1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 */ 7 8 /* 9 * This file contains the functions to manage Queue Heads and Queue 10 * Transfer Descriptors for Host mode 11 */ 12 #include <linux/gcd.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/io.h> 19 #include <linux/seq_buf.h> 20 #include <linux/slab.h> 21 #include <linux/usb.h> 22 23 #include <linux/usb/hcd.h> 24 #include <linux/usb/ch11.h> 25 26 #include "core.h" 27 #include "hcd.h" 28 29 /* Wait this long before releasing periodic reservation */ 30 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5)) 31 32 /* If we get a NAK, wait this long before retrying */ 33 #define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC) 34 35 /** 36 * dwc2_periodic_channel_available() - Checks that a channel is available for a 37 * periodic transfer 38 * 39 * @hsotg: The HCD state structure for the DWC OTG controller 40 * 41 * Return: 0 if successful, negative error code otherwise 42 */ 43 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg) 44 { 45 /* 46 * Currently assuming that there is a dedicated host channel for 47 * each periodic transaction plus at least one host channel for 48 * non-periodic transactions 49 */ 50 int status; 51 int num_channels; 52 53 num_channels = hsotg->params.host_channels; 54 if ((hsotg->periodic_channels + hsotg->non_periodic_channels < 55 num_channels) && (hsotg->periodic_channels < num_channels - 1)) { 56 status = 0; 57 } else { 58 dev_dbg(hsotg->dev, 59 "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", 60 __func__, num_channels, 61 hsotg->periodic_channels, hsotg->non_periodic_channels); 62 status = -ENOSPC; 63 } 64 65 return status; 66 } 67 68 /** 69 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth 70 * for the specified QH in the periodic schedule 71 * 72 * @hsotg: The HCD state structure for the DWC OTG controller 73 * @qh: QH containing periodic bandwidth required 74 * 75 * Return: 0 if successful, negative error code otherwise 76 * 77 * For simplicity, this calculation assumes that all the transfers in the 78 * periodic schedule may occur in the same (micro)frame 79 */ 80 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg, 81 struct dwc2_qh *qh) 82 { 83 int status; 84 s16 max_claimed_usecs; 85 86 status = 0; 87 88 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 89 /* 90 * High speed mode 91 * Max periodic usecs is 80% x 125 usec = 100 usec 92 */ 93 max_claimed_usecs = 100 - qh->host_us; 94 } else { 95 /* 96 * Full speed mode 97 * Max periodic usecs is 90% x 1000 usec = 900 usec 98 */ 99 max_claimed_usecs = 900 - qh->host_us; 100 } 101 102 if (hsotg->periodic_usecs > max_claimed_usecs) { 103 dev_err(hsotg->dev, 104 "%s: already claimed usecs %d, required usecs %d\n", 105 __func__, hsotg->periodic_usecs, qh->host_us); 106 status = -ENOSPC; 107 } 108 109 return status; 110 } 111 112 /** 113 * pmap_schedule() - Schedule time in a periodic bitmap (pmap). 114 * 115 * @map: The bitmap representing the schedule; will be updated 116 * upon success. 117 * @bits_per_period: The schedule represents several periods. This is how many 118 * bits are in each period. It's assumed that the beginning 119 * of the schedule will repeat after its end. 120 * @periods_in_map: The number of periods in the schedule. 121 * @num_bits: The number of bits we need per period we want to reserve 122 * in this function call. 123 * @interval: How often we need to be scheduled for the reservation this 124 * time. 1 means every period. 2 means every other period. 125 * ...you get the picture? 126 * @start: The bit number to start at. Normally 0. Must be within 127 * the interval or we return failure right away. 128 * @only_one_period: Normally we'll allow picking a start anywhere within the 129 * first interval, since we can still make all repetition 130 * requirements by doing that. However, if you pass true 131 * here then we'll return failure if we can't fit within 132 * the period that "start" is in. 133 * 134 * The idea here is that we want to schedule time for repeating events that all 135 * want the same resource. The resource is divided into fixed-sized periods 136 * and the events want to repeat every "interval" periods. The schedule 137 * granularity is one bit. 138 * 139 * To keep things "simple", we'll represent our schedule with a bitmap that 140 * contains a fixed number of periods. This gets rid of a lot of complexity 141 * but does mean that we need to handle things specially (and non-ideally) if 142 * the number of the periods in the schedule doesn't match well with the 143 * intervals that we're trying to schedule. 144 * 145 * Here's an explanation of the scheme we'll implement, assuming 8 periods. 146 * - If interval is 1, we need to take up space in each of the 8 147 * periods we're scheduling. Easy. 148 * - If interval is 2, we need to take up space in half of the 149 * periods. Again, easy. 150 * - If interval is 3, we actually need to fall back to interval 1. 151 * Why? Because we might need time in any period. AKA for the 152 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be 153 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to 154 * 0, 3, and 6. Since we could be in any frame we need to reserve 155 * for all of them. Sucks, but that's what you gotta do. Note that 156 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but 157 * then we need more memory and time to do scheduling. 158 * - If interval is 4, easy. 159 * - If interval is 5, we again need interval 1. The schedule will be 160 * 0, 5, 2, 7, 4, 1, 6, 3, 0 161 * - If interval is 6, we need interval 2. 0, 6, 4, 2. 162 * - If interval is 7, we need interval 1. 163 * - If interval is 8, we need interval 8. 164 * 165 * If you do the math, you'll see that we need to pretend that interval is 166 * equal to the greatest_common_divisor(interval, periods_in_map). 167 * 168 * Note that at the moment this function tends to front-pack the schedule. 169 * In some cases that's really non-ideal (it's hard to schedule things that 170 * need to repeat every period). In other cases it's perfect (you can easily 171 * schedule bigger, less often repeating things). 172 * 173 * Here's the algorithm in action (8 periods, 5 bits per period): 174 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 175 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2 176 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5 177 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2 178 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2 179 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3 180 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6 181 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4 182 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1 183 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0 184 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5 185 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2 186 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3 187 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6 188 * | | | | | | | | | Remv 1 bits, intv 1 at 4 189 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 190 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2 191 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3 192 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5 193 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6 194 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8 195 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12 196 * 197 * This function is pretty generic and could be easily abstracted if anything 198 * needed similar scheduling. 199 * 200 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the 201 * unschedule routine. The map bitmap will be updated on a non-error result. 202 */ 203 static int pmap_schedule(unsigned long *map, int bits_per_period, 204 int periods_in_map, int num_bits, 205 int interval, int start, bool only_one_period) 206 { 207 int interval_bits; 208 int to_reserve; 209 int first_end; 210 int i; 211 212 if (num_bits > bits_per_period) 213 return -ENOSPC; 214 215 /* Adjust interval as per description */ 216 interval = gcd(interval, periods_in_map); 217 218 interval_bits = bits_per_period * interval; 219 to_reserve = periods_in_map / interval; 220 221 /* If start has gotten us past interval then we can't schedule */ 222 if (start >= interval_bits) 223 return -ENOSPC; 224 225 if (only_one_period) 226 /* Must fit within same period as start; end at begin of next */ 227 first_end = (start / bits_per_period + 1) * bits_per_period; 228 else 229 /* Can fit anywhere in the first interval */ 230 first_end = interval_bits; 231 232 /* 233 * We'll try to pick the first repetition, then see if that time 234 * is free for each of the subsequent repetitions. If it's not 235 * we'll adjust the start time for the next search of the first 236 * repetition. 237 */ 238 while (start + num_bits <= first_end) { 239 int end; 240 241 /* Need to stay within this period */ 242 end = (start / bits_per_period + 1) * bits_per_period; 243 244 /* Look for num_bits us in this microframe starting at start */ 245 start = bitmap_find_next_zero_area(map, end, start, num_bits, 246 0); 247 248 /* 249 * We should get start >= end if we fail. We might be 250 * able to check the next microframe depending on the 251 * interval, so continue on (start already updated). 252 */ 253 if (start >= end) { 254 start = end; 255 continue; 256 } 257 258 /* At this point we have a valid point for first one */ 259 for (i = 1; i < to_reserve; i++) { 260 int ith_start = start + interval_bits * i; 261 int ith_end = end + interval_bits * i; 262 int ret; 263 264 /* Use this as a dumb "check if bits are 0" */ 265 ret = bitmap_find_next_zero_area( 266 map, ith_start + num_bits, ith_start, num_bits, 267 0); 268 269 /* We got the right place, continue checking */ 270 if (ret == ith_start) 271 continue; 272 273 /* Move start up for next time and exit for loop */ 274 ith_start = bitmap_find_next_zero_area( 275 map, ith_end, ith_start, num_bits, 0); 276 if (ith_start >= ith_end) 277 /* Need a while new period next time */ 278 start = end; 279 else 280 start = ith_start - interval_bits * i; 281 break; 282 } 283 284 /* If didn't exit the for loop with a break, we have success */ 285 if (i == to_reserve) 286 break; 287 } 288 289 if (start + num_bits > first_end) 290 return -ENOSPC; 291 292 for (i = 0; i < to_reserve; i++) { 293 int ith_start = start + interval_bits * i; 294 295 bitmap_set(map, ith_start, num_bits); 296 } 297 298 return start; 299 } 300 301 /** 302 * pmap_unschedule() - Undo work done by pmap_schedule() 303 * 304 * @map: See pmap_schedule(). 305 * @bits_per_period: See pmap_schedule(). 306 * @periods_in_map: See pmap_schedule(). 307 * @num_bits: The number of bits that was passed to schedule. 308 * @interval: The interval that was passed to schedule. 309 * @start: The return value from pmap_schedule(). 310 */ 311 static void pmap_unschedule(unsigned long *map, int bits_per_period, 312 int periods_in_map, int num_bits, 313 int interval, int start) 314 { 315 int interval_bits; 316 int to_release; 317 int i; 318 319 /* Adjust interval as per description in pmap_schedule() */ 320 interval = gcd(interval, periods_in_map); 321 322 interval_bits = bits_per_period * interval; 323 to_release = periods_in_map / interval; 324 325 for (i = 0; i < to_release; i++) { 326 int ith_start = start + interval_bits * i; 327 328 bitmap_clear(map, ith_start, num_bits); 329 } 330 } 331 332 /** 333 * dwc2_get_ls_map() - Get the map used for the given qh 334 * 335 * @hsotg: The HCD state structure for the DWC OTG controller. 336 * @qh: QH for the periodic transfer. 337 * 338 * We'll always get the periodic map out of our TT. Note that even if we're 339 * running the host straight in low speed / full speed mode it appears as if 340 * a TT is allocated for us, so we'll use it. If that ever changes we can 341 * add logic here to get a map out of "hsotg" if !qh->do_split. 342 * 343 * Returns: the map or NULL if a map couldn't be found. 344 */ 345 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg, 346 struct dwc2_qh *qh) 347 { 348 unsigned long *map; 349 350 /* Don't expect to be missing a TT and be doing low speed scheduling */ 351 if (WARN_ON(!qh->dwc_tt)) 352 return NULL; 353 354 /* Get the map and adjust if this is a multi_tt hub */ 355 map = qh->dwc_tt->periodic_bitmaps; 356 if (qh->dwc_tt->usb_tt->multi) 357 map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1); 358 359 return map; 360 } 361 362 #ifdef DWC2_PRINT_SCHEDULE 363 /* 364 * pmap_print() - Print the given periodic map 365 * 366 * Will attempt to print out the periodic schedule. 367 * 368 * @map: See pmap_schedule(). 369 * @bits_per_period: See pmap_schedule(). 370 * @periods_in_map: See pmap_schedule(). 371 * @period_name: The name of 1 period, like "uFrame" 372 * @units: The name of the units, like "us". 373 * @print_fn: The function to call for printing. 374 * @print_data: Opaque data to pass to the print function. 375 */ 376 static void pmap_print(unsigned long *map, int bits_per_period, 377 int periods_in_map, const char *period_name, 378 const char *units, 379 void (*print_fn)(const char *str, void *data), 380 void *print_data) 381 { 382 int period; 383 384 for (period = 0; period < periods_in_map; period++) { 385 DECLARE_SEQ_BUF(buf, 64); 386 int period_start = period * bits_per_period; 387 int period_end = period_start + bits_per_period; 388 int start = 0; 389 int count = 0; 390 bool printed = false; 391 int i; 392 393 for (i = period_start; i < period_end + 1; i++) { 394 /* Handle case when ith bit is set */ 395 if (i < period_end && 396 bitmap_find_next_zero_area(map, i + 1, 397 i, 1, 0) != i) { 398 if (count == 0) 399 start = i - period_start; 400 count++; 401 continue; 402 } 403 404 /* ith bit isn't set; don't care if count == 0 */ 405 if (count == 0) 406 continue; 407 408 if (!printed) 409 seq_buf_printf(&buf, "%s %d: ", 410 period_name, period); 411 else 412 seq_buf_puts(&buf, ", "); 413 printed = true; 414 415 seq_buf_printf(&buf, "%d %s -%3d %s", start, 416 units, start + count - 1, units); 417 count = 0; 418 } 419 420 if (printed) 421 print_fn(seq_buf_str(&buf), print_data); 422 } 423 } 424 425 struct dwc2_qh_print_data { 426 struct dwc2_hsotg *hsotg; 427 struct dwc2_qh *qh; 428 }; 429 430 /** 431 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print() 432 * 433 * @str: The string to print 434 * @data: A pointer to a struct dwc2_qh_print_data 435 */ 436 static void dwc2_qh_print(const char *str, void *data) 437 { 438 struct dwc2_qh_print_data *print_data = data; 439 440 dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str); 441 } 442 443 /** 444 * dwc2_qh_schedule_print() - Print the periodic schedule 445 * 446 * @hsotg: The HCD state structure for the DWC OTG controller. 447 * @qh: QH to print. 448 */ 449 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg, 450 struct dwc2_qh *qh) 451 { 452 struct dwc2_qh_print_data print_data = { hsotg, qh }; 453 int i; 454 455 /* 456 * The printing functions are quite slow and inefficient. 457 * If we don't have tracing turned on, don't run unless the special 458 * define is turned on. 459 */ 460 461 if (qh->schedule_low_speed) { 462 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 463 464 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us", 465 qh, qh->device_us, 466 DWC2_ROUND_US_TO_SLICE(qh->device_us), 467 DWC2_US_PER_SLICE * qh->ls_start_schedule_slice); 468 469 if (map) { 470 dwc2_sch_dbg(hsotg, 471 "QH=%p Whole low/full speed map %p now:\n", 472 qh, map); 473 pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 474 DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices", 475 dwc2_qh_print, &print_data); 476 } 477 } 478 479 for (i = 0; i < qh->num_hs_transfers; i++) { 480 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i; 481 int uframe = trans_time->start_schedule_us / 482 DWC2_HS_PERIODIC_US_PER_UFRAME; 483 int rel_us = trans_time->start_schedule_us % 484 DWC2_HS_PERIODIC_US_PER_UFRAME; 485 486 dwc2_sch_dbg(hsotg, 487 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n", 488 qh, i, trans_time->duration_us, uframe, rel_us); 489 } 490 if (qh->num_hs_transfers) { 491 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh); 492 pmap_print(hsotg->hs_periodic_bitmap, 493 DWC2_HS_PERIODIC_US_PER_UFRAME, 494 DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us", 495 dwc2_qh_print, &print_data); 496 } 497 } 498 #else 499 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg, 500 struct dwc2_qh *qh) {}; 501 #endif 502 503 /** 504 * dwc2_ls_pmap_schedule() - Schedule a low speed QH 505 * 506 * @hsotg: The HCD state structure for the DWC OTG controller. 507 * @qh: QH for the periodic transfer. 508 * @search_slice: We'll start trying to schedule at the passed slice. 509 * Remember that slices are the units of the low speed 510 * schedule (think 25us or so). 511 * 512 * Wraps pmap_schedule() with the right parameters for low speed scheduling. 513 * 514 * Normally we schedule low speed devices on the map associated with the TT. 515 * 516 * Returns: 0 for success or an error code. 517 */ 518 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 519 int search_slice) 520 { 521 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 522 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 523 int slice; 524 525 if (!map) 526 return -EINVAL; 527 528 /* 529 * Schedule on the proper low speed map with our low speed scheduling 530 * parameters. Note that we use the "device_interval" here since 531 * we want the low speed interval and the only way we'd be in this 532 * function is if the device is low speed. 533 * 534 * If we happen to be doing low speed and high speed scheduling for the 535 * same transaction (AKA we have a split) we always do low speed first. 536 * That means we can always pass "false" for only_one_period (that 537 * parameters is only useful when we're trying to get one schedule to 538 * match what we already planned in the other schedule). 539 */ 540 slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 541 DWC2_LS_SCHEDULE_FRAMES, slices, 542 qh->device_interval, search_slice, false); 543 544 if (slice < 0) 545 return slice; 546 547 qh->ls_start_schedule_slice = slice; 548 return 0; 549 } 550 551 /** 552 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule() 553 * 554 * @hsotg: The HCD state structure for the DWC OTG controller. 555 * @qh: QH for the periodic transfer. 556 */ 557 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg, 558 struct dwc2_qh *qh) 559 { 560 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 561 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 562 563 /* Schedule should have failed, so no worries about no error code */ 564 if (!map) 565 return; 566 567 pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 568 DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval, 569 qh->ls_start_schedule_slice); 570 } 571 572 /** 573 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule 574 * 575 * This will schedule something on the main dwc2 schedule. 576 * 577 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll 578 * update this with the result upon success. We also use the duration from 579 * the same structure. 580 * 581 * @hsotg: The HCD state structure for the DWC OTG controller. 582 * @qh: QH for the periodic transfer. 583 * @only_one_period: If true we will limit ourselves to just looking at 584 * one period (aka one 100us chunk). This is used if we have 585 * already scheduled something on the low speed schedule and 586 * need to find something that matches on the high speed one. 587 * @index: The index into qh->hs_transfers that we're working with. 588 * 589 * Returns: 0 for success or an error code. Upon success the 590 * dwc2_hs_transfer_time specified by "index" will be updated. 591 */ 592 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 593 bool only_one_period, int index) 594 { 595 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 596 int us; 597 598 us = pmap_schedule(hsotg->hs_periodic_bitmap, 599 DWC2_HS_PERIODIC_US_PER_UFRAME, 600 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 601 qh->host_interval, trans_time->start_schedule_us, 602 only_one_period); 603 604 if (us < 0) 605 return us; 606 607 trans_time->start_schedule_us = us; 608 return 0; 609 } 610 611 /** 612 * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule() 613 * 614 * @hsotg: The HCD state structure for the DWC OTG controller. 615 * @qh: QH for the periodic transfer. 616 * @index: Transfer index 617 */ 618 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg, 619 struct dwc2_qh *qh, int index) 620 { 621 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 622 623 pmap_unschedule(hsotg->hs_periodic_bitmap, 624 DWC2_HS_PERIODIC_US_PER_UFRAME, 625 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 626 qh->host_interval, trans_time->start_schedule_us); 627 } 628 629 /** 630 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer. 631 * 632 * This is the most complicated thing in USB. We have to find matching time 633 * in both the global high speed schedule for the port and the low speed 634 * schedule for the TT associated with the given device. 635 * 636 * Being here means that the host must be running in high speed mode and the 637 * device is in low or full speed mode (and behind a hub). 638 * 639 * @hsotg: The HCD state structure for the DWC OTG controller. 640 * @qh: QH for the periodic transfer. 641 */ 642 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg, 643 struct dwc2_qh *qh) 644 { 645 int bytecount = qh->maxp_mult * qh->maxp; 646 int ls_search_slice; 647 int err = 0; 648 int host_interval_in_sched; 649 650 /* 651 * The interval (how often to repeat) in the actual host schedule. 652 * See pmap_schedule() for gcd() explanation. 653 */ 654 host_interval_in_sched = gcd(qh->host_interval, 655 DWC2_HS_SCHEDULE_UFRAMES); 656 657 /* 658 * We always try to find space in the low speed schedule first, then 659 * try to find high speed time that matches. If we don't, we'll bump 660 * up the place we start searching in the low speed schedule and try 661 * again. To start we'll look right at the beginning of the low speed 662 * schedule. 663 * 664 * Note that this will tend to front-load the high speed schedule. 665 * We may eventually want to try to avoid this by either considering 666 * both schedules together or doing some sort of round robin. 667 */ 668 ls_search_slice = 0; 669 670 while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) { 671 int start_s_uframe; 672 int ssplit_s_uframe; 673 int second_s_uframe; 674 int rel_uframe; 675 int first_count; 676 int middle_count; 677 int end_count; 678 int first_data_bytes; 679 int other_data_bytes; 680 int i; 681 682 if (qh->schedule_low_speed) { 683 err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice); 684 685 /* 686 * If we got an error here there's no other magic we 687 * can do, so bail. All the looping above is only 688 * helpful to redo things if we got a low speed slot 689 * and then couldn't find a matching high speed slot. 690 */ 691 if (err) 692 return err; 693 } else { 694 /* Must be missing the tt structure? Why? */ 695 WARN_ON_ONCE(1); 696 } 697 698 /* 699 * This will give us a number 0 - 7 if 700 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ... 701 */ 702 start_s_uframe = qh->ls_start_schedule_slice / 703 DWC2_SLICES_PER_UFRAME; 704 705 /* Get a number that's always 0 - 7 */ 706 rel_uframe = (start_s_uframe % 8); 707 708 /* 709 * If we were going to start in uframe 7 then we would need to 710 * issue a start split in uframe 6, which spec says is not OK. 711 * Move on to the next full frame (assuming there is one). 712 * 713 * See 11.18.4 Host Split Transaction Scheduling Requirements 714 * bullet 1. 715 */ 716 if (rel_uframe == 7) { 717 if (qh->schedule_low_speed) 718 dwc2_ls_pmap_unschedule(hsotg, qh); 719 ls_search_slice = 720 (qh->ls_start_schedule_slice / 721 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) * 722 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 723 continue; 724 } 725 726 /* 727 * For ISOC in: 728 * - start split (frame -1) 729 * - complete split w/ data (frame +1) 730 * - complete split w/ data (frame +2) 731 * - ... 732 * - complete split w/ data (frame +num_data_packets) 733 * - complete split w/ data (frame +num_data_packets+1) 734 * - complete split w/ data (frame +num_data_packets+2, max 8) 735 * ...though if frame was "0" then max is 7... 736 * 737 * For ISOC out we might need to do: 738 * - start split w/ data (frame -1) 739 * - start split w/ data (frame +0) 740 * - ... 741 * - start split w/ data (frame +num_data_packets-2) 742 * 743 * For INTERRUPT in we might need to do: 744 * - start split (frame -1) 745 * - complete split w/ data (frame +1) 746 * - complete split w/ data (frame +2) 747 * - complete split w/ data (frame +3, max 8) 748 * 749 * For INTERRUPT out we might need to do: 750 * - start split w/ data (frame -1) 751 * - complete split (frame +1) 752 * - complete split (frame +2) 753 * - complete split (frame +3, max 8) 754 * 755 * Start adjusting! 756 */ 757 ssplit_s_uframe = (start_s_uframe + 758 host_interval_in_sched - 1) % 759 host_interval_in_sched; 760 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in) 761 second_s_uframe = start_s_uframe; 762 else 763 second_s_uframe = start_s_uframe + 1; 764 765 /* First data transfer might not be all 188 bytes. */ 766 first_data_bytes = 188 - 767 DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice % 768 DWC2_SLICES_PER_UFRAME), 769 DWC2_SLICES_PER_UFRAME); 770 if (first_data_bytes > bytecount) 771 first_data_bytes = bytecount; 772 other_data_bytes = bytecount - first_data_bytes; 773 774 /* 775 * For now, skip OUT xfers where first xfer is partial 776 * 777 * Main dwc2 code assumes: 778 * - INT transfers never get split in two. 779 * - ISOC transfers can always transfer 188 bytes the first 780 * time. 781 * 782 * Until that code is fixed, try again if the first transfer 783 * couldn't transfer everything. 784 * 785 * This code can be removed if/when the rest of dwc2 handles 786 * the above cases. Until it's fixed we just won't be able 787 * to schedule quite as tightly. 788 */ 789 if (!qh->ep_is_in && 790 (first_data_bytes != min_t(int, 188, bytecount))) { 791 dwc2_sch_dbg(hsotg, 792 "QH=%p avoiding broken 1st xfer (%d, %d)\n", 793 qh, first_data_bytes, bytecount); 794 if (qh->schedule_low_speed) 795 dwc2_ls_pmap_unschedule(hsotg, qh); 796 ls_search_slice = (start_s_uframe + 1) * 797 DWC2_SLICES_PER_UFRAME; 798 continue; 799 } 800 801 /* Start by assuming transfers for the bytes */ 802 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188); 803 804 /* 805 * Everything except ISOC OUT has extra transfers. Rules are 806 * complicated. See 11.18.4 Host Split Transaction Scheduling 807 * Requirements bullet 3. 808 */ 809 if (qh->ep_type == USB_ENDPOINT_XFER_INT) { 810 if (rel_uframe == 6) 811 qh->num_hs_transfers += 2; 812 else 813 qh->num_hs_transfers += 3; 814 815 if (qh->ep_is_in) { 816 /* 817 * First is start split, middle/end is data. 818 * Allocate full data bytes for all data. 819 */ 820 first_count = 4; 821 middle_count = bytecount; 822 end_count = bytecount; 823 } else { 824 /* 825 * First is data, middle/end is complete. 826 * First transfer and second can have data. 827 * Rest should just have complete split. 828 */ 829 first_count = first_data_bytes; 830 middle_count = max_t(int, 4, other_data_bytes); 831 end_count = 4; 832 } 833 } else { 834 if (qh->ep_is_in) { 835 int last; 836 837 /* Account for the start split */ 838 qh->num_hs_transfers++; 839 840 /* Calculate "L" value from spec */ 841 last = rel_uframe + qh->num_hs_transfers + 1; 842 843 /* Start with basic case */ 844 if (last <= 6) 845 qh->num_hs_transfers += 2; 846 else 847 qh->num_hs_transfers += 1; 848 849 /* Adjust downwards */ 850 if (last >= 6 && rel_uframe == 0) 851 qh->num_hs_transfers--; 852 853 /* 1st = start; rest can contain data */ 854 first_count = 4; 855 middle_count = min_t(int, 188, bytecount); 856 end_count = middle_count; 857 } else { 858 /* All contain data, last might be smaller */ 859 first_count = first_data_bytes; 860 middle_count = min_t(int, 188, 861 other_data_bytes); 862 end_count = other_data_bytes % 188; 863 } 864 } 865 866 /* Assign durations per uFrame */ 867 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count); 868 for (i = 1; i < qh->num_hs_transfers - 1; i++) 869 qh->hs_transfers[i].duration_us = 870 HS_USECS_ISO(middle_count); 871 if (qh->num_hs_transfers > 1) 872 qh->hs_transfers[qh->num_hs_transfers - 1].duration_us = 873 HS_USECS_ISO(end_count); 874 875 /* 876 * Assign start us. The call below to dwc2_hs_pmap_schedule() 877 * will start with these numbers but may adjust within the same 878 * microframe. 879 */ 880 qh->hs_transfers[0].start_schedule_us = 881 ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME; 882 for (i = 1; i < qh->num_hs_transfers; i++) 883 qh->hs_transfers[i].start_schedule_us = 884 ((second_s_uframe + i - 1) % 885 DWC2_HS_SCHEDULE_UFRAMES) * 886 DWC2_HS_PERIODIC_US_PER_UFRAME; 887 888 /* Try to schedule with filled in hs_transfers above */ 889 for (i = 0; i < qh->num_hs_transfers; i++) { 890 err = dwc2_hs_pmap_schedule(hsotg, qh, true, i); 891 if (err) 892 break; 893 } 894 895 /* If we scheduled all w/out breaking out then we're all good */ 896 if (i == qh->num_hs_transfers) 897 break; 898 899 for (; i >= 0; i--) 900 dwc2_hs_pmap_unschedule(hsotg, qh, i); 901 902 if (qh->schedule_low_speed) 903 dwc2_ls_pmap_unschedule(hsotg, qh); 904 905 /* Try again starting in the next microframe */ 906 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME; 907 } 908 909 if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES) 910 return -ENOSPC; 911 912 return 0; 913 } 914 915 /** 916 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer. 917 * 918 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean 919 * interface. 920 * 921 * @hsotg: The HCD state structure for the DWC OTG controller. 922 * @qh: QH for the periodic transfer. 923 */ 924 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 925 { 926 /* In non-split host and device time are the same */ 927 WARN_ON(qh->host_us != qh->device_us); 928 WARN_ON(qh->host_interval != qh->device_interval); 929 WARN_ON(qh->num_hs_transfers != 1); 930 931 /* We'll have one transfer; init start to 0 before calling scheduler */ 932 qh->hs_transfers[0].start_schedule_us = 0; 933 qh->hs_transfers[0].duration_us = qh->host_us; 934 935 return dwc2_hs_pmap_schedule(hsotg, qh, false, 0); 936 } 937 938 /** 939 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer. 940 * 941 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean 942 * interface. 943 * 944 * @hsotg: The HCD state structure for the DWC OTG controller. 945 * @qh: QH for the periodic transfer. 946 */ 947 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 948 { 949 /* In non-split host and device time are the same */ 950 WARN_ON(qh->host_us != qh->device_us); 951 WARN_ON(qh->host_interval != qh->device_interval); 952 WARN_ON(!qh->schedule_low_speed); 953 954 /* Run on the main low speed schedule (no split = no hub = no TT) */ 955 return dwc2_ls_pmap_schedule(hsotg, qh, 0); 956 } 957 958 /** 959 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer. 960 * 961 * Calls one of the 3 sub-function depending on what type of transfer this QH 962 * is for. Also adds some printing. 963 * 964 * @hsotg: The HCD state structure for the DWC OTG controller. 965 * @qh: QH for the periodic transfer. 966 */ 967 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 968 { 969 int ret; 970 971 if (qh->dev_speed == USB_SPEED_HIGH) 972 ret = dwc2_uframe_schedule_hs(hsotg, qh); 973 else if (!qh->do_split) 974 ret = dwc2_uframe_schedule_ls(hsotg, qh); 975 else 976 ret = dwc2_uframe_schedule_split(hsotg, qh); 977 978 if (ret) 979 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret); 980 else 981 dwc2_qh_schedule_print(hsotg, qh); 982 983 return ret; 984 } 985 986 /** 987 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule(). 988 * 989 * @hsotg: The HCD state structure for the DWC OTG controller. 990 * @qh: QH for the periodic transfer. 991 */ 992 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 993 { 994 int i; 995 996 for (i = 0; i < qh->num_hs_transfers; i++) 997 dwc2_hs_pmap_unschedule(hsotg, qh, i); 998 999 if (qh->schedule_low_speed) 1000 dwc2_ls_pmap_unschedule(hsotg, qh); 1001 1002 dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh); 1003 } 1004 1005 /** 1006 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled 1007 * 1008 * Takes a qh that has already been scheduled (which means we know we have the 1009 * bandwdith reserved for us) and set the next_active_frame and the 1010 * start_active_frame. 1011 * 1012 * This is expected to be called on qh's that weren't previously actively 1013 * running. It just picks the next frame that we can fit into without any 1014 * thought about the past. 1015 * 1016 * @hsotg: The HCD state structure for the DWC OTG controller 1017 * @qh: QH for a periodic endpoint 1018 * 1019 */ 1020 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1021 { 1022 u16 frame_number; 1023 u16 earliest_frame; 1024 u16 next_active_frame; 1025 u16 relative_frame; 1026 u16 interval; 1027 1028 /* 1029 * Use the real frame number rather than the cached value as of the 1030 * last SOF to give us a little extra slop. 1031 */ 1032 frame_number = dwc2_hcd_get_frame_number(hsotg); 1033 1034 /* 1035 * We wouldn't want to start any earlier than the next frame just in 1036 * case the frame number ticks as we're doing this calculation. 1037 * 1038 * NOTE: if we could quantify how long till we actually get scheduled 1039 * we might be able to avoid the "+ 1" by looking at the upper part of 1040 * HFNUM (the FRREM field). For now we'll just use the + 1 though. 1041 */ 1042 earliest_frame = dwc2_frame_num_inc(frame_number, 1); 1043 next_active_frame = earliest_frame; 1044 1045 /* Get the "no microframe scheduler" out of the way... */ 1046 if (!hsotg->params.uframe_sched) { 1047 if (qh->do_split) 1048 /* Splits are active at microframe 0 minus 1 */ 1049 next_active_frame |= 0x7; 1050 goto exit; 1051 } 1052 1053 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 1054 /* 1055 * We're either at high speed or we're doing a split (which 1056 * means we're talking high speed to a hub). In any case 1057 * the first frame should be based on when the first scheduled 1058 * event is. 1059 */ 1060 WARN_ON(qh->num_hs_transfers < 1); 1061 1062 relative_frame = qh->hs_transfers[0].start_schedule_us / 1063 DWC2_HS_PERIODIC_US_PER_UFRAME; 1064 1065 /* Adjust interval as per high speed schedule */ 1066 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES); 1067 1068 } else { 1069 /* 1070 * Low or full speed directly on dwc2. Just about the same 1071 * as high speed but on a different schedule and with slightly 1072 * different adjustments. Note that this works because when 1073 * the host and device are both low speed then frames in the 1074 * controller tick at low speed. 1075 */ 1076 relative_frame = qh->ls_start_schedule_slice / 1077 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 1078 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES); 1079 } 1080 1081 /* Scheduler messed up if frame is past interval */ 1082 WARN_ON(relative_frame >= interval); 1083 1084 /* 1085 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've 1086 * done the gcd(), so it's safe to move to the beginning of the current 1087 * interval like this. 1088 * 1089 * After this we might be before earliest_frame, but don't worry, 1090 * we'll fix it... 1091 */ 1092 next_active_frame = (next_active_frame / interval) * interval; 1093 1094 /* 1095 * Actually choose to start at the frame number we've been 1096 * scheduled for. 1097 */ 1098 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1099 relative_frame); 1100 1101 /* 1102 * We actually need 1 frame before since the next_active_frame is 1103 * the frame number we'll be put on the ready list and we won't be on 1104 * the bus until 1 frame later. 1105 */ 1106 next_active_frame = dwc2_frame_num_dec(next_active_frame, 1); 1107 1108 /* 1109 * By now we might actually be before the earliest_frame. Let's move 1110 * up intervals until we're not. 1111 */ 1112 while (dwc2_frame_num_gt(earliest_frame, next_active_frame)) 1113 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1114 interval); 1115 1116 exit: 1117 qh->next_active_frame = next_active_frame; 1118 qh->start_active_frame = next_active_frame; 1119 1120 dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n", 1121 qh, frame_number, qh->next_active_frame); 1122 } 1123 1124 /** 1125 * dwc2_do_reserve() - Make a periodic reservation 1126 * 1127 * Try to allocate space in the periodic schedule. Depending on parameters 1128 * this might use the microframe scheduler or the dumb scheduler. 1129 * 1130 * @hsotg: The HCD state structure for the DWC OTG controller 1131 * @qh: QH for the periodic transfer. 1132 * 1133 * Returns: 0 upon success; error upon failure. 1134 */ 1135 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1136 { 1137 int status; 1138 1139 if (hsotg->params.uframe_sched) { 1140 status = dwc2_uframe_schedule(hsotg, qh); 1141 } else { 1142 status = dwc2_periodic_channel_available(hsotg); 1143 if (status) { 1144 dev_info(hsotg->dev, 1145 "%s: No host channel available for periodic transfer\n", 1146 __func__); 1147 return status; 1148 } 1149 1150 status = dwc2_check_periodic_bandwidth(hsotg, qh); 1151 } 1152 1153 if (status) { 1154 dev_dbg(hsotg->dev, 1155 "%s: Insufficient periodic bandwidth for periodic transfer\n", 1156 __func__); 1157 return status; 1158 } 1159 1160 if (!hsotg->params.uframe_sched) 1161 /* Reserve periodic channel */ 1162 hsotg->periodic_channels++; 1163 1164 /* Update claimed usecs per (micro)frame */ 1165 hsotg->periodic_usecs += qh->host_us; 1166 1167 dwc2_pick_first_frame(hsotg, qh); 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * dwc2_do_unreserve() - Actually release the periodic reservation 1174 * 1175 * This function actually releases the periodic bandwidth that was reserved 1176 * by the given qh. 1177 * 1178 * @hsotg: The HCD state structure for the DWC OTG controller 1179 * @qh: QH for the periodic transfer. 1180 */ 1181 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1182 { 1183 assert_spin_locked(&hsotg->lock); 1184 1185 WARN_ON(!qh->unreserve_pending); 1186 1187 /* No more unreserve pending--we're doing it */ 1188 qh->unreserve_pending = false; 1189 1190 if (WARN_ON(!list_empty(&qh->qh_list_entry))) 1191 list_del_init(&qh->qh_list_entry); 1192 1193 /* Update claimed usecs per (micro)frame */ 1194 hsotg->periodic_usecs -= qh->host_us; 1195 1196 if (hsotg->params.uframe_sched) { 1197 dwc2_uframe_unschedule(hsotg, qh); 1198 } else { 1199 /* Release periodic channel reservation */ 1200 hsotg->periodic_channels--; 1201 } 1202 } 1203 1204 /** 1205 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation 1206 * 1207 * According to the kernel doc for usb_submit_urb() (specifically the part about 1208 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as 1209 * long as a device driver keeps submitting. Since we're using HCD_BH to give 1210 * back the URB we need to give the driver a little bit of time before we 1211 * release the reservation. This worker is called after the appropriate 1212 * delay. 1213 * 1214 * @t: Address to a qh unreserve_work. 1215 */ 1216 static void dwc2_unreserve_timer_fn(struct timer_list *t) 1217 { 1218 struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer); 1219 struct dwc2_hsotg *hsotg = qh->hsotg; 1220 unsigned long flags; 1221 1222 /* 1223 * Wait for the lock, or for us to be scheduled again. We 1224 * could be scheduled again if: 1225 * - We started executing but didn't get the lock yet. 1226 * - A new reservation came in, but cancel didn't take effect 1227 * because we already started executing. 1228 * - The timer has been kicked again. 1229 * In that case cancel and wait for the next call. 1230 */ 1231 while (!spin_trylock_irqsave(&hsotg->lock, flags)) { 1232 if (timer_pending(&qh->unreserve_timer)) 1233 return; 1234 } 1235 1236 /* 1237 * Might be no more unreserve pending if: 1238 * - We started executing but didn't get the lock yet. 1239 * - A new reservation came in, but cancel didn't take effect 1240 * because we already started executing. 1241 * 1242 * We can't put this in the loop above because unreserve_pending needs 1243 * to be accessed under lock, so we can only check it once we got the 1244 * lock. 1245 */ 1246 if (qh->unreserve_pending) 1247 dwc2_do_unreserve(hsotg, qh); 1248 1249 spin_unlock_irqrestore(&hsotg->lock, flags); 1250 } 1251 1252 /** 1253 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a 1254 * host channel is large enough to handle the maximum data transfer in a single 1255 * (micro)frame for a periodic transfer 1256 * 1257 * @hsotg: The HCD state structure for the DWC OTG controller 1258 * @qh: QH for a periodic endpoint 1259 * 1260 * Return: 0 if successful, negative error code otherwise 1261 */ 1262 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg, 1263 struct dwc2_qh *qh) 1264 { 1265 u32 max_xfer_size; 1266 u32 max_channel_xfer_size; 1267 int status = 0; 1268 1269 max_xfer_size = qh->maxp * qh->maxp_mult; 1270 max_channel_xfer_size = hsotg->params.max_transfer_size; 1271 1272 if (max_xfer_size > max_channel_xfer_size) { 1273 dev_err(hsotg->dev, 1274 "%s: Periodic xfer length %d > max xfer length for channel %d\n", 1275 __func__, max_xfer_size, max_channel_xfer_size); 1276 status = -ENOSPC; 1277 } 1278 1279 return status; 1280 } 1281 1282 /** 1283 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in 1284 * the periodic schedule 1285 * 1286 * @hsotg: The HCD state structure for the DWC OTG controller 1287 * @qh: QH for the periodic transfer. The QH should already contain the 1288 * scheduling information. 1289 * 1290 * Return: 0 if successful, negative error code otherwise 1291 */ 1292 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1293 { 1294 int status; 1295 1296 status = dwc2_check_max_xfer_size(hsotg, qh); 1297 if (status) { 1298 dev_dbg(hsotg->dev, 1299 "%s: Channel max transfer size too small for periodic transfer\n", 1300 __func__); 1301 return status; 1302 } 1303 1304 /* Cancel pending unreserve; if canceled OK, unreserve was pending */ 1305 if (del_timer(&qh->unreserve_timer)) 1306 WARN_ON(!qh->unreserve_pending); 1307 1308 /* 1309 * Only need to reserve if there's not an unreserve pending, since if an 1310 * unreserve is pending then by definition our old reservation is still 1311 * valid. Unreserve might still be pending even if we didn't cancel if 1312 * dwc2_unreserve_timer_fn() already started. Code in the timer handles 1313 * that case. 1314 */ 1315 if (!qh->unreserve_pending) { 1316 status = dwc2_do_reserve(hsotg, qh); 1317 if (status) 1318 return status; 1319 } else { 1320 /* 1321 * It might have been a while, so make sure that frame_number 1322 * is still good. Note: we could also try to use the similar 1323 * dwc2_next_periodic_start() but that schedules much more 1324 * tightly and we might need to hurry and queue things up. 1325 */ 1326 if (dwc2_frame_num_le(qh->next_active_frame, 1327 hsotg->frame_number)) 1328 dwc2_pick_first_frame(hsotg, qh); 1329 } 1330 1331 qh->unreserve_pending = 0; 1332 1333 if (hsotg->params.dma_desc_enable) 1334 /* Don't rely on SOF and start in ready schedule */ 1335 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready); 1336 else 1337 /* Always start in inactive schedule */ 1338 list_add_tail(&qh->qh_list_entry, 1339 &hsotg->periodic_sched_inactive); 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer 1346 * from the periodic schedule 1347 * 1348 * @hsotg: The HCD state structure for the DWC OTG controller 1349 * @qh: QH for the periodic transfer 1350 */ 1351 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg, 1352 struct dwc2_qh *qh) 1353 { 1354 bool did_modify; 1355 1356 assert_spin_locked(&hsotg->lock); 1357 1358 /* 1359 * Schedule the unreserve to happen in a little bit. Cases here: 1360 * - Unreserve worker might be sitting there waiting to grab the lock. 1361 * In this case it will notice it's been schedule again and will 1362 * quit. 1363 * - Unreserve worker might not be scheduled. 1364 * 1365 * We should never already be scheduled since dwc2_schedule_periodic() 1366 * should have canceled the scheduled unreserve timer (hence the 1367 * warning on did_modify). 1368 * 1369 * We add + 1 to the timer to guarantee that at least 1 jiffy has 1370 * passed (otherwise if the jiffy counter might tick right after we 1371 * read it and we'll get no delay). 1372 */ 1373 did_modify = mod_timer(&qh->unreserve_timer, 1374 jiffies + DWC2_UNRESERVE_DELAY + 1); 1375 WARN_ON(did_modify); 1376 qh->unreserve_pending = 1; 1377 1378 list_del_init(&qh->qh_list_entry); 1379 } 1380 1381 /** 1382 * dwc2_wait_timer_fn() - Timer function to re-queue after waiting 1383 * 1384 * As per the spec, a NAK indicates that "a function is temporarily unable to 1385 * transmit or receive data, but will eventually be able to do so without need 1386 * of host intervention". 1387 * 1388 * That means that when we encounter a NAK we're supposed to retry. 1389 * 1390 * ...but if we retry right away (from the interrupt handler that saw the NAK) 1391 * then we can end up with an interrupt storm (if the other side keeps NAKing 1392 * us) because on slow enough CPUs it could take us longer to get out of the 1393 * interrupt routine than it takes for the device to send another NAK. That 1394 * leads to a constant stream of NAK interrupts and the CPU locks. 1395 * 1396 * ...so instead of retrying right away in the case of a NAK we'll set a timer 1397 * to retry some time later. This function handles that timer and moves the 1398 * qh back to the "inactive" list, then queues transactions. 1399 * 1400 * @t: Pointer to wait_timer in a qh. 1401 * 1402 * Return: HRTIMER_NORESTART to not automatically restart this timer. 1403 */ 1404 static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t) 1405 { 1406 struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer); 1407 struct dwc2_hsotg *hsotg = qh->hsotg; 1408 unsigned long flags; 1409 1410 spin_lock_irqsave(&hsotg->lock, flags); 1411 1412 /* 1413 * We'll set wait_timer_cancel to true if we want to cancel this 1414 * operation in dwc2_hcd_qh_unlink(). 1415 */ 1416 if (!qh->wait_timer_cancel) { 1417 enum dwc2_transaction_type tr_type; 1418 1419 qh->want_wait = false; 1420 1421 list_move(&qh->qh_list_entry, 1422 &hsotg->non_periodic_sched_inactive); 1423 1424 tr_type = dwc2_hcd_select_transactions(hsotg); 1425 if (tr_type != DWC2_TRANSACTION_NONE) 1426 dwc2_hcd_queue_transactions(hsotg, tr_type); 1427 } 1428 1429 spin_unlock_irqrestore(&hsotg->lock, flags); 1430 return HRTIMER_NORESTART; 1431 } 1432 1433 /** 1434 * dwc2_qh_init() - Initializes a QH structure 1435 * 1436 * @hsotg: The HCD state structure for the DWC OTG controller 1437 * @qh: The QH to init 1438 * @urb: Holds the information about the device/endpoint needed to initialize 1439 * the QH 1440 * @mem_flags: Flags for allocating memory. 1441 */ 1442 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1443 struct dwc2_hcd_urb *urb, gfp_t mem_flags) 1444 { 1445 int dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 1446 u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info); 1447 bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info); 1448 bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC); 1449 bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT); 1450 u32 hprt = dwc2_readl(hsotg, HPRT0); 1451 u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 1452 bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED && 1453 dev_speed != USB_SPEED_HIGH); 1454 int maxp = dwc2_hcd_get_maxp(&urb->pipe_info); 1455 int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info); 1456 int bytecount = maxp_mult * maxp; 1457 char *speed, *type; 1458 1459 /* Initialize QH */ 1460 qh->hsotg = hsotg; 1461 timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0); 1462 hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1463 qh->wait_timer.function = &dwc2_wait_timer_fn; 1464 qh->ep_type = ep_type; 1465 qh->ep_is_in = ep_is_in; 1466 1467 qh->data_toggle = DWC2_HC_PID_DATA0; 1468 qh->maxp = maxp; 1469 qh->maxp_mult = maxp_mult; 1470 INIT_LIST_HEAD(&qh->qtd_list); 1471 INIT_LIST_HEAD(&qh->qh_list_entry); 1472 1473 qh->do_split = do_split; 1474 qh->dev_speed = dev_speed; 1475 1476 if (ep_is_int || ep_is_isoc) { 1477 /* Compute scheduling parameters once and save them */ 1478 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed; 1479 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv, 1480 mem_flags, 1481 &qh->ttport); 1482 int device_ns; 1483 1484 qh->dwc_tt = dwc_tt; 1485 1486 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in, 1487 ep_is_isoc, bytecount)); 1488 device_ns = usb_calc_bus_time(dev_speed, ep_is_in, 1489 ep_is_isoc, bytecount); 1490 1491 if (do_split && dwc_tt) 1492 device_ns += dwc_tt->usb_tt->think_time; 1493 qh->device_us = NS_TO_US(device_ns); 1494 1495 qh->device_interval = urb->interval; 1496 qh->host_interval = urb->interval * (do_split ? 8 : 1); 1497 1498 /* 1499 * Schedule low speed if we're running the host in low or 1500 * full speed OR if we've got a "TT" to deal with to access this 1501 * device. 1502 */ 1503 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED || 1504 dwc_tt; 1505 1506 if (do_split) { 1507 /* We won't know num transfers until we schedule */ 1508 qh->num_hs_transfers = -1; 1509 } else if (dev_speed == USB_SPEED_HIGH) { 1510 qh->num_hs_transfers = 1; 1511 } else { 1512 qh->num_hs_transfers = 0; 1513 } 1514 1515 /* We'll schedule later when we have something to do */ 1516 } 1517 1518 switch (dev_speed) { 1519 case USB_SPEED_LOW: 1520 speed = "low"; 1521 break; 1522 case USB_SPEED_FULL: 1523 speed = "full"; 1524 break; 1525 case USB_SPEED_HIGH: 1526 speed = "high"; 1527 break; 1528 default: 1529 speed = "?"; 1530 break; 1531 } 1532 1533 switch (qh->ep_type) { 1534 case USB_ENDPOINT_XFER_ISOC: 1535 type = "isochronous"; 1536 break; 1537 case USB_ENDPOINT_XFER_INT: 1538 type = "interrupt"; 1539 break; 1540 case USB_ENDPOINT_XFER_CONTROL: 1541 type = "control"; 1542 break; 1543 case USB_ENDPOINT_XFER_BULK: 1544 type = "bulk"; 1545 break; 1546 default: 1547 type = "?"; 1548 break; 1549 } 1550 1551 dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type, 1552 speed, bytecount); 1553 dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh, 1554 dwc2_hcd_get_dev_addr(&urb->pipe_info), 1555 dwc2_hcd_get_ep_num(&urb->pipe_info), 1556 ep_is_in ? "IN" : "OUT"); 1557 if (ep_is_int || ep_is_isoc) { 1558 dwc2_sch_dbg(hsotg, 1559 "QH=%p ...duration: host=%d us, device=%d us\n", 1560 qh, qh->host_us, qh->device_us); 1561 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n", 1562 qh, qh->host_interval, qh->device_interval); 1563 if (qh->schedule_low_speed) 1564 dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n", 1565 qh, dwc2_get_ls_map(hsotg, qh)); 1566 } 1567 } 1568 1569 /** 1570 * dwc2_hcd_qh_create() - Allocates and initializes a QH 1571 * 1572 * @hsotg: The HCD state structure for the DWC OTG controller 1573 * @urb: Holds the information about the device/endpoint needed 1574 * to initialize the QH 1575 * @mem_flags: Flags for allocating memory. 1576 * 1577 * Return: Pointer to the newly allocated QH, or NULL on error 1578 */ 1579 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, 1580 struct dwc2_hcd_urb *urb, 1581 gfp_t mem_flags) 1582 { 1583 struct dwc2_qh *qh; 1584 1585 if (!urb->priv) 1586 return NULL; 1587 1588 /* Allocate memory */ 1589 qh = kzalloc(sizeof(*qh), mem_flags); 1590 if (!qh) 1591 return NULL; 1592 1593 dwc2_qh_init(hsotg, qh, urb, mem_flags); 1594 1595 if (hsotg->params.dma_desc_enable && 1596 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) { 1597 dwc2_hcd_qh_free(hsotg, qh); 1598 return NULL; 1599 } 1600 1601 return qh; 1602 } 1603 1604 /** 1605 * dwc2_hcd_qh_free() - Frees the QH 1606 * 1607 * @hsotg: HCD instance 1608 * @qh: The QH to free 1609 * 1610 * QH should already be removed from the list. QTD list should already be empty 1611 * if called from URB Dequeue. 1612 * 1613 * Must NOT be called with interrupt disabled or spinlock held 1614 */ 1615 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1616 { 1617 /* Make sure any unreserve work is finished. */ 1618 if (del_timer_sync(&qh->unreserve_timer)) { 1619 unsigned long flags; 1620 1621 spin_lock_irqsave(&hsotg->lock, flags); 1622 dwc2_do_unreserve(hsotg, qh); 1623 spin_unlock_irqrestore(&hsotg->lock, flags); 1624 } 1625 1626 /* 1627 * We don't have the lock so we can safely wait until the wait timer 1628 * finishes. Of course, at this point in time we'd better have set 1629 * wait_timer_active to false so if this timer was still pending it 1630 * won't do anything anyway, but we want it to finish before we free 1631 * memory. 1632 */ 1633 hrtimer_cancel(&qh->wait_timer); 1634 1635 dwc2_host_put_tt_info(hsotg, qh->dwc_tt); 1636 1637 if (qh->desc_list) 1638 dwc2_hcd_qh_free_ddma(hsotg, qh); 1639 else if (hsotg->unaligned_cache && qh->dw_align_buf) 1640 kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf); 1641 1642 kfree(qh); 1643 } 1644 1645 /** 1646 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic 1647 * schedule if it is not already in the schedule. If the QH is already in 1648 * the schedule, no action is taken. 1649 * 1650 * @hsotg: The HCD state structure for the DWC OTG controller 1651 * @qh: The QH to add 1652 * 1653 * Return: 0 if successful, negative error code otherwise 1654 */ 1655 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1656 { 1657 int status; 1658 u32 intr_mask; 1659 ktime_t delay; 1660 1661 if (dbg_qh(qh)) 1662 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1663 1664 if (!list_empty(&qh->qh_list_entry)) 1665 /* QH already in a schedule */ 1666 return 0; 1667 1668 /* Add the new QH to the appropriate schedule */ 1669 if (dwc2_qh_is_non_per(qh)) { 1670 /* Schedule right away */ 1671 qh->start_active_frame = hsotg->frame_number; 1672 qh->next_active_frame = qh->start_active_frame; 1673 1674 if (qh->want_wait) { 1675 list_add_tail(&qh->qh_list_entry, 1676 &hsotg->non_periodic_sched_waiting); 1677 qh->wait_timer_cancel = false; 1678 delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY); 1679 hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL); 1680 } else { 1681 list_add_tail(&qh->qh_list_entry, 1682 &hsotg->non_periodic_sched_inactive); 1683 } 1684 return 0; 1685 } 1686 1687 status = dwc2_schedule_periodic(hsotg, qh); 1688 if (status) 1689 return status; 1690 if (!hsotg->periodic_qh_count) { 1691 intr_mask = dwc2_readl(hsotg, GINTMSK); 1692 intr_mask |= GINTSTS_SOF; 1693 dwc2_writel(hsotg, intr_mask, GINTMSK); 1694 } 1695 hsotg->periodic_qh_count++; 1696 1697 return 0; 1698 } 1699 1700 /** 1701 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic 1702 * schedule. Memory is not freed. 1703 * 1704 * @hsotg: The HCD state structure 1705 * @qh: QH to remove from schedule 1706 */ 1707 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1708 { 1709 u32 intr_mask; 1710 1711 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1712 1713 /* If the wait_timer is pending, this will stop it from acting */ 1714 qh->wait_timer_cancel = true; 1715 1716 if (list_empty(&qh->qh_list_entry)) 1717 /* QH is not in a schedule */ 1718 return; 1719 1720 if (dwc2_qh_is_non_per(qh)) { 1721 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry) 1722 hsotg->non_periodic_qh_ptr = 1723 hsotg->non_periodic_qh_ptr->next; 1724 list_del_init(&qh->qh_list_entry); 1725 return; 1726 } 1727 1728 dwc2_deschedule_periodic(hsotg, qh); 1729 hsotg->periodic_qh_count--; 1730 if (!hsotg->periodic_qh_count && 1731 !hsotg->params.dma_desc_enable) { 1732 intr_mask = dwc2_readl(hsotg, GINTMSK); 1733 intr_mask &= ~GINTSTS_SOF; 1734 dwc2_writel(hsotg, intr_mask, GINTMSK); 1735 } 1736 } 1737 1738 /** 1739 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split. 1740 * 1741 * This is called for setting next_active_frame for periodic splits for all but 1742 * the first packet of the split. Confusing? I thought so... 1743 * 1744 * Periodic splits are single low/full speed transfers that we end up splitting 1745 * up into several high speed transfers. They always fit into one full (1 ms) 1746 * frame but might be split over several microframes (125 us each). We to put 1747 * each of the parts on a very specific high speed frame. 1748 * 1749 * This function figures out where the next active uFrame needs to be. 1750 * 1751 * @hsotg: The HCD state structure 1752 * @qh: QH for the periodic transfer. 1753 * @frame_number: The current frame number. 1754 * 1755 * Return: number missed by (or 0 if we didn't miss). 1756 */ 1757 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg, 1758 struct dwc2_qh *qh, u16 frame_number) 1759 { 1760 u16 old_frame = qh->next_active_frame; 1761 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1762 int missed = 0; 1763 u16 incr; 1764 1765 /* 1766 * See dwc2_uframe_schedule_split() for split scheduling. 1767 * 1768 * Basically: increment 1 normally, but 2 right after the start split 1769 * (except for ISOC out). 1770 */ 1771 if (old_frame == qh->start_active_frame && 1772 !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)) 1773 incr = 2; 1774 else 1775 incr = 1; 1776 1777 qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr); 1778 1779 /* 1780 * Note that it's OK for frame_number to be 1 frame past 1781 * next_active_frame. Remember that next_active_frame is supposed to 1782 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame 1783 * past it just means schedule ASAP. 1784 * 1785 * It's _not_ OK, however, if we're more than one frame past. 1786 */ 1787 if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) { 1788 /* 1789 * OOPS, we missed. That's actually pretty bad since 1790 * the hub will be unhappy; try ASAP I guess. 1791 */ 1792 missed = dwc2_frame_num_dec(prev_frame_number, 1793 qh->next_active_frame); 1794 qh->next_active_frame = frame_number; 1795 } 1796 1797 return missed; 1798 } 1799 1800 /** 1801 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start 1802 * 1803 * This is called for setting next_active_frame for a periodic transfer for 1804 * all cases other than midway through a periodic split. This will also update 1805 * start_active_frame. 1806 * 1807 * Since we _always_ keep start_active_frame as the start of the previous 1808 * transfer this is normally pretty easy: we just add our interval to 1809 * start_active_frame and we've got our answer. 1810 * 1811 * The tricks come into play if we miss. In that case we'll look for the next 1812 * slot we can fit into. 1813 * 1814 * @hsotg: The HCD state structure 1815 * @qh: QH for the periodic transfer. 1816 * @frame_number: The current frame number. 1817 * 1818 * Return: number missed by (or 0 if we didn't miss). 1819 */ 1820 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg, 1821 struct dwc2_qh *qh, u16 frame_number) 1822 { 1823 int missed = 0; 1824 u16 interval = qh->host_interval; 1825 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1826 1827 qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame, 1828 interval); 1829 1830 /* 1831 * The dwc2_frame_num_gt() function used below won't work terribly well 1832 * with if we just incremented by a really large intervals since the 1833 * frame counter only goes to 0x3fff. It's terribly unlikely that we 1834 * will have missed in this case anyway. Just go to exit. If we want 1835 * to try to do better we'll need to keep track of a bigger counter 1836 * somewhere in the driver and handle overflows. 1837 */ 1838 if (interval >= 0x1000) 1839 goto exit; 1840 1841 /* 1842 * Test for misses, which is when it's too late to schedule. 1843 * 1844 * A few things to note: 1845 * - We compare against prev_frame_number since start_active_frame 1846 * and next_active_frame are always 1 frame before we want things 1847 * to be active and we assume we can still get scheduled in the 1848 * current frame number. 1849 * - It's possible for start_active_frame (now incremented) to be 1850 * next_active_frame if we got an EO MISS (even_odd miss) which 1851 * basically means that we detected there wasn't enough time for 1852 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us 1853 * at the last second. We want to make sure we don't schedule 1854 * another transfer for the same frame. My test webcam doesn't seem 1855 * terribly upset by missing a transfer but really doesn't like when 1856 * we do two transfers in the same frame. 1857 * - Some misses are expected. Specifically, in order to work 1858 * perfectly dwc2 really needs quite spectacular interrupt latency 1859 * requirements. It needs to be able to handle its interrupts 1860 * completely within 125 us of them being asserted. That not only 1861 * means that the dwc2 interrupt handler needs to be fast but it 1862 * means that nothing else in the system has to block dwc2 for a long 1863 * time. We can help with the dwc2 parts of this, but it's hard to 1864 * guarantee that a system will have interrupt latency < 125 us, so 1865 * we have to be robust to some misses. 1866 */ 1867 if (qh->start_active_frame == qh->next_active_frame || 1868 dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) { 1869 u16 ideal_start = qh->start_active_frame; 1870 int periods_in_map; 1871 1872 /* 1873 * Adjust interval as per gcd with map size. 1874 * See pmap_schedule() for more details here. 1875 */ 1876 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH) 1877 periods_in_map = DWC2_HS_SCHEDULE_UFRAMES; 1878 else 1879 periods_in_map = DWC2_LS_SCHEDULE_FRAMES; 1880 interval = gcd(interval, periods_in_map); 1881 1882 do { 1883 qh->start_active_frame = dwc2_frame_num_inc( 1884 qh->start_active_frame, interval); 1885 } while (dwc2_frame_num_gt(prev_frame_number, 1886 qh->start_active_frame)); 1887 1888 missed = dwc2_frame_num_dec(qh->start_active_frame, 1889 ideal_start); 1890 } 1891 1892 exit: 1893 qh->next_active_frame = qh->start_active_frame; 1894 1895 return missed; 1896 } 1897 1898 /* 1899 * Deactivates a QH. For non-periodic QHs, removes the QH from the active 1900 * non-periodic schedule. The QH is added to the inactive non-periodic 1901 * schedule if any QTDs are still attached to the QH. 1902 * 1903 * For periodic QHs, the QH is removed from the periodic queued schedule. If 1904 * there are any QTDs still attached to the QH, the QH is added to either the 1905 * periodic inactive schedule or the periodic ready schedule and its next 1906 * scheduled frame is calculated. The QH is placed in the ready schedule if 1907 * the scheduled frame has been reached already. Otherwise it's placed in the 1908 * inactive schedule. If there are no QTDs attached to the QH, the QH is 1909 * completely removed from the periodic schedule. 1910 */ 1911 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1912 int sched_next_periodic_split) 1913 { 1914 u16 old_frame = qh->next_active_frame; 1915 u16 frame_number; 1916 int missed; 1917 1918 if (dbg_qh(qh)) 1919 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1920 1921 if (dwc2_qh_is_non_per(qh)) { 1922 dwc2_hcd_qh_unlink(hsotg, qh); 1923 if (!list_empty(&qh->qtd_list)) 1924 /* Add back to inactive/waiting non-periodic schedule */ 1925 dwc2_hcd_qh_add(hsotg, qh); 1926 return; 1927 } 1928 1929 /* 1930 * Use the real frame number rather than the cached value as of the 1931 * last SOF just to get us a little closer to reality. Note that 1932 * means we don't actually know if we've already handled the SOF 1933 * interrupt for this frame. 1934 */ 1935 frame_number = dwc2_hcd_get_frame_number(hsotg); 1936 1937 if (sched_next_periodic_split) 1938 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number); 1939 else 1940 missed = dwc2_next_periodic_start(hsotg, qh, frame_number); 1941 1942 dwc2_sch_vdbg(hsotg, 1943 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n", 1944 qh, sched_next_periodic_split, frame_number, old_frame, 1945 qh->next_active_frame, 1946 dwc2_frame_num_dec(qh->next_active_frame, old_frame), 1947 missed, missed ? "MISS" : ""); 1948 1949 if (list_empty(&qh->qtd_list)) { 1950 dwc2_hcd_qh_unlink(hsotg, qh); 1951 return; 1952 } 1953 1954 /* 1955 * Remove from periodic_sched_queued and move to 1956 * appropriate queue 1957 * 1958 * Note: we purposely use the frame_number from the "hsotg" structure 1959 * since we know SOF interrupt will handle future frames. 1960 */ 1961 if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number)) 1962 list_move_tail(&qh->qh_list_entry, 1963 &hsotg->periodic_sched_ready); 1964 else 1965 list_move_tail(&qh->qh_list_entry, 1966 &hsotg->periodic_sched_inactive); 1967 } 1968 1969 /** 1970 * dwc2_hcd_qtd_init() - Initializes a QTD structure 1971 * 1972 * @qtd: The QTD to initialize 1973 * @urb: The associated URB 1974 */ 1975 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 1976 { 1977 qtd->urb = urb; 1978 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) == 1979 USB_ENDPOINT_XFER_CONTROL) { 1980 /* 1981 * The only time the QTD data toggle is used is on the data 1982 * phase of control transfers. This phase always starts with 1983 * DATA1. 1984 */ 1985 qtd->data_toggle = DWC2_HC_PID_DATA1; 1986 qtd->control_phase = DWC2_CONTROL_SETUP; 1987 } 1988 1989 /* Start split */ 1990 qtd->complete_split = 0; 1991 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL; 1992 qtd->isoc_split_offset = 0; 1993 qtd->in_process = 0; 1994 1995 /* Store the qtd ptr in the urb to reference the QTD */ 1996 urb->qtd = qtd; 1997 } 1998 1999 /** 2000 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH 2001 * Caller must hold driver lock. 2002 * 2003 * @hsotg: The DWC HCD structure 2004 * @qtd: The QTD to add 2005 * @qh: Queue head to add qtd to 2006 * 2007 * Return: 0 if successful, negative error code otherwise 2008 * 2009 * If the QH to which the QTD is added is not currently scheduled, it is placed 2010 * into the proper schedule based on its EP type. 2011 */ 2012 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 2013 struct dwc2_qh *qh) 2014 { 2015 int retval; 2016 2017 if (unlikely(!qh)) { 2018 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__); 2019 retval = -EINVAL; 2020 goto fail; 2021 } 2022 2023 retval = dwc2_hcd_qh_add(hsotg, qh); 2024 if (retval) 2025 goto fail; 2026 2027 qtd->qh = qh; 2028 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); 2029 2030 return 0; 2031 fail: 2032 return retval; 2033 } 2034