1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/dma-buf.h> 19 #include <linux/dma-fence.h> 20 #include <linux/dma-resv.h> 21 #include <linux/pagemap.h> 22 #include <linux/export.h> 23 #include <linux/fs_parser.h> 24 #include <linux/hid.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/scatterlist.h> 28 #include <linux/sched/signal.h> 29 #include <linux/uio.h> 30 #include <linux/vmalloc.h> 31 #include <linux/unaligned.h> 32 33 #include <linux/usb/ccid.h> 34 #include <linux/usb/composite.h> 35 #include <linux/usb/functionfs.h> 36 #include <linux/usb/func_utils.h> 37 38 #include <linux/aio.h> 39 #include <linux/kthread.h> 40 #include <linux/poll.h> 41 #include <linux/eventfd.h> 42 43 #include "u_fs.h" 44 #include "u_os_desc.h" 45 #include "configfs.h" 46 47 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 48 #define MAX_ALT_SETTINGS 2 /* Allow up to 2 alt settings to be set. */ 49 50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000 51 52 MODULE_IMPORT_NS("DMA_BUF"); 53 54 /* Reference counter handling */ 55 static void ffs_data_get(struct ffs_data *ffs); 56 static void ffs_data_put(struct ffs_data *ffs); 57 /* Creates new ffs_data object. */ 58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 59 __attribute__((malloc)); 60 61 /* Opened counter handling. */ 62 static void ffs_data_opened(struct ffs_data *ffs); 63 static void ffs_data_closed(struct ffs_data *ffs); 64 65 /* Called with ffs->mutex held; take over ownership of data. */ 66 static int __must_check 67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 68 static int __must_check 69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 70 71 72 /* The function structure ***************************************************/ 73 74 struct ffs_ep; 75 76 struct ffs_function { 77 struct usb_configuration *conf; 78 struct usb_gadget *gadget; 79 struct ffs_data *ffs; 80 81 struct ffs_ep *eps; 82 u8 eps_revmap[16]; 83 short *interfaces_nums; 84 85 struct usb_function function; 86 int cur_alt[MAX_CONFIG_INTERFACES]; 87 }; 88 89 90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 91 { 92 return container_of(f, struct ffs_function, function); 93 } 94 95 96 static inline enum ffs_setup_state 97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 98 { 99 return (enum ffs_setup_state) 100 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 101 } 102 103 104 static void ffs_func_eps_disable(struct ffs_function *func); 105 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 106 107 static int ffs_func_bind(struct usb_configuration *, 108 struct usb_function *); 109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf); 111 static void ffs_func_disable(struct usb_function *); 112 static int ffs_func_setup(struct usb_function *, 113 const struct usb_ctrlrequest *); 114 static bool ffs_func_req_match(struct usb_function *, 115 const struct usb_ctrlrequest *, 116 bool config0); 117 static void ffs_func_suspend(struct usb_function *); 118 static void ffs_func_resume(struct usb_function *); 119 120 121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 123 124 125 /* The endpoints structures *************************************************/ 126 127 struct ffs_ep { 128 struct usb_ep *ep; /* P: ffs->eps_lock */ 129 struct usb_request *req; /* P: epfile->mutex */ 130 131 /* [0]: full speed, [1]: high speed, [2]: super speed */ 132 struct usb_endpoint_descriptor *descs[3]; 133 134 u8 num; 135 }; 136 137 struct ffs_dmabuf_priv { 138 struct list_head entry; 139 struct kref ref; 140 struct ffs_data *ffs; 141 struct dma_buf_attachment *attach; 142 struct sg_table *sgt; 143 enum dma_data_direction dir; 144 spinlock_t lock; 145 u64 context; 146 struct usb_request *req; /* P: ffs->eps_lock */ 147 struct usb_ep *ep; /* P: ffs->eps_lock */ 148 }; 149 150 struct ffs_dma_fence { 151 struct dma_fence base; 152 struct ffs_dmabuf_priv *priv; 153 struct work_struct work; 154 }; 155 156 struct ffs_epfile { 157 /* Protects ep->ep and ep->req. */ 158 struct mutex mutex; 159 160 struct ffs_data *ffs; 161 struct ffs_ep *ep; /* P: ffs->eps_lock */ 162 163 /* 164 * Buffer for holding data from partial reads which may happen since 165 * we’re rounding user read requests to a multiple of a max packet size. 166 * 167 * The pointer is initialised with NULL value and may be set by 168 * __ffs_epfile_read_data function to point to a temporary buffer. 169 * 170 * In normal operation, calls to __ffs_epfile_read_buffered will consume 171 * data from said buffer and eventually free it. Importantly, while the 172 * function is using the buffer, it sets the pointer to NULL. This is 173 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 174 * can never run concurrently (they are synchronised by epfile->mutex) 175 * so the latter will not assign a new value to the pointer. 176 * 177 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 178 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 179 * value is crux of the synchronisation between ffs_func_eps_disable and 180 * __ffs_epfile_read_data. 181 * 182 * Once __ffs_epfile_read_data is about to finish it will try to set the 183 * pointer back to its old value (as described above), but seeing as the 184 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 185 * the buffer. 186 * 187 * == State transitions == 188 * 189 * • ptr == NULL: (initial state) 190 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 191 * ◦ __ffs_epfile_read_buffered: nop 192 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 193 * ◦ reading finishes: n/a, not in ‘and reading’ state 194 * • ptr == DROP: 195 * ◦ __ffs_epfile_read_buffer_free: nop 196 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 197 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 198 * ◦ reading finishes: n/a, not in ‘and reading’ state 199 * • ptr == buf: 200 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 201 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 202 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 203 * is always called first 204 * ◦ reading finishes: n/a, not in ‘and reading’ state 205 * • ptr == NULL and reading: 206 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 207 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 208 * ◦ __ffs_epfile_read_data: n/a, mutex is held 209 * ◦ reading finishes and … 210 * … all data read: free buf, go to ptr == NULL 211 * … otherwise: go to ptr == buf and reading 212 * • ptr == DROP and reading: 213 * ◦ __ffs_epfile_read_buffer_free: nop 214 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 215 * ◦ __ffs_epfile_read_data: n/a, mutex is held 216 * ◦ reading finishes: free buf, go to ptr == DROP 217 */ 218 struct ffs_buffer *read_buffer; 219 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 220 221 char name[5]; 222 223 unsigned char in; /* P: ffs->eps_lock */ 224 unsigned char isoc; /* P: ffs->eps_lock */ 225 226 unsigned char _pad; 227 228 /* Protects dmabufs */ 229 struct mutex dmabufs_mutex; 230 struct list_head dmabufs; /* P: dmabufs_mutex */ 231 atomic_t seqno; 232 }; 233 234 struct ffs_buffer { 235 size_t length; 236 char *data; 237 char storage[] __counted_by(length); 238 }; 239 240 /* ffs_io_data structure ***************************************************/ 241 242 struct ffs_io_data { 243 bool aio; 244 bool read; 245 246 struct kiocb *kiocb; 247 struct iov_iter data; 248 const void *to_free; 249 char *buf; 250 251 struct mm_struct *mm; 252 struct work_struct work; 253 254 struct usb_ep *ep; 255 struct usb_request *req; 256 struct sg_table sgt; 257 bool use_sg; 258 259 struct ffs_data *ffs; 260 261 int status; 262 struct completion done; 263 }; 264 265 struct ffs_desc_helper { 266 struct ffs_data *ffs; 267 unsigned interfaces_count; 268 unsigned eps_count; 269 }; 270 271 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 272 static void ffs_epfiles_destroy(struct super_block *sb, 273 struct ffs_epfile *epfiles, unsigned count); 274 275 static int ffs_sb_create_file(struct super_block *sb, const char *name, 276 void *data, const struct file_operations *fops); 277 278 /* Devices management *******************************************************/ 279 280 DEFINE_MUTEX(ffs_lock); 281 EXPORT_SYMBOL_GPL(ffs_lock); 282 283 static struct ffs_dev *_ffs_find_dev(const char *name); 284 static struct ffs_dev *_ffs_alloc_dev(void); 285 static void _ffs_free_dev(struct ffs_dev *dev); 286 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data); 287 static void ffs_release_dev(struct ffs_dev *ffs_dev); 288 static int ffs_ready(struct ffs_data *ffs); 289 static void ffs_closed(struct ffs_data *ffs); 290 291 /* Misc helper functions ****************************************************/ 292 293 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 294 __attribute__((warn_unused_result, nonnull)); 295 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 296 __attribute__((warn_unused_result, nonnull)); 297 298 299 /* Control file aka ep0 *****************************************************/ 300 301 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 302 { 303 struct ffs_data *ffs = req->context; 304 305 complete(&ffs->ep0req_completion); 306 } 307 308 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 309 __releases(&ffs->ev.waitq.lock) 310 { 311 struct usb_request *req = ffs->ep0req; 312 int ret; 313 314 if (!req) { 315 spin_unlock_irq(&ffs->ev.waitq.lock); 316 return -EINVAL; 317 } 318 319 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 320 321 spin_unlock_irq(&ffs->ev.waitq.lock); 322 323 req->buf = data; 324 req->length = len; 325 326 /* 327 * UDC layer requires to provide a buffer even for ZLP, but should 328 * not use it at all. Let's provide some poisoned pointer to catch 329 * possible bug in the driver. 330 */ 331 if (req->buf == NULL) 332 req->buf = (void *)0xDEADBABE; 333 334 reinit_completion(&ffs->ep0req_completion); 335 336 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 337 if (ret < 0) 338 return ret; 339 340 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 341 if (ret) { 342 usb_ep_dequeue(ffs->gadget->ep0, req); 343 return -EINTR; 344 } 345 346 ffs->setup_state = FFS_NO_SETUP; 347 return req->status ? req->status : req->actual; 348 } 349 350 static int __ffs_ep0_stall(struct ffs_data *ffs) 351 { 352 if (ffs->ev.can_stall) { 353 pr_vdebug("ep0 stall\n"); 354 usb_ep_set_halt(ffs->gadget->ep0); 355 ffs->setup_state = FFS_NO_SETUP; 356 return -EL2HLT; 357 } else { 358 pr_debug("bogus ep0 stall!\n"); 359 return -ESRCH; 360 } 361 } 362 363 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 364 size_t len, loff_t *ptr) 365 { 366 struct ffs_data *ffs = file->private_data; 367 ssize_t ret; 368 char *data; 369 370 /* Fast check if setup was canceled */ 371 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 372 return -EIDRM; 373 374 /* Acquire mutex */ 375 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 376 if (ret < 0) 377 return ret; 378 379 /* Check state */ 380 switch (ffs->state) { 381 case FFS_READ_DESCRIPTORS: 382 case FFS_READ_STRINGS: 383 /* Copy data */ 384 if (len < 16) { 385 ret = -EINVAL; 386 break; 387 } 388 389 data = ffs_prepare_buffer(buf, len); 390 if (IS_ERR(data)) { 391 ret = PTR_ERR(data); 392 break; 393 } 394 395 /* Handle data */ 396 if (ffs->state == FFS_READ_DESCRIPTORS) { 397 pr_info("read descriptors\n"); 398 ret = __ffs_data_got_descs(ffs, data, len); 399 if (ret < 0) 400 break; 401 402 ffs->state = FFS_READ_STRINGS; 403 ret = len; 404 } else { 405 pr_info("read strings\n"); 406 ret = __ffs_data_got_strings(ffs, data, len); 407 if (ret < 0) 408 break; 409 410 ret = ffs_epfiles_create(ffs); 411 if (ret) { 412 ffs->state = FFS_CLOSING; 413 break; 414 } 415 416 ffs->state = FFS_ACTIVE; 417 mutex_unlock(&ffs->mutex); 418 419 ret = ffs_ready(ffs); 420 if (ret < 0) { 421 ffs->state = FFS_CLOSING; 422 return ret; 423 } 424 425 return len; 426 } 427 break; 428 429 case FFS_ACTIVE: 430 data = NULL; 431 /* 432 * We're called from user space, we can use _irq 433 * rather then _irqsave 434 */ 435 spin_lock_irq(&ffs->ev.waitq.lock); 436 switch (ffs_setup_state_clear_cancelled(ffs)) { 437 case FFS_SETUP_CANCELLED: 438 ret = -EIDRM; 439 goto done_spin; 440 441 case FFS_NO_SETUP: 442 ret = -ESRCH; 443 goto done_spin; 444 445 case FFS_SETUP_PENDING: 446 break; 447 } 448 449 /* FFS_SETUP_PENDING */ 450 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 451 spin_unlock_irq(&ffs->ev.waitq.lock); 452 ret = __ffs_ep0_stall(ffs); 453 break; 454 } 455 456 /* FFS_SETUP_PENDING and not stall */ 457 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength)); 458 459 spin_unlock_irq(&ffs->ev.waitq.lock); 460 461 data = ffs_prepare_buffer(buf, len); 462 if (IS_ERR(data)) { 463 ret = PTR_ERR(data); 464 break; 465 } 466 467 spin_lock_irq(&ffs->ev.waitq.lock); 468 469 /* 470 * We are guaranteed to be still in FFS_ACTIVE state 471 * but the state of setup could have changed from 472 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 473 * to check for that. If that happened we copied data 474 * from user space in vain but it's unlikely. 475 * 476 * For sure we are not in FFS_NO_SETUP since this is 477 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 478 * transition can be performed and it's protected by 479 * mutex. 480 */ 481 if (ffs_setup_state_clear_cancelled(ffs) == 482 FFS_SETUP_CANCELLED) { 483 ret = -EIDRM; 484 done_spin: 485 spin_unlock_irq(&ffs->ev.waitq.lock); 486 } else { 487 /* unlocks spinlock */ 488 ret = __ffs_ep0_queue_wait(ffs, data, len); 489 } 490 kfree(data); 491 break; 492 493 default: 494 ret = -EBADFD; 495 break; 496 } 497 498 mutex_unlock(&ffs->mutex); 499 return ret; 500 } 501 502 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 503 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 504 size_t n) 505 __releases(&ffs->ev.waitq.lock) 506 { 507 /* 508 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 509 * size of ffs->ev.types array (which is four) so that's how much space 510 * we reserve. 511 */ 512 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 513 const size_t size = n * sizeof *events; 514 unsigned i = 0; 515 516 memset(events, 0, size); 517 518 do { 519 events[i].type = ffs->ev.types[i]; 520 if (events[i].type == FUNCTIONFS_SETUP) { 521 events[i].u.setup = ffs->ev.setup; 522 ffs->setup_state = FFS_SETUP_PENDING; 523 } 524 } while (++i < n); 525 526 ffs->ev.count -= n; 527 if (ffs->ev.count) 528 memmove(ffs->ev.types, ffs->ev.types + n, 529 ffs->ev.count * sizeof *ffs->ev.types); 530 531 spin_unlock_irq(&ffs->ev.waitq.lock); 532 mutex_unlock(&ffs->mutex); 533 534 return copy_to_user(buf, events, size) ? -EFAULT : size; 535 } 536 537 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 538 size_t len, loff_t *ptr) 539 { 540 struct ffs_data *ffs = file->private_data; 541 char *data = NULL; 542 size_t n; 543 int ret; 544 545 /* Fast check if setup was canceled */ 546 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 547 return -EIDRM; 548 549 /* Acquire mutex */ 550 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 551 if (ret < 0) 552 return ret; 553 554 /* Check state */ 555 if (ffs->state != FFS_ACTIVE) { 556 ret = -EBADFD; 557 goto done_mutex; 558 } 559 560 /* 561 * We're called from user space, we can use _irq rather then 562 * _irqsave 563 */ 564 spin_lock_irq(&ffs->ev.waitq.lock); 565 566 switch (ffs_setup_state_clear_cancelled(ffs)) { 567 case FFS_SETUP_CANCELLED: 568 ret = -EIDRM; 569 break; 570 571 case FFS_NO_SETUP: 572 n = len / sizeof(struct usb_functionfs_event); 573 if (!n) { 574 ret = -EINVAL; 575 break; 576 } 577 578 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 579 ret = -EAGAIN; 580 break; 581 } 582 583 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 584 ffs->ev.count)) { 585 ret = -EINTR; 586 break; 587 } 588 589 /* unlocks spinlock */ 590 return __ffs_ep0_read_events(ffs, buf, 591 min_t(size_t, n, ffs->ev.count)); 592 593 case FFS_SETUP_PENDING: 594 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 595 spin_unlock_irq(&ffs->ev.waitq.lock); 596 ret = __ffs_ep0_stall(ffs); 597 goto done_mutex; 598 } 599 600 len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength)); 601 602 spin_unlock_irq(&ffs->ev.waitq.lock); 603 604 if (len) { 605 data = kmalloc(len, GFP_KERNEL); 606 if (!data) { 607 ret = -ENOMEM; 608 goto done_mutex; 609 } 610 } 611 612 spin_lock_irq(&ffs->ev.waitq.lock); 613 614 /* See ffs_ep0_write() */ 615 if (ffs_setup_state_clear_cancelled(ffs) == 616 FFS_SETUP_CANCELLED) { 617 ret = -EIDRM; 618 break; 619 } 620 621 /* unlocks spinlock */ 622 ret = __ffs_ep0_queue_wait(ffs, data, len); 623 if ((ret > 0) && (copy_to_user(buf, data, len))) 624 ret = -EFAULT; 625 goto done_mutex; 626 627 default: 628 ret = -EBADFD; 629 break; 630 } 631 632 spin_unlock_irq(&ffs->ev.waitq.lock); 633 done_mutex: 634 mutex_unlock(&ffs->mutex); 635 kfree(data); 636 return ret; 637 } 638 639 static int ffs_ep0_open(struct inode *inode, struct file *file) 640 { 641 struct ffs_data *ffs = inode->i_sb->s_fs_info; 642 int ret; 643 644 /* Acquire mutex */ 645 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 646 if (ret < 0) 647 return ret; 648 649 ffs_data_opened(ffs); 650 if (ffs->state == FFS_CLOSING) { 651 ffs_data_closed(ffs); 652 mutex_unlock(&ffs->mutex); 653 return -EBUSY; 654 } 655 mutex_unlock(&ffs->mutex); 656 file->private_data = ffs; 657 658 return stream_open(inode, file); 659 } 660 661 static int ffs_ep0_release(struct inode *inode, struct file *file) 662 { 663 struct ffs_data *ffs = file->private_data; 664 665 ffs_data_closed(ffs); 666 667 return 0; 668 } 669 670 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 671 { 672 struct ffs_data *ffs = file->private_data; 673 struct usb_gadget *gadget = ffs->gadget; 674 long ret; 675 676 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 677 struct ffs_function *func = ffs->func; 678 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 679 } else if (gadget && gadget->ops->ioctl) { 680 ret = gadget->ops->ioctl(gadget, code, value); 681 } else { 682 ret = -ENOTTY; 683 } 684 685 return ret; 686 } 687 688 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 689 { 690 struct ffs_data *ffs = file->private_data; 691 __poll_t mask = EPOLLWRNORM; 692 int ret; 693 694 poll_wait(file, &ffs->ev.waitq, wait); 695 696 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 697 if (ret < 0) 698 return mask; 699 700 switch (ffs->state) { 701 case FFS_READ_DESCRIPTORS: 702 case FFS_READ_STRINGS: 703 mask |= EPOLLOUT; 704 break; 705 706 case FFS_ACTIVE: 707 switch (ffs->setup_state) { 708 case FFS_NO_SETUP: 709 if (ffs->ev.count) 710 mask |= EPOLLIN; 711 break; 712 713 case FFS_SETUP_PENDING: 714 case FFS_SETUP_CANCELLED: 715 mask |= (EPOLLIN | EPOLLOUT); 716 break; 717 } 718 break; 719 720 case FFS_CLOSING: 721 break; 722 case FFS_DEACTIVATED: 723 break; 724 } 725 726 mutex_unlock(&ffs->mutex); 727 728 return mask; 729 } 730 731 static const struct file_operations ffs_ep0_operations = { 732 733 .open = ffs_ep0_open, 734 .write = ffs_ep0_write, 735 .read = ffs_ep0_read, 736 .release = ffs_ep0_release, 737 .unlocked_ioctl = ffs_ep0_ioctl, 738 .poll = ffs_ep0_poll, 739 }; 740 741 742 /* "Normal" endpoints operations ********************************************/ 743 744 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 745 { 746 struct ffs_io_data *io_data = req->context; 747 748 if (req->status) 749 io_data->status = req->status; 750 else 751 io_data->status = req->actual; 752 753 complete(&io_data->done); 754 } 755 756 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 757 { 758 ssize_t ret = copy_to_iter(data, data_len, iter); 759 if (ret == data_len) 760 return ret; 761 762 if (iov_iter_count(iter)) 763 return -EFAULT; 764 765 /* 766 * Dear user space developer! 767 * 768 * TL;DR: To stop getting below error message in your kernel log, change 769 * user space code using functionfs to align read buffers to a max 770 * packet size. 771 * 772 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 773 * packet size. When unaligned buffer is passed to functionfs, it 774 * internally uses a larger, aligned buffer so that such UDCs are happy. 775 * 776 * Unfortunately, this means that host may send more data than was 777 * requested in read(2) system call. f_fs doesn’t know what to do with 778 * that excess data so it simply drops it. 779 * 780 * Was the buffer aligned in the first place, no such problem would 781 * happen. 782 * 783 * Data may be dropped only in AIO reads. Synchronous reads are handled 784 * by splitting a request into multiple parts. This splitting may still 785 * be a problem though so it’s likely best to align the buffer 786 * regardless of it being AIO or not.. 787 * 788 * This only affects OUT endpoints, i.e. reading data with a read(2), 789 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 790 * affected. 791 */ 792 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 793 "Align read buffer size to max packet size to avoid the problem.\n", 794 data_len, ret); 795 796 return ret; 797 } 798 799 /* 800 * allocate a virtually contiguous buffer and create a scatterlist describing it 801 * @sg_table - pointer to a place to be filled with sg_table contents 802 * @size - required buffer size 803 */ 804 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz) 805 { 806 struct page **pages; 807 void *vaddr, *ptr; 808 unsigned int n_pages; 809 int i; 810 811 vaddr = vmalloc(sz); 812 if (!vaddr) 813 return NULL; 814 815 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 816 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL); 817 if (!pages) { 818 vfree(vaddr); 819 820 return NULL; 821 } 822 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE) 823 pages[i] = vmalloc_to_page(ptr); 824 825 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) { 826 kvfree(pages); 827 vfree(vaddr); 828 829 return NULL; 830 } 831 kvfree(pages); 832 833 return vaddr; 834 } 835 836 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data, 837 size_t data_len) 838 { 839 if (io_data->use_sg) 840 return ffs_build_sg_list(&io_data->sgt, data_len); 841 842 return kmalloc(data_len, GFP_KERNEL); 843 } 844 845 static inline void ffs_free_buffer(struct ffs_io_data *io_data) 846 { 847 if (!io_data->buf) 848 return; 849 850 if (io_data->use_sg) { 851 sg_free_table(&io_data->sgt); 852 vfree(io_data->buf); 853 } else { 854 kfree(io_data->buf); 855 } 856 } 857 858 static void ffs_user_copy_worker(struct work_struct *work) 859 { 860 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 861 work); 862 int ret = io_data->status; 863 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 864 865 if (io_data->read && ret > 0) { 866 kthread_use_mm(io_data->mm); 867 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 868 kthread_unuse_mm(io_data->mm); 869 } 870 871 io_data->kiocb->ki_complete(io_data->kiocb, ret); 872 873 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 874 eventfd_signal(io_data->ffs->ffs_eventfd); 875 876 usb_ep_free_request(io_data->ep, io_data->req); 877 878 if (io_data->read) 879 kfree(io_data->to_free); 880 ffs_free_buffer(io_data); 881 kfree(io_data); 882 } 883 884 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 885 struct usb_request *req) 886 { 887 struct ffs_io_data *io_data = req->context; 888 struct ffs_data *ffs = io_data->ffs; 889 890 io_data->status = req->status ? req->status : req->actual; 891 892 INIT_WORK(&io_data->work, ffs_user_copy_worker); 893 queue_work(ffs->io_completion_wq, &io_data->work); 894 } 895 896 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 897 { 898 /* 899 * See comment in struct ffs_epfile for full read_buffer pointer 900 * synchronisation story. 901 */ 902 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 903 if (buf && buf != READ_BUFFER_DROP) 904 kfree(buf); 905 } 906 907 /* Assumes epfile->mutex is held. */ 908 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 909 struct iov_iter *iter) 910 { 911 /* 912 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 913 * the buffer while we are using it. See comment in struct ffs_epfile 914 * for full read_buffer pointer synchronisation story. 915 */ 916 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 917 ssize_t ret; 918 if (!buf || buf == READ_BUFFER_DROP) 919 return 0; 920 921 ret = copy_to_iter(buf->data, buf->length, iter); 922 if (buf->length == ret) { 923 kfree(buf); 924 return ret; 925 } 926 927 if (iov_iter_count(iter)) { 928 ret = -EFAULT; 929 } else { 930 buf->length -= ret; 931 buf->data += ret; 932 } 933 934 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 935 kfree(buf); 936 937 return ret; 938 } 939 940 /* Assumes epfile->mutex is held. */ 941 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 942 void *data, int data_len, 943 struct iov_iter *iter) 944 { 945 struct ffs_buffer *buf; 946 947 ssize_t ret = copy_to_iter(data, data_len, iter); 948 if (data_len == ret) 949 return ret; 950 951 if (iov_iter_count(iter)) 952 return -EFAULT; 953 954 /* See ffs_copy_to_iter for more context. */ 955 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 956 data_len, ret); 957 958 data_len -= ret; 959 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL); 960 if (!buf) 961 return -ENOMEM; 962 buf->length = data_len; 963 buf->data = buf->storage; 964 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len)); 965 966 /* 967 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 968 * ffs_func_eps_disable has been called in the meanwhile). See comment 969 * in struct ffs_epfile for full read_buffer pointer synchronisation 970 * story. 971 */ 972 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 973 kfree(buf); 974 975 return ret; 976 } 977 978 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file) 979 { 980 struct ffs_epfile *epfile = file->private_data; 981 struct ffs_ep *ep; 982 int ret; 983 984 /* Wait for endpoint to be enabled */ 985 ep = epfile->ep; 986 if (!ep) { 987 if (file->f_flags & O_NONBLOCK) 988 return ERR_PTR(-EAGAIN); 989 990 ret = wait_event_interruptible( 991 epfile->ffs->wait, (ep = epfile->ep)); 992 if (ret) 993 return ERR_PTR(-EINTR); 994 } 995 996 return ep; 997 } 998 999 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 1000 { 1001 struct ffs_epfile *epfile = file->private_data; 1002 struct usb_request *req; 1003 struct ffs_ep *ep; 1004 char *data = NULL; 1005 ssize_t ret, data_len = -EINVAL; 1006 int halt; 1007 1008 /* Are we still active? */ 1009 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1010 return -ENODEV; 1011 1012 ep = ffs_epfile_wait_ep(file); 1013 if (IS_ERR(ep)) 1014 return PTR_ERR(ep); 1015 1016 /* Do we halt? */ 1017 halt = (!io_data->read == !epfile->in); 1018 if (halt && epfile->isoc) 1019 return -EINVAL; 1020 1021 /* We will be using request and read_buffer */ 1022 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 1023 if (ret) 1024 goto error; 1025 1026 /* Allocate & copy */ 1027 if (!halt) { 1028 struct usb_gadget *gadget; 1029 1030 /* 1031 * Do we have buffered data from previous partial read? Check 1032 * that for synchronous case only because we do not have 1033 * facility to ‘wake up’ a pending asynchronous read and push 1034 * buffered data to it which we would need to make things behave 1035 * consistently. 1036 */ 1037 if (!io_data->aio && io_data->read) { 1038 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 1039 if (ret) 1040 goto error_mutex; 1041 } 1042 1043 /* 1044 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 1045 * before the waiting completes, so do not assign to 'gadget' 1046 * earlier 1047 */ 1048 gadget = epfile->ffs->gadget; 1049 1050 spin_lock_irq(&epfile->ffs->eps_lock); 1051 /* In the meantime, endpoint got disabled or changed. */ 1052 if (epfile->ep != ep) { 1053 ret = -ESHUTDOWN; 1054 goto error_lock; 1055 } 1056 data_len = iov_iter_count(&io_data->data); 1057 /* 1058 * Controller may require buffer size to be aligned to 1059 * maxpacketsize of an out endpoint. 1060 */ 1061 if (io_data->read) 1062 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 1063 1064 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE; 1065 spin_unlock_irq(&epfile->ffs->eps_lock); 1066 1067 data = ffs_alloc_buffer(io_data, data_len); 1068 if (!data) { 1069 ret = -ENOMEM; 1070 goto error_mutex; 1071 } 1072 if (!io_data->read && 1073 !copy_from_iter_full(data, data_len, &io_data->data)) { 1074 ret = -EFAULT; 1075 goto error_mutex; 1076 } 1077 } 1078 1079 spin_lock_irq(&epfile->ffs->eps_lock); 1080 1081 if (epfile->ep != ep) { 1082 /* In the meantime, endpoint got disabled or changed. */ 1083 ret = -ESHUTDOWN; 1084 } else if (halt) { 1085 ret = usb_ep_set_halt(ep->ep); 1086 if (!ret) 1087 ret = -EBADMSG; 1088 } else if (data_len == -EINVAL) { 1089 /* 1090 * Sanity Check: even though data_len can't be used 1091 * uninitialized at the time I write this comment, some 1092 * compilers complain about this situation. 1093 * In order to keep the code clean from warnings, data_len is 1094 * being initialized to -EINVAL during its declaration, which 1095 * means we can't rely on compiler anymore to warn no future 1096 * changes won't result in data_len being used uninitialized. 1097 * For such reason, we're adding this redundant sanity check 1098 * here. 1099 */ 1100 WARN(1, "%s: data_len == -EINVAL\n", __func__); 1101 ret = -EINVAL; 1102 } else if (!io_data->aio) { 1103 bool interrupted = false; 1104 1105 req = ep->req; 1106 if (io_data->use_sg) { 1107 req->buf = NULL; 1108 req->sg = io_data->sgt.sgl; 1109 req->num_sgs = io_data->sgt.nents; 1110 } else { 1111 req->buf = data; 1112 req->num_sgs = 0; 1113 } 1114 req->length = data_len; 1115 1116 io_data->buf = data; 1117 1118 init_completion(&io_data->done); 1119 req->context = io_data; 1120 req->complete = ffs_epfile_io_complete; 1121 1122 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1123 if (ret < 0) 1124 goto error_lock; 1125 1126 spin_unlock_irq(&epfile->ffs->eps_lock); 1127 1128 if (wait_for_completion_interruptible(&io_data->done)) { 1129 spin_lock_irq(&epfile->ffs->eps_lock); 1130 if (epfile->ep != ep) { 1131 ret = -ESHUTDOWN; 1132 goto error_lock; 1133 } 1134 /* 1135 * To avoid race condition with ffs_epfile_io_complete, 1136 * dequeue the request first then check 1137 * status. usb_ep_dequeue API should guarantee no race 1138 * condition with req->complete callback. 1139 */ 1140 usb_ep_dequeue(ep->ep, req); 1141 spin_unlock_irq(&epfile->ffs->eps_lock); 1142 wait_for_completion(&io_data->done); 1143 interrupted = io_data->status < 0; 1144 } 1145 1146 if (interrupted) 1147 ret = -EINTR; 1148 else if (io_data->read && io_data->status > 0) 1149 ret = __ffs_epfile_read_data(epfile, data, io_data->status, 1150 &io_data->data); 1151 else 1152 ret = io_data->status; 1153 goto error_mutex; 1154 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1155 ret = -ENOMEM; 1156 } else { 1157 if (io_data->use_sg) { 1158 req->buf = NULL; 1159 req->sg = io_data->sgt.sgl; 1160 req->num_sgs = io_data->sgt.nents; 1161 } else { 1162 req->buf = data; 1163 req->num_sgs = 0; 1164 } 1165 req->length = data_len; 1166 1167 io_data->buf = data; 1168 io_data->ep = ep->ep; 1169 io_data->req = req; 1170 io_data->ffs = epfile->ffs; 1171 1172 req->context = io_data; 1173 req->complete = ffs_epfile_async_io_complete; 1174 1175 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1176 if (ret) { 1177 io_data->req = NULL; 1178 usb_ep_free_request(ep->ep, req); 1179 goto error_lock; 1180 } 1181 1182 ret = -EIOCBQUEUED; 1183 /* 1184 * Do not kfree the buffer in this function. It will be freed 1185 * by ffs_user_copy_worker. 1186 */ 1187 data = NULL; 1188 } 1189 1190 error_lock: 1191 spin_unlock_irq(&epfile->ffs->eps_lock); 1192 error_mutex: 1193 mutex_unlock(&epfile->mutex); 1194 error: 1195 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */ 1196 ffs_free_buffer(io_data); 1197 return ret; 1198 } 1199 1200 static int 1201 ffs_epfile_open(struct inode *inode, struct file *file) 1202 { 1203 struct ffs_data *ffs = inode->i_sb->s_fs_info; 1204 struct ffs_epfile *epfile; 1205 int ret; 1206 1207 /* Acquire mutex */ 1208 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 1209 if (ret < 0) 1210 return ret; 1211 1212 if (!atomic_inc_not_zero(&ffs->opened)) { 1213 mutex_unlock(&ffs->mutex); 1214 return -ENODEV; 1215 } 1216 /* 1217 * we want the state to be FFS_ACTIVE; FFS_ACTIVE alone is 1218 * not enough, though - we might have been through FFS_CLOSING 1219 * and back to FFS_ACTIVE, with our file already removed. 1220 */ 1221 epfile = smp_load_acquire(&inode->i_private); 1222 if (unlikely(ffs->state != FFS_ACTIVE || !epfile)) { 1223 mutex_unlock(&ffs->mutex); 1224 ffs_data_closed(ffs); 1225 return -ENODEV; 1226 } 1227 mutex_unlock(&ffs->mutex); 1228 1229 file->private_data = epfile; 1230 return stream_open(inode, file); 1231 } 1232 1233 static int ffs_aio_cancel(struct kiocb *kiocb) 1234 { 1235 struct ffs_io_data *io_data = kiocb->private; 1236 int value; 1237 1238 if (io_data && io_data->ep && io_data->req) 1239 value = usb_ep_dequeue(io_data->ep, io_data->req); 1240 else 1241 value = -EINVAL; 1242 1243 return value; 1244 } 1245 1246 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1247 { 1248 struct ffs_io_data io_data, *p = &io_data; 1249 ssize_t res; 1250 1251 if (!is_sync_kiocb(kiocb)) { 1252 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1253 if (!p) 1254 return -ENOMEM; 1255 p->aio = true; 1256 } else { 1257 memset(p, 0, sizeof(*p)); 1258 p->aio = false; 1259 } 1260 1261 p->read = false; 1262 p->kiocb = kiocb; 1263 p->data = *from; 1264 p->mm = current->mm; 1265 1266 kiocb->private = p; 1267 1268 if (p->aio) 1269 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1270 1271 res = ffs_epfile_io(kiocb->ki_filp, p); 1272 if (res == -EIOCBQUEUED) 1273 return res; 1274 if (p->aio) 1275 kfree(p); 1276 else 1277 *from = p->data; 1278 return res; 1279 } 1280 1281 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1282 { 1283 struct ffs_io_data io_data, *p = &io_data; 1284 ssize_t res; 1285 1286 if (!is_sync_kiocb(kiocb)) { 1287 p = kzalloc(sizeof(io_data), GFP_KERNEL); 1288 if (!p) 1289 return -ENOMEM; 1290 p->aio = true; 1291 } else { 1292 memset(p, 0, sizeof(*p)); 1293 p->aio = false; 1294 } 1295 1296 p->read = true; 1297 p->kiocb = kiocb; 1298 if (p->aio) { 1299 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1300 if (!iter_is_ubuf(&p->data) && !p->to_free) { 1301 kfree(p); 1302 return -ENOMEM; 1303 } 1304 } else { 1305 p->data = *to; 1306 p->to_free = NULL; 1307 } 1308 p->mm = current->mm; 1309 1310 kiocb->private = p; 1311 1312 if (p->aio) 1313 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1314 1315 res = ffs_epfile_io(kiocb->ki_filp, p); 1316 if (res == -EIOCBQUEUED) 1317 return res; 1318 1319 if (p->aio) { 1320 kfree(p->to_free); 1321 kfree(p); 1322 } else { 1323 *to = p->data; 1324 } 1325 return res; 1326 } 1327 1328 static void ffs_dmabuf_release(struct kref *ref) 1329 { 1330 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref); 1331 struct dma_buf_attachment *attach = priv->attach; 1332 struct dma_buf *dmabuf = attach->dmabuf; 1333 1334 pr_vdebug("FFS DMABUF release\n"); 1335 dma_resv_lock(dmabuf->resv, NULL); 1336 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir); 1337 dma_resv_unlock(dmabuf->resv); 1338 1339 dma_buf_detach(attach->dmabuf, attach); 1340 dma_buf_put(dmabuf); 1341 kfree(priv); 1342 } 1343 1344 static void ffs_dmabuf_get(struct dma_buf_attachment *attach) 1345 { 1346 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1347 1348 kref_get(&priv->ref); 1349 } 1350 1351 static void ffs_dmabuf_put(struct dma_buf_attachment *attach) 1352 { 1353 struct ffs_dmabuf_priv *priv = attach->importer_priv; 1354 1355 kref_put(&priv->ref, ffs_dmabuf_release); 1356 } 1357 1358 static int 1359 ffs_epfile_release(struct inode *inode, struct file *file) 1360 { 1361 struct ffs_epfile *epfile = file->private_data; 1362 struct ffs_dmabuf_priv *priv, *tmp; 1363 struct ffs_data *ffs = epfile->ffs; 1364 1365 mutex_lock(&epfile->dmabufs_mutex); 1366 1367 /* Close all attached DMABUFs */ 1368 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1369 /* Cancel any pending transfer */ 1370 spin_lock_irq(&ffs->eps_lock); 1371 if (priv->ep && priv->req) 1372 usb_ep_dequeue(priv->ep, priv->req); 1373 spin_unlock_irq(&ffs->eps_lock); 1374 1375 list_del(&priv->entry); 1376 ffs_dmabuf_put(priv->attach); 1377 } 1378 1379 mutex_unlock(&epfile->dmabufs_mutex); 1380 1381 __ffs_epfile_read_buffer_free(epfile); 1382 ffs_data_closed(epfile->ffs); 1383 1384 return 0; 1385 } 1386 1387 static void ffs_dmabuf_cleanup(struct work_struct *work) 1388 { 1389 struct ffs_dma_fence *dma_fence = 1390 container_of(work, struct ffs_dma_fence, work); 1391 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1392 struct dma_buf_attachment *attach = priv->attach; 1393 struct dma_fence *fence = &dma_fence->base; 1394 1395 ffs_dmabuf_put(attach); 1396 dma_fence_put(fence); 1397 } 1398 1399 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret) 1400 { 1401 struct ffs_dmabuf_priv *priv = dma_fence->priv; 1402 struct dma_fence *fence = &dma_fence->base; 1403 bool cookie = dma_fence_begin_signalling(); 1404 1405 dma_fence_get(fence); 1406 fence->error = ret; 1407 dma_fence_signal(fence); 1408 dma_fence_end_signalling(cookie); 1409 1410 /* 1411 * The fence will be unref'd in ffs_dmabuf_cleanup. 1412 * It can't be done here, as the unref functions might try to lock 1413 * the resv object, which would deadlock. 1414 */ 1415 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup); 1416 queue_work(priv->ffs->io_completion_wq, &dma_fence->work); 1417 } 1418 1419 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep, 1420 struct usb_request *req) 1421 { 1422 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status); 1423 ffs_dmabuf_signal_done(req->context, req->status); 1424 usb_ep_free_request(ep, req); 1425 } 1426 1427 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence) 1428 { 1429 return "functionfs"; 1430 } 1431 1432 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence) 1433 { 1434 return ""; 1435 } 1436 1437 static void ffs_dmabuf_fence_release(struct dma_fence *fence) 1438 { 1439 struct ffs_dma_fence *dma_fence = 1440 container_of(fence, struct ffs_dma_fence, base); 1441 1442 kfree(dma_fence); 1443 } 1444 1445 static const struct dma_fence_ops ffs_dmabuf_fence_ops = { 1446 .get_driver_name = ffs_dmabuf_get_driver_name, 1447 .get_timeline_name = ffs_dmabuf_get_timeline_name, 1448 .release = ffs_dmabuf_fence_release, 1449 }; 1450 1451 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock) 1452 { 1453 if (!nonblock) 1454 return dma_resv_lock_interruptible(dmabuf->resv, NULL); 1455 1456 if (!dma_resv_trylock(dmabuf->resv)) 1457 return -EBUSY; 1458 1459 return 0; 1460 } 1461 1462 static struct dma_buf_attachment * 1463 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf) 1464 { 1465 struct device *dev = epfile->ffs->gadget->dev.parent; 1466 struct dma_buf_attachment *attach = NULL; 1467 struct ffs_dmabuf_priv *priv; 1468 1469 mutex_lock(&epfile->dmabufs_mutex); 1470 1471 list_for_each_entry(priv, &epfile->dmabufs, entry) { 1472 if (priv->attach->dev == dev 1473 && priv->attach->dmabuf == dmabuf) { 1474 attach = priv->attach; 1475 break; 1476 } 1477 } 1478 1479 if (attach) 1480 ffs_dmabuf_get(attach); 1481 1482 mutex_unlock(&epfile->dmabufs_mutex); 1483 1484 return attach ?: ERR_PTR(-EPERM); 1485 } 1486 1487 static int ffs_dmabuf_attach(struct file *file, int fd) 1488 { 1489 bool nonblock = file->f_flags & O_NONBLOCK; 1490 struct ffs_epfile *epfile = file->private_data; 1491 struct usb_gadget *gadget = epfile->ffs->gadget; 1492 struct dma_buf_attachment *attach; 1493 struct ffs_dmabuf_priv *priv; 1494 enum dma_data_direction dir; 1495 struct sg_table *sg_table; 1496 struct dma_buf *dmabuf; 1497 int err; 1498 1499 if (!gadget || !gadget->sg_supported) 1500 return -EPERM; 1501 1502 dmabuf = dma_buf_get(fd); 1503 if (IS_ERR(dmabuf)) 1504 return PTR_ERR(dmabuf); 1505 1506 attach = dma_buf_attach(dmabuf, gadget->dev.parent); 1507 if (IS_ERR(attach)) { 1508 err = PTR_ERR(attach); 1509 goto err_dmabuf_put; 1510 } 1511 1512 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1513 if (!priv) { 1514 err = -ENOMEM; 1515 goto err_dmabuf_detach; 1516 } 1517 1518 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1519 1520 err = ffs_dma_resv_lock(dmabuf, nonblock); 1521 if (err) 1522 goto err_free_priv; 1523 1524 sg_table = dma_buf_map_attachment(attach, dir); 1525 dma_resv_unlock(dmabuf->resv); 1526 1527 if (IS_ERR(sg_table)) { 1528 err = PTR_ERR(sg_table); 1529 goto err_free_priv; 1530 } 1531 1532 attach->importer_priv = priv; 1533 1534 priv->sgt = sg_table; 1535 priv->dir = dir; 1536 priv->ffs = epfile->ffs; 1537 priv->attach = attach; 1538 spin_lock_init(&priv->lock); 1539 kref_init(&priv->ref); 1540 priv->context = dma_fence_context_alloc(1); 1541 1542 mutex_lock(&epfile->dmabufs_mutex); 1543 list_add(&priv->entry, &epfile->dmabufs); 1544 mutex_unlock(&epfile->dmabufs_mutex); 1545 1546 return 0; 1547 1548 err_free_priv: 1549 kfree(priv); 1550 err_dmabuf_detach: 1551 dma_buf_detach(dmabuf, attach); 1552 err_dmabuf_put: 1553 dma_buf_put(dmabuf); 1554 1555 return err; 1556 } 1557 1558 static int ffs_dmabuf_detach(struct file *file, int fd) 1559 { 1560 struct ffs_epfile *epfile = file->private_data; 1561 struct ffs_data *ffs = epfile->ffs; 1562 struct device *dev = ffs->gadget->dev.parent; 1563 struct ffs_dmabuf_priv *priv, *tmp; 1564 struct dma_buf *dmabuf; 1565 int ret = -EPERM; 1566 1567 dmabuf = dma_buf_get(fd); 1568 if (IS_ERR(dmabuf)) 1569 return PTR_ERR(dmabuf); 1570 1571 mutex_lock(&epfile->dmabufs_mutex); 1572 1573 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) { 1574 if (priv->attach->dev == dev 1575 && priv->attach->dmabuf == dmabuf) { 1576 /* Cancel any pending transfer */ 1577 spin_lock_irq(&ffs->eps_lock); 1578 if (priv->ep && priv->req) 1579 usb_ep_dequeue(priv->ep, priv->req); 1580 spin_unlock_irq(&ffs->eps_lock); 1581 1582 list_del(&priv->entry); 1583 1584 /* Unref the reference from ffs_dmabuf_attach() */ 1585 ffs_dmabuf_put(priv->attach); 1586 ret = 0; 1587 break; 1588 } 1589 } 1590 1591 mutex_unlock(&epfile->dmabufs_mutex); 1592 dma_buf_put(dmabuf); 1593 1594 return ret; 1595 } 1596 1597 static int ffs_dmabuf_transfer(struct file *file, 1598 const struct usb_ffs_dmabuf_transfer_req *req) 1599 { 1600 bool nonblock = file->f_flags & O_NONBLOCK; 1601 struct ffs_epfile *epfile = file->private_data; 1602 struct dma_buf_attachment *attach; 1603 struct ffs_dmabuf_priv *priv; 1604 struct ffs_dma_fence *fence; 1605 struct usb_request *usb_req; 1606 enum dma_resv_usage resv_dir; 1607 struct dma_buf *dmabuf; 1608 unsigned long timeout; 1609 struct ffs_ep *ep; 1610 bool cookie; 1611 u32 seqno; 1612 long retl; 1613 int ret; 1614 1615 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK) 1616 return -EINVAL; 1617 1618 dmabuf = dma_buf_get(req->fd); 1619 if (IS_ERR(dmabuf)) 1620 return PTR_ERR(dmabuf); 1621 1622 if (req->length > dmabuf->size || req->length == 0) { 1623 ret = -EINVAL; 1624 goto err_dmabuf_put; 1625 } 1626 1627 attach = ffs_dmabuf_find_attachment(epfile, dmabuf); 1628 if (IS_ERR(attach)) { 1629 ret = PTR_ERR(attach); 1630 goto err_dmabuf_put; 1631 } 1632 1633 priv = attach->importer_priv; 1634 1635 ep = ffs_epfile_wait_ep(file); 1636 if (IS_ERR(ep)) { 1637 ret = PTR_ERR(ep); 1638 goto err_attachment_put; 1639 } 1640 1641 ret = ffs_dma_resv_lock(dmabuf, nonblock); 1642 if (ret) 1643 goto err_attachment_put; 1644 1645 /* Make sure we don't have writers */ 1646 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS); 1647 retl = dma_resv_wait_timeout(dmabuf->resv, 1648 dma_resv_usage_rw(epfile->in), 1649 true, timeout); 1650 if (retl == 0) 1651 retl = -EBUSY; 1652 if (retl < 0) { 1653 ret = (int)retl; 1654 goto err_resv_unlock; 1655 } 1656 1657 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 1658 if (ret) 1659 goto err_resv_unlock; 1660 1661 fence = kmalloc(sizeof(*fence), GFP_KERNEL); 1662 if (!fence) { 1663 ret = -ENOMEM; 1664 goto err_resv_unlock; 1665 } 1666 1667 fence->priv = priv; 1668 1669 spin_lock_irq(&epfile->ffs->eps_lock); 1670 1671 /* In the meantime, endpoint got disabled or changed. */ 1672 if (epfile->ep != ep) { 1673 ret = -ESHUTDOWN; 1674 goto err_fence_put; 1675 } 1676 1677 usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC); 1678 if (!usb_req) { 1679 ret = -ENOMEM; 1680 goto err_fence_put; 1681 } 1682 1683 /* 1684 * usb_ep_queue() guarantees that all transfers are processed in the 1685 * order they are enqueued, so we can use a simple incrementing 1686 * sequence number for the dma_fence. 1687 */ 1688 seqno = atomic_add_return(1, &epfile->seqno); 1689 1690 dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops, 1691 &priv->lock, priv->context, seqno); 1692 1693 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; 1694 1695 dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir); 1696 dma_resv_unlock(dmabuf->resv); 1697 1698 /* Now that the dma_fence is in place, queue the transfer. */ 1699 1700 usb_req->length = req->length; 1701 usb_req->buf = NULL; 1702 usb_req->sg = priv->sgt->sgl; 1703 usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length); 1704 usb_req->sg_was_mapped = true; 1705 usb_req->context = fence; 1706 usb_req->complete = ffs_epfile_dmabuf_io_complete; 1707 1708 cookie = dma_fence_begin_signalling(); 1709 ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC); 1710 dma_fence_end_signalling(cookie); 1711 if (!ret) { 1712 priv->req = usb_req; 1713 priv->ep = ep->ep; 1714 } else { 1715 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret); 1716 ffs_dmabuf_signal_done(fence, ret); 1717 usb_ep_free_request(ep->ep, usb_req); 1718 } 1719 1720 spin_unlock_irq(&epfile->ffs->eps_lock); 1721 dma_buf_put(dmabuf); 1722 1723 return ret; 1724 1725 err_fence_put: 1726 spin_unlock_irq(&epfile->ffs->eps_lock); 1727 dma_fence_put(&fence->base); 1728 err_resv_unlock: 1729 dma_resv_unlock(dmabuf->resv); 1730 err_attachment_put: 1731 ffs_dmabuf_put(attach); 1732 err_dmabuf_put: 1733 dma_buf_put(dmabuf); 1734 1735 return ret; 1736 } 1737 1738 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1739 unsigned long value) 1740 { 1741 struct ffs_epfile *epfile = file->private_data; 1742 struct ffs_ep *ep; 1743 int ret; 1744 1745 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1746 return -ENODEV; 1747 1748 switch (code) { 1749 case FUNCTIONFS_DMABUF_ATTACH: 1750 { 1751 int fd; 1752 1753 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1754 ret = -EFAULT; 1755 break; 1756 } 1757 1758 return ffs_dmabuf_attach(file, fd); 1759 } 1760 case FUNCTIONFS_DMABUF_DETACH: 1761 { 1762 int fd; 1763 1764 if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) { 1765 ret = -EFAULT; 1766 break; 1767 } 1768 1769 return ffs_dmabuf_detach(file, fd); 1770 } 1771 case FUNCTIONFS_DMABUF_TRANSFER: 1772 { 1773 struct usb_ffs_dmabuf_transfer_req req; 1774 1775 if (copy_from_user(&req, (void __user *)value, sizeof(req))) { 1776 ret = -EFAULT; 1777 break; 1778 } 1779 1780 return ffs_dmabuf_transfer(file, &req); 1781 } 1782 default: 1783 break; 1784 } 1785 1786 /* Wait for endpoint to be enabled */ 1787 ep = ffs_epfile_wait_ep(file); 1788 if (IS_ERR(ep)) 1789 return PTR_ERR(ep); 1790 1791 spin_lock_irq(&epfile->ffs->eps_lock); 1792 1793 /* In the meantime, endpoint got disabled or changed. */ 1794 if (epfile->ep != ep) { 1795 spin_unlock_irq(&epfile->ffs->eps_lock); 1796 return -ESHUTDOWN; 1797 } 1798 1799 switch (code) { 1800 case FUNCTIONFS_FIFO_STATUS: 1801 ret = usb_ep_fifo_status(epfile->ep->ep); 1802 break; 1803 case FUNCTIONFS_FIFO_FLUSH: 1804 usb_ep_fifo_flush(epfile->ep->ep); 1805 ret = 0; 1806 break; 1807 case FUNCTIONFS_CLEAR_HALT: 1808 ret = usb_ep_clear_halt(epfile->ep->ep); 1809 break; 1810 case FUNCTIONFS_ENDPOINT_REVMAP: 1811 ret = epfile->ep->num; 1812 break; 1813 case FUNCTIONFS_ENDPOINT_DESC: 1814 { 1815 int desc_idx; 1816 struct usb_endpoint_descriptor desc1, *desc; 1817 1818 switch (epfile->ffs->gadget->speed) { 1819 case USB_SPEED_SUPER: 1820 case USB_SPEED_SUPER_PLUS: 1821 desc_idx = 2; 1822 break; 1823 case USB_SPEED_HIGH: 1824 desc_idx = 1; 1825 break; 1826 default: 1827 desc_idx = 0; 1828 } 1829 1830 desc = epfile->ep->descs[desc_idx]; 1831 memcpy(&desc1, desc, desc->bLength); 1832 1833 spin_unlock_irq(&epfile->ffs->eps_lock); 1834 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength); 1835 if (ret) 1836 ret = -EFAULT; 1837 return ret; 1838 } 1839 default: 1840 ret = -ENOTTY; 1841 } 1842 spin_unlock_irq(&epfile->ffs->eps_lock); 1843 1844 return ret; 1845 } 1846 1847 static const struct file_operations ffs_epfile_operations = { 1848 1849 .open = ffs_epfile_open, 1850 .write_iter = ffs_epfile_write_iter, 1851 .read_iter = ffs_epfile_read_iter, 1852 .release = ffs_epfile_release, 1853 .unlocked_ioctl = ffs_epfile_ioctl, 1854 .compat_ioctl = compat_ptr_ioctl, 1855 }; 1856 1857 1858 /* File system and super block operations ***********************************/ 1859 1860 /* 1861 * Mounting the file system creates a controller file, used first for 1862 * function configuration then later for event monitoring. 1863 */ 1864 1865 static struct inode *__must_check 1866 ffs_sb_make_inode(struct super_block *sb, void *data, 1867 const struct file_operations *fops, 1868 const struct inode_operations *iops, 1869 struct ffs_file_perms *perms) 1870 { 1871 struct inode *inode; 1872 1873 inode = new_inode(sb); 1874 1875 if (inode) { 1876 struct timespec64 ts = inode_set_ctime_current(inode); 1877 1878 inode->i_ino = get_next_ino(); 1879 inode->i_mode = perms->mode; 1880 inode->i_uid = perms->uid; 1881 inode->i_gid = perms->gid; 1882 inode_set_atime_to_ts(inode, ts); 1883 inode_set_mtime_to_ts(inode, ts); 1884 inode->i_private = data; 1885 if (fops) 1886 inode->i_fop = fops; 1887 if (iops) 1888 inode->i_op = iops; 1889 } 1890 1891 return inode; 1892 } 1893 1894 /* Create "regular" file */ 1895 static int ffs_sb_create_file(struct super_block *sb, const char *name, 1896 void *data, const struct file_operations *fops) 1897 { 1898 struct ffs_data *ffs = sb->s_fs_info; 1899 struct dentry *dentry; 1900 struct inode *inode; 1901 1902 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1903 if (!inode) 1904 return -ENOMEM; 1905 dentry = simple_start_creating(sb->s_root, name); 1906 if (IS_ERR(dentry)) { 1907 iput(inode); 1908 return PTR_ERR(dentry); 1909 } 1910 1911 d_make_persistent(dentry, inode); 1912 1913 simple_done_creating(dentry); 1914 return 0; 1915 } 1916 1917 /* Super block */ 1918 static const struct super_operations ffs_sb_operations = { 1919 .statfs = simple_statfs, 1920 .drop_inode = inode_just_drop, 1921 }; 1922 1923 struct ffs_sb_fill_data { 1924 struct ffs_file_perms perms; 1925 umode_t root_mode; 1926 const char *dev_name; 1927 bool no_disconnect; 1928 struct ffs_data *ffs_data; 1929 }; 1930 1931 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc) 1932 { 1933 struct ffs_sb_fill_data *data = fc->fs_private; 1934 struct inode *inode; 1935 struct ffs_data *ffs = data->ffs_data; 1936 1937 ffs->sb = sb; 1938 data->ffs_data = NULL; 1939 sb->s_fs_info = ffs; 1940 sb->s_blocksize = PAGE_SIZE; 1941 sb->s_blocksize_bits = PAGE_SHIFT; 1942 sb->s_magic = FUNCTIONFS_MAGIC; 1943 sb->s_op = &ffs_sb_operations; 1944 sb->s_time_gran = 1; 1945 1946 /* Root inode */ 1947 data->perms.mode = data->root_mode; 1948 inode = ffs_sb_make_inode(sb, NULL, 1949 &simple_dir_operations, 1950 &simple_dir_inode_operations, 1951 &data->perms); 1952 sb->s_root = d_make_root(inode); 1953 if (!sb->s_root) 1954 return -ENOMEM; 1955 1956 /* EP0 file */ 1957 return ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations); 1958 } 1959 1960 enum { 1961 Opt_no_disconnect, 1962 Opt_rmode, 1963 Opt_fmode, 1964 Opt_mode, 1965 Opt_uid, 1966 Opt_gid, 1967 }; 1968 1969 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = { 1970 fsparam_bool ("no_disconnect", Opt_no_disconnect), 1971 fsparam_u32 ("rmode", Opt_rmode), 1972 fsparam_u32 ("fmode", Opt_fmode), 1973 fsparam_u32 ("mode", Opt_mode), 1974 fsparam_u32 ("uid", Opt_uid), 1975 fsparam_u32 ("gid", Opt_gid), 1976 {} 1977 }; 1978 1979 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1980 { 1981 struct ffs_sb_fill_data *data = fc->fs_private; 1982 struct fs_parse_result result; 1983 int opt; 1984 1985 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result); 1986 if (opt < 0) 1987 return opt; 1988 1989 switch (opt) { 1990 case Opt_no_disconnect: 1991 data->no_disconnect = result.boolean; 1992 break; 1993 case Opt_rmode: 1994 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 1995 break; 1996 case Opt_fmode: 1997 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 1998 break; 1999 case Opt_mode: 2000 data->root_mode = (result.uint_32 & 0555) | S_IFDIR; 2001 data->perms.mode = (result.uint_32 & 0666) | S_IFREG; 2002 break; 2003 2004 case Opt_uid: 2005 data->perms.uid = make_kuid(current_user_ns(), result.uint_32); 2006 if (!uid_valid(data->perms.uid)) 2007 goto unmapped_value; 2008 break; 2009 case Opt_gid: 2010 data->perms.gid = make_kgid(current_user_ns(), result.uint_32); 2011 if (!gid_valid(data->perms.gid)) 2012 goto unmapped_value; 2013 break; 2014 2015 default: 2016 return -ENOPARAM; 2017 } 2018 2019 return 0; 2020 2021 unmapped_value: 2022 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32); 2023 } 2024 2025 /* 2026 * Set up the superblock for a mount. 2027 */ 2028 static int ffs_fs_get_tree(struct fs_context *fc) 2029 { 2030 struct ffs_sb_fill_data *ctx = fc->fs_private; 2031 struct ffs_data *ffs; 2032 int ret; 2033 2034 if (!fc->source) 2035 return invalf(fc, "No source specified"); 2036 2037 ffs = ffs_data_new(fc->source); 2038 if (!ffs) 2039 return -ENOMEM; 2040 ffs->file_perms = ctx->perms; 2041 ffs->no_disconnect = ctx->no_disconnect; 2042 2043 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL); 2044 if (!ffs->dev_name) { 2045 ffs_data_put(ffs); 2046 return -ENOMEM; 2047 } 2048 2049 ret = ffs_acquire_dev(ffs->dev_name, ffs); 2050 if (ret) { 2051 ffs_data_put(ffs); 2052 return ret; 2053 } 2054 2055 ctx->ffs_data = ffs; 2056 return get_tree_nodev(fc, ffs_sb_fill); 2057 } 2058 2059 static void ffs_fs_free_fc(struct fs_context *fc) 2060 { 2061 struct ffs_sb_fill_data *ctx = fc->fs_private; 2062 2063 if (ctx) { 2064 if (ctx->ffs_data) { 2065 ffs_data_put(ctx->ffs_data); 2066 } 2067 2068 kfree(ctx); 2069 } 2070 } 2071 2072 static const struct fs_context_operations ffs_fs_context_ops = { 2073 .free = ffs_fs_free_fc, 2074 .parse_param = ffs_fs_parse_param, 2075 .get_tree = ffs_fs_get_tree, 2076 }; 2077 2078 static int ffs_fs_init_fs_context(struct fs_context *fc) 2079 { 2080 struct ffs_sb_fill_data *ctx; 2081 2082 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL); 2083 if (!ctx) 2084 return -ENOMEM; 2085 2086 ctx->perms.mode = S_IFREG | 0600; 2087 ctx->perms.uid = GLOBAL_ROOT_UID; 2088 ctx->perms.gid = GLOBAL_ROOT_GID; 2089 ctx->root_mode = S_IFDIR | 0500; 2090 ctx->no_disconnect = false; 2091 2092 fc->fs_private = ctx; 2093 fc->ops = &ffs_fs_context_ops; 2094 return 0; 2095 } 2096 2097 static void ffs_data_reset(struct ffs_data *ffs); 2098 2099 static void 2100 ffs_fs_kill_sb(struct super_block *sb) 2101 { 2102 kill_anon_super(sb); 2103 if (sb->s_fs_info) { 2104 struct ffs_data *ffs = sb->s_fs_info; 2105 ffs->state = FFS_CLOSING; 2106 ffs_data_reset(ffs); 2107 // no configfs accesses from that point on, 2108 // so no further schedule_work() is possible 2109 cancel_work_sync(&ffs->reset_work); 2110 ffs_data_put(ffs); 2111 } 2112 } 2113 2114 static struct file_system_type ffs_fs_type = { 2115 .owner = THIS_MODULE, 2116 .name = "functionfs", 2117 .init_fs_context = ffs_fs_init_fs_context, 2118 .parameters = ffs_fs_fs_parameters, 2119 .kill_sb = ffs_fs_kill_sb, 2120 }; 2121 MODULE_ALIAS_FS("functionfs"); 2122 2123 2124 /* Driver's main init/cleanup functions *************************************/ 2125 2126 static int functionfs_init(void) 2127 { 2128 int ret; 2129 2130 ret = register_filesystem(&ffs_fs_type); 2131 if (!ret) 2132 pr_info("file system registered\n"); 2133 else 2134 pr_err("failed registering file system (%d)\n", ret); 2135 2136 return ret; 2137 } 2138 2139 static void functionfs_cleanup(void) 2140 { 2141 pr_info("unloading\n"); 2142 unregister_filesystem(&ffs_fs_type); 2143 } 2144 2145 2146 /* ffs_data and ffs_function construction and destruction code **************/ 2147 2148 static void ffs_data_clear(struct ffs_data *ffs); 2149 2150 static void ffs_data_get(struct ffs_data *ffs) 2151 { 2152 refcount_inc(&ffs->ref); 2153 } 2154 2155 static void ffs_data_opened(struct ffs_data *ffs) 2156 { 2157 if (atomic_add_return(1, &ffs->opened) == 1 && 2158 ffs->state == FFS_DEACTIVATED) { 2159 ffs->state = FFS_CLOSING; 2160 ffs_data_reset(ffs); 2161 } 2162 } 2163 2164 static void ffs_data_put(struct ffs_data *ffs) 2165 { 2166 if (refcount_dec_and_test(&ffs->ref)) { 2167 pr_info("%s(): freeing\n", __func__); 2168 ffs_data_clear(ffs); 2169 ffs_release_dev(ffs->private_data); 2170 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 2171 swait_active(&ffs->ep0req_completion.wait) || 2172 waitqueue_active(&ffs->wait)); 2173 destroy_workqueue(ffs->io_completion_wq); 2174 kfree(ffs->dev_name); 2175 kfree(ffs); 2176 } 2177 } 2178 2179 static void ffs_data_closed(struct ffs_data *ffs) 2180 { 2181 if (atomic_dec_and_test(&ffs->opened)) { 2182 if (ffs->no_disconnect) { 2183 struct ffs_epfile *epfiles; 2184 unsigned long flags; 2185 2186 ffs->state = FFS_DEACTIVATED; 2187 spin_lock_irqsave(&ffs->eps_lock, flags); 2188 epfiles = ffs->epfiles; 2189 ffs->epfiles = NULL; 2190 spin_unlock_irqrestore(&ffs->eps_lock, 2191 flags); 2192 2193 if (epfiles) 2194 ffs_epfiles_destroy(ffs->sb, epfiles, 2195 ffs->eps_count); 2196 2197 if (ffs->setup_state == FFS_SETUP_PENDING) 2198 __ffs_ep0_stall(ffs); 2199 } else { 2200 ffs->state = FFS_CLOSING; 2201 ffs_data_reset(ffs); 2202 } 2203 } 2204 } 2205 2206 static struct ffs_data *ffs_data_new(const char *dev_name) 2207 { 2208 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 2209 if (!ffs) 2210 return NULL; 2211 2212 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 2213 if (!ffs->io_completion_wq) { 2214 kfree(ffs); 2215 return NULL; 2216 } 2217 2218 refcount_set(&ffs->ref, 1); 2219 atomic_set(&ffs->opened, 0); 2220 ffs->state = FFS_READ_DESCRIPTORS; 2221 mutex_init(&ffs->mutex); 2222 spin_lock_init(&ffs->eps_lock); 2223 init_waitqueue_head(&ffs->ev.waitq); 2224 init_waitqueue_head(&ffs->wait); 2225 init_completion(&ffs->ep0req_completion); 2226 2227 /* XXX REVISIT need to update it in some places, or do we? */ 2228 ffs->ev.can_stall = 1; 2229 2230 return ffs; 2231 } 2232 2233 static void ffs_data_clear(struct ffs_data *ffs) 2234 { 2235 struct ffs_epfile *epfiles; 2236 unsigned long flags; 2237 2238 ffs_closed(ffs); 2239 2240 BUG_ON(ffs->gadget); 2241 2242 spin_lock_irqsave(&ffs->eps_lock, flags); 2243 epfiles = ffs->epfiles; 2244 ffs->epfiles = NULL; 2245 spin_unlock_irqrestore(&ffs->eps_lock, flags); 2246 2247 /* 2248 * potential race possible between ffs_func_eps_disable 2249 * & ffs_epfile_release therefore maintaining a local 2250 * copy of epfile will save us from use-after-free. 2251 */ 2252 if (epfiles) { 2253 ffs_epfiles_destroy(ffs->sb, epfiles, ffs->eps_count); 2254 ffs->epfiles = NULL; 2255 } 2256 2257 if (ffs->ffs_eventfd) { 2258 eventfd_ctx_put(ffs->ffs_eventfd); 2259 ffs->ffs_eventfd = NULL; 2260 } 2261 2262 kfree(ffs->raw_descs_data); 2263 kfree(ffs->raw_strings); 2264 kfree(ffs->stringtabs); 2265 } 2266 2267 static void ffs_data_reset(struct ffs_data *ffs) 2268 { 2269 ffs_data_clear(ffs); 2270 2271 ffs->raw_descs_data = NULL; 2272 ffs->raw_descs = NULL; 2273 ffs->raw_strings = NULL; 2274 ffs->stringtabs = NULL; 2275 2276 ffs->raw_descs_length = 0; 2277 ffs->fs_descs_count = 0; 2278 ffs->hs_descs_count = 0; 2279 ffs->ss_descs_count = 0; 2280 2281 ffs->strings_count = 0; 2282 ffs->interfaces_count = 0; 2283 ffs->eps_count = 0; 2284 2285 ffs->ev.count = 0; 2286 2287 ffs->state = FFS_READ_DESCRIPTORS; 2288 ffs->setup_state = FFS_NO_SETUP; 2289 ffs->flags = 0; 2290 2291 ffs->ms_os_descs_ext_prop_count = 0; 2292 ffs->ms_os_descs_ext_prop_name_len = 0; 2293 ffs->ms_os_descs_ext_prop_data_len = 0; 2294 } 2295 2296 2297 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 2298 { 2299 struct usb_gadget_strings **lang; 2300 int first_id; 2301 2302 if ((ffs->state != FFS_ACTIVE 2303 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 2304 return -EBADFD; 2305 2306 first_id = usb_string_ids_n(cdev, ffs->strings_count); 2307 if (first_id < 0) 2308 return first_id; 2309 2310 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 2311 if (!ffs->ep0req) 2312 return -ENOMEM; 2313 ffs->ep0req->complete = ffs_ep0_complete; 2314 ffs->ep0req->context = ffs; 2315 2316 lang = ffs->stringtabs; 2317 if (lang) { 2318 for (; *lang; ++lang) { 2319 struct usb_string *str = (*lang)->strings; 2320 int id = first_id; 2321 for (; str->s; ++id, ++str) 2322 str->id = id; 2323 } 2324 } 2325 2326 ffs->gadget = cdev->gadget; 2327 ffs_data_get(ffs); 2328 return 0; 2329 } 2330 2331 static void functionfs_unbind(struct ffs_data *ffs) 2332 { 2333 if (!WARN_ON(!ffs->gadget)) { 2334 /* dequeue before freeing ep0req */ 2335 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req); 2336 mutex_lock(&ffs->mutex); 2337 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 2338 ffs->ep0req = NULL; 2339 ffs->gadget = NULL; 2340 clear_bit(FFS_FL_BOUND, &ffs->flags); 2341 mutex_unlock(&ffs->mutex); 2342 ffs_data_put(ffs); 2343 } 2344 } 2345 2346 static int ffs_epfiles_create(struct ffs_data *ffs) 2347 { 2348 struct ffs_epfile *epfile, *epfiles; 2349 unsigned i, count; 2350 int err; 2351 2352 count = ffs->eps_count; 2353 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 2354 if (!epfiles) 2355 return -ENOMEM; 2356 2357 epfile = epfiles; 2358 for (i = 1; i <= count; ++i, ++epfile) { 2359 epfile->ffs = ffs; 2360 mutex_init(&epfile->mutex); 2361 mutex_init(&epfile->dmabufs_mutex); 2362 INIT_LIST_HEAD(&epfile->dmabufs); 2363 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2364 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 2365 else 2366 sprintf(epfile->name, "ep%u", i); 2367 err = ffs_sb_create_file(ffs->sb, epfile->name, 2368 epfile, &ffs_epfile_operations); 2369 if (err) { 2370 ffs_epfiles_destroy(ffs->sb, epfiles, i - 1); 2371 return err; 2372 } 2373 } 2374 2375 ffs->epfiles = epfiles; 2376 return 0; 2377 } 2378 2379 static void clear_one(struct dentry *dentry) 2380 { 2381 smp_store_release(&dentry->d_inode->i_private, NULL); 2382 } 2383 2384 static void ffs_epfiles_destroy(struct super_block *sb, 2385 struct ffs_epfile *epfiles, unsigned count) 2386 { 2387 struct ffs_epfile *epfile = epfiles; 2388 struct dentry *root = sb->s_root; 2389 2390 for (; count; --count, ++epfile) { 2391 BUG_ON(mutex_is_locked(&epfile->mutex)); 2392 simple_remove_by_name(root, epfile->name, clear_one); 2393 } 2394 2395 kfree(epfiles); 2396 } 2397 2398 static void ffs_func_eps_disable(struct ffs_function *func) 2399 { 2400 struct ffs_ep *ep; 2401 struct ffs_epfile *epfile; 2402 unsigned short count; 2403 unsigned long flags; 2404 2405 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2406 count = func->ffs->eps_count; 2407 epfile = func->ffs->epfiles; 2408 ep = func->eps; 2409 while (count--) { 2410 /* pending requests get nuked */ 2411 if (ep->ep) 2412 usb_ep_disable(ep->ep); 2413 ++ep; 2414 2415 if (epfile) { 2416 epfile->ep = NULL; 2417 __ffs_epfile_read_buffer_free(epfile); 2418 ++epfile; 2419 } 2420 } 2421 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2422 } 2423 2424 static int ffs_func_eps_enable(struct ffs_function *func) 2425 { 2426 struct ffs_data *ffs; 2427 struct ffs_ep *ep; 2428 struct ffs_epfile *epfile; 2429 unsigned short count; 2430 unsigned long flags; 2431 int ret = 0; 2432 2433 spin_lock_irqsave(&func->ffs->eps_lock, flags); 2434 ffs = func->ffs; 2435 ep = func->eps; 2436 epfile = ffs->epfiles; 2437 count = ffs->eps_count; 2438 if (!epfile) { 2439 ret = -ENOMEM; 2440 goto done; 2441 } 2442 2443 while (count--) { 2444 ep->ep->driver_data = ep; 2445 2446 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 2447 if (ret) { 2448 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 2449 __func__, ep->ep->name, ret); 2450 break; 2451 } 2452 2453 ret = usb_ep_enable(ep->ep); 2454 if (!ret) { 2455 epfile->ep = ep; 2456 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 2457 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 2458 } else { 2459 break; 2460 } 2461 2462 ++ep; 2463 ++epfile; 2464 } 2465 2466 wake_up_interruptible(&ffs->wait); 2467 done: 2468 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 2469 2470 return ret; 2471 } 2472 2473 2474 /* Parsing and building descriptors and strings *****************************/ 2475 2476 /* 2477 * This validates if data pointed by data is a valid USB descriptor as 2478 * well as record how many interfaces, endpoints and strings are 2479 * required by given configuration. Returns address after the 2480 * descriptor or NULL if data is invalid. 2481 */ 2482 2483 enum ffs_entity_type { 2484 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 2485 }; 2486 2487 enum ffs_os_desc_type { 2488 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 2489 }; 2490 2491 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 2492 u8 *valuep, 2493 struct usb_descriptor_header *desc, 2494 void *priv); 2495 2496 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 2497 struct usb_os_desc_header *h, void *data, 2498 unsigned len, void *priv); 2499 2500 static int __must_check ffs_do_single_desc(char *data, unsigned len, 2501 ffs_entity_callback entity, 2502 void *priv, int *current_class, int *current_subclass) 2503 { 2504 struct usb_descriptor_header *_ds = (void *)data; 2505 u8 length; 2506 int ret; 2507 2508 /* At least two bytes are required: length and type */ 2509 if (len < 2) { 2510 pr_vdebug("descriptor too short\n"); 2511 return -EINVAL; 2512 } 2513 2514 /* If we have at least as many bytes as the descriptor takes? */ 2515 length = _ds->bLength; 2516 if (len < length) { 2517 pr_vdebug("descriptor longer then available data\n"); 2518 return -EINVAL; 2519 } 2520 2521 #define __entity_check_INTERFACE(val) 1 2522 #define __entity_check_STRING(val) (val) 2523 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 2524 #define __entity(type, val) do { \ 2525 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 2526 if (!__entity_check_ ##type(val)) { \ 2527 pr_vdebug("invalid entity's value\n"); \ 2528 return -EINVAL; \ 2529 } \ 2530 ret = entity(FFS_ ##type, &val, _ds, priv); \ 2531 if (ret < 0) { \ 2532 pr_debug("entity " #type "(%02x); ret = %d\n", \ 2533 (val), ret); \ 2534 return ret; \ 2535 } \ 2536 } while (0) 2537 2538 /* Parse descriptor depending on type. */ 2539 switch (_ds->bDescriptorType) { 2540 case USB_DT_DEVICE: 2541 case USB_DT_CONFIG: 2542 case USB_DT_STRING: 2543 case USB_DT_DEVICE_QUALIFIER: 2544 /* function can't have any of those */ 2545 pr_vdebug("descriptor reserved for gadget: %d\n", 2546 _ds->bDescriptorType); 2547 return -EINVAL; 2548 2549 case USB_DT_INTERFACE: { 2550 struct usb_interface_descriptor *ds = (void *)_ds; 2551 pr_vdebug("interface descriptor\n"); 2552 if (length != sizeof *ds) 2553 goto inv_length; 2554 2555 __entity(INTERFACE, ds->bInterfaceNumber); 2556 if (ds->iInterface) 2557 __entity(STRING, ds->iInterface); 2558 *current_class = ds->bInterfaceClass; 2559 *current_subclass = ds->bInterfaceSubClass; 2560 } 2561 break; 2562 2563 case USB_DT_ENDPOINT: { 2564 struct usb_endpoint_descriptor *ds = (void *)_ds; 2565 pr_vdebug("endpoint descriptor\n"); 2566 if (length != USB_DT_ENDPOINT_SIZE && 2567 length != USB_DT_ENDPOINT_AUDIO_SIZE) 2568 goto inv_length; 2569 __entity(ENDPOINT, ds->bEndpointAddress); 2570 } 2571 break; 2572 2573 case USB_TYPE_CLASS | 0x01: 2574 if (*current_class == USB_INTERFACE_CLASS_HID) { 2575 pr_vdebug("hid descriptor\n"); 2576 if (length != sizeof(struct hid_descriptor)) 2577 goto inv_length; 2578 break; 2579 } else if (*current_class == USB_INTERFACE_CLASS_CCID) { 2580 pr_vdebug("ccid descriptor\n"); 2581 if (length != sizeof(struct ccid_descriptor)) 2582 goto inv_length; 2583 break; 2584 } else if (*current_class == USB_CLASS_APP_SPEC && 2585 *current_subclass == USB_SUBCLASS_DFU) { 2586 pr_vdebug("dfu functional descriptor\n"); 2587 if (length != sizeof(struct usb_dfu_functional_descriptor)) 2588 goto inv_length; 2589 break; 2590 } else { 2591 pr_vdebug("unknown descriptor: %d for class %d\n", 2592 _ds->bDescriptorType, *current_class); 2593 return -EINVAL; 2594 } 2595 2596 case USB_DT_OTG: 2597 if (length != sizeof(struct usb_otg_descriptor)) 2598 goto inv_length; 2599 break; 2600 2601 case USB_DT_INTERFACE_ASSOCIATION: { 2602 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2603 pr_vdebug("interface association descriptor\n"); 2604 if (length != sizeof *ds) 2605 goto inv_length; 2606 if (ds->iFunction) 2607 __entity(STRING, ds->iFunction); 2608 } 2609 break; 2610 2611 case USB_DT_SS_ENDPOINT_COMP: 2612 pr_vdebug("EP SS companion descriptor\n"); 2613 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2614 goto inv_length; 2615 break; 2616 2617 case USB_DT_OTHER_SPEED_CONFIG: 2618 case USB_DT_INTERFACE_POWER: 2619 case USB_DT_DEBUG: 2620 case USB_DT_SECURITY: 2621 case USB_DT_CS_RADIO_CONTROL: 2622 /* TODO */ 2623 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2624 return -EINVAL; 2625 2626 default: 2627 /* We should never be here */ 2628 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2629 return -EINVAL; 2630 2631 inv_length: 2632 pr_vdebug("invalid length: %d (descriptor %d)\n", 2633 _ds->bLength, _ds->bDescriptorType); 2634 return -EINVAL; 2635 } 2636 2637 #undef __entity 2638 #undef __entity_check_DESCRIPTOR 2639 #undef __entity_check_INTERFACE 2640 #undef __entity_check_STRING 2641 #undef __entity_check_ENDPOINT 2642 2643 return length; 2644 } 2645 2646 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2647 ffs_entity_callback entity, void *priv) 2648 { 2649 const unsigned _len = len; 2650 unsigned long num = 0; 2651 int current_class = -1; 2652 int current_subclass = -1; 2653 2654 for (;;) { 2655 int ret; 2656 2657 if (num == count) 2658 data = NULL; 2659 2660 /* Record "descriptor" entity */ 2661 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2662 if (ret < 0) { 2663 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2664 num, ret); 2665 return ret; 2666 } 2667 2668 if (!data) 2669 return _len - len; 2670 2671 ret = ffs_do_single_desc(data, len, entity, priv, 2672 ¤t_class, ¤t_subclass); 2673 if (ret < 0) { 2674 pr_debug("%s returns %d\n", __func__, ret); 2675 return ret; 2676 } 2677 2678 len -= ret; 2679 data += ret; 2680 ++num; 2681 } 2682 } 2683 2684 static int __ffs_data_do_entity(enum ffs_entity_type type, 2685 u8 *valuep, struct usb_descriptor_header *desc, 2686 void *priv) 2687 { 2688 struct ffs_desc_helper *helper = priv; 2689 struct usb_endpoint_descriptor *d; 2690 2691 switch (type) { 2692 case FFS_DESCRIPTOR: 2693 break; 2694 2695 case FFS_INTERFACE: 2696 /* 2697 * Interfaces are indexed from zero so if we 2698 * encountered interface "n" then there are at least 2699 * "n+1" interfaces. 2700 */ 2701 if (*valuep >= helper->interfaces_count) 2702 helper->interfaces_count = *valuep + 1; 2703 break; 2704 2705 case FFS_STRING: 2706 /* 2707 * Strings are indexed from 1 (0 is reserved 2708 * for languages list) 2709 */ 2710 if (*valuep > helper->ffs->strings_count) 2711 helper->ffs->strings_count = *valuep; 2712 break; 2713 2714 case FFS_ENDPOINT: 2715 d = (void *)desc; 2716 helper->eps_count++; 2717 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2718 return -EINVAL; 2719 /* Check if descriptors for any speed were already parsed */ 2720 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2721 helper->ffs->eps_addrmap[helper->eps_count] = 2722 d->bEndpointAddress; 2723 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2724 d->bEndpointAddress) 2725 return -EINVAL; 2726 break; 2727 } 2728 2729 return 0; 2730 } 2731 2732 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2733 struct usb_os_desc_header *desc) 2734 { 2735 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2736 u16 w_index = le16_to_cpu(desc->wIndex); 2737 2738 if (bcd_version == 0x1) { 2739 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. " 2740 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n"); 2741 } else if (bcd_version != 0x100) { 2742 pr_vdebug("unsupported os descriptors version: 0x%x\n", 2743 bcd_version); 2744 return -EINVAL; 2745 } 2746 switch (w_index) { 2747 case 0x4: 2748 *next_type = FFS_OS_DESC_EXT_COMPAT; 2749 break; 2750 case 0x5: 2751 *next_type = FFS_OS_DESC_EXT_PROP; 2752 break; 2753 default: 2754 pr_vdebug("unsupported os descriptor type: %d", w_index); 2755 return -EINVAL; 2756 } 2757 2758 return sizeof(*desc); 2759 } 2760 2761 /* 2762 * Process all extended compatibility/extended property descriptors 2763 * of a feature descriptor 2764 */ 2765 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2766 enum ffs_os_desc_type type, 2767 u16 feature_count, 2768 ffs_os_desc_callback entity, 2769 void *priv, 2770 struct usb_os_desc_header *h) 2771 { 2772 int ret; 2773 const unsigned _len = len; 2774 2775 /* loop over all ext compat/ext prop descriptors */ 2776 while (feature_count--) { 2777 ret = entity(type, h, data, len, priv); 2778 if (ret < 0) { 2779 pr_debug("bad OS descriptor, type: %d\n", type); 2780 return ret; 2781 } 2782 data += ret; 2783 len -= ret; 2784 } 2785 return _len - len; 2786 } 2787 2788 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2789 static int __must_check ffs_do_os_descs(unsigned count, 2790 char *data, unsigned len, 2791 ffs_os_desc_callback entity, void *priv) 2792 { 2793 const unsigned _len = len; 2794 unsigned long num = 0; 2795 2796 for (num = 0; num < count; ++num) { 2797 int ret; 2798 enum ffs_os_desc_type type; 2799 u16 feature_count; 2800 struct usb_os_desc_header *desc = (void *)data; 2801 2802 if (len < sizeof(*desc)) 2803 return -EINVAL; 2804 2805 /* 2806 * Record "descriptor" entity. 2807 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2808 * Move the data pointer to the beginning of extended 2809 * compatibilities proper or extended properties proper 2810 * portions of the data 2811 */ 2812 if (le32_to_cpu(desc->dwLength) > len) 2813 return -EINVAL; 2814 2815 ret = __ffs_do_os_desc_header(&type, desc); 2816 if (ret < 0) { 2817 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2818 num, ret); 2819 return ret; 2820 } 2821 /* 2822 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2823 */ 2824 feature_count = le16_to_cpu(desc->wCount); 2825 if (type == FFS_OS_DESC_EXT_COMPAT && 2826 (feature_count > 255 || desc->Reserved)) 2827 return -EINVAL; 2828 len -= ret; 2829 data += ret; 2830 2831 /* 2832 * Process all function/property descriptors 2833 * of this Feature Descriptor 2834 */ 2835 ret = ffs_do_single_os_desc(data, len, type, 2836 feature_count, entity, priv, desc); 2837 if (ret < 0) { 2838 pr_debug("%s returns %d\n", __func__, ret); 2839 return ret; 2840 } 2841 2842 len -= ret; 2843 data += ret; 2844 } 2845 return _len - len; 2846 } 2847 2848 /* 2849 * Validate contents of the buffer from userspace related to OS descriptors. 2850 */ 2851 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2852 struct usb_os_desc_header *h, void *data, 2853 unsigned len, void *priv) 2854 { 2855 struct ffs_data *ffs = priv; 2856 u8 length; 2857 2858 switch (type) { 2859 case FFS_OS_DESC_EXT_COMPAT: { 2860 struct usb_ext_compat_desc *d = data; 2861 int i; 2862 2863 if (len < sizeof(*d) || 2864 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2865 return -EINVAL; 2866 if (d->Reserved1 != 1) { 2867 /* 2868 * According to the spec, Reserved1 must be set to 1 2869 * but older kernels incorrectly rejected non-zero 2870 * values. We fix it here to avoid returning EINVAL 2871 * in response to values we used to accept. 2872 */ 2873 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2874 d->Reserved1 = 1; 2875 } 2876 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2877 if (d->Reserved2[i]) 2878 return -EINVAL; 2879 2880 length = sizeof(struct usb_ext_compat_desc); 2881 } 2882 break; 2883 case FFS_OS_DESC_EXT_PROP: { 2884 struct usb_ext_prop_desc *d = data; 2885 u32 type, pdl; 2886 u16 pnl; 2887 2888 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2889 return -EINVAL; 2890 length = le32_to_cpu(d->dwSize); 2891 if (len < length) 2892 return -EINVAL; 2893 type = le32_to_cpu(d->dwPropertyDataType); 2894 if (type < USB_EXT_PROP_UNICODE || 2895 type > USB_EXT_PROP_UNICODE_MULTI) { 2896 pr_vdebug("unsupported os descriptor property type: %d", 2897 type); 2898 return -EINVAL; 2899 } 2900 pnl = le16_to_cpu(d->wPropertyNameLength); 2901 if (length < 14 + pnl) { 2902 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2903 length, pnl, type); 2904 return -EINVAL; 2905 } 2906 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2907 if (length != 14 + pnl + pdl) { 2908 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2909 length, pnl, pdl, type); 2910 return -EINVAL; 2911 } 2912 ++ffs->ms_os_descs_ext_prop_count; 2913 /* property name reported to the host as "WCHAR"s */ 2914 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2915 ffs->ms_os_descs_ext_prop_data_len += pdl; 2916 } 2917 break; 2918 default: 2919 pr_vdebug("unknown descriptor: %d\n", type); 2920 return -EINVAL; 2921 } 2922 return length; 2923 } 2924 2925 static int __ffs_data_got_descs(struct ffs_data *ffs, 2926 char *const _data, size_t len) 2927 { 2928 char *data = _data, *raw_descs; 2929 unsigned os_descs_count = 0, counts[3], flags; 2930 int ret = -EINVAL, i; 2931 struct ffs_desc_helper helper; 2932 2933 if (get_unaligned_le32(data + 4) != len) 2934 goto error; 2935 2936 switch (get_unaligned_le32(data)) { 2937 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2938 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2939 data += 8; 2940 len -= 8; 2941 break; 2942 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2943 flags = get_unaligned_le32(data + 8); 2944 ffs->user_flags = flags; 2945 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2946 FUNCTIONFS_HAS_HS_DESC | 2947 FUNCTIONFS_HAS_SS_DESC | 2948 FUNCTIONFS_HAS_MS_OS_DESC | 2949 FUNCTIONFS_VIRTUAL_ADDR | 2950 FUNCTIONFS_EVENTFD | 2951 FUNCTIONFS_ALL_CTRL_RECIP | 2952 FUNCTIONFS_CONFIG0_SETUP)) { 2953 ret = -ENOSYS; 2954 goto error; 2955 } 2956 data += 12; 2957 len -= 12; 2958 break; 2959 default: 2960 goto error; 2961 } 2962 2963 if (flags & FUNCTIONFS_EVENTFD) { 2964 if (len < 4) 2965 goto error; 2966 ffs->ffs_eventfd = 2967 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2968 if (IS_ERR(ffs->ffs_eventfd)) { 2969 ret = PTR_ERR(ffs->ffs_eventfd); 2970 ffs->ffs_eventfd = NULL; 2971 goto error; 2972 } 2973 data += 4; 2974 len -= 4; 2975 } 2976 2977 /* Read fs_count, hs_count and ss_count (if present) */ 2978 for (i = 0; i < 3; ++i) { 2979 if (!(flags & (1 << i))) { 2980 counts[i] = 0; 2981 } else if (len < 4) { 2982 goto error; 2983 } else { 2984 counts[i] = get_unaligned_le32(data); 2985 data += 4; 2986 len -= 4; 2987 } 2988 } 2989 if (flags & (1 << i)) { 2990 if (len < 4) { 2991 goto error; 2992 } 2993 os_descs_count = get_unaligned_le32(data); 2994 data += 4; 2995 len -= 4; 2996 } 2997 2998 /* Read descriptors */ 2999 raw_descs = data; 3000 helper.ffs = ffs; 3001 for (i = 0; i < 3; ++i) { 3002 if (!counts[i]) 3003 continue; 3004 helper.interfaces_count = 0; 3005 helper.eps_count = 0; 3006 ret = ffs_do_descs(counts[i], data, len, 3007 __ffs_data_do_entity, &helper); 3008 if (ret < 0) 3009 goto error; 3010 if (!ffs->eps_count && !ffs->interfaces_count) { 3011 ffs->eps_count = helper.eps_count; 3012 ffs->interfaces_count = helper.interfaces_count; 3013 } else { 3014 if (ffs->eps_count != helper.eps_count) { 3015 ret = -EINVAL; 3016 goto error; 3017 } 3018 if (ffs->interfaces_count != helper.interfaces_count) { 3019 ret = -EINVAL; 3020 goto error; 3021 } 3022 } 3023 data += ret; 3024 len -= ret; 3025 } 3026 if (os_descs_count) { 3027 ret = ffs_do_os_descs(os_descs_count, data, len, 3028 __ffs_data_do_os_desc, ffs); 3029 if (ret < 0) 3030 goto error; 3031 data += ret; 3032 len -= ret; 3033 } 3034 3035 if (raw_descs == data || len) { 3036 ret = -EINVAL; 3037 goto error; 3038 } 3039 3040 ffs->raw_descs_data = _data; 3041 ffs->raw_descs = raw_descs; 3042 ffs->raw_descs_length = data - raw_descs; 3043 ffs->fs_descs_count = counts[0]; 3044 ffs->hs_descs_count = counts[1]; 3045 ffs->ss_descs_count = counts[2]; 3046 ffs->ms_os_descs_count = os_descs_count; 3047 3048 return 0; 3049 3050 error: 3051 kfree(_data); 3052 return ret; 3053 } 3054 3055 static int __ffs_data_got_strings(struct ffs_data *ffs, 3056 char *const _data, size_t len) 3057 { 3058 u32 str_count, needed_count, lang_count; 3059 struct usb_gadget_strings **stringtabs, *t; 3060 const char *data = _data; 3061 struct usb_string *s; 3062 3063 if (len < 16 || 3064 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 3065 get_unaligned_le32(data + 4) != len) 3066 goto error; 3067 str_count = get_unaligned_le32(data + 8); 3068 lang_count = get_unaligned_le32(data + 12); 3069 3070 /* if one is zero the other must be zero */ 3071 if (!str_count != !lang_count) 3072 goto error; 3073 3074 /* Do we have at least as many strings as descriptors need? */ 3075 needed_count = ffs->strings_count; 3076 if (str_count < needed_count) 3077 goto error; 3078 3079 /* 3080 * If we don't need any strings just return and free all 3081 * memory. 3082 */ 3083 if (!needed_count) { 3084 kfree(_data); 3085 return 0; 3086 } 3087 3088 /* Allocate everything in one chunk so there's less maintenance. */ 3089 { 3090 unsigned i = 0; 3091 vla_group(d); 3092 vla_item(d, struct usb_gadget_strings *, stringtabs, 3093 size_add(lang_count, 1)); 3094 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 3095 vla_item(d, struct usb_string, strings, 3096 size_mul(lang_count, (needed_count + 1))); 3097 3098 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 3099 3100 if (!vlabuf) { 3101 kfree(_data); 3102 return -ENOMEM; 3103 } 3104 3105 /* Initialize the VLA pointers */ 3106 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3107 t = vla_ptr(vlabuf, d, stringtab); 3108 i = lang_count; 3109 do { 3110 *stringtabs++ = t++; 3111 } while (--i); 3112 *stringtabs = NULL; 3113 3114 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 3115 stringtabs = vla_ptr(vlabuf, d, stringtabs); 3116 t = vla_ptr(vlabuf, d, stringtab); 3117 s = vla_ptr(vlabuf, d, strings); 3118 } 3119 3120 /* For each language */ 3121 data += 16; 3122 len -= 16; 3123 3124 do { /* lang_count > 0 so we can use do-while */ 3125 unsigned needed = needed_count; 3126 u32 str_per_lang = str_count; 3127 3128 if (len < 3) 3129 goto error_free; 3130 t->language = get_unaligned_le16(data); 3131 t->strings = s; 3132 ++t; 3133 3134 data += 2; 3135 len -= 2; 3136 3137 /* For each string */ 3138 do { /* str_count > 0 so we can use do-while */ 3139 size_t length = strnlen(data, len); 3140 3141 if (length == len) 3142 goto error_free; 3143 3144 /* 3145 * User may provide more strings then we need, 3146 * if that's the case we simply ignore the 3147 * rest 3148 */ 3149 if (needed) { 3150 /* 3151 * s->id will be set while adding 3152 * function to configuration so for 3153 * now just leave garbage here. 3154 */ 3155 s->s = data; 3156 --needed; 3157 ++s; 3158 } 3159 3160 data += length + 1; 3161 len -= length + 1; 3162 } while (--str_per_lang); 3163 3164 s->id = 0; /* terminator */ 3165 s->s = NULL; 3166 ++s; 3167 3168 } while (--lang_count); 3169 3170 /* Some garbage left? */ 3171 if (len) 3172 goto error_free; 3173 3174 /* Done! */ 3175 ffs->stringtabs = stringtabs; 3176 ffs->raw_strings = _data; 3177 3178 return 0; 3179 3180 error_free: 3181 kfree(stringtabs); 3182 error: 3183 kfree(_data); 3184 return -EINVAL; 3185 } 3186 3187 3188 /* Events handling and management *******************************************/ 3189 3190 static void __ffs_event_add(struct ffs_data *ffs, 3191 enum usb_functionfs_event_type type) 3192 { 3193 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 3194 int neg = 0; 3195 3196 /* 3197 * Abort any unhandled setup 3198 * 3199 * We do not need to worry about some cmpxchg() changing value 3200 * of ffs->setup_state without holding the lock because when 3201 * state is FFS_SETUP_PENDING cmpxchg() in several places in 3202 * the source does nothing. 3203 */ 3204 if (ffs->setup_state == FFS_SETUP_PENDING) 3205 ffs->setup_state = FFS_SETUP_CANCELLED; 3206 3207 /* 3208 * Logic of this function guarantees that there are at most four pending 3209 * evens on ffs->ev.types queue. This is important because the queue 3210 * has space for four elements only and __ffs_ep0_read_events function 3211 * depends on that limit as well. If more event types are added, those 3212 * limits have to be revisited or guaranteed to still hold. 3213 */ 3214 switch (type) { 3215 case FUNCTIONFS_RESUME: 3216 rem_type2 = FUNCTIONFS_SUSPEND; 3217 fallthrough; 3218 case FUNCTIONFS_SUSPEND: 3219 case FUNCTIONFS_SETUP: 3220 rem_type1 = type; 3221 /* Discard all similar events */ 3222 break; 3223 3224 case FUNCTIONFS_BIND: 3225 case FUNCTIONFS_UNBIND: 3226 case FUNCTIONFS_DISABLE: 3227 case FUNCTIONFS_ENABLE: 3228 /* Discard everything other then power management. */ 3229 rem_type1 = FUNCTIONFS_SUSPEND; 3230 rem_type2 = FUNCTIONFS_RESUME; 3231 neg = 1; 3232 break; 3233 3234 default: 3235 WARN(1, "%d: unknown event, this should not happen\n", type); 3236 return; 3237 } 3238 3239 { 3240 u8 *ev = ffs->ev.types, *out = ev; 3241 unsigned n = ffs->ev.count; 3242 for (; n; --n, ++ev) 3243 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 3244 *out++ = *ev; 3245 else 3246 pr_vdebug("purging event %d\n", *ev); 3247 ffs->ev.count = out - ffs->ev.types; 3248 } 3249 3250 pr_vdebug("adding event %d\n", type); 3251 ffs->ev.types[ffs->ev.count++] = type; 3252 wake_up_locked(&ffs->ev.waitq); 3253 if (ffs->ffs_eventfd) 3254 eventfd_signal(ffs->ffs_eventfd); 3255 } 3256 3257 static void ffs_event_add(struct ffs_data *ffs, 3258 enum usb_functionfs_event_type type) 3259 { 3260 unsigned long flags; 3261 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3262 __ffs_event_add(ffs, type); 3263 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3264 } 3265 3266 /* Bind/unbind USB function hooks *******************************************/ 3267 3268 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 3269 { 3270 int i; 3271 3272 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 3273 if (ffs->eps_addrmap[i] == endpoint_address) 3274 return i; 3275 return -ENOENT; 3276 } 3277 3278 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 3279 struct usb_descriptor_header *desc, 3280 void *priv) 3281 { 3282 struct usb_endpoint_descriptor *ds = (void *)desc; 3283 struct ffs_function *func = priv; 3284 struct ffs_ep *ffs_ep; 3285 unsigned ep_desc_id; 3286 int idx; 3287 static const char *speed_names[] = { "full", "high", "super" }; 3288 3289 if (type != FFS_DESCRIPTOR) 3290 return 0; 3291 3292 /* 3293 * If ss_descriptors is not NULL, we are reading super speed 3294 * descriptors; if hs_descriptors is not NULL, we are reading high 3295 * speed descriptors; otherwise, we are reading full speed 3296 * descriptors. 3297 */ 3298 if (func->function.ss_descriptors) { 3299 ep_desc_id = 2; 3300 func->function.ss_descriptors[(long)valuep] = desc; 3301 } else if (func->function.hs_descriptors) { 3302 ep_desc_id = 1; 3303 func->function.hs_descriptors[(long)valuep] = desc; 3304 } else { 3305 ep_desc_id = 0; 3306 func->function.fs_descriptors[(long)valuep] = desc; 3307 } 3308 3309 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 3310 return 0; 3311 3312 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 3313 if (idx < 0) 3314 return idx; 3315 3316 ffs_ep = func->eps + idx; 3317 3318 if (ffs_ep->descs[ep_desc_id]) { 3319 pr_err("two %sspeed descriptors for EP %d\n", 3320 speed_names[ep_desc_id], 3321 usb_endpoint_num(ds)); 3322 return -EINVAL; 3323 } 3324 ffs_ep->descs[ep_desc_id] = ds; 3325 3326 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 3327 if (ffs_ep->ep) { 3328 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 3329 if (!ds->wMaxPacketSize) 3330 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 3331 } else { 3332 struct usb_request *req; 3333 struct usb_ep *ep; 3334 u8 bEndpointAddress; 3335 u16 wMaxPacketSize; 3336 3337 /* 3338 * We back up bEndpointAddress because autoconfig overwrites 3339 * it with physical endpoint address. 3340 */ 3341 bEndpointAddress = ds->bEndpointAddress; 3342 /* 3343 * We back up wMaxPacketSize because autoconfig treats 3344 * endpoint descriptors as if they were full speed. 3345 */ 3346 wMaxPacketSize = ds->wMaxPacketSize; 3347 pr_vdebug("autoconfig\n"); 3348 ep = usb_ep_autoconfig(func->gadget, ds); 3349 if (!ep) 3350 return -ENOTSUPP; 3351 ep->driver_data = func->eps + idx; 3352 3353 req = usb_ep_alloc_request(ep, GFP_KERNEL); 3354 if (!req) 3355 return -ENOMEM; 3356 3357 ffs_ep->ep = ep; 3358 ffs_ep->req = req; 3359 func->eps_revmap[ds->bEndpointAddress & 3360 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 3361 /* 3362 * If we use virtual address mapping, we restore 3363 * original bEndpointAddress value. 3364 */ 3365 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3366 ds->bEndpointAddress = bEndpointAddress; 3367 /* 3368 * Restore wMaxPacketSize which was potentially 3369 * overwritten by autoconfig. 3370 */ 3371 ds->wMaxPacketSize = wMaxPacketSize; 3372 } 3373 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 3374 3375 return 0; 3376 } 3377 3378 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 3379 struct usb_descriptor_header *desc, 3380 void *priv) 3381 { 3382 struct ffs_function *func = priv; 3383 unsigned idx; 3384 u8 newValue; 3385 3386 switch (type) { 3387 default: 3388 case FFS_DESCRIPTOR: 3389 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 3390 return 0; 3391 3392 case FFS_INTERFACE: 3393 idx = *valuep; 3394 if (func->interfaces_nums[idx] < 0) { 3395 int id = usb_interface_id(func->conf, &func->function); 3396 if (id < 0) 3397 return id; 3398 func->interfaces_nums[idx] = id; 3399 } 3400 newValue = func->interfaces_nums[idx]; 3401 break; 3402 3403 case FFS_STRING: 3404 /* String' IDs are allocated when fsf_data is bound to cdev */ 3405 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 3406 break; 3407 3408 case FFS_ENDPOINT: 3409 /* 3410 * USB_DT_ENDPOINT are handled in 3411 * __ffs_func_bind_do_descs(). 3412 */ 3413 if (desc->bDescriptorType == USB_DT_ENDPOINT) 3414 return 0; 3415 3416 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 3417 if (!func->eps[idx].ep) 3418 return -EINVAL; 3419 3420 { 3421 struct usb_endpoint_descriptor **descs; 3422 descs = func->eps[idx].descs; 3423 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 3424 } 3425 break; 3426 } 3427 3428 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 3429 *valuep = newValue; 3430 return 0; 3431 } 3432 3433 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 3434 struct usb_os_desc_header *h, void *data, 3435 unsigned len, void *priv) 3436 { 3437 struct ffs_function *func = priv; 3438 u8 length = 0; 3439 3440 switch (type) { 3441 case FFS_OS_DESC_EXT_COMPAT: { 3442 struct usb_ext_compat_desc *desc = data; 3443 struct usb_os_desc_table *t; 3444 3445 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 3446 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 3447 memcpy(t->os_desc->ext_compat_id, &desc->IDs, 3448 sizeof_field(struct usb_ext_compat_desc, IDs)); 3449 length = sizeof(*desc); 3450 } 3451 break; 3452 case FFS_OS_DESC_EXT_PROP: { 3453 struct usb_ext_prop_desc *desc = data; 3454 struct usb_os_desc_table *t; 3455 struct usb_os_desc_ext_prop *ext_prop; 3456 char *ext_prop_name; 3457 char *ext_prop_data; 3458 3459 t = &func->function.os_desc_table[h->interface]; 3460 t->if_id = func->interfaces_nums[h->interface]; 3461 3462 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 3463 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 3464 3465 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 3466 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 3467 ext_prop->data_len = le32_to_cpu(*(__le32 *) 3468 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 3469 length = ext_prop->name_len + ext_prop->data_len + 14; 3470 3471 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 3472 func->ffs->ms_os_descs_ext_prop_name_avail += 3473 ext_prop->name_len; 3474 3475 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 3476 func->ffs->ms_os_descs_ext_prop_data_avail += 3477 ext_prop->data_len; 3478 memcpy(ext_prop_data, 3479 usb_ext_prop_data_ptr(data, ext_prop->name_len), 3480 ext_prop->data_len); 3481 /* unicode data reported to the host as "WCHAR"s */ 3482 switch (ext_prop->type) { 3483 case USB_EXT_PROP_UNICODE: 3484 case USB_EXT_PROP_UNICODE_ENV: 3485 case USB_EXT_PROP_UNICODE_LINK: 3486 case USB_EXT_PROP_UNICODE_MULTI: 3487 ext_prop->data_len *= 2; 3488 break; 3489 } 3490 ext_prop->data = ext_prop_data; 3491 3492 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 3493 ext_prop->name_len); 3494 /* property name reported to the host as "WCHAR"s */ 3495 ext_prop->name_len *= 2; 3496 ext_prop->name = ext_prop_name; 3497 3498 t->os_desc->ext_prop_len += 3499 ext_prop->name_len + ext_prop->data_len + 14; 3500 ++t->os_desc->ext_prop_count; 3501 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 3502 } 3503 break; 3504 default: 3505 pr_vdebug("unknown descriptor: %d\n", type); 3506 } 3507 3508 return length; 3509 } 3510 3511 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 3512 struct usb_configuration *c) 3513 { 3514 struct ffs_function *func = ffs_func_from_usb(f); 3515 struct f_fs_opts *ffs_opts = 3516 container_of(f->fi, struct f_fs_opts, func_inst); 3517 struct ffs_data *ffs_data; 3518 int ret; 3519 3520 /* 3521 * Legacy gadget triggers binding in functionfs_ready_callback, 3522 * which already uses locking; taking the same lock here would 3523 * cause a deadlock. 3524 * 3525 * Configfs-enabled gadgets however do need ffs_dev_lock. 3526 */ 3527 if (!ffs_opts->no_configfs) 3528 ffs_dev_lock(); 3529 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 3530 ffs_data = ffs_opts->dev->ffs_data; 3531 if (!ffs_opts->no_configfs) 3532 ffs_dev_unlock(); 3533 if (ret) 3534 return ERR_PTR(ret); 3535 3536 func->ffs = ffs_data; 3537 func->conf = c; 3538 func->gadget = c->cdev->gadget; 3539 3540 /* 3541 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 3542 * configurations are bound in sequence with list_for_each_entry, 3543 * in each configuration its functions are bound in sequence 3544 * with list_for_each_entry, so we assume no race condition 3545 * with regard to ffs_opts->bound access 3546 */ 3547 if (!ffs_opts->refcnt) { 3548 ret = functionfs_bind(func->ffs, c->cdev); 3549 if (ret) 3550 return ERR_PTR(ret); 3551 } 3552 ffs_opts->refcnt++; 3553 func->function.strings = func->ffs->stringtabs; 3554 3555 return ffs_opts; 3556 } 3557 3558 static int _ffs_func_bind(struct usb_configuration *c, 3559 struct usb_function *f) 3560 { 3561 struct ffs_function *func = ffs_func_from_usb(f); 3562 struct ffs_data *ffs = func->ffs; 3563 3564 const int full = !!func->ffs->fs_descs_count; 3565 const int high = !!func->ffs->hs_descs_count; 3566 const int super = !!func->ffs->ss_descs_count; 3567 3568 int fs_len, hs_len, ss_len, ret, i; 3569 struct ffs_ep *eps_ptr; 3570 3571 /* Make it a single chunk, less management later on */ 3572 vla_group(d); 3573 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 3574 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 3575 full ? ffs->fs_descs_count + 1 : 0); 3576 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 3577 high ? ffs->hs_descs_count + 1 : 0); 3578 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 3579 super ? ffs->ss_descs_count + 1 : 0); 3580 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 3581 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 3582 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3583 vla_item_with_sz(d, char[16], ext_compat, 3584 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3585 vla_item_with_sz(d, struct usb_os_desc, os_desc, 3586 c->cdev->use_os_string ? ffs->interfaces_count : 0); 3587 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 3588 ffs->ms_os_descs_ext_prop_count); 3589 vla_item_with_sz(d, char, ext_prop_name, 3590 ffs->ms_os_descs_ext_prop_name_len); 3591 vla_item_with_sz(d, char, ext_prop_data, 3592 ffs->ms_os_descs_ext_prop_data_len); 3593 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 3594 char *vlabuf; 3595 3596 /* Has descriptors only for speeds gadget does not support */ 3597 if (!(full | high | super)) 3598 return -ENOTSUPP; 3599 3600 /* Allocate a single chunk, less management later on */ 3601 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3602 if (!vlabuf) 3603 return -ENOMEM; 3604 3605 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3606 ffs->ms_os_descs_ext_prop_name_avail = 3607 vla_ptr(vlabuf, d, ext_prop_name); 3608 ffs->ms_os_descs_ext_prop_data_avail = 3609 vla_ptr(vlabuf, d, ext_prop_data); 3610 3611 /* Copy descriptors */ 3612 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3613 ffs->raw_descs_length); 3614 3615 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3616 eps_ptr = vla_ptr(vlabuf, d, eps); 3617 for (i = 0; i < ffs->eps_count; i++) 3618 eps_ptr[i].num = -1; 3619 3620 /* Save pointers 3621 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3622 */ 3623 func->eps = vla_ptr(vlabuf, d, eps); 3624 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3625 3626 /* 3627 * Go through all the endpoint descriptors and allocate 3628 * endpoints first, so that later we can rewrite the endpoint 3629 * numbers without worrying that it may be described later on. 3630 */ 3631 if (full) { 3632 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3633 fs_len = ffs_do_descs(ffs->fs_descs_count, 3634 vla_ptr(vlabuf, d, raw_descs), 3635 d_raw_descs__sz, 3636 __ffs_func_bind_do_descs, func); 3637 if (fs_len < 0) { 3638 ret = fs_len; 3639 goto error; 3640 } 3641 } else { 3642 fs_len = 0; 3643 } 3644 3645 if (high) { 3646 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3647 hs_len = ffs_do_descs(ffs->hs_descs_count, 3648 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3649 d_raw_descs__sz - fs_len, 3650 __ffs_func_bind_do_descs, func); 3651 if (hs_len < 0) { 3652 ret = hs_len; 3653 goto error; 3654 } 3655 } else { 3656 hs_len = 0; 3657 } 3658 3659 if (super) { 3660 func->function.ss_descriptors = func->function.ssp_descriptors = 3661 vla_ptr(vlabuf, d, ss_descs); 3662 ss_len = ffs_do_descs(ffs->ss_descs_count, 3663 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3664 d_raw_descs__sz - fs_len - hs_len, 3665 __ffs_func_bind_do_descs, func); 3666 if (ss_len < 0) { 3667 ret = ss_len; 3668 goto error; 3669 } 3670 } else { 3671 ss_len = 0; 3672 } 3673 3674 /* 3675 * Now handle interface numbers allocation and interface and 3676 * endpoint numbers rewriting. We can do that in one go 3677 * now. 3678 */ 3679 ret = ffs_do_descs(ffs->fs_descs_count + 3680 (high ? ffs->hs_descs_count : 0) + 3681 (super ? ffs->ss_descs_count : 0), 3682 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3683 __ffs_func_bind_do_nums, func); 3684 if (ret < 0) 3685 goto error; 3686 3687 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3688 if (c->cdev->use_os_string) { 3689 for (i = 0; i < ffs->interfaces_count; ++i) { 3690 struct usb_os_desc *desc; 3691 3692 desc = func->function.os_desc_table[i].os_desc = 3693 vla_ptr(vlabuf, d, os_desc) + 3694 i * sizeof(struct usb_os_desc); 3695 desc->ext_compat_id = 3696 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3697 INIT_LIST_HEAD(&desc->ext_prop); 3698 } 3699 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3700 vla_ptr(vlabuf, d, raw_descs) + 3701 fs_len + hs_len + ss_len, 3702 d_raw_descs__sz - fs_len - hs_len - 3703 ss_len, 3704 __ffs_func_bind_do_os_desc, func); 3705 if (ret < 0) 3706 goto error; 3707 } 3708 func->function.os_desc_n = 3709 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3710 3711 /* And we're done */ 3712 ffs_event_add(ffs, FUNCTIONFS_BIND); 3713 return 0; 3714 3715 error: 3716 /* XXX Do we need to release all claimed endpoints here? */ 3717 return ret; 3718 } 3719 3720 static int ffs_func_bind(struct usb_configuration *c, 3721 struct usb_function *f) 3722 { 3723 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3724 struct ffs_function *func = ffs_func_from_usb(f); 3725 int ret; 3726 3727 if (IS_ERR(ffs_opts)) 3728 return PTR_ERR(ffs_opts); 3729 3730 ret = _ffs_func_bind(c, f); 3731 if (ret && !--ffs_opts->refcnt) 3732 functionfs_unbind(func->ffs); 3733 3734 return ret; 3735 } 3736 3737 3738 /* Other USB function hooks *************************************************/ 3739 3740 static void ffs_reset_work(struct work_struct *work) 3741 { 3742 struct ffs_data *ffs = container_of(work, 3743 struct ffs_data, reset_work); 3744 ffs_data_reset(ffs); 3745 } 3746 3747 static int ffs_func_get_alt(struct usb_function *f, 3748 unsigned int interface) 3749 { 3750 struct ffs_function *func = ffs_func_from_usb(f); 3751 int intf = ffs_func_revmap_intf(func, interface); 3752 3753 return (intf < 0) ? intf : func->cur_alt[interface]; 3754 } 3755 3756 static int ffs_func_set_alt(struct usb_function *f, 3757 unsigned interface, unsigned alt) 3758 { 3759 struct ffs_function *func = ffs_func_from_usb(f); 3760 struct ffs_data *ffs = func->ffs; 3761 int ret = 0, intf; 3762 3763 if (alt > MAX_ALT_SETTINGS) 3764 return -EINVAL; 3765 3766 intf = ffs_func_revmap_intf(func, interface); 3767 if (intf < 0) 3768 return intf; 3769 3770 if (ffs->func) 3771 ffs_func_eps_disable(ffs->func); 3772 3773 if (ffs->state == FFS_DEACTIVATED) { 3774 ffs->state = FFS_CLOSING; 3775 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3776 schedule_work(&ffs->reset_work); 3777 return -ENODEV; 3778 } 3779 3780 if (ffs->state != FFS_ACTIVE) 3781 return -ENODEV; 3782 3783 ffs->func = func; 3784 ret = ffs_func_eps_enable(func); 3785 if (ret >= 0) { 3786 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3787 func->cur_alt[interface] = alt; 3788 } 3789 return ret; 3790 } 3791 3792 static void ffs_func_disable(struct usb_function *f) 3793 { 3794 struct ffs_function *func = ffs_func_from_usb(f); 3795 struct ffs_data *ffs = func->ffs; 3796 3797 if (ffs->func) 3798 ffs_func_eps_disable(ffs->func); 3799 3800 if (ffs->state == FFS_DEACTIVATED) { 3801 ffs->state = FFS_CLOSING; 3802 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3803 schedule_work(&ffs->reset_work); 3804 return; 3805 } 3806 3807 if (ffs->state == FFS_ACTIVE) { 3808 ffs->func = NULL; 3809 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3810 } 3811 } 3812 3813 static int ffs_func_setup(struct usb_function *f, 3814 const struct usb_ctrlrequest *creq) 3815 { 3816 struct ffs_function *func = ffs_func_from_usb(f); 3817 struct ffs_data *ffs = func->ffs; 3818 unsigned long flags; 3819 int ret; 3820 3821 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3822 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3823 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3824 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3825 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3826 3827 /* 3828 * Most requests directed to interface go through here 3829 * (notable exceptions are set/get interface) so we need to 3830 * handle them. All other either handled by composite or 3831 * passed to usb_configuration->setup() (if one is set). No 3832 * matter, we will handle requests directed to endpoint here 3833 * as well (as it's straightforward). Other request recipient 3834 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3835 * is being used. 3836 */ 3837 if (ffs->state != FFS_ACTIVE) 3838 return -ENODEV; 3839 3840 switch (creq->bRequestType & USB_RECIP_MASK) { 3841 case USB_RECIP_INTERFACE: 3842 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3843 if (ret < 0) 3844 return ret; 3845 break; 3846 3847 case USB_RECIP_ENDPOINT: 3848 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3849 if (ret < 0) 3850 return ret; 3851 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3852 ret = func->ffs->eps_addrmap[ret]; 3853 break; 3854 3855 default: 3856 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3857 ret = le16_to_cpu(creq->wIndex); 3858 else 3859 return -EOPNOTSUPP; 3860 } 3861 3862 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3863 ffs->ev.setup = *creq; 3864 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3865 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3866 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3867 3868 return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0; 3869 } 3870 3871 static bool ffs_func_req_match(struct usb_function *f, 3872 const struct usb_ctrlrequest *creq, 3873 bool config0) 3874 { 3875 struct ffs_function *func = ffs_func_from_usb(f); 3876 3877 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3878 return false; 3879 3880 switch (creq->bRequestType & USB_RECIP_MASK) { 3881 case USB_RECIP_INTERFACE: 3882 return (ffs_func_revmap_intf(func, 3883 le16_to_cpu(creq->wIndex)) >= 0); 3884 case USB_RECIP_ENDPOINT: 3885 return (ffs_func_revmap_ep(func, 3886 le16_to_cpu(creq->wIndex)) >= 0); 3887 default: 3888 return (bool) (func->ffs->user_flags & 3889 FUNCTIONFS_ALL_CTRL_RECIP); 3890 } 3891 } 3892 3893 static void ffs_func_suspend(struct usb_function *f) 3894 { 3895 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3896 } 3897 3898 static void ffs_func_resume(struct usb_function *f) 3899 { 3900 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3901 } 3902 3903 3904 /* Endpoint and interface numbers reverse mapping ***************************/ 3905 3906 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3907 { 3908 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3909 return num ? num : -EDOM; 3910 } 3911 3912 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3913 { 3914 short *nums = func->interfaces_nums; 3915 unsigned count = func->ffs->interfaces_count; 3916 3917 for (; count; --count, ++nums) { 3918 if (*nums >= 0 && *nums == intf) 3919 return nums - func->interfaces_nums; 3920 } 3921 3922 return -EDOM; 3923 } 3924 3925 3926 /* Devices management *******************************************************/ 3927 3928 static LIST_HEAD(ffs_devices); 3929 3930 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3931 { 3932 struct ffs_dev *dev; 3933 3934 if (!name) 3935 return NULL; 3936 3937 list_for_each_entry(dev, &ffs_devices, entry) { 3938 if (strcmp(dev->name, name) == 0) 3939 return dev; 3940 } 3941 3942 return NULL; 3943 } 3944 3945 /* 3946 * ffs_lock must be taken by the caller of this function 3947 */ 3948 static struct ffs_dev *_ffs_get_single_dev(void) 3949 { 3950 struct ffs_dev *dev; 3951 3952 if (list_is_singular(&ffs_devices)) { 3953 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3954 if (dev->single) 3955 return dev; 3956 } 3957 3958 return NULL; 3959 } 3960 3961 /* 3962 * ffs_lock must be taken by the caller of this function 3963 */ 3964 static struct ffs_dev *_ffs_find_dev(const char *name) 3965 { 3966 struct ffs_dev *dev; 3967 3968 dev = _ffs_get_single_dev(); 3969 if (dev) 3970 return dev; 3971 3972 return _ffs_do_find_dev(name); 3973 } 3974 3975 /* Configfs support *********************************************************/ 3976 3977 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3978 { 3979 return container_of(to_config_group(item), struct f_fs_opts, 3980 func_inst.group); 3981 } 3982 3983 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page) 3984 { 3985 struct f_fs_opts *opts = to_ffs_opts(item); 3986 int ready; 3987 3988 ffs_dev_lock(); 3989 ready = opts->dev->desc_ready; 3990 ffs_dev_unlock(); 3991 3992 return sprintf(page, "%d\n", ready); 3993 } 3994 3995 CONFIGFS_ATTR_RO(f_fs_opts_, ready); 3996 3997 static struct configfs_attribute *ffs_attrs[] = { 3998 &f_fs_opts_attr_ready, 3999 NULL, 4000 }; 4001 4002 static void ffs_attr_release(struct config_item *item) 4003 { 4004 struct f_fs_opts *opts = to_ffs_opts(item); 4005 4006 usb_put_function_instance(&opts->func_inst); 4007 } 4008 4009 static struct configfs_item_operations ffs_item_ops = { 4010 .release = ffs_attr_release, 4011 }; 4012 4013 static const struct config_item_type ffs_func_type = { 4014 .ct_item_ops = &ffs_item_ops, 4015 .ct_attrs = ffs_attrs, 4016 .ct_owner = THIS_MODULE, 4017 }; 4018 4019 4020 /* Function registration interface ******************************************/ 4021 4022 static void ffs_free_inst(struct usb_function_instance *f) 4023 { 4024 struct f_fs_opts *opts; 4025 4026 opts = to_f_fs_opts(f); 4027 ffs_release_dev(opts->dev); 4028 ffs_dev_lock(); 4029 _ffs_free_dev(opts->dev); 4030 ffs_dev_unlock(); 4031 kfree(opts); 4032 } 4033 4034 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 4035 { 4036 if (strlen(name) >= sizeof_field(struct ffs_dev, name)) 4037 return -ENAMETOOLONG; 4038 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 4039 } 4040 4041 static struct usb_function_instance *ffs_alloc_inst(void) 4042 { 4043 struct f_fs_opts *opts; 4044 struct ffs_dev *dev; 4045 4046 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 4047 if (!opts) 4048 return ERR_PTR(-ENOMEM); 4049 4050 opts->func_inst.set_inst_name = ffs_set_inst_name; 4051 opts->func_inst.free_func_inst = ffs_free_inst; 4052 ffs_dev_lock(); 4053 dev = _ffs_alloc_dev(); 4054 ffs_dev_unlock(); 4055 if (IS_ERR(dev)) { 4056 kfree(opts); 4057 return ERR_CAST(dev); 4058 } 4059 opts->dev = dev; 4060 dev->opts = opts; 4061 4062 config_group_init_type_name(&opts->func_inst.group, "", 4063 &ffs_func_type); 4064 return &opts->func_inst; 4065 } 4066 4067 static void ffs_free(struct usb_function *f) 4068 { 4069 kfree(ffs_func_from_usb(f)); 4070 } 4071 4072 static void ffs_func_unbind(struct usb_configuration *c, 4073 struct usb_function *f) 4074 { 4075 struct ffs_function *func = ffs_func_from_usb(f); 4076 struct ffs_data *ffs = func->ffs; 4077 struct f_fs_opts *opts = 4078 container_of(f->fi, struct f_fs_opts, func_inst); 4079 struct ffs_ep *ep = func->eps; 4080 unsigned count = ffs->eps_count; 4081 unsigned long flags; 4082 4083 if (ffs->func == func) { 4084 ffs_func_eps_disable(func); 4085 ffs->func = NULL; 4086 } 4087 4088 /* Drain any pending AIO completions */ 4089 drain_workqueue(ffs->io_completion_wq); 4090 4091 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 4092 if (!--opts->refcnt) 4093 functionfs_unbind(ffs); 4094 4095 /* cleanup after autoconfig */ 4096 spin_lock_irqsave(&func->ffs->eps_lock, flags); 4097 while (count--) { 4098 if (ep->ep && ep->req) 4099 usb_ep_free_request(ep->ep, ep->req); 4100 ep->req = NULL; 4101 ++ep; 4102 } 4103 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 4104 kfree(func->eps); 4105 func->eps = NULL; 4106 /* 4107 * eps, descriptors and interfaces_nums are allocated in the 4108 * same chunk so only one free is required. 4109 */ 4110 func->function.fs_descriptors = NULL; 4111 func->function.hs_descriptors = NULL; 4112 func->function.ss_descriptors = NULL; 4113 func->function.ssp_descriptors = NULL; 4114 func->interfaces_nums = NULL; 4115 4116 } 4117 4118 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 4119 { 4120 struct ffs_function *func; 4121 4122 func = kzalloc(sizeof(*func), GFP_KERNEL); 4123 if (!func) 4124 return ERR_PTR(-ENOMEM); 4125 4126 func->function.name = "Function FS Gadget"; 4127 4128 func->function.bind = ffs_func_bind; 4129 func->function.unbind = ffs_func_unbind; 4130 func->function.set_alt = ffs_func_set_alt; 4131 func->function.get_alt = ffs_func_get_alt; 4132 func->function.disable = ffs_func_disable; 4133 func->function.setup = ffs_func_setup; 4134 func->function.req_match = ffs_func_req_match; 4135 func->function.suspend = ffs_func_suspend; 4136 func->function.resume = ffs_func_resume; 4137 func->function.free_func = ffs_free; 4138 4139 return &func->function; 4140 } 4141 4142 /* 4143 * ffs_lock must be taken by the caller of this function 4144 */ 4145 static struct ffs_dev *_ffs_alloc_dev(void) 4146 { 4147 struct ffs_dev *dev; 4148 int ret; 4149 4150 if (_ffs_get_single_dev()) 4151 return ERR_PTR(-EBUSY); 4152 4153 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4154 if (!dev) 4155 return ERR_PTR(-ENOMEM); 4156 4157 if (list_empty(&ffs_devices)) { 4158 ret = functionfs_init(); 4159 if (ret) { 4160 kfree(dev); 4161 return ERR_PTR(ret); 4162 } 4163 } 4164 4165 list_add(&dev->entry, &ffs_devices); 4166 4167 return dev; 4168 } 4169 4170 int ffs_name_dev(struct ffs_dev *dev, const char *name) 4171 { 4172 struct ffs_dev *existing; 4173 int ret = 0; 4174 4175 ffs_dev_lock(); 4176 4177 existing = _ffs_do_find_dev(name); 4178 if (!existing) 4179 strscpy(dev->name, name, ARRAY_SIZE(dev->name)); 4180 else if (existing != dev) 4181 ret = -EBUSY; 4182 4183 ffs_dev_unlock(); 4184 4185 return ret; 4186 } 4187 EXPORT_SYMBOL_GPL(ffs_name_dev); 4188 4189 int ffs_single_dev(struct ffs_dev *dev) 4190 { 4191 int ret; 4192 4193 ret = 0; 4194 ffs_dev_lock(); 4195 4196 if (!list_is_singular(&ffs_devices)) 4197 ret = -EBUSY; 4198 else 4199 dev->single = true; 4200 4201 ffs_dev_unlock(); 4202 return ret; 4203 } 4204 EXPORT_SYMBOL_GPL(ffs_single_dev); 4205 4206 /* 4207 * ffs_lock must be taken by the caller of this function 4208 */ 4209 static void _ffs_free_dev(struct ffs_dev *dev) 4210 { 4211 list_del(&dev->entry); 4212 4213 kfree(dev); 4214 if (list_empty(&ffs_devices)) 4215 functionfs_cleanup(); 4216 } 4217 4218 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data) 4219 { 4220 int ret = 0; 4221 struct ffs_dev *ffs_dev; 4222 4223 ffs_dev_lock(); 4224 4225 ffs_dev = _ffs_find_dev(dev_name); 4226 if (!ffs_dev) { 4227 ret = -ENOENT; 4228 } else if (ffs_dev->mounted) { 4229 ret = -EBUSY; 4230 } else if (ffs_dev->ffs_acquire_dev_callback && 4231 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) { 4232 ret = -ENOENT; 4233 } else { 4234 ffs_dev->mounted = true; 4235 ffs_dev->ffs_data = ffs_data; 4236 ffs_data->private_data = ffs_dev; 4237 } 4238 4239 ffs_dev_unlock(); 4240 return ret; 4241 } 4242 4243 static void ffs_release_dev(struct ffs_dev *ffs_dev) 4244 { 4245 ffs_dev_lock(); 4246 4247 if (ffs_dev && ffs_dev->mounted) { 4248 ffs_dev->mounted = false; 4249 if (ffs_dev->ffs_data) { 4250 ffs_dev->ffs_data->private_data = NULL; 4251 ffs_dev->ffs_data = NULL; 4252 } 4253 4254 if (ffs_dev->ffs_release_dev_callback) 4255 ffs_dev->ffs_release_dev_callback(ffs_dev); 4256 } 4257 4258 ffs_dev_unlock(); 4259 } 4260 4261 static int ffs_ready(struct ffs_data *ffs) 4262 { 4263 struct ffs_dev *ffs_obj; 4264 int ret = 0; 4265 4266 ffs_dev_lock(); 4267 4268 ffs_obj = ffs->private_data; 4269 if (!ffs_obj) { 4270 ret = -EINVAL; 4271 goto done; 4272 } 4273 if (WARN_ON(ffs_obj->desc_ready)) { 4274 ret = -EBUSY; 4275 goto done; 4276 } 4277 4278 ffs_obj->desc_ready = true; 4279 4280 if (ffs_obj->ffs_ready_callback) { 4281 ret = ffs_obj->ffs_ready_callback(ffs); 4282 if (ret) 4283 goto done; 4284 } 4285 4286 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 4287 done: 4288 ffs_dev_unlock(); 4289 return ret; 4290 } 4291 4292 static void ffs_closed(struct ffs_data *ffs) 4293 { 4294 struct ffs_dev *ffs_obj; 4295 struct f_fs_opts *opts; 4296 struct config_item *ci; 4297 4298 ffs_dev_lock(); 4299 4300 ffs_obj = ffs->private_data; 4301 if (!ffs_obj) 4302 goto done; 4303 4304 ffs_obj->desc_ready = false; 4305 4306 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 4307 ffs_obj->ffs_closed_callback) 4308 ffs_obj->ffs_closed_callback(ffs); 4309 4310 if (ffs_obj->opts) 4311 opts = ffs_obj->opts; 4312 else 4313 goto done; 4314 4315 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 4316 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 4317 goto done; 4318 4319 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 4320 ffs_dev_unlock(); 4321 4322 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 4323 unregister_gadget_item(ci); 4324 return; 4325 done: 4326 ffs_dev_unlock(); 4327 } 4328 4329 /* Misc helper functions ****************************************************/ 4330 4331 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 4332 { 4333 return nonblock 4334 ? mutex_trylock(mutex) ? 0 : -EAGAIN 4335 : mutex_lock_interruptible(mutex); 4336 } 4337 4338 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 4339 { 4340 char *data; 4341 4342 if (!len) 4343 return NULL; 4344 4345 data = memdup_user(buf, len); 4346 if (IS_ERR(data)) 4347 return data; 4348 4349 pr_vdebug("Buffer from user space:\n"); 4350 ffs_dump_mem("", data, len); 4351 4352 return data; 4353 } 4354 4355 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 4356 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers"); 4357 MODULE_LICENSE("GPL"); 4358 MODULE_AUTHOR("Michal Nazarewicz"); 4359