1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * f_fs.c -- user mode file system API for USB composite function controllers 4 * 5 * Copyright (C) 2010 Samsung Electronics 6 * Author: Michal Nazarewicz <mina86@mina86.com> 7 * 8 * Based on inode.c (GadgetFS) which was: 9 * Copyright (C) 2003-2004 David Brownell 10 * Copyright (C) 2003 Agilent Technologies 11 */ 12 13 14 /* #define DEBUG */ 15 /* #define VERBOSE_DEBUG */ 16 17 #include <linux/blkdev.h> 18 #include <linux/pagemap.h> 19 #include <linux/export.h> 20 #include <linux/hid.h> 21 #include <linux/module.h> 22 #include <linux/sched/signal.h> 23 #include <linux/uio.h> 24 #include <asm/unaligned.h> 25 26 #include <linux/usb/composite.h> 27 #include <linux/usb/functionfs.h> 28 29 #include <linux/aio.h> 30 #include <linux/mmu_context.h> 31 #include <linux/poll.h> 32 #include <linux/eventfd.h> 33 34 #include "u_fs.h" 35 #include "u_f.h" 36 #include "u_os_desc.h" 37 #include "configfs.h" 38 39 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 40 41 /* Reference counter handling */ 42 static void ffs_data_get(struct ffs_data *ffs); 43 static void ffs_data_put(struct ffs_data *ffs); 44 /* Creates new ffs_data object. */ 45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name) 46 __attribute__((malloc)); 47 48 /* Opened counter handling. */ 49 static void ffs_data_opened(struct ffs_data *ffs); 50 static void ffs_data_closed(struct ffs_data *ffs); 51 52 /* Called with ffs->mutex held; take over ownership of data. */ 53 static int __must_check 54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 55 static int __must_check 56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 57 58 59 /* The function structure ***************************************************/ 60 61 struct ffs_ep; 62 63 struct ffs_function { 64 struct usb_configuration *conf; 65 struct usb_gadget *gadget; 66 struct ffs_data *ffs; 67 68 struct ffs_ep *eps; 69 u8 eps_revmap[16]; 70 short *interfaces_nums; 71 72 struct usb_function function; 73 }; 74 75 76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 77 { 78 return container_of(f, struct ffs_function, function); 79 } 80 81 82 static inline enum ffs_setup_state 83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 84 { 85 return (enum ffs_setup_state) 86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 87 } 88 89 90 static void ffs_func_eps_disable(struct ffs_function *func); 91 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 92 93 static int ffs_func_bind(struct usb_configuration *, 94 struct usb_function *); 95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 96 static void ffs_func_disable(struct usb_function *); 97 static int ffs_func_setup(struct usb_function *, 98 const struct usb_ctrlrequest *); 99 static bool ffs_func_req_match(struct usb_function *, 100 const struct usb_ctrlrequest *, 101 bool config0); 102 static void ffs_func_suspend(struct usb_function *); 103 static void ffs_func_resume(struct usb_function *); 104 105 106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 108 109 110 /* The endpoints structures *************************************************/ 111 112 struct ffs_ep { 113 struct usb_ep *ep; /* P: ffs->eps_lock */ 114 struct usb_request *req; /* P: epfile->mutex */ 115 116 /* [0]: full speed, [1]: high speed, [2]: super speed */ 117 struct usb_endpoint_descriptor *descs[3]; 118 119 u8 num; 120 121 int status; /* P: epfile->mutex */ 122 }; 123 124 struct ffs_epfile { 125 /* Protects ep->ep and ep->req. */ 126 struct mutex mutex; 127 128 struct ffs_data *ffs; 129 struct ffs_ep *ep; /* P: ffs->eps_lock */ 130 131 struct dentry *dentry; 132 133 /* 134 * Buffer for holding data from partial reads which may happen since 135 * we’re rounding user read requests to a multiple of a max packet size. 136 * 137 * The pointer is initialised with NULL value and may be set by 138 * __ffs_epfile_read_data function to point to a temporary buffer. 139 * 140 * In normal operation, calls to __ffs_epfile_read_buffered will consume 141 * data from said buffer and eventually free it. Importantly, while the 142 * function is using the buffer, it sets the pointer to NULL. This is 143 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered 144 * can never run concurrently (they are synchronised by epfile->mutex) 145 * so the latter will not assign a new value to the pointer. 146 * 147 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is 148 * valid) and sets the pointer to READ_BUFFER_DROP value. This special 149 * value is crux of the synchronisation between ffs_func_eps_disable and 150 * __ffs_epfile_read_data. 151 * 152 * Once __ffs_epfile_read_data is about to finish it will try to set the 153 * pointer back to its old value (as described above), but seeing as the 154 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free 155 * the buffer. 156 * 157 * == State transitions == 158 * 159 * • ptr == NULL: (initial state) 160 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP 161 * ◦ __ffs_epfile_read_buffered: nop 162 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf 163 * ◦ reading finishes: n/a, not in ‘and reading’ state 164 * • ptr == DROP: 165 * ◦ __ffs_epfile_read_buffer_free: nop 166 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL 167 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop 168 * ◦ reading finishes: n/a, not in ‘and reading’ state 169 * • ptr == buf: 170 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP 171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading 172 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered 173 * is always called first 174 * ◦ reading finishes: n/a, not in ‘and reading’ state 175 * • ptr == NULL and reading: 176 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading 177 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 178 * ◦ __ffs_epfile_read_data: n/a, mutex is held 179 * ◦ reading finishes and … 180 * … all data read: free buf, go to ptr == NULL 181 * … otherwise: go to ptr == buf and reading 182 * • ptr == DROP and reading: 183 * ◦ __ffs_epfile_read_buffer_free: nop 184 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held 185 * ◦ __ffs_epfile_read_data: n/a, mutex is held 186 * ◦ reading finishes: free buf, go to ptr == DROP 187 */ 188 struct ffs_buffer *read_buffer; 189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN)) 190 191 char name[5]; 192 193 unsigned char in; /* P: ffs->eps_lock */ 194 unsigned char isoc; /* P: ffs->eps_lock */ 195 196 unsigned char _pad; 197 }; 198 199 struct ffs_buffer { 200 size_t length; 201 char *data; 202 char storage[]; 203 }; 204 205 /* ffs_io_data structure ***************************************************/ 206 207 struct ffs_io_data { 208 bool aio; 209 bool read; 210 211 struct kiocb *kiocb; 212 struct iov_iter data; 213 const void *to_free; 214 char *buf; 215 216 struct mm_struct *mm; 217 struct work_struct work; 218 219 struct usb_ep *ep; 220 struct usb_request *req; 221 222 struct ffs_data *ffs; 223 }; 224 225 struct ffs_desc_helper { 226 struct ffs_data *ffs; 227 unsigned interfaces_count; 228 unsigned eps_count; 229 }; 230 231 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 233 234 static struct dentry * 235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 236 const struct file_operations *fops); 237 238 /* Devices management *******************************************************/ 239 240 DEFINE_MUTEX(ffs_lock); 241 EXPORT_SYMBOL_GPL(ffs_lock); 242 243 static struct ffs_dev *_ffs_find_dev(const char *name); 244 static struct ffs_dev *_ffs_alloc_dev(void); 245 static void _ffs_free_dev(struct ffs_dev *dev); 246 static void *ffs_acquire_dev(const char *dev_name); 247 static void ffs_release_dev(struct ffs_data *ffs_data); 248 static int ffs_ready(struct ffs_data *ffs); 249 static void ffs_closed(struct ffs_data *ffs); 250 251 /* Misc helper functions ****************************************************/ 252 253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 254 __attribute__((warn_unused_result, nonnull)); 255 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 256 __attribute__((warn_unused_result, nonnull)); 257 258 259 /* Control file aka ep0 *****************************************************/ 260 261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 262 { 263 struct ffs_data *ffs = req->context; 264 265 complete(&ffs->ep0req_completion); 266 } 267 268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 269 __releases(&ffs->ev.waitq.lock) 270 { 271 struct usb_request *req = ffs->ep0req; 272 int ret; 273 274 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 275 276 spin_unlock_irq(&ffs->ev.waitq.lock); 277 278 req->buf = data; 279 req->length = len; 280 281 /* 282 * UDC layer requires to provide a buffer even for ZLP, but should 283 * not use it at all. Let's provide some poisoned pointer to catch 284 * possible bug in the driver. 285 */ 286 if (req->buf == NULL) 287 req->buf = (void *)0xDEADBABE; 288 289 reinit_completion(&ffs->ep0req_completion); 290 291 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 292 if (unlikely(ret < 0)) 293 return ret; 294 295 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 296 if (unlikely(ret)) { 297 usb_ep_dequeue(ffs->gadget->ep0, req); 298 return -EINTR; 299 } 300 301 ffs->setup_state = FFS_NO_SETUP; 302 return req->status ? req->status : req->actual; 303 } 304 305 static int __ffs_ep0_stall(struct ffs_data *ffs) 306 { 307 if (ffs->ev.can_stall) { 308 pr_vdebug("ep0 stall\n"); 309 usb_ep_set_halt(ffs->gadget->ep0); 310 ffs->setup_state = FFS_NO_SETUP; 311 return -EL2HLT; 312 } else { 313 pr_debug("bogus ep0 stall!\n"); 314 return -ESRCH; 315 } 316 } 317 318 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 319 size_t len, loff_t *ptr) 320 { 321 struct ffs_data *ffs = file->private_data; 322 ssize_t ret; 323 char *data; 324 325 ENTER(); 326 327 /* Fast check if setup was canceled */ 328 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 329 return -EIDRM; 330 331 /* Acquire mutex */ 332 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 333 if (unlikely(ret < 0)) 334 return ret; 335 336 /* Check state */ 337 switch (ffs->state) { 338 case FFS_READ_DESCRIPTORS: 339 case FFS_READ_STRINGS: 340 /* Copy data */ 341 if (unlikely(len < 16)) { 342 ret = -EINVAL; 343 break; 344 } 345 346 data = ffs_prepare_buffer(buf, len); 347 if (IS_ERR(data)) { 348 ret = PTR_ERR(data); 349 break; 350 } 351 352 /* Handle data */ 353 if (ffs->state == FFS_READ_DESCRIPTORS) { 354 pr_info("read descriptors\n"); 355 ret = __ffs_data_got_descs(ffs, data, len); 356 if (unlikely(ret < 0)) 357 break; 358 359 ffs->state = FFS_READ_STRINGS; 360 ret = len; 361 } else { 362 pr_info("read strings\n"); 363 ret = __ffs_data_got_strings(ffs, data, len); 364 if (unlikely(ret < 0)) 365 break; 366 367 ret = ffs_epfiles_create(ffs); 368 if (unlikely(ret)) { 369 ffs->state = FFS_CLOSING; 370 break; 371 } 372 373 ffs->state = FFS_ACTIVE; 374 mutex_unlock(&ffs->mutex); 375 376 ret = ffs_ready(ffs); 377 if (unlikely(ret < 0)) { 378 ffs->state = FFS_CLOSING; 379 return ret; 380 } 381 382 return len; 383 } 384 break; 385 386 case FFS_ACTIVE: 387 data = NULL; 388 /* 389 * We're called from user space, we can use _irq 390 * rather then _irqsave 391 */ 392 spin_lock_irq(&ffs->ev.waitq.lock); 393 switch (ffs_setup_state_clear_cancelled(ffs)) { 394 case FFS_SETUP_CANCELLED: 395 ret = -EIDRM; 396 goto done_spin; 397 398 case FFS_NO_SETUP: 399 ret = -ESRCH; 400 goto done_spin; 401 402 case FFS_SETUP_PENDING: 403 break; 404 } 405 406 /* FFS_SETUP_PENDING */ 407 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 408 spin_unlock_irq(&ffs->ev.waitq.lock); 409 ret = __ffs_ep0_stall(ffs); 410 break; 411 } 412 413 /* FFS_SETUP_PENDING and not stall */ 414 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 415 416 spin_unlock_irq(&ffs->ev.waitq.lock); 417 418 data = ffs_prepare_buffer(buf, len); 419 if (IS_ERR(data)) { 420 ret = PTR_ERR(data); 421 break; 422 } 423 424 spin_lock_irq(&ffs->ev.waitq.lock); 425 426 /* 427 * We are guaranteed to be still in FFS_ACTIVE state 428 * but the state of setup could have changed from 429 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 430 * to check for that. If that happened we copied data 431 * from user space in vain but it's unlikely. 432 * 433 * For sure we are not in FFS_NO_SETUP since this is 434 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 435 * transition can be performed and it's protected by 436 * mutex. 437 */ 438 if (ffs_setup_state_clear_cancelled(ffs) == 439 FFS_SETUP_CANCELLED) { 440 ret = -EIDRM; 441 done_spin: 442 spin_unlock_irq(&ffs->ev.waitq.lock); 443 } else { 444 /* unlocks spinlock */ 445 ret = __ffs_ep0_queue_wait(ffs, data, len); 446 } 447 kfree(data); 448 break; 449 450 default: 451 ret = -EBADFD; 452 break; 453 } 454 455 mutex_unlock(&ffs->mutex); 456 return ret; 457 } 458 459 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */ 460 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 461 size_t n) 462 __releases(&ffs->ev.waitq.lock) 463 { 464 /* 465 * n cannot be bigger than ffs->ev.count, which cannot be bigger than 466 * size of ffs->ev.types array (which is four) so that's how much space 467 * we reserve. 468 */ 469 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)]; 470 const size_t size = n * sizeof *events; 471 unsigned i = 0; 472 473 memset(events, 0, size); 474 475 do { 476 events[i].type = ffs->ev.types[i]; 477 if (events[i].type == FUNCTIONFS_SETUP) { 478 events[i].u.setup = ffs->ev.setup; 479 ffs->setup_state = FFS_SETUP_PENDING; 480 } 481 } while (++i < n); 482 483 ffs->ev.count -= n; 484 if (ffs->ev.count) 485 memmove(ffs->ev.types, ffs->ev.types + n, 486 ffs->ev.count * sizeof *ffs->ev.types); 487 488 spin_unlock_irq(&ffs->ev.waitq.lock); 489 mutex_unlock(&ffs->mutex); 490 491 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size; 492 } 493 494 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 495 size_t len, loff_t *ptr) 496 { 497 struct ffs_data *ffs = file->private_data; 498 char *data = NULL; 499 size_t n; 500 int ret; 501 502 ENTER(); 503 504 /* Fast check if setup was canceled */ 505 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 506 return -EIDRM; 507 508 /* Acquire mutex */ 509 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 510 if (unlikely(ret < 0)) 511 return ret; 512 513 /* Check state */ 514 if (ffs->state != FFS_ACTIVE) { 515 ret = -EBADFD; 516 goto done_mutex; 517 } 518 519 /* 520 * We're called from user space, we can use _irq rather then 521 * _irqsave 522 */ 523 spin_lock_irq(&ffs->ev.waitq.lock); 524 525 switch (ffs_setup_state_clear_cancelled(ffs)) { 526 case FFS_SETUP_CANCELLED: 527 ret = -EIDRM; 528 break; 529 530 case FFS_NO_SETUP: 531 n = len / sizeof(struct usb_functionfs_event); 532 if (unlikely(!n)) { 533 ret = -EINVAL; 534 break; 535 } 536 537 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 538 ret = -EAGAIN; 539 break; 540 } 541 542 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 543 ffs->ev.count)) { 544 ret = -EINTR; 545 break; 546 } 547 548 /* unlocks spinlock */ 549 return __ffs_ep0_read_events(ffs, buf, 550 min(n, (size_t)ffs->ev.count)); 551 552 case FFS_SETUP_PENDING: 553 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 554 spin_unlock_irq(&ffs->ev.waitq.lock); 555 ret = __ffs_ep0_stall(ffs); 556 goto done_mutex; 557 } 558 559 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 560 561 spin_unlock_irq(&ffs->ev.waitq.lock); 562 563 if (likely(len)) { 564 data = kmalloc(len, GFP_KERNEL); 565 if (unlikely(!data)) { 566 ret = -ENOMEM; 567 goto done_mutex; 568 } 569 } 570 571 spin_lock_irq(&ffs->ev.waitq.lock); 572 573 /* See ffs_ep0_write() */ 574 if (ffs_setup_state_clear_cancelled(ffs) == 575 FFS_SETUP_CANCELLED) { 576 ret = -EIDRM; 577 break; 578 } 579 580 /* unlocks spinlock */ 581 ret = __ffs_ep0_queue_wait(ffs, data, len); 582 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len))) 583 ret = -EFAULT; 584 goto done_mutex; 585 586 default: 587 ret = -EBADFD; 588 break; 589 } 590 591 spin_unlock_irq(&ffs->ev.waitq.lock); 592 done_mutex: 593 mutex_unlock(&ffs->mutex); 594 kfree(data); 595 return ret; 596 } 597 598 static int ffs_ep0_open(struct inode *inode, struct file *file) 599 { 600 struct ffs_data *ffs = inode->i_private; 601 602 ENTER(); 603 604 if (unlikely(ffs->state == FFS_CLOSING)) 605 return -EBUSY; 606 607 file->private_data = ffs; 608 ffs_data_opened(ffs); 609 610 return 0; 611 } 612 613 static int ffs_ep0_release(struct inode *inode, struct file *file) 614 { 615 struct ffs_data *ffs = file->private_data; 616 617 ENTER(); 618 619 ffs_data_closed(ffs); 620 621 return 0; 622 } 623 624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 625 { 626 struct ffs_data *ffs = file->private_data; 627 struct usb_gadget *gadget = ffs->gadget; 628 long ret; 629 630 ENTER(); 631 632 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 633 struct ffs_function *func = ffs->func; 634 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 635 } else if (gadget && gadget->ops->ioctl) { 636 ret = gadget->ops->ioctl(gadget, code, value); 637 } else { 638 ret = -ENOTTY; 639 } 640 641 return ret; 642 } 643 644 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait) 645 { 646 struct ffs_data *ffs = file->private_data; 647 __poll_t mask = EPOLLWRNORM; 648 int ret; 649 650 poll_wait(file, &ffs->ev.waitq, wait); 651 652 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 653 if (unlikely(ret < 0)) 654 return mask; 655 656 switch (ffs->state) { 657 case FFS_READ_DESCRIPTORS: 658 case FFS_READ_STRINGS: 659 mask |= EPOLLOUT; 660 break; 661 662 case FFS_ACTIVE: 663 switch (ffs->setup_state) { 664 case FFS_NO_SETUP: 665 if (ffs->ev.count) 666 mask |= EPOLLIN; 667 break; 668 669 case FFS_SETUP_PENDING: 670 case FFS_SETUP_CANCELLED: 671 mask |= (EPOLLIN | EPOLLOUT); 672 break; 673 } 674 case FFS_CLOSING: 675 break; 676 case FFS_DEACTIVATED: 677 break; 678 } 679 680 mutex_unlock(&ffs->mutex); 681 682 return mask; 683 } 684 685 static const struct file_operations ffs_ep0_operations = { 686 .llseek = no_llseek, 687 688 .open = ffs_ep0_open, 689 .write = ffs_ep0_write, 690 .read = ffs_ep0_read, 691 .release = ffs_ep0_release, 692 .unlocked_ioctl = ffs_ep0_ioctl, 693 .poll = ffs_ep0_poll, 694 }; 695 696 697 /* "Normal" endpoints operations ********************************************/ 698 699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 700 { 701 ENTER(); 702 if (likely(req->context)) { 703 struct ffs_ep *ep = _ep->driver_data; 704 ep->status = req->status ? req->status : req->actual; 705 complete(req->context); 706 } 707 } 708 709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter) 710 { 711 ssize_t ret = copy_to_iter(data, data_len, iter); 712 if (likely(ret == data_len)) 713 return ret; 714 715 if (unlikely(iov_iter_count(iter))) 716 return -EFAULT; 717 718 /* 719 * Dear user space developer! 720 * 721 * TL;DR: To stop getting below error message in your kernel log, change 722 * user space code using functionfs to align read buffers to a max 723 * packet size. 724 * 725 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max 726 * packet size. When unaligned buffer is passed to functionfs, it 727 * internally uses a larger, aligned buffer so that such UDCs are happy. 728 * 729 * Unfortunately, this means that host may send more data than was 730 * requested in read(2) system call. f_fs doesn’t know what to do with 731 * that excess data so it simply drops it. 732 * 733 * Was the buffer aligned in the first place, no such problem would 734 * happen. 735 * 736 * Data may be dropped only in AIO reads. Synchronous reads are handled 737 * by splitting a request into multiple parts. This splitting may still 738 * be a problem though so it’s likely best to align the buffer 739 * regardless of it being AIO or not.. 740 * 741 * This only affects OUT endpoints, i.e. reading data with a read(2), 742 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not 743 * affected. 744 */ 745 pr_err("functionfs read size %d > requested size %zd, dropping excess data. " 746 "Align read buffer size to max packet size to avoid the problem.\n", 747 data_len, ret); 748 749 return ret; 750 } 751 752 static void ffs_user_copy_worker(struct work_struct *work) 753 { 754 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 755 work); 756 int ret = io_data->req->status ? io_data->req->status : 757 io_data->req->actual; 758 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD; 759 760 if (io_data->read && ret > 0) { 761 mm_segment_t oldfs = get_fs(); 762 763 set_fs(USER_DS); 764 use_mm(io_data->mm); 765 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data); 766 unuse_mm(io_data->mm); 767 set_fs(oldfs); 768 } 769 770 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret); 771 772 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd) 773 eventfd_signal(io_data->ffs->ffs_eventfd, 1); 774 775 usb_ep_free_request(io_data->ep, io_data->req); 776 777 if (io_data->read) 778 kfree(io_data->to_free); 779 kfree(io_data->buf); 780 kfree(io_data); 781 } 782 783 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 784 struct usb_request *req) 785 { 786 struct ffs_io_data *io_data = req->context; 787 struct ffs_data *ffs = io_data->ffs; 788 789 ENTER(); 790 791 INIT_WORK(&io_data->work, ffs_user_copy_worker); 792 queue_work(ffs->io_completion_wq, &io_data->work); 793 } 794 795 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile) 796 { 797 /* 798 * See comment in struct ffs_epfile for full read_buffer pointer 799 * synchronisation story. 800 */ 801 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP); 802 if (buf && buf != READ_BUFFER_DROP) 803 kfree(buf); 804 } 805 806 /* Assumes epfile->mutex is held. */ 807 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile, 808 struct iov_iter *iter) 809 { 810 /* 811 * Null out epfile->read_buffer so ffs_func_eps_disable does not free 812 * the buffer while we are using it. See comment in struct ffs_epfile 813 * for full read_buffer pointer synchronisation story. 814 */ 815 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL); 816 ssize_t ret; 817 if (!buf || buf == READ_BUFFER_DROP) 818 return 0; 819 820 ret = copy_to_iter(buf->data, buf->length, iter); 821 if (buf->length == ret) { 822 kfree(buf); 823 return ret; 824 } 825 826 if (unlikely(iov_iter_count(iter))) { 827 ret = -EFAULT; 828 } else { 829 buf->length -= ret; 830 buf->data += ret; 831 } 832 833 if (cmpxchg(&epfile->read_buffer, NULL, buf)) 834 kfree(buf); 835 836 return ret; 837 } 838 839 /* Assumes epfile->mutex is held. */ 840 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile, 841 void *data, int data_len, 842 struct iov_iter *iter) 843 { 844 struct ffs_buffer *buf; 845 846 ssize_t ret = copy_to_iter(data, data_len, iter); 847 if (likely(data_len == ret)) 848 return ret; 849 850 if (unlikely(iov_iter_count(iter))) 851 return -EFAULT; 852 853 /* See ffs_copy_to_iter for more context. */ 854 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.", 855 data_len, ret); 856 857 data_len -= ret; 858 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL); 859 if (!buf) 860 return -ENOMEM; 861 buf->length = data_len; 862 buf->data = buf->storage; 863 memcpy(buf->storage, data + ret, data_len); 864 865 /* 866 * At this point read_buffer is NULL or READ_BUFFER_DROP (if 867 * ffs_func_eps_disable has been called in the meanwhile). See comment 868 * in struct ffs_epfile for full read_buffer pointer synchronisation 869 * story. 870 */ 871 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf))) 872 kfree(buf); 873 874 return ret; 875 } 876 877 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 878 { 879 struct ffs_epfile *epfile = file->private_data; 880 struct usb_request *req; 881 struct ffs_ep *ep; 882 char *data = NULL; 883 ssize_t ret, data_len = -EINVAL; 884 int halt; 885 886 /* Are we still active? */ 887 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 888 return -ENODEV; 889 890 /* Wait for endpoint to be enabled */ 891 ep = epfile->ep; 892 if (!ep) { 893 if (file->f_flags & O_NONBLOCK) 894 return -EAGAIN; 895 896 ret = wait_event_interruptible( 897 epfile->ffs->wait, (ep = epfile->ep)); 898 if (ret) 899 return -EINTR; 900 } 901 902 /* Do we halt? */ 903 halt = (!io_data->read == !epfile->in); 904 if (halt && epfile->isoc) 905 return -EINVAL; 906 907 /* We will be using request and read_buffer */ 908 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 909 if (unlikely(ret)) 910 goto error; 911 912 /* Allocate & copy */ 913 if (!halt) { 914 struct usb_gadget *gadget; 915 916 /* 917 * Do we have buffered data from previous partial read? Check 918 * that for synchronous case only because we do not have 919 * facility to ‘wake up’ a pending asynchronous read and push 920 * buffered data to it which we would need to make things behave 921 * consistently. 922 */ 923 if (!io_data->aio && io_data->read) { 924 ret = __ffs_epfile_read_buffered(epfile, &io_data->data); 925 if (ret) 926 goto error_mutex; 927 } 928 929 /* 930 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 931 * before the waiting completes, so do not assign to 'gadget' 932 * earlier 933 */ 934 gadget = epfile->ffs->gadget; 935 936 spin_lock_irq(&epfile->ffs->eps_lock); 937 /* In the meantime, endpoint got disabled or changed. */ 938 if (epfile->ep != ep) { 939 ret = -ESHUTDOWN; 940 goto error_lock; 941 } 942 data_len = iov_iter_count(&io_data->data); 943 /* 944 * Controller may require buffer size to be aligned to 945 * maxpacketsize of an out endpoint. 946 */ 947 if (io_data->read) 948 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len); 949 spin_unlock_irq(&epfile->ffs->eps_lock); 950 951 data = kmalloc(data_len, GFP_KERNEL); 952 if (unlikely(!data)) { 953 ret = -ENOMEM; 954 goto error_mutex; 955 } 956 if (!io_data->read && 957 !copy_from_iter_full(data, data_len, &io_data->data)) { 958 ret = -EFAULT; 959 goto error_mutex; 960 } 961 } 962 963 spin_lock_irq(&epfile->ffs->eps_lock); 964 965 if (epfile->ep != ep) { 966 /* In the meantime, endpoint got disabled or changed. */ 967 ret = -ESHUTDOWN; 968 } else if (halt) { 969 ret = usb_ep_set_halt(ep->ep); 970 if (!ret) 971 ret = -EBADMSG; 972 } else if (unlikely(data_len == -EINVAL)) { 973 /* 974 * Sanity Check: even though data_len can't be used 975 * uninitialized at the time I write this comment, some 976 * compilers complain about this situation. 977 * In order to keep the code clean from warnings, data_len is 978 * being initialized to -EINVAL during its declaration, which 979 * means we can't rely on compiler anymore to warn no future 980 * changes won't result in data_len being used uninitialized. 981 * For such reason, we're adding this redundant sanity check 982 * here. 983 */ 984 WARN(1, "%s: data_len == -EINVAL\n", __func__); 985 ret = -EINVAL; 986 } else if (!io_data->aio) { 987 DECLARE_COMPLETION_ONSTACK(done); 988 bool interrupted = false; 989 990 req = ep->req; 991 req->buf = data; 992 req->length = data_len; 993 994 req->context = &done; 995 req->complete = ffs_epfile_io_complete; 996 997 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 998 if (unlikely(ret < 0)) 999 goto error_lock; 1000 1001 spin_unlock_irq(&epfile->ffs->eps_lock); 1002 1003 if (unlikely(wait_for_completion_interruptible(&done))) { 1004 /* 1005 * To avoid race condition with ffs_epfile_io_complete, 1006 * dequeue the request first then check 1007 * status. usb_ep_dequeue API should guarantee no race 1008 * condition with req->complete callback. 1009 */ 1010 usb_ep_dequeue(ep->ep, req); 1011 interrupted = ep->status < 0; 1012 } 1013 1014 if (interrupted) 1015 ret = -EINTR; 1016 else if (io_data->read && ep->status > 0) 1017 ret = __ffs_epfile_read_data(epfile, data, ep->status, 1018 &io_data->data); 1019 else 1020 ret = ep->status; 1021 goto error_mutex; 1022 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) { 1023 ret = -ENOMEM; 1024 } else { 1025 req->buf = data; 1026 req->length = data_len; 1027 1028 io_data->buf = data; 1029 io_data->ep = ep->ep; 1030 io_data->req = req; 1031 io_data->ffs = epfile->ffs; 1032 1033 req->context = io_data; 1034 req->complete = ffs_epfile_async_io_complete; 1035 1036 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 1037 if (unlikely(ret)) { 1038 usb_ep_free_request(ep->ep, req); 1039 goto error_lock; 1040 } 1041 1042 ret = -EIOCBQUEUED; 1043 /* 1044 * Do not kfree the buffer in this function. It will be freed 1045 * by ffs_user_copy_worker. 1046 */ 1047 data = NULL; 1048 } 1049 1050 error_lock: 1051 spin_unlock_irq(&epfile->ffs->eps_lock); 1052 error_mutex: 1053 mutex_unlock(&epfile->mutex); 1054 error: 1055 kfree(data); 1056 return ret; 1057 } 1058 1059 static int 1060 ffs_epfile_open(struct inode *inode, struct file *file) 1061 { 1062 struct ffs_epfile *epfile = inode->i_private; 1063 1064 ENTER(); 1065 1066 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1067 return -ENODEV; 1068 1069 file->private_data = epfile; 1070 ffs_data_opened(epfile->ffs); 1071 1072 return 0; 1073 } 1074 1075 static int ffs_aio_cancel(struct kiocb *kiocb) 1076 { 1077 struct ffs_io_data *io_data = kiocb->private; 1078 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 1079 int value; 1080 1081 ENTER(); 1082 1083 spin_lock_irq(&epfile->ffs->eps_lock); 1084 1085 if (likely(io_data && io_data->ep && io_data->req)) 1086 value = usb_ep_dequeue(io_data->ep, io_data->req); 1087 else 1088 value = -EINVAL; 1089 1090 spin_unlock_irq(&epfile->ffs->eps_lock); 1091 1092 return value; 1093 } 1094 1095 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from) 1096 { 1097 struct ffs_io_data io_data, *p = &io_data; 1098 ssize_t res; 1099 1100 ENTER(); 1101 1102 if (!is_sync_kiocb(kiocb)) { 1103 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1104 if (unlikely(!p)) 1105 return -ENOMEM; 1106 p->aio = true; 1107 } else { 1108 p->aio = false; 1109 } 1110 1111 p->read = false; 1112 p->kiocb = kiocb; 1113 p->data = *from; 1114 p->mm = current->mm; 1115 1116 kiocb->private = p; 1117 1118 if (p->aio) 1119 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1120 1121 res = ffs_epfile_io(kiocb->ki_filp, p); 1122 if (res == -EIOCBQUEUED) 1123 return res; 1124 if (p->aio) 1125 kfree(p); 1126 else 1127 *from = p->data; 1128 return res; 1129 } 1130 1131 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to) 1132 { 1133 struct ffs_io_data io_data, *p = &io_data; 1134 ssize_t res; 1135 1136 ENTER(); 1137 1138 if (!is_sync_kiocb(kiocb)) { 1139 p = kmalloc(sizeof(io_data), GFP_KERNEL); 1140 if (unlikely(!p)) 1141 return -ENOMEM; 1142 p->aio = true; 1143 } else { 1144 p->aio = false; 1145 } 1146 1147 p->read = true; 1148 p->kiocb = kiocb; 1149 if (p->aio) { 1150 p->to_free = dup_iter(&p->data, to, GFP_KERNEL); 1151 if (!p->to_free) { 1152 kfree(p); 1153 return -ENOMEM; 1154 } 1155 } else { 1156 p->data = *to; 1157 p->to_free = NULL; 1158 } 1159 p->mm = current->mm; 1160 1161 kiocb->private = p; 1162 1163 if (p->aio) 1164 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 1165 1166 res = ffs_epfile_io(kiocb->ki_filp, p); 1167 if (res == -EIOCBQUEUED) 1168 return res; 1169 1170 if (p->aio) { 1171 kfree(p->to_free); 1172 kfree(p); 1173 } else { 1174 *to = p->data; 1175 } 1176 return res; 1177 } 1178 1179 static int 1180 ffs_epfile_release(struct inode *inode, struct file *file) 1181 { 1182 struct ffs_epfile *epfile = inode->i_private; 1183 1184 ENTER(); 1185 1186 __ffs_epfile_read_buffer_free(epfile); 1187 ffs_data_closed(epfile->ffs); 1188 1189 return 0; 1190 } 1191 1192 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1193 unsigned long value) 1194 { 1195 struct ffs_epfile *epfile = file->private_data; 1196 struct ffs_ep *ep; 1197 int ret; 1198 1199 ENTER(); 1200 1201 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1202 return -ENODEV; 1203 1204 /* Wait for endpoint to be enabled */ 1205 ep = epfile->ep; 1206 if (!ep) { 1207 if (file->f_flags & O_NONBLOCK) 1208 return -EAGAIN; 1209 1210 ret = wait_event_interruptible( 1211 epfile->ffs->wait, (ep = epfile->ep)); 1212 if (ret) 1213 return -EINTR; 1214 } 1215 1216 spin_lock_irq(&epfile->ffs->eps_lock); 1217 1218 /* In the meantime, endpoint got disabled or changed. */ 1219 if (epfile->ep != ep) { 1220 spin_unlock_irq(&epfile->ffs->eps_lock); 1221 return -ESHUTDOWN; 1222 } 1223 1224 switch (code) { 1225 case FUNCTIONFS_FIFO_STATUS: 1226 ret = usb_ep_fifo_status(epfile->ep->ep); 1227 break; 1228 case FUNCTIONFS_FIFO_FLUSH: 1229 usb_ep_fifo_flush(epfile->ep->ep); 1230 ret = 0; 1231 break; 1232 case FUNCTIONFS_CLEAR_HALT: 1233 ret = usb_ep_clear_halt(epfile->ep->ep); 1234 break; 1235 case FUNCTIONFS_ENDPOINT_REVMAP: 1236 ret = epfile->ep->num; 1237 break; 1238 case FUNCTIONFS_ENDPOINT_DESC: 1239 { 1240 int desc_idx; 1241 struct usb_endpoint_descriptor *desc; 1242 1243 switch (epfile->ffs->gadget->speed) { 1244 case USB_SPEED_SUPER: 1245 desc_idx = 2; 1246 break; 1247 case USB_SPEED_HIGH: 1248 desc_idx = 1; 1249 break; 1250 default: 1251 desc_idx = 0; 1252 } 1253 desc = epfile->ep->descs[desc_idx]; 1254 1255 spin_unlock_irq(&epfile->ffs->eps_lock); 1256 ret = copy_to_user((void __user *)value, desc, desc->bLength); 1257 if (ret) 1258 ret = -EFAULT; 1259 return ret; 1260 } 1261 default: 1262 ret = -ENOTTY; 1263 } 1264 spin_unlock_irq(&epfile->ffs->eps_lock); 1265 1266 return ret; 1267 } 1268 1269 static const struct file_operations ffs_epfile_operations = { 1270 .llseek = no_llseek, 1271 1272 .open = ffs_epfile_open, 1273 .write_iter = ffs_epfile_write_iter, 1274 .read_iter = ffs_epfile_read_iter, 1275 .release = ffs_epfile_release, 1276 .unlocked_ioctl = ffs_epfile_ioctl, 1277 }; 1278 1279 1280 /* File system and super block operations ***********************************/ 1281 1282 /* 1283 * Mounting the file system creates a controller file, used first for 1284 * function configuration then later for event monitoring. 1285 */ 1286 1287 static struct inode *__must_check 1288 ffs_sb_make_inode(struct super_block *sb, void *data, 1289 const struct file_operations *fops, 1290 const struct inode_operations *iops, 1291 struct ffs_file_perms *perms) 1292 { 1293 struct inode *inode; 1294 1295 ENTER(); 1296 1297 inode = new_inode(sb); 1298 1299 if (likely(inode)) { 1300 struct timespec ts = current_time(inode); 1301 1302 inode->i_ino = get_next_ino(); 1303 inode->i_mode = perms->mode; 1304 inode->i_uid = perms->uid; 1305 inode->i_gid = perms->gid; 1306 inode->i_atime = ts; 1307 inode->i_mtime = ts; 1308 inode->i_ctime = ts; 1309 inode->i_private = data; 1310 if (fops) 1311 inode->i_fop = fops; 1312 if (iops) 1313 inode->i_op = iops; 1314 } 1315 1316 return inode; 1317 } 1318 1319 /* Create "regular" file */ 1320 static struct dentry *ffs_sb_create_file(struct super_block *sb, 1321 const char *name, void *data, 1322 const struct file_operations *fops) 1323 { 1324 struct ffs_data *ffs = sb->s_fs_info; 1325 struct dentry *dentry; 1326 struct inode *inode; 1327 1328 ENTER(); 1329 1330 dentry = d_alloc_name(sb->s_root, name); 1331 if (unlikely(!dentry)) 1332 return NULL; 1333 1334 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1335 if (unlikely(!inode)) { 1336 dput(dentry); 1337 return NULL; 1338 } 1339 1340 d_add(dentry, inode); 1341 return dentry; 1342 } 1343 1344 /* Super block */ 1345 static const struct super_operations ffs_sb_operations = { 1346 .statfs = simple_statfs, 1347 .drop_inode = generic_delete_inode, 1348 }; 1349 1350 struct ffs_sb_fill_data { 1351 struct ffs_file_perms perms; 1352 umode_t root_mode; 1353 const char *dev_name; 1354 bool no_disconnect; 1355 struct ffs_data *ffs_data; 1356 }; 1357 1358 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1359 { 1360 struct ffs_sb_fill_data *data = _data; 1361 struct inode *inode; 1362 struct ffs_data *ffs = data->ffs_data; 1363 1364 ENTER(); 1365 1366 ffs->sb = sb; 1367 data->ffs_data = NULL; 1368 sb->s_fs_info = ffs; 1369 sb->s_blocksize = PAGE_SIZE; 1370 sb->s_blocksize_bits = PAGE_SHIFT; 1371 sb->s_magic = FUNCTIONFS_MAGIC; 1372 sb->s_op = &ffs_sb_operations; 1373 sb->s_time_gran = 1; 1374 1375 /* Root inode */ 1376 data->perms.mode = data->root_mode; 1377 inode = ffs_sb_make_inode(sb, NULL, 1378 &simple_dir_operations, 1379 &simple_dir_inode_operations, 1380 &data->perms); 1381 sb->s_root = d_make_root(inode); 1382 if (unlikely(!sb->s_root)) 1383 return -ENOMEM; 1384 1385 /* EP0 file */ 1386 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1387 &ffs_ep0_operations))) 1388 return -ENOMEM; 1389 1390 return 0; 1391 } 1392 1393 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1394 { 1395 ENTER(); 1396 1397 if (!opts || !*opts) 1398 return 0; 1399 1400 for (;;) { 1401 unsigned long value; 1402 char *eq, *comma; 1403 1404 /* Option limit */ 1405 comma = strchr(opts, ','); 1406 if (comma) 1407 *comma = 0; 1408 1409 /* Value limit */ 1410 eq = strchr(opts, '='); 1411 if (unlikely(!eq)) { 1412 pr_err("'=' missing in %s\n", opts); 1413 return -EINVAL; 1414 } 1415 *eq = 0; 1416 1417 /* Parse value */ 1418 if (kstrtoul(eq + 1, 0, &value)) { 1419 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1420 return -EINVAL; 1421 } 1422 1423 /* Interpret option */ 1424 switch (eq - opts) { 1425 case 13: 1426 if (!memcmp(opts, "no_disconnect", 13)) 1427 data->no_disconnect = !!value; 1428 else 1429 goto invalid; 1430 break; 1431 case 5: 1432 if (!memcmp(opts, "rmode", 5)) 1433 data->root_mode = (value & 0555) | S_IFDIR; 1434 else if (!memcmp(opts, "fmode", 5)) 1435 data->perms.mode = (value & 0666) | S_IFREG; 1436 else 1437 goto invalid; 1438 break; 1439 1440 case 4: 1441 if (!memcmp(opts, "mode", 4)) { 1442 data->root_mode = (value & 0555) | S_IFDIR; 1443 data->perms.mode = (value & 0666) | S_IFREG; 1444 } else { 1445 goto invalid; 1446 } 1447 break; 1448 1449 case 3: 1450 if (!memcmp(opts, "uid", 3)) { 1451 data->perms.uid = make_kuid(current_user_ns(), value); 1452 if (!uid_valid(data->perms.uid)) { 1453 pr_err("%s: unmapped value: %lu\n", opts, value); 1454 return -EINVAL; 1455 } 1456 } else if (!memcmp(opts, "gid", 3)) { 1457 data->perms.gid = make_kgid(current_user_ns(), value); 1458 if (!gid_valid(data->perms.gid)) { 1459 pr_err("%s: unmapped value: %lu\n", opts, value); 1460 return -EINVAL; 1461 } 1462 } else { 1463 goto invalid; 1464 } 1465 break; 1466 1467 default: 1468 invalid: 1469 pr_err("%s: invalid option\n", opts); 1470 return -EINVAL; 1471 } 1472 1473 /* Next iteration */ 1474 if (!comma) 1475 break; 1476 opts = comma + 1; 1477 } 1478 1479 return 0; 1480 } 1481 1482 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1483 1484 static struct dentry * 1485 ffs_fs_mount(struct file_system_type *t, int flags, 1486 const char *dev_name, void *opts) 1487 { 1488 struct ffs_sb_fill_data data = { 1489 .perms = { 1490 .mode = S_IFREG | 0600, 1491 .uid = GLOBAL_ROOT_UID, 1492 .gid = GLOBAL_ROOT_GID, 1493 }, 1494 .root_mode = S_IFDIR | 0500, 1495 .no_disconnect = false, 1496 }; 1497 struct dentry *rv; 1498 int ret; 1499 void *ffs_dev; 1500 struct ffs_data *ffs; 1501 1502 ENTER(); 1503 1504 ret = ffs_fs_parse_opts(&data, opts); 1505 if (unlikely(ret < 0)) 1506 return ERR_PTR(ret); 1507 1508 ffs = ffs_data_new(dev_name); 1509 if (unlikely(!ffs)) 1510 return ERR_PTR(-ENOMEM); 1511 ffs->file_perms = data.perms; 1512 ffs->no_disconnect = data.no_disconnect; 1513 1514 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1515 if (unlikely(!ffs->dev_name)) { 1516 ffs_data_put(ffs); 1517 return ERR_PTR(-ENOMEM); 1518 } 1519 1520 ffs_dev = ffs_acquire_dev(dev_name); 1521 if (IS_ERR(ffs_dev)) { 1522 ffs_data_put(ffs); 1523 return ERR_CAST(ffs_dev); 1524 } 1525 ffs->private_data = ffs_dev; 1526 data.ffs_data = ffs; 1527 1528 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1529 if (IS_ERR(rv) && data.ffs_data) { 1530 ffs_release_dev(data.ffs_data); 1531 ffs_data_put(data.ffs_data); 1532 } 1533 return rv; 1534 } 1535 1536 static void 1537 ffs_fs_kill_sb(struct super_block *sb) 1538 { 1539 ENTER(); 1540 1541 kill_litter_super(sb); 1542 if (sb->s_fs_info) { 1543 ffs_release_dev(sb->s_fs_info); 1544 ffs_data_closed(sb->s_fs_info); 1545 } 1546 } 1547 1548 static struct file_system_type ffs_fs_type = { 1549 .owner = THIS_MODULE, 1550 .name = "functionfs", 1551 .mount = ffs_fs_mount, 1552 .kill_sb = ffs_fs_kill_sb, 1553 }; 1554 MODULE_ALIAS_FS("functionfs"); 1555 1556 1557 /* Driver's main init/cleanup functions *************************************/ 1558 1559 static int functionfs_init(void) 1560 { 1561 int ret; 1562 1563 ENTER(); 1564 1565 ret = register_filesystem(&ffs_fs_type); 1566 if (likely(!ret)) 1567 pr_info("file system registered\n"); 1568 else 1569 pr_err("failed registering file system (%d)\n", ret); 1570 1571 return ret; 1572 } 1573 1574 static void functionfs_cleanup(void) 1575 { 1576 ENTER(); 1577 1578 pr_info("unloading\n"); 1579 unregister_filesystem(&ffs_fs_type); 1580 } 1581 1582 1583 /* ffs_data and ffs_function construction and destruction code **************/ 1584 1585 static void ffs_data_clear(struct ffs_data *ffs); 1586 static void ffs_data_reset(struct ffs_data *ffs); 1587 1588 static void ffs_data_get(struct ffs_data *ffs) 1589 { 1590 ENTER(); 1591 1592 refcount_inc(&ffs->ref); 1593 } 1594 1595 static void ffs_data_opened(struct ffs_data *ffs) 1596 { 1597 ENTER(); 1598 1599 refcount_inc(&ffs->ref); 1600 if (atomic_add_return(1, &ffs->opened) == 1 && 1601 ffs->state == FFS_DEACTIVATED) { 1602 ffs->state = FFS_CLOSING; 1603 ffs_data_reset(ffs); 1604 } 1605 } 1606 1607 static void ffs_data_put(struct ffs_data *ffs) 1608 { 1609 ENTER(); 1610 1611 if (unlikely(refcount_dec_and_test(&ffs->ref))) { 1612 pr_info("%s(): freeing\n", __func__); 1613 ffs_data_clear(ffs); 1614 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1615 waitqueue_active(&ffs->ep0req_completion.wait) || 1616 waitqueue_active(&ffs->wait)); 1617 destroy_workqueue(ffs->io_completion_wq); 1618 kfree(ffs->dev_name); 1619 kfree(ffs); 1620 } 1621 } 1622 1623 static void ffs_data_closed(struct ffs_data *ffs) 1624 { 1625 ENTER(); 1626 1627 if (atomic_dec_and_test(&ffs->opened)) { 1628 if (ffs->no_disconnect) { 1629 ffs->state = FFS_DEACTIVATED; 1630 if (ffs->epfiles) { 1631 ffs_epfiles_destroy(ffs->epfiles, 1632 ffs->eps_count); 1633 ffs->epfiles = NULL; 1634 } 1635 if (ffs->setup_state == FFS_SETUP_PENDING) 1636 __ffs_ep0_stall(ffs); 1637 } else { 1638 ffs->state = FFS_CLOSING; 1639 ffs_data_reset(ffs); 1640 } 1641 } 1642 if (atomic_read(&ffs->opened) < 0) { 1643 ffs->state = FFS_CLOSING; 1644 ffs_data_reset(ffs); 1645 } 1646 1647 ffs_data_put(ffs); 1648 } 1649 1650 static struct ffs_data *ffs_data_new(const char *dev_name) 1651 { 1652 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1653 if (unlikely(!ffs)) 1654 return NULL; 1655 1656 ENTER(); 1657 1658 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name); 1659 if (!ffs->io_completion_wq) { 1660 kfree(ffs); 1661 return NULL; 1662 } 1663 1664 refcount_set(&ffs->ref, 1); 1665 atomic_set(&ffs->opened, 0); 1666 ffs->state = FFS_READ_DESCRIPTORS; 1667 mutex_init(&ffs->mutex); 1668 spin_lock_init(&ffs->eps_lock); 1669 init_waitqueue_head(&ffs->ev.waitq); 1670 init_waitqueue_head(&ffs->wait); 1671 init_completion(&ffs->ep0req_completion); 1672 1673 /* XXX REVISIT need to update it in some places, or do we? */ 1674 ffs->ev.can_stall = 1; 1675 1676 return ffs; 1677 } 1678 1679 static void ffs_data_clear(struct ffs_data *ffs) 1680 { 1681 ENTER(); 1682 1683 ffs_closed(ffs); 1684 1685 BUG_ON(ffs->gadget); 1686 1687 if (ffs->epfiles) 1688 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1689 1690 if (ffs->ffs_eventfd) 1691 eventfd_ctx_put(ffs->ffs_eventfd); 1692 1693 kfree(ffs->raw_descs_data); 1694 kfree(ffs->raw_strings); 1695 kfree(ffs->stringtabs); 1696 } 1697 1698 static void ffs_data_reset(struct ffs_data *ffs) 1699 { 1700 ENTER(); 1701 1702 ffs_data_clear(ffs); 1703 1704 ffs->epfiles = NULL; 1705 ffs->raw_descs_data = NULL; 1706 ffs->raw_descs = NULL; 1707 ffs->raw_strings = NULL; 1708 ffs->stringtabs = NULL; 1709 1710 ffs->raw_descs_length = 0; 1711 ffs->fs_descs_count = 0; 1712 ffs->hs_descs_count = 0; 1713 ffs->ss_descs_count = 0; 1714 1715 ffs->strings_count = 0; 1716 ffs->interfaces_count = 0; 1717 ffs->eps_count = 0; 1718 1719 ffs->ev.count = 0; 1720 1721 ffs->state = FFS_READ_DESCRIPTORS; 1722 ffs->setup_state = FFS_NO_SETUP; 1723 ffs->flags = 0; 1724 } 1725 1726 1727 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1728 { 1729 struct usb_gadget_strings **lang; 1730 int first_id; 1731 1732 ENTER(); 1733 1734 if (WARN_ON(ffs->state != FFS_ACTIVE 1735 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1736 return -EBADFD; 1737 1738 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1739 if (unlikely(first_id < 0)) 1740 return first_id; 1741 1742 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1743 if (unlikely(!ffs->ep0req)) 1744 return -ENOMEM; 1745 ffs->ep0req->complete = ffs_ep0_complete; 1746 ffs->ep0req->context = ffs; 1747 1748 lang = ffs->stringtabs; 1749 if (lang) { 1750 for (; *lang; ++lang) { 1751 struct usb_string *str = (*lang)->strings; 1752 int id = first_id; 1753 for (; str->s; ++id, ++str) 1754 str->id = id; 1755 } 1756 } 1757 1758 ffs->gadget = cdev->gadget; 1759 ffs_data_get(ffs); 1760 return 0; 1761 } 1762 1763 static void functionfs_unbind(struct ffs_data *ffs) 1764 { 1765 ENTER(); 1766 1767 if (!WARN_ON(!ffs->gadget)) { 1768 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1769 ffs->ep0req = NULL; 1770 ffs->gadget = NULL; 1771 clear_bit(FFS_FL_BOUND, &ffs->flags); 1772 ffs_data_put(ffs); 1773 } 1774 } 1775 1776 static int ffs_epfiles_create(struct ffs_data *ffs) 1777 { 1778 struct ffs_epfile *epfile, *epfiles; 1779 unsigned i, count; 1780 1781 ENTER(); 1782 1783 count = ffs->eps_count; 1784 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1785 if (!epfiles) 1786 return -ENOMEM; 1787 1788 epfile = epfiles; 1789 for (i = 1; i <= count; ++i, ++epfile) { 1790 epfile->ffs = ffs; 1791 mutex_init(&epfile->mutex); 1792 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 1793 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]); 1794 else 1795 sprintf(epfile->name, "ep%u", i); 1796 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name, 1797 epfile, 1798 &ffs_epfile_operations); 1799 if (unlikely(!epfile->dentry)) { 1800 ffs_epfiles_destroy(epfiles, i - 1); 1801 return -ENOMEM; 1802 } 1803 } 1804 1805 ffs->epfiles = epfiles; 1806 return 0; 1807 } 1808 1809 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1810 { 1811 struct ffs_epfile *epfile = epfiles; 1812 1813 ENTER(); 1814 1815 for (; count; --count, ++epfile) { 1816 BUG_ON(mutex_is_locked(&epfile->mutex)); 1817 if (epfile->dentry) { 1818 d_delete(epfile->dentry); 1819 dput(epfile->dentry); 1820 epfile->dentry = NULL; 1821 } 1822 } 1823 1824 kfree(epfiles); 1825 } 1826 1827 static void ffs_func_eps_disable(struct ffs_function *func) 1828 { 1829 struct ffs_ep *ep = func->eps; 1830 struct ffs_epfile *epfile = func->ffs->epfiles; 1831 unsigned count = func->ffs->eps_count; 1832 unsigned long flags; 1833 1834 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1835 while (count--) { 1836 /* pending requests get nuked */ 1837 if (likely(ep->ep)) 1838 usb_ep_disable(ep->ep); 1839 ++ep; 1840 1841 if (epfile) { 1842 epfile->ep = NULL; 1843 __ffs_epfile_read_buffer_free(epfile); 1844 ++epfile; 1845 } 1846 } 1847 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1848 } 1849 1850 static int ffs_func_eps_enable(struct ffs_function *func) 1851 { 1852 struct ffs_data *ffs = func->ffs; 1853 struct ffs_ep *ep = func->eps; 1854 struct ffs_epfile *epfile = ffs->epfiles; 1855 unsigned count = ffs->eps_count; 1856 unsigned long flags; 1857 int ret = 0; 1858 1859 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1860 while(count--) { 1861 ep->ep->driver_data = ep; 1862 1863 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep); 1864 if (ret) { 1865 pr_err("%s: config_ep_by_speed(%s) returned %d\n", 1866 __func__, ep->ep->name, ret); 1867 break; 1868 } 1869 1870 ret = usb_ep_enable(ep->ep); 1871 if (likely(!ret)) { 1872 epfile->ep = ep; 1873 epfile->in = usb_endpoint_dir_in(ep->ep->desc); 1874 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc); 1875 } else { 1876 break; 1877 } 1878 1879 ++ep; 1880 ++epfile; 1881 } 1882 1883 wake_up_interruptible(&ffs->wait); 1884 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1885 1886 return ret; 1887 } 1888 1889 1890 /* Parsing and building descriptors and strings *****************************/ 1891 1892 /* 1893 * This validates if data pointed by data is a valid USB descriptor as 1894 * well as record how many interfaces, endpoints and strings are 1895 * required by given configuration. Returns address after the 1896 * descriptor or NULL if data is invalid. 1897 */ 1898 1899 enum ffs_entity_type { 1900 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1901 }; 1902 1903 enum ffs_os_desc_type { 1904 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1905 }; 1906 1907 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1908 u8 *valuep, 1909 struct usb_descriptor_header *desc, 1910 void *priv); 1911 1912 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1913 struct usb_os_desc_header *h, void *data, 1914 unsigned len, void *priv); 1915 1916 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1917 ffs_entity_callback entity, 1918 void *priv) 1919 { 1920 struct usb_descriptor_header *_ds = (void *)data; 1921 u8 length; 1922 int ret; 1923 1924 ENTER(); 1925 1926 /* At least two bytes are required: length and type */ 1927 if (len < 2) { 1928 pr_vdebug("descriptor too short\n"); 1929 return -EINVAL; 1930 } 1931 1932 /* If we have at least as many bytes as the descriptor takes? */ 1933 length = _ds->bLength; 1934 if (len < length) { 1935 pr_vdebug("descriptor longer then available data\n"); 1936 return -EINVAL; 1937 } 1938 1939 #define __entity_check_INTERFACE(val) 1 1940 #define __entity_check_STRING(val) (val) 1941 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1942 #define __entity(type, val) do { \ 1943 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1944 if (unlikely(!__entity_check_ ##type(val))) { \ 1945 pr_vdebug("invalid entity's value\n"); \ 1946 return -EINVAL; \ 1947 } \ 1948 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1949 if (unlikely(ret < 0)) { \ 1950 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1951 (val), ret); \ 1952 return ret; \ 1953 } \ 1954 } while (0) 1955 1956 /* Parse descriptor depending on type. */ 1957 switch (_ds->bDescriptorType) { 1958 case USB_DT_DEVICE: 1959 case USB_DT_CONFIG: 1960 case USB_DT_STRING: 1961 case USB_DT_DEVICE_QUALIFIER: 1962 /* function can't have any of those */ 1963 pr_vdebug("descriptor reserved for gadget: %d\n", 1964 _ds->bDescriptorType); 1965 return -EINVAL; 1966 1967 case USB_DT_INTERFACE: { 1968 struct usb_interface_descriptor *ds = (void *)_ds; 1969 pr_vdebug("interface descriptor\n"); 1970 if (length != sizeof *ds) 1971 goto inv_length; 1972 1973 __entity(INTERFACE, ds->bInterfaceNumber); 1974 if (ds->iInterface) 1975 __entity(STRING, ds->iInterface); 1976 } 1977 break; 1978 1979 case USB_DT_ENDPOINT: { 1980 struct usb_endpoint_descriptor *ds = (void *)_ds; 1981 pr_vdebug("endpoint descriptor\n"); 1982 if (length != USB_DT_ENDPOINT_SIZE && 1983 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1984 goto inv_length; 1985 __entity(ENDPOINT, ds->bEndpointAddress); 1986 } 1987 break; 1988 1989 case HID_DT_HID: 1990 pr_vdebug("hid descriptor\n"); 1991 if (length != sizeof(struct hid_descriptor)) 1992 goto inv_length; 1993 break; 1994 1995 case USB_DT_OTG: 1996 if (length != sizeof(struct usb_otg_descriptor)) 1997 goto inv_length; 1998 break; 1999 2000 case USB_DT_INTERFACE_ASSOCIATION: { 2001 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 2002 pr_vdebug("interface association descriptor\n"); 2003 if (length != sizeof *ds) 2004 goto inv_length; 2005 if (ds->iFunction) 2006 __entity(STRING, ds->iFunction); 2007 } 2008 break; 2009 2010 case USB_DT_SS_ENDPOINT_COMP: 2011 pr_vdebug("EP SS companion descriptor\n"); 2012 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 2013 goto inv_length; 2014 break; 2015 2016 case USB_DT_OTHER_SPEED_CONFIG: 2017 case USB_DT_INTERFACE_POWER: 2018 case USB_DT_DEBUG: 2019 case USB_DT_SECURITY: 2020 case USB_DT_CS_RADIO_CONTROL: 2021 /* TODO */ 2022 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 2023 return -EINVAL; 2024 2025 default: 2026 /* We should never be here */ 2027 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 2028 return -EINVAL; 2029 2030 inv_length: 2031 pr_vdebug("invalid length: %d (descriptor %d)\n", 2032 _ds->bLength, _ds->bDescriptorType); 2033 return -EINVAL; 2034 } 2035 2036 #undef __entity 2037 #undef __entity_check_DESCRIPTOR 2038 #undef __entity_check_INTERFACE 2039 #undef __entity_check_STRING 2040 #undef __entity_check_ENDPOINT 2041 2042 return length; 2043 } 2044 2045 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 2046 ffs_entity_callback entity, void *priv) 2047 { 2048 const unsigned _len = len; 2049 unsigned long num = 0; 2050 2051 ENTER(); 2052 2053 for (;;) { 2054 int ret; 2055 2056 if (num == count) 2057 data = NULL; 2058 2059 /* Record "descriptor" entity */ 2060 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 2061 if (unlikely(ret < 0)) { 2062 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 2063 num, ret); 2064 return ret; 2065 } 2066 2067 if (!data) 2068 return _len - len; 2069 2070 ret = ffs_do_single_desc(data, len, entity, priv); 2071 if (unlikely(ret < 0)) { 2072 pr_debug("%s returns %d\n", __func__, ret); 2073 return ret; 2074 } 2075 2076 len -= ret; 2077 data += ret; 2078 ++num; 2079 } 2080 } 2081 2082 static int __ffs_data_do_entity(enum ffs_entity_type type, 2083 u8 *valuep, struct usb_descriptor_header *desc, 2084 void *priv) 2085 { 2086 struct ffs_desc_helper *helper = priv; 2087 struct usb_endpoint_descriptor *d; 2088 2089 ENTER(); 2090 2091 switch (type) { 2092 case FFS_DESCRIPTOR: 2093 break; 2094 2095 case FFS_INTERFACE: 2096 /* 2097 * Interfaces are indexed from zero so if we 2098 * encountered interface "n" then there are at least 2099 * "n+1" interfaces. 2100 */ 2101 if (*valuep >= helper->interfaces_count) 2102 helper->interfaces_count = *valuep + 1; 2103 break; 2104 2105 case FFS_STRING: 2106 /* 2107 * Strings are indexed from 1 (0 is reserved 2108 * for languages list) 2109 */ 2110 if (*valuep > helper->ffs->strings_count) 2111 helper->ffs->strings_count = *valuep; 2112 break; 2113 2114 case FFS_ENDPOINT: 2115 d = (void *)desc; 2116 helper->eps_count++; 2117 if (helper->eps_count >= FFS_MAX_EPS_COUNT) 2118 return -EINVAL; 2119 /* Check if descriptors for any speed were already parsed */ 2120 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 2121 helper->ffs->eps_addrmap[helper->eps_count] = 2122 d->bEndpointAddress; 2123 else if (helper->ffs->eps_addrmap[helper->eps_count] != 2124 d->bEndpointAddress) 2125 return -EINVAL; 2126 break; 2127 } 2128 2129 return 0; 2130 } 2131 2132 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 2133 struct usb_os_desc_header *desc) 2134 { 2135 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 2136 u16 w_index = le16_to_cpu(desc->wIndex); 2137 2138 if (bcd_version != 1) { 2139 pr_vdebug("unsupported os descriptors version: %d", 2140 bcd_version); 2141 return -EINVAL; 2142 } 2143 switch (w_index) { 2144 case 0x4: 2145 *next_type = FFS_OS_DESC_EXT_COMPAT; 2146 break; 2147 case 0x5: 2148 *next_type = FFS_OS_DESC_EXT_PROP; 2149 break; 2150 default: 2151 pr_vdebug("unsupported os descriptor type: %d", w_index); 2152 return -EINVAL; 2153 } 2154 2155 return sizeof(*desc); 2156 } 2157 2158 /* 2159 * Process all extended compatibility/extended property descriptors 2160 * of a feature descriptor 2161 */ 2162 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 2163 enum ffs_os_desc_type type, 2164 u16 feature_count, 2165 ffs_os_desc_callback entity, 2166 void *priv, 2167 struct usb_os_desc_header *h) 2168 { 2169 int ret; 2170 const unsigned _len = len; 2171 2172 ENTER(); 2173 2174 /* loop over all ext compat/ext prop descriptors */ 2175 while (feature_count--) { 2176 ret = entity(type, h, data, len, priv); 2177 if (unlikely(ret < 0)) { 2178 pr_debug("bad OS descriptor, type: %d\n", type); 2179 return ret; 2180 } 2181 data += ret; 2182 len -= ret; 2183 } 2184 return _len - len; 2185 } 2186 2187 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 2188 static int __must_check ffs_do_os_descs(unsigned count, 2189 char *data, unsigned len, 2190 ffs_os_desc_callback entity, void *priv) 2191 { 2192 const unsigned _len = len; 2193 unsigned long num = 0; 2194 2195 ENTER(); 2196 2197 for (num = 0; num < count; ++num) { 2198 int ret; 2199 enum ffs_os_desc_type type; 2200 u16 feature_count; 2201 struct usb_os_desc_header *desc = (void *)data; 2202 2203 if (len < sizeof(*desc)) 2204 return -EINVAL; 2205 2206 /* 2207 * Record "descriptor" entity. 2208 * Process dwLength, bcdVersion, wIndex, get b/wCount. 2209 * Move the data pointer to the beginning of extended 2210 * compatibilities proper or extended properties proper 2211 * portions of the data 2212 */ 2213 if (le32_to_cpu(desc->dwLength) > len) 2214 return -EINVAL; 2215 2216 ret = __ffs_do_os_desc_header(&type, desc); 2217 if (unlikely(ret < 0)) { 2218 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 2219 num, ret); 2220 return ret; 2221 } 2222 /* 2223 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 2224 */ 2225 feature_count = le16_to_cpu(desc->wCount); 2226 if (type == FFS_OS_DESC_EXT_COMPAT && 2227 (feature_count > 255 || desc->Reserved)) 2228 return -EINVAL; 2229 len -= ret; 2230 data += ret; 2231 2232 /* 2233 * Process all function/property descriptors 2234 * of this Feature Descriptor 2235 */ 2236 ret = ffs_do_single_os_desc(data, len, type, 2237 feature_count, entity, priv, desc); 2238 if (unlikely(ret < 0)) { 2239 pr_debug("%s returns %d\n", __func__, ret); 2240 return ret; 2241 } 2242 2243 len -= ret; 2244 data += ret; 2245 } 2246 return _len - len; 2247 } 2248 2249 /** 2250 * Validate contents of the buffer from userspace related to OS descriptors. 2251 */ 2252 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2253 struct usb_os_desc_header *h, void *data, 2254 unsigned len, void *priv) 2255 { 2256 struct ffs_data *ffs = priv; 2257 u8 length; 2258 2259 ENTER(); 2260 2261 switch (type) { 2262 case FFS_OS_DESC_EXT_COMPAT: { 2263 struct usb_ext_compat_desc *d = data; 2264 int i; 2265 2266 if (len < sizeof(*d) || 2267 d->bFirstInterfaceNumber >= ffs->interfaces_count) 2268 return -EINVAL; 2269 if (d->Reserved1 != 1) { 2270 /* 2271 * According to the spec, Reserved1 must be set to 1 2272 * but older kernels incorrectly rejected non-zero 2273 * values. We fix it here to avoid returning EINVAL 2274 * in response to values we used to accept. 2275 */ 2276 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n"); 2277 d->Reserved1 = 1; 2278 } 2279 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2280 if (d->Reserved2[i]) 2281 return -EINVAL; 2282 2283 length = sizeof(struct usb_ext_compat_desc); 2284 } 2285 break; 2286 case FFS_OS_DESC_EXT_PROP: { 2287 struct usb_ext_prop_desc *d = data; 2288 u32 type, pdl; 2289 u16 pnl; 2290 2291 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2292 return -EINVAL; 2293 length = le32_to_cpu(d->dwSize); 2294 if (len < length) 2295 return -EINVAL; 2296 type = le32_to_cpu(d->dwPropertyDataType); 2297 if (type < USB_EXT_PROP_UNICODE || 2298 type > USB_EXT_PROP_UNICODE_MULTI) { 2299 pr_vdebug("unsupported os descriptor property type: %d", 2300 type); 2301 return -EINVAL; 2302 } 2303 pnl = le16_to_cpu(d->wPropertyNameLength); 2304 if (length < 14 + pnl) { 2305 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n", 2306 length, pnl, type); 2307 return -EINVAL; 2308 } 2309 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl)); 2310 if (length != 14 + pnl + pdl) { 2311 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2312 length, pnl, pdl, type); 2313 return -EINVAL; 2314 } 2315 ++ffs->ms_os_descs_ext_prop_count; 2316 /* property name reported to the host as "WCHAR"s */ 2317 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2318 ffs->ms_os_descs_ext_prop_data_len += pdl; 2319 } 2320 break; 2321 default: 2322 pr_vdebug("unknown descriptor: %d\n", type); 2323 return -EINVAL; 2324 } 2325 return length; 2326 } 2327 2328 static int __ffs_data_got_descs(struct ffs_data *ffs, 2329 char *const _data, size_t len) 2330 { 2331 char *data = _data, *raw_descs; 2332 unsigned os_descs_count = 0, counts[3], flags; 2333 int ret = -EINVAL, i; 2334 struct ffs_desc_helper helper; 2335 2336 ENTER(); 2337 2338 if (get_unaligned_le32(data + 4) != len) 2339 goto error; 2340 2341 switch (get_unaligned_le32(data)) { 2342 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2343 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2344 data += 8; 2345 len -= 8; 2346 break; 2347 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2348 flags = get_unaligned_le32(data + 8); 2349 ffs->user_flags = flags; 2350 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2351 FUNCTIONFS_HAS_HS_DESC | 2352 FUNCTIONFS_HAS_SS_DESC | 2353 FUNCTIONFS_HAS_MS_OS_DESC | 2354 FUNCTIONFS_VIRTUAL_ADDR | 2355 FUNCTIONFS_EVENTFD | 2356 FUNCTIONFS_ALL_CTRL_RECIP | 2357 FUNCTIONFS_CONFIG0_SETUP)) { 2358 ret = -ENOSYS; 2359 goto error; 2360 } 2361 data += 12; 2362 len -= 12; 2363 break; 2364 default: 2365 goto error; 2366 } 2367 2368 if (flags & FUNCTIONFS_EVENTFD) { 2369 if (len < 4) 2370 goto error; 2371 ffs->ffs_eventfd = 2372 eventfd_ctx_fdget((int)get_unaligned_le32(data)); 2373 if (IS_ERR(ffs->ffs_eventfd)) { 2374 ret = PTR_ERR(ffs->ffs_eventfd); 2375 ffs->ffs_eventfd = NULL; 2376 goto error; 2377 } 2378 data += 4; 2379 len -= 4; 2380 } 2381 2382 /* Read fs_count, hs_count and ss_count (if present) */ 2383 for (i = 0; i < 3; ++i) { 2384 if (!(flags & (1 << i))) { 2385 counts[i] = 0; 2386 } else if (len < 4) { 2387 goto error; 2388 } else { 2389 counts[i] = get_unaligned_le32(data); 2390 data += 4; 2391 len -= 4; 2392 } 2393 } 2394 if (flags & (1 << i)) { 2395 if (len < 4) { 2396 goto error; 2397 } 2398 os_descs_count = get_unaligned_le32(data); 2399 data += 4; 2400 len -= 4; 2401 }; 2402 2403 /* Read descriptors */ 2404 raw_descs = data; 2405 helper.ffs = ffs; 2406 for (i = 0; i < 3; ++i) { 2407 if (!counts[i]) 2408 continue; 2409 helper.interfaces_count = 0; 2410 helper.eps_count = 0; 2411 ret = ffs_do_descs(counts[i], data, len, 2412 __ffs_data_do_entity, &helper); 2413 if (ret < 0) 2414 goto error; 2415 if (!ffs->eps_count && !ffs->interfaces_count) { 2416 ffs->eps_count = helper.eps_count; 2417 ffs->interfaces_count = helper.interfaces_count; 2418 } else { 2419 if (ffs->eps_count != helper.eps_count) { 2420 ret = -EINVAL; 2421 goto error; 2422 } 2423 if (ffs->interfaces_count != helper.interfaces_count) { 2424 ret = -EINVAL; 2425 goto error; 2426 } 2427 } 2428 data += ret; 2429 len -= ret; 2430 } 2431 if (os_descs_count) { 2432 ret = ffs_do_os_descs(os_descs_count, data, len, 2433 __ffs_data_do_os_desc, ffs); 2434 if (ret < 0) 2435 goto error; 2436 data += ret; 2437 len -= ret; 2438 } 2439 2440 if (raw_descs == data || len) { 2441 ret = -EINVAL; 2442 goto error; 2443 } 2444 2445 ffs->raw_descs_data = _data; 2446 ffs->raw_descs = raw_descs; 2447 ffs->raw_descs_length = data - raw_descs; 2448 ffs->fs_descs_count = counts[0]; 2449 ffs->hs_descs_count = counts[1]; 2450 ffs->ss_descs_count = counts[2]; 2451 ffs->ms_os_descs_count = os_descs_count; 2452 2453 return 0; 2454 2455 error: 2456 kfree(_data); 2457 return ret; 2458 } 2459 2460 static int __ffs_data_got_strings(struct ffs_data *ffs, 2461 char *const _data, size_t len) 2462 { 2463 u32 str_count, needed_count, lang_count; 2464 struct usb_gadget_strings **stringtabs, *t; 2465 const char *data = _data; 2466 struct usb_string *s; 2467 2468 ENTER(); 2469 2470 if (unlikely(len < 16 || 2471 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2472 get_unaligned_le32(data + 4) != len)) 2473 goto error; 2474 str_count = get_unaligned_le32(data + 8); 2475 lang_count = get_unaligned_le32(data + 12); 2476 2477 /* if one is zero the other must be zero */ 2478 if (unlikely(!str_count != !lang_count)) 2479 goto error; 2480 2481 /* Do we have at least as many strings as descriptors need? */ 2482 needed_count = ffs->strings_count; 2483 if (unlikely(str_count < needed_count)) 2484 goto error; 2485 2486 /* 2487 * If we don't need any strings just return and free all 2488 * memory. 2489 */ 2490 if (!needed_count) { 2491 kfree(_data); 2492 return 0; 2493 } 2494 2495 /* Allocate everything in one chunk so there's less maintenance. */ 2496 { 2497 unsigned i = 0; 2498 vla_group(d); 2499 vla_item(d, struct usb_gadget_strings *, stringtabs, 2500 lang_count + 1); 2501 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2502 vla_item(d, struct usb_string, strings, 2503 lang_count*(needed_count+1)); 2504 2505 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2506 2507 if (unlikely(!vlabuf)) { 2508 kfree(_data); 2509 return -ENOMEM; 2510 } 2511 2512 /* Initialize the VLA pointers */ 2513 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2514 t = vla_ptr(vlabuf, d, stringtab); 2515 i = lang_count; 2516 do { 2517 *stringtabs++ = t++; 2518 } while (--i); 2519 *stringtabs = NULL; 2520 2521 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2522 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2523 t = vla_ptr(vlabuf, d, stringtab); 2524 s = vla_ptr(vlabuf, d, strings); 2525 } 2526 2527 /* For each language */ 2528 data += 16; 2529 len -= 16; 2530 2531 do { /* lang_count > 0 so we can use do-while */ 2532 unsigned needed = needed_count; 2533 2534 if (unlikely(len < 3)) 2535 goto error_free; 2536 t->language = get_unaligned_le16(data); 2537 t->strings = s; 2538 ++t; 2539 2540 data += 2; 2541 len -= 2; 2542 2543 /* For each string */ 2544 do { /* str_count > 0 so we can use do-while */ 2545 size_t length = strnlen(data, len); 2546 2547 if (unlikely(length == len)) 2548 goto error_free; 2549 2550 /* 2551 * User may provide more strings then we need, 2552 * if that's the case we simply ignore the 2553 * rest 2554 */ 2555 if (likely(needed)) { 2556 /* 2557 * s->id will be set while adding 2558 * function to configuration so for 2559 * now just leave garbage here. 2560 */ 2561 s->s = data; 2562 --needed; 2563 ++s; 2564 } 2565 2566 data += length + 1; 2567 len -= length + 1; 2568 } while (--str_count); 2569 2570 s->id = 0; /* terminator */ 2571 s->s = NULL; 2572 ++s; 2573 2574 } while (--lang_count); 2575 2576 /* Some garbage left? */ 2577 if (unlikely(len)) 2578 goto error_free; 2579 2580 /* Done! */ 2581 ffs->stringtabs = stringtabs; 2582 ffs->raw_strings = _data; 2583 2584 return 0; 2585 2586 error_free: 2587 kfree(stringtabs); 2588 error: 2589 kfree(_data); 2590 return -EINVAL; 2591 } 2592 2593 2594 /* Events handling and management *******************************************/ 2595 2596 static void __ffs_event_add(struct ffs_data *ffs, 2597 enum usb_functionfs_event_type type) 2598 { 2599 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2600 int neg = 0; 2601 2602 /* 2603 * Abort any unhandled setup 2604 * 2605 * We do not need to worry about some cmpxchg() changing value 2606 * of ffs->setup_state without holding the lock because when 2607 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2608 * the source does nothing. 2609 */ 2610 if (ffs->setup_state == FFS_SETUP_PENDING) 2611 ffs->setup_state = FFS_SETUP_CANCELLED; 2612 2613 /* 2614 * Logic of this function guarantees that there are at most four pending 2615 * evens on ffs->ev.types queue. This is important because the queue 2616 * has space for four elements only and __ffs_ep0_read_events function 2617 * depends on that limit as well. If more event types are added, those 2618 * limits have to be revisited or guaranteed to still hold. 2619 */ 2620 switch (type) { 2621 case FUNCTIONFS_RESUME: 2622 rem_type2 = FUNCTIONFS_SUSPEND; 2623 /* FALL THROUGH */ 2624 case FUNCTIONFS_SUSPEND: 2625 case FUNCTIONFS_SETUP: 2626 rem_type1 = type; 2627 /* Discard all similar events */ 2628 break; 2629 2630 case FUNCTIONFS_BIND: 2631 case FUNCTIONFS_UNBIND: 2632 case FUNCTIONFS_DISABLE: 2633 case FUNCTIONFS_ENABLE: 2634 /* Discard everything other then power management. */ 2635 rem_type1 = FUNCTIONFS_SUSPEND; 2636 rem_type2 = FUNCTIONFS_RESUME; 2637 neg = 1; 2638 break; 2639 2640 default: 2641 WARN(1, "%d: unknown event, this should not happen\n", type); 2642 return; 2643 } 2644 2645 { 2646 u8 *ev = ffs->ev.types, *out = ev; 2647 unsigned n = ffs->ev.count; 2648 for (; n; --n, ++ev) 2649 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2650 *out++ = *ev; 2651 else 2652 pr_vdebug("purging event %d\n", *ev); 2653 ffs->ev.count = out - ffs->ev.types; 2654 } 2655 2656 pr_vdebug("adding event %d\n", type); 2657 ffs->ev.types[ffs->ev.count++] = type; 2658 wake_up_locked(&ffs->ev.waitq); 2659 if (ffs->ffs_eventfd) 2660 eventfd_signal(ffs->ffs_eventfd, 1); 2661 } 2662 2663 static void ffs_event_add(struct ffs_data *ffs, 2664 enum usb_functionfs_event_type type) 2665 { 2666 unsigned long flags; 2667 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2668 __ffs_event_add(ffs, type); 2669 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2670 } 2671 2672 /* Bind/unbind USB function hooks *******************************************/ 2673 2674 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2675 { 2676 int i; 2677 2678 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2679 if (ffs->eps_addrmap[i] == endpoint_address) 2680 return i; 2681 return -ENOENT; 2682 } 2683 2684 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2685 struct usb_descriptor_header *desc, 2686 void *priv) 2687 { 2688 struct usb_endpoint_descriptor *ds = (void *)desc; 2689 struct ffs_function *func = priv; 2690 struct ffs_ep *ffs_ep; 2691 unsigned ep_desc_id; 2692 int idx; 2693 static const char *speed_names[] = { "full", "high", "super" }; 2694 2695 if (type != FFS_DESCRIPTOR) 2696 return 0; 2697 2698 /* 2699 * If ss_descriptors is not NULL, we are reading super speed 2700 * descriptors; if hs_descriptors is not NULL, we are reading high 2701 * speed descriptors; otherwise, we are reading full speed 2702 * descriptors. 2703 */ 2704 if (func->function.ss_descriptors) { 2705 ep_desc_id = 2; 2706 func->function.ss_descriptors[(long)valuep] = desc; 2707 } else if (func->function.hs_descriptors) { 2708 ep_desc_id = 1; 2709 func->function.hs_descriptors[(long)valuep] = desc; 2710 } else { 2711 ep_desc_id = 0; 2712 func->function.fs_descriptors[(long)valuep] = desc; 2713 } 2714 2715 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2716 return 0; 2717 2718 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2719 if (idx < 0) 2720 return idx; 2721 2722 ffs_ep = func->eps + idx; 2723 2724 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2725 pr_err("two %sspeed descriptors for EP %d\n", 2726 speed_names[ep_desc_id], 2727 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2728 return -EINVAL; 2729 } 2730 ffs_ep->descs[ep_desc_id] = ds; 2731 2732 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2733 if (ffs_ep->ep) { 2734 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2735 if (!ds->wMaxPacketSize) 2736 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2737 } else { 2738 struct usb_request *req; 2739 struct usb_ep *ep; 2740 u8 bEndpointAddress; 2741 2742 /* 2743 * We back up bEndpointAddress because autoconfig overwrites 2744 * it with physical endpoint address. 2745 */ 2746 bEndpointAddress = ds->bEndpointAddress; 2747 pr_vdebug("autoconfig\n"); 2748 ep = usb_ep_autoconfig(func->gadget, ds); 2749 if (unlikely(!ep)) 2750 return -ENOTSUPP; 2751 ep->driver_data = func->eps + idx; 2752 2753 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2754 if (unlikely(!req)) 2755 return -ENOMEM; 2756 2757 ffs_ep->ep = ep; 2758 ffs_ep->req = req; 2759 func->eps_revmap[ds->bEndpointAddress & 2760 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2761 /* 2762 * If we use virtual address mapping, we restore 2763 * original bEndpointAddress value. 2764 */ 2765 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 2766 ds->bEndpointAddress = bEndpointAddress; 2767 } 2768 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2769 2770 return 0; 2771 } 2772 2773 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2774 struct usb_descriptor_header *desc, 2775 void *priv) 2776 { 2777 struct ffs_function *func = priv; 2778 unsigned idx; 2779 u8 newValue; 2780 2781 switch (type) { 2782 default: 2783 case FFS_DESCRIPTOR: 2784 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2785 return 0; 2786 2787 case FFS_INTERFACE: 2788 idx = *valuep; 2789 if (func->interfaces_nums[idx] < 0) { 2790 int id = usb_interface_id(func->conf, &func->function); 2791 if (unlikely(id < 0)) 2792 return id; 2793 func->interfaces_nums[idx] = id; 2794 } 2795 newValue = func->interfaces_nums[idx]; 2796 break; 2797 2798 case FFS_STRING: 2799 /* String' IDs are allocated when fsf_data is bound to cdev */ 2800 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2801 break; 2802 2803 case FFS_ENDPOINT: 2804 /* 2805 * USB_DT_ENDPOINT are handled in 2806 * __ffs_func_bind_do_descs(). 2807 */ 2808 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2809 return 0; 2810 2811 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2812 if (unlikely(!func->eps[idx].ep)) 2813 return -EINVAL; 2814 2815 { 2816 struct usb_endpoint_descriptor **descs; 2817 descs = func->eps[idx].descs; 2818 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2819 } 2820 break; 2821 } 2822 2823 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2824 *valuep = newValue; 2825 return 0; 2826 } 2827 2828 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2829 struct usb_os_desc_header *h, void *data, 2830 unsigned len, void *priv) 2831 { 2832 struct ffs_function *func = priv; 2833 u8 length = 0; 2834 2835 switch (type) { 2836 case FFS_OS_DESC_EXT_COMPAT: { 2837 struct usb_ext_compat_desc *desc = data; 2838 struct usb_os_desc_table *t; 2839 2840 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2841 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2842 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2843 ARRAY_SIZE(desc->CompatibleID) + 2844 ARRAY_SIZE(desc->SubCompatibleID)); 2845 length = sizeof(*desc); 2846 } 2847 break; 2848 case FFS_OS_DESC_EXT_PROP: { 2849 struct usb_ext_prop_desc *desc = data; 2850 struct usb_os_desc_table *t; 2851 struct usb_os_desc_ext_prop *ext_prop; 2852 char *ext_prop_name; 2853 char *ext_prop_data; 2854 2855 t = &func->function.os_desc_table[h->interface]; 2856 t->if_id = func->interfaces_nums[h->interface]; 2857 2858 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2859 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2860 2861 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2862 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2863 ext_prop->data_len = le32_to_cpu(*(__le32 *) 2864 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2865 length = ext_prop->name_len + ext_prop->data_len + 14; 2866 2867 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2868 func->ffs->ms_os_descs_ext_prop_name_avail += 2869 ext_prop->name_len; 2870 2871 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2872 func->ffs->ms_os_descs_ext_prop_data_avail += 2873 ext_prop->data_len; 2874 memcpy(ext_prop_data, 2875 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2876 ext_prop->data_len); 2877 /* unicode data reported to the host as "WCHAR"s */ 2878 switch (ext_prop->type) { 2879 case USB_EXT_PROP_UNICODE: 2880 case USB_EXT_PROP_UNICODE_ENV: 2881 case USB_EXT_PROP_UNICODE_LINK: 2882 case USB_EXT_PROP_UNICODE_MULTI: 2883 ext_prop->data_len *= 2; 2884 break; 2885 } 2886 ext_prop->data = ext_prop_data; 2887 2888 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2889 ext_prop->name_len); 2890 /* property name reported to the host as "WCHAR"s */ 2891 ext_prop->name_len *= 2; 2892 ext_prop->name = ext_prop_name; 2893 2894 t->os_desc->ext_prop_len += 2895 ext_prop->name_len + ext_prop->data_len + 14; 2896 ++t->os_desc->ext_prop_count; 2897 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2898 } 2899 break; 2900 default: 2901 pr_vdebug("unknown descriptor: %d\n", type); 2902 } 2903 2904 return length; 2905 } 2906 2907 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2908 struct usb_configuration *c) 2909 { 2910 struct ffs_function *func = ffs_func_from_usb(f); 2911 struct f_fs_opts *ffs_opts = 2912 container_of(f->fi, struct f_fs_opts, func_inst); 2913 int ret; 2914 2915 ENTER(); 2916 2917 /* 2918 * Legacy gadget triggers binding in functionfs_ready_callback, 2919 * which already uses locking; taking the same lock here would 2920 * cause a deadlock. 2921 * 2922 * Configfs-enabled gadgets however do need ffs_dev_lock. 2923 */ 2924 if (!ffs_opts->no_configfs) 2925 ffs_dev_lock(); 2926 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2927 func->ffs = ffs_opts->dev->ffs_data; 2928 if (!ffs_opts->no_configfs) 2929 ffs_dev_unlock(); 2930 if (ret) 2931 return ERR_PTR(ret); 2932 2933 func->conf = c; 2934 func->gadget = c->cdev->gadget; 2935 2936 /* 2937 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2938 * configurations are bound in sequence with list_for_each_entry, 2939 * in each configuration its functions are bound in sequence 2940 * with list_for_each_entry, so we assume no race condition 2941 * with regard to ffs_opts->bound access 2942 */ 2943 if (!ffs_opts->refcnt) { 2944 ret = functionfs_bind(func->ffs, c->cdev); 2945 if (ret) 2946 return ERR_PTR(ret); 2947 } 2948 ffs_opts->refcnt++; 2949 func->function.strings = func->ffs->stringtabs; 2950 2951 return ffs_opts; 2952 } 2953 2954 static int _ffs_func_bind(struct usb_configuration *c, 2955 struct usb_function *f) 2956 { 2957 struct ffs_function *func = ffs_func_from_usb(f); 2958 struct ffs_data *ffs = func->ffs; 2959 2960 const int full = !!func->ffs->fs_descs_count; 2961 const int high = !!func->ffs->hs_descs_count; 2962 const int super = !!func->ffs->ss_descs_count; 2963 2964 int fs_len, hs_len, ss_len, ret, i; 2965 struct ffs_ep *eps_ptr; 2966 2967 /* Make it a single chunk, less management later on */ 2968 vla_group(d); 2969 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2970 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2971 full ? ffs->fs_descs_count + 1 : 0); 2972 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2973 high ? ffs->hs_descs_count + 1 : 0); 2974 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2975 super ? ffs->ss_descs_count + 1 : 0); 2976 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2977 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2978 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2979 vla_item_with_sz(d, char[16], ext_compat, 2980 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2981 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2982 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2983 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2984 ffs->ms_os_descs_ext_prop_count); 2985 vla_item_with_sz(d, char, ext_prop_name, 2986 ffs->ms_os_descs_ext_prop_name_len); 2987 vla_item_with_sz(d, char, ext_prop_data, 2988 ffs->ms_os_descs_ext_prop_data_len); 2989 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2990 char *vlabuf; 2991 2992 ENTER(); 2993 2994 /* Has descriptors only for speeds gadget does not support */ 2995 if (unlikely(!(full | high | super))) 2996 return -ENOTSUPP; 2997 2998 /* Allocate a single chunk, less management later on */ 2999 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 3000 if (unlikely(!vlabuf)) 3001 return -ENOMEM; 3002 3003 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 3004 ffs->ms_os_descs_ext_prop_name_avail = 3005 vla_ptr(vlabuf, d, ext_prop_name); 3006 ffs->ms_os_descs_ext_prop_data_avail = 3007 vla_ptr(vlabuf, d, ext_prop_data); 3008 3009 /* Copy descriptors */ 3010 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 3011 ffs->raw_descs_length); 3012 3013 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 3014 eps_ptr = vla_ptr(vlabuf, d, eps); 3015 for (i = 0; i < ffs->eps_count; i++) 3016 eps_ptr[i].num = -1; 3017 3018 /* Save pointers 3019 * d_eps == vlabuf, func->eps used to kfree vlabuf later 3020 */ 3021 func->eps = vla_ptr(vlabuf, d, eps); 3022 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 3023 3024 /* 3025 * Go through all the endpoint descriptors and allocate 3026 * endpoints first, so that later we can rewrite the endpoint 3027 * numbers without worrying that it may be described later on. 3028 */ 3029 if (likely(full)) { 3030 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 3031 fs_len = ffs_do_descs(ffs->fs_descs_count, 3032 vla_ptr(vlabuf, d, raw_descs), 3033 d_raw_descs__sz, 3034 __ffs_func_bind_do_descs, func); 3035 if (unlikely(fs_len < 0)) { 3036 ret = fs_len; 3037 goto error; 3038 } 3039 } else { 3040 fs_len = 0; 3041 } 3042 3043 if (likely(high)) { 3044 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 3045 hs_len = ffs_do_descs(ffs->hs_descs_count, 3046 vla_ptr(vlabuf, d, raw_descs) + fs_len, 3047 d_raw_descs__sz - fs_len, 3048 __ffs_func_bind_do_descs, func); 3049 if (unlikely(hs_len < 0)) { 3050 ret = hs_len; 3051 goto error; 3052 } 3053 } else { 3054 hs_len = 0; 3055 } 3056 3057 if (likely(super)) { 3058 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 3059 ss_len = ffs_do_descs(ffs->ss_descs_count, 3060 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 3061 d_raw_descs__sz - fs_len - hs_len, 3062 __ffs_func_bind_do_descs, func); 3063 if (unlikely(ss_len < 0)) { 3064 ret = ss_len; 3065 goto error; 3066 } 3067 } else { 3068 ss_len = 0; 3069 } 3070 3071 /* 3072 * Now handle interface numbers allocation and interface and 3073 * endpoint numbers rewriting. We can do that in one go 3074 * now. 3075 */ 3076 ret = ffs_do_descs(ffs->fs_descs_count + 3077 (high ? ffs->hs_descs_count : 0) + 3078 (super ? ffs->ss_descs_count : 0), 3079 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 3080 __ffs_func_bind_do_nums, func); 3081 if (unlikely(ret < 0)) 3082 goto error; 3083 3084 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 3085 if (c->cdev->use_os_string) { 3086 for (i = 0; i < ffs->interfaces_count; ++i) { 3087 struct usb_os_desc *desc; 3088 3089 desc = func->function.os_desc_table[i].os_desc = 3090 vla_ptr(vlabuf, d, os_desc) + 3091 i * sizeof(struct usb_os_desc); 3092 desc->ext_compat_id = 3093 vla_ptr(vlabuf, d, ext_compat) + i * 16; 3094 INIT_LIST_HEAD(&desc->ext_prop); 3095 } 3096 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 3097 vla_ptr(vlabuf, d, raw_descs) + 3098 fs_len + hs_len + ss_len, 3099 d_raw_descs__sz - fs_len - hs_len - 3100 ss_len, 3101 __ffs_func_bind_do_os_desc, func); 3102 if (unlikely(ret < 0)) 3103 goto error; 3104 } 3105 func->function.os_desc_n = 3106 c->cdev->use_os_string ? ffs->interfaces_count : 0; 3107 3108 /* And we're done */ 3109 ffs_event_add(ffs, FUNCTIONFS_BIND); 3110 return 0; 3111 3112 error: 3113 /* XXX Do we need to release all claimed endpoints here? */ 3114 return ret; 3115 } 3116 3117 static int ffs_func_bind(struct usb_configuration *c, 3118 struct usb_function *f) 3119 { 3120 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 3121 struct ffs_function *func = ffs_func_from_usb(f); 3122 int ret; 3123 3124 if (IS_ERR(ffs_opts)) 3125 return PTR_ERR(ffs_opts); 3126 3127 ret = _ffs_func_bind(c, f); 3128 if (ret && !--ffs_opts->refcnt) 3129 functionfs_unbind(func->ffs); 3130 3131 return ret; 3132 } 3133 3134 3135 /* Other USB function hooks *************************************************/ 3136 3137 static void ffs_reset_work(struct work_struct *work) 3138 { 3139 struct ffs_data *ffs = container_of(work, 3140 struct ffs_data, reset_work); 3141 ffs_data_reset(ffs); 3142 } 3143 3144 static int ffs_func_set_alt(struct usb_function *f, 3145 unsigned interface, unsigned alt) 3146 { 3147 struct ffs_function *func = ffs_func_from_usb(f); 3148 struct ffs_data *ffs = func->ffs; 3149 int ret = 0, intf; 3150 3151 if (alt != (unsigned)-1) { 3152 intf = ffs_func_revmap_intf(func, interface); 3153 if (unlikely(intf < 0)) 3154 return intf; 3155 } 3156 3157 if (ffs->func) 3158 ffs_func_eps_disable(ffs->func); 3159 3160 if (ffs->state == FFS_DEACTIVATED) { 3161 ffs->state = FFS_CLOSING; 3162 INIT_WORK(&ffs->reset_work, ffs_reset_work); 3163 schedule_work(&ffs->reset_work); 3164 return -ENODEV; 3165 } 3166 3167 if (ffs->state != FFS_ACTIVE) 3168 return -ENODEV; 3169 3170 if (alt == (unsigned)-1) { 3171 ffs->func = NULL; 3172 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 3173 return 0; 3174 } 3175 3176 ffs->func = func; 3177 ret = ffs_func_eps_enable(func); 3178 if (likely(ret >= 0)) 3179 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 3180 return ret; 3181 } 3182 3183 static void ffs_func_disable(struct usb_function *f) 3184 { 3185 ffs_func_set_alt(f, 0, (unsigned)-1); 3186 } 3187 3188 static int ffs_func_setup(struct usb_function *f, 3189 const struct usb_ctrlrequest *creq) 3190 { 3191 struct ffs_function *func = ffs_func_from_usb(f); 3192 struct ffs_data *ffs = func->ffs; 3193 unsigned long flags; 3194 int ret; 3195 3196 ENTER(); 3197 3198 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 3199 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 3200 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 3201 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 3202 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 3203 3204 /* 3205 * Most requests directed to interface go through here 3206 * (notable exceptions are set/get interface) so we need to 3207 * handle them. All other either handled by composite or 3208 * passed to usb_configuration->setup() (if one is set). No 3209 * matter, we will handle requests directed to endpoint here 3210 * as well (as it's straightforward). Other request recipient 3211 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP 3212 * is being used. 3213 */ 3214 if (ffs->state != FFS_ACTIVE) 3215 return -ENODEV; 3216 3217 switch (creq->bRequestType & USB_RECIP_MASK) { 3218 case USB_RECIP_INTERFACE: 3219 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 3220 if (unlikely(ret < 0)) 3221 return ret; 3222 break; 3223 3224 case USB_RECIP_ENDPOINT: 3225 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 3226 if (unlikely(ret < 0)) 3227 return ret; 3228 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) 3229 ret = func->ffs->eps_addrmap[ret]; 3230 break; 3231 3232 default: 3233 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP) 3234 ret = le16_to_cpu(creq->wIndex); 3235 else 3236 return -EOPNOTSUPP; 3237 } 3238 3239 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 3240 ffs->ev.setup = *creq; 3241 ffs->ev.setup.wIndex = cpu_to_le16(ret); 3242 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 3243 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 3244 3245 return USB_GADGET_DELAYED_STATUS; 3246 } 3247 3248 static bool ffs_func_req_match(struct usb_function *f, 3249 const struct usb_ctrlrequest *creq, 3250 bool config0) 3251 { 3252 struct ffs_function *func = ffs_func_from_usb(f); 3253 3254 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP)) 3255 return false; 3256 3257 switch (creq->bRequestType & USB_RECIP_MASK) { 3258 case USB_RECIP_INTERFACE: 3259 return (ffs_func_revmap_intf(func, 3260 le16_to_cpu(creq->wIndex)) >= 0); 3261 case USB_RECIP_ENDPOINT: 3262 return (ffs_func_revmap_ep(func, 3263 le16_to_cpu(creq->wIndex)) >= 0); 3264 default: 3265 return (bool) (func->ffs->user_flags & 3266 FUNCTIONFS_ALL_CTRL_RECIP); 3267 } 3268 } 3269 3270 static void ffs_func_suspend(struct usb_function *f) 3271 { 3272 ENTER(); 3273 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 3274 } 3275 3276 static void ffs_func_resume(struct usb_function *f) 3277 { 3278 ENTER(); 3279 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 3280 } 3281 3282 3283 /* Endpoint and interface numbers reverse mapping ***************************/ 3284 3285 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 3286 { 3287 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 3288 return num ? num : -EDOM; 3289 } 3290 3291 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 3292 { 3293 short *nums = func->interfaces_nums; 3294 unsigned count = func->ffs->interfaces_count; 3295 3296 for (; count; --count, ++nums) { 3297 if (*nums >= 0 && *nums == intf) 3298 return nums - func->interfaces_nums; 3299 } 3300 3301 return -EDOM; 3302 } 3303 3304 3305 /* Devices management *******************************************************/ 3306 3307 static LIST_HEAD(ffs_devices); 3308 3309 static struct ffs_dev *_ffs_do_find_dev(const char *name) 3310 { 3311 struct ffs_dev *dev; 3312 3313 if (!name) 3314 return NULL; 3315 3316 list_for_each_entry(dev, &ffs_devices, entry) { 3317 if (strcmp(dev->name, name) == 0) 3318 return dev; 3319 } 3320 3321 return NULL; 3322 } 3323 3324 /* 3325 * ffs_lock must be taken by the caller of this function 3326 */ 3327 static struct ffs_dev *_ffs_get_single_dev(void) 3328 { 3329 struct ffs_dev *dev; 3330 3331 if (list_is_singular(&ffs_devices)) { 3332 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 3333 if (dev->single) 3334 return dev; 3335 } 3336 3337 return NULL; 3338 } 3339 3340 /* 3341 * ffs_lock must be taken by the caller of this function 3342 */ 3343 static struct ffs_dev *_ffs_find_dev(const char *name) 3344 { 3345 struct ffs_dev *dev; 3346 3347 dev = _ffs_get_single_dev(); 3348 if (dev) 3349 return dev; 3350 3351 return _ffs_do_find_dev(name); 3352 } 3353 3354 /* Configfs support *********************************************************/ 3355 3356 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3357 { 3358 return container_of(to_config_group(item), struct f_fs_opts, 3359 func_inst.group); 3360 } 3361 3362 static void ffs_attr_release(struct config_item *item) 3363 { 3364 struct f_fs_opts *opts = to_ffs_opts(item); 3365 3366 usb_put_function_instance(&opts->func_inst); 3367 } 3368 3369 static struct configfs_item_operations ffs_item_ops = { 3370 .release = ffs_attr_release, 3371 }; 3372 3373 static const struct config_item_type ffs_func_type = { 3374 .ct_item_ops = &ffs_item_ops, 3375 .ct_owner = THIS_MODULE, 3376 }; 3377 3378 3379 /* Function registration interface ******************************************/ 3380 3381 static void ffs_free_inst(struct usb_function_instance *f) 3382 { 3383 struct f_fs_opts *opts; 3384 3385 opts = to_f_fs_opts(f); 3386 ffs_dev_lock(); 3387 _ffs_free_dev(opts->dev); 3388 ffs_dev_unlock(); 3389 kfree(opts); 3390 } 3391 3392 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3393 { 3394 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name)) 3395 return -ENAMETOOLONG; 3396 return ffs_name_dev(to_f_fs_opts(fi)->dev, name); 3397 } 3398 3399 static struct usb_function_instance *ffs_alloc_inst(void) 3400 { 3401 struct f_fs_opts *opts; 3402 struct ffs_dev *dev; 3403 3404 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3405 if (!opts) 3406 return ERR_PTR(-ENOMEM); 3407 3408 opts->func_inst.set_inst_name = ffs_set_inst_name; 3409 opts->func_inst.free_func_inst = ffs_free_inst; 3410 ffs_dev_lock(); 3411 dev = _ffs_alloc_dev(); 3412 ffs_dev_unlock(); 3413 if (IS_ERR(dev)) { 3414 kfree(opts); 3415 return ERR_CAST(dev); 3416 } 3417 opts->dev = dev; 3418 dev->opts = opts; 3419 3420 config_group_init_type_name(&opts->func_inst.group, "", 3421 &ffs_func_type); 3422 return &opts->func_inst; 3423 } 3424 3425 static void ffs_free(struct usb_function *f) 3426 { 3427 kfree(ffs_func_from_usb(f)); 3428 } 3429 3430 static void ffs_func_unbind(struct usb_configuration *c, 3431 struct usb_function *f) 3432 { 3433 struct ffs_function *func = ffs_func_from_usb(f); 3434 struct ffs_data *ffs = func->ffs; 3435 struct f_fs_opts *opts = 3436 container_of(f->fi, struct f_fs_opts, func_inst); 3437 struct ffs_ep *ep = func->eps; 3438 unsigned count = ffs->eps_count; 3439 unsigned long flags; 3440 3441 ENTER(); 3442 if (ffs->func == func) { 3443 ffs_func_eps_disable(func); 3444 ffs->func = NULL; 3445 } 3446 3447 if (!--opts->refcnt) 3448 functionfs_unbind(ffs); 3449 3450 /* cleanup after autoconfig */ 3451 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3452 while (count--) { 3453 if (ep->ep && ep->req) 3454 usb_ep_free_request(ep->ep, ep->req); 3455 ep->req = NULL; 3456 ++ep; 3457 } 3458 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3459 kfree(func->eps); 3460 func->eps = NULL; 3461 /* 3462 * eps, descriptors and interfaces_nums are allocated in the 3463 * same chunk so only one free is required. 3464 */ 3465 func->function.fs_descriptors = NULL; 3466 func->function.hs_descriptors = NULL; 3467 func->function.ss_descriptors = NULL; 3468 func->interfaces_nums = NULL; 3469 3470 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3471 } 3472 3473 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3474 { 3475 struct ffs_function *func; 3476 3477 ENTER(); 3478 3479 func = kzalloc(sizeof(*func), GFP_KERNEL); 3480 if (unlikely(!func)) 3481 return ERR_PTR(-ENOMEM); 3482 3483 func->function.name = "Function FS Gadget"; 3484 3485 func->function.bind = ffs_func_bind; 3486 func->function.unbind = ffs_func_unbind; 3487 func->function.set_alt = ffs_func_set_alt; 3488 func->function.disable = ffs_func_disable; 3489 func->function.setup = ffs_func_setup; 3490 func->function.req_match = ffs_func_req_match; 3491 func->function.suspend = ffs_func_suspend; 3492 func->function.resume = ffs_func_resume; 3493 func->function.free_func = ffs_free; 3494 3495 return &func->function; 3496 } 3497 3498 /* 3499 * ffs_lock must be taken by the caller of this function 3500 */ 3501 static struct ffs_dev *_ffs_alloc_dev(void) 3502 { 3503 struct ffs_dev *dev; 3504 int ret; 3505 3506 if (_ffs_get_single_dev()) 3507 return ERR_PTR(-EBUSY); 3508 3509 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3510 if (!dev) 3511 return ERR_PTR(-ENOMEM); 3512 3513 if (list_empty(&ffs_devices)) { 3514 ret = functionfs_init(); 3515 if (ret) { 3516 kfree(dev); 3517 return ERR_PTR(ret); 3518 } 3519 } 3520 3521 list_add(&dev->entry, &ffs_devices); 3522 3523 return dev; 3524 } 3525 3526 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3527 { 3528 struct ffs_dev *existing; 3529 int ret = 0; 3530 3531 ffs_dev_lock(); 3532 3533 existing = _ffs_do_find_dev(name); 3534 if (!existing) 3535 strlcpy(dev->name, name, ARRAY_SIZE(dev->name)); 3536 else if (existing != dev) 3537 ret = -EBUSY; 3538 3539 ffs_dev_unlock(); 3540 3541 return ret; 3542 } 3543 EXPORT_SYMBOL_GPL(ffs_name_dev); 3544 3545 int ffs_single_dev(struct ffs_dev *dev) 3546 { 3547 int ret; 3548 3549 ret = 0; 3550 ffs_dev_lock(); 3551 3552 if (!list_is_singular(&ffs_devices)) 3553 ret = -EBUSY; 3554 else 3555 dev->single = true; 3556 3557 ffs_dev_unlock(); 3558 return ret; 3559 } 3560 EXPORT_SYMBOL_GPL(ffs_single_dev); 3561 3562 /* 3563 * ffs_lock must be taken by the caller of this function 3564 */ 3565 static void _ffs_free_dev(struct ffs_dev *dev) 3566 { 3567 list_del(&dev->entry); 3568 3569 /* Clear the private_data pointer to stop incorrect dev access */ 3570 if (dev->ffs_data) 3571 dev->ffs_data->private_data = NULL; 3572 3573 kfree(dev); 3574 if (list_empty(&ffs_devices)) 3575 functionfs_cleanup(); 3576 } 3577 3578 static void *ffs_acquire_dev(const char *dev_name) 3579 { 3580 struct ffs_dev *ffs_dev; 3581 3582 ENTER(); 3583 ffs_dev_lock(); 3584 3585 ffs_dev = _ffs_find_dev(dev_name); 3586 if (!ffs_dev) 3587 ffs_dev = ERR_PTR(-ENOENT); 3588 else if (ffs_dev->mounted) 3589 ffs_dev = ERR_PTR(-EBUSY); 3590 else if (ffs_dev->ffs_acquire_dev_callback && 3591 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3592 ffs_dev = ERR_PTR(-ENOENT); 3593 else 3594 ffs_dev->mounted = true; 3595 3596 ffs_dev_unlock(); 3597 return ffs_dev; 3598 } 3599 3600 static void ffs_release_dev(struct ffs_data *ffs_data) 3601 { 3602 struct ffs_dev *ffs_dev; 3603 3604 ENTER(); 3605 ffs_dev_lock(); 3606 3607 ffs_dev = ffs_data->private_data; 3608 if (ffs_dev) { 3609 ffs_dev->mounted = false; 3610 3611 if (ffs_dev->ffs_release_dev_callback) 3612 ffs_dev->ffs_release_dev_callback(ffs_dev); 3613 } 3614 3615 ffs_dev_unlock(); 3616 } 3617 3618 static int ffs_ready(struct ffs_data *ffs) 3619 { 3620 struct ffs_dev *ffs_obj; 3621 int ret = 0; 3622 3623 ENTER(); 3624 ffs_dev_lock(); 3625 3626 ffs_obj = ffs->private_data; 3627 if (!ffs_obj) { 3628 ret = -EINVAL; 3629 goto done; 3630 } 3631 if (WARN_ON(ffs_obj->desc_ready)) { 3632 ret = -EBUSY; 3633 goto done; 3634 } 3635 3636 ffs_obj->desc_ready = true; 3637 ffs_obj->ffs_data = ffs; 3638 3639 if (ffs_obj->ffs_ready_callback) { 3640 ret = ffs_obj->ffs_ready_callback(ffs); 3641 if (ret) 3642 goto done; 3643 } 3644 3645 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 3646 done: 3647 ffs_dev_unlock(); 3648 return ret; 3649 } 3650 3651 static void ffs_closed(struct ffs_data *ffs) 3652 { 3653 struct ffs_dev *ffs_obj; 3654 struct f_fs_opts *opts; 3655 struct config_item *ci; 3656 3657 ENTER(); 3658 ffs_dev_lock(); 3659 3660 ffs_obj = ffs->private_data; 3661 if (!ffs_obj) 3662 goto done; 3663 3664 ffs_obj->desc_ready = false; 3665 ffs_obj->ffs_data = NULL; 3666 3667 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) && 3668 ffs_obj->ffs_closed_callback) 3669 ffs_obj->ffs_closed_callback(ffs); 3670 3671 if (ffs_obj->opts) 3672 opts = ffs_obj->opts; 3673 else 3674 goto done; 3675 3676 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent 3677 || !kref_read(&opts->func_inst.group.cg_item.ci_kref)) 3678 goto done; 3679 3680 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent; 3681 ffs_dev_unlock(); 3682 3683 if (test_bit(FFS_FL_BOUND, &ffs->flags)) 3684 unregister_gadget_item(ci); 3685 return; 3686 done: 3687 ffs_dev_unlock(); 3688 } 3689 3690 /* Misc helper functions ****************************************************/ 3691 3692 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3693 { 3694 return nonblock 3695 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3696 : mutex_lock_interruptible(mutex); 3697 } 3698 3699 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3700 { 3701 char *data; 3702 3703 if (unlikely(!len)) 3704 return NULL; 3705 3706 data = kmalloc(len, GFP_KERNEL); 3707 if (unlikely(!data)) 3708 return ERR_PTR(-ENOMEM); 3709 3710 if (unlikely(copy_from_user(data, buf, len))) { 3711 kfree(data); 3712 return ERR_PTR(-EFAULT); 3713 } 3714 3715 pr_vdebug("Buffer from user space:\n"); 3716 ffs_dump_mem("", data, len); 3717 3718 return data; 3719 } 3720 3721 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3722 MODULE_LICENSE("GPL"); 3723 MODULE_AUTHOR("Michal Nazarewicz"); 3724