1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * This file contains the functions to manage Queue Heads and Queue 40 * Transfer Descriptors for Host mode 41 */ 42 #include <linux/gcd.h> 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/spinlock.h> 46 #include <linux/interrupt.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/io.h> 49 #include <linux/slab.h> 50 #include <linux/usb.h> 51 52 #include <linux/usb/hcd.h> 53 #include <linux/usb/ch11.h> 54 55 #include "core.h" 56 #include "hcd.h" 57 58 /* Wait this long before releasing periodic reservation */ 59 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5)) 60 61 /* If we get a NAK, wait this long before retrying */ 62 #define DWC2_RETRY_WAIT_DELAY (1 * 1E6L) 63 64 /** 65 * dwc2_periodic_channel_available() - Checks that a channel is available for a 66 * periodic transfer 67 * 68 * @hsotg: The HCD state structure for the DWC OTG controller 69 * 70 * Return: 0 if successful, negative error code otherwise 71 */ 72 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg) 73 { 74 /* 75 * Currently assuming that there is a dedicated host channel for 76 * each periodic transaction plus at least one host channel for 77 * non-periodic transactions 78 */ 79 int status; 80 int num_channels; 81 82 num_channels = hsotg->params.host_channels; 83 if ((hsotg->periodic_channels + hsotg->non_periodic_channels < 84 num_channels) && (hsotg->periodic_channels < num_channels - 1)) { 85 status = 0; 86 } else { 87 dev_dbg(hsotg->dev, 88 "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", 89 __func__, num_channels, 90 hsotg->periodic_channels, hsotg->non_periodic_channels); 91 status = -ENOSPC; 92 } 93 94 return status; 95 } 96 97 /** 98 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth 99 * for the specified QH in the periodic schedule 100 * 101 * @hsotg: The HCD state structure for the DWC OTG controller 102 * @qh: QH containing periodic bandwidth required 103 * 104 * Return: 0 if successful, negative error code otherwise 105 * 106 * For simplicity, this calculation assumes that all the transfers in the 107 * periodic schedule may occur in the same (micro)frame 108 */ 109 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg, 110 struct dwc2_qh *qh) 111 { 112 int status; 113 s16 max_claimed_usecs; 114 115 status = 0; 116 117 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 118 /* 119 * High speed mode 120 * Max periodic usecs is 80% x 125 usec = 100 usec 121 */ 122 max_claimed_usecs = 100 - qh->host_us; 123 } else { 124 /* 125 * Full speed mode 126 * Max periodic usecs is 90% x 1000 usec = 900 usec 127 */ 128 max_claimed_usecs = 900 - qh->host_us; 129 } 130 131 if (hsotg->periodic_usecs > max_claimed_usecs) { 132 dev_err(hsotg->dev, 133 "%s: already claimed usecs %d, required usecs %d\n", 134 __func__, hsotg->periodic_usecs, qh->host_us); 135 status = -ENOSPC; 136 } 137 138 return status; 139 } 140 141 /** 142 * pmap_schedule() - Schedule time in a periodic bitmap (pmap). 143 * 144 * @map: The bitmap representing the schedule; will be updated 145 * upon success. 146 * @bits_per_period: The schedule represents several periods. This is how many 147 * bits are in each period. It's assumed that the beginning 148 * of the schedule will repeat after its end. 149 * @periods_in_map: The number of periods in the schedule. 150 * @num_bits: The number of bits we need per period we want to reserve 151 * in this function call. 152 * @interval: How often we need to be scheduled for the reservation this 153 * time. 1 means every period. 2 means every other period. 154 * ...you get the picture? 155 * @start: The bit number to start at. Normally 0. Must be within 156 * the interval or we return failure right away. 157 * @only_one_period: Normally we'll allow picking a start anywhere within the 158 * first interval, since we can still make all repetition 159 * requirements by doing that. However, if you pass true 160 * here then we'll return failure if we can't fit within 161 * the period that "start" is in. 162 * 163 * The idea here is that we want to schedule time for repeating events that all 164 * want the same resource. The resource is divided into fixed-sized periods 165 * and the events want to repeat every "interval" periods. The schedule 166 * granularity is one bit. 167 * 168 * To keep things "simple", we'll represent our schedule with a bitmap that 169 * contains a fixed number of periods. This gets rid of a lot of complexity 170 * but does mean that we need to handle things specially (and non-ideally) if 171 * the number of the periods in the schedule doesn't match well with the 172 * intervals that we're trying to schedule. 173 * 174 * Here's an explanation of the scheme we'll implement, assuming 8 periods. 175 * - If interval is 1, we need to take up space in each of the 8 176 * periods we're scheduling. Easy. 177 * - If interval is 2, we need to take up space in half of the 178 * periods. Again, easy. 179 * - If interval is 3, we actually need to fall back to interval 1. 180 * Why? Because we might need time in any period. AKA for the 181 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be 182 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to 183 * 0, 3, and 6. Since we could be in any frame we need to reserve 184 * for all of them. Sucks, but that's what you gotta do. Note that 185 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but 186 * then we need more memory and time to do scheduling. 187 * - If interval is 4, easy. 188 * - If interval is 5, we again need interval 1. The schedule will be 189 * 0, 5, 2, 7, 4, 1, 6, 3, 0 190 * - If interval is 6, we need interval 2. 0, 6, 4, 2. 191 * - If interval is 7, we need interval 1. 192 * - If interval is 8, we need interval 8. 193 * 194 * If you do the math, you'll see that we need to pretend that interval is 195 * equal to the greatest_common_divisor(interval, periods_in_map). 196 * 197 * Note that at the moment this function tends to front-pack the schedule. 198 * In some cases that's really non-ideal (it's hard to schedule things that 199 * need to repeat every period). In other cases it's perfect (you can easily 200 * schedule bigger, less often repeating things). 201 * 202 * Here's the algorithm in action (8 periods, 5 bits per period): 203 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 204 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2 205 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5 206 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2 207 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2 208 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3 209 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6 210 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4 211 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1 212 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0 213 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5 214 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2 215 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3 216 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6 217 * | | | | | | | | | Remv 1 bits, intv 1 at 4 218 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 219 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2 220 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3 221 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5 222 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6 223 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8 224 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12 225 * 226 * This function is pretty generic and could be easily abstracted if anything 227 * needed similar scheduling. 228 * 229 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the 230 * unschedule routine. The map bitmap will be updated on a non-error result. 231 */ 232 static int pmap_schedule(unsigned long *map, int bits_per_period, 233 int periods_in_map, int num_bits, 234 int interval, int start, bool only_one_period) 235 { 236 int interval_bits; 237 int to_reserve; 238 int first_end; 239 int i; 240 241 if (num_bits > bits_per_period) 242 return -ENOSPC; 243 244 /* Adjust interval as per description */ 245 interval = gcd(interval, periods_in_map); 246 247 interval_bits = bits_per_period * interval; 248 to_reserve = periods_in_map / interval; 249 250 /* If start has gotten us past interval then we can't schedule */ 251 if (start >= interval_bits) 252 return -ENOSPC; 253 254 if (only_one_period) 255 /* Must fit within same period as start; end at begin of next */ 256 first_end = (start / bits_per_period + 1) * bits_per_period; 257 else 258 /* Can fit anywhere in the first interval */ 259 first_end = interval_bits; 260 261 /* 262 * We'll try to pick the first repetition, then see if that time 263 * is free for each of the subsequent repetitions. If it's not 264 * we'll adjust the start time for the next search of the first 265 * repetition. 266 */ 267 while (start + num_bits <= first_end) { 268 int end; 269 270 /* Need to stay within this period */ 271 end = (start / bits_per_period + 1) * bits_per_period; 272 273 /* Look for num_bits us in this microframe starting at start */ 274 start = bitmap_find_next_zero_area(map, end, start, num_bits, 275 0); 276 277 /* 278 * We should get start >= end if we fail. We might be 279 * able to check the next microframe depending on the 280 * interval, so continue on (start already updated). 281 */ 282 if (start >= end) { 283 start = end; 284 continue; 285 } 286 287 /* At this point we have a valid point for first one */ 288 for (i = 1; i < to_reserve; i++) { 289 int ith_start = start + interval_bits * i; 290 int ith_end = end + interval_bits * i; 291 int ret; 292 293 /* Use this as a dumb "check if bits are 0" */ 294 ret = bitmap_find_next_zero_area( 295 map, ith_start + num_bits, ith_start, num_bits, 296 0); 297 298 /* We got the right place, continue checking */ 299 if (ret == ith_start) 300 continue; 301 302 /* Move start up for next time and exit for loop */ 303 ith_start = bitmap_find_next_zero_area( 304 map, ith_end, ith_start, num_bits, 0); 305 if (ith_start >= ith_end) 306 /* Need a while new period next time */ 307 start = end; 308 else 309 start = ith_start - interval_bits * i; 310 break; 311 } 312 313 /* If didn't exit the for loop with a break, we have success */ 314 if (i == to_reserve) 315 break; 316 } 317 318 if (start + num_bits > first_end) 319 return -ENOSPC; 320 321 for (i = 0; i < to_reserve; i++) { 322 int ith_start = start + interval_bits * i; 323 324 bitmap_set(map, ith_start, num_bits); 325 } 326 327 return start; 328 } 329 330 /** 331 * pmap_unschedule() - Undo work done by pmap_schedule() 332 * 333 * @map: See pmap_schedule(). 334 * @bits_per_period: See pmap_schedule(). 335 * @periods_in_map: See pmap_schedule(). 336 * @num_bits: The number of bits that was passed to schedule. 337 * @interval: The interval that was passed to schedule. 338 * @start: The return value from pmap_schedule(). 339 */ 340 static void pmap_unschedule(unsigned long *map, int bits_per_period, 341 int periods_in_map, int num_bits, 342 int interval, int start) 343 { 344 int interval_bits; 345 int to_release; 346 int i; 347 348 /* Adjust interval as per description in pmap_schedule() */ 349 interval = gcd(interval, periods_in_map); 350 351 interval_bits = bits_per_period * interval; 352 to_release = periods_in_map / interval; 353 354 for (i = 0; i < to_release; i++) { 355 int ith_start = start + interval_bits * i; 356 357 bitmap_clear(map, ith_start, num_bits); 358 } 359 } 360 361 /** 362 * dwc2_get_ls_map() - Get the map used for the given qh 363 * 364 * @hsotg: The HCD state structure for the DWC OTG controller. 365 * @qh: QH for the periodic transfer. 366 * 367 * We'll always get the periodic map out of our TT. Note that even if we're 368 * running the host straight in low speed / full speed mode it appears as if 369 * a TT is allocated for us, so we'll use it. If that ever changes we can 370 * add logic here to get a map out of "hsotg" if !qh->do_split. 371 * 372 * Returns: the map or NULL if a map couldn't be found. 373 */ 374 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg, 375 struct dwc2_qh *qh) 376 { 377 unsigned long *map; 378 379 /* Don't expect to be missing a TT and be doing low speed scheduling */ 380 if (WARN_ON(!qh->dwc_tt)) 381 return NULL; 382 383 /* Get the map and adjust if this is a multi_tt hub */ 384 map = qh->dwc_tt->periodic_bitmaps; 385 if (qh->dwc_tt->usb_tt->multi) 386 map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1); 387 388 return map; 389 } 390 391 #ifdef DWC2_PRINT_SCHEDULE 392 /* 393 * cat_printf() - A printf() + strcat() helper 394 * 395 * This is useful for concatenating a bunch of strings where each string is 396 * constructed using printf. 397 * 398 * @buf: The destination buffer; will be updated to point after the printed 399 * data. 400 * @size: The number of bytes in the buffer (includes space for '\0'). 401 * @fmt: The format for printf. 402 * @...: The args for printf. 403 */ 404 static __printf(3, 4) 405 void cat_printf(char **buf, size_t *size, const char *fmt, ...) 406 { 407 va_list args; 408 int i; 409 410 if (*size == 0) 411 return; 412 413 va_start(args, fmt); 414 i = vsnprintf(*buf, *size, fmt, args); 415 va_end(args); 416 417 if (i >= *size) { 418 (*buf)[*size - 1] = '\0'; 419 *buf += *size; 420 *size = 0; 421 } else { 422 *buf += i; 423 *size -= i; 424 } 425 } 426 427 /* 428 * pmap_print() - Print the given periodic map 429 * 430 * Will attempt to print out the periodic schedule. 431 * 432 * @map: See pmap_schedule(). 433 * @bits_per_period: See pmap_schedule(). 434 * @periods_in_map: See pmap_schedule(). 435 * @period_name: The name of 1 period, like "uFrame" 436 * @units: The name of the units, like "us". 437 * @print_fn: The function to call for printing. 438 * @print_data: Opaque data to pass to the print function. 439 */ 440 static void pmap_print(unsigned long *map, int bits_per_period, 441 int periods_in_map, const char *period_name, 442 const char *units, 443 void (*print_fn)(const char *str, void *data), 444 void *print_data) 445 { 446 int period; 447 448 for (period = 0; period < periods_in_map; period++) { 449 char tmp[64]; 450 char *buf = tmp; 451 size_t buf_size = sizeof(tmp); 452 int period_start = period * bits_per_period; 453 int period_end = period_start + bits_per_period; 454 int start = 0; 455 int count = 0; 456 bool printed = false; 457 int i; 458 459 for (i = period_start; i < period_end + 1; i++) { 460 /* Handle case when ith bit is set */ 461 if (i < period_end && 462 bitmap_find_next_zero_area(map, i + 1, 463 i, 1, 0) != i) { 464 if (count == 0) 465 start = i - period_start; 466 count++; 467 continue; 468 } 469 470 /* ith bit isn't set; don't care if count == 0 */ 471 if (count == 0) 472 continue; 473 474 if (!printed) 475 cat_printf(&buf, &buf_size, "%s %d: ", 476 period_name, period); 477 else 478 cat_printf(&buf, &buf_size, ", "); 479 printed = true; 480 481 cat_printf(&buf, &buf_size, "%d %s -%3d %s", start, 482 units, start + count - 1, units); 483 count = 0; 484 } 485 486 if (printed) 487 print_fn(tmp, print_data); 488 } 489 } 490 491 struct dwc2_qh_print_data { 492 struct dwc2_hsotg *hsotg; 493 struct dwc2_qh *qh; 494 }; 495 496 /** 497 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print() 498 * 499 * @str: The string to print 500 * @data: A pointer to a struct dwc2_qh_print_data 501 */ 502 static void dwc2_qh_print(const char *str, void *data) 503 { 504 struct dwc2_qh_print_data *print_data = data; 505 506 dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str); 507 } 508 509 /** 510 * dwc2_qh_schedule_print() - Print the periodic schedule 511 * 512 * @hsotg: The HCD state structure for the DWC OTG controller. 513 * @qh: QH to print. 514 */ 515 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg, 516 struct dwc2_qh *qh) 517 { 518 struct dwc2_qh_print_data print_data = { hsotg, qh }; 519 int i; 520 521 /* 522 * The printing functions are quite slow and inefficient. 523 * If we don't have tracing turned on, don't run unless the special 524 * define is turned on. 525 */ 526 527 if (qh->schedule_low_speed) { 528 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 529 530 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us", 531 qh, qh->device_us, 532 DWC2_ROUND_US_TO_SLICE(qh->device_us), 533 DWC2_US_PER_SLICE * qh->ls_start_schedule_slice); 534 535 if (map) { 536 dwc2_sch_dbg(hsotg, 537 "QH=%p Whole low/full speed map %p now:\n", 538 qh, map); 539 pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 540 DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices", 541 dwc2_qh_print, &print_data); 542 } 543 } 544 545 for (i = 0; i < qh->num_hs_transfers; i++) { 546 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i; 547 int uframe = trans_time->start_schedule_us / 548 DWC2_HS_PERIODIC_US_PER_UFRAME; 549 int rel_us = trans_time->start_schedule_us % 550 DWC2_HS_PERIODIC_US_PER_UFRAME; 551 552 dwc2_sch_dbg(hsotg, 553 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n", 554 qh, i, trans_time->duration_us, uframe, rel_us); 555 } 556 if (qh->num_hs_transfers) { 557 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh); 558 pmap_print(hsotg->hs_periodic_bitmap, 559 DWC2_HS_PERIODIC_US_PER_UFRAME, 560 DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us", 561 dwc2_qh_print, &print_data); 562 } 563 } 564 #else 565 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg, 566 struct dwc2_qh *qh) {}; 567 #endif 568 569 /** 570 * dwc2_ls_pmap_schedule() - Schedule a low speed QH 571 * 572 * @hsotg: The HCD state structure for the DWC OTG controller. 573 * @qh: QH for the periodic transfer. 574 * @search_slice: We'll start trying to schedule at the passed slice. 575 * Remember that slices are the units of the low speed 576 * schedule (think 25us or so). 577 * 578 * Wraps pmap_schedule() with the right parameters for low speed scheduling. 579 * 580 * Normally we schedule low speed devices on the map associated with the TT. 581 * 582 * Returns: 0 for success or an error code. 583 */ 584 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 585 int search_slice) 586 { 587 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 588 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 589 int slice; 590 591 if (!map) 592 return -EINVAL; 593 594 /* 595 * Schedule on the proper low speed map with our low speed scheduling 596 * parameters. Note that we use the "device_interval" here since 597 * we want the low speed interval and the only way we'd be in this 598 * function is if the device is low speed. 599 * 600 * If we happen to be doing low speed and high speed scheduling for the 601 * same transaction (AKA we have a split) we always do low speed first. 602 * That means we can always pass "false" for only_one_period (that 603 * parameters is only useful when we're trying to get one schedule to 604 * match what we already planned in the other schedule). 605 */ 606 slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 607 DWC2_LS_SCHEDULE_FRAMES, slices, 608 qh->device_interval, search_slice, false); 609 610 if (slice < 0) 611 return slice; 612 613 qh->ls_start_schedule_slice = slice; 614 return 0; 615 } 616 617 /** 618 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule() 619 * 620 * @hsotg: The HCD state structure for the DWC OTG controller. 621 * @qh: QH for the periodic transfer. 622 */ 623 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg, 624 struct dwc2_qh *qh) 625 { 626 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 627 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 628 629 /* Schedule should have failed, so no worries about no error code */ 630 if (!map) 631 return; 632 633 pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 634 DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval, 635 qh->ls_start_schedule_slice); 636 } 637 638 /** 639 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule 640 * 641 * This will schedule something on the main dwc2 schedule. 642 * 643 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll 644 * update this with the result upon success. We also use the duration from 645 * the same structure. 646 * 647 * @hsotg: The HCD state structure for the DWC OTG controller. 648 * @qh: QH for the periodic transfer. 649 * @only_one_period: If true we will limit ourselves to just looking at 650 * one period (aka one 100us chunk). This is used if we have 651 * already scheduled something on the low speed schedule and 652 * need to find something that matches on the high speed one. 653 * @index: The index into qh->hs_transfers that we're working with. 654 * 655 * Returns: 0 for success or an error code. Upon success the 656 * dwc2_hs_transfer_time specified by "index" will be updated. 657 */ 658 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 659 bool only_one_period, int index) 660 { 661 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 662 int us; 663 664 us = pmap_schedule(hsotg->hs_periodic_bitmap, 665 DWC2_HS_PERIODIC_US_PER_UFRAME, 666 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 667 qh->host_interval, trans_time->start_schedule_us, 668 only_one_period); 669 670 if (us < 0) 671 return us; 672 673 trans_time->start_schedule_us = us; 674 return 0; 675 } 676 677 /** 678 * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule() 679 * 680 * @hsotg: The HCD state structure for the DWC OTG controller. 681 * @qh: QH for the periodic transfer. 682 * @index: Transfer index 683 */ 684 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg, 685 struct dwc2_qh *qh, int index) 686 { 687 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 688 689 pmap_unschedule(hsotg->hs_periodic_bitmap, 690 DWC2_HS_PERIODIC_US_PER_UFRAME, 691 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 692 qh->host_interval, trans_time->start_schedule_us); 693 } 694 695 /** 696 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer. 697 * 698 * This is the most complicated thing in USB. We have to find matching time 699 * in both the global high speed schedule for the port and the low speed 700 * schedule for the TT associated with the given device. 701 * 702 * Being here means that the host must be running in high speed mode and the 703 * device is in low or full speed mode (and behind a hub). 704 * 705 * @hsotg: The HCD state structure for the DWC OTG controller. 706 * @qh: QH for the periodic transfer. 707 */ 708 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg, 709 struct dwc2_qh *qh) 710 { 711 int bytecount = qh->maxp_mult * qh->maxp; 712 int ls_search_slice; 713 int err = 0; 714 int host_interval_in_sched; 715 716 /* 717 * The interval (how often to repeat) in the actual host schedule. 718 * See pmap_schedule() for gcd() explanation. 719 */ 720 host_interval_in_sched = gcd(qh->host_interval, 721 DWC2_HS_SCHEDULE_UFRAMES); 722 723 /* 724 * We always try to find space in the low speed schedule first, then 725 * try to find high speed time that matches. If we don't, we'll bump 726 * up the place we start searching in the low speed schedule and try 727 * again. To start we'll look right at the beginning of the low speed 728 * schedule. 729 * 730 * Note that this will tend to front-load the high speed schedule. 731 * We may eventually want to try to avoid this by either considering 732 * both schedules together or doing some sort of round robin. 733 */ 734 ls_search_slice = 0; 735 736 while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) { 737 int start_s_uframe; 738 int ssplit_s_uframe; 739 int second_s_uframe; 740 int rel_uframe; 741 int first_count; 742 int middle_count; 743 int end_count; 744 int first_data_bytes; 745 int other_data_bytes; 746 int i; 747 748 if (qh->schedule_low_speed) { 749 err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice); 750 751 /* 752 * If we got an error here there's no other magic we 753 * can do, so bail. All the looping above is only 754 * helpful to redo things if we got a low speed slot 755 * and then couldn't find a matching high speed slot. 756 */ 757 if (err) 758 return err; 759 } else { 760 /* Must be missing the tt structure? Why? */ 761 WARN_ON_ONCE(1); 762 } 763 764 /* 765 * This will give us a number 0 - 7 if 766 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ... 767 */ 768 start_s_uframe = qh->ls_start_schedule_slice / 769 DWC2_SLICES_PER_UFRAME; 770 771 /* Get a number that's always 0 - 7 */ 772 rel_uframe = (start_s_uframe % 8); 773 774 /* 775 * If we were going to start in uframe 7 then we would need to 776 * issue a start split in uframe 6, which spec says is not OK. 777 * Move on to the next full frame (assuming there is one). 778 * 779 * See 11.18.4 Host Split Transaction Scheduling Requirements 780 * bullet 1. 781 */ 782 if (rel_uframe == 7) { 783 if (qh->schedule_low_speed) 784 dwc2_ls_pmap_unschedule(hsotg, qh); 785 ls_search_slice = 786 (qh->ls_start_schedule_slice / 787 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) * 788 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 789 continue; 790 } 791 792 /* 793 * For ISOC in: 794 * - start split (frame -1) 795 * - complete split w/ data (frame +1) 796 * - complete split w/ data (frame +2) 797 * - ... 798 * - complete split w/ data (frame +num_data_packets) 799 * - complete split w/ data (frame +num_data_packets+1) 800 * - complete split w/ data (frame +num_data_packets+2, max 8) 801 * ...though if frame was "0" then max is 7... 802 * 803 * For ISOC out we might need to do: 804 * - start split w/ data (frame -1) 805 * - start split w/ data (frame +0) 806 * - ... 807 * - start split w/ data (frame +num_data_packets-2) 808 * 809 * For INTERRUPT in we might need to do: 810 * - start split (frame -1) 811 * - complete split w/ data (frame +1) 812 * - complete split w/ data (frame +2) 813 * - complete split w/ data (frame +3, max 8) 814 * 815 * For INTERRUPT out we might need to do: 816 * - start split w/ data (frame -1) 817 * - complete split (frame +1) 818 * - complete split (frame +2) 819 * - complete split (frame +3, max 8) 820 * 821 * Start adjusting! 822 */ 823 ssplit_s_uframe = (start_s_uframe + 824 host_interval_in_sched - 1) % 825 host_interval_in_sched; 826 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in) 827 second_s_uframe = start_s_uframe; 828 else 829 second_s_uframe = start_s_uframe + 1; 830 831 /* First data transfer might not be all 188 bytes. */ 832 first_data_bytes = 188 - 833 DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice % 834 DWC2_SLICES_PER_UFRAME), 835 DWC2_SLICES_PER_UFRAME); 836 if (first_data_bytes > bytecount) 837 first_data_bytes = bytecount; 838 other_data_bytes = bytecount - first_data_bytes; 839 840 /* 841 * For now, skip OUT xfers where first xfer is partial 842 * 843 * Main dwc2 code assumes: 844 * - INT transfers never get split in two. 845 * - ISOC transfers can always transfer 188 bytes the first 846 * time. 847 * 848 * Until that code is fixed, try again if the first transfer 849 * couldn't transfer everything. 850 * 851 * This code can be removed if/when the rest of dwc2 handles 852 * the above cases. Until it's fixed we just won't be able 853 * to schedule quite as tightly. 854 */ 855 if (!qh->ep_is_in && 856 (first_data_bytes != min_t(int, 188, bytecount))) { 857 dwc2_sch_dbg(hsotg, 858 "QH=%p avoiding broken 1st xfer (%d, %d)\n", 859 qh, first_data_bytes, bytecount); 860 if (qh->schedule_low_speed) 861 dwc2_ls_pmap_unschedule(hsotg, qh); 862 ls_search_slice = (start_s_uframe + 1) * 863 DWC2_SLICES_PER_UFRAME; 864 continue; 865 } 866 867 /* Start by assuming transfers for the bytes */ 868 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188); 869 870 /* 871 * Everything except ISOC OUT has extra transfers. Rules are 872 * complicated. See 11.18.4 Host Split Transaction Scheduling 873 * Requirements bullet 3. 874 */ 875 if (qh->ep_type == USB_ENDPOINT_XFER_INT) { 876 if (rel_uframe == 6) 877 qh->num_hs_transfers += 2; 878 else 879 qh->num_hs_transfers += 3; 880 881 if (qh->ep_is_in) { 882 /* 883 * First is start split, middle/end is data. 884 * Allocate full data bytes for all data. 885 */ 886 first_count = 4; 887 middle_count = bytecount; 888 end_count = bytecount; 889 } else { 890 /* 891 * First is data, middle/end is complete. 892 * First transfer and second can have data. 893 * Rest should just have complete split. 894 */ 895 first_count = first_data_bytes; 896 middle_count = max_t(int, 4, other_data_bytes); 897 end_count = 4; 898 } 899 } else { 900 if (qh->ep_is_in) { 901 int last; 902 903 /* Account for the start split */ 904 qh->num_hs_transfers++; 905 906 /* Calculate "L" value from spec */ 907 last = rel_uframe + qh->num_hs_transfers + 1; 908 909 /* Start with basic case */ 910 if (last <= 6) 911 qh->num_hs_transfers += 2; 912 else 913 qh->num_hs_transfers += 1; 914 915 /* Adjust downwards */ 916 if (last >= 6 && rel_uframe == 0) 917 qh->num_hs_transfers--; 918 919 /* 1st = start; rest can contain data */ 920 first_count = 4; 921 middle_count = min_t(int, 188, bytecount); 922 end_count = middle_count; 923 } else { 924 /* All contain data, last might be smaller */ 925 first_count = first_data_bytes; 926 middle_count = min_t(int, 188, 927 other_data_bytes); 928 end_count = other_data_bytes % 188; 929 } 930 } 931 932 /* Assign durations per uFrame */ 933 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count); 934 for (i = 1; i < qh->num_hs_transfers - 1; i++) 935 qh->hs_transfers[i].duration_us = 936 HS_USECS_ISO(middle_count); 937 if (qh->num_hs_transfers > 1) 938 qh->hs_transfers[qh->num_hs_transfers - 1].duration_us = 939 HS_USECS_ISO(end_count); 940 941 /* 942 * Assign start us. The call below to dwc2_hs_pmap_schedule() 943 * will start with these numbers but may adjust within the same 944 * microframe. 945 */ 946 qh->hs_transfers[0].start_schedule_us = 947 ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME; 948 for (i = 1; i < qh->num_hs_transfers; i++) 949 qh->hs_transfers[i].start_schedule_us = 950 ((second_s_uframe + i - 1) % 951 DWC2_HS_SCHEDULE_UFRAMES) * 952 DWC2_HS_PERIODIC_US_PER_UFRAME; 953 954 /* Try to schedule with filled in hs_transfers above */ 955 for (i = 0; i < qh->num_hs_transfers; i++) { 956 err = dwc2_hs_pmap_schedule(hsotg, qh, true, i); 957 if (err) 958 break; 959 } 960 961 /* If we scheduled all w/out breaking out then we're all good */ 962 if (i == qh->num_hs_transfers) 963 break; 964 965 for (; i >= 0; i--) 966 dwc2_hs_pmap_unschedule(hsotg, qh, i); 967 968 if (qh->schedule_low_speed) 969 dwc2_ls_pmap_unschedule(hsotg, qh); 970 971 /* Try again starting in the next microframe */ 972 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME; 973 } 974 975 if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES) 976 return -ENOSPC; 977 978 return 0; 979 } 980 981 /** 982 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer. 983 * 984 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean 985 * interface. 986 * 987 * @hsotg: The HCD state structure for the DWC OTG controller. 988 * @qh: QH for the periodic transfer. 989 */ 990 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 991 { 992 /* In non-split host and device time are the same */ 993 WARN_ON(qh->host_us != qh->device_us); 994 WARN_ON(qh->host_interval != qh->device_interval); 995 WARN_ON(qh->num_hs_transfers != 1); 996 997 /* We'll have one transfer; init start to 0 before calling scheduler */ 998 qh->hs_transfers[0].start_schedule_us = 0; 999 qh->hs_transfers[0].duration_us = qh->host_us; 1000 1001 return dwc2_hs_pmap_schedule(hsotg, qh, false, 0); 1002 } 1003 1004 /** 1005 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer. 1006 * 1007 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean 1008 * interface. 1009 * 1010 * @hsotg: The HCD state structure for the DWC OTG controller. 1011 * @qh: QH for the periodic transfer. 1012 */ 1013 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1014 { 1015 /* In non-split host and device time are the same */ 1016 WARN_ON(qh->host_us != qh->device_us); 1017 WARN_ON(qh->host_interval != qh->device_interval); 1018 WARN_ON(!qh->schedule_low_speed); 1019 1020 /* Run on the main low speed schedule (no split = no hub = no TT) */ 1021 return dwc2_ls_pmap_schedule(hsotg, qh, 0); 1022 } 1023 1024 /** 1025 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer. 1026 * 1027 * Calls one of the 3 sub-function depending on what type of transfer this QH 1028 * is for. Also adds some printing. 1029 * 1030 * @hsotg: The HCD state structure for the DWC OTG controller. 1031 * @qh: QH for the periodic transfer. 1032 */ 1033 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1034 { 1035 int ret; 1036 1037 if (qh->dev_speed == USB_SPEED_HIGH) 1038 ret = dwc2_uframe_schedule_hs(hsotg, qh); 1039 else if (!qh->do_split) 1040 ret = dwc2_uframe_schedule_ls(hsotg, qh); 1041 else 1042 ret = dwc2_uframe_schedule_split(hsotg, qh); 1043 1044 if (ret) 1045 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret); 1046 else 1047 dwc2_qh_schedule_print(hsotg, qh); 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule(). 1054 * 1055 * @hsotg: The HCD state structure for the DWC OTG controller. 1056 * @qh: QH for the periodic transfer. 1057 */ 1058 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1059 { 1060 int i; 1061 1062 for (i = 0; i < qh->num_hs_transfers; i++) 1063 dwc2_hs_pmap_unschedule(hsotg, qh, i); 1064 1065 if (qh->schedule_low_speed) 1066 dwc2_ls_pmap_unschedule(hsotg, qh); 1067 1068 dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh); 1069 } 1070 1071 /** 1072 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled 1073 * 1074 * Takes a qh that has already been scheduled (which means we know we have the 1075 * bandwdith reserved for us) and set the next_active_frame and the 1076 * start_active_frame. 1077 * 1078 * This is expected to be called on qh's that weren't previously actively 1079 * running. It just picks the next frame that we can fit into without any 1080 * thought about the past. 1081 * 1082 * @hsotg: The HCD state structure for the DWC OTG controller 1083 * @qh: QH for a periodic endpoint 1084 * 1085 */ 1086 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1087 { 1088 u16 frame_number; 1089 u16 earliest_frame; 1090 u16 next_active_frame; 1091 u16 relative_frame; 1092 u16 interval; 1093 1094 /* 1095 * Use the real frame number rather than the cached value as of the 1096 * last SOF to give us a little extra slop. 1097 */ 1098 frame_number = dwc2_hcd_get_frame_number(hsotg); 1099 1100 /* 1101 * We wouldn't want to start any earlier than the next frame just in 1102 * case the frame number ticks as we're doing this calculation. 1103 * 1104 * NOTE: if we could quantify how long till we actually get scheduled 1105 * we might be able to avoid the "+ 1" by looking at the upper part of 1106 * HFNUM (the FRREM field). For now we'll just use the + 1 though. 1107 */ 1108 earliest_frame = dwc2_frame_num_inc(frame_number, 1); 1109 next_active_frame = earliest_frame; 1110 1111 /* Get the "no microframe schduler" out of the way... */ 1112 if (!hsotg->params.uframe_sched) { 1113 if (qh->do_split) 1114 /* Splits are active at microframe 0 minus 1 */ 1115 next_active_frame |= 0x7; 1116 goto exit; 1117 } 1118 1119 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 1120 /* 1121 * We're either at high speed or we're doing a split (which 1122 * means we're talking high speed to a hub). In any case 1123 * the first frame should be based on when the first scheduled 1124 * event is. 1125 */ 1126 WARN_ON(qh->num_hs_transfers < 1); 1127 1128 relative_frame = qh->hs_transfers[0].start_schedule_us / 1129 DWC2_HS_PERIODIC_US_PER_UFRAME; 1130 1131 /* Adjust interval as per high speed schedule */ 1132 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES); 1133 1134 } else { 1135 /* 1136 * Low or full speed directly on dwc2. Just about the same 1137 * as high speed but on a different schedule and with slightly 1138 * different adjustments. Note that this works because when 1139 * the host and device are both low speed then frames in the 1140 * controller tick at low speed. 1141 */ 1142 relative_frame = qh->ls_start_schedule_slice / 1143 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 1144 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES); 1145 } 1146 1147 /* Scheduler messed up if frame is past interval */ 1148 WARN_ON(relative_frame >= interval); 1149 1150 /* 1151 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've 1152 * done the gcd(), so it's safe to move to the beginning of the current 1153 * interval like this. 1154 * 1155 * After this we might be before earliest_frame, but don't worry, 1156 * we'll fix it... 1157 */ 1158 next_active_frame = (next_active_frame / interval) * interval; 1159 1160 /* 1161 * Actually choose to start at the frame number we've been 1162 * scheduled for. 1163 */ 1164 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1165 relative_frame); 1166 1167 /* 1168 * We actually need 1 frame before since the next_active_frame is 1169 * the frame number we'll be put on the ready list and we won't be on 1170 * the bus until 1 frame later. 1171 */ 1172 next_active_frame = dwc2_frame_num_dec(next_active_frame, 1); 1173 1174 /* 1175 * By now we might actually be before the earliest_frame. Let's move 1176 * up intervals until we're not. 1177 */ 1178 while (dwc2_frame_num_gt(earliest_frame, next_active_frame)) 1179 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1180 interval); 1181 1182 exit: 1183 qh->next_active_frame = next_active_frame; 1184 qh->start_active_frame = next_active_frame; 1185 1186 dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n", 1187 qh, frame_number, qh->next_active_frame); 1188 } 1189 1190 /** 1191 * dwc2_do_reserve() - Make a periodic reservation 1192 * 1193 * Try to allocate space in the periodic schedule. Depending on parameters 1194 * this might use the microframe scheduler or the dumb scheduler. 1195 * 1196 * @hsotg: The HCD state structure for the DWC OTG controller 1197 * @qh: QH for the periodic transfer. 1198 * 1199 * Returns: 0 upon success; error upon failure. 1200 */ 1201 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1202 { 1203 int status; 1204 1205 if (hsotg->params.uframe_sched) { 1206 status = dwc2_uframe_schedule(hsotg, qh); 1207 } else { 1208 status = dwc2_periodic_channel_available(hsotg); 1209 if (status) { 1210 dev_info(hsotg->dev, 1211 "%s: No host channel available for periodic transfer\n", 1212 __func__); 1213 return status; 1214 } 1215 1216 status = dwc2_check_periodic_bandwidth(hsotg, qh); 1217 } 1218 1219 if (status) { 1220 dev_dbg(hsotg->dev, 1221 "%s: Insufficient periodic bandwidth for periodic transfer\n", 1222 __func__); 1223 return status; 1224 } 1225 1226 if (!hsotg->params.uframe_sched) 1227 /* Reserve periodic channel */ 1228 hsotg->periodic_channels++; 1229 1230 /* Update claimed usecs per (micro)frame */ 1231 hsotg->periodic_usecs += qh->host_us; 1232 1233 dwc2_pick_first_frame(hsotg, qh); 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * dwc2_do_unreserve() - Actually release the periodic reservation 1240 * 1241 * This function actually releases the periodic bandwidth that was reserved 1242 * by the given qh. 1243 * 1244 * @hsotg: The HCD state structure for the DWC OTG controller 1245 * @qh: QH for the periodic transfer. 1246 */ 1247 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1248 { 1249 assert_spin_locked(&hsotg->lock); 1250 1251 WARN_ON(!qh->unreserve_pending); 1252 1253 /* No more unreserve pending--we're doing it */ 1254 qh->unreserve_pending = false; 1255 1256 if (WARN_ON(!list_empty(&qh->qh_list_entry))) 1257 list_del_init(&qh->qh_list_entry); 1258 1259 /* Update claimed usecs per (micro)frame */ 1260 hsotg->periodic_usecs -= qh->host_us; 1261 1262 if (hsotg->params.uframe_sched) { 1263 dwc2_uframe_unschedule(hsotg, qh); 1264 } else { 1265 /* Release periodic channel reservation */ 1266 hsotg->periodic_channels--; 1267 } 1268 } 1269 1270 /** 1271 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation 1272 * 1273 * According to the kernel doc for usb_submit_urb() (specifically the part about 1274 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as 1275 * long as a device driver keeps submitting. Since we're using HCD_BH to give 1276 * back the URB we need to give the driver a little bit of time before we 1277 * release the reservation. This worker is called after the appropriate 1278 * delay. 1279 * 1280 * @t: Address to a qh unreserve_work. 1281 */ 1282 static void dwc2_unreserve_timer_fn(struct timer_list *t) 1283 { 1284 struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer); 1285 struct dwc2_hsotg *hsotg = qh->hsotg; 1286 unsigned long flags; 1287 1288 /* 1289 * Wait for the lock, or for us to be scheduled again. We 1290 * could be scheduled again if: 1291 * - We started executing but didn't get the lock yet. 1292 * - A new reservation came in, but cancel didn't take effect 1293 * because we already started executing. 1294 * - The timer has been kicked again. 1295 * In that case cancel and wait for the next call. 1296 */ 1297 while (!spin_trylock_irqsave(&hsotg->lock, flags)) { 1298 if (timer_pending(&qh->unreserve_timer)) 1299 return; 1300 } 1301 1302 /* 1303 * Might be no more unreserve pending if: 1304 * - We started executing but didn't get the lock yet. 1305 * - A new reservation came in, but cancel didn't take effect 1306 * because we already started executing. 1307 * 1308 * We can't put this in the loop above because unreserve_pending needs 1309 * to be accessed under lock, so we can only check it once we got the 1310 * lock. 1311 */ 1312 if (qh->unreserve_pending) 1313 dwc2_do_unreserve(hsotg, qh); 1314 1315 spin_unlock_irqrestore(&hsotg->lock, flags); 1316 } 1317 1318 /** 1319 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a 1320 * host channel is large enough to handle the maximum data transfer in a single 1321 * (micro)frame for a periodic transfer 1322 * 1323 * @hsotg: The HCD state structure for the DWC OTG controller 1324 * @qh: QH for a periodic endpoint 1325 * 1326 * Return: 0 if successful, negative error code otherwise 1327 */ 1328 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg, 1329 struct dwc2_qh *qh) 1330 { 1331 u32 max_xfer_size; 1332 u32 max_channel_xfer_size; 1333 int status = 0; 1334 1335 max_xfer_size = qh->maxp * qh->maxp_mult; 1336 max_channel_xfer_size = hsotg->params.max_transfer_size; 1337 1338 if (max_xfer_size > max_channel_xfer_size) { 1339 dev_err(hsotg->dev, 1340 "%s: Periodic xfer length %d > max xfer length for channel %d\n", 1341 __func__, max_xfer_size, max_channel_xfer_size); 1342 status = -ENOSPC; 1343 } 1344 1345 return status; 1346 } 1347 1348 /** 1349 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in 1350 * the periodic schedule 1351 * 1352 * @hsotg: The HCD state structure for the DWC OTG controller 1353 * @qh: QH for the periodic transfer. The QH should already contain the 1354 * scheduling information. 1355 * 1356 * Return: 0 if successful, negative error code otherwise 1357 */ 1358 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1359 { 1360 int status; 1361 1362 status = dwc2_check_max_xfer_size(hsotg, qh); 1363 if (status) { 1364 dev_dbg(hsotg->dev, 1365 "%s: Channel max transfer size too small for periodic transfer\n", 1366 __func__); 1367 return status; 1368 } 1369 1370 /* Cancel pending unreserve; if canceled OK, unreserve was pending */ 1371 if (del_timer(&qh->unreserve_timer)) 1372 WARN_ON(!qh->unreserve_pending); 1373 1374 /* 1375 * Only need to reserve if there's not an unreserve pending, since if an 1376 * unreserve is pending then by definition our old reservation is still 1377 * valid. Unreserve might still be pending even if we didn't cancel if 1378 * dwc2_unreserve_timer_fn() already started. Code in the timer handles 1379 * that case. 1380 */ 1381 if (!qh->unreserve_pending) { 1382 status = dwc2_do_reserve(hsotg, qh); 1383 if (status) 1384 return status; 1385 } else { 1386 /* 1387 * It might have been a while, so make sure that frame_number 1388 * is still good. Note: we could also try to use the similar 1389 * dwc2_next_periodic_start() but that schedules much more 1390 * tightly and we might need to hurry and queue things up. 1391 */ 1392 if (dwc2_frame_num_le(qh->next_active_frame, 1393 hsotg->frame_number)) 1394 dwc2_pick_first_frame(hsotg, qh); 1395 } 1396 1397 qh->unreserve_pending = 0; 1398 1399 if (hsotg->params.dma_desc_enable) 1400 /* Don't rely on SOF and start in ready schedule */ 1401 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready); 1402 else 1403 /* Always start in inactive schedule */ 1404 list_add_tail(&qh->qh_list_entry, 1405 &hsotg->periodic_sched_inactive); 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer 1412 * from the periodic schedule 1413 * 1414 * @hsotg: The HCD state structure for the DWC OTG controller 1415 * @qh: QH for the periodic transfer 1416 */ 1417 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg, 1418 struct dwc2_qh *qh) 1419 { 1420 bool did_modify; 1421 1422 assert_spin_locked(&hsotg->lock); 1423 1424 /* 1425 * Schedule the unreserve to happen in a little bit. Cases here: 1426 * - Unreserve worker might be sitting there waiting to grab the lock. 1427 * In this case it will notice it's been schedule again and will 1428 * quit. 1429 * - Unreserve worker might not be scheduled. 1430 * 1431 * We should never already be scheduled since dwc2_schedule_periodic() 1432 * should have canceled the scheduled unreserve timer (hence the 1433 * warning on did_modify). 1434 * 1435 * We add + 1 to the timer to guarantee that at least 1 jiffy has 1436 * passed (otherwise if the jiffy counter might tick right after we 1437 * read it and we'll get no delay). 1438 */ 1439 did_modify = mod_timer(&qh->unreserve_timer, 1440 jiffies + DWC2_UNRESERVE_DELAY + 1); 1441 WARN_ON(did_modify); 1442 qh->unreserve_pending = 1; 1443 1444 list_del_init(&qh->qh_list_entry); 1445 } 1446 1447 /** 1448 * dwc2_wait_timer_fn() - Timer function to re-queue after waiting 1449 * 1450 * As per the spec, a NAK indicates that "a function is temporarily unable to 1451 * transmit or receive data, but will eventually be able to do so without need 1452 * of host intervention". 1453 * 1454 * That means that when we encounter a NAK we're supposed to retry. 1455 * 1456 * ...but if we retry right away (from the interrupt handler that saw the NAK) 1457 * then we can end up with an interrupt storm (if the other side keeps NAKing 1458 * us) because on slow enough CPUs it could take us longer to get out of the 1459 * interrupt routine than it takes for the device to send another NAK. That 1460 * leads to a constant stream of NAK interrupts and the CPU locks. 1461 * 1462 * ...so instead of retrying right away in the case of a NAK we'll set a timer 1463 * to retry some time later. This function handles that timer and moves the 1464 * qh back to the "inactive" list, then queues transactions. 1465 * 1466 * @t: Pointer to wait_timer in a qh. 1467 * 1468 * Return: HRTIMER_NORESTART to not automatically restart this timer. 1469 */ 1470 static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t) 1471 { 1472 struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer); 1473 struct dwc2_hsotg *hsotg = qh->hsotg; 1474 unsigned long flags; 1475 1476 spin_lock_irqsave(&hsotg->lock, flags); 1477 1478 /* 1479 * We'll set wait_timer_cancel to true if we want to cancel this 1480 * operation in dwc2_hcd_qh_unlink(). 1481 */ 1482 if (!qh->wait_timer_cancel) { 1483 enum dwc2_transaction_type tr_type; 1484 1485 qh->want_wait = false; 1486 1487 list_move(&qh->qh_list_entry, 1488 &hsotg->non_periodic_sched_inactive); 1489 1490 tr_type = dwc2_hcd_select_transactions(hsotg); 1491 if (tr_type != DWC2_TRANSACTION_NONE) 1492 dwc2_hcd_queue_transactions(hsotg, tr_type); 1493 } 1494 1495 spin_unlock_irqrestore(&hsotg->lock, flags); 1496 return HRTIMER_NORESTART; 1497 } 1498 1499 /** 1500 * dwc2_qh_init() - Initializes a QH structure 1501 * 1502 * @hsotg: The HCD state structure for the DWC OTG controller 1503 * @qh: The QH to init 1504 * @urb: Holds the information about the device/endpoint needed to initialize 1505 * the QH 1506 * @mem_flags: Flags for allocating memory. 1507 */ 1508 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1509 struct dwc2_hcd_urb *urb, gfp_t mem_flags) 1510 { 1511 int dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 1512 u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info); 1513 bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info); 1514 bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC); 1515 bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT); 1516 u32 hprt = dwc2_readl(hsotg, HPRT0); 1517 u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 1518 bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED && 1519 dev_speed != USB_SPEED_HIGH); 1520 int maxp = dwc2_hcd_get_maxp(&urb->pipe_info); 1521 int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info); 1522 int bytecount = maxp_mult * maxp; 1523 char *speed, *type; 1524 1525 /* Initialize QH */ 1526 qh->hsotg = hsotg; 1527 timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0); 1528 hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1529 qh->wait_timer.function = &dwc2_wait_timer_fn; 1530 qh->ep_type = ep_type; 1531 qh->ep_is_in = ep_is_in; 1532 1533 qh->data_toggle = DWC2_HC_PID_DATA0; 1534 qh->maxp = maxp; 1535 qh->maxp_mult = maxp_mult; 1536 INIT_LIST_HEAD(&qh->qtd_list); 1537 INIT_LIST_HEAD(&qh->qh_list_entry); 1538 1539 qh->do_split = do_split; 1540 qh->dev_speed = dev_speed; 1541 1542 if (ep_is_int || ep_is_isoc) { 1543 /* Compute scheduling parameters once and save them */ 1544 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed; 1545 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv, 1546 mem_flags, 1547 &qh->ttport); 1548 int device_ns; 1549 1550 qh->dwc_tt = dwc_tt; 1551 1552 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in, 1553 ep_is_isoc, bytecount)); 1554 device_ns = usb_calc_bus_time(dev_speed, ep_is_in, 1555 ep_is_isoc, bytecount); 1556 1557 if (do_split && dwc_tt) 1558 device_ns += dwc_tt->usb_tt->think_time; 1559 qh->device_us = NS_TO_US(device_ns); 1560 1561 qh->device_interval = urb->interval; 1562 qh->host_interval = urb->interval * (do_split ? 8 : 1); 1563 1564 /* 1565 * Schedule low speed if we're running the host in low or 1566 * full speed OR if we've got a "TT" to deal with to access this 1567 * device. 1568 */ 1569 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED || 1570 dwc_tt; 1571 1572 if (do_split) { 1573 /* We won't know num transfers until we schedule */ 1574 qh->num_hs_transfers = -1; 1575 } else if (dev_speed == USB_SPEED_HIGH) { 1576 qh->num_hs_transfers = 1; 1577 } else { 1578 qh->num_hs_transfers = 0; 1579 } 1580 1581 /* We'll schedule later when we have something to do */ 1582 } 1583 1584 switch (dev_speed) { 1585 case USB_SPEED_LOW: 1586 speed = "low"; 1587 break; 1588 case USB_SPEED_FULL: 1589 speed = "full"; 1590 break; 1591 case USB_SPEED_HIGH: 1592 speed = "high"; 1593 break; 1594 default: 1595 speed = "?"; 1596 break; 1597 } 1598 1599 switch (qh->ep_type) { 1600 case USB_ENDPOINT_XFER_ISOC: 1601 type = "isochronous"; 1602 break; 1603 case USB_ENDPOINT_XFER_INT: 1604 type = "interrupt"; 1605 break; 1606 case USB_ENDPOINT_XFER_CONTROL: 1607 type = "control"; 1608 break; 1609 case USB_ENDPOINT_XFER_BULK: 1610 type = "bulk"; 1611 break; 1612 default: 1613 type = "?"; 1614 break; 1615 } 1616 1617 dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type, 1618 speed, bytecount); 1619 dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh, 1620 dwc2_hcd_get_dev_addr(&urb->pipe_info), 1621 dwc2_hcd_get_ep_num(&urb->pipe_info), 1622 ep_is_in ? "IN" : "OUT"); 1623 if (ep_is_int || ep_is_isoc) { 1624 dwc2_sch_dbg(hsotg, 1625 "QH=%p ...duration: host=%d us, device=%d us\n", 1626 qh, qh->host_us, qh->device_us); 1627 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n", 1628 qh, qh->host_interval, qh->device_interval); 1629 if (qh->schedule_low_speed) 1630 dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n", 1631 qh, dwc2_get_ls_map(hsotg, qh)); 1632 } 1633 } 1634 1635 /** 1636 * dwc2_hcd_qh_create() - Allocates and initializes a QH 1637 * 1638 * @hsotg: The HCD state structure for the DWC OTG controller 1639 * @urb: Holds the information about the device/endpoint needed 1640 * to initialize the QH 1641 * @mem_flags: Flags for allocating memory. 1642 * 1643 * Return: Pointer to the newly allocated QH, or NULL on error 1644 */ 1645 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, 1646 struct dwc2_hcd_urb *urb, 1647 gfp_t mem_flags) 1648 { 1649 struct dwc2_qh *qh; 1650 1651 if (!urb->priv) 1652 return NULL; 1653 1654 /* Allocate memory */ 1655 qh = kzalloc(sizeof(*qh), mem_flags); 1656 if (!qh) 1657 return NULL; 1658 1659 dwc2_qh_init(hsotg, qh, urb, mem_flags); 1660 1661 if (hsotg->params.dma_desc_enable && 1662 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) { 1663 dwc2_hcd_qh_free(hsotg, qh); 1664 return NULL; 1665 } 1666 1667 return qh; 1668 } 1669 1670 /** 1671 * dwc2_hcd_qh_free() - Frees the QH 1672 * 1673 * @hsotg: HCD instance 1674 * @qh: The QH to free 1675 * 1676 * QH should already be removed from the list. QTD list should already be empty 1677 * if called from URB Dequeue. 1678 * 1679 * Must NOT be called with interrupt disabled or spinlock held 1680 */ 1681 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1682 { 1683 /* Make sure any unreserve work is finished. */ 1684 if (del_timer_sync(&qh->unreserve_timer)) { 1685 unsigned long flags; 1686 1687 spin_lock_irqsave(&hsotg->lock, flags); 1688 dwc2_do_unreserve(hsotg, qh); 1689 spin_unlock_irqrestore(&hsotg->lock, flags); 1690 } 1691 1692 /* 1693 * We don't have the lock so we can safely wait until the wait timer 1694 * finishes. Of course, at this point in time we'd better have set 1695 * wait_timer_active to false so if this timer was still pending it 1696 * won't do anything anyway, but we want it to finish before we free 1697 * memory. 1698 */ 1699 hrtimer_cancel(&qh->wait_timer); 1700 1701 dwc2_host_put_tt_info(hsotg, qh->dwc_tt); 1702 1703 if (qh->desc_list) 1704 dwc2_hcd_qh_free_ddma(hsotg, qh); 1705 else if (hsotg->unaligned_cache && qh->dw_align_buf) 1706 kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf); 1707 1708 kfree(qh); 1709 } 1710 1711 /** 1712 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic 1713 * schedule if it is not already in the schedule. If the QH is already in 1714 * the schedule, no action is taken. 1715 * 1716 * @hsotg: The HCD state structure for the DWC OTG controller 1717 * @qh: The QH to add 1718 * 1719 * Return: 0 if successful, negative error code otherwise 1720 */ 1721 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1722 { 1723 int status; 1724 u32 intr_mask; 1725 ktime_t delay; 1726 1727 if (dbg_qh(qh)) 1728 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1729 1730 if (!list_empty(&qh->qh_list_entry)) 1731 /* QH already in a schedule */ 1732 return 0; 1733 1734 /* Add the new QH to the appropriate schedule */ 1735 if (dwc2_qh_is_non_per(qh)) { 1736 /* Schedule right away */ 1737 qh->start_active_frame = hsotg->frame_number; 1738 qh->next_active_frame = qh->start_active_frame; 1739 1740 if (qh->want_wait) { 1741 list_add_tail(&qh->qh_list_entry, 1742 &hsotg->non_periodic_sched_waiting); 1743 qh->wait_timer_cancel = false; 1744 delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY); 1745 hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL); 1746 } else { 1747 list_add_tail(&qh->qh_list_entry, 1748 &hsotg->non_periodic_sched_inactive); 1749 } 1750 return 0; 1751 } 1752 1753 status = dwc2_schedule_periodic(hsotg, qh); 1754 if (status) 1755 return status; 1756 if (!hsotg->periodic_qh_count) { 1757 intr_mask = dwc2_readl(hsotg, GINTMSK); 1758 intr_mask |= GINTSTS_SOF; 1759 dwc2_writel(hsotg, intr_mask, GINTMSK); 1760 } 1761 hsotg->periodic_qh_count++; 1762 1763 return 0; 1764 } 1765 1766 /** 1767 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic 1768 * schedule. Memory is not freed. 1769 * 1770 * @hsotg: The HCD state structure 1771 * @qh: QH to remove from schedule 1772 */ 1773 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1774 { 1775 u32 intr_mask; 1776 1777 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1778 1779 /* If the wait_timer is pending, this will stop it from acting */ 1780 qh->wait_timer_cancel = true; 1781 1782 if (list_empty(&qh->qh_list_entry)) 1783 /* QH is not in a schedule */ 1784 return; 1785 1786 if (dwc2_qh_is_non_per(qh)) { 1787 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry) 1788 hsotg->non_periodic_qh_ptr = 1789 hsotg->non_periodic_qh_ptr->next; 1790 list_del_init(&qh->qh_list_entry); 1791 return; 1792 } 1793 1794 dwc2_deschedule_periodic(hsotg, qh); 1795 hsotg->periodic_qh_count--; 1796 if (!hsotg->periodic_qh_count && 1797 !hsotg->params.dma_desc_enable) { 1798 intr_mask = dwc2_readl(hsotg, GINTMSK); 1799 intr_mask &= ~GINTSTS_SOF; 1800 dwc2_writel(hsotg, intr_mask, GINTMSK); 1801 } 1802 } 1803 1804 /** 1805 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split. 1806 * 1807 * This is called for setting next_active_frame for periodic splits for all but 1808 * the first packet of the split. Confusing? I thought so... 1809 * 1810 * Periodic splits are single low/full speed transfers that we end up splitting 1811 * up into several high speed transfers. They always fit into one full (1 ms) 1812 * frame but might be split over several microframes (125 us each). We to put 1813 * each of the parts on a very specific high speed frame. 1814 * 1815 * This function figures out where the next active uFrame needs to be. 1816 * 1817 * @hsotg: The HCD state structure 1818 * @qh: QH for the periodic transfer. 1819 * @frame_number: The current frame number. 1820 * 1821 * Return: number missed by (or 0 if we didn't miss). 1822 */ 1823 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg, 1824 struct dwc2_qh *qh, u16 frame_number) 1825 { 1826 u16 old_frame = qh->next_active_frame; 1827 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1828 int missed = 0; 1829 u16 incr; 1830 1831 /* 1832 * See dwc2_uframe_schedule_split() for split scheduling. 1833 * 1834 * Basically: increment 1 normally, but 2 right after the start split 1835 * (except for ISOC out). 1836 */ 1837 if (old_frame == qh->start_active_frame && 1838 !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)) 1839 incr = 2; 1840 else 1841 incr = 1; 1842 1843 qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr); 1844 1845 /* 1846 * Note that it's OK for frame_number to be 1 frame past 1847 * next_active_frame. Remember that next_active_frame is supposed to 1848 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame 1849 * past it just means schedule ASAP. 1850 * 1851 * It's _not_ OK, however, if we're more than one frame past. 1852 */ 1853 if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) { 1854 /* 1855 * OOPS, we missed. That's actually pretty bad since 1856 * the hub will be unhappy; try ASAP I guess. 1857 */ 1858 missed = dwc2_frame_num_dec(prev_frame_number, 1859 qh->next_active_frame); 1860 qh->next_active_frame = frame_number; 1861 } 1862 1863 return missed; 1864 } 1865 1866 /** 1867 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start 1868 * 1869 * This is called for setting next_active_frame for a periodic transfer for 1870 * all cases other than midway through a periodic split. This will also update 1871 * start_active_frame. 1872 * 1873 * Since we _always_ keep start_active_frame as the start of the previous 1874 * transfer this is normally pretty easy: we just add our interval to 1875 * start_active_frame and we've got our answer. 1876 * 1877 * The tricks come into play if we miss. In that case we'll look for the next 1878 * slot we can fit into. 1879 * 1880 * @hsotg: The HCD state structure 1881 * @qh: QH for the periodic transfer. 1882 * @frame_number: The current frame number. 1883 * 1884 * Return: number missed by (or 0 if we didn't miss). 1885 */ 1886 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg, 1887 struct dwc2_qh *qh, u16 frame_number) 1888 { 1889 int missed = 0; 1890 u16 interval = qh->host_interval; 1891 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1892 1893 qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame, 1894 interval); 1895 1896 /* 1897 * The dwc2_frame_num_gt() function used below won't work terribly well 1898 * with if we just incremented by a really large intervals since the 1899 * frame counter only goes to 0x3fff. It's terribly unlikely that we 1900 * will have missed in this case anyway. Just go to exit. If we want 1901 * to try to do better we'll need to keep track of a bigger counter 1902 * somewhere in the driver and handle overflows. 1903 */ 1904 if (interval >= 0x1000) 1905 goto exit; 1906 1907 /* 1908 * Test for misses, which is when it's too late to schedule. 1909 * 1910 * A few things to note: 1911 * - We compare against prev_frame_number since start_active_frame 1912 * and next_active_frame are always 1 frame before we want things 1913 * to be active and we assume we can still get scheduled in the 1914 * current frame number. 1915 * - It's possible for start_active_frame (now incremented) to be 1916 * next_active_frame if we got an EO MISS (even_odd miss) which 1917 * basically means that we detected there wasn't enough time for 1918 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us 1919 * at the last second. We want to make sure we don't schedule 1920 * another transfer for the same frame. My test webcam doesn't seem 1921 * terribly upset by missing a transfer but really doesn't like when 1922 * we do two transfers in the same frame. 1923 * - Some misses are expected. Specifically, in order to work 1924 * perfectly dwc2 really needs quite spectacular interrupt latency 1925 * requirements. It needs to be able to handle its interrupts 1926 * completely within 125 us of them being asserted. That not only 1927 * means that the dwc2 interrupt handler needs to be fast but it 1928 * means that nothing else in the system has to block dwc2 for a long 1929 * time. We can help with the dwc2 parts of this, but it's hard to 1930 * guarantee that a system will have interrupt latency < 125 us, so 1931 * we have to be robust to some misses. 1932 */ 1933 if (qh->start_active_frame == qh->next_active_frame || 1934 dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) { 1935 u16 ideal_start = qh->start_active_frame; 1936 int periods_in_map; 1937 1938 /* 1939 * Adjust interval as per gcd with map size. 1940 * See pmap_schedule() for more details here. 1941 */ 1942 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH) 1943 periods_in_map = DWC2_HS_SCHEDULE_UFRAMES; 1944 else 1945 periods_in_map = DWC2_LS_SCHEDULE_FRAMES; 1946 interval = gcd(interval, periods_in_map); 1947 1948 do { 1949 qh->start_active_frame = dwc2_frame_num_inc( 1950 qh->start_active_frame, interval); 1951 } while (dwc2_frame_num_gt(prev_frame_number, 1952 qh->start_active_frame)); 1953 1954 missed = dwc2_frame_num_dec(qh->start_active_frame, 1955 ideal_start); 1956 } 1957 1958 exit: 1959 qh->next_active_frame = qh->start_active_frame; 1960 1961 return missed; 1962 } 1963 1964 /* 1965 * Deactivates a QH. For non-periodic QHs, removes the QH from the active 1966 * non-periodic schedule. The QH is added to the inactive non-periodic 1967 * schedule if any QTDs are still attached to the QH. 1968 * 1969 * For periodic QHs, the QH is removed from the periodic queued schedule. If 1970 * there are any QTDs still attached to the QH, the QH is added to either the 1971 * periodic inactive schedule or the periodic ready schedule and its next 1972 * scheduled frame is calculated. The QH is placed in the ready schedule if 1973 * the scheduled frame has been reached already. Otherwise it's placed in the 1974 * inactive schedule. If there are no QTDs attached to the QH, the QH is 1975 * completely removed from the periodic schedule. 1976 */ 1977 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1978 int sched_next_periodic_split) 1979 { 1980 u16 old_frame = qh->next_active_frame; 1981 u16 frame_number; 1982 int missed; 1983 1984 if (dbg_qh(qh)) 1985 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1986 1987 if (dwc2_qh_is_non_per(qh)) { 1988 dwc2_hcd_qh_unlink(hsotg, qh); 1989 if (!list_empty(&qh->qtd_list)) 1990 /* Add back to inactive/waiting non-periodic schedule */ 1991 dwc2_hcd_qh_add(hsotg, qh); 1992 return; 1993 } 1994 1995 /* 1996 * Use the real frame number rather than the cached value as of the 1997 * last SOF just to get us a little closer to reality. Note that 1998 * means we don't actually know if we've already handled the SOF 1999 * interrupt for this frame. 2000 */ 2001 frame_number = dwc2_hcd_get_frame_number(hsotg); 2002 2003 if (sched_next_periodic_split) 2004 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number); 2005 else 2006 missed = dwc2_next_periodic_start(hsotg, qh, frame_number); 2007 2008 dwc2_sch_vdbg(hsotg, 2009 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n", 2010 qh, sched_next_periodic_split, frame_number, old_frame, 2011 qh->next_active_frame, 2012 dwc2_frame_num_dec(qh->next_active_frame, old_frame), 2013 missed, missed ? "MISS" : ""); 2014 2015 if (list_empty(&qh->qtd_list)) { 2016 dwc2_hcd_qh_unlink(hsotg, qh); 2017 return; 2018 } 2019 2020 /* 2021 * Remove from periodic_sched_queued and move to 2022 * appropriate queue 2023 * 2024 * Note: we purposely use the frame_number from the "hsotg" structure 2025 * since we know SOF interrupt will handle future frames. 2026 */ 2027 if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number)) 2028 list_move_tail(&qh->qh_list_entry, 2029 &hsotg->periodic_sched_ready); 2030 else 2031 list_move_tail(&qh->qh_list_entry, 2032 &hsotg->periodic_sched_inactive); 2033 } 2034 2035 /** 2036 * dwc2_hcd_qtd_init() - Initializes a QTD structure 2037 * 2038 * @qtd: The QTD to initialize 2039 * @urb: The associated URB 2040 */ 2041 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 2042 { 2043 qtd->urb = urb; 2044 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) == 2045 USB_ENDPOINT_XFER_CONTROL) { 2046 /* 2047 * The only time the QTD data toggle is used is on the data 2048 * phase of control transfers. This phase always starts with 2049 * DATA1. 2050 */ 2051 qtd->data_toggle = DWC2_HC_PID_DATA1; 2052 qtd->control_phase = DWC2_CONTROL_SETUP; 2053 } 2054 2055 /* Start split */ 2056 qtd->complete_split = 0; 2057 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL; 2058 qtd->isoc_split_offset = 0; 2059 qtd->in_process = 0; 2060 2061 /* Store the qtd ptr in the urb to reference the QTD */ 2062 urb->qtd = qtd; 2063 } 2064 2065 /** 2066 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH 2067 * Caller must hold driver lock. 2068 * 2069 * @hsotg: The DWC HCD structure 2070 * @qtd: The QTD to add 2071 * @qh: Queue head to add qtd to 2072 * 2073 * Return: 0 if successful, negative error code otherwise 2074 * 2075 * If the QH to which the QTD is added is not currently scheduled, it is placed 2076 * into the proper schedule based on its EP type. 2077 */ 2078 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 2079 struct dwc2_qh *qh) 2080 { 2081 int retval; 2082 2083 if (unlikely(!qh)) { 2084 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__); 2085 retval = -EINVAL; 2086 goto fail; 2087 } 2088 2089 retval = dwc2_hcd_qh_add(hsotg, qh); 2090 if (retval) 2091 goto fail; 2092 2093 qtd->qh = qh; 2094 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); 2095 2096 return 0; 2097 fail: 2098 return retval; 2099 } 2100