = ds; 3302 3303 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 3304 if (ffs_ep->ep) { 3305 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 3306 if (!ds->wMaxPacketSize) 3307 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 3308 } else { 3309 struct usb_request *req; 3310 struct usb_ep *ep; 3311 u8 bEndpointAddress; 3312 u16 wMaxPacketSize; 3313 3314 /* 3315 * We back up bEndpointAddress because autoconfig overwrites 3316 * it with physical endpoint address. 3317 */ 3318 bEndpointAddress = ds->bEndpointAddress; 3319 /* 3320 * We back up wMaxPacketSize because autoconfig treats 3321 * endpoint descriptors as if they were full speed. 3322 */ 3323 wMaxPacketSize = ds->wMaxPacketSize; 3324 pr_vdebug("autoconfig\n"); 3325 ep = usb_ep_autoconfig(func->gadget, ds); 3326 if (!ep) 3327 return -ENOTSUPP; 3328 ep->driver_data = func->eps + idx; 3329 3330 req = usb_ep_alloc_request(ep, GFP_KERNEL); 3331 if (!req) 3332 return -ENOMEM; 3333 3334 ffs_ep->ep = ep; 3335 ffs_ep->req = req; 3336 func->eps_revmap[ds->bEndpointAddress & 3337 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 3338 /* 3339 * If we use virtual address mapping, we restore 3340 * original bEndpointAddress value. 3341 */ 3342 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3343 ds->bEndpointAddress = bEndpointAddress; 3344 /* 3345 * Restore wMaxPacketSize which was potentially 3346 * overwritten by autoconfig. 3347 */ 3348 ds->wMaxPacketSize = wMaxPacketSize; 3349 } 3350 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 3351 3352 return 0; 3353 } 3354 3355 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 3356 struct usb_descriptor_header *desc, 3357 void *priv) 3358 { 3359 struct ffs_function *func = priv; 3360 unsigned idx; 3361 u8 newValue; 3362 3363 switch (type) { 3364 default: 3365 case FFS_DESCRIPTOR: 3366 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 3367 return 0; 3368 3369 case FFS_INTERFACE: 3370 idx = *valuep; 3371 if (func->interfaces_nums[idx] < 0) { 3372 int id = usb_interface_id(func->conf, &func->function); 3373 if (id < 0) 3374 return id; 3375 func->interfaces_nums[idx] = id; 3376 } 3377 newValue = func->interfaces_nums[idx]; 3378 break; 3379 3380 case FFS_STRING: 3381 /* String' IDs are allocated when fsf_data is bound to cdev */ 3382 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 3383 break; 3384 3385 case FFS_ENDPOINT: 3386 /* 3387 * USB_DT_ENDPOINT are handled in 3388 * __ffs_func_bind_do_descs(). 3389 */ 3390 if (desc->bDescriptorType == USB_DT_ENDPOINT) 3391 return 0; 3392 3393 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 3394 if (!func->eps[idx].ep) 3395 return -EINVAL; 3396 3397 { 3398 struct usb_endpoint_descriptor **descs; 3399 descs = func->eps[idx].descs; 3400 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 3401 } 3402 break; 3403 } 3404 3405 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 3406 *valuep = newValue; 3407 return 0; 3408 } 3409 3410 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 3411 struct usb_os_desc_header *h, void *data, 3412 unsigned len, void *priv) 3413 { 3414 struct ffs_function *func = priv; 3415 u8 length = 0; 3416 3417 switch (type) { 3418 case FFS_OS_DESC_EXT_COMPAT: { 3419 struct usb_ext_compat_desc *desc = data; 3420 struct usb_os_desc_table *t; 3421 3422 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3423 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3424 memcpy(t->os_desc->ext_compat_id, &desc->IDs, 3425 sizeof_field(struct usb_ext_compat_desc, IDs)); 3426 length = sizeof(*desc); 3427 } 3428 break; 3429 case FFS_OS_DESC_EXT_PROP: { 3430 struct usb_ext_prop_desc *desc = data; 3431 struct usb_os_desc_table *t; 3432 struct usb_os_desc_ext_prop *ext_prop; 3433 char *ext_prop_name; 3434 char *ext_prop_data; 3435 3436 t = &func->function.os_desc_table[h->interface]; 3437 t->if_id = func->interfaces_nums[h->interface]; 3438 3439 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3440 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3441 3442 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3443 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3444 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3445 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3446 length = ext_prop->name_len + ext_prop->data_len + 14; 3447 3448 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3449 func->ffs->ms_os_descs_ext_prop_name_avail += 3450 ext_prop->name_len; 3451 3452 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3453 func->ffs->ms_os_descs_ext_prop_data_avail += 3454 ext_prop->data_len; 3455 memcpy(ext_prop_data, 3456 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3457 ext_prop->data_len); 3458 /* unicode data reported to the host as "WCHAR"s */ 3459 switch (ext_prop->type) { 3460 case USB_EXT_PROP_UNICODE: 3461 case USB_EXT_PROP_UNICODE_ENV: 3462 case USB_EXT_PROP_UNICODE_LINK: 3463 case USB_EXT_PROP_UNICODE_MULTI: 3464 ext_prop->data_len *= 2; 3465 break; 3466 } 3467 ext_prop->data = ext_prop_data; 3468 3469 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3470 ext_prop->name_len); 3471 /* property name reported to the host as "WCHAR"s */ 3472 ext_prop->name_len *= 2; 3473 ext_prop->name = ext_prop_name; 3474 3475 t->os_desc->ext_prop_len += 3476 ext_prop->name_len + ext_prop->data_len + 14; 3477 ++t->os_desc->ext_prop_count; 3478 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3479 } 3480 break; 3481 default: 3482 pr_vdebug("unknown descriptor: %d\n", type); 3483 } 3484 3485 return length; 3486 } 3487 3488 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3489 struct usb_configuration *c) 3490 { 3491 struct ffs_function *func = ffs_func_from_usb(f); 3492 struct f_fs_opts *ffs_opts = 3493 container_of(f->fi, struct f_fs_opts, func_inst); 3494 struct ffs_data *ffs_data; 3495 int ret; 3496 3497 /* 3498 * Legacy gadget triggers binding in functionfs_ready_callback, 3499 * which already uses locking; taking the same lock here would 3500 * cause a deadlock. 3501 * 3502 * Configfs-enabled gadgets however do need ffs_dev_lock. 3503 */ 3504 if (!ffs_opts->no_configfs) 3505 ffs_dev_lock(); 3506 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3507 ffs_data = ffs_opts->dev->ffs_data; 3508 if (!ffs_opts->no_configfs) 3509 ffs_dev_unlock(); 3510 if (ret) 3511 return ERR_PTR(ret); 3512 3513 func->ffs = ffs_data; 3514 func->conf = c; 3515 func->gadget = c->cdev->gadget; 3516 3517 /* 3518 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3519 * configurations are bound in sequence with list_for_each_entry, 3520 * in each configuration its functions are bound in sequence 3521 * with list_for_each_entry, so we assume no race condition 3522 * with regard to ffs_opts->bound access 3523 */ 3524 if (!ffs_opts->refcnt) { 3525 ret = functionfs_bind(func->ffs, c->cdev); 3526 if (ret) 3527 return ERR_PTR(ret); 3528 } 3529 ffs_opts->refcnt++; 3530 func->function.strings = func->ffs->stringtabs; 3531 3532 return ffs_opts; 3533 } 3534 3535 static int _ffs_func_bind(struct usb_configuration *c, 3536 struct usb_function *f) 3537 { 3538 struct ffs_function *func = ffs_func_from_usb(f); 3539 struct ffs_data *ffs = func->ffs; 3540 3541 const int full = !!func->ffs->fs_descs_count; 3542 const int high = !!func->ffs->hs_descs_count; 3543 const int super = !!func->ffs->ss_descs_count; 3544 3545 int fs_len, hs_len, ss_len, ret, i; 3546 struct ffs_ep *eps_ptr; 3547 3548 /* Make it a single chunk, less management later on */ 3549 vla_group(d); 3550 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3551 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3552 full ? ffs->fs_descs_count + 1 : 0); 3553 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3554 high ? ffs->hs_descs_count + 1 : 0); 3555 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3556 super ? ffs->ss_descs_count + 1 : 0); 3557 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3558 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3559 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3560 vla_item_with_sz(d, char[16], ext_compat, 3561 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3562 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3563 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3564 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3565 ffs->ms_os_descs_ext_prop_count); 3566 vla_item_with_sz(d, char, ext_prop_name, 3567 ffs->ms_os_descs_ext_prop_name_len); 3568 vla_item_with_sz(d, char, ext_prop_data, 3569 ffs->ms_os_descs_ext_prop_data_len); 3570 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3571 char *vlabuf; 3572 3573 /* Has descriptors only for speeds gadget does not support */ 3574 if (!(full | high | super)) 3575 return -ENOTSUPP; 3576 3577 /* Allocate a single chunk, less management later on */ 3578 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3579 if (!vlabuf) 3580 return -ENOMEM; 3581 3582 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3583 ffs->ms_os_descs_ext_prop_name_avail = 3584 vla_ptr(vlabuf, d, ext_prop_name); 3585 ffs->ms_os_descs_ext_prop_data_avail = 3586 vla_ptr(vlabuf, d, ext_prop_data); 3587 3588 /* Copy descriptors */ 3589 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3590 ffs->raw_descs_length); 3591 3592 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3593 eps_ptr = vla_ptr(vlabuf, d, eps); 3594 for (i = 0; i < ffs->eps_count; i++) 3595 eps_ptr[i].num = -1; 3596 3597 /* Save pointers 3598 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3599 */ 3600 func->eps = vla_ptr(vlabuf, d, eps); 3601 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3602 3603 /* 3604 * Go through all the endpoint descriptors and allocate 3605 * endpoints first, so that later we can rewrite the endpoint 3606 * numbers without worrying that it may be described later on. 3607 */ 3608 if (full) { 3609 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3610 fs_len = ffs_do_descs(ffs->fs_descs_count, 3611 vla_ptr(vlabuf, d, raw_descs), 3612 d_raw_descs__sz, 3613 __ffs_func_bind_do_descs, func); 3614 if (fs_len < 0) { 3615 ret = fs_len; 3616 goto error; 3617 } 3618 } else { 3619 fs_len = 0; 3620 } 3621 3622 if (high) { 3623 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3624 hs_len = ffs_do_descs(ffs->hs_descs_count, 3625 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3626 d_raw_descs__sz - fs_len, 3627 __ffs_func_bind_do_descs, func); 3628 if (hs_len < 0) { 3629 ret = hs_len; 3630 goto error; 3631 } 3632 } else { 3633 hs_len = 0; 3634 } 3635 3636 if (super) { 3637 func->function.ss_descriptors = func->function.ssp_descriptors = 3638 vla_ptr(vlabuf, d, ss_descs); 3639 ss_len = ffs_do_descs(ffs->ss_descs_count, 3640 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3641 d_raw_descs__sz - fs_len - hs_len, 3642 __ffs_func_bind_do_descs, func); 3643 if (ss_len < 0) { 3644 ret = ss_len; 3645 goto error; 3646 } 3647 } else { 3648 ss_len = 0; 3649 } 3650 3651 /* 3652 * Now handle interface numbers allocation and interface and 3653 * endpoint numbers rewriting. We can do that in one go 3654 * now. 3655 */ 3656 ret = ffs_do_descs(ffs->fs_descs_count + 3657 (high ? ffs->hs_descs_count : 0) + 3658 (super ? ffs->ss_descs_count : 0), 3659 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3660 __ffs_func_bind_do_nums, func); 3661 if (ret < 0) 3662 goto error; 3663 3664 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3665 if (c->cdev->use_os_string) { 3666 for (i = 0; i < ffs->interfaces_count; ++i) { 3667 struct usb_os_desc *desc; 3668 3669 desc = func->function.os_desc_table[i].os_desc = 3670 vla_ptr(vlabuf, d, os_desc) + 3671 i * sizeof(struct usb_os_desc); 3672 desc->ext_compat_id = 3673 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3674 INIT_LIST_HEAD(&desc->ext_prop); 3675 } 3676 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3677 vla_ptr(vlabuf, d, raw_descs) + 3678 fs_len + hs_len + ss_len, 3679 d_raw_descs__sz - fs_len - hs_len - 3680 ss_len, 3681 __ffs_func_bind_do_os_desc, func); 3682 if (ret < 0) 3683 goto error; 3684 } 3685 func->function.os_desc_n = 3686 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3687 3688 /* And we're done */ 3689 ffs_event_add(ffs, FUNCTIONFS_BIND); 3690 return 0; 3691 3692 error: 3693 /* XXX Do we need to release all claimed endpoints here? */ 3694 return ret; 3695 } 3696 3697 static int ffs_func_bind(struct usb_configuration *c, 3698 struct usb_function *f) 3699 { 3700 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3701 struct ffs_function *func = ffs_func_from_usb(f); 3702 int ret; 3703 3704 if (IS_ERR(ffs_opts)) 3705 return PTR_ERR(ffs_opts); 3706 3707 ret = _ffs_func_bind(c, f); 3708 if (ret && !--ffs_opts->refcnt) 3709 functionfs_unbind(func->ffs); 3710 3711 return ret; 3712 } 3713 3714 3715 /* Other USB function hooks *************************************************/ 3716 3717 static void ffs_reset_work(struct work_struct *work) 3718 { 3719 struct ffs_data *ffs = container_of(work, 3720 struct ffs_data, reset_work); 3721 ffs_data_reset(ffs); 3722 } 3723 3724 static int ffs_func_get_alt(struct usb_function *f, 3725 unsigned int interface) 3726 { 3727 struct ffs_function *func = ffs_func_from_usb(f); 3728 int intf = ffs_func_revmap_intf(func, interface); 3729 3730 return (intf < 0) ? intf : func->cur_alt[interface]; 3731 } 3732 3733 static int ffs_func_set_alt(struct usb_function *f, 3734 unsigned interface, unsigned alt) 3735 { 3736 struct ffs_function *func = ffs_func_from_usb(f); 3737 struct ffs_data *ffs = func->ffs; 3738 int ret = 0, intf; 3739 3740 if (alt > MAX_ALT_SETTINGS) 3741 return -EINVAL; 3742 3743 intf = ffs_func_revmap_intf(func, interface); 3744 if (intf < 0) 3745 return intf; 3746 3747 if (ffs->func) 3748 ffs_func_eps_disable(ffs->func); 3749 3750 if (ffs->state == FFS_DEACTIVATED) { 3751 ffs->state = FFS_CLOSING; 3752 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3753 schedule_work(&ffs->reset_work); 3754 return -ENODEV; 3755 } 3756 3757 if (ffs->state != FFS_ACTIVE) 3758 return -ENODEV; 3759 3760 ffs->func = func; 3761 ret = ffs_func_eps_enable(func); 3762 if (ret >= 0) { 3763 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3764 func->cur_alt[interface] = alt; 3765 } 3766 return ret; 3767 } 3768 3769 static void ffs_func_disable(struct usb_function *f) 3770 { 3771 struct ffs_function *func = ffs_func_from_usb(f); 3772 struct ffs_data *ffs = func->ffs; 3773 3774 if (ffs->func) 3775 ffs_func_eps_disable(ffs->func); 3776 3777 if (ffs->state == FFS_DEACTIVATED) { 3778 ffs->state = FFS_CLOSING; 3779 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3780 schedule_work(&ffs->reset_work); 3781 return; 3782 } 3783 3784 if (ffs->state == FFS_ACTIVE) { 3785 ffs->func = NULL; 3786 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3787 } 3788 } 3789 3790 static int ffs_func_setup(struct usb_function *f, 3791 const struct usb_ctrlrequest *creq) 3792 { 3793 struct ffs_function *func = ffs_func_from_usb(f); 3794 struct ffs_data *ffs = func->ffs; 3795 unsigned long flags; 3796 int ret; 3797 3798 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3799 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3800 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3801 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3802 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3803 3804 /* 3805 * Most requests directed to interface go through here 3806 * (notable exceptions are set/get interface) so we need to 3807 * handle them. All other either handled by composite or 3808 * passed to usb_configuration->setup() (if one is set). No 3809 * matter, we will handle requests directed to endpoint here 3810 * as well (as it's straightforward). Other request recipient 3811 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3812 * is being used. 3813 */ 3814 if (ffs->state != FFS_ACTIVE) 3815 return -ENODEV; 3816 3817 switch (creq->bRequestType & USB_RECIP_MASK) { 3818 case USB_RECIP_INTERFACE: 3819 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3820 if (ret < 0) 3821 return ret; 3822 break; 3823 3824 case USB_RECIP_ENDPOINT: 3825 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3826 if (ret < 0) 3827 return ret; 3828 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3829 ret = func->ffs->eps_addrmap[ret]; 3830 break; 3831 3832 default: 3833 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3834 ret = le16_to_cpu(creq->wIndex); 3835 else 3836 return -EOPNOTSUPP; 3837 } 3838 3839 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3840 ffs->ev.setup = *creq; 3841 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3842 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3843 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3844 3845 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3846 } 3847 3848 static bool ffs_func_req_match(struct usb_function *f, 3849 const struct usb_ctrlrequest *creq, 3850 bool config0) 3851 { 3852 struct ffs_function *func = ffs_func_from_usb(f); 3853 3854 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3855 return false; 3856 3857 switch (creq->bRequestType & USB_RECIP_MASK) { 3858 case USB_RECIP_INTERFACE: 3859 return (ffs_func_revmap_intf(func, 3860 le16_to_cpu(creq->wIndex)) >= 0); 3861 case USB_RECIP_ENDPOINT: 3862 return (ffs_func_revmap_ep(func, 3863 le16_to_cpu(creq->wIndex)) >= 0); 3864 default: 3865 return (bool) (func->ffs->user_flags & 3866 FUNCTIONFS_ALL_CTRL_RECIP); 3867 } 3868 } 3869 3870 static void ffs_func_suspend(struct usb_function *f) 3871 { 3872 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3873 } 3874 3875 static void ffs_func_resume(struct usb_function *f) 3876 { 3877 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3878 } 3879 3880 3881 /* Endpoint and interface numbers reverse mapping ***************************/ 3882 3883 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3884 { 3885 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3886 return num ? num : -EDOM; 3887 } 3888 3889 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3890 { 3891 short *nums = func->interfaces_nums; 3892 unsigned count = func->ffs->interfaces_count; 3893 3894 for (; count; --count, ++nums) { 3895 if (*nums >= 0 && *nums == intf) 3896 return nums - func->interfaces_nums; 3897 } 3898 3899 return -EDOM; 3900 } 3901 3902 3903 /* Devices management *******************************************************/ 3904 3905 static LIST_HEAD(ffs_devices); 3906 3907 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3908 { 3909 struct ffs_dev *dev; 3910 3911 if (!name) 3912 return NULL; 3913 3914 list_for_each_entry(dev, &ffs_devices, entry) { 3915 if (strcmp(dev->name, name) == 0) 3916 return dev; 3917 } 3918 3919 return NULL; 3920 } 3921 3922 /* 3923 * ffs_lock must be taken by the caller of this function 3924 */ 3925 static struct ffs_dev *_ffs_get_single_dev(void) 3926 { 3927 struct ffs_dev *dev; 3928 3929 if (list_is_singular(&ffs_devices)) { 3930 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3931 if (dev->single) 3932 return dev; 3933 } 3934 3935 return NULL; 3936 } 3937 3938 /* 3939 * ffs_lock must be taken by the caller of this function 3940 */ 3941 static struct ffs_dev *_ffs_find_dev(const char *name) 3942 { 3943 struct ffs_dev *dev; 3944 3945 dev = _ffs_get_single_dev(); 3946 if (dev) 3947 return dev; 3948 3949 return _ffs_do_find_dev(name); 3950 } 3951 3952 /* Configfs support *********************************************************/ 3953 3954 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3955 { 3956 return container_of(to_config_group(item), struct f_fs_opts, 3957 func_inst.group); 3958 } 3959 3960 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page) 3961 { 3962 struct f_fs_opts *opts = to_ffs_opts(item); 3963 int ready; 3964 3965 ffs_dev_lock(); 3966 ready = opts->dev->desc_ready; 3967 ffs_dev_unlock(); 3968 3969 return sprintf(page, "%d\n", ready); 3970 } 3971 3972 CONFIGFS_ATTR_RO(f_fs_opts_, ready); 3973 3974 static struct configfs_attribute *ffs_attrs[] = { 3975 &f_fs_opts_attr_ready, 3976 NULL, 3977 }; 3978 3979 static void ffs_attr_release(struct config_item *item) 3980 { 3981 struct f_fs_opts *opts = to_ffs_opts(item); 3982 3983 usb_put_function_instance(&opts->func_inst); 3984 } 3985 3986 static struct configfs_item_operations ffs_item_ops = { 3987 .release = ffs_attr_release, 3988 }; 3989 3990 static const struct config_item_type ffs_func_type = { 3991 .ct_item_ops = &ffs_item_ops, 3992 .ct_attrs = ffs_attrs, 3993 .ct_owner = THIS_MODULE, 3994 }; 3995 3996 3997 /* Function registration interface ******************************************/ 3998 3999 static void ffs_free_inst(struct usb_function_instance *f) 4000 { 4001 struct f_fs_opts *opts; 4002 4003 opts = to_f_fs_opts(f); 4004 ffs_release_dev(opts->dev); 4005 ffs_dev_lock(); 4006 _ffs_free_dev(opts->dev); 4007 ffs_dev_unlock(); 4008 kfree(opts); 4009 } 4010 4011 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 4012 { 4013 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 4014 return -ENAMETOOLONG; 4015 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 4016 } 4017 4018 static struct usb_function_instance *ffs_alloc_inst(void) 4019 { 4020 struct f_fs_opts *opts; 4021 struct ffs_dev *dev; 4022 4023 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 4024 if (!opts) 4025 return ERR_PTR(-ENOMEM); 4026 4027 opts->func_inst.set_inst_name = ffs_set_inst_name; 4028 opts->func_inst.free_func_inst = ffs_free_inst; 4029 ffs_dev_lock(); 4030 dev = _ffs_alloc_dev(); 4031 ffs_dev_unlock(); 4032 if (IS_ERR(dev)) { 4033 kfree(opts); 4034 return ERR_CAST(dev); 4035 } 4036 opts->dev = dev; 4037 dev->opts = opts; 4038 4039 config_group_init_type_name(&opts->func_inst.group, "", 4040 &ffs_func_type); 4041 return &opts->func_inst; 4042 } 4043 4044 static void ffs_free(struct usb_function *f) 4045 { 4046 kfree(ffs_func_from_usb(f)); 4047 } 4048 4049 static void ffs_func_unbind(struct usb_configuration *c, 4050 struct usb_function *f) 4051 { 4052 struct ffs_function *func = ffs_func_from_usb(f); 4053 struct ffs_data *ffs = func->ffs; 4054 struct f_fs_opts *opts = 4055 container_of(f->fi, struct f_fs_opts, func_inst); 4056 struct ffs_ep *ep = func->eps; 4057 unsigned count = ffs->eps_count; 4058 unsigned long flags; 4059 4060 if (ffs->func == func) { 4061 ffs_func_eps_disable(func); 4062 ffs->func = NULL; 4063 } 4064 4065 /* Drain any pending AIO completions */ 4066 drain_workqueue(ffs->io_completion_wq); 4067 4068 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 4069 if (!--opts->refcnt) 4070 functionfs_unbind(ffs); 4071 4072 /* cleanup after autoconfig */ 4073 spin_lock_irqsave(&func->ffs->eps_lock, flags); 4074 while (count--) { 4075 if (ep->ep && ep->req) 4076 usb_ep_free_request(ep->ep, ep->req); 4077 ep->req = NULL; 4078 ++ep; 4079 } 4080 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 4081 kfree(func->eps); 4082 func->eps = NULL; 4083 /* 4084 * eps, descriptors and interfaces_nums are allocated in the 4085 * same chunk so only one free is required. 4086 */ 4087 func->function.fs_descriptors = NULL; 4088 func->function.hs_descriptors = NULL; 4089 func->function.ss_descriptors = NULL; 4090 func->function.ssp_descriptors = NULL; 4091 func->interfaces_nums = NULL; 4092 4093 } 4094 4095 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 4096 { 4097 struct ffs_function *func; 4098 4099 func = kzalloc(sizeof(*func), GFP_KERNEL); 4100 if (!func) 4101 return ERR_PTR(-ENOMEM); 4102 4103 func->function.name = "Function FS Gadget"; 4104 4105 func->function.bind = ffs_func_bind; 4106 func->function.unbind = ffs_func_unbind; 4107 func->function.set_alt = ffs_func_set_alt; 4108 func->function.get_alt = ffs_func_get_alt; 4109 func->function.disable = ffs_func_disable; 4110 func->function.setup = ffs_func_setup; 4111 func->function.req_match = ffs_func_req_match; 4112 func->function.suspend = ffs_func_suspend; 4113 func->function.resume = ffs_func_resume; 4114 func->function.free_func = ffs_free; 4115 4116 return &func->function; 4117 } 4118 4119 /* 4120 * ffs_lock must be taken by the caller of this function 4121 */ 4122 static struct ffs_dev *_ffs_alloc_dev(void) 4123 { 4124 struct ffs_dev *dev; 4125 int ret; 4126 4127 if (_ffs_get_single_dev()) 4128 return ERR_PTR(-EBUSY); 4129 4130 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4131 if (!dev) 4132 return ERR_PTR(-ENOMEM); 4133 4134 if (list_empty(&ffs_devices)) { 4135 ret = functionfs_init(); 4136 if (ret) { 4137 kfree(dev); 4138 return ERR_PTR(ret); 4139 } 4140 } 4141 4142 list_add(&dev->entry, &ffs_devices); 4143 4144 return dev; 4145 } 4146 4147 int ffs_name_dev(struct ffs_dev *dev, const char *name) 4148 { 4149 struct ffs_dev *existing; 4150 int ret = 0; 4151 4152 ffs_dev_lock(); 4153 4154 existing = _ffs_do_find_dev(name); 4155 if (!existing) 4156 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 4157 else if (existing != dev) 4158 ret = -EBUSY; 4159 4160 ffs_dev_unlock(); 4161 4162 return ret; 4163 } 4164 EXPORT_SYMBOL_GPL(ffs_name_dev); 4165 4166 int ffs_single_dev(struct ffs_dev *dev) 4167 { 4168 int ret; 4169 4170 ret = 0; 4171 ffs_dev_lock(); 4172 4173 if (!list_is_singular(&ffs_devices)) 4174 ret = -EBUSY; 4175 else 4176 dev->single = true; 4177 4178 ffs_dev_unlock(); 4179 return ret; 4180 } 4181 EXPORT_SYMBOL_GPL(ffs_single_dev); 4182 4183 /* 4184 * ffs_lock must be taken by the caller of this function 4185 */ 4186 static void _ffs_free_dev(struct ffs_dev *dev) 4187 { 4188 list_del(&dev->entry); 4189 4190 kfree(dev); 4191 if (list_empty(&ffs_devices)) 4192 functionfs_cleanup(); 4193 } 4194 4195 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 4196 { 4197 int ret = 0; 4198 struct ffs_dev *ffs_dev; 4199 4200 ffs_dev_lock(); 4201 4202 ffs_dev = _ffs_find_dev(dev_name); 4203 if (!ffs_dev) { 4204 ret = -ENOENT; 4205 } else if (ffs_dev->mounted) { 4206 ret = -EBUSY; 4207 } else if (ffs_dev->ffs_acquire_dev_callback && 4208 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 4209 ret = -ENOENT; 4210 } else { 4211 ffs_dev->mounted = true; 4212 ffs_dev->ffs_data = ffs_data; 4213 ffs_data->private_data = ffs_dev; 4214 } 4215 4216 ffs_dev_unlock(); 4217 return ret; 4218 } 4219 4220 static void ffs_release_dev(struct ffs_dev *ffs_dev) 4221 { 4222 ffs_dev_lock(); 4223 4224 if (ffs_dev && ffs_dev->mounted) { 4225 ffs_dev->mounted = false; 4226 if (ffs_dev->ffs_data) { 4227 ffs_dev->ffs_data->private_data = NULL; 4228 ffs_dev->ffs_data = NULL; 4229 } 4230 4231 if (ffs_dev->ffs_release_dev_callback) 4232 ffs_dev->ffs_release_dev_callback(ffs_dev); 4233 } 4234 4235 ffs_dev_unlock(); 4236 } 4237 4238 static int ffs_ready(struct ffs_data *ffs) 4239 { 4240 struct ffs_dev *ffs_obj; 4241 int ret = 0; 4242 4243 ffs_dev_lock(); 4244 4245 ffs_obj = ffs->private_data; 4246 if (!ffs_obj) { 4247 ret = -EINVAL; 4248 goto done; 4249 } 4250 if (WARN_ON(ffs_obj->desc_ready)) { 4251 ret = -EBUSY; 4252 goto done; 4253 } 4254 4255 ffs_obj->desc_ready = true; 4256 4257 if (ffs_obj->ffs_ready_callback) { 4258 ret = ffs_obj->ffs_ready_callback(ffs); 4259 if (ret) 4260 goto done; 4261 } 4262 4263 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 4264 done: 4265 ffs_dev_unlock(); 4266 return ret; 4267 } 4268 4269 static void ffs_closed(struct ffs_data *ffs) 4270 { 4271 struct ffs_dev *ffs_obj; 4272 struct f_fs_opts *opts; 4273 struct config_item *ci; 4274 4275 ffs_dev_lock(); 4276 4277 ffs_obj = ffs->private_data; 4278 if (!ffs_obj) 4279 goto done; 4280 4281 ffs_obj->desc_ready = false; 4282 4283 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 4284 ffs_obj->ffs_closed_callback) 4285 ffs_obj->ffs_closed_callback(ffs); 4286 4287 if (ffs_obj->opts) 4288 opts = ffs_obj->opts; 4289 else 4290 goto done; 4291 4292 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 4293 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 4294 goto done; 4295 4296 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 4297 ffs_dev_unlock(); 4298 4299 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 4300 unregister_gadget_item(ci); 4301 return; 4302 done: 4303 ffs_dev_unlock(); 4304 } 4305 4306 /* Misc helper functions ****************************************************/ 4307 4308 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 4309 { 4310 return nonblock 4311 ? mutex_trylock(mutex) ? 0 : -EAGAIN 4312 : mutex_lock_interruptible(mutex); 4313 } 4314 4315 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 4316 { 4317 char *data; 4318 4319 if (!len) 4320 return NULL; 4321 4322 data = memdup_user(buf, len); 4323 if (IS_ERR(data)) 4324 return data; 4325 4326 pr_vdebug("Buffer from user space:\n"); 4327 ffs_dump_mem("", data, len); 4328 4329 return data; 4330 } 4331 4332 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 4333 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers"); 4334 MODULE_LICENSE("GPL"); 4335 MODULE_AUTHOR("Michal Nazarewicz"); 4336