1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Faraday FOTG210 EHCI-like driver 3 * 4 * Copyright (c) 2013 Faraday Technology Corporation 5 * 6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com> 7 * Feng-Hsin Chiang <john453@faraday-tech.com> 8 * Po-Yu Chuang <ratbert.chuang@gmail.com> 9 * 10 * Most of code borrowed from the Linux-3.7 EHCI driver 11 */ 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/device.h> 15 #include <linux/dmapool.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/ioport.h> 19 #include <linux/sched.h> 20 #include <linux/vmalloc.h> 21 #include <linux/errno.h> 22 #include <linux/init.h> 23 #include <linux/hrtimer.h> 24 #include <linux/list.h> 25 #include <linux/interrupt.h> 26 #include <linux/usb.h> 27 #include <linux/usb/hcd.h> 28 #include <linux/moduleparam.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/debugfs.h> 31 #include <linux/slab.h> 32 #include <linux/uaccess.h> 33 #include <linux/platform_device.h> 34 #include <linux/io.h> 35 #include <linux/iopoll.h> 36 37 #include <asm/byteorder.h> 38 #include <asm/irq.h> 39 #include <asm/unaligned.h> 40 41 #include "fotg210.h" 42 43 static const char hcd_name[] = "fotg210_hcd"; 44 45 #undef FOTG210_URB_TRACE 46 #define FOTG210_STATS 47 48 /* magic numbers that can affect system performance */ 49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 51 #define FOTG210_TUNE_RL_TT 0 52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 53 #define FOTG210_TUNE_MULT_TT 1 54 55 /* Some drivers think it's safe to schedule isochronous transfers more than 256 56 * ms into the future (partly as a result of an old bug in the scheduling 57 * code). In an attempt to avoid trouble, we will use a minimum scheduling 58 * length of 512 frames instead of 256. 59 */ 60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ 61 62 /* Initial IRQ latency: faster than hw default */ 63 static int log2_irq_thresh; /* 0 to 6 */ 64 module_param(log2_irq_thresh, int, S_IRUGO); 65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 66 67 /* initial park setting: slower than hw default */ 68 static unsigned park; 69 module_param(park, uint, S_IRUGO); 70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 71 72 /* for link power management(LPM) feature */ 73 static unsigned int hird; 74 module_param(hird, int, S_IRUGO); 75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); 76 77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 78 79 #include "fotg210-hcd.h" 80 81 #define fotg210_dbg(fotg210, fmt, args...) \ 82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 83 #define fotg210_err(fotg210, fmt, args...) \ 84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 85 #define fotg210_info(fotg210, fmt, args...) \ 86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 87 #define fotg210_warn(fotg210, fmt, args...) \ 88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) 89 90 /* check the values in the HCSPARAMS register (host controller _Structural_ 91 * parameters) see EHCI spec, Table 2-4 for each value 92 */ 93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) 94 { 95 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 96 97 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params, 98 HCS_N_PORTS(params)); 99 } 100 101 /* check the values in the HCCPARAMS register (host controller _Capability_ 102 * parameters) see EHCI Spec, Table 2-5 for each value 103 */ 104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) 105 { 106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 107 108 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label, 109 params, 110 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", 111 HCC_CANPARK(params) ? " park" : ""); 112 } 113 114 static void __maybe_unused 115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) 116 { 117 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, 118 hc32_to_cpup(fotg210, &qtd->hw_next), 119 hc32_to_cpup(fotg210, &qtd->hw_alt_next), 120 hc32_to_cpup(fotg210, &qtd->hw_token), 121 hc32_to_cpup(fotg210, &qtd->hw_buf[0])); 122 if (qtd->hw_buf[1]) 123 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n", 124 hc32_to_cpup(fotg210, &qtd->hw_buf[1]), 125 hc32_to_cpup(fotg210, &qtd->hw_buf[2]), 126 hc32_to_cpup(fotg210, &qtd->hw_buf[3]), 127 hc32_to_cpup(fotg210, &qtd->hw_buf[4])); 128 } 129 130 static void __maybe_unused 131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 132 { 133 struct fotg210_qh_hw *hw = qh->hw; 134 135 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh, 136 hw->hw_next, hw->hw_info1, hw->hw_info2, 137 hw->hw_current); 138 139 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); 140 } 141 142 static void __maybe_unused 143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 144 { 145 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label, 146 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), 147 itd->urb); 148 149 fotg210_dbg(fotg210, 150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", 151 hc32_to_cpu(fotg210, itd->hw_transaction[0]), 152 hc32_to_cpu(fotg210, itd->hw_transaction[1]), 153 hc32_to_cpu(fotg210, itd->hw_transaction[2]), 154 hc32_to_cpu(fotg210, itd->hw_transaction[3]), 155 hc32_to_cpu(fotg210, itd->hw_transaction[4]), 156 hc32_to_cpu(fotg210, itd->hw_transaction[5]), 157 hc32_to_cpu(fotg210, itd->hw_transaction[6]), 158 hc32_to_cpu(fotg210, itd->hw_transaction[7])); 159 160 fotg210_dbg(fotg210, 161 " buf: %08x %08x %08x %08x %08x %08x %08x\n", 162 hc32_to_cpu(fotg210, itd->hw_bufp[0]), 163 hc32_to_cpu(fotg210, itd->hw_bufp[1]), 164 hc32_to_cpu(fotg210, itd->hw_bufp[2]), 165 hc32_to_cpu(fotg210, itd->hw_bufp[3]), 166 hc32_to_cpu(fotg210, itd->hw_bufp[4]), 167 hc32_to_cpu(fotg210, itd->hw_bufp[5]), 168 hc32_to_cpu(fotg210, itd->hw_bufp[6])); 169 170 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n", 171 itd->index[0], itd->index[1], itd->index[2], 172 itd->index[3], itd->index[4], itd->index[5], 173 itd->index[6], itd->index[7]); 174 } 175 176 static int __maybe_unused 177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 178 { 179 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 180 label, label[0] ? " " : "", status, 181 (status & STS_ASS) ? " Async" : "", 182 (status & STS_PSS) ? " Periodic" : "", 183 (status & STS_RECL) ? " Recl" : "", 184 (status & STS_HALT) ? " Halt" : "", 185 (status & STS_IAA) ? " IAA" : "", 186 (status & STS_FATAL) ? " FATAL" : "", 187 (status & STS_FLR) ? " FLR" : "", 188 (status & STS_PCD) ? " PCD" : "", 189 (status & STS_ERR) ? " ERR" : "", 190 (status & STS_INT) ? " INT" : ""); 191 } 192 193 static int __maybe_unused 194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 195 { 196 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 197 label, label[0] ? " " : "", enable, 198 (enable & STS_IAA) ? " IAA" : "", 199 (enable & STS_FATAL) ? " FATAL" : "", 200 (enable & STS_FLR) ? " FLR" : "", 201 (enable & STS_PCD) ? " PCD" : "", 202 (enable & STS_ERR) ? " ERR" : "", 203 (enable & STS_INT) ? " INT" : ""); 204 } 205 206 static const char *const fls_strings[] = { "1024", "512", "256", "??" }; 207 208 static int dbg_command_buf(char *buf, unsigned len, const char *label, 209 u32 command) 210 { 211 return scnprintf(buf, len, 212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s", 213 label, label[0] ? " " : "", command, 214 (command & CMD_PARK) ? " park" : "(park)", 215 CMD_PARK_CNT(command), 216 (command >> 16) & 0x3f, 217 (command & CMD_IAAD) ? " IAAD" : "", 218 (command & CMD_ASE) ? " Async" : "", 219 (command & CMD_PSE) ? " Periodic" : "", 220 fls_strings[(command >> 2) & 0x3], 221 (command & CMD_RESET) ? " Reset" : "", 222 (command & CMD_RUN) ? "RUN" : "HALT"); 223 } 224 225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port, 226 u32 status) 227 { 228 char *sig; 229 230 /* signaling state */ 231 switch (status & (3 << 10)) { 232 case 0 << 10: 233 sig = "se0"; 234 break; 235 case 1 << 10: 236 sig = "k"; 237 break; /* low speed */ 238 case 2 << 10: 239 sig = "j"; 240 break; 241 default: 242 sig = "?"; 243 break; 244 } 245 246 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s", 247 label, label[0] ? " " : "", port, status, 248 status >> 25, /*device address */ 249 sig, 250 (status & PORT_RESET) ? " RESET" : "", 251 (status & PORT_SUSPEND) ? " SUSPEND" : "", 252 (status & PORT_RESUME) ? " RESUME" : "", 253 (status & PORT_PEC) ? " PEC" : "", 254 (status & PORT_PE) ? " PE" : "", 255 (status & PORT_CSC) ? " CSC" : "", 256 (status & PORT_CONNECT) ? " CONNECT" : ""); 257 258 return buf; 259 } 260 261 /* functions have the "wrong" filename when they're output... */ 262 #define dbg_status(fotg210, label, status) { \ 263 char _buf[80]; \ 264 dbg_status_buf(_buf, sizeof(_buf), label, status); \ 265 fotg210_dbg(fotg210, "%s\n", _buf); \ 266 } 267 268 #define dbg_cmd(fotg210, label, command) { \ 269 char _buf[80]; \ 270 dbg_command_buf(_buf, sizeof(_buf), label, command); \ 271 fotg210_dbg(fotg210, "%s\n", _buf); \ 272 } 273 274 #define dbg_port(fotg210, label, port, status) { \ 275 char _buf[80]; \ 276 fotg210_dbg(fotg210, "%s\n", \ 277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\ 278 } 279 280 /* troubleshooting help: expose state in debugfs */ 281 static int debug_async_open(struct inode *, struct file *); 282 static int debug_periodic_open(struct inode *, struct file *); 283 static int debug_registers_open(struct inode *, struct file *); 284 static int debug_async_open(struct inode *, struct file *); 285 286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); 287 static int debug_close(struct inode *, struct file *); 288 289 static const struct file_operations debug_async_fops = { 290 .owner = THIS_MODULE, 291 .open = debug_async_open, 292 .read = debug_output, 293 .release = debug_close, 294 .llseek = default_llseek, 295 }; 296 static const struct file_operations debug_periodic_fops = { 297 .owner = THIS_MODULE, 298 .open = debug_periodic_open, 299 .read = debug_output, 300 .release = debug_close, 301 .llseek = default_llseek, 302 }; 303 static const struct file_operations debug_registers_fops = { 304 .owner = THIS_MODULE, 305 .open = debug_registers_open, 306 .read = debug_output, 307 .release = debug_close, 308 .llseek = default_llseek, 309 }; 310 311 static struct dentry *fotg210_debug_root; 312 313 struct debug_buffer { 314 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */ 315 struct usb_bus *bus; 316 struct mutex mutex; /* protect filling of buffer */ 317 size_t count; /* number of characters filled into buffer */ 318 char *output_buf; 319 size_t alloc_size; 320 }; 321 322 static inline char speed_char(u32 scratch) 323 { 324 switch (scratch & (3 << 12)) { 325 case QH_FULL_SPEED: 326 return 'f'; 327 328 case QH_LOW_SPEED: 329 return 'l'; 330 331 case QH_HIGH_SPEED: 332 return 'h'; 333 334 default: 335 return '?'; 336 } 337 } 338 339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) 340 { 341 __u32 v = hc32_to_cpu(fotg210, token); 342 343 if (v & QTD_STS_ACTIVE) 344 return '*'; 345 if (v & QTD_STS_HALT) 346 return '-'; 347 if (!IS_SHORT_READ(v)) 348 return ' '; 349 /* tries to advance through hw_alt_next */ 350 return '/'; 351 } 352 353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, 354 char **nextp, unsigned *sizep) 355 { 356 u32 scratch; 357 u32 hw_curr; 358 struct fotg210_qtd *td; 359 unsigned temp; 360 unsigned size = *sizep; 361 char *next = *nextp; 362 char mark; 363 __le32 list_end = FOTG210_LIST_END(fotg210); 364 struct fotg210_qh_hw *hw = qh->hw; 365 366 if (hw->hw_qtd_next == list_end) /* NEC does this */ 367 mark = '@'; 368 else 369 mark = token_mark(fotg210, hw->hw_token); 370 if (mark == '/') { /* qh_alt_next controls qh advance? */ 371 if ((hw->hw_alt_next & QTD_MASK(fotg210)) == 372 fotg210->async->hw->hw_alt_next) 373 mark = '#'; /* blocked */ 374 else if (hw->hw_alt_next == list_end) 375 mark = '.'; /* use hw_qtd_next */ 376 /* else alt_next points to some other qtd */ 377 } 378 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 379 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; 380 temp = scnprintf(next, size, 381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", 382 qh, scratch & 0x007f, 383 speed_char(scratch), 384 (scratch >> 8) & 0x000f, 385 scratch, hc32_to_cpup(fotg210, &hw->hw_info2), 386 hc32_to_cpup(fotg210, &hw->hw_token), mark, 387 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) 388 ? "data1" : "data0", 389 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); 390 size -= temp; 391 next += temp; 392 393 /* hc may be modifying the list as we read it ... */ 394 list_for_each_entry(td, &qh->qtd_list, qtd_list) { 395 scratch = hc32_to_cpup(fotg210, &td->hw_token); 396 mark = ' '; 397 if (hw_curr == td->qtd_dma) 398 mark = '*'; 399 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) 400 mark = '+'; 401 else if (QTD_LENGTH(scratch)) { 402 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) 403 mark = '#'; 404 else if (td->hw_alt_next != list_end) 405 mark = '/'; 406 } 407 temp = scnprintf(next, size, 408 "\n\t%p%c%s len=%d %08x urb %p", 409 td, mark, ({ char *tmp; 410 switch ((scratch>>8)&0x03) { 411 case 0: 412 tmp = "out"; 413 break; 414 case 1: 415 tmp = "in"; 416 break; 417 case 2: 418 tmp = "setup"; 419 break; 420 default: 421 tmp = "?"; 422 break; 423 } tmp; }), 424 (scratch >> 16) & 0x7fff, 425 scratch, 426 td->urb); 427 size -= temp; 428 next += temp; 429 } 430 431 temp = scnprintf(next, size, "\n"); 432 433 size -= temp; 434 next += temp; 435 436 *sizep = size; 437 *nextp = next; 438 } 439 440 static ssize_t fill_async_buffer(struct debug_buffer *buf) 441 { 442 struct usb_hcd *hcd; 443 struct fotg210_hcd *fotg210; 444 unsigned long flags; 445 unsigned temp, size; 446 char *next; 447 struct fotg210_qh *qh; 448 449 hcd = bus_to_hcd(buf->bus); 450 fotg210 = hcd_to_fotg210(hcd); 451 next = buf->output_buf; 452 size = buf->alloc_size; 453 454 *next = 0; 455 456 /* dumps a snapshot of the async schedule. 457 * usually empty except for long-term bulk reads, or head. 458 * one QH per line, and TDs we know about 459 */ 460 spin_lock_irqsave(&fotg210->lock, flags); 461 for (qh = fotg210->async->qh_next.qh; size > 0 && qh; 462 qh = qh->qh_next.qh) 463 qh_lines(fotg210, qh, &next, &size); 464 if (fotg210->async_unlink && size > 0) { 465 temp = scnprintf(next, size, "\nunlink =\n"); 466 size -= temp; 467 next += temp; 468 469 for (qh = fotg210->async_unlink; size > 0 && qh; 470 qh = qh->unlink_next) 471 qh_lines(fotg210, qh, &next, &size); 472 } 473 spin_unlock_irqrestore(&fotg210->lock, flags); 474 475 return strlen(buf->output_buf); 476 } 477 478 /* count tds, get ep direction */ 479 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210, 480 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size) 481 { 482 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 483 struct fotg210_qtd *qtd; 484 char *type = ""; 485 unsigned temp = 0; 486 487 /* count tds, get ep direction */ 488 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { 489 temp++; 490 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) { 491 case 0: 492 type = "out"; 493 continue; 494 case 1: 495 type = "in"; 496 continue; 497 } 498 } 499 500 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)", 501 speed_char(scratch), scratch & 0x007f, 502 (scratch >> 8) & 0x000f, type, qh->usecs, 503 qh->c_usecs, temp, (scratch >> 16) & 0x7ff); 504 } 505 506 #define DBG_SCHED_LIMIT 64 507 static ssize_t fill_periodic_buffer(struct debug_buffer *buf) 508 { 509 struct usb_hcd *hcd; 510 struct fotg210_hcd *fotg210; 511 unsigned long flags; 512 union fotg210_shadow p, *seen; 513 unsigned temp, size, seen_count; 514 char *next; 515 unsigned i; 516 __hc32 tag; 517 518 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC); 519 if (!seen) 520 return 0; 521 522 seen_count = 0; 523 524 hcd = bus_to_hcd(buf->bus); 525 fotg210 = hcd_to_fotg210(hcd); 526 next = buf->output_buf; 527 size = buf->alloc_size; 528 529 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); 530 size -= temp; 531 next += temp; 532 533 /* dump a snapshot of the periodic schedule. 534 * iso changes, interrupt usually doesn't. 535 */ 536 spin_lock_irqsave(&fotg210->lock, flags); 537 for (i = 0; i < fotg210->periodic_size; i++) { 538 p = fotg210->pshadow[i]; 539 if (likely(!p.ptr)) 540 continue; 541 542 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); 543 544 temp = scnprintf(next, size, "%4d: ", i); 545 size -= temp; 546 next += temp; 547 548 do { 549 struct fotg210_qh_hw *hw; 550 551 switch (hc32_to_cpu(fotg210, tag)) { 552 case Q_TYPE_QH: 553 hw = p.qh->hw; 554 temp = scnprintf(next, size, " qh%d-%04x/%p", 555 p.qh->period, 556 hc32_to_cpup(fotg210, 557 &hw->hw_info2) 558 /* uframe masks */ 559 & (QH_CMASK | QH_SMASK), 560 p.qh); 561 size -= temp; 562 next += temp; 563 /* don't repeat what follows this qh */ 564 for (temp = 0; temp < seen_count; temp++) { 565 if (seen[temp].ptr != p.ptr) 566 continue; 567 if (p.qh->qh_next.ptr) { 568 temp = scnprintf(next, size, 569 " ..."); 570 size -= temp; 571 next += temp; 572 } 573 break; 574 } 575 /* show more info the first time around */ 576 if (temp == seen_count) { 577 temp = output_buf_tds_dir(next, 578 fotg210, hw, 579 p.qh, size); 580 581 if (seen_count < DBG_SCHED_LIMIT) 582 seen[seen_count++].qh = p.qh; 583 } else 584 temp = 0; 585 tag = Q_NEXT_TYPE(fotg210, hw->hw_next); 586 p = p.qh->qh_next; 587 break; 588 case Q_TYPE_FSTN: 589 temp = scnprintf(next, size, 590 " fstn-%8x/%p", 591 p.fstn->hw_prev, p.fstn); 592 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); 593 p = p.fstn->fstn_next; 594 break; 595 case Q_TYPE_ITD: 596 temp = scnprintf(next, size, 597 " itd/%p", p.itd); 598 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); 599 p = p.itd->itd_next; 600 break; 601 } 602 size -= temp; 603 next += temp; 604 } while (p.ptr); 605 606 temp = scnprintf(next, size, "\n"); 607 size -= temp; 608 next += temp; 609 } 610 spin_unlock_irqrestore(&fotg210->lock, flags); 611 kfree(seen); 612 613 return buf->alloc_size - size; 614 } 615 #undef DBG_SCHED_LIMIT 616 617 static const char *rh_state_string(struct fotg210_hcd *fotg210) 618 { 619 switch (fotg210->rh_state) { 620 case FOTG210_RH_HALTED: 621 return "halted"; 622 case FOTG210_RH_SUSPENDED: 623 return "suspended"; 624 case FOTG210_RH_RUNNING: 625 return "running"; 626 case FOTG210_RH_STOPPING: 627 return "stopping"; 628 } 629 return "?"; 630 } 631 632 static ssize_t fill_registers_buffer(struct debug_buffer *buf) 633 { 634 struct usb_hcd *hcd; 635 struct fotg210_hcd *fotg210; 636 unsigned long flags; 637 unsigned temp, size, i; 638 char *next, scratch[80]; 639 static const char fmt[] = "%*s\n"; 640 static const char label[] = ""; 641 642 hcd = bus_to_hcd(buf->bus); 643 fotg210 = hcd_to_fotg210(hcd); 644 next = buf->output_buf; 645 size = buf->alloc_size; 646 647 spin_lock_irqsave(&fotg210->lock, flags); 648 649 if (!HCD_HW_ACCESSIBLE(hcd)) { 650 size = scnprintf(next, size, 651 "bus %s, device %s\n" 652 "%s\n" 653 "SUSPENDED(no register access)\n", 654 hcd->self.controller->bus->name, 655 dev_name(hcd->self.controller), 656 hcd->product_desc); 657 goto done; 658 } 659 660 /* Capability Registers */ 661 i = HC_VERSION(fotg210, fotg210_readl(fotg210, 662 &fotg210->caps->hc_capbase)); 663 temp = scnprintf(next, size, 664 "bus %s, device %s\n" 665 "%s\n" 666 "EHCI %x.%02x, rh state %s\n", 667 hcd->self.controller->bus->name, 668 dev_name(hcd->self.controller), 669 hcd->product_desc, 670 i >> 8, i & 0x0ff, rh_state_string(fotg210)); 671 size -= temp; 672 next += temp; 673 674 /* FIXME interpret both types of params */ 675 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 676 temp = scnprintf(next, size, "structural params 0x%08x\n", i); 677 size -= temp; 678 next += temp; 679 680 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 681 temp = scnprintf(next, size, "capability params 0x%08x\n", i); 682 size -= temp; 683 next += temp; 684 685 /* Operational Registers */ 686 temp = dbg_status_buf(scratch, sizeof(scratch), label, 687 fotg210_readl(fotg210, &fotg210->regs->status)); 688 temp = scnprintf(next, size, fmt, temp, scratch); 689 size -= temp; 690 next += temp; 691 692 temp = dbg_command_buf(scratch, sizeof(scratch), label, 693 fotg210_readl(fotg210, &fotg210->regs->command)); 694 temp = scnprintf(next, size, fmt, temp, scratch); 695 size -= temp; 696 next += temp; 697 698 temp = dbg_intr_buf(scratch, sizeof(scratch), label, 699 fotg210_readl(fotg210, &fotg210->regs->intr_enable)); 700 temp = scnprintf(next, size, fmt, temp, scratch); 701 size -= temp; 702 next += temp; 703 704 temp = scnprintf(next, size, "uframe %04x\n", 705 fotg210_read_frame_index(fotg210)); 706 size -= temp; 707 next += temp; 708 709 if (fotg210->async_unlink) { 710 temp = scnprintf(next, size, "async unlink qh %p\n", 711 fotg210->async_unlink); 712 size -= temp; 713 next += temp; 714 } 715 716 #ifdef FOTG210_STATS 717 temp = scnprintf(next, size, 718 "irq normal %ld err %ld iaa %ld(lost %ld)\n", 719 fotg210->stats.normal, fotg210->stats.error, 720 fotg210->stats.iaa, fotg210->stats.lost_iaa); 721 size -= temp; 722 next += temp; 723 724 temp = scnprintf(next, size, "complete %ld unlink %ld\n", 725 fotg210->stats.complete, fotg210->stats.unlink); 726 size -= temp; 727 next += temp; 728 #endif 729 730 done: 731 spin_unlock_irqrestore(&fotg210->lock, flags); 732 733 return buf->alloc_size - size; 734 } 735 736 static struct debug_buffer 737 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *)) 738 { 739 struct debug_buffer *buf; 740 741 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); 742 743 if (buf) { 744 buf->bus = bus; 745 buf->fill_func = fill_func; 746 mutex_init(&buf->mutex); 747 buf->alloc_size = PAGE_SIZE; 748 } 749 750 return buf; 751 } 752 753 static int fill_buffer(struct debug_buffer *buf) 754 { 755 int ret = 0; 756 757 if (!buf->output_buf) 758 buf->output_buf = vmalloc(buf->alloc_size); 759 760 if (!buf->output_buf) { 761 ret = -ENOMEM; 762 goto out; 763 } 764 765 ret = buf->fill_func(buf); 766 767 if (ret >= 0) { 768 buf->count = ret; 769 ret = 0; 770 } 771 772 out: 773 return ret; 774 } 775 776 static ssize_t debug_output(struct file *file, char __user *user_buf, 777 size_t len, loff_t *offset) 778 { 779 struct debug_buffer *buf = file->private_data; 780 int ret = 0; 781 782 mutex_lock(&buf->mutex); 783 if (buf->count == 0) { 784 ret = fill_buffer(buf); 785 if (ret != 0) { 786 mutex_unlock(&buf->mutex); 787 goto out; 788 } 789 } 790 mutex_unlock(&buf->mutex); 791 792 ret = simple_read_from_buffer(user_buf, len, offset, 793 buf->output_buf, buf->count); 794 795 out: 796 return ret; 797 798 } 799 800 static int debug_close(struct inode *inode, struct file *file) 801 { 802 struct debug_buffer *buf = file->private_data; 803 804 if (buf) { 805 vfree(buf->output_buf); 806 kfree(buf); 807 } 808 809 return 0; 810 } 811 static int debug_async_open(struct inode *inode, struct file *file) 812 { 813 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); 814 815 return file->private_data ? 0 : -ENOMEM; 816 } 817 818 static int debug_periodic_open(struct inode *inode, struct file *file) 819 { 820 struct debug_buffer *buf; 821 822 buf = alloc_buffer(inode->i_private, fill_periodic_buffer); 823 if (!buf) 824 return -ENOMEM; 825 826 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; 827 file->private_data = buf; 828 return 0; 829 } 830 831 static int debug_registers_open(struct inode *inode, struct file *file) 832 { 833 file->private_data = alloc_buffer(inode->i_private, 834 fill_registers_buffer); 835 836 return file->private_data ? 0 : -ENOMEM; 837 } 838 839 static inline void create_debug_files(struct fotg210_hcd *fotg210) 840 { 841 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 842 struct dentry *root; 843 844 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root); 845 846 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops); 847 debugfs_create_file("periodic", S_IRUGO, root, bus, 848 &debug_periodic_fops); 849 debugfs_create_file("registers", S_IRUGO, root, bus, 850 &debug_registers_fops); 851 } 852 853 static inline void remove_debug_files(struct fotg210_hcd *fotg210) 854 { 855 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 856 857 debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root); 858 } 859 860 /* handshake - spin reading hc until handshake completes or fails 861 * @ptr: address of hc register to be read 862 * @mask: bits to look at in result of read 863 * @done: value of those bits when handshake succeeds 864 * @usec: timeout in microseconds 865 * 866 * Returns negative errno, or zero on success 867 * 868 * Success happens when the "mask" bits have the specified value (hardware 869 * handshake done). There are two failure modes: "usec" have passed (major 870 * hardware flakeout), or the register reads as all-ones (hardware removed). 871 * 872 * That last failure should_only happen in cases like physical cardbus eject 873 * before driver shutdown. But it also seems to be caused by bugs in cardbus 874 * bridge shutdown: shutting down the bridge before the devices using it. 875 */ 876 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, 877 u32 mask, u32 done, int usec) 878 { 879 u32 result; 880 int ret; 881 882 ret = readl_poll_timeout_atomic(ptr, result, 883 ((result & mask) == done || 884 result == U32_MAX), 1, usec); 885 if (result == U32_MAX) /* card removed */ 886 return -ENODEV; 887 888 return ret; 889 } 890 891 /* Force HC to halt state from unknown (EHCI spec section 2.3). 892 * Must be called with interrupts enabled and the lock not held. 893 */ 894 static int fotg210_halt(struct fotg210_hcd *fotg210) 895 { 896 u32 temp; 897 898 spin_lock_irq(&fotg210->lock); 899 900 /* disable any irqs left enabled by previous code */ 901 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 902 903 /* 904 * This routine gets called during probe before fotg210->command 905 * has been initialized, so we can't rely on its value. 906 */ 907 fotg210->command &= ~CMD_RUN; 908 temp = fotg210_readl(fotg210, &fotg210->regs->command); 909 temp &= ~(CMD_RUN | CMD_IAAD); 910 fotg210_writel(fotg210, temp, &fotg210->regs->command); 911 912 spin_unlock_irq(&fotg210->lock); 913 synchronize_irq(fotg210_to_hcd(fotg210)->irq); 914 915 return handshake(fotg210, &fotg210->regs->status, 916 STS_HALT, STS_HALT, 16 * 125); 917 } 918 919 /* Reset a non-running (STS_HALT == 1) controller. 920 * Must be called with interrupts enabled and the lock not held. 921 */ 922 static int fotg210_reset(struct fotg210_hcd *fotg210) 923 { 924 int retval; 925 u32 command = fotg210_readl(fotg210, &fotg210->regs->command); 926 927 /* If the EHCI debug controller is active, special care must be 928 * taken before and after a host controller reset 929 */ 930 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) 931 fotg210->debug = NULL; 932 933 command |= CMD_RESET; 934 dbg_cmd(fotg210, "reset", command); 935 fotg210_writel(fotg210, command, &fotg210->regs->command); 936 fotg210->rh_state = FOTG210_RH_HALTED; 937 fotg210->next_statechange = jiffies; 938 retval = handshake(fotg210, &fotg210->regs->command, 939 CMD_RESET, 0, 250 * 1000); 940 941 if (retval) 942 return retval; 943 944 if (fotg210->debug) 945 dbgp_external_startup(fotg210_to_hcd(fotg210)); 946 947 fotg210->port_c_suspend = fotg210->suspended_ports = 948 fotg210->resuming_ports = 0; 949 return retval; 950 } 951 952 /* Idle the controller (turn off the schedules). 953 * Must be called with interrupts enabled and the lock not held. 954 */ 955 static void fotg210_quiesce(struct fotg210_hcd *fotg210) 956 { 957 u32 temp; 958 959 if (fotg210->rh_state != FOTG210_RH_RUNNING) 960 return; 961 962 /* wait for any schedule enables/disables to take effect */ 963 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); 964 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, 965 16 * 125); 966 967 /* then disable anything that's still active */ 968 spin_lock_irq(&fotg210->lock); 969 fotg210->command &= ~(CMD_ASE | CMD_PSE); 970 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 971 spin_unlock_irq(&fotg210->lock); 972 973 /* hardware can take 16 microframes to turn off ... */ 974 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, 975 16 * 125); 976 } 977 978 static void end_unlink_async(struct fotg210_hcd *fotg210); 979 static void unlink_empty_async(struct fotg210_hcd *fotg210); 980 static void fotg210_work(struct fotg210_hcd *fotg210); 981 static void start_unlink_intr(struct fotg210_hcd *fotg210, 982 struct fotg210_qh *qh); 983 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 984 985 /* Set a bit in the USBCMD register */ 986 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) 987 { 988 fotg210->command |= bit; 989 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 990 991 /* unblock posted write */ 992 fotg210_readl(fotg210, &fotg210->regs->command); 993 } 994 995 /* Clear a bit in the USBCMD register */ 996 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) 997 { 998 fotg210->command &= ~bit; 999 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1000 1001 /* unblock posted write */ 1002 fotg210_readl(fotg210, &fotg210->regs->command); 1003 } 1004 1005 /* EHCI timer support... Now using hrtimers. 1006 * 1007 * Lots of different events are triggered from fotg210->hrtimer. Whenever 1008 * the timer routine runs, it checks each possible event; events that are 1009 * currently enabled and whose expiration time has passed get handled. 1010 * The set of enabled events is stored as a collection of bitflags in 1011 * fotg210->enabled_hrtimer_events, and they are numbered in order of 1012 * increasing delay values (ranging between 1 ms and 100 ms). 1013 * 1014 * Rather than implementing a sorted list or tree of all pending events, 1015 * we keep track only of the lowest-numbered pending event, in 1016 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its 1017 * expiration time is set to the timeout value for this event. 1018 * 1019 * As a result, events might not get handled right away; the actual delay 1020 * could be anywhere up to twice the requested delay. This doesn't 1021 * matter, because none of the events are especially time-critical. The 1022 * ones that matter most all have a delay of 1 ms, so they will be 1023 * handled after 2 ms at most, which is okay. In addition to this, we 1024 * allow for an expiration range of 1 ms. 1025 */ 1026 1027 /* Delay lengths for the hrtimer event types. 1028 * Keep this list sorted by delay length, in the same order as 1029 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. 1030 */ 1031 static unsigned event_delays_ns[] = { 1032 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */ 1033 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */ 1034 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */ 1035 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */ 1036 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */ 1037 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1038 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1039 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1040 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1041 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1042 }; 1043 1044 /* Enable a pending hrtimer event */ 1045 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, 1046 bool resched) 1047 { 1048 ktime_t *timeout = &fotg210->hr_timeouts[event]; 1049 1050 if (resched) 1051 *timeout = ktime_add(ktime_get(), event_delays_ns[event]); 1052 fotg210->enabled_hrtimer_events |= (1 << event); 1053 1054 /* Track only the lowest-numbered pending event */ 1055 if (event < fotg210->next_hrtimer_event) { 1056 fotg210->next_hrtimer_event = event; 1057 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, 1058 NSEC_PER_MSEC, HRTIMER_MODE_ABS); 1059 } 1060 } 1061 1062 1063 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ 1064 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) 1065 { 1066 unsigned actual, want; 1067 1068 /* Don't enable anything if the controller isn't running (e.g., died) */ 1069 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1070 return; 1071 1072 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; 1073 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; 1074 1075 if (want != actual) { 1076 1077 /* Poll again later, but give up after about 20 ms */ 1078 if (fotg210->ASS_poll_count++ < 20) { 1079 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, 1080 true); 1081 return; 1082 } 1083 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", 1084 want, actual); 1085 } 1086 fotg210->ASS_poll_count = 0; 1087 1088 /* The status is up-to-date; restart or stop the schedule as needed */ 1089 if (want == 0) { /* Stopped */ 1090 if (fotg210->async_count > 0) 1091 fotg210_set_command_bit(fotg210, CMD_ASE); 1092 1093 } else { /* Running */ 1094 if (fotg210->async_count == 0) { 1095 1096 /* Turn off the schedule after a while */ 1097 fotg210_enable_event(fotg210, 1098 FOTG210_HRTIMER_DISABLE_ASYNC, 1099 true); 1100 } 1101 } 1102 } 1103 1104 /* Turn off the async schedule after a brief delay */ 1105 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) 1106 { 1107 fotg210_clear_command_bit(fotg210, CMD_ASE); 1108 } 1109 1110 1111 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ 1112 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) 1113 { 1114 unsigned actual, want; 1115 1116 /* Don't do anything if the controller isn't running (e.g., died) */ 1117 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1118 return; 1119 1120 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; 1121 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; 1122 1123 if (want != actual) { 1124 1125 /* Poll again later, but give up after about 20 ms */ 1126 if (fotg210->PSS_poll_count++ < 20) { 1127 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, 1128 true); 1129 return; 1130 } 1131 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", 1132 want, actual); 1133 } 1134 fotg210->PSS_poll_count = 0; 1135 1136 /* The status is up-to-date; restart or stop the schedule as needed */ 1137 if (want == 0) { /* Stopped */ 1138 if (fotg210->periodic_count > 0) 1139 fotg210_set_command_bit(fotg210, CMD_PSE); 1140 1141 } else { /* Running */ 1142 if (fotg210->periodic_count == 0) { 1143 1144 /* Turn off the schedule after a while */ 1145 fotg210_enable_event(fotg210, 1146 FOTG210_HRTIMER_DISABLE_PERIODIC, 1147 true); 1148 } 1149 } 1150 } 1151 1152 /* Turn off the periodic schedule after a brief delay */ 1153 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) 1154 { 1155 fotg210_clear_command_bit(fotg210, CMD_PSE); 1156 } 1157 1158 1159 /* Poll the STS_HALT status bit; see when a dead controller stops */ 1160 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) 1161 { 1162 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { 1163 1164 /* Give up after a few milliseconds */ 1165 if (fotg210->died_poll_count++ < 5) { 1166 /* Try again later */ 1167 fotg210_enable_event(fotg210, 1168 FOTG210_HRTIMER_POLL_DEAD, true); 1169 return; 1170 } 1171 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); 1172 } 1173 1174 /* Clean up the mess */ 1175 fotg210->rh_state = FOTG210_RH_HALTED; 1176 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 1177 fotg210_work(fotg210); 1178 end_unlink_async(fotg210); 1179 1180 /* Not in process context, so don't try to reset the controller */ 1181 } 1182 1183 1184 /* Handle unlinked interrupt QHs once they are gone from the hardware */ 1185 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) 1186 { 1187 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 1188 1189 /* 1190 * Process all the QHs on the intr_unlink list that were added 1191 * before the current unlink cycle began. The list is in 1192 * temporal order, so stop when we reach the first entry in the 1193 * current cycle. But if the root hub isn't running then 1194 * process all the QHs on the list. 1195 */ 1196 fotg210->intr_unlinking = true; 1197 while (fotg210->intr_unlink) { 1198 struct fotg210_qh *qh = fotg210->intr_unlink; 1199 1200 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) 1201 break; 1202 fotg210->intr_unlink = qh->unlink_next; 1203 qh->unlink_next = NULL; 1204 end_unlink_intr(fotg210, qh); 1205 } 1206 1207 /* Handle remaining entries later */ 1208 if (fotg210->intr_unlink) { 1209 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 1210 true); 1211 ++fotg210->intr_unlink_cycle; 1212 } 1213 fotg210->intr_unlinking = false; 1214 } 1215 1216 1217 /* Start another free-iTDs/siTDs cycle */ 1218 static void start_free_itds(struct fotg210_hcd *fotg210) 1219 { 1220 if (!(fotg210->enabled_hrtimer_events & 1221 BIT(FOTG210_HRTIMER_FREE_ITDS))) { 1222 fotg210->last_itd_to_free = list_entry( 1223 fotg210->cached_itd_list.prev, 1224 struct fotg210_itd, itd_list); 1225 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); 1226 } 1227 } 1228 1229 /* Wait for controller to stop using old iTDs and siTDs */ 1230 static void end_free_itds(struct fotg210_hcd *fotg210) 1231 { 1232 struct fotg210_itd *itd, *n; 1233 1234 if (fotg210->rh_state < FOTG210_RH_RUNNING) 1235 fotg210->last_itd_to_free = NULL; 1236 1237 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { 1238 list_del(&itd->itd_list); 1239 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); 1240 if (itd == fotg210->last_itd_to_free) 1241 break; 1242 } 1243 1244 if (!list_empty(&fotg210->cached_itd_list)) 1245 start_free_itds(fotg210); 1246 } 1247 1248 1249 /* Handle lost (or very late) IAA interrupts */ 1250 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) 1251 { 1252 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1253 return; 1254 1255 /* 1256 * Lost IAA irqs wedge things badly; seen first with a vt8235. 1257 * So we need this watchdog, but must protect it against both 1258 * (a) SMP races against real IAA firing and retriggering, and 1259 * (b) clean HC shutdown, when IAA watchdog was pending. 1260 */ 1261 if (fotg210->async_iaa) { 1262 u32 cmd, status; 1263 1264 /* If we get here, IAA is *REALLY* late. It's barely 1265 * conceivable that the system is so busy that CMD_IAAD 1266 * is still legitimately set, so let's be sure it's 1267 * clear before we read STS_IAA. (The HC should clear 1268 * CMD_IAAD when it sets STS_IAA.) 1269 */ 1270 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 1271 1272 /* 1273 * If IAA is set here it either legitimately triggered 1274 * after the watchdog timer expired (_way_ late, so we'll 1275 * still count it as lost) ... or a silicon erratum: 1276 * - VIA seems to set IAA without triggering the IRQ; 1277 * - IAAD potentially cleared without setting IAA. 1278 */ 1279 status = fotg210_readl(fotg210, &fotg210->regs->status); 1280 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { 1281 INCR(fotg210->stats.lost_iaa); 1282 fotg210_writel(fotg210, STS_IAA, 1283 &fotg210->regs->status); 1284 } 1285 1286 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", 1287 status, cmd); 1288 end_unlink_async(fotg210); 1289 } 1290 } 1291 1292 1293 /* Enable the I/O watchdog, if appropriate */ 1294 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) 1295 { 1296 /* Not needed if the controller isn't running or it's already enabled */ 1297 if (fotg210->rh_state != FOTG210_RH_RUNNING || 1298 (fotg210->enabled_hrtimer_events & 1299 BIT(FOTG210_HRTIMER_IO_WATCHDOG))) 1300 return; 1301 1302 /* 1303 * Isochronous transfers always need the watchdog. 1304 * For other sorts we use it only if the flag is set. 1305 */ 1306 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && 1307 fotg210->async_count + fotg210->intr_count > 0)) 1308 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, 1309 true); 1310 } 1311 1312 1313 /* Handler functions for the hrtimer event types. 1314 * Keep this array in the same order as the event types indexed by 1315 * enum fotg210_hrtimer_event in fotg210.h. 1316 */ 1317 static void (*event_handlers[])(struct fotg210_hcd *) = { 1318 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */ 1319 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */ 1320 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */ 1321 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */ 1322 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */ 1323 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1324 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1325 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1326 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1327 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1328 }; 1329 1330 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) 1331 { 1332 struct fotg210_hcd *fotg210 = 1333 container_of(t, struct fotg210_hcd, hrtimer); 1334 ktime_t now; 1335 unsigned long events; 1336 unsigned long flags; 1337 unsigned e; 1338 1339 spin_lock_irqsave(&fotg210->lock, flags); 1340 1341 events = fotg210->enabled_hrtimer_events; 1342 fotg210->enabled_hrtimer_events = 0; 1343 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 1344 1345 /* 1346 * Check each pending event. If its time has expired, handle 1347 * the event; otherwise re-enable it. 1348 */ 1349 now = ktime_get(); 1350 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { 1351 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0) 1352 event_handlers[e](fotg210); 1353 else 1354 fotg210_enable_event(fotg210, e, false); 1355 } 1356 1357 spin_unlock_irqrestore(&fotg210->lock, flags); 1358 return HRTIMER_NORESTART; 1359 } 1360 1361 #define fotg210_bus_suspend NULL 1362 #define fotg210_bus_resume NULL 1363 1364 static int check_reset_complete(struct fotg210_hcd *fotg210, int index, 1365 u32 __iomem *status_reg, int port_status) 1366 { 1367 if (!(port_status & PORT_CONNECT)) 1368 return port_status; 1369 1370 /* if reset finished and it's still not enabled -- handoff */ 1371 if (!(port_status & PORT_PE)) 1372 /* with integrated TT, there's nobody to hand it to! */ 1373 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n", 1374 index + 1); 1375 else 1376 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", 1377 index + 1); 1378 1379 return port_status; 1380 } 1381 1382 1383 /* build "status change" packet (one or two bytes) from HC registers */ 1384 1385 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) 1386 { 1387 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1388 u32 temp, status; 1389 u32 mask; 1390 int retval = 1; 1391 unsigned long flags; 1392 1393 /* init status to no-changes */ 1394 buf[0] = 0; 1395 1396 /* Inform the core about resumes-in-progress by returning 1397 * a non-zero value even if there are no status changes. 1398 */ 1399 status = fotg210->resuming_ports; 1400 1401 mask = PORT_CSC | PORT_PEC; 1402 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ 1403 1404 /* no hub change reports (bit 0) for now (power, ...) */ 1405 1406 /* port N changes (bit N)? */ 1407 spin_lock_irqsave(&fotg210->lock, flags); 1408 1409 temp = fotg210_readl(fotg210, &fotg210->regs->port_status); 1410 1411 /* 1412 * Return status information even for ports with OWNER set. 1413 * Otherwise hub_wq wouldn't see the disconnect event when a 1414 * high-speed device is switched over to the companion 1415 * controller by the user. 1416 */ 1417 1418 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) || 1419 (fotg210->reset_done[0] && 1420 time_after_eq(jiffies, fotg210->reset_done[0]))) { 1421 buf[0] |= 1 << 1; 1422 status = STS_PCD; 1423 } 1424 /* FIXME autosuspend idle root hubs */ 1425 spin_unlock_irqrestore(&fotg210->lock, flags); 1426 return status ? retval : 0; 1427 } 1428 1429 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210, 1430 struct usb_hub_descriptor *desc) 1431 { 1432 int ports = HCS_N_PORTS(fotg210->hcs_params); 1433 u16 temp; 1434 1435 desc->bDescriptorType = USB_DT_HUB; 1436 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */ 1437 desc->bHubContrCurrent = 0; 1438 1439 desc->bNbrPorts = ports; 1440 temp = 1 + (ports / 8); 1441 desc->bDescLength = 7 + 2 * temp; 1442 1443 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 1444 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 1445 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 1446 1447 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 1448 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 1449 desc->wHubCharacteristics = cpu_to_le16(temp); 1450 } 1451 1452 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, 1453 u16 wIndex, char *buf, u16 wLength) 1454 { 1455 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1456 int ports = HCS_N_PORTS(fotg210->hcs_params); 1457 u32 __iomem *status_reg = &fotg210->regs->port_status; 1458 u32 temp, temp1, status; 1459 unsigned long flags; 1460 int retval = 0; 1461 unsigned selector; 1462 1463 /* 1464 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 1465 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 1466 * (track current state ourselves) ... blink for diagnostics, 1467 * power, "this is the one", etc. EHCI spec supports this. 1468 */ 1469 1470 spin_lock_irqsave(&fotg210->lock, flags); 1471 switch (typeReq) { 1472 case ClearHubFeature: 1473 switch (wValue) { 1474 case C_HUB_LOCAL_POWER: 1475 case C_HUB_OVER_CURRENT: 1476 /* no hub-wide feature/status flags */ 1477 break; 1478 default: 1479 goto error; 1480 } 1481 break; 1482 case ClearPortFeature: 1483 if (!wIndex || wIndex > ports) 1484 goto error; 1485 wIndex--; 1486 temp = fotg210_readl(fotg210, status_reg); 1487 temp &= ~PORT_RWC_BITS; 1488 1489 /* 1490 * Even if OWNER is set, so the port is owned by the 1491 * companion controller, hub_wq needs to be able to clear 1492 * the port-change status bits (especially 1493 * USB_PORT_STAT_C_CONNECTION). 1494 */ 1495 1496 switch (wValue) { 1497 case USB_PORT_FEAT_ENABLE: 1498 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); 1499 break; 1500 case USB_PORT_FEAT_C_ENABLE: 1501 fotg210_writel(fotg210, temp | PORT_PEC, status_reg); 1502 break; 1503 case USB_PORT_FEAT_SUSPEND: 1504 if (temp & PORT_RESET) 1505 goto error; 1506 if (!(temp & PORT_SUSPEND)) 1507 break; 1508 if ((temp & PORT_PE) == 0) 1509 goto error; 1510 1511 /* resume signaling for 20 msec */ 1512 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); 1513 fotg210->reset_done[wIndex] = jiffies 1514 + msecs_to_jiffies(USB_RESUME_TIMEOUT); 1515 break; 1516 case USB_PORT_FEAT_C_SUSPEND: 1517 clear_bit(wIndex, &fotg210->port_c_suspend); 1518 break; 1519 case USB_PORT_FEAT_C_CONNECTION: 1520 fotg210_writel(fotg210, temp | PORT_CSC, status_reg); 1521 break; 1522 case USB_PORT_FEAT_C_OVER_CURRENT: 1523 fotg210_writel(fotg210, temp | OTGISR_OVC, 1524 &fotg210->regs->otgisr); 1525 break; 1526 case USB_PORT_FEAT_C_RESET: 1527 /* GetPortStatus clears reset */ 1528 break; 1529 default: 1530 goto error; 1531 } 1532 fotg210_readl(fotg210, &fotg210->regs->command); 1533 break; 1534 case GetHubDescriptor: 1535 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) 1536 buf); 1537 break; 1538 case GetHubStatus: 1539 /* no hub-wide feature/status flags */ 1540 memset(buf, 0, 4); 1541 /*cpu_to_le32s ((u32 *) buf); */ 1542 break; 1543 case GetPortStatus: 1544 if (!wIndex || wIndex > ports) 1545 goto error; 1546 wIndex--; 1547 status = 0; 1548 temp = fotg210_readl(fotg210, status_reg); 1549 1550 /* wPortChange bits */ 1551 if (temp & PORT_CSC) 1552 status |= USB_PORT_STAT_C_CONNECTION << 16; 1553 if (temp & PORT_PEC) 1554 status |= USB_PORT_STAT_C_ENABLE << 16; 1555 1556 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1557 if (temp1 & OTGISR_OVC) 1558 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 1559 1560 /* whoever resumes must GetPortStatus to complete it!! */ 1561 if (temp & PORT_RESUME) { 1562 1563 /* Remote Wakeup received? */ 1564 if (!fotg210->reset_done[wIndex]) { 1565 /* resume signaling for 20 msec */ 1566 fotg210->reset_done[wIndex] = jiffies 1567 + msecs_to_jiffies(20); 1568 /* check the port again */ 1569 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, 1570 fotg210->reset_done[wIndex]); 1571 } 1572 1573 /* resume completed? */ 1574 else if (time_after_eq(jiffies, 1575 fotg210->reset_done[wIndex])) { 1576 clear_bit(wIndex, &fotg210->suspended_ports); 1577 set_bit(wIndex, &fotg210->port_c_suspend); 1578 fotg210->reset_done[wIndex] = 0; 1579 1580 /* stop resume signaling */ 1581 temp = fotg210_readl(fotg210, status_reg); 1582 fotg210_writel(fotg210, temp & 1583 ~(PORT_RWC_BITS | PORT_RESUME), 1584 status_reg); 1585 clear_bit(wIndex, &fotg210->resuming_ports); 1586 retval = handshake(fotg210, status_reg, 1587 PORT_RESUME, 0, 2000);/* 2ms */ 1588 if (retval != 0) { 1589 fotg210_err(fotg210, 1590 "port %d resume error %d\n", 1591 wIndex + 1, retval); 1592 goto error; 1593 } 1594 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 1595 } 1596 } 1597 1598 /* whoever resets must GetPortStatus to complete it!! */ 1599 if ((temp & PORT_RESET) && time_after_eq(jiffies, 1600 fotg210->reset_done[wIndex])) { 1601 status |= USB_PORT_STAT_C_RESET << 16; 1602 fotg210->reset_done[wIndex] = 0; 1603 clear_bit(wIndex, &fotg210->resuming_ports); 1604 1605 /* force reset to complete */ 1606 fotg210_writel(fotg210, 1607 temp & ~(PORT_RWC_BITS | PORT_RESET), 1608 status_reg); 1609 /* REVISIT: some hardware needs 550+ usec to clear 1610 * this bit; seems too long to spin routinely... 1611 */ 1612 retval = handshake(fotg210, status_reg, 1613 PORT_RESET, 0, 1000); 1614 if (retval != 0) { 1615 fotg210_err(fotg210, "port %d reset error %d\n", 1616 wIndex + 1, retval); 1617 goto error; 1618 } 1619 1620 /* see what we found out */ 1621 temp = check_reset_complete(fotg210, wIndex, status_reg, 1622 fotg210_readl(fotg210, status_reg)); 1623 1624 /* restart schedule */ 1625 fotg210->command |= CMD_RUN; 1626 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1627 } 1628 1629 if (!(temp & (PORT_RESUME|PORT_RESET))) { 1630 fotg210->reset_done[wIndex] = 0; 1631 clear_bit(wIndex, &fotg210->resuming_ports); 1632 } 1633 1634 /* transfer dedicated ports to the companion hc */ 1635 if ((temp & PORT_CONNECT) && 1636 test_bit(wIndex, &fotg210->companion_ports)) { 1637 temp &= ~PORT_RWC_BITS; 1638 fotg210_writel(fotg210, temp, status_reg); 1639 fotg210_dbg(fotg210, "port %d --> companion\n", 1640 wIndex + 1); 1641 temp = fotg210_readl(fotg210, status_reg); 1642 } 1643 1644 /* 1645 * Even if OWNER is set, there's no harm letting hub_wq 1646 * see the wPortStatus values (they should all be 0 except 1647 * for PORT_POWER anyway). 1648 */ 1649 1650 if (temp & PORT_CONNECT) { 1651 status |= USB_PORT_STAT_CONNECTION; 1652 status |= fotg210_port_speed(fotg210, temp); 1653 } 1654 if (temp & PORT_PE) 1655 status |= USB_PORT_STAT_ENABLE; 1656 1657 /* maybe the port was unsuspended without our knowledge */ 1658 if (temp & (PORT_SUSPEND|PORT_RESUME)) { 1659 status |= USB_PORT_STAT_SUSPEND; 1660 } else if (test_bit(wIndex, &fotg210->suspended_ports)) { 1661 clear_bit(wIndex, &fotg210->suspended_ports); 1662 clear_bit(wIndex, &fotg210->resuming_ports); 1663 fotg210->reset_done[wIndex] = 0; 1664 if (temp & PORT_PE) 1665 set_bit(wIndex, &fotg210->port_c_suspend); 1666 } 1667 1668 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1669 if (temp1 & OTGISR_OVC) 1670 status |= USB_PORT_STAT_OVERCURRENT; 1671 if (temp & PORT_RESET) 1672 status |= USB_PORT_STAT_RESET; 1673 if (test_bit(wIndex, &fotg210->port_c_suspend)) 1674 status |= USB_PORT_STAT_C_SUSPEND << 16; 1675 1676 if (status & ~0xffff) /* only if wPortChange is interesting */ 1677 dbg_port(fotg210, "GetStatus", wIndex + 1, temp); 1678 put_unaligned_le32(status, buf); 1679 break; 1680 case SetHubFeature: 1681 switch (wValue) { 1682 case C_HUB_LOCAL_POWER: 1683 case C_HUB_OVER_CURRENT: 1684 /* no hub-wide feature/status flags */ 1685 break; 1686 default: 1687 goto error; 1688 } 1689 break; 1690 case SetPortFeature: 1691 selector = wIndex >> 8; 1692 wIndex &= 0xff; 1693 1694 if (!wIndex || wIndex > ports) 1695 goto error; 1696 wIndex--; 1697 temp = fotg210_readl(fotg210, status_reg); 1698 temp &= ~PORT_RWC_BITS; 1699 switch (wValue) { 1700 case USB_PORT_FEAT_SUSPEND: 1701 if ((temp & PORT_PE) == 0 1702 || (temp & PORT_RESET) != 0) 1703 goto error; 1704 1705 /* After above check the port must be connected. 1706 * Set appropriate bit thus could put phy into low power 1707 * mode if we have hostpc feature 1708 */ 1709 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1710 status_reg); 1711 set_bit(wIndex, &fotg210->suspended_ports); 1712 break; 1713 case USB_PORT_FEAT_RESET: 1714 if (temp & PORT_RESUME) 1715 goto error; 1716 /* line status bits may report this as low speed, 1717 * which can be fine if this root hub has a 1718 * transaction translator built in. 1719 */ 1720 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); 1721 temp |= PORT_RESET; 1722 temp &= ~PORT_PE; 1723 1724 /* 1725 * caller must wait, then call GetPortStatus 1726 * usb 2.0 spec says 50 ms resets on root 1727 */ 1728 fotg210->reset_done[wIndex] = jiffies 1729 + msecs_to_jiffies(50); 1730 fotg210_writel(fotg210, temp, status_reg); 1731 break; 1732 1733 /* For downstream facing ports (these): one hub port is put 1734 * into test mode according to USB2 11.24.2.13, then the hub 1735 * must be reset (which for root hub now means rmmod+modprobe, 1736 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 1737 * about the EHCI-specific stuff. 1738 */ 1739 case USB_PORT_FEAT_TEST: 1740 if (!selector || selector > 5) 1741 goto error; 1742 spin_unlock_irqrestore(&fotg210->lock, flags); 1743 fotg210_quiesce(fotg210); 1744 spin_lock_irqsave(&fotg210->lock, flags); 1745 1746 /* Put all enabled ports into suspend */ 1747 temp = fotg210_readl(fotg210, status_reg) & 1748 ~PORT_RWC_BITS; 1749 if (temp & PORT_PE) 1750 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1751 status_reg); 1752 1753 spin_unlock_irqrestore(&fotg210->lock, flags); 1754 fotg210_halt(fotg210); 1755 spin_lock_irqsave(&fotg210->lock, flags); 1756 1757 temp = fotg210_readl(fotg210, status_reg); 1758 temp |= selector << 16; 1759 fotg210_writel(fotg210, temp, status_reg); 1760 break; 1761 1762 default: 1763 goto error; 1764 } 1765 fotg210_readl(fotg210, &fotg210->regs->command); 1766 break; 1767 1768 default: 1769 error: 1770 /* "stall" on error */ 1771 retval = -EPIPE; 1772 } 1773 spin_unlock_irqrestore(&fotg210->lock, flags); 1774 return retval; 1775 } 1776 1777 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, 1778 int portnum) 1779 { 1780 return; 1781 } 1782 1783 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, 1784 int portnum) 1785 { 1786 return 0; 1787 } 1788 1789 /* There's basically three types of memory: 1790 * - data used only by the HCD ... kmalloc is fine 1791 * - async and periodic schedules, shared by HC and HCD ... these 1792 * need to use dma_pool or dma_alloc_coherent 1793 * - driver buffers, read/written by HC ... single shot DMA mapped 1794 * 1795 * There's also "register" data (e.g. PCI or SOC), which is memory mapped. 1796 * No memory seen by this driver is pageable. 1797 */ 1798 1799 /* Allocate the key transfer structures from the previously allocated pool */ 1800 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, 1801 struct fotg210_qtd *qtd, dma_addr_t dma) 1802 { 1803 memset(qtd, 0, sizeof(*qtd)); 1804 qtd->qtd_dma = dma; 1805 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 1806 qtd->hw_next = FOTG210_LIST_END(fotg210); 1807 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 1808 INIT_LIST_HEAD(&qtd->qtd_list); 1809 } 1810 1811 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, 1812 gfp_t flags) 1813 { 1814 struct fotg210_qtd *qtd; 1815 dma_addr_t dma; 1816 1817 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); 1818 if (qtd != NULL) 1819 fotg210_qtd_init(fotg210, qtd, dma); 1820 1821 return qtd; 1822 } 1823 1824 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, 1825 struct fotg210_qtd *qtd) 1826 { 1827 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); 1828 } 1829 1830 1831 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 1832 { 1833 /* clean qtds first, and know this is not linked */ 1834 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1835 fotg210_dbg(fotg210, "unused qh not empty!\n"); 1836 BUG(); 1837 } 1838 if (qh->dummy) 1839 fotg210_qtd_free(fotg210, qh->dummy); 1840 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1841 kfree(qh); 1842 } 1843 1844 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, 1845 gfp_t flags) 1846 { 1847 struct fotg210_qh *qh; 1848 dma_addr_t dma; 1849 1850 qh = kzalloc(sizeof(*qh), GFP_ATOMIC); 1851 if (!qh) 1852 goto done; 1853 qh->hw = (struct fotg210_qh_hw *) 1854 dma_pool_zalloc(fotg210->qh_pool, flags, &dma); 1855 if (!qh->hw) 1856 goto fail; 1857 qh->qh_dma = dma; 1858 INIT_LIST_HEAD(&qh->qtd_list); 1859 1860 /* dummy td enables safe urb queuing */ 1861 qh->dummy = fotg210_qtd_alloc(fotg210, flags); 1862 if (qh->dummy == NULL) { 1863 fotg210_dbg(fotg210, "no dummy td\n"); 1864 goto fail1; 1865 } 1866 done: 1867 return qh; 1868 fail1: 1869 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1870 fail: 1871 kfree(qh); 1872 return NULL; 1873 } 1874 1875 /* The queue heads and transfer descriptors are managed from pools tied 1876 * to each of the "per device" structures. 1877 * This is the initialisation and cleanup code. 1878 */ 1879 1880 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) 1881 { 1882 if (fotg210->async) 1883 qh_destroy(fotg210, fotg210->async); 1884 fotg210->async = NULL; 1885 1886 if (fotg210->dummy) 1887 qh_destroy(fotg210, fotg210->dummy); 1888 fotg210->dummy = NULL; 1889 1890 /* DMA consistent memory and pools */ 1891 dma_pool_destroy(fotg210->qtd_pool); 1892 fotg210->qtd_pool = NULL; 1893 1894 dma_pool_destroy(fotg210->qh_pool); 1895 fotg210->qh_pool = NULL; 1896 1897 dma_pool_destroy(fotg210->itd_pool); 1898 fotg210->itd_pool = NULL; 1899 1900 if (fotg210->periodic) 1901 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, 1902 fotg210->periodic_size * sizeof(u32), 1903 fotg210->periodic, fotg210->periodic_dma); 1904 fotg210->periodic = NULL; 1905 1906 /* shadow periodic table */ 1907 kfree(fotg210->pshadow); 1908 fotg210->pshadow = NULL; 1909 } 1910 1911 /* remember to add cleanup code (above) if you add anything here */ 1912 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) 1913 { 1914 int i; 1915 1916 /* QTDs for control/bulk/intr transfers */ 1917 fotg210->qtd_pool = dma_pool_create("fotg210_qtd", 1918 fotg210_to_hcd(fotg210)->self.controller, 1919 sizeof(struct fotg210_qtd), 1920 32 /* byte alignment (for hw parts) */, 1921 4096 /* can't cross 4K */); 1922 if (!fotg210->qtd_pool) 1923 goto fail; 1924 1925 /* QHs for control/bulk/intr transfers */ 1926 fotg210->qh_pool = dma_pool_create("fotg210_qh", 1927 fotg210_to_hcd(fotg210)->self.controller, 1928 sizeof(struct fotg210_qh_hw), 1929 32 /* byte alignment (for hw parts) */, 1930 4096 /* can't cross 4K */); 1931 if (!fotg210->qh_pool) 1932 goto fail; 1933 1934 fotg210->async = fotg210_qh_alloc(fotg210, flags); 1935 if (!fotg210->async) 1936 goto fail; 1937 1938 /* ITD for high speed ISO transfers */ 1939 fotg210->itd_pool = dma_pool_create("fotg210_itd", 1940 fotg210_to_hcd(fotg210)->self.controller, 1941 sizeof(struct fotg210_itd), 1942 64 /* byte alignment (for hw parts) */, 1943 4096 /* can't cross 4K */); 1944 if (!fotg210->itd_pool) 1945 goto fail; 1946 1947 /* Hardware periodic table */ 1948 fotg210->periodic = 1949 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, 1950 fotg210->periodic_size * sizeof(__le32), 1951 &fotg210->periodic_dma, 0); 1952 if (fotg210->periodic == NULL) 1953 goto fail; 1954 1955 for (i = 0; i < fotg210->periodic_size; i++) 1956 fotg210->periodic[i] = FOTG210_LIST_END(fotg210); 1957 1958 /* software shadow of hardware table */ 1959 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), 1960 flags); 1961 if (fotg210->pshadow != NULL) 1962 return 0; 1963 1964 fail: 1965 fotg210_dbg(fotg210, "couldn't init memory\n"); 1966 fotg210_mem_cleanup(fotg210); 1967 return -ENOMEM; 1968 } 1969 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 1970 * 1971 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 1972 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 1973 * buffers needed for the larger number). We use one QH per endpoint, queue 1974 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 1975 * 1976 * ISO traffic uses "ISO TD" (itd) records, and (along with 1977 * interrupts) needs careful scheduling. Performance improvements can be 1978 * an ongoing challenge. That's in "ehci-sched.c". 1979 * 1980 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 1981 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 1982 * (b) special fields in qh entries or (c) split iso entries. TTs will 1983 * buffer low/full speed data so the host collects it at high speed. 1984 */ 1985 1986 /* fill a qtd, returning how much of the buffer we were able to queue up */ 1987 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, 1988 dma_addr_t buf, size_t len, int token, int maxpacket) 1989 { 1990 int i, count; 1991 u64 addr = buf; 1992 1993 /* one buffer entry per 4K ... first might be short or unaligned */ 1994 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); 1995 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); 1996 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 1997 if (likely(len < count)) /* ... iff needed */ 1998 count = len; 1999 else { 2000 buf += 0x1000; 2001 buf &= ~0x0fff; 2002 2003 /* per-qtd limit: from 16K to 20K (best alignment) */ 2004 for (i = 1; count < len && i < 5; i++) { 2005 addr = buf; 2006 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); 2007 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, 2008 (u32)(addr >> 32)); 2009 buf += 0x1000; 2010 if ((count + 0x1000) < len) 2011 count += 0x1000; 2012 else 2013 count = len; 2014 } 2015 2016 /* short packets may only terminate transfers */ 2017 if (count != len) 2018 count -= (count % maxpacket); 2019 } 2020 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); 2021 qtd->length = count; 2022 2023 return count; 2024 } 2025 2026 static inline void qh_update(struct fotg210_hcd *fotg210, 2027 struct fotg210_qh *qh, struct fotg210_qtd *qtd) 2028 { 2029 struct fotg210_qh_hw *hw = qh->hw; 2030 2031 /* writes to an active overlay are unsafe */ 2032 BUG_ON(qh->qh_state != QH_STATE_IDLE); 2033 2034 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2035 hw->hw_alt_next = FOTG210_LIST_END(fotg210); 2036 2037 /* Except for control endpoints, we make hardware maintain data 2038 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 2039 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 2040 * ever clear it. 2041 */ 2042 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { 2043 unsigned is_out, epnum; 2044 2045 is_out = qh->is_out; 2046 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; 2047 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 2048 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); 2049 usb_settoggle(qh->dev, epnum, is_out, 1); 2050 } 2051 } 2052 2053 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); 2054 } 2055 2056 /* if it weren't for a common silicon quirk (writing the dummy into the qh 2057 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 2058 * recovery (including urb dequeue) would need software changes to a QH... 2059 */ 2060 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2061 { 2062 struct fotg210_qtd *qtd; 2063 2064 if (list_empty(&qh->qtd_list)) 2065 qtd = qh->dummy; 2066 else { 2067 qtd = list_entry(qh->qtd_list.next, 2068 struct fotg210_qtd, qtd_list); 2069 /* 2070 * first qtd may already be partially processed. 2071 * If we come here during unlink, the QH overlay region 2072 * might have reference to the just unlinked qtd. The 2073 * qtd is updated in qh_completions(). Update the QH 2074 * overlay here. 2075 */ 2076 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { 2077 qh->hw->hw_qtd_next = qtd->hw_next; 2078 qtd = NULL; 2079 } 2080 } 2081 2082 if (qtd) 2083 qh_update(fotg210, qh, qtd); 2084 } 2085 2086 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2087 2088 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, 2089 struct usb_host_endpoint *ep) 2090 { 2091 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 2092 struct fotg210_qh *qh = ep->hcpriv; 2093 unsigned long flags; 2094 2095 spin_lock_irqsave(&fotg210->lock, flags); 2096 qh->clearing_tt = 0; 2097 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 2098 && fotg210->rh_state == FOTG210_RH_RUNNING) 2099 qh_link_async(fotg210, qh); 2100 spin_unlock_irqrestore(&fotg210->lock, flags); 2101 } 2102 2103 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, 2104 struct fotg210_qh *qh, struct urb *urb, u32 token) 2105 { 2106 2107 /* If an async split transaction gets an error or is unlinked, 2108 * the TT buffer may be left in an indeterminate state. We 2109 * have to clear the TT buffer. 2110 * 2111 * Note: this routine is never called for Isochronous transfers. 2112 */ 2113 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 2114 struct usb_device *tt = urb->dev->tt->hub; 2115 2116 dev_dbg(&tt->dev, 2117 "clear tt buffer port %d, a%d ep%d t%08x\n", 2118 urb->dev->ttport, urb->dev->devnum, 2119 usb_pipeendpoint(urb->pipe), token); 2120 2121 if (urb->dev->tt->hub != 2122 fotg210_to_hcd(fotg210)->self.root_hub) { 2123 if (usb_hub_clear_tt_buffer(urb) == 0) 2124 qh->clearing_tt = 1; 2125 } 2126 } 2127 } 2128 2129 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb, 2130 size_t length, u32 token) 2131 { 2132 int status = -EINPROGRESS; 2133 2134 /* count IN/OUT bytes, not SETUP (even short packets) */ 2135 if (likely(QTD_PID(token) != 2)) 2136 urb->actual_length += length - QTD_LENGTH(token); 2137 2138 /* don't modify error codes */ 2139 if (unlikely(urb->unlinked)) 2140 return status; 2141 2142 /* force cleanup after short read; not always an error */ 2143 if (unlikely(IS_SHORT_READ(token))) 2144 status = -EREMOTEIO; 2145 2146 /* serious "can't proceed" faults reported by the hardware */ 2147 if (token & QTD_STS_HALT) { 2148 if (token & QTD_STS_BABBLE) { 2149 /* FIXME "must" disable babbling device's port too */ 2150 status = -EOVERFLOW; 2151 /* CERR nonzero + halt --> stall */ 2152 } else if (QTD_CERR(token)) { 2153 status = -EPIPE; 2154 2155 /* In theory, more than one of the following bits can be set 2156 * since they are sticky and the transaction is retried. 2157 * Which to test first is rather arbitrary. 2158 */ 2159 } else if (token & QTD_STS_MMF) { 2160 /* fs/ls interrupt xfer missed the complete-split */ 2161 status = -EPROTO; 2162 } else if (token & QTD_STS_DBE) { 2163 status = (QTD_PID(token) == 1) /* IN ? */ 2164 ? -ENOSR /* hc couldn't read data */ 2165 : -ECOMM; /* hc couldn't write data */ 2166 } else if (token & QTD_STS_XACT) { 2167 /* timeout, bad CRC, wrong PID, etc */ 2168 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", 2169 urb->dev->devpath, 2170 usb_pipeendpoint(urb->pipe), 2171 usb_pipein(urb->pipe) ? "in" : "out"); 2172 status = -EPROTO; 2173 } else { /* unknown */ 2174 status = -EPROTO; 2175 } 2176 2177 fotg210_dbg(fotg210, 2178 "dev%d ep%d%s qtd token %08x --> status %d\n", 2179 usb_pipedevice(urb->pipe), 2180 usb_pipeendpoint(urb->pipe), 2181 usb_pipein(urb->pipe) ? "in" : "out", 2182 token, status); 2183 } 2184 2185 return status; 2186 } 2187 2188 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, 2189 int status) 2190 __releases(fotg210->lock) 2191 __acquires(fotg210->lock) 2192 { 2193 if (likely(urb->hcpriv != NULL)) { 2194 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; 2195 2196 /* S-mask in a QH means it's an interrupt urb */ 2197 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { 2198 2199 /* ... update hc-wide periodic stats (for usbfs) */ 2200 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; 2201 } 2202 } 2203 2204 if (unlikely(urb->unlinked)) { 2205 INCR(fotg210->stats.unlink); 2206 } else { 2207 /* report non-error and short read status as zero */ 2208 if (status == -EINPROGRESS || status == -EREMOTEIO) 2209 status = 0; 2210 INCR(fotg210->stats.complete); 2211 } 2212 2213 #ifdef FOTG210_URB_TRACE 2214 fotg210_dbg(fotg210, 2215 "%s %s urb %p ep%d%s status %d len %d/%d\n", 2216 __func__, urb->dev->devpath, urb, 2217 usb_pipeendpoint(urb->pipe), 2218 usb_pipein(urb->pipe) ? "in" : "out", 2219 status, 2220 urb->actual_length, urb->transfer_buffer_length); 2221 #endif 2222 2223 /* complete() can reenter this HCD */ 2224 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 2225 spin_unlock(&fotg210->lock); 2226 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); 2227 spin_lock(&fotg210->lock); 2228 } 2229 2230 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2231 2232 /* Process and free completed qtds for a qh, returning URBs to drivers. 2233 * Chases up to qh->hw_current. Returns number of completions called, 2234 * indicating how much "real" work we did. 2235 */ 2236 static unsigned qh_completions(struct fotg210_hcd *fotg210, 2237 struct fotg210_qh *qh) 2238 { 2239 struct fotg210_qtd *last, *end = qh->dummy; 2240 struct fotg210_qtd *qtd, *tmp; 2241 int last_status; 2242 int stopped; 2243 unsigned count = 0; 2244 u8 state; 2245 struct fotg210_qh_hw *hw = qh->hw; 2246 2247 if (unlikely(list_empty(&qh->qtd_list))) 2248 return count; 2249 2250 /* completions (or tasks on other cpus) must never clobber HALT 2251 * till we've gone through and cleaned everything up, even when 2252 * they add urbs to this qh's queue or mark them for unlinking. 2253 * 2254 * NOTE: unlinking expects to be done in queue order. 2255 * 2256 * It's a bug for qh->qh_state to be anything other than 2257 * QH_STATE_IDLE, unless our caller is scan_async() or 2258 * scan_intr(). 2259 */ 2260 state = qh->qh_state; 2261 qh->qh_state = QH_STATE_COMPLETING; 2262 stopped = (state == QH_STATE_IDLE); 2263 2264 rescan: 2265 last = NULL; 2266 last_status = -EINPROGRESS; 2267 qh->needs_rescan = 0; 2268 2269 /* remove de-activated QTDs from front of queue. 2270 * after faults (including short reads), cleanup this urb 2271 * then let the queue advance. 2272 * if queue is stopped, handles unlinks. 2273 */ 2274 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 2275 struct urb *urb; 2276 u32 token = 0; 2277 2278 urb = qtd->urb; 2279 2280 /* clean up any state from previous QTD ...*/ 2281 if (last) { 2282 if (likely(last->urb != urb)) { 2283 fotg210_urb_done(fotg210, last->urb, 2284 last_status); 2285 count++; 2286 last_status = -EINPROGRESS; 2287 } 2288 fotg210_qtd_free(fotg210, last); 2289 last = NULL; 2290 } 2291 2292 /* ignore urbs submitted during completions we reported */ 2293 if (qtd == end) 2294 break; 2295 2296 /* hardware copies qtd out of qh overlay */ 2297 rmb(); 2298 token = hc32_to_cpu(fotg210, qtd->hw_token); 2299 2300 /* always clean up qtds the hc de-activated */ 2301 retry_xacterr: 2302 if ((token & QTD_STS_ACTIVE) == 0) { 2303 2304 /* Report Data Buffer Error: non-fatal but useful */ 2305 if (token & QTD_STS_DBE) 2306 fotg210_dbg(fotg210, 2307 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2308 urb, usb_endpoint_num(&urb->ep->desc), 2309 usb_endpoint_dir_in(&urb->ep->desc) 2310 ? "in" : "out", 2311 urb->transfer_buffer_length, qtd, qh); 2312 2313 /* on STALL, error, and short reads this urb must 2314 * complete and all its qtds must be recycled. 2315 */ 2316 if ((token & QTD_STS_HALT) != 0) { 2317 2318 /* retry transaction errors until we 2319 * reach the software xacterr limit 2320 */ 2321 if ((token & QTD_STS_XACT) && 2322 QTD_CERR(token) == 0 && 2323 ++qh->xacterrs < QH_XACTERR_MAX && 2324 !urb->unlinked) { 2325 fotg210_dbg(fotg210, 2326 "detected XactErr len %zu/%zu retry %d\n", 2327 qtd->length - QTD_LENGTH(token), 2328 qtd->length, 2329 qh->xacterrs); 2330 2331 /* reset the token in the qtd and the 2332 * qh overlay (which still contains 2333 * the qtd) so that we pick up from 2334 * where we left off 2335 */ 2336 token &= ~QTD_STS_HALT; 2337 token |= QTD_STS_ACTIVE | 2338 (FOTG210_TUNE_CERR << 10); 2339 qtd->hw_token = cpu_to_hc32(fotg210, 2340 token); 2341 wmb(); 2342 hw->hw_token = cpu_to_hc32(fotg210, 2343 token); 2344 goto retry_xacterr; 2345 } 2346 stopped = 1; 2347 2348 /* magic dummy for some short reads; qh won't advance. 2349 * that silicon quirk can kick in with this dummy too. 2350 * 2351 * other short reads won't stop the queue, including 2352 * control transfers (status stage handles that) or 2353 * most other single-qtd reads ... the queue stops if 2354 * URB_SHORT_NOT_OK was set so the driver submitting 2355 * the urbs could clean it up. 2356 */ 2357 } else if (IS_SHORT_READ(token) && 2358 !(qtd->hw_alt_next & 2359 FOTG210_LIST_END(fotg210))) { 2360 stopped = 1; 2361 } 2362 2363 /* stop scanning when we reach qtds the hc is using */ 2364 } else if (likely(!stopped 2365 && fotg210->rh_state >= FOTG210_RH_RUNNING)) { 2366 break; 2367 2368 /* scan the whole queue for unlinks whenever it stops */ 2369 } else { 2370 stopped = 1; 2371 2372 /* cancel everything if we halt, suspend, etc */ 2373 if (fotg210->rh_state < FOTG210_RH_RUNNING) 2374 last_status = -ESHUTDOWN; 2375 2376 /* this qtd is active; skip it unless a previous qtd 2377 * for its urb faulted, or its urb was canceled. 2378 */ 2379 else if (last_status == -EINPROGRESS && !urb->unlinked) 2380 continue; 2381 2382 /* qh unlinked; token in overlay may be most current */ 2383 if (state == QH_STATE_IDLE && 2384 cpu_to_hc32(fotg210, qtd->qtd_dma) 2385 == hw->hw_current) { 2386 token = hc32_to_cpu(fotg210, hw->hw_token); 2387 2388 /* An unlink may leave an incomplete 2389 * async transaction in the TT buffer. 2390 * We have to clear it. 2391 */ 2392 fotg210_clear_tt_buffer(fotg210, qh, urb, 2393 token); 2394 } 2395 } 2396 2397 /* unless we already know the urb's status, collect qtd status 2398 * and update count of bytes transferred. in common short read 2399 * cases with only one data qtd (including control transfers), 2400 * queue processing won't halt. but with two or more qtds (for 2401 * example, with a 32 KB transfer), when the first qtd gets a 2402 * short read the second must be removed by hand. 2403 */ 2404 if (last_status == -EINPROGRESS) { 2405 last_status = qtd_copy_status(fotg210, urb, 2406 qtd->length, token); 2407 if (last_status == -EREMOTEIO && 2408 (qtd->hw_alt_next & 2409 FOTG210_LIST_END(fotg210))) 2410 last_status = -EINPROGRESS; 2411 2412 /* As part of low/full-speed endpoint-halt processing 2413 * we must clear the TT buffer (11.17.5). 2414 */ 2415 if (unlikely(last_status != -EINPROGRESS && 2416 last_status != -EREMOTEIO)) { 2417 /* The TT's in some hubs malfunction when they 2418 * receive this request following a STALL (they 2419 * stop sending isochronous packets). Since a 2420 * STALL can't leave the TT buffer in a busy 2421 * state (if you believe Figures 11-48 - 11-51 2422 * in the USB 2.0 spec), we won't clear the TT 2423 * buffer in this case. Strictly speaking this 2424 * is a violation of the spec. 2425 */ 2426 if (last_status != -EPIPE) 2427 fotg210_clear_tt_buffer(fotg210, qh, 2428 urb, token); 2429 } 2430 } 2431 2432 /* if we're removing something not at the queue head, 2433 * patch the hardware queue pointer. 2434 */ 2435 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 2436 last = list_entry(qtd->qtd_list.prev, 2437 struct fotg210_qtd, qtd_list); 2438 last->hw_next = qtd->hw_next; 2439 } 2440 2441 /* remove qtd; it's recycled after possible urb completion */ 2442 list_del(&qtd->qtd_list); 2443 last = qtd; 2444 2445 /* reinit the xacterr counter for the next qtd */ 2446 qh->xacterrs = 0; 2447 } 2448 2449 /* last urb's completion might still need calling */ 2450 if (likely(last != NULL)) { 2451 fotg210_urb_done(fotg210, last->urb, last_status); 2452 count++; 2453 fotg210_qtd_free(fotg210, last); 2454 } 2455 2456 /* Do we need to rescan for URBs dequeued during a giveback? */ 2457 if (unlikely(qh->needs_rescan)) { 2458 /* If the QH is already unlinked, do the rescan now. */ 2459 if (state == QH_STATE_IDLE) 2460 goto rescan; 2461 2462 /* Otherwise we have to wait until the QH is fully unlinked. 2463 * Our caller will start an unlink if qh->needs_rescan is 2464 * set. But if an unlink has already started, nothing needs 2465 * to be done. 2466 */ 2467 if (state != QH_STATE_LINKED) 2468 qh->needs_rescan = 0; 2469 } 2470 2471 /* restore original state; caller must unlink or relink */ 2472 qh->qh_state = state; 2473 2474 /* be sure the hardware's done with the qh before refreshing 2475 * it after fault cleanup, or recovering from silicon wrongly 2476 * overlaying the dummy qtd (which reduces DMA chatter). 2477 */ 2478 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { 2479 switch (state) { 2480 case QH_STATE_IDLE: 2481 qh_refresh(fotg210, qh); 2482 break; 2483 case QH_STATE_LINKED: 2484 /* We won't refresh a QH that's linked (after the HC 2485 * stopped the queue). That avoids a race: 2486 * - HC reads first part of QH; 2487 * - CPU updates that first part and the token; 2488 * - HC reads rest of that QH, including token 2489 * Result: HC gets an inconsistent image, and then 2490 * DMAs to/from the wrong memory (corrupting it). 2491 * 2492 * That should be rare for interrupt transfers, 2493 * except maybe high bandwidth ... 2494 */ 2495 2496 /* Tell the caller to start an unlink */ 2497 qh->needs_rescan = 1; 2498 break; 2499 /* otherwise, unlink already started */ 2500 } 2501 } 2502 2503 return count; 2504 } 2505 2506 /* reverse of qh_urb_transaction: free a list of TDs. 2507 * used for cleanup after errors, before HC sees an URB's TDs. 2508 */ 2509 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb, 2510 struct list_head *head) 2511 { 2512 struct fotg210_qtd *qtd, *temp; 2513 2514 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 2515 list_del(&qtd->qtd_list); 2516 fotg210_qtd_free(fotg210, qtd); 2517 } 2518 } 2519 2520 /* create a list of filled qtds for this URB; won't link into qh. 2521 */ 2522 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210, 2523 struct urb *urb, struct list_head *head, gfp_t flags) 2524 { 2525 struct fotg210_qtd *qtd, *qtd_prev; 2526 dma_addr_t buf; 2527 int len, this_sg_len, maxpacket; 2528 int is_input; 2529 u32 token; 2530 int i; 2531 struct scatterlist *sg; 2532 2533 /* 2534 * URBs map to sequences of QTDs: one logical transaction 2535 */ 2536 qtd = fotg210_qtd_alloc(fotg210, flags); 2537 if (unlikely(!qtd)) 2538 return NULL; 2539 list_add_tail(&qtd->qtd_list, head); 2540 qtd->urb = urb; 2541 2542 token = QTD_STS_ACTIVE; 2543 token |= (FOTG210_TUNE_CERR << 10); 2544 /* for split transactions, SplitXState initialized to zero */ 2545 2546 len = urb->transfer_buffer_length; 2547 is_input = usb_pipein(urb->pipe); 2548 if (usb_pipecontrol(urb->pipe)) { 2549 /* SETUP pid */ 2550 qtd_fill(fotg210, qtd, urb->setup_dma, 2551 sizeof(struct usb_ctrlrequest), 2552 token | (2 /* "setup" */ << 8), 8); 2553 2554 /* ... and always at least one more pid */ 2555 token ^= QTD_TOGGLE; 2556 qtd_prev = qtd; 2557 qtd = fotg210_qtd_alloc(fotg210, flags); 2558 if (unlikely(!qtd)) 2559 goto cleanup; 2560 qtd->urb = urb; 2561 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2562 list_add_tail(&qtd->qtd_list, head); 2563 2564 /* for zero length DATA stages, STATUS is always IN */ 2565 if (len == 0) 2566 token |= (1 /* "in" */ << 8); 2567 } 2568 2569 /* 2570 * data transfer stage: buffer setup 2571 */ 2572 i = urb->num_mapped_sgs; 2573 if (len > 0 && i > 0) { 2574 sg = urb->sg; 2575 buf = sg_dma_address(sg); 2576 2577 /* urb->transfer_buffer_length may be smaller than the 2578 * size of the scatterlist (or vice versa) 2579 */ 2580 this_sg_len = min_t(int, sg_dma_len(sg), len); 2581 } else { 2582 sg = NULL; 2583 buf = urb->transfer_dma; 2584 this_sg_len = len; 2585 } 2586 2587 if (is_input) 2588 token |= (1 /* "in" */ << 8); 2589 /* else it's already initted to "out" pid (0 << 8) */ 2590 2591 maxpacket = usb_maxpacket(urb->dev, urb->pipe); 2592 2593 /* 2594 * buffer gets wrapped in one or more qtds; 2595 * last one may be "short" (including zero len) 2596 * and may serve as a control status ack 2597 */ 2598 for (;;) { 2599 int this_qtd_len; 2600 2601 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, 2602 maxpacket); 2603 this_sg_len -= this_qtd_len; 2604 len -= this_qtd_len; 2605 buf += this_qtd_len; 2606 2607 /* 2608 * short reads advance to a "magic" dummy instead of the next 2609 * qtd ... that forces the queue to stop, for manual cleanup. 2610 * (this will usually be overridden later.) 2611 */ 2612 if (is_input) 2613 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; 2614 2615 /* qh makes control packets use qtd toggle; maybe switch it */ 2616 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 2617 token ^= QTD_TOGGLE; 2618 2619 if (likely(this_sg_len <= 0)) { 2620 if (--i <= 0 || len <= 0) 2621 break; 2622 sg = sg_next(sg); 2623 buf = sg_dma_address(sg); 2624 this_sg_len = min_t(int, sg_dma_len(sg), len); 2625 } 2626 2627 qtd_prev = qtd; 2628 qtd = fotg210_qtd_alloc(fotg210, flags); 2629 if (unlikely(!qtd)) 2630 goto cleanup; 2631 qtd->urb = urb; 2632 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2633 list_add_tail(&qtd->qtd_list, head); 2634 } 2635 2636 /* 2637 * unless the caller requires manual cleanup after short reads, 2638 * have the alt_next mechanism keep the queue running after the 2639 * last data qtd (the only one, for control and most other cases). 2640 */ 2641 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || 2642 usb_pipecontrol(urb->pipe))) 2643 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 2644 2645 /* 2646 * control requests may need a terminating data "status" ack; 2647 * other OUT ones may need a terminating short packet 2648 * (zero length). 2649 */ 2650 if (likely(urb->transfer_buffer_length != 0)) { 2651 int one_more = 0; 2652 2653 if (usb_pipecontrol(urb->pipe)) { 2654 one_more = 1; 2655 token ^= 0x0100; /* "in" <--> "out" */ 2656 token |= QTD_TOGGLE; /* force DATA1 */ 2657 } else if (usb_pipeout(urb->pipe) 2658 && (urb->transfer_flags & URB_ZERO_PACKET) 2659 && !(urb->transfer_buffer_length % maxpacket)) { 2660 one_more = 1; 2661 } 2662 if (one_more) { 2663 qtd_prev = qtd; 2664 qtd = fotg210_qtd_alloc(fotg210, flags); 2665 if (unlikely(!qtd)) 2666 goto cleanup; 2667 qtd->urb = urb; 2668 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2669 list_add_tail(&qtd->qtd_list, head); 2670 2671 /* never any data in such packets */ 2672 qtd_fill(fotg210, qtd, 0, 0, token, 0); 2673 } 2674 } 2675 2676 /* by default, enable interrupt on urb completion */ 2677 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) 2678 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); 2679 return head; 2680 2681 cleanup: 2682 qtd_list_free(fotg210, urb, head); 2683 return NULL; 2684 } 2685 2686 /* Would be best to create all qh's from config descriptors, 2687 * when each interface/altsetting is established. Unlink 2688 * any previous qh and cancel its urbs first; endpoints are 2689 * implicitly reset then (data toggle too). 2690 * That'd mean updating how usbcore talks to HCDs. (2.7?) 2691 */ 2692 2693 2694 /* Each QH holds a qtd list; a QH is used for everything except iso. 2695 * 2696 * For interrupt urbs, the scheduler must set the microframe scheduling 2697 * mask(s) each time the QH gets scheduled. For highspeed, that's 2698 * just one microframe in the s-mask. For split interrupt transactions 2699 * there are additional complications: c-mask, maybe FSTNs. 2700 */ 2701 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb, 2702 gfp_t flags) 2703 { 2704 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); 2705 struct usb_host_endpoint *ep; 2706 u32 info1 = 0, info2 = 0; 2707 int is_input, type; 2708 int maxp = 0; 2709 int mult; 2710 struct usb_tt *tt = urb->dev->tt; 2711 struct fotg210_qh_hw *hw; 2712 2713 if (!qh) 2714 return qh; 2715 2716 /* 2717 * init endpoint/device data for this QH 2718 */ 2719 info1 |= usb_pipeendpoint(urb->pipe) << 8; 2720 info1 |= usb_pipedevice(urb->pipe) << 0; 2721 2722 is_input = usb_pipein(urb->pipe); 2723 type = usb_pipetype(urb->pipe); 2724 ep = usb_pipe_endpoint(urb->dev, urb->pipe); 2725 maxp = usb_endpoint_maxp(&ep->desc); 2726 mult = usb_endpoint_maxp_mult(&ep->desc); 2727 2728 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 2729 * acts like up to 3KB, but is built from smaller packets. 2730 */ 2731 if (maxp > 1024) { 2732 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp); 2733 goto done; 2734 } 2735 2736 /* Compute interrupt scheduling parameters just once, and save. 2737 * - allowing for high bandwidth, how many nsec/uframe are used? 2738 * - split transactions need a second CSPLIT uframe; same question 2739 * - splits also need a schedule gap (for full/low speed I/O) 2740 * - qh has a polling interval 2741 * 2742 * For control/bulk requests, the HC or TT handles these. 2743 */ 2744 if (type == PIPE_INTERRUPT) { 2745 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 2746 is_input, 0, mult * maxp)); 2747 qh->start = NO_FRAME; 2748 2749 if (urb->dev->speed == USB_SPEED_HIGH) { 2750 qh->c_usecs = 0; 2751 qh->gap_uf = 0; 2752 2753 qh->period = urb->interval >> 3; 2754 if (qh->period == 0 && urb->interval != 1) { 2755 /* NOTE interval 2 or 4 uframes could work. 2756 * But interval 1 scheduling is simpler, and 2757 * includes high bandwidth. 2758 */ 2759 urb->interval = 1; 2760 } else if (qh->period > fotg210->periodic_size) { 2761 qh->period = fotg210->periodic_size; 2762 urb->interval = qh->period << 3; 2763 } 2764 } else { 2765 int think_time; 2766 2767 /* gap is f(FS/LS transfer times) */ 2768 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 2769 is_input, 0, maxp) / (125 * 1000); 2770 2771 /* FIXME this just approximates SPLIT/CSPLIT times */ 2772 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 2773 qh->c_usecs = qh->usecs + HS_USECS(0); 2774 qh->usecs = HS_USECS(1); 2775 } else { /* SPLIT+DATA, gap, CSPLIT */ 2776 qh->usecs += HS_USECS(1); 2777 qh->c_usecs = HS_USECS(0); 2778 } 2779 2780 think_time = tt ? tt->think_time : 0; 2781 qh->tt_usecs = NS_TO_US(think_time + 2782 usb_calc_bus_time(urb->dev->speed, 2783 is_input, 0, maxp)); 2784 qh->period = urb->interval; 2785 if (qh->period > fotg210->periodic_size) { 2786 qh->period = fotg210->periodic_size; 2787 urb->interval = qh->period; 2788 } 2789 } 2790 } 2791 2792 /* support for tt scheduling, and access to toggles */ 2793 qh->dev = urb->dev; 2794 2795 /* using TT? */ 2796 switch (urb->dev->speed) { 2797 case USB_SPEED_LOW: 2798 info1 |= QH_LOW_SPEED; 2799 fallthrough; 2800 2801 case USB_SPEED_FULL: 2802 /* EPS 0 means "full" */ 2803 if (type != PIPE_INTERRUPT) 2804 info1 |= (FOTG210_TUNE_RL_TT << 28); 2805 if (type == PIPE_CONTROL) { 2806 info1 |= QH_CONTROL_EP; /* for TT */ 2807 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2808 } 2809 info1 |= maxp << 16; 2810 2811 info2 |= (FOTG210_TUNE_MULT_TT << 30); 2812 2813 /* Some Freescale processors have an erratum in which the 2814 * port number in the queue head was 0..N-1 instead of 1..N. 2815 */ 2816 if (fotg210_has_fsl_portno_bug(fotg210)) 2817 info2 |= (urb->dev->ttport-1) << 23; 2818 else 2819 info2 |= urb->dev->ttport << 23; 2820 2821 /* set the address of the TT; for TDI's integrated 2822 * root hub tt, leave it zeroed. 2823 */ 2824 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) 2825 info2 |= tt->hub->devnum << 16; 2826 2827 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 2828 2829 break; 2830 2831 case USB_SPEED_HIGH: /* no TT involved */ 2832 info1 |= QH_HIGH_SPEED; 2833 if (type == PIPE_CONTROL) { 2834 info1 |= (FOTG210_TUNE_RL_HS << 28); 2835 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 2836 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2837 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2838 } else if (type == PIPE_BULK) { 2839 info1 |= (FOTG210_TUNE_RL_HS << 28); 2840 /* The USB spec says that high speed bulk endpoints 2841 * always use 512 byte maxpacket. But some device 2842 * vendors decided to ignore that, and MSFT is happy 2843 * to help them do so. So now people expect to use 2844 * such nonconformant devices with Linux too; sigh. 2845 */ 2846 info1 |= maxp << 16; 2847 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2848 } else { /* PIPE_INTERRUPT */ 2849 info1 |= maxp << 16; 2850 info2 |= mult << 30; 2851 } 2852 break; 2853 default: 2854 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, 2855 urb->dev->speed); 2856 done: 2857 qh_destroy(fotg210, qh); 2858 return NULL; 2859 } 2860 2861 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 2862 2863 /* init as live, toggle clear, advance to dummy */ 2864 qh->qh_state = QH_STATE_IDLE; 2865 hw = qh->hw; 2866 hw->hw_info1 = cpu_to_hc32(fotg210, info1); 2867 hw->hw_info2 = cpu_to_hc32(fotg210, info2); 2868 qh->is_out = !is_input; 2869 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 2870 qh_refresh(fotg210, qh); 2871 return qh; 2872 } 2873 2874 static void enable_async(struct fotg210_hcd *fotg210) 2875 { 2876 if (fotg210->async_count++) 2877 return; 2878 2879 /* Stop waiting to turn off the async schedule */ 2880 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); 2881 2882 /* Don't start the schedule until ASS is 0 */ 2883 fotg210_poll_ASS(fotg210); 2884 turn_on_io_watchdog(fotg210); 2885 } 2886 2887 static void disable_async(struct fotg210_hcd *fotg210) 2888 { 2889 if (--fotg210->async_count) 2890 return; 2891 2892 /* The async schedule and async_unlink list are supposed to be empty */ 2893 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); 2894 2895 /* Don't turn off the schedule until ASS is 1 */ 2896 fotg210_poll_ASS(fotg210); 2897 } 2898 2899 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 2900 2901 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2902 { 2903 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); 2904 struct fotg210_qh *head; 2905 2906 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 2907 if (unlikely(qh->clearing_tt)) 2908 return; 2909 2910 WARN_ON(qh->qh_state != QH_STATE_IDLE); 2911 2912 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 2913 qh_refresh(fotg210, qh); 2914 2915 /* splice right after start */ 2916 head = fotg210->async; 2917 qh->qh_next = head->qh_next; 2918 qh->hw->hw_next = head->hw->hw_next; 2919 wmb(); 2920 2921 head->qh_next.qh = qh; 2922 head->hw->hw_next = dma; 2923 2924 qh->xacterrs = 0; 2925 qh->qh_state = QH_STATE_LINKED; 2926 /* qtd completions reported later by interrupt */ 2927 2928 enable_async(fotg210); 2929 } 2930 2931 /* For control/bulk/interrupt, return QH with these TDs appended. 2932 * Allocates and initializes the QH if necessary. 2933 * Returns null if it can't allocate a QH it needs to. 2934 * If the QH has TDs (urbs) already, that's great. 2935 */ 2936 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210, 2937 struct urb *urb, struct list_head *qtd_list, 2938 int epnum, void **ptr) 2939 { 2940 struct fotg210_qh *qh = NULL; 2941 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); 2942 2943 qh = (struct fotg210_qh *) *ptr; 2944 if (unlikely(qh == NULL)) { 2945 /* can't sleep here, we have fotg210->lock... */ 2946 qh = qh_make(fotg210, urb, GFP_ATOMIC); 2947 *ptr = qh; 2948 } 2949 if (likely(qh != NULL)) { 2950 struct fotg210_qtd *qtd; 2951 2952 if (unlikely(list_empty(qtd_list))) 2953 qtd = NULL; 2954 else 2955 qtd = list_entry(qtd_list->next, struct fotg210_qtd, 2956 qtd_list); 2957 2958 /* control qh may need patching ... */ 2959 if (unlikely(epnum == 0)) { 2960 /* usb_reset_device() briefly reverts to address 0 */ 2961 if (usb_pipedevice(urb->pipe) == 0) 2962 qh->hw->hw_info1 &= ~qh_addr_mask; 2963 } 2964 2965 /* just one way to queue requests: swap with the dummy qtd. 2966 * only hc or qh_refresh() ever modify the overlay. 2967 */ 2968 if (likely(qtd != NULL)) { 2969 struct fotg210_qtd *dummy; 2970 dma_addr_t dma; 2971 __hc32 token; 2972 2973 /* to avoid racing the HC, use the dummy td instead of 2974 * the first td of our list (becomes new dummy). both 2975 * tds stay deactivated until we're done, when the 2976 * HC is allowed to fetch the old dummy (4.10.2). 2977 */ 2978 token = qtd->hw_token; 2979 qtd->hw_token = HALT_BIT(fotg210); 2980 2981 dummy = qh->dummy; 2982 2983 dma = dummy->qtd_dma; 2984 *dummy = *qtd; 2985 dummy->qtd_dma = dma; 2986 2987 list_del(&qtd->qtd_list); 2988 list_add(&dummy->qtd_list, qtd_list); 2989 list_splice_tail(qtd_list, &qh->qtd_list); 2990 2991 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); 2992 qh->dummy = qtd; 2993 2994 /* hc must see the new dummy at list end */ 2995 dma = qtd->qtd_dma; 2996 qtd = list_entry(qh->qtd_list.prev, 2997 struct fotg210_qtd, qtd_list); 2998 qtd->hw_next = QTD_NEXT(fotg210, dma); 2999 3000 /* let the hc process these next qtds */ 3001 wmb(); 3002 dummy->hw_token = token; 3003 3004 urb->hcpriv = qh; 3005 } 3006 } 3007 return qh; 3008 } 3009 3010 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb, 3011 struct list_head *qtd_list, gfp_t mem_flags) 3012 { 3013 int epnum; 3014 unsigned long flags; 3015 struct fotg210_qh *qh = NULL; 3016 int rc; 3017 3018 epnum = urb->ep->desc.bEndpointAddress; 3019 3020 #ifdef FOTG210_URB_TRACE 3021 { 3022 struct fotg210_qtd *qtd; 3023 3024 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); 3025 fotg210_dbg(fotg210, 3026 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 3027 __func__, urb->dev->devpath, urb, 3028 epnum & 0x0f, (epnum & USB_DIR_IN) 3029 ? "in" : "out", 3030 urb->transfer_buffer_length, 3031 qtd, urb->ep->hcpriv); 3032 } 3033 #endif 3034 3035 spin_lock_irqsave(&fotg210->lock, flags); 3036 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3037 rc = -ESHUTDOWN; 3038 goto done; 3039 } 3040 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3041 if (unlikely(rc)) 3042 goto done; 3043 3044 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3045 if (unlikely(qh == NULL)) { 3046 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3047 rc = -ENOMEM; 3048 goto done; 3049 } 3050 3051 /* Control/bulk operations through TTs don't need scheduling, 3052 * the HC and TT handle it when the TT has a buffer ready. 3053 */ 3054 if (likely(qh->qh_state == QH_STATE_IDLE)) 3055 qh_link_async(fotg210, qh); 3056 done: 3057 spin_unlock_irqrestore(&fotg210->lock, flags); 3058 if (unlikely(qh == NULL)) 3059 qtd_list_free(fotg210, urb, qtd_list); 3060 return rc; 3061 } 3062 3063 static void single_unlink_async(struct fotg210_hcd *fotg210, 3064 struct fotg210_qh *qh) 3065 { 3066 struct fotg210_qh *prev; 3067 3068 /* Add to the end of the list of QHs waiting for the next IAAD */ 3069 qh->qh_state = QH_STATE_UNLINK; 3070 if (fotg210->async_unlink) 3071 fotg210->async_unlink_last->unlink_next = qh; 3072 else 3073 fotg210->async_unlink = qh; 3074 fotg210->async_unlink_last = qh; 3075 3076 /* Unlink it from the schedule */ 3077 prev = fotg210->async; 3078 while (prev->qh_next.qh != qh) 3079 prev = prev->qh_next.qh; 3080 3081 prev->hw->hw_next = qh->hw->hw_next; 3082 prev->qh_next = qh->qh_next; 3083 if (fotg210->qh_scan_next == qh) 3084 fotg210->qh_scan_next = qh->qh_next.qh; 3085 } 3086 3087 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) 3088 { 3089 /* 3090 * Do nothing if an IAA cycle is already running or 3091 * if one will be started shortly. 3092 */ 3093 if (fotg210->async_iaa || fotg210->async_unlinking) 3094 return; 3095 3096 /* Do all the waiting QHs at once */ 3097 fotg210->async_iaa = fotg210->async_unlink; 3098 fotg210->async_unlink = NULL; 3099 3100 /* If the controller isn't running, we don't have to wait for it */ 3101 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { 3102 if (!nested) /* Avoid recursion */ 3103 end_unlink_async(fotg210); 3104 3105 /* Otherwise start a new IAA cycle */ 3106 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { 3107 /* Make sure the unlinks are all visible to the hardware */ 3108 wmb(); 3109 3110 fotg210_writel(fotg210, fotg210->command | CMD_IAAD, 3111 &fotg210->regs->command); 3112 fotg210_readl(fotg210, &fotg210->regs->command); 3113 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, 3114 true); 3115 } 3116 } 3117 3118 /* the async qh for the qtds being unlinked are now gone from the HC */ 3119 3120 static void end_unlink_async(struct fotg210_hcd *fotg210) 3121 { 3122 struct fotg210_qh *qh; 3123 3124 /* Process the idle QHs */ 3125 restart: 3126 fotg210->async_unlinking = true; 3127 while (fotg210->async_iaa) { 3128 qh = fotg210->async_iaa; 3129 fotg210->async_iaa = qh->unlink_next; 3130 qh->unlink_next = NULL; 3131 3132 qh->qh_state = QH_STATE_IDLE; 3133 qh->qh_next.qh = NULL; 3134 3135 qh_completions(fotg210, qh); 3136 if (!list_empty(&qh->qtd_list) && 3137 fotg210->rh_state == FOTG210_RH_RUNNING) 3138 qh_link_async(fotg210, qh); 3139 disable_async(fotg210); 3140 } 3141 fotg210->async_unlinking = false; 3142 3143 /* Start a new IAA cycle if any QHs are waiting for it */ 3144 if (fotg210->async_unlink) { 3145 start_iaa_cycle(fotg210, true); 3146 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) 3147 goto restart; 3148 } 3149 } 3150 3151 static void unlink_empty_async(struct fotg210_hcd *fotg210) 3152 { 3153 struct fotg210_qh *qh, *next; 3154 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 3155 bool check_unlinks_later = false; 3156 3157 /* Unlink all the async QHs that have been empty for a timer cycle */ 3158 next = fotg210->async->qh_next.qh; 3159 while (next) { 3160 qh = next; 3161 next = qh->qh_next.qh; 3162 3163 if (list_empty(&qh->qtd_list) && 3164 qh->qh_state == QH_STATE_LINKED) { 3165 if (!stopped && qh->unlink_cycle == 3166 fotg210->async_unlink_cycle) 3167 check_unlinks_later = true; 3168 else 3169 single_unlink_async(fotg210, qh); 3170 } 3171 } 3172 3173 /* Start a new IAA cycle if any QHs are waiting for it */ 3174 if (fotg210->async_unlink) 3175 start_iaa_cycle(fotg210, false); 3176 3177 /* QHs that haven't been empty for long enough will be handled later */ 3178 if (check_unlinks_later) { 3179 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, 3180 true); 3181 ++fotg210->async_unlink_cycle; 3182 } 3183 } 3184 3185 /* makes sure the async qh will become idle */ 3186 /* caller must own fotg210->lock */ 3187 3188 static void start_unlink_async(struct fotg210_hcd *fotg210, 3189 struct fotg210_qh *qh) 3190 { 3191 /* 3192 * If the QH isn't linked then there's nothing we can do 3193 * unless we were called during a giveback, in which case 3194 * qh_completions() has to deal with it. 3195 */ 3196 if (qh->qh_state != QH_STATE_LINKED) { 3197 if (qh->qh_state == QH_STATE_COMPLETING) 3198 qh->needs_rescan = 1; 3199 return; 3200 } 3201 3202 single_unlink_async(fotg210, qh); 3203 start_iaa_cycle(fotg210, false); 3204 } 3205 3206 static void scan_async(struct fotg210_hcd *fotg210) 3207 { 3208 struct fotg210_qh *qh; 3209 bool check_unlinks_later = false; 3210 3211 fotg210->qh_scan_next = fotg210->async->qh_next.qh; 3212 while (fotg210->qh_scan_next) { 3213 qh = fotg210->qh_scan_next; 3214 fotg210->qh_scan_next = qh->qh_next.qh; 3215 rescan: 3216 /* clean any finished work for this qh */ 3217 if (!list_empty(&qh->qtd_list)) { 3218 int temp; 3219 3220 /* 3221 * Unlinks could happen here; completion reporting 3222 * drops the lock. That's why fotg210->qh_scan_next 3223 * always holds the next qh to scan; if the next qh 3224 * gets unlinked then fotg210->qh_scan_next is adjusted 3225 * in single_unlink_async(). 3226 */ 3227 temp = qh_completions(fotg210, qh); 3228 if (qh->needs_rescan) { 3229 start_unlink_async(fotg210, qh); 3230 } else if (list_empty(&qh->qtd_list) 3231 && qh->qh_state == QH_STATE_LINKED) { 3232 qh->unlink_cycle = fotg210->async_unlink_cycle; 3233 check_unlinks_later = true; 3234 } else if (temp != 0) 3235 goto rescan; 3236 } 3237 } 3238 3239 /* 3240 * Unlink empty entries, reducing DMA usage as well 3241 * as HCD schedule-scanning costs. Delay for any qh 3242 * we just scanned, there's a not-unusual case that it 3243 * doesn't stay idle for long. 3244 */ 3245 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && 3246 !(fotg210->enabled_hrtimer_events & 3247 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { 3248 fotg210_enable_event(fotg210, 3249 FOTG210_HRTIMER_ASYNC_UNLINKS, true); 3250 ++fotg210->async_unlink_cycle; 3251 } 3252 } 3253 /* EHCI scheduled transaction support: interrupt, iso, split iso 3254 * These are called "periodic" transactions in the EHCI spec. 3255 * 3256 * Note that for interrupt transfers, the QH/QTD manipulation is shared 3257 * with the "asynchronous" transaction support (control/bulk transfers). 3258 * The only real difference is in how interrupt transfers are scheduled. 3259 * 3260 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 3261 * It keeps track of every ITD (or SITD) that's linked, and holds enough 3262 * pre-calculated schedule data to make appending to the queue be quick. 3263 */ 3264 static int fotg210_get_frame(struct usb_hcd *hcd); 3265 3266 /* periodic_next_shadow - return "next" pointer on shadow list 3267 * @periodic: host pointer to qh/itd 3268 * @tag: hardware tag for type of this record 3269 */ 3270 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210, 3271 union fotg210_shadow *periodic, __hc32 tag) 3272 { 3273 switch (hc32_to_cpu(fotg210, tag)) { 3274 case Q_TYPE_QH: 3275 return &periodic->qh->qh_next; 3276 case Q_TYPE_FSTN: 3277 return &periodic->fstn->fstn_next; 3278 default: 3279 return &periodic->itd->itd_next; 3280 } 3281 } 3282 3283 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210, 3284 union fotg210_shadow *periodic, __hc32 tag) 3285 { 3286 switch (hc32_to_cpu(fotg210, tag)) { 3287 /* our fotg210_shadow.qh is actually software part */ 3288 case Q_TYPE_QH: 3289 return &periodic->qh->hw->hw_next; 3290 /* others are hw parts */ 3291 default: 3292 return periodic->hw_next; 3293 } 3294 } 3295 3296 /* caller must hold fotg210->lock */ 3297 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, 3298 void *ptr) 3299 { 3300 union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; 3301 __hc32 *hw_p = &fotg210->periodic[frame]; 3302 union fotg210_shadow here = *prev_p; 3303 3304 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 3305 while (here.ptr && here.ptr != ptr) { 3306 prev_p = periodic_next_shadow(fotg210, prev_p, 3307 Q_NEXT_TYPE(fotg210, *hw_p)); 3308 hw_p = shadow_next_periodic(fotg210, &here, 3309 Q_NEXT_TYPE(fotg210, *hw_p)); 3310 here = *prev_p; 3311 } 3312 /* an interrupt entry (at list end) could have been shared */ 3313 if (!here.ptr) 3314 return; 3315 3316 /* update shadow and hardware lists ... the old "next" pointers 3317 * from ptr may still be in use, the caller updates them. 3318 */ 3319 *prev_p = *periodic_next_shadow(fotg210, &here, 3320 Q_NEXT_TYPE(fotg210, *hw_p)); 3321 3322 *hw_p = *shadow_next_periodic(fotg210, &here, 3323 Q_NEXT_TYPE(fotg210, *hw_p)); 3324 } 3325 3326 /* how many of the uframe's 125 usecs are allocated? */ 3327 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210, 3328 unsigned frame, unsigned uframe) 3329 { 3330 __hc32 *hw_p = &fotg210->periodic[frame]; 3331 union fotg210_shadow *q = &fotg210->pshadow[frame]; 3332 unsigned usecs = 0; 3333 struct fotg210_qh_hw *hw; 3334 3335 while (q->ptr) { 3336 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { 3337 case Q_TYPE_QH: 3338 hw = q->qh->hw; 3339 /* is it in the S-mask? */ 3340 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) 3341 usecs += q->qh->usecs; 3342 /* ... or C-mask? */ 3343 if (hw->hw_info2 & cpu_to_hc32(fotg210, 3344 1 << (8 + uframe))) 3345 usecs += q->qh->c_usecs; 3346 hw_p = &hw->hw_next; 3347 q = &q->qh->qh_next; 3348 break; 3349 /* case Q_TYPE_FSTN: */ 3350 default: 3351 /* for "save place" FSTNs, count the relevant INTR 3352 * bandwidth from the previous frame 3353 */ 3354 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) 3355 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); 3356 3357 hw_p = &q->fstn->hw_next; 3358 q = &q->fstn->fstn_next; 3359 break; 3360 case Q_TYPE_ITD: 3361 if (q->itd->hw_transaction[uframe]) 3362 usecs += q->itd->stream->usecs; 3363 hw_p = &q->itd->hw_next; 3364 q = &q->itd->itd_next; 3365 break; 3366 } 3367 } 3368 if (usecs > fotg210->uframe_periodic_max) 3369 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", 3370 frame * 8 + uframe, usecs); 3371 return usecs; 3372 } 3373 3374 static int same_tt(struct usb_device *dev1, struct usb_device *dev2) 3375 { 3376 if (!dev1->tt || !dev2->tt) 3377 return 0; 3378 if (dev1->tt != dev2->tt) 3379 return 0; 3380 if (dev1->tt->multi) 3381 return dev1->ttport == dev2->ttport; 3382 else 3383 return 1; 3384 } 3385 3386 /* return true iff the device's transaction translator is available 3387 * for a periodic transfer starting at the specified frame, using 3388 * all the uframes in the mask. 3389 */ 3390 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period, 3391 struct usb_device *dev, unsigned frame, u32 uf_mask) 3392 { 3393 if (period == 0) /* error */ 3394 return 0; 3395 3396 /* note bandwidth wastage: split never follows csplit 3397 * (different dev or endpoint) until the next uframe. 3398 * calling convention doesn't make that distinction. 3399 */ 3400 for (; frame < fotg210->periodic_size; frame += period) { 3401 union fotg210_shadow here; 3402 __hc32 type; 3403 struct fotg210_qh_hw *hw; 3404 3405 here = fotg210->pshadow[frame]; 3406 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); 3407 while (here.ptr) { 3408 switch (hc32_to_cpu(fotg210, type)) { 3409 case Q_TYPE_ITD: 3410 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); 3411 here = here.itd->itd_next; 3412 continue; 3413 case Q_TYPE_QH: 3414 hw = here.qh->hw; 3415 if (same_tt(dev, here.qh->dev)) { 3416 u32 mask; 3417 3418 mask = hc32_to_cpu(fotg210, 3419 hw->hw_info2); 3420 /* "knows" no gap is needed */ 3421 mask |= mask >> 8; 3422 if (mask & uf_mask) 3423 break; 3424 } 3425 type = Q_NEXT_TYPE(fotg210, hw->hw_next); 3426 here = here.qh->qh_next; 3427 continue; 3428 /* case Q_TYPE_FSTN: */ 3429 default: 3430 fotg210_dbg(fotg210, 3431 "periodic frame %d bogus type %d\n", 3432 frame, type); 3433 } 3434 3435 /* collision or error */ 3436 return 0; 3437 } 3438 } 3439 3440 /* no collision */ 3441 return 1; 3442 } 3443 3444 static void enable_periodic(struct fotg210_hcd *fotg210) 3445 { 3446 if (fotg210->periodic_count++) 3447 return; 3448 3449 /* Stop waiting to turn off the periodic schedule */ 3450 fotg210->enabled_hrtimer_events &= 3451 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); 3452 3453 /* Don't start the schedule until PSS is 0 */ 3454 fotg210_poll_PSS(fotg210); 3455 turn_on_io_watchdog(fotg210); 3456 } 3457 3458 static void disable_periodic(struct fotg210_hcd *fotg210) 3459 { 3460 if (--fotg210->periodic_count) 3461 return; 3462 3463 /* Don't turn off the schedule until PSS is 1 */ 3464 fotg210_poll_PSS(fotg210); 3465 } 3466 3467 /* periodic schedule slots have iso tds (normal or split) first, then a 3468 * sparse tree for active interrupt transfers. 3469 * 3470 * this just links in a qh; caller guarantees uframe masks are set right. 3471 * no FSTN support (yet; fotg210 0.96+) 3472 */ 3473 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3474 { 3475 unsigned i; 3476 unsigned period = qh->period; 3477 3478 dev_dbg(&qh->dev->dev, 3479 "link qh%d-%04x/%p start %d [%d/%d us]\n", period, 3480 hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3481 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3482 qh->c_usecs); 3483 3484 /* high bandwidth, or otherwise every microframe */ 3485 if (period == 0) 3486 period = 1; 3487 3488 for (i = qh->start; i < fotg210->periodic_size; i += period) { 3489 union fotg210_shadow *prev = &fotg210->pshadow[i]; 3490 __hc32 *hw_p = &fotg210->periodic[i]; 3491 union fotg210_shadow here = *prev; 3492 __hc32 type = 0; 3493 3494 /* skip the iso nodes at list head */ 3495 while (here.ptr) { 3496 type = Q_NEXT_TYPE(fotg210, *hw_p); 3497 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 3498 break; 3499 prev = periodic_next_shadow(fotg210, prev, type); 3500 hw_p = shadow_next_periodic(fotg210, &here, type); 3501 here = *prev; 3502 } 3503 3504 /* sorting each branch by period (slow-->fast) 3505 * enables sharing interior tree nodes 3506 */ 3507 while (here.ptr && qh != here.qh) { 3508 if (qh->period > here.qh->period) 3509 break; 3510 prev = &here.qh->qh_next; 3511 hw_p = &here.qh->hw->hw_next; 3512 here = *prev; 3513 } 3514 /* link in this qh, unless some earlier pass did that */ 3515 if (qh != here.qh) { 3516 qh->qh_next = here; 3517 if (here.qh) 3518 qh->hw->hw_next = *hw_p; 3519 wmb(); 3520 prev->qh = qh; 3521 *hw_p = QH_NEXT(fotg210, qh->qh_dma); 3522 } 3523 } 3524 qh->qh_state = QH_STATE_LINKED; 3525 qh->xacterrs = 0; 3526 3527 /* update per-qh bandwidth for usbfs */ 3528 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period 3529 ? ((qh->usecs + qh->c_usecs) / qh->period) 3530 : (qh->usecs * 8); 3531 3532 list_add(&qh->intr_node, &fotg210->intr_qh_list); 3533 3534 /* maybe enable periodic schedule processing */ 3535 ++fotg210->intr_count; 3536 enable_periodic(fotg210); 3537 } 3538 3539 static void qh_unlink_periodic(struct fotg210_hcd *fotg210, 3540 struct fotg210_qh *qh) 3541 { 3542 unsigned i; 3543 unsigned period; 3544 3545 /* 3546 * If qh is for a low/full-speed device, simply unlinking it 3547 * could interfere with an ongoing split transaction. To unlink 3548 * it safely would require setting the QH_INACTIVATE bit and 3549 * waiting at least one frame, as described in EHCI 4.12.2.5. 3550 * 3551 * We won't bother with any of this. Instead, we assume that the 3552 * only reason for unlinking an interrupt QH while the current URB 3553 * is still active is to dequeue all the URBs (flush the whole 3554 * endpoint queue). 3555 * 3556 * If rebalancing the periodic schedule is ever implemented, this 3557 * approach will no longer be valid. 3558 */ 3559 3560 /* high bandwidth, or otherwise part of every microframe */ 3561 period = qh->period; 3562 if (!period) 3563 period = 1; 3564 3565 for (i = qh->start; i < fotg210->periodic_size; i += period) 3566 periodic_unlink(fotg210, i, qh); 3567 3568 /* update per-qh bandwidth for usbfs */ 3569 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period 3570 ? ((qh->usecs + qh->c_usecs) / qh->period) 3571 : (qh->usecs * 8); 3572 3573 dev_dbg(&qh->dev->dev, 3574 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 3575 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3576 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, 3577 qh->c_usecs); 3578 3579 /* qh->qh_next still "live" to HC */ 3580 qh->qh_state = QH_STATE_UNLINK; 3581 qh->qh_next.ptr = NULL; 3582 3583 if (fotg210->qh_scan_next == qh) 3584 fotg210->qh_scan_next = list_entry(qh->intr_node.next, 3585 struct fotg210_qh, intr_node); 3586 list_del(&qh->intr_node); 3587 } 3588 3589 static void start_unlink_intr(struct fotg210_hcd *fotg210, 3590 struct fotg210_qh *qh) 3591 { 3592 /* If the QH isn't linked then there's nothing we can do 3593 * unless we were called during a giveback, in which case 3594 * qh_completions() has to deal with it. 3595 */ 3596 if (qh->qh_state != QH_STATE_LINKED) { 3597 if (qh->qh_state == QH_STATE_COMPLETING) 3598 qh->needs_rescan = 1; 3599 return; 3600 } 3601 3602 qh_unlink_periodic(fotg210, qh); 3603 3604 /* Make sure the unlinks are visible before starting the timer */ 3605 wmb(); 3606 3607 /* 3608 * The EHCI spec doesn't say how long it takes the controller to 3609 * stop accessing an unlinked interrupt QH. The timer delay is 3610 * 9 uframes; presumably that will be long enough. 3611 */ 3612 qh->unlink_cycle = fotg210->intr_unlink_cycle; 3613 3614 /* New entries go at the end of the intr_unlink list */ 3615 if (fotg210->intr_unlink) 3616 fotg210->intr_unlink_last->unlink_next = qh; 3617 else 3618 fotg210->intr_unlink = qh; 3619 fotg210->intr_unlink_last = qh; 3620 3621 if (fotg210->intr_unlinking) 3622 ; /* Avoid recursive calls */ 3623 else if (fotg210->rh_state < FOTG210_RH_RUNNING) 3624 fotg210_handle_intr_unlinks(fotg210); 3625 else if (fotg210->intr_unlink == qh) { 3626 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 3627 true); 3628 ++fotg210->intr_unlink_cycle; 3629 } 3630 } 3631 3632 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3633 { 3634 struct fotg210_qh_hw *hw = qh->hw; 3635 int rc; 3636 3637 qh->qh_state = QH_STATE_IDLE; 3638 hw->hw_next = FOTG210_LIST_END(fotg210); 3639 3640 qh_completions(fotg210, qh); 3641 3642 /* reschedule QH iff another request is queued */ 3643 if (!list_empty(&qh->qtd_list) && 3644 fotg210->rh_state == FOTG210_RH_RUNNING) { 3645 rc = qh_schedule(fotg210, qh); 3646 3647 /* An error here likely indicates handshake failure 3648 * or no space left in the schedule. Neither fault 3649 * should happen often ... 3650 * 3651 * FIXME kill the now-dysfunctional queued urbs 3652 */ 3653 if (rc != 0) 3654 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", 3655 qh, rc); 3656 } 3657 3658 /* maybe turn off periodic schedule */ 3659 --fotg210->intr_count; 3660 disable_periodic(fotg210); 3661 } 3662 3663 static int check_period(struct fotg210_hcd *fotg210, unsigned frame, 3664 unsigned uframe, unsigned period, unsigned usecs) 3665 { 3666 int claimed; 3667 3668 /* complete split running into next frame? 3669 * given FSTN support, we could sometimes check... 3670 */ 3671 if (uframe >= 8) 3672 return 0; 3673 3674 /* convert "usecs we need" to "max already claimed" */ 3675 usecs = fotg210->uframe_periodic_max - usecs; 3676 3677 /* we "know" 2 and 4 uframe intervals were rejected; so 3678 * for period 0, check _every_ microframe in the schedule. 3679 */ 3680 if (unlikely(period == 0)) { 3681 do { 3682 for (uframe = 0; uframe < 7; uframe++) { 3683 claimed = periodic_usecs(fotg210, frame, 3684 uframe); 3685 if (claimed > usecs) 3686 return 0; 3687 } 3688 } while ((frame += 1) < fotg210->periodic_size); 3689 3690 /* just check the specified uframe, at that period */ 3691 } else { 3692 do { 3693 claimed = periodic_usecs(fotg210, frame, uframe); 3694 if (claimed > usecs) 3695 return 0; 3696 } while ((frame += period) < fotg210->periodic_size); 3697 } 3698 3699 /* success! */ 3700 return 1; 3701 } 3702 3703 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame, 3704 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp) 3705 { 3706 int retval = -ENOSPC; 3707 u8 mask = 0; 3708 3709 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 3710 goto done; 3711 3712 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) 3713 goto done; 3714 if (!qh->c_usecs) { 3715 retval = 0; 3716 *c_maskp = 0; 3717 goto done; 3718 } 3719 3720 /* Make sure this tt's buffer is also available for CSPLITs. 3721 * We pessimize a bit; probably the typical full speed case 3722 * doesn't need the second CSPLIT. 3723 * 3724 * NOTE: both SPLIT and CSPLIT could be checked in just 3725 * one smart pass... 3726 */ 3727 mask = 0x03 << (uframe + qh->gap_uf); 3728 *c_maskp = cpu_to_hc32(fotg210, mask << 8); 3729 3730 mask |= 1 << uframe; 3731 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { 3732 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, 3733 qh->period, qh->c_usecs)) 3734 goto done; 3735 if (!check_period(fotg210, frame, uframe + qh->gap_uf, 3736 qh->period, qh->c_usecs)) 3737 goto done; 3738 retval = 0; 3739 } 3740 done: 3741 return retval; 3742 } 3743 3744 /* "first fit" scheduling policy used the first time through, 3745 * or when the previous schedule slot can't be re-used. 3746 */ 3747 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3748 { 3749 int status; 3750 unsigned uframe; 3751 __hc32 c_mask; 3752 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 3753 struct fotg210_qh_hw *hw = qh->hw; 3754 3755 qh_refresh(fotg210, qh); 3756 hw->hw_next = FOTG210_LIST_END(fotg210); 3757 frame = qh->start; 3758 3759 /* reuse the previous schedule slots, if we can */ 3760 if (frame < qh->period) { 3761 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); 3762 status = check_intr_schedule(fotg210, frame, --uframe, 3763 qh, &c_mask); 3764 } else { 3765 uframe = 0; 3766 c_mask = 0; 3767 status = -ENOSPC; 3768 } 3769 3770 /* else scan the schedule to find a group of slots such that all 3771 * uframes have enough periodic bandwidth available. 3772 */ 3773 if (status) { 3774 /* "normal" case, uframing flexible except with splits */ 3775 if (qh->period) { 3776 int i; 3777 3778 for (i = qh->period; status && i > 0; --i) { 3779 frame = ++fotg210->random_frame % qh->period; 3780 for (uframe = 0; uframe < 8; uframe++) { 3781 status = check_intr_schedule(fotg210, 3782 frame, uframe, qh, 3783 &c_mask); 3784 if (status == 0) 3785 break; 3786 } 3787 } 3788 3789 /* qh->period == 0 means every uframe */ 3790 } else { 3791 frame = 0; 3792 status = check_intr_schedule(fotg210, 0, 0, qh, 3793 &c_mask); 3794 } 3795 if (status) 3796 goto done; 3797 qh->start = frame; 3798 3799 /* reset S-frame and (maybe) C-frame masks */ 3800 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); 3801 hw->hw_info2 |= qh->period 3802 ? cpu_to_hc32(fotg210, 1 << uframe) 3803 : cpu_to_hc32(fotg210, QH_SMASK); 3804 hw->hw_info2 |= c_mask; 3805 } else 3806 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); 3807 3808 /* stuff into the periodic schedule */ 3809 qh_link_periodic(fotg210, qh); 3810 done: 3811 return status; 3812 } 3813 3814 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb, 3815 struct list_head *qtd_list, gfp_t mem_flags) 3816 { 3817 unsigned epnum; 3818 unsigned long flags; 3819 struct fotg210_qh *qh; 3820 int status; 3821 struct list_head empty; 3822 3823 /* get endpoint and transfer/schedule data */ 3824 epnum = urb->ep->desc.bEndpointAddress; 3825 3826 spin_lock_irqsave(&fotg210->lock, flags); 3827 3828 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3829 status = -ESHUTDOWN; 3830 goto done_not_linked; 3831 } 3832 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3833 if (unlikely(status)) 3834 goto done_not_linked; 3835 3836 /* get qh and force any scheduling errors */ 3837 INIT_LIST_HEAD(&empty); 3838 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); 3839 if (qh == NULL) { 3840 status = -ENOMEM; 3841 goto done; 3842 } 3843 if (qh->qh_state == QH_STATE_IDLE) { 3844 status = qh_schedule(fotg210, qh); 3845 if (status) 3846 goto done; 3847 } 3848 3849 /* then queue the urb's tds to the qh */ 3850 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3851 BUG_ON(qh == NULL); 3852 3853 /* ... update usbfs periodic stats */ 3854 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; 3855 3856 done: 3857 if (unlikely(status)) 3858 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3859 done_not_linked: 3860 spin_unlock_irqrestore(&fotg210->lock, flags); 3861 if (status) 3862 qtd_list_free(fotg210, urb, qtd_list); 3863 3864 return status; 3865 } 3866 3867 static void scan_intr(struct fotg210_hcd *fotg210) 3868 { 3869 struct fotg210_qh *qh; 3870 3871 list_for_each_entry_safe(qh, fotg210->qh_scan_next, 3872 &fotg210->intr_qh_list, intr_node) { 3873 rescan: 3874 /* clean any finished work for this qh */ 3875 if (!list_empty(&qh->qtd_list)) { 3876 int temp; 3877 3878 /* 3879 * Unlinks could happen here; completion reporting 3880 * drops the lock. That's why fotg210->qh_scan_next 3881 * always holds the next qh to scan; if the next qh 3882 * gets unlinked then fotg210->qh_scan_next is adjusted 3883 * in qh_unlink_periodic(). 3884 */ 3885 temp = qh_completions(fotg210, qh); 3886 if (unlikely(qh->needs_rescan || 3887 (list_empty(&qh->qtd_list) && 3888 qh->qh_state == QH_STATE_LINKED))) 3889 start_unlink_intr(fotg210, qh); 3890 else if (temp != 0) 3891 goto rescan; 3892 } 3893 } 3894 } 3895 3896 /* fotg210_iso_stream ops work with both ITD and SITD */ 3897 3898 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags) 3899 { 3900 struct fotg210_iso_stream *stream; 3901 3902 stream = kzalloc(sizeof(*stream), mem_flags); 3903 if (likely(stream != NULL)) { 3904 INIT_LIST_HEAD(&stream->td_list); 3905 INIT_LIST_HEAD(&stream->free_list); 3906 stream->next_uframe = -1; 3907 } 3908 return stream; 3909 } 3910 3911 static void iso_stream_init(struct fotg210_hcd *fotg210, 3912 struct fotg210_iso_stream *stream, struct usb_device *dev, 3913 int pipe, unsigned interval) 3914 { 3915 u32 buf1; 3916 unsigned epnum, maxp; 3917 int is_input; 3918 long bandwidth; 3919 unsigned multi; 3920 struct usb_host_endpoint *ep; 3921 3922 /* 3923 * this might be a "high bandwidth" highspeed endpoint, 3924 * as encoded in the ep descriptor's wMaxPacket field 3925 */ 3926 epnum = usb_pipeendpoint(pipe); 3927 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; 3928 ep = usb_pipe_endpoint(dev, pipe); 3929 maxp = usb_endpoint_maxp(&ep->desc); 3930 if (is_input) 3931 buf1 = (1 << 11); 3932 else 3933 buf1 = 0; 3934 3935 multi = usb_endpoint_maxp_mult(&ep->desc); 3936 buf1 |= maxp; 3937 maxp *= multi; 3938 3939 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); 3940 stream->buf1 = cpu_to_hc32(fotg210, buf1); 3941 stream->buf2 = cpu_to_hc32(fotg210, multi); 3942 3943 /* usbfs wants to report the average usecs per frame tied up 3944 * when transfers on this endpoint are scheduled ... 3945 */ 3946 if (dev->speed == USB_SPEED_FULL) { 3947 interval <<= 3; 3948 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, 3949 is_input, 1, maxp)); 3950 stream->usecs /= 8; 3951 } else { 3952 stream->highspeed = 1; 3953 stream->usecs = HS_USECS_ISO(maxp); 3954 } 3955 bandwidth = stream->usecs * 8; 3956 bandwidth /= interval; 3957 3958 stream->bandwidth = bandwidth; 3959 stream->udev = dev; 3960 stream->bEndpointAddress = is_input | epnum; 3961 stream->interval = interval; 3962 stream->maxp = maxp; 3963 } 3964 3965 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210, 3966 struct urb *urb) 3967 { 3968 unsigned epnum; 3969 struct fotg210_iso_stream *stream; 3970 struct usb_host_endpoint *ep; 3971 unsigned long flags; 3972 3973 epnum = usb_pipeendpoint(urb->pipe); 3974 if (usb_pipein(urb->pipe)) 3975 ep = urb->dev->ep_in[epnum]; 3976 else 3977 ep = urb->dev->ep_out[epnum]; 3978 3979 spin_lock_irqsave(&fotg210->lock, flags); 3980 stream = ep->hcpriv; 3981 3982 if (unlikely(stream == NULL)) { 3983 stream = iso_stream_alloc(GFP_ATOMIC); 3984 if (likely(stream != NULL)) { 3985 ep->hcpriv = stream; 3986 stream->ep = ep; 3987 iso_stream_init(fotg210, stream, urb->dev, urb->pipe, 3988 urb->interval); 3989 } 3990 3991 /* if dev->ep[epnum] is a QH, hw is set */ 3992 } else if (unlikely(stream->hw != NULL)) { 3993 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", 3994 urb->dev->devpath, epnum, 3995 usb_pipein(urb->pipe) ? "in" : "out"); 3996 stream = NULL; 3997 } 3998 3999 spin_unlock_irqrestore(&fotg210->lock, flags); 4000 return stream; 4001 } 4002 4003 /* fotg210_iso_sched ops can be ITD-only or SITD-only */ 4004 4005 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets, 4006 gfp_t mem_flags) 4007 { 4008 struct fotg210_iso_sched *iso_sched; 4009 4010 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags); 4011 if (likely(iso_sched != NULL)) 4012 INIT_LIST_HEAD(&iso_sched->td_list); 4013 4014 return iso_sched; 4015 } 4016 4017 static inline void itd_sched_init(struct fotg210_hcd *fotg210, 4018 struct fotg210_iso_sched *iso_sched, 4019 struct fotg210_iso_stream *stream, struct urb *urb) 4020 { 4021 unsigned i; 4022 dma_addr_t dma = urb->transfer_dma; 4023 4024 /* how many uframes are needed for these transfers */ 4025 iso_sched->span = urb->number_of_packets * stream->interval; 4026 4027 /* figure out per-uframe itd fields that we'll need later 4028 * when we fit new itds into the schedule. 4029 */ 4030 for (i = 0; i < urb->number_of_packets; i++) { 4031 struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; 4032 unsigned length; 4033 dma_addr_t buf; 4034 u32 trans; 4035 4036 length = urb->iso_frame_desc[i].length; 4037 buf = dma + urb->iso_frame_desc[i].offset; 4038 4039 trans = FOTG210_ISOC_ACTIVE; 4040 trans |= buf & 0x0fff; 4041 if (unlikely(((i + 1) == urb->number_of_packets)) 4042 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 4043 trans |= FOTG210_ITD_IOC; 4044 trans |= length << 16; 4045 uframe->transaction = cpu_to_hc32(fotg210, trans); 4046 4047 /* might need to cross a buffer page within a uframe */ 4048 uframe->bufp = (buf & ~(u64)0x0fff); 4049 buf += length; 4050 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 4051 uframe->cross = 1; 4052 } 4053 } 4054 4055 static void iso_sched_free(struct fotg210_iso_stream *stream, 4056 struct fotg210_iso_sched *iso_sched) 4057 { 4058 if (!iso_sched) 4059 return; 4060 /* caller must hold fotg210->lock!*/ 4061 list_splice(&iso_sched->td_list, &stream->free_list); 4062 kfree(iso_sched); 4063 } 4064 4065 static int itd_urb_transaction(struct fotg210_iso_stream *stream, 4066 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) 4067 { 4068 struct fotg210_itd *itd; 4069 dma_addr_t itd_dma; 4070 int i; 4071 unsigned num_itds; 4072 struct fotg210_iso_sched *sched; 4073 unsigned long flags; 4074 4075 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 4076 if (unlikely(sched == NULL)) 4077 return -ENOMEM; 4078 4079 itd_sched_init(fotg210, sched, stream, urb); 4080 4081 if (urb->interval < 8) 4082 num_itds = 1 + (sched->span + 7) / 8; 4083 else 4084 num_itds = urb->number_of_packets; 4085 4086 /* allocate/init ITDs */ 4087 spin_lock_irqsave(&fotg210->lock, flags); 4088 for (i = 0; i < num_itds; i++) { 4089 4090 /* 4091 * Use iTDs from the free list, but not iTDs that may 4092 * still be in use by the hardware. 4093 */ 4094 if (likely(!list_empty(&stream->free_list))) { 4095 itd = list_first_entry(&stream->free_list, 4096 struct fotg210_itd, itd_list); 4097 if (itd->frame == fotg210->now_frame) 4098 goto alloc_itd; 4099 list_del(&itd->itd_list); 4100 itd_dma = itd->itd_dma; 4101 } else { 4102 alloc_itd: 4103 spin_unlock_irqrestore(&fotg210->lock, flags); 4104 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, 4105 &itd_dma); 4106 spin_lock_irqsave(&fotg210->lock, flags); 4107 if (!itd) { 4108 iso_sched_free(stream, sched); 4109 spin_unlock_irqrestore(&fotg210->lock, flags); 4110 return -ENOMEM; 4111 } 4112 } 4113 4114 memset(itd, 0, sizeof(*itd)); 4115 itd->itd_dma = itd_dma; 4116 list_add(&itd->itd_list, &sched->td_list); 4117 } 4118 spin_unlock_irqrestore(&fotg210->lock, flags); 4119 4120 /* temporarily store schedule info in hcpriv */ 4121 urb->hcpriv = sched; 4122 urb->error_count = 0; 4123 return 0; 4124 } 4125 4126 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe, 4127 u8 usecs, u32 period) 4128 { 4129 uframe %= period; 4130 do { 4131 /* can't commit more than uframe_periodic_max usec */ 4132 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) 4133 > (fotg210->uframe_periodic_max - usecs)) 4134 return 0; 4135 4136 /* we know urb->interval is 2^N uframes */ 4137 uframe += period; 4138 } while (uframe < mod); 4139 return 1; 4140 } 4141 4142 /* This scheduler plans almost as far into the future as it has actual 4143 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 4144 * "as small as possible" to be cache-friendlier.) That limits the size 4145 * transfers you can stream reliably; avoid more than 64 msec per urb. 4146 * Also avoid queue depths of less than fotg210's worst irq latency (affected 4147 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 4148 * and other factors); or more than about 230 msec total (for portability, 4149 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler! 4150 */ 4151 4152 #define SCHEDULE_SLOP 80 /* microframes */ 4153 4154 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb, 4155 struct fotg210_iso_stream *stream) 4156 { 4157 u32 now, next, start, period, span; 4158 int status; 4159 unsigned mod = fotg210->periodic_size << 3; 4160 struct fotg210_iso_sched *sched = urb->hcpriv; 4161 4162 period = urb->interval; 4163 span = sched->span; 4164 4165 if (span > mod - SCHEDULE_SLOP) { 4166 fotg210_dbg(fotg210, "iso request %p too long\n", urb); 4167 status = -EFBIG; 4168 goto fail; 4169 } 4170 4171 now = fotg210_read_frame_index(fotg210) & (mod - 1); 4172 4173 /* Typical case: reuse current schedule, stream is still active. 4174 * Hopefully there are no gaps from the host falling behind 4175 * (irq delays etc), but if there are we'll take the next 4176 * slot in the schedule, implicitly assuming URB_ISO_ASAP. 4177 */ 4178 if (likely(!list_empty(&stream->td_list))) { 4179 u32 excess; 4180 4181 /* For high speed devices, allow scheduling within the 4182 * isochronous scheduling threshold. For full speed devices 4183 * and Intel PCI-based controllers, don't (work around for 4184 * Intel ICH9 bug). 4185 */ 4186 if (!stream->highspeed && fotg210->fs_i_thresh) 4187 next = now + fotg210->i_thresh; 4188 else 4189 next = now; 4190 4191 /* Fell behind (by up to twice the slop amount)? 4192 * We decide based on the time of the last currently-scheduled 4193 * slot, not the time of the next available slot. 4194 */ 4195 excess = (stream->next_uframe - period - next) & (mod - 1); 4196 if (excess >= mod - 2 * SCHEDULE_SLOP) 4197 start = next + excess - mod + period * 4198 DIV_ROUND_UP(mod - excess, period); 4199 else 4200 start = next + excess + period; 4201 if (start - now >= mod) { 4202 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4203 urb, start - now - period, period, 4204 mod); 4205 status = -EFBIG; 4206 goto fail; 4207 } 4208 } 4209 4210 /* need to schedule; when's the next (u)frame we could start? 4211 * this is bigger than fotg210->i_thresh allows; scheduling itself 4212 * isn't free, the slop should handle reasonably slow cpus. it 4213 * can also help high bandwidth if the dma and irq loads don't 4214 * jump until after the queue is primed. 4215 */ 4216 else { 4217 int done = 0; 4218 4219 start = SCHEDULE_SLOP + (now & ~0x07); 4220 4221 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ 4222 4223 /* find a uframe slot with enough bandwidth. 4224 * Early uframes are more precious because full-speed 4225 * iso IN transfers can't use late uframes, 4226 * and therefore they should be allocated last. 4227 */ 4228 next = start; 4229 start += period; 4230 do { 4231 start--; 4232 /* check schedule: enough space? */ 4233 if (itd_slot_ok(fotg210, mod, start, 4234 stream->usecs, period)) 4235 done = 1; 4236 } while (start > next && !done); 4237 4238 /* no room in the schedule */ 4239 if (!done) { 4240 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", 4241 urb, now, now + mod); 4242 status = -ENOSPC; 4243 goto fail; 4244 } 4245 } 4246 4247 /* Tried to schedule too far into the future? */ 4248 if (unlikely(start - now + span - period >= 4249 mod - 2 * SCHEDULE_SLOP)) { 4250 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4251 urb, start - now, span - period, 4252 mod - 2 * SCHEDULE_SLOP); 4253 status = -EFBIG; 4254 goto fail; 4255 } 4256 4257 stream->next_uframe = start & (mod - 1); 4258 4259 /* report high speed start in uframes; full speed, in frames */ 4260 urb->start_frame = stream->next_uframe; 4261 if (!stream->highspeed) 4262 urb->start_frame >>= 3; 4263 4264 /* Make sure scan_isoc() sees these */ 4265 if (fotg210->isoc_count == 0) 4266 fotg210->next_frame = now >> 3; 4267 return 0; 4268 4269 fail: 4270 iso_sched_free(stream, sched); 4271 urb->hcpriv = NULL; 4272 return status; 4273 } 4274 4275 static inline void itd_init(struct fotg210_hcd *fotg210, 4276 struct fotg210_iso_stream *stream, struct fotg210_itd *itd) 4277 { 4278 int i; 4279 4280 /* it's been recently zeroed */ 4281 itd->hw_next = FOTG210_LIST_END(fotg210); 4282 itd->hw_bufp[0] = stream->buf0; 4283 itd->hw_bufp[1] = stream->buf1; 4284 itd->hw_bufp[2] = stream->buf2; 4285 4286 for (i = 0; i < 8; i++) 4287 itd->index[i] = -1; 4288 4289 /* All other fields are filled when scheduling */ 4290 } 4291 4292 static inline void itd_patch(struct fotg210_hcd *fotg210, 4293 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched, 4294 unsigned index, u16 uframe) 4295 { 4296 struct fotg210_iso_packet *uf = &iso_sched->packet[index]; 4297 unsigned pg = itd->pg; 4298 4299 uframe &= 0x07; 4300 itd->index[uframe] = index; 4301 4302 itd->hw_transaction[uframe] = uf->transaction; 4303 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); 4304 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); 4305 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); 4306 4307 /* iso_frame_desc[].offset must be strictly increasing */ 4308 if (unlikely(uf->cross)) { 4309 u64 bufp = uf->bufp + 4096; 4310 4311 itd->pg = ++pg; 4312 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); 4313 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); 4314 } 4315 } 4316 4317 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame, 4318 struct fotg210_itd *itd) 4319 { 4320 union fotg210_shadow *prev = &fotg210->pshadow[frame]; 4321 __hc32 *hw_p = &fotg210->periodic[frame]; 4322 union fotg210_shadow here = *prev; 4323 __hc32 type = 0; 4324 4325 /* skip any iso nodes which might belong to previous microframes */ 4326 while (here.ptr) { 4327 type = Q_NEXT_TYPE(fotg210, *hw_p); 4328 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 4329 break; 4330 prev = periodic_next_shadow(fotg210, prev, type); 4331 hw_p = shadow_next_periodic(fotg210, &here, type); 4332 here = *prev; 4333 } 4334 4335 itd->itd_next = here; 4336 itd->hw_next = *hw_p; 4337 prev->itd = itd; 4338 itd->frame = frame; 4339 wmb(); 4340 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); 4341 } 4342 4343 /* fit urb's itds into the selected schedule slot; activate as needed */ 4344 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb, 4345 unsigned mod, struct fotg210_iso_stream *stream) 4346 { 4347 int packet; 4348 unsigned next_uframe, uframe, frame; 4349 struct fotg210_iso_sched *iso_sched = urb->hcpriv; 4350 struct fotg210_itd *itd; 4351 4352 next_uframe = stream->next_uframe & (mod - 1); 4353 4354 if (unlikely(list_empty(&stream->td_list))) { 4355 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4356 += stream->bandwidth; 4357 fotg210_dbg(fotg210, 4358 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 4359 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 4360 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 4361 urb->interval, 4362 next_uframe >> 3, next_uframe & 0x7); 4363 } 4364 4365 /* fill iTDs uframe by uframe */ 4366 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { 4367 if (itd == NULL) { 4368 /* ASSERT: we have all necessary itds */ 4369 4370 /* ASSERT: no itds for this endpoint in this uframe */ 4371 4372 itd = list_entry(iso_sched->td_list.next, 4373 struct fotg210_itd, itd_list); 4374 list_move_tail(&itd->itd_list, &stream->td_list); 4375 itd->stream = stream; 4376 itd->urb = urb; 4377 itd_init(fotg210, stream, itd); 4378 } 4379 4380 uframe = next_uframe & 0x07; 4381 frame = next_uframe >> 3; 4382 4383 itd_patch(fotg210, itd, iso_sched, packet, uframe); 4384 4385 next_uframe += stream->interval; 4386 next_uframe &= mod - 1; 4387 packet++; 4388 4389 /* link completed itds into the schedule */ 4390 if (((next_uframe >> 3) != frame) 4391 || packet == urb->number_of_packets) { 4392 itd_link(fotg210, frame & (fotg210->periodic_size - 1), 4393 itd); 4394 itd = NULL; 4395 } 4396 } 4397 stream->next_uframe = next_uframe; 4398 4399 /* don't need that schedule data any more */ 4400 iso_sched_free(stream, iso_sched); 4401 urb->hcpriv = NULL; 4402 4403 ++fotg210->isoc_count; 4404 enable_periodic(fotg210); 4405 } 4406 4407 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ 4408 FOTG210_ISOC_XACTERR) 4409 4410 /* Process and recycle a completed ITD. Return true iff its urb completed, 4411 * and hence its completion callback probably added things to the hardware 4412 * schedule. 4413 * 4414 * Note that we carefully avoid recycling this descriptor until after any 4415 * completion callback runs, so that it won't be reused quickly. That is, 4416 * assuming (a) no more than two urbs per frame on this endpoint, and also 4417 * (b) only this endpoint's completions submit URBs. It seems some silicon 4418 * corrupts things if you reuse completed descriptors very quickly... 4419 */ 4420 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 4421 { 4422 struct urb *urb = itd->urb; 4423 struct usb_iso_packet_descriptor *desc; 4424 u32 t; 4425 unsigned uframe; 4426 int urb_index = -1; 4427 struct fotg210_iso_stream *stream = itd->stream; 4428 struct usb_device *dev; 4429 bool retval = false; 4430 4431 /* for each uframe with a packet */ 4432 for (uframe = 0; uframe < 8; uframe++) { 4433 if (likely(itd->index[uframe] == -1)) 4434 continue; 4435 urb_index = itd->index[uframe]; 4436 desc = &urb->iso_frame_desc[urb_index]; 4437 4438 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); 4439 itd->hw_transaction[uframe] = 0; 4440 4441 /* report transfer status */ 4442 if (unlikely(t & ISO_ERRS)) { 4443 urb->error_count++; 4444 if (t & FOTG210_ISOC_BUF_ERR) 4445 desc->status = usb_pipein(urb->pipe) 4446 ? -ENOSR /* hc couldn't read */ 4447 : -ECOMM; /* hc couldn't write */ 4448 else if (t & FOTG210_ISOC_BABBLE) 4449 desc->status = -EOVERFLOW; 4450 else /* (t & FOTG210_ISOC_XACTERR) */ 4451 desc->status = -EPROTO; 4452 4453 /* HC need not update length with this error */ 4454 if (!(t & FOTG210_ISOC_BABBLE)) { 4455 desc->actual_length = FOTG210_ITD_LENGTH(t); 4456 urb->actual_length += desc->actual_length; 4457 } 4458 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { 4459 desc->status = 0; 4460 desc->actual_length = FOTG210_ITD_LENGTH(t); 4461 urb->actual_length += desc->actual_length; 4462 } else { 4463 /* URB was too late */ 4464 desc->status = -EXDEV; 4465 } 4466 } 4467 4468 /* handle completion now? */ 4469 if (likely((urb_index + 1) != urb->number_of_packets)) 4470 goto done; 4471 4472 /* ASSERT: it's really the last itd for this urb 4473 * list_for_each_entry (itd, &stream->td_list, itd_list) 4474 * BUG_ON (itd->urb == urb); 4475 */ 4476 4477 /* give urb back to the driver; completion often (re)submits */ 4478 dev = urb->dev; 4479 fotg210_urb_done(fotg210, urb, 0); 4480 retval = true; 4481 urb = NULL; 4482 4483 --fotg210->isoc_count; 4484 disable_periodic(fotg210); 4485 4486 if (unlikely(list_is_singular(&stream->td_list))) { 4487 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4488 -= stream->bandwidth; 4489 fotg210_dbg(fotg210, 4490 "deschedule devp %s ep%d%s-iso\n", 4491 dev->devpath, stream->bEndpointAddress & 0x0f, 4492 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 4493 } 4494 4495 done: 4496 itd->urb = NULL; 4497 4498 /* Add to the end of the free list for later reuse */ 4499 list_move_tail(&itd->itd_list, &stream->free_list); 4500 4501 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 4502 if (list_empty(&stream->td_list)) { 4503 list_splice_tail_init(&stream->free_list, 4504 &fotg210->cached_itd_list); 4505 start_free_itds(fotg210); 4506 } 4507 4508 return retval; 4509 } 4510 4511 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, 4512 gfp_t mem_flags) 4513 { 4514 int status = -EINVAL; 4515 unsigned long flags; 4516 struct fotg210_iso_stream *stream; 4517 4518 /* Get iso_stream head */ 4519 stream = iso_stream_find(fotg210, urb); 4520 if (unlikely(stream == NULL)) { 4521 fotg210_dbg(fotg210, "can't get iso stream\n"); 4522 return -ENOMEM; 4523 } 4524 if (unlikely(urb->interval != stream->interval && 4525 fotg210_port_speed(fotg210, 0) == 4526 USB_PORT_STAT_HIGH_SPEED)) { 4527 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", 4528 stream->interval, urb->interval); 4529 goto done; 4530 } 4531 4532 #ifdef FOTG210_URB_TRACE 4533 fotg210_dbg(fotg210, 4534 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", 4535 __func__, urb->dev->devpath, urb, 4536 usb_pipeendpoint(urb->pipe), 4537 usb_pipein(urb->pipe) ? "in" : "out", 4538 urb->transfer_buffer_length, 4539 urb->number_of_packets, urb->interval, 4540 stream); 4541 #endif 4542 4543 /* allocate ITDs w/o locking anything */ 4544 status = itd_urb_transaction(stream, fotg210, urb, mem_flags); 4545 if (unlikely(status < 0)) { 4546 fotg210_dbg(fotg210, "can't init itds\n"); 4547 goto done; 4548 } 4549 4550 /* schedule ... need to lock */ 4551 spin_lock_irqsave(&fotg210->lock, flags); 4552 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 4553 status = -ESHUTDOWN; 4554 goto done_not_linked; 4555 } 4556 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 4557 if (unlikely(status)) 4558 goto done_not_linked; 4559 status = iso_stream_schedule(fotg210, urb, stream); 4560 if (likely(status == 0)) 4561 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); 4562 else 4563 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 4564 done_not_linked: 4565 spin_unlock_irqrestore(&fotg210->lock, flags); 4566 done: 4567 return status; 4568 } 4569 4570 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame, 4571 unsigned now_frame, bool live) 4572 { 4573 unsigned uf; 4574 bool modified; 4575 union fotg210_shadow q, *q_p; 4576 __hc32 type, *hw_p; 4577 4578 /* scan each element in frame's queue for completions */ 4579 q_p = &fotg210->pshadow[frame]; 4580 hw_p = &fotg210->periodic[frame]; 4581 q.ptr = q_p->ptr; 4582 type = Q_NEXT_TYPE(fotg210, *hw_p); 4583 modified = false; 4584 4585 while (q.ptr) { 4586 switch (hc32_to_cpu(fotg210, type)) { 4587 case Q_TYPE_ITD: 4588 /* If this ITD is still active, leave it for 4589 * later processing ... check the next entry. 4590 * No need to check for activity unless the 4591 * frame is current. 4592 */ 4593 if (frame == now_frame && live) { 4594 rmb(); 4595 for (uf = 0; uf < 8; uf++) { 4596 if (q.itd->hw_transaction[uf] & 4597 ITD_ACTIVE(fotg210)) 4598 break; 4599 } 4600 if (uf < 8) { 4601 q_p = &q.itd->itd_next; 4602 hw_p = &q.itd->hw_next; 4603 type = Q_NEXT_TYPE(fotg210, 4604 q.itd->hw_next); 4605 q = *q_p; 4606 break; 4607 } 4608 } 4609 4610 /* Take finished ITDs out of the schedule 4611 * and process them: recycle, maybe report 4612 * URB completion. HC won't cache the 4613 * pointer for much longer, if at all. 4614 */ 4615 *q_p = q.itd->itd_next; 4616 *hw_p = q.itd->hw_next; 4617 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); 4618 wmb(); 4619 modified = itd_complete(fotg210, q.itd); 4620 q = *q_p; 4621 break; 4622 default: 4623 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", 4624 type, frame, q.ptr); 4625 fallthrough; 4626 case Q_TYPE_QH: 4627 case Q_TYPE_FSTN: 4628 /* End of the iTDs and siTDs */ 4629 q.ptr = NULL; 4630 break; 4631 } 4632 4633 /* assume completion callbacks modify the queue */ 4634 if (unlikely(modified && fotg210->isoc_count > 0)) 4635 return -EINVAL; 4636 } 4637 return 0; 4638 } 4639 4640 static void scan_isoc(struct fotg210_hcd *fotg210) 4641 { 4642 unsigned uf, now_frame, frame, ret; 4643 unsigned fmask = fotg210->periodic_size - 1; 4644 bool live; 4645 4646 /* 4647 * When running, scan from last scan point up to "now" 4648 * else clean up by scanning everything that's left. 4649 * Touches as few pages as possible: cache-friendly. 4650 */ 4651 if (fotg210->rh_state >= FOTG210_RH_RUNNING) { 4652 uf = fotg210_read_frame_index(fotg210); 4653 now_frame = (uf >> 3) & fmask; 4654 live = true; 4655 } else { 4656 now_frame = (fotg210->next_frame - 1) & fmask; 4657 live = false; 4658 } 4659 fotg210->now_frame = now_frame; 4660 4661 frame = fotg210->next_frame; 4662 for (;;) { 4663 ret = 1; 4664 while (ret != 0) 4665 ret = scan_frame_queue(fotg210, frame, 4666 now_frame, live); 4667 4668 /* Stop when we have reached the current frame */ 4669 if (frame == now_frame) 4670 break; 4671 frame = (frame + 1) & fmask; 4672 } 4673 fotg210->next_frame = now_frame; 4674 } 4675 4676 /* Display / Set uframe_periodic_max 4677 */ 4678 static ssize_t uframe_periodic_max_show(struct device *dev, 4679 struct device_attribute *attr, char *buf) 4680 { 4681 struct fotg210_hcd *fotg210; 4682 4683 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4684 return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max); 4685 } 4686 4687 static ssize_t uframe_periodic_max_store(struct device *dev, 4688 struct device_attribute *attr, const char *buf, size_t count) 4689 { 4690 struct fotg210_hcd *fotg210; 4691 unsigned uframe_periodic_max; 4692 unsigned frame, uframe; 4693 unsigned short allocated_max; 4694 unsigned long flags; 4695 ssize_t ret; 4696 4697 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4698 4699 ret = kstrtouint(buf, 0, &uframe_periodic_max); 4700 if (ret) 4701 return ret; 4702 4703 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { 4704 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", 4705 uframe_periodic_max); 4706 return -EINVAL; 4707 } 4708 4709 ret = -EINVAL; 4710 4711 /* 4712 * lock, so that our checking does not race with possible periodic 4713 * bandwidth allocation through submitting new urbs. 4714 */ 4715 spin_lock_irqsave(&fotg210->lock, flags); 4716 4717 /* 4718 * for request to decrease max periodic bandwidth, we have to check 4719 * every microframe in the schedule to see whether the decrease is 4720 * possible. 4721 */ 4722 if (uframe_periodic_max < fotg210->uframe_periodic_max) { 4723 allocated_max = 0; 4724 4725 for (frame = 0; frame < fotg210->periodic_size; ++frame) 4726 for (uframe = 0; uframe < 7; ++uframe) 4727 allocated_max = max(allocated_max, 4728 periodic_usecs(fotg210, frame, 4729 uframe)); 4730 4731 if (allocated_max > uframe_periodic_max) { 4732 fotg210_info(fotg210, 4733 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n", 4734 allocated_max, uframe_periodic_max); 4735 goto out_unlock; 4736 } 4737 } 4738 4739 /* increasing is always ok */ 4740 4741 fotg210_info(fotg210, 4742 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", 4743 100 * uframe_periodic_max/125, uframe_periodic_max); 4744 4745 if (uframe_periodic_max != 100) 4746 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); 4747 4748 fotg210->uframe_periodic_max = uframe_periodic_max; 4749 ret = count; 4750 4751 out_unlock: 4752 spin_unlock_irqrestore(&fotg210->lock, flags); 4753 return ret; 4754 } 4755 4756 static DEVICE_ATTR_RW(uframe_periodic_max); 4757 4758 static inline int create_sysfs_files(struct fotg210_hcd *fotg210) 4759 { 4760 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4761 4762 return device_create_file(controller, &dev_attr_uframe_periodic_max); 4763 } 4764 4765 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) 4766 { 4767 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4768 4769 device_remove_file(controller, &dev_attr_uframe_periodic_max); 4770 } 4771 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 4772 * The firmware seems to think that powering off is a wakeup event! 4773 * This routine turns off remote wakeup and everything else, on all ports. 4774 */ 4775 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) 4776 { 4777 u32 __iomem *status_reg = &fotg210->regs->port_status; 4778 4779 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); 4780 } 4781 4782 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers. 4783 * Must be called with interrupts enabled and the lock not held. 4784 */ 4785 static void fotg210_silence_controller(struct fotg210_hcd *fotg210) 4786 { 4787 fotg210_halt(fotg210); 4788 4789 spin_lock_irq(&fotg210->lock); 4790 fotg210->rh_state = FOTG210_RH_HALTED; 4791 fotg210_turn_off_all_ports(fotg210); 4792 spin_unlock_irq(&fotg210->lock); 4793 } 4794 4795 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). 4796 * This forcibly disables dma and IRQs, helping kexec and other cases 4797 * where the next system software may expect clean state. 4798 */ 4799 static void fotg210_shutdown(struct usb_hcd *hcd) 4800 { 4801 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4802 4803 spin_lock_irq(&fotg210->lock); 4804 fotg210->shutdown = true; 4805 fotg210->rh_state = FOTG210_RH_STOPPING; 4806 fotg210->enabled_hrtimer_events = 0; 4807 spin_unlock_irq(&fotg210->lock); 4808 4809 fotg210_silence_controller(fotg210); 4810 4811 hrtimer_cancel(&fotg210->hrtimer); 4812 } 4813 4814 /* fotg210_work is called from some interrupts, timers, and so on. 4815 * it calls driver completion functions, after dropping fotg210->lock. 4816 */ 4817 static void fotg210_work(struct fotg210_hcd *fotg210) 4818 { 4819 /* another CPU may drop fotg210->lock during a schedule scan while 4820 * it reports urb completions. this flag guards against bogus 4821 * attempts at re-entrant schedule scanning. 4822 */ 4823 if (fotg210->scanning) { 4824 fotg210->need_rescan = true; 4825 return; 4826 } 4827 fotg210->scanning = true; 4828 4829 rescan: 4830 fotg210->need_rescan = false; 4831 if (fotg210->async_count) 4832 scan_async(fotg210); 4833 if (fotg210->intr_count > 0) 4834 scan_intr(fotg210); 4835 if (fotg210->isoc_count > 0) 4836 scan_isoc(fotg210); 4837 if (fotg210->need_rescan) 4838 goto rescan; 4839 fotg210->scanning = false; 4840 4841 /* the IO watchdog guards against hardware or driver bugs that 4842 * misplace IRQs, and should let us run completely without IRQs. 4843 * such lossage has been observed on both VT6202 and VT8235. 4844 */ 4845 turn_on_io_watchdog(fotg210); 4846 } 4847 4848 /* Called when the fotg210_hcd module is removed. 4849 */ 4850 static void fotg210_stop(struct usb_hcd *hcd) 4851 { 4852 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4853 4854 fotg210_dbg(fotg210, "stop\n"); 4855 4856 /* no more interrupts ... */ 4857 4858 spin_lock_irq(&fotg210->lock); 4859 fotg210->enabled_hrtimer_events = 0; 4860 spin_unlock_irq(&fotg210->lock); 4861 4862 fotg210_quiesce(fotg210); 4863 fotg210_silence_controller(fotg210); 4864 fotg210_reset(fotg210); 4865 4866 hrtimer_cancel(&fotg210->hrtimer); 4867 remove_sysfs_files(fotg210); 4868 remove_debug_files(fotg210); 4869 4870 /* root hub is shut down separately (first, when possible) */ 4871 spin_lock_irq(&fotg210->lock); 4872 end_free_itds(fotg210); 4873 spin_unlock_irq(&fotg210->lock); 4874 fotg210_mem_cleanup(fotg210); 4875 4876 #ifdef FOTG210_STATS 4877 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", 4878 fotg210->stats.normal, fotg210->stats.error, 4879 fotg210->stats.iaa, fotg210->stats.lost_iaa); 4880 fotg210_dbg(fotg210, "complete %ld unlink %ld\n", 4881 fotg210->stats.complete, fotg210->stats.unlink); 4882 #endif 4883 4884 dbg_status(fotg210, "fotg210_stop completed", 4885 fotg210_readl(fotg210, &fotg210->regs->status)); 4886 } 4887 4888 /* one-time init, only for memory state */ 4889 static int hcd_fotg210_init(struct usb_hcd *hcd) 4890 { 4891 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4892 u32 temp; 4893 int retval; 4894 u32 hcc_params; 4895 struct fotg210_qh_hw *hw; 4896 4897 spin_lock_init(&fotg210->lock); 4898 4899 /* 4900 * keep io watchdog by default, those good HCDs could turn off it later 4901 */ 4902 fotg210->need_io_watchdog = 1; 4903 4904 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 4905 fotg210->hrtimer.function = fotg210_hrtimer_func; 4906 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 4907 4908 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 4909 4910 /* 4911 * by default set standard 80% (== 100 usec/uframe) max periodic 4912 * bandwidth as required by USB 2.0 4913 */ 4914 fotg210->uframe_periodic_max = 100; 4915 4916 /* 4917 * hw default: 1K periodic list heads, one per frame. 4918 * periodic_size can shrink by USBCMD update if hcc_params allows. 4919 */ 4920 fotg210->periodic_size = DEFAULT_I_TDPS; 4921 INIT_LIST_HEAD(&fotg210->intr_qh_list); 4922 INIT_LIST_HEAD(&fotg210->cached_itd_list); 4923 4924 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4925 /* periodic schedule size can be smaller than default */ 4926 switch (FOTG210_TUNE_FLS) { 4927 case 0: 4928 fotg210->periodic_size = 1024; 4929 break; 4930 case 1: 4931 fotg210->periodic_size = 512; 4932 break; 4933 case 2: 4934 fotg210->periodic_size = 256; 4935 break; 4936 default: 4937 BUG(); 4938 } 4939 } 4940 retval = fotg210_mem_init(fotg210, GFP_KERNEL); 4941 if (retval < 0) 4942 return retval; 4943 4944 /* controllers may cache some of the periodic schedule ... */ 4945 fotg210->i_thresh = 2; 4946 4947 /* 4948 * dedicate a qh for the async ring head, since we couldn't unlink 4949 * a 'real' qh without stopping the async schedule [4.8]. use it 4950 * as the 'reclamation list head' too. 4951 * its dummy is used in hw_alt_next of many tds, to prevent the qh 4952 * from automatically advancing to the next td after short reads. 4953 */ 4954 fotg210->async->qh_next.qh = NULL; 4955 hw = fotg210->async->hw; 4956 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); 4957 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); 4958 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 4959 hw->hw_qtd_next = FOTG210_LIST_END(fotg210); 4960 fotg210->async->qh_state = QH_STATE_LINKED; 4961 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); 4962 4963 /* clear interrupt enables, set irq latency */ 4964 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 4965 log2_irq_thresh = 0; 4966 temp = 1 << (16 + log2_irq_thresh); 4967 if (HCC_CANPARK(hcc_params)) { 4968 /* HW default park == 3, on hardware that supports it (like 4969 * NVidia and ALI silicon), maximizes throughput on the async 4970 * schedule by avoiding QH fetches between transfers. 4971 * 4972 * With fast usb storage devices and NForce2, "park" seems to 4973 * make problems: throughput reduction (!), data errors... 4974 */ 4975 if (park) { 4976 park = min_t(unsigned, park, 3); 4977 temp |= CMD_PARK; 4978 temp |= park << 8; 4979 } 4980 fotg210_dbg(fotg210, "park %d\n", park); 4981 } 4982 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 4983 /* periodic schedule size can be smaller than default */ 4984 temp &= ~(3 << 2); 4985 temp |= (FOTG210_TUNE_FLS << 2); 4986 } 4987 fotg210->command = temp; 4988 4989 /* Accept arbitrarily long scatter-gather lists */ 4990 if (!hcd->localmem_pool) 4991 hcd->self.sg_tablesize = ~0; 4992 return 0; 4993 } 4994 4995 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ 4996 static int fotg210_run(struct usb_hcd *hcd) 4997 { 4998 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 4999 u32 temp; 5000 5001 hcd->uses_new_polling = 1; 5002 5003 /* EHCI spec section 4.1 */ 5004 5005 fotg210_writel(fotg210, fotg210->periodic_dma, 5006 &fotg210->regs->frame_list); 5007 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, 5008 &fotg210->regs->async_next); 5009 5010 /* 5011 * hcc_params controls whether fotg210->regs->segment must (!!!) 5012 * be used; it constrains QH/ITD/SITD and QTD locations. 5013 * dma_pool consistent memory always uses segment zero. 5014 * streaming mappings for I/O buffers, like dma_map_single(), 5015 * can return segments above 4GB, if the device allows. 5016 * 5017 * NOTE: the dma mask is visible through dev->dma_mask, so 5018 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 5019 * Scsi_Host.highmem_io, and so forth. It's readonly to all 5020 * host side drivers though. 5021 */ 5022 fotg210_readl(fotg210, &fotg210->caps->hcc_params); 5023 5024 /* 5025 * Philips, Intel, and maybe others need CMD_RUN before the 5026 * root hub will detect new devices (why?); NEC doesn't 5027 */ 5028 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); 5029 fotg210->command |= CMD_RUN; 5030 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 5031 dbg_cmd(fotg210, "init", fotg210->command); 5032 5033 /* 5034 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 5035 * are explicitly handed to companion controller(s), so no TT is 5036 * involved with the root hub. (Except where one is integrated, 5037 * and there's no companion controller unless maybe for USB OTG.) 5038 * 5039 * Turning on the CF flag will transfer ownership of all ports 5040 * from the companions to the EHCI controller. If any of the 5041 * companions are in the middle of a port reset at the time, it 5042 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem 5043 * guarantees that no resets are in progress. After we set CF, 5044 * a short delay lets the hardware catch up; new resets shouldn't 5045 * be started before the port switching actions could complete. 5046 */ 5047 down_write(&ehci_cf_port_reset_rwsem); 5048 fotg210->rh_state = FOTG210_RH_RUNNING; 5049 /* unblock posted writes */ 5050 fotg210_readl(fotg210, &fotg210->regs->command); 5051 usleep_range(5000, 10000); 5052 up_write(&ehci_cf_port_reset_rwsem); 5053 fotg210->last_periodic_enable = ktime_get_real(); 5054 5055 temp = HC_VERSION(fotg210, 5056 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5057 fotg210_info(fotg210, 5058 "USB %x.%x started, EHCI %x.%02x\n", 5059 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f), 5060 temp >> 8, temp & 0xff); 5061 5062 fotg210_writel(fotg210, INTR_MASK, 5063 &fotg210->regs->intr_enable); /* Turn On Interrupts */ 5064 5065 /* GRR this is run-once init(), being done every time the HC starts. 5066 * So long as they're part of class devices, we can't do it init() 5067 * since the class device isn't created that early. 5068 */ 5069 create_debug_files(fotg210); 5070 create_sysfs_files(fotg210); 5071 5072 return 0; 5073 } 5074 5075 static int fotg210_setup(struct usb_hcd *hcd) 5076 { 5077 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5078 int retval; 5079 5080 fotg210->regs = (void __iomem *)fotg210->caps + 5081 HC_LENGTH(fotg210, 5082 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5083 dbg_hcs_params(fotg210, "reset"); 5084 dbg_hcc_params(fotg210, "reset"); 5085 5086 /* cache this readonly data; minimize chip reads */ 5087 fotg210->hcs_params = fotg210_readl(fotg210, 5088 &fotg210->caps->hcs_params); 5089 5090 fotg210->sbrn = HCD_USB2; 5091 5092 /* data structure init */ 5093 retval = hcd_fotg210_init(hcd); 5094 if (retval) 5095 return retval; 5096 5097 retval = fotg210_halt(fotg210); 5098 if (retval) 5099 return retval; 5100 5101 fotg210_reset(fotg210); 5102 5103 return 0; 5104 } 5105 5106 static irqreturn_t fotg210_irq(struct usb_hcd *hcd) 5107 { 5108 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5109 u32 status, masked_status, pcd_status = 0, cmd; 5110 int bh; 5111 5112 spin_lock(&fotg210->lock); 5113 5114 status = fotg210_readl(fotg210, &fotg210->regs->status); 5115 5116 /* e.g. cardbus physical eject */ 5117 if (status == ~(u32) 0) { 5118 fotg210_dbg(fotg210, "device removed\n"); 5119 goto dead; 5120 } 5121 5122 /* 5123 * We don't use STS_FLR, but some controllers don't like it to 5124 * remain on, so mask it out along with the other status bits. 5125 */ 5126 masked_status = status & (INTR_MASK | STS_FLR); 5127 5128 /* Shared IRQ? */ 5129 if (!masked_status || 5130 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { 5131 spin_unlock(&fotg210->lock); 5132 return IRQ_NONE; 5133 } 5134 5135 /* clear (just) interrupts */ 5136 fotg210_writel(fotg210, masked_status, &fotg210->regs->status); 5137 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 5138 bh = 0; 5139 5140 /* unrequested/ignored: Frame List Rollover */ 5141 dbg_status(fotg210, "irq", status); 5142 5143 /* INT, ERR, and IAA interrupt rates can be throttled */ 5144 5145 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 5146 if (likely((status & (STS_INT|STS_ERR)) != 0)) { 5147 if (likely((status & STS_ERR) == 0)) 5148 INCR(fotg210->stats.normal); 5149 else 5150 INCR(fotg210->stats.error); 5151 bh = 1; 5152 } 5153 5154 /* complete the unlinking of some qh [4.15.2.3] */ 5155 if (status & STS_IAA) { 5156 5157 /* Turn off the IAA watchdog */ 5158 fotg210->enabled_hrtimer_events &= 5159 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); 5160 5161 /* 5162 * Mild optimization: Allow another IAAD to reset the 5163 * hrtimer, if one occurs before the next expiration. 5164 * In theory we could always cancel the hrtimer, but 5165 * tests show that about half the time it will be reset 5166 * for some other event anyway. 5167 */ 5168 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) 5169 ++fotg210->next_hrtimer_event; 5170 5171 /* guard against (alleged) silicon errata */ 5172 if (cmd & CMD_IAAD) 5173 fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); 5174 if (fotg210->async_iaa) { 5175 INCR(fotg210->stats.iaa); 5176 end_unlink_async(fotg210); 5177 } else 5178 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); 5179 } 5180 5181 /* remote wakeup [4.3.1] */ 5182 if (status & STS_PCD) { 5183 int pstatus; 5184 u32 __iomem *status_reg = &fotg210->regs->port_status; 5185 5186 /* kick root hub later */ 5187 pcd_status = status; 5188 5189 /* resume root hub? */ 5190 if (fotg210->rh_state == FOTG210_RH_SUSPENDED) 5191 usb_hcd_resume_root_hub(hcd); 5192 5193 pstatus = fotg210_readl(fotg210, status_reg); 5194 5195 if (test_bit(0, &fotg210->suspended_ports) && 5196 ((pstatus & PORT_RESUME) || 5197 !(pstatus & PORT_SUSPEND)) && 5198 (pstatus & PORT_PE) && 5199 fotg210->reset_done[0] == 0) { 5200 5201 /* start 20 msec resume signaling from this port, 5202 * and make hub_wq collect PORT_STAT_C_SUSPEND to 5203 * stop that signaling. Use 5 ms extra for safety, 5204 * like usb_port_resume() does. 5205 */ 5206 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); 5207 set_bit(0, &fotg210->resuming_ports); 5208 fotg210_dbg(fotg210, "port 1 remote wakeup\n"); 5209 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); 5210 } 5211 } 5212 5213 /* PCI errors [4.15.2.4] */ 5214 if (unlikely((status & STS_FATAL) != 0)) { 5215 fotg210_err(fotg210, "fatal error\n"); 5216 dbg_cmd(fotg210, "fatal", cmd); 5217 dbg_status(fotg210, "fatal", status); 5218 dead: 5219 usb_hc_died(hcd); 5220 5221 /* Don't let the controller do anything more */ 5222 fotg210->shutdown = true; 5223 fotg210->rh_state = FOTG210_RH_STOPPING; 5224 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); 5225 fotg210_writel(fotg210, fotg210->command, 5226 &fotg210->regs->command); 5227 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 5228 fotg210_handle_controller_death(fotg210); 5229 5230 /* Handle completions when the controller stops */ 5231 bh = 0; 5232 } 5233 5234 if (bh) 5235 fotg210_work(fotg210); 5236 spin_unlock(&fotg210->lock); 5237 if (pcd_status) 5238 usb_hcd_poll_rh_status(hcd); 5239 return IRQ_HANDLED; 5240 } 5241 5242 /* non-error returns are a promise to giveback() the urb later 5243 * we drop ownership so next owner (or urb unlink) can get it 5244 * 5245 * urb + dev is in hcd.self.controller.urb_list 5246 * we're queueing TDs onto software and hardware lists 5247 * 5248 * hcd-specific init for hcpriv hasn't been done yet 5249 * 5250 * NOTE: control, bulk, and interrupt share the same code to append TDs 5251 * to a (possibly active) QH, and the same QH scanning code. 5252 */ 5253 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 5254 gfp_t mem_flags) 5255 { 5256 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5257 struct list_head qtd_list; 5258 5259 INIT_LIST_HEAD(&qtd_list); 5260 5261 switch (usb_pipetype(urb->pipe)) { 5262 case PIPE_CONTROL: 5263 /* qh_completions() code doesn't handle all the fault cases 5264 * in multi-TD control transfers. Even 1KB is rare anyway. 5265 */ 5266 if (urb->transfer_buffer_length > (16 * 1024)) 5267 return -EMSGSIZE; 5268 fallthrough; 5269 /* case PIPE_BULK: */ 5270 default: 5271 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5272 return -ENOMEM; 5273 return submit_async(fotg210, urb, &qtd_list, mem_flags); 5274 5275 case PIPE_INTERRUPT: 5276 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5277 return -ENOMEM; 5278 return intr_submit(fotg210, urb, &qtd_list, mem_flags); 5279 5280 case PIPE_ISOCHRONOUS: 5281 return itd_submit(fotg210, urb, mem_flags); 5282 } 5283 } 5284 5285 /* remove from hardware lists 5286 * completions normally happen asynchronously 5287 */ 5288 5289 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 5290 { 5291 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5292 struct fotg210_qh *qh; 5293 unsigned long flags; 5294 int rc; 5295 5296 spin_lock_irqsave(&fotg210->lock, flags); 5297 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 5298 if (rc) 5299 goto done; 5300 5301 switch (usb_pipetype(urb->pipe)) { 5302 /* case PIPE_CONTROL: */ 5303 /* case PIPE_BULK:*/ 5304 default: 5305 qh = (struct fotg210_qh *) urb->hcpriv; 5306 if (!qh) 5307 break; 5308 switch (qh->qh_state) { 5309 case QH_STATE_LINKED: 5310 case QH_STATE_COMPLETING: 5311 start_unlink_async(fotg210, qh); 5312 break; 5313 case QH_STATE_UNLINK: 5314 case QH_STATE_UNLINK_WAIT: 5315 /* already started */ 5316 break; 5317 case QH_STATE_IDLE: 5318 /* QH might be waiting for a Clear-TT-Buffer */ 5319 qh_completions(fotg210, qh); 5320 break; 5321 } 5322 break; 5323 5324 case PIPE_INTERRUPT: 5325 qh = (struct fotg210_qh *) urb->hcpriv; 5326 if (!qh) 5327 break; 5328 switch (qh->qh_state) { 5329 case QH_STATE_LINKED: 5330 case QH_STATE_COMPLETING: 5331 start_unlink_intr(fotg210, qh); 5332 break; 5333 case QH_STATE_IDLE: 5334 qh_completions(fotg210, qh); 5335 break; 5336 default: 5337 fotg210_dbg(fotg210, "bogus qh %p state %d\n", 5338 qh, qh->qh_state); 5339 goto done; 5340 } 5341 break; 5342 5343 case PIPE_ISOCHRONOUS: 5344 /* itd... */ 5345 5346 /* wait till next completion, do it then. */ 5347 /* completion irqs can wait up to 1024 msec, */ 5348 break; 5349 } 5350 done: 5351 spin_unlock_irqrestore(&fotg210->lock, flags); 5352 return rc; 5353 } 5354 5355 /* bulk qh holds the data toggle */ 5356 5357 static void fotg210_endpoint_disable(struct usb_hcd *hcd, 5358 struct usb_host_endpoint *ep) 5359 { 5360 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5361 unsigned long flags; 5362 struct fotg210_qh *qh, *tmp; 5363 5364 /* ASSERT: any requests/urbs are being unlinked */ 5365 /* ASSERT: nobody can be submitting urbs for this any more */ 5366 5367 rescan: 5368 spin_lock_irqsave(&fotg210->lock, flags); 5369 qh = ep->hcpriv; 5370 if (!qh) 5371 goto done; 5372 5373 /* endpoints can be iso streams. for now, we don't 5374 * accelerate iso completions ... so spin a while. 5375 */ 5376 if (qh->hw == NULL) { 5377 struct fotg210_iso_stream *stream = ep->hcpriv; 5378 5379 if (!list_empty(&stream->td_list)) 5380 goto idle_timeout; 5381 5382 /* BUG_ON(!list_empty(&stream->free_list)); */ 5383 kfree(stream); 5384 goto done; 5385 } 5386 5387 if (fotg210->rh_state < FOTG210_RH_RUNNING) 5388 qh->qh_state = QH_STATE_IDLE; 5389 switch (qh->qh_state) { 5390 case QH_STATE_LINKED: 5391 case QH_STATE_COMPLETING: 5392 for (tmp = fotg210->async->qh_next.qh; 5393 tmp && tmp != qh; 5394 tmp = tmp->qh_next.qh) 5395 continue; 5396 /* periodic qh self-unlinks on empty, and a COMPLETING qh 5397 * may already be unlinked. 5398 */ 5399 if (tmp) 5400 start_unlink_async(fotg210, qh); 5401 fallthrough; 5402 case QH_STATE_UNLINK: /* wait for hw to finish? */ 5403 case QH_STATE_UNLINK_WAIT: 5404 idle_timeout: 5405 spin_unlock_irqrestore(&fotg210->lock, flags); 5406 schedule_timeout_uninterruptible(1); 5407 goto rescan; 5408 case QH_STATE_IDLE: /* fully unlinked */ 5409 if (qh->clearing_tt) 5410 goto idle_timeout; 5411 if (list_empty(&qh->qtd_list)) { 5412 qh_destroy(fotg210, qh); 5413 break; 5414 } 5415 fallthrough; 5416 default: 5417 /* caller was supposed to have unlinked any requests; 5418 * that's not our job. just leak this memory. 5419 */ 5420 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", 5421 qh, ep->desc.bEndpointAddress, qh->qh_state, 5422 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 5423 break; 5424 } 5425 done: 5426 ep->hcpriv = NULL; 5427 spin_unlock_irqrestore(&fotg210->lock, flags); 5428 } 5429 5430 static void fotg210_endpoint_reset(struct usb_hcd *hcd, 5431 struct usb_host_endpoint *ep) 5432 { 5433 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5434 struct fotg210_qh *qh; 5435 int eptype = usb_endpoint_type(&ep->desc); 5436 int epnum = usb_endpoint_num(&ep->desc); 5437 int is_out = usb_endpoint_dir_out(&ep->desc); 5438 unsigned long flags; 5439 5440 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) 5441 return; 5442 5443 spin_lock_irqsave(&fotg210->lock, flags); 5444 qh = ep->hcpriv; 5445 5446 /* For Bulk and Interrupt endpoints we maintain the toggle state 5447 * in the hardware; the toggle bits in udev aren't used at all. 5448 * When an endpoint is reset by usb_clear_halt() we must reset 5449 * the toggle bit in the QH. 5450 */ 5451 if (qh) { 5452 usb_settoggle(qh->dev, epnum, is_out, 0); 5453 if (!list_empty(&qh->qtd_list)) { 5454 WARN_ONCE(1, "clear_halt for a busy endpoint\n"); 5455 } else if (qh->qh_state == QH_STATE_LINKED || 5456 qh->qh_state == QH_STATE_COMPLETING) { 5457 5458 /* The toggle value in the QH can't be updated 5459 * while the QH is active. Unlink it now; 5460 * re-linking will call qh_refresh(). 5461 */ 5462 if (eptype == USB_ENDPOINT_XFER_BULK) 5463 start_unlink_async(fotg210, qh); 5464 else 5465 start_unlink_intr(fotg210, qh); 5466 } 5467 } 5468 spin_unlock_irqrestore(&fotg210->lock, flags); 5469 } 5470 5471 static int fotg210_get_frame(struct usb_hcd *hcd) 5472 { 5473 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5474 5475 return (fotg210_read_frame_index(fotg210) >> 3) % 5476 fotg210->periodic_size; 5477 } 5478 5479 /* The EHCI in ChipIdea HDRC cannot be a separate module or device, 5480 * because its registers (and irq) are shared between host/gadget/otg 5481 * functions and in order to facilitate role switching we cannot 5482 * give the fotg210 driver exclusive access to those. 5483 */ 5484 5485 static const struct hc_driver fotg210_fotg210_hc_driver = { 5486 .description = hcd_name, 5487 .product_desc = "Faraday USB2.0 Host Controller", 5488 .hcd_priv_size = sizeof(struct fotg210_hcd), 5489 5490 /* 5491 * generic hardware linkage 5492 */ 5493 .irq = fotg210_irq, 5494 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2, 5495 5496 /* 5497 * basic lifecycle operations 5498 */ 5499 .reset = hcd_fotg210_init, 5500 .start = fotg210_run, 5501 .stop = fotg210_stop, 5502 .shutdown = fotg210_shutdown, 5503 5504 /* 5505 * managing i/o requests and associated device resources 5506 */ 5507 .urb_enqueue = fotg210_urb_enqueue, 5508 .urb_dequeue = fotg210_urb_dequeue, 5509 .endpoint_disable = fotg210_endpoint_disable, 5510 .endpoint_reset = fotg210_endpoint_reset, 5511 5512 /* 5513 * scheduling support 5514 */ 5515 .get_frame_number = fotg210_get_frame, 5516 5517 /* 5518 * root hub support 5519 */ 5520 .hub_status_data = fotg210_hub_status_data, 5521 .hub_control = fotg210_hub_control, 5522 .bus_suspend = fotg210_bus_suspend, 5523 .bus_resume = fotg210_bus_resume, 5524 5525 .relinquish_port = fotg210_relinquish_port, 5526 .port_handed_over = fotg210_port_handed_over, 5527 5528 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, 5529 }; 5530 5531 static void fotg210_init(struct fotg210_hcd *fotg210) 5532 { 5533 u32 value; 5534 5535 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, 5536 &fotg210->regs->gmir); 5537 5538 value = ioread32(&fotg210->regs->otgcsr); 5539 value &= ~OTGCSR_A_BUS_DROP; 5540 value |= OTGCSR_A_BUS_REQ; 5541 iowrite32(value, &fotg210->regs->otgcsr); 5542 } 5543 5544 /* 5545 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs 5546 * 5547 * Allocates basic resources for this USB host controller, and 5548 * then invokes the start() method for the HCD associated with it 5549 * through the hotplug entry's driver_data. 5550 */ 5551 int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg) 5552 { 5553 struct device *dev = &pdev->dev; 5554 struct usb_hcd *hcd; 5555 int irq; 5556 int retval; 5557 struct fotg210_hcd *fotg210; 5558 5559 if (usb_disabled()) 5560 return -ENODEV; 5561 5562 pdev->dev.power.power_state = PMSG_ON; 5563 5564 irq = platform_get_irq(pdev, 0); 5565 if (irq < 0) 5566 return irq; 5567 5568 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, 5569 dev_name(dev)); 5570 if (!hcd) { 5571 retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n"); 5572 goto fail_create_hcd; 5573 } 5574 5575 hcd->has_tt = 1; 5576 5577 hcd->regs = fotg->base; 5578 5579 hcd->rsrc_start = fotg->res->start; 5580 hcd->rsrc_len = resource_size(fotg->res); 5581 5582 fotg210 = hcd_to_fotg210(hcd); 5583 5584 fotg210->fotg = fotg; 5585 fotg210->caps = hcd->regs; 5586 5587 retval = fotg210_setup(hcd); 5588 if (retval) 5589 goto failed_put_hcd; 5590 5591 fotg210_init(fotg210); 5592 5593 retval = usb_add_hcd(hcd, irq, IRQF_SHARED); 5594 if (retval) { 5595 dev_err_probe(dev, retval, "failed to add hcd\n"); 5596 goto failed_put_hcd; 5597 } 5598 device_wakeup_enable(hcd->self.controller); 5599 platform_set_drvdata(pdev, hcd); 5600 5601 return retval; 5602 5603 failed_put_hcd: 5604 usb_put_hcd(hcd); 5605 fail_create_hcd: 5606 return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev)); 5607 } 5608 5609 /* 5610 * fotg210_hcd_remove - shutdown processing for EHCI HCDs 5611 * @dev: USB Host Controller being removed 5612 * 5613 */ 5614 int fotg210_hcd_remove(struct platform_device *pdev) 5615 { 5616 struct usb_hcd *hcd = platform_get_drvdata(pdev); 5617 5618 usb_remove_hcd(hcd); 5619 usb_put_hcd(hcd); 5620 5621 return 0; 5622 } 5623 5624 int __init fotg210_hcd_init(void) 5625 { 5626 if (usb_disabled()) 5627 return -ENODEV; 5628 5629 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5630 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || 5631 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) 5632 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); 5633 5634 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n", 5635 hcd_name, sizeof(struct fotg210_qh), 5636 sizeof(struct fotg210_qtd), 5637 sizeof(struct fotg210_itd)); 5638 5639 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); 5640 5641 return 0; 5642 } 5643 5644 void __exit fotg210_hcd_cleanup(void) 5645 { 5646 debugfs_remove(fotg210_debug_root); 5647 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5648 } 5649