1 /* 2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines 3 * 4 * Copyright (C) 2004-2013 Synopsys, Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The names of the above-listed copyright holders may not be used 16 * to endorse or promote products derived from this software without 17 * specific prior written permission. 18 * 19 * ALTERNATIVELY, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") as published by the Free Software 21 * Foundation; either version 2 of the License, or (at your option) any 22 * later version. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 /* 38 * This file contains the functions to manage Queue Heads and Queue 39 * Transfer Descriptors for Host mode 40 */ 41 #include <linux/gcd.h> 42 #include <linux/kernel.h> 43 #include <linux/module.h> 44 #include <linux/spinlock.h> 45 #include <linux/interrupt.h> 46 #include <linux/dma-mapping.h> 47 #include <linux/io.h> 48 #include <linux/slab.h> 49 #include <linux/usb.h> 50 51 #include <linux/usb/hcd.h> 52 #include <linux/usb/ch11.h> 53 54 #include "core.h" 55 #include "hcd.h" 56 57 /* Wait this long before releasing periodic reservation */ 58 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5)) 59 60 /** 61 * dwc2_periodic_channel_available() - Checks that a channel is available for a 62 * periodic transfer 63 * 64 * @hsotg: The HCD state structure for the DWC OTG controller 65 * 66 * Return: 0 if successful, negative error code otherwise 67 */ 68 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg) 69 { 70 /* 71 * Currently assuming that there is a dedicated host channel for 72 * each periodic transaction plus at least one host channel for 73 * non-periodic transactions 74 */ 75 int status; 76 int num_channels; 77 78 num_channels = hsotg->core_params->host_channels; 79 if (hsotg->periodic_channels + hsotg->non_periodic_channels < 80 num_channels 81 && hsotg->periodic_channels < num_channels - 1) { 82 status = 0; 83 } else { 84 dev_dbg(hsotg->dev, 85 "%s: Total channels: %d, Periodic: %d, " 86 "Non-periodic: %d\n", __func__, num_channels, 87 hsotg->periodic_channels, hsotg->non_periodic_channels); 88 status = -ENOSPC; 89 } 90 91 return status; 92 } 93 94 /** 95 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth 96 * for the specified QH in the periodic schedule 97 * 98 * @hsotg: The HCD state structure for the DWC OTG controller 99 * @qh: QH containing periodic bandwidth required 100 * 101 * Return: 0 if successful, negative error code otherwise 102 * 103 * For simplicity, this calculation assumes that all the transfers in the 104 * periodic schedule may occur in the same (micro)frame 105 */ 106 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg, 107 struct dwc2_qh *qh) 108 { 109 int status; 110 s16 max_claimed_usecs; 111 112 status = 0; 113 114 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 115 /* 116 * High speed mode 117 * Max periodic usecs is 80% x 125 usec = 100 usec 118 */ 119 max_claimed_usecs = 100 - qh->host_us; 120 } else { 121 /* 122 * Full speed mode 123 * Max periodic usecs is 90% x 1000 usec = 900 usec 124 */ 125 max_claimed_usecs = 900 - qh->host_us; 126 } 127 128 if (hsotg->periodic_usecs > max_claimed_usecs) { 129 dev_err(hsotg->dev, 130 "%s: already claimed usecs %d, required usecs %d\n", 131 __func__, hsotg->periodic_usecs, qh->host_us); 132 status = -ENOSPC; 133 } 134 135 return status; 136 } 137 138 /** 139 * pmap_schedule() - Schedule time in a periodic bitmap (pmap). 140 * 141 * @map: The bitmap representing the schedule; will be updated 142 * upon success. 143 * @bits_per_period: The schedule represents several periods. This is how many 144 * bits are in each period. It's assumed that the beginning 145 * of the schedule will repeat after its end. 146 * @periods_in_map: The number of periods in the schedule. 147 * @num_bits: The number of bits we need per period we want to reserve 148 * in this function call. 149 * @interval: How often we need to be scheduled for the reservation this 150 * time. 1 means every period. 2 means every other period. 151 * ...you get the picture? 152 * @start: The bit number to start at. Normally 0. Must be within 153 * the interval or we return failure right away. 154 * @only_one_period: Normally we'll allow picking a start anywhere within the 155 * first interval, since we can still make all repetition 156 * requirements by doing that. However, if you pass true 157 * here then we'll return failure if we can't fit within 158 * the period that "start" is in. 159 * 160 * The idea here is that we want to schedule time for repeating events that all 161 * want the same resource. The resource is divided into fixed-sized periods 162 * and the events want to repeat every "interval" periods. The schedule 163 * granularity is one bit. 164 * 165 * To keep things "simple", we'll represent our schedule with a bitmap that 166 * contains a fixed number of periods. This gets rid of a lot of complexity 167 * but does mean that we need to handle things specially (and non-ideally) if 168 * the number of the periods in the schedule doesn't match well with the 169 * intervals that we're trying to schedule. 170 * 171 * Here's an explanation of the scheme we'll implement, assuming 8 periods. 172 * - If interval is 1, we need to take up space in each of the 8 173 * periods we're scheduling. Easy. 174 * - If interval is 2, we need to take up space in half of the 175 * periods. Again, easy. 176 * - If interval is 3, we actually need to fall back to interval 1. 177 * Why? Because we might need time in any period. AKA for the 178 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be 179 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to 180 * 0, 3, and 6. Since we could be in any frame we need to reserve 181 * for all of them. Sucks, but that's what you gotta do. Note that 182 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but 183 * then we need more memory and time to do scheduling. 184 * - If interval is 4, easy. 185 * - If interval is 5, we again need interval 1. The schedule will be 186 * 0, 5, 2, 7, 4, 1, 6, 3, 0 187 * - If interval is 6, we need interval 2. 0, 6, 4, 2. 188 * - If interval is 7, we need interval 1. 189 * - If interval is 8, we need interval 8. 190 * 191 * If you do the math, you'll see that we need to pretend that interval is 192 * equal to the greatest_common_divisor(interval, periods_in_map). 193 * 194 * Note that at the moment this function tends to front-pack the schedule. 195 * In some cases that's really non-ideal (it's hard to schedule things that 196 * need to repeat every period). In other cases it's perfect (you can easily 197 * schedule bigger, less often repeating things). 198 * 199 * Here's the algorithm in action (8 periods, 5 bits per period): 200 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 201 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2 202 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5 203 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2 204 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2 205 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3 206 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6 207 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4 208 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1 209 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0 210 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5 211 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2 212 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3 213 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6 214 * | | | | | | | | | Remv 1 bits, intv 1 at 4 215 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0 216 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2 217 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3 218 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5 219 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6 220 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8 221 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12 222 * 223 * This function is pretty generic and could be easily abstracted if anything 224 * needed similar scheduling. 225 * 226 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the 227 * unschedule routine. The map bitmap will be updated on a non-error result. 228 */ 229 static int pmap_schedule(unsigned long *map, int bits_per_period, 230 int periods_in_map, int num_bits, 231 int interval, int start, bool only_one_period) 232 { 233 int interval_bits; 234 int to_reserve; 235 int first_end; 236 int i; 237 238 if (num_bits > bits_per_period) 239 return -ENOSPC; 240 241 /* Adjust interval as per description */ 242 interval = gcd(interval, periods_in_map); 243 244 interval_bits = bits_per_period * interval; 245 to_reserve = periods_in_map / interval; 246 247 /* If start has gotten us past interval then we can't schedule */ 248 if (start >= interval_bits) 249 return -ENOSPC; 250 251 if (only_one_period) 252 /* Must fit within same period as start; end at begin of next */ 253 first_end = (start / bits_per_period + 1) * bits_per_period; 254 else 255 /* Can fit anywhere in the first interval */ 256 first_end = interval_bits; 257 258 /* 259 * We'll try to pick the first repetition, then see if that time 260 * is free for each of the subsequent repetitions. If it's not 261 * we'll adjust the start time for the next search of the first 262 * repetition. 263 */ 264 while (start + num_bits <= first_end) { 265 int end; 266 267 /* Need to stay within this period */ 268 end = (start / bits_per_period + 1) * bits_per_period; 269 270 /* Look for num_bits us in this microframe starting at start */ 271 start = bitmap_find_next_zero_area(map, end, start, num_bits, 272 0); 273 274 /* 275 * We should get start >= end if we fail. We might be 276 * able to check the next microframe depending on the 277 * interval, so continue on (start already updated). 278 */ 279 if (start >= end) { 280 start = end; 281 continue; 282 } 283 284 /* At this point we have a valid point for first one */ 285 for (i = 1; i < to_reserve; i++) { 286 int ith_start = start + interval_bits * i; 287 int ith_end = end + interval_bits * i; 288 int ret; 289 290 /* Use this as a dumb "check if bits are 0" */ 291 ret = bitmap_find_next_zero_area( 292 map, ith_start + num_bits, ith_start, num_bits, 293 0); 294 295 /* We got the right place, continue checking */ 296 if (ret == ith_start) 297 continue; 298 299 /* Move start up for next time and exit for loop */ 300 ith_start = bitmap_find_next_zero_area( 301 map, ith_end, ith_start, num_bits, 0); 302 if (ith_start >= ith_end) 303 /* Need a while new period next time */ 304 start = end; 305 else 306 start = ith_start - interval_bits * i; 307 break; 308 } 309 310 /* If didn't exit the for loop with a break, we have success */ 311 if (i == to_reserve) 312 break; 313 } 314 315 if (start + num_bits > first_end) 316 return -ENOSPC; 317 318 for (i = 0; i < to_reserve; i++) { 319 int ith_start = start + interval_bits * i; 320 321 bitmap_set(map, ith_start, num_bits); 322 } 323 324 return start; 325 } 326 327 /** 328 * pmap_unschedule() - Undo work done by pmap_schedule() 329 * 330 * @map: See pmap_schedule(). 331 * @bits_per_period: See pmap_schedule(). 332 * @periods_in_map: See pmap_schedule(). 333 * @num_bits: The number of bits that was passed to schedule. 334 * @interval: The interval that was passed to schedule. 335 * @start: The return value from pmap_schedule(). 336 */ 337 static void pmap_unschedule(unsigned long *map, int bits_per_period, 338 int periods_in_map, int num_bits, 339 int interval, int start) 340 { 341 int interval_bits; 342 int to_release; 343 int i; 344 345 /* Adjust interval as per description in pmap_schedule() */ 346 interval = gcd(interval, periods_in_map); 347 348 interval_bits = bits_per_period * interval; 349 to_release = periods_in_map / interval; 350 351 for (i = 0; i < to_release; i++) { 352 int ith_start = start + interval_bits * i; 353 354 bitmap_clear(map, ith_start, num_bits); 355 } 356 } 357 358 /* 359 * cat_printf() - A printf() + strcat() helper 360 * 361 * This is useful for concatenating a bunch of strings where each string is 362 * constructed using printf. 363 * 364 * @buf: The destination buffer; will be updated to point after the printed 365 * data. 366 * @size: The number of bytes in the buffer (includes space for '\0'). 367 * @fmt: The format for printf. 368 * @...: The args for printf. 369 */ 370 static void cat_printf(char **buf, size_t *size, const char *fmt, ...) 371 { 372 va_list args; 373 int i; 374 375 if (*size == 0) 376 return; 377 378 va_start(args, fmt); 379 i = vsnprintf(*buf, *size, fmt, args); 380 va_end(args); 381 382 if (i >= *size) { 383 (*buf)[*size - 1] = '\0'; 384 *buf += *size; 385 *size = 0; 386 } else { 387 *buf += i; 388 *size -= i; 389 } 390 } 391 392 /* 393 * pmap_print() - Print the given periodic map 394 * 395 * Will attempt to print out the periodic schedule. 396 * 397 * @map: See pmap_schedule(). 398 * @bits_per_period: See pmap_schedule(). 399 * @periods_in_map: See pmap_schedule(). 400 * @period_name: The name of 1 period, like "uFrame" 401 * @units: The name of the units, like "us". 402 * @print_fn: The function to call for printing. 403 * @print_data: Opaque data to pass to the print function. 404 */ 405 static void pmap_print(unsigned long *map, int bits_per_period, 406 int periods_in_map, const char *period_name, 407 const char *units, 408 void (*print_fn)(const char *str, void *data), 409 void *print_data) 410 { 411 int period; 412 413 for (period = 0; period < periods_in_map; period++) { 414 char tmp[64]; 415 char *buf = tmp; 416 size_t buf_size = sizeof(tmp); 417 int period_start = period * bits_per_period; 418 int period_end = period_start + bits_per_period; 419 int start = 0; 420 int count = 0; 421 bool printed = false; 422 int i; 423 424 for (i = period_start; i < period_end + 1; i++) { 425 /* Handle case when ith bit is set */ 426 if (i < period_end && 427 bitmap_find_next_zero_area(map, i + 1, 428 i, 1, 0) != i) { 429 if (count == 0) 430 start = i - period_start; 431 count++; 432 continue; 433 } 434 435 /* ith bit isn't set; don't care if count == 0 */ 436 if (count == 0) 437 continue; 438 439 if (!printed) 440 cat_printf(&buf, &buf_size, "%s %d: ", 441 period_name, period); 442 else 443 cat_printf(&buf, &buf_size, ", "); 444 printed = true; 445 446 cat_printf(&buf, &buf_size, "%d %s -%3d %s", start, 447 units, start + count - 1, units); 448 count = 0; 449 } 450 451 if (printed) 452 print_fn(tmp, print_data); 453 } 454 } 455 456 /** 457 * dwc2_get_ls_map() - Get the map used for the given qh 458 * 459 * @hsotg: The HCD state structure for the DWC OTG controller. 460 * @qh: QH for the periodic transfer. 461 * 462 * We'll always get the periodic map out of our TT. Note that even if we're 463 * running the host straight in low speed / full speed mode it appears as if 464 * a TT is allocated for us, so we'll use it. If that ever changes we can 465 * add logic here to get a map out of "hsotg" if !qh->do_split. 466 * 467 * Returns: the map or NULL if a map couldn't be found. 468 */ 469 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg, 470 struct dwc2_qh *qh) 471 { 472 unsigned long *map; 473 474 /* Don't expect to be missing a TT and be doing low speed scheduling */ 475 if (WARN_ON(!qh->dwc_tt)) 476 return NULL; 477 478 /* Get the map and adjust if this is a multi_tt hub */ 479 map = qh->dwc_tt->periodic_bitmaps; 480 if (qh->dwc_tt->usb_tt->multi) 481 map += DWC2_ELEMENTS_PER_LS_BITMAP * qh->ttport; 482 483 return map; 484 } 485 486 struct dwc2_qh_print_data { 487 struct dwc2_hsotg *hsotg; 488 struct dwc2_qh *qh; 489 }; 490 491 /** 492 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print() 493 * 494 * @str: The string to print 495 * @data: A pointer to a struct dwc2_qh_print_data 496 */ 497 static void dwc2_qh_print(const char *str, void *data) 498 { 499 struct dwc2_qh_print_data *print_data = data; 500 501 dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str); 502 } 503 504 /** 505 * dwc2_qh_schedule_print() - Print the periodic schedule 506 * 507 * @hsotg: The HCD state structure for the DWC OTG controller. 508 * @qh: QH to print. 509 */ 510 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg, 511 struct dwc2_qh *qh) 512 { 513 struct dwc2_qh_print_data print_data = { hsotg, qh }; 514 int i; 515 516 /* 517 * The printing functions are quite slow and inefficient. 518 * If we don't have tracing turned on, don't run unless the special 519 * define is turned on. 520 */ 521 #ifndef DWC2_PRINT_SCHEDULE 522 return; 523 #endif 524 525 if (qh->schedule_low_speed) { 526 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 527 528 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us", 529 qh, qh->device_us, 530 DWC2_ROUND_US_TO_SLICE(qh->device_us), 531 DWC2_US_PER_SLICE * qh->ls_start_schedule_slice); 532 533 if (map) { 534 dwc2_sch_dbg(hsotg, 535 "QH=%p Whole low/full speed map %p now:\n", 536 qh, map); 537 pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 538 DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices", 539 dwc2_qh_print, &print_data); 540 } 541 } 542 543 for (i = 0; i < qh->num_hs_transfers; i++) { 544 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i; 545 int uframe = trans_time->start_schedule_us / 546 DWC2_HS_PERIODIC_US_PER_UFRAME; 547 int rel_us = trans_time->start_schedule_us % 548 DWC2_HS_PERIODIC_US_PER_UFRAME; 549 550 dwc2_sch_dbg(hsotg, 551 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n", 552 qh, i, trans_time->duration_us, uframe, rel_us); 553 } 554 if (qh->num_hs_transfers) { 555 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh); 556 pmap_print(hsotg->hs_periodic_bitmap, 557 DWC2_HS_PERIODIC_US_PER_UFRAME, 558 DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us", 559 dwc2_qh_print, &print_data); 560 } 561 562 } 563 564 /** 565 * dwc2_ls_pmap_schedule() - Schedule a low speed QH 566 * 567 * @hsotg: The HCD state structure for the DWC OTG controller. 568 * @qh: QH for the periodic transfer. 569 * @search_slice: We'll start trying to schedule at the passed slice. 570 * Remember that slices are the units of the low speed 571 * schedule (think 25us or so). 572 * 573 * Wraps pmap_schedule() with the right parameters for low speed scheduling. 574 * 575 * Normally we schedule low speed devices on the map associated with the TT. 576 * 577 * Returns: 0 for success or an error code. 578 */ 579 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 580 int search_slice) 581 { 582 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 583 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 584 int slice; 585 586 if (map == NULL) 587 return -EINVAL; 588 589 /* 590 * Schedule on the proper low speed map with our low speed scheduling 591 * parameters. Note that we use the "device_interval" here since 592 * we want the low speed interval and the only way we'd be in this 593 * function is if the device is low speed. 594 * 595 * If we happen to be doing low speed and high speed scheduling for the 596 * same transaction (AKA we have a split) we always do low speed first. 597 * That means we can always pass "false" for only_one_period (that 598 * parameters is only useful when we're trying to get one schedule to 599 * match what we already planned in the other schedule). 600 */ 601 slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 602 DWC2_LS_SCHEDULE_FRAMES, slices, 603 qh->device_interval, search_slice, false); 604 605 if (slice < 0) 606 return slice; 607 608 qh->ls_start_schedule_slice = slice; 609 return 0; 610 } 611 612 /** 613 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule() 614 * 615 * @hsotg: The HCD state structure for the DWC OTG controller. 616 * @qh: QH for the periodic transfer. 617 */ 618 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg, 619 struct dwc2_qh *qh) 620 { 621 int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE); 622 unsigned long *map = dwc2_get_ls_map(hsotg, qh); 623 624 /* Schedule should have failed, so no worries about no error code */ 625 if (map == NULL) 626 return; 627 628 pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME, 629 DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval, 630 qh->ls_start_schedule_slice); 631 } 632 633 /** 634 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule 635 * 636 * This will schedule something on the main dwc2 schedule. 637 * 638 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll 639 * update this with the result upon success. We also use the duration from 640 * the same structure. 641 * 642 * @hsotg: The HCD state structure for the DWC OTG controller. 643 * @qh: QH for the periodic transfer. 644 * @only_one_period: If true we will limit ourselves to just looking at 645 * one period (aka one 100us chunk). This is used if we have 646 * already scheduled something on the low speed schedule and 647 * need to find something that matches on the high speed one. 648 * @index: The index into qh->hs_transfers that we're working with. 649 * 650 * Returns: 0 for success or an error code. Upon success the 651 * dwc2_hs_transfer_time specified by "index" will be updated. 652 */ 653 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 654 bool only_one_period, int index) 655 { 656 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 657 int us; 658 659 us = pmap_schedule(hsotg->hs_periodic_bitmap, 660 DWC2_HS_PERIODIC_US_PER_UFRAME, 661 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 662 qh->host_interval, trans_time->start_schedule_us, 663 only_one_period); 664 665 if (us < 0) 666 return us; 667 668 trans_time->start_schedule_us = us; 669 return 0; 670 } 671 672 /** 673 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule() 674 * 675 * @hsotg: The HCD state structure for the DWC OTG controller. 676 * @qh: QH for the periodic transfer. 677 */ 678 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg, 679 struct dwc2_qh *qh, int index) 680 { 681 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index; 682 683 pmap_unschedule(hsotg->hs_periodic_bitmap, 684 DWC2_HS_PERIODIC_US_PER_UFRAME, 685 DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us, 686 qh->host_interval, trans_time->start_schedule_us); 687 } 688 689 /** 690 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer. 691 * 692 * This is the most complicated thing in USB. We have to find matching time 693 * in both the global high speed schedule for the port and the low speed 694 * schedule for the TT associated with the given device. 695 * 696 * Being here means that the host must be running in high speed mode and the 697 * device is in low or full speed mode (and behind a hub). 698 * 699 * @hsotg: The HCD state structure for the DWC OTG controller. 700 * @qh: QH for the periodic transfer. 701 */ 702 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg, 703 struct dwc2_qh *qh) 704 { 705 int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp); 706 int ls_search_slice; 707 int err = 0; 708 int host_interval_in_sched; 709 710 /* 711 * The interval (how often to repeat) in the actual host schedule. 712 * See pmap_schedule() for gcd() explanation. 713 */ 714 host_interval_in_sched = gcd(qh->host_interval, 715 DWC2_HS_SCHEDULE_UFRAMES); 716 717 /* 718 * We always try to find space in the low speed schedule first, then 719 * try to find high speed time that matches. If we don't, we'll bump 720 * up the place we start searching in the low speed schedule and try 721 * again. To start we'll look right at the beginning of the low speed 722 * schedule. 723 * 724 * Note that this will tend to front-load the high speed schedule. 725 * We may eventually want to try to avoid this by either considering 726 * both schedules together or doing some sort of round robin. 727 */ 728 ls_search_slice = 0; 729 730 while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) { 731 int start_s_uframe; 732 int ssplit_s_uframe; 733 int second_s_uframe; 734 int rel_uframe; 735 int first_count; 736 int middle_count; 737 int end_count; 738 int first_data_bytes; 739 int other_data_bytes; 740 int i; 741 742 if (qh->schedule_low_speed) { 743 err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice); 744 745 /* 746 * If we got an error here there's no other magic we 747 * can do, so bail. All the looping above is only 748 * helpful to redo things if we got a low speed slot 749 * and then couldn't find a matching high speed slot. 750 */ 751 if (err) 752 return err; 753 } else { 754 /* Must be missing the tt structure? Why? */ 755 WARN_ON_ONCE(1); 756 } 757 758 /* 759 * This will give us a number 0 - 7 if 760 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ... 761 */ 762 start_s_uframe = qh->ls_start_schedule_slice / 763 DWC2_SLICES_PER_UFRAME; 764 765 /* Get a number that's always 0 - 7 */ 766 rel_uframe = (start_s_uframe % 8); 767 768 /* 769 * If we were going to start in uframe 7 then we would need to 770 * issue a start split in uframe 6, which spec says is not OK. 771 * Move on to the next full frame (assuming there is one). 772 * 773 * See 11.18.4 Host Split Transaction Scheduling Requirements 774 * bullet 1. 775 */ 776 if (rel_uframe == 7) { 777 if (qh->schedule_low_speed) 778 dwc2_ls_pmap_unschedule(hsotg, qh); 779 ls_search_slice = 780 (qh->ls_start_schedule_slice / 781 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) * 782 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 783 continue; 784 } 785 786 /* 787 * For ISOC in: 788 * - start split (frame -1) 789 * - complete split w/ data (frame +1) 790 * - complete split w/ data (frame +2) 791 * - ... 792 * - complete split w/ data (frame +num_data_packets) 793 * - complete split w/ data (frame +num_data_packets+1) 794 * - complete split w/ data (frame +num_data_packets+2, max 8) 795 * ...though if frame was "0" then max is 7... 796 * 797 * For ISOC out we might need to do: 798 * - start split w/ data (frame -1) 799 * - start split w/ data (frame +0) 800 * - ... 801 * - start split w/ data (frame +num_data_packets-2) 802 * 803 * For INTERRUPT in we might need to do: 804 * - start split (frame -1) 805 * - complete split w/ data (frame +1) 806 * - complete split w/ data (frame +2) 807 * - complete split w/ data (frame +3, max 8) 808 * 809 * For INTERRUPT out we might need to do: 810 * - start split w/ data (frame -1) 811 * - complete split (frame +1) 812 * - complete split (frame +2) 813 * - complete split (frame +3, max 8) 814 * 815 * Start adjusting! 816 */ 817 ssplit_s_uframe = (start_s_uframe + 818 host_interval_in_sched - 1) % 819 host_interval_in_sched; 820 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in) 821 second_s_uframe = start_s_uframe; 822 else 823 second_s_uframe = start_s_uframe + 1; 824 825 /* First data transfer might not be all 188 bytes. */ 826 first_data_bytes = 188 - 827 DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice % 828 DWC2_SLICES_PER_UFRAME), 829 DWC2_SLICES_PER_UFRAME); 830 if (first_data_bytes > bytecount) 831 first_data_bytes = bytecount; 832 other_data_bytes = bytecount - first_data_bytes; 833 834 /* 835 * For now, skip OUT xfers where first xfer is partial 836 * 837 * Main dwc2 code assumes: 838 * - INT transfers never get split in two. 839 * - ISOC transfers can always transfer 188 bytes the first 840 * time. 841 * 842 * Until that code is fixed, try again if the first transfer 843 * couldn't transfer everything. 844 * 845 * This code can be removed if/when the rest of dwc2 handles 846 * the above cases. Until it's fixed we just won't be able 847 * to schedule quite as tightly. 848 */ 849 if (!qh->ep_is_in && 850 (first_data_bytes != min_t(int, 188, bytecount))) { 851 dwc2_sch_dbg(hsotg, 852 "QH=%p avoiding broken 1st xfer (%d, %d)\n", 853 qh, first_data_bytes, bytecount); 854 if (qh->schedule_low_speed) 855 dwc2_ls_pmap_unschedule(hsotg, qh); 856 ls_search_slice = (start_s_uframe + 1) * 857 DWC2_SLICES_PER_UFRAME; 858 continue; 859 } 860 861 /* Start by assuming transfers for the bytes */ 862 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188); 863 864 /* 865 * Everything except ISOC OUT has extra transfers. Rules are 866 * complicated. See 11.18.4 Host Split Transaction Scheduling 867 * Requirements bullet 3. 868 */ 869 if (qh->ep_type == USB_ENDPOINT_XFER_INT) { 870 if (rel_uframe == 6) 871 qh->num_hs_transfers += 2; 872 else 873 qh->num_hs_transfers += 3; 874 875 if (qh->ep_is_in) { 876 /* 877 * First is start split, middle/end is data. 878 * Allocate full data bytes for all data. 879 */ 880 first_count = 4; 881 middle_count = bytecount; 882 end_count = bytecount; 883 } else { 884 /* 885 * First is data, middle/end is complete. 886 * First transfer and second can have data. 887 * Rest should just have complete split. 888 */ 889 first_count = first_data_bytes; 890 middle_count = max_t(int, 4, other_data_bytes); 891 end_count = 4; 892 } 893 } else { 894 if (qh->ep_is_in) { 895 int last; 896 897 /* Account for the start split */ 898 qh->num_hs_transfers++; 899 900 /* Calculate "L" value from spec */ 901 last = rel_uframe + qh->num_hs_transfers + 1; 902 903 /* Start with basic case */ 904 if (last <= 6) 905 qh->num_hs_transfers += 2; 906 else 907 qh->num_hs_transfers += 1; 908 909 /* Adjust downwards */ 910 if (last >= 6 && rel_uframe == 0) 911 qh->num_hs_transfers--; 912 913 /* 1st = start; rest can contain data */ 914 first_count = 4; 915 middle_count = min_t(int, 188, bytecount); 916 end_count = middle_count; 917 } else { 918 /* All contain data, last might be smaller */ 919 first_count = first_data_bytes; 920 middle_count = min_t(int, 188, 921 other_data_bytes); 922 end_count = other_data_bytes % 188; 923 } 924 } 925 926 /* Assign durations per uFrame */ 927 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count); 928 for (i = 1; i < qh->num_hs_transfers - 1; i++) 929 qh->hs_transfers[i].duration_us = 930 HS_USECS_ISO(middle_count); 931 if (qh->num_hs_transfers > 1) 932 qh->hs_transfers[qh->num_hs_transfers - 1].duration_us = 933 HS_USECS_ISO(end_count); 934 935 /* 936 * Assign start us. The call below to dwc2_hs_pmap_schedule() 937 * will start with these numbers but may adjust within the same 938 * microframe. 939 */ 940 qh->hs_transfers[0].start_schedule_us = 941 ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME; 942 for (i = 1; i < qh->num_hs_transfers; i++) 943 qh->hs_transfers[i].start_schedule_us = 944 ((second_s_uframe + i - 1) % 945 DWC2_HS_SCHEDULE_UFRAMES) * 946 DWC2_HS_PERIODIC_US_PER_UFRAME; 947 948 /* Try to schedule with filled in hs_transfers above */ 949 for (i = 0; i < qh->num_hs_transfers; i++) { 950 err = dwc2_hs_pmap_schedule(hsotg, qh, true, i); 951 if (err) 952 break; 953 } 954 955 /* If we scheduled all w/out breaking out then we're all good */ 956 if (i == qh->num_hs_transfers) 957 break; 958 959 for (; i >= 0; i--) 960 dwc2_hs_pmap_unschedule(hsotg, qh, i); 961 962 if (qh->schedule_low_speed) 963 dwc2_ls_pmap_unschedule(hsotg, qh); 964 965 /* Try again starting in the next microframe */ 966 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME; 967 } 968 969 if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES) 970 return -ENOSPC; 971 972 return 0; 973 } 974 975 /** 976 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer. 977 * 978 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean 979 * interface. 980 * 981 * @hsotg: The HCD state structure for the DWC OTG controller. 982 * @qh: QH for the periodic transfer. 983 */ 984 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 985 { 986 /* In non-split host and device time are the same */ 987 WARN_ON(qh->host_us != qh->device_us); 988 WARN_ON(qh->host_interval != qh->device_interval); 989 WARN_ON(qh->num_hs_transfers != 1); 990 991 /* We'll have one transfer; init start to 0 before calling scheduler */ 992 qh->hs_transfers[0].start_schedule_us = 0; 993 qh->hs_transfers[0].duration_us = qh->host_us; 994 995 return dwc2_hs_pmap_schedule(hsotg, qh, false, 0); 996 } 997 998 /** 999 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer. 1000 * 1001 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean 1002 * interface. 1003 * 1004 * @hsotg: The HCD state structure for the DWC OTG controller. 1005 * @qh: QH for the periodic transfer. 1006 */ 1007 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1008 { 1009 /* In non-split host and device time are the same */ 1010 WARN_ON(qh->host_us != qh->device_us); 1011 WARN_ON(qh->host_interval != qh->device_interval); 1012 WARN_ON(!qh->schedule_low_speed); 1013 1014 /* Run on the main low speed schedule (no split = no hub = no TT) */ 1015 return dwc2_ls_pmap_schedule(hsotg, qh, 0); 1016 } 1017 1018 /** 1019 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer. 1020 * 1021 * Calls one of the 3 sub-function depending on what type of transfer this QH 1022 * is for. Also adds some printing. 1023 * 1024 * @hsotg: The HCD state structure for the DWC OTG controller. 1025 * @qh: QH for the periodic transfer. 1026 */ 1027 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1028 { 1029 int ret; 1030 1031 if (qh->dev_speed == USB_SPEED_HIGH) 1032 ret = dwc2_uframe_schedule_hs(hsotg, qh); 1033 else if (!qh->do_split) 1034 ret = dwc2_uframe_schedule_ls(hsotg, qh); 1035 else 1036 ret = dwc2_uframe_schedule_split(hsotg, qh); 1037 1038 if (ret) 1039 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret); 1040 else 1041 dwc2_qh_schedule_print(hsotg, qh); 1042 1043 return ret; 1044 } 1045 1046 /** 1047 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule(). 1048 * 1049 * @hsotg: The HCD state structure for the DWC OTG controller. 1050 * @qh: QH for the periodic transfer. 1051 */ 1052 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1053 { 1054 int i; 1055 1056 for (i = 0; i < qh->num_hs_transfers; i++) 1057 dwc2_hs_pmap_unschedule(hsotg, qh, i); 1058 1059 if (qh->schedule_low_speed) 1060 dwc2_ls_pmap_unschedule(hsotg, qh); 1061 1062 dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh); 1063 } 1064 1065 /** 1066 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled 1067 * 1068 * Takes a qh that has already been scheduled (which means we know we have the 1069 * bandwdith reserved for us) and set the next_active_frame and the 1070 * start_active_frame. 1071 * 1072 * This is expected to be called on qh's that weren't previously actively 1073 * running. It just picks the next frame that we can fit into without any 1074 * thought about the past. 1075 * 1076 * @hsotg: The HCD state structure for the DWC OTG controller 1077 * @qh: QH for a periodic endpoint 1078 * 1079 */ 1080 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1081 { 1082 u16 frame_number; 1083 u16 earliest_frame; 1084 u16 next_active_frame; 1085 u16 relative_frame; 1086 u16 interval; 1087 1088 /* 1089 * Use the real frame number rather than the cached value as of the 1090 * last SOF to give us a little extra slop. 1091 */ 1092 frame_number = dwc2_hcd_get_frame_number(hsotg); 1093 1094 /* 1095 * We wouldn't want to start any earlier than the next frame just in 1096 * case the frame number ticks as we're doing this calculation. 1097 * 1098 * NOTE: if we could quantify how long till we actually get scheduled 1099 * we might be able to avoid the "+ 1" by looking at the upper part of 1100 * HFNUM (the FRREM field). For now we'll just use the + 1 though. 1101 */ 1102 earliest_frame = dwc2_frame_num_inc(frame_number, 1); 1103 next_active_frame = earliest_frame; 1104 1105 /* Get the "no microframe schduler" out of the way... */ 1106 if (hsotg->core_params->uframe_sched <= 0) { 1107 if (qh->do_split) 1108 /* Splits are active at microframe 0 minus 1 */ 1109 next_active_frame |= 0x7; 1110 goto exit; 1111 } 1112 1113 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) { 1114 /* 1115 * We're either at high speed or we're doing a split (which 1116 * means we're talking high speed to a hub). In any case 1117 * the first frame should be based on when the first scheduled 1118 * event is. 1119 */ 1120 WARN_ON(qh->num_hs_transfers < 1); 1121 1122 relative_frame = qh->hs_transfers[0].start_schedule_us / 1123 DWC2_HS_PERIODIC_US_PER_UFRAME; 1124 1125 /* Adjust interval as per high speed schedule */ 1126 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES); 1127 1128 } else { 1129 /* 1130 * Low or full speed directly on dwc2. Just about the same 1131 * as high speed but on a different schedule and with slightly 1132 * different adjustments. Note that this works because when 1133 * the host and device are both low speed then frames in the 1134 * controller tick at low speed. 1135 */ 1136 relative_frame = qh->ls_start_schedule_slice / 1137 DWC2_LS_PERIODIC_SLICES_PER_FRAME; 1138 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES); 1139 } 1140 1141 /* Scheduler messed up if frame is past interval */ 1142 WARN_ON(relative_frame >= interval); 1143 1144 /* 1145 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've 1146 * done the gcd(), so it's safe to move to the beginning of the current 1147 * interval like this. 1148 * 1149 * After this we might be before earliest_frame, but don't worry, 1150 * we'll fix it... 1151 */ 1152 next_active_frame = (next_active_frame / interval) * interval; 1153 1154 /* 1155 * Actually choose to start at the frame number we've been 1156 * scheduled for. 1157 */ 1158 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1159 relative_frame); 1160 1161 /* 1162 * We actually need 1 frame before since the next_active_frame is 1163 * the frame number we'll be put on the ready list and we won't be on 1164 * the bus until 1 frame later. 1165 */ 1166 next_active_frame = dwc2_frame_num_dec(next_active_frame, 1); 1167 1168 /* 1169 * By now we might actually be before the earliest_frame. Let's move 1170 * up intervals until we're not. 1171 */ 1172 while (dwc2_frame_num_gt(earliest_frame, next_active_frame)) 1173 next_active_frame = dwc2_frame_num_inc(next_active_frame, 1174 interval); 1175 1176 exit: 1177 qh->next_active_frame = next_active_frame; 1178 qh->start_active_frame = next_active_frame; 1179 1180 dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n", 1181 qh, frame_number, qh->next_active_frame); 1182 } 1183 1184 /** 1185 * dwc2_do_reserve() - Make a periodic reservation 1186 * 1187 * Try to allocate space in the periodic schedule. Depending on parameters 1188 * this might use the microframe scheduler or the dumb scheduler. 1189 * 1190 * @hsotg: The HCD state structure for the DWC OTG controller 1191 * @qh: QH for the periodic transfer. 1192 * 1193 * Returns: 0 upon success; error upon failure. 1194 */ 1195 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1196 { 1197 int status; 1198 1199 if (hsotg->core_params->uframe_sched > 0) { 1200 status = dwc2_uframe_schedule(hsotg, qh); 1201 } else { 1202 status = dwc2_periodic_channel_available(hsotg); 1203 if (status) { 1204 dev_info(hsotg->dev, 1205 "%s: No host channel available for periodic transfer\n", 1206 __func__); 1207 return status; 1208 } 1209 1210 status = dwc2_check_periodic_bandwidth(hsotg, qh); 1211 } 1212 1213 if (status) { 1214 dev_dbg(hsotg->dev, 1215 "%s: Insufficient periodic bandwidth for periodic transfer\n", 1216 __func__); 1217 return status; 1218 } 1219 1220 if (hsotg->core_params->uframe_sched <= 0) 1221 /* Reserve periodic channel */ 1222 hsotg->periodic_channels++; 1223 1224 /* Update claimed usecs per (micro)frame */ 1225 hsotg->periodic_usecs += qh->host_us; 1226 1227 dwc2_pick_first_frame(hsotg, qh); 1228 1229 return 0; 1230 } 1231 1232 /** 1233 * dwc2_do_unreserve() - Actually release the periodic reservation 1234 * 1235 * This function actually releases the periodic bandwidth that was reserved 1236 * by the given qh. 1237 * 1238 * @hsotg: The HCD state structure for the DWC OTG controller 1239 * @qh: QH for the periodic transfer. 1240 */ 1241 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1242 { 1243 assert_spin_locked(&hsotg->lock); 1244 1245 WARN_ON(!qh->unreserve_pending); 1246 1247 /* No more unreserve pending--we're doing it */ 1248 qh->unreserve_pending = false; 1249 1250 if (WARN_ON(!list_empty(&qh->qh_list_entry))) 1251 list_del_init(&qh->qh_list_entry); 1252 1253 /* Update claimed usecs per (micro)frame */ 1254 hsotg->periodic_usecs -= qh->host_us; 1255 1256 if (hsotg->core_params->uframe_sched > 0) { 1257 dwc2_uframe_unschedule(hsotg, qh); 1258 } else { 1259 /* Release periodic channel reservation */ 1260 hsotg->periodic_channels--; 1261 } 1262 } 1263 1264 /** 1265 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation 1266 * 1267 * According to the kernel doc for usb_submit_urb() (specifically the part about 1268 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as 1269 * long as a device driver keeps submitting. Since we're using HCD_BH to give 1270 * back the URB we need to give the driver a little bit of time before we 1271 * release the reservation. This worker is called after the appropriate 1272 * delay. 1273 * 1274 * @work: Pointer to a qh unreserve_work. 1275 */ 1276 static void dwc2_unreserve_timer_fn(unsigned long data) 1277 { 1278 struct dwc2_qh *qh = (struct dwc2_qh *)data; 1279 struct dwc2_hsotg *hsotg = qh->hsotg; 1280 unsigned long flags; 1281 1282 /* 1283 * Wait for the lock, or for us to be scheduled again. We 1284 * could be scheduled again if: 1285 * - We started executing but didn't get the lock yet. 1286 * - A new reservation came in, but cancel didn't take effect 1287 * because we already started executing. 1288 * - The timer has been kicked again. 1289 * In that case cancel and wait for the next call. 1290 */ 1291 while (!spin_trylock_irqsave(&hsotg->lock, flags)) { 1292 if (timer_pending(&qh->unreserve_timer)) 1293 return; 1294 } 1295 1296 /* 1297 * Might be no more unreserve pending if: 1298 * - We started executing but didn't get the lock yet. 1299 * - A new reservation came in, but cancel didn't take effect 1300 * because we already started executing. 1301 * 1302 * We can't put this in the loop above because unreserve_pending needs 1303 * to be accessed under lock, so we can only check it once we got the 1304 * lock. 1305 */ 1306 if (qh->unreserve_pending) 1307 dwc2_do_unreserve(hsotg, qh); 1308 1309 spin_unlock_irqrestore(&hsotg->lock, flags); 1310 } 1311 1312 /** 1313 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a 1314 * host channel is large enough to handle the maximum data transfer in a single 1315 * (micro)frame for a periodic transfer 1316 * 1317 * @hsotg: The HCD state structure for the DWC OTG controller 1318 * @qh: QH for a periodic endpoint 1319 * 1320 * Return: 0 if successful, negative error code otherwise 1321 */ 1322 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg, 1323 struct dwc2_qh *qh) 1324 { 1325 u32 max_xfer_size; 1326 u32 max_channel_xfer_size; 1327 int status = 0; 1328 1329 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp); 1330 max_channel_xfer_size = hsotg->core_params->max_transfer_size; 1331 1332 if (max_xfer_size > max_channel_xfer_size) { 1333 dev_err(hsotg->dev, 1334 "%s: Periodic xfer length %d > max xfer length for channel %d\n", 1335 __func__, max_xfer_size, max_channel_xfer_size); 1336 status = -ENOSPC; 1337 } 1338 1339 return status; 1340 } 1341 1342 /** 1343 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in 1344 * the periodic schedule 1345 * 1346 * @hsotg: The HCD state structure for the DWC OTG controller 1347 * @qh: QH for the periodic transfer. The QH should already contain the 1348 * scheduling information. 1349 * 1350 * Return: 0 if successful, negative error code otherwise 1351 */ 1352 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1353 { 1354 int status; 1355 1356 status = dwc2_check_max_xfer_size(hsotg, qh); 1357 if (status) { 1358 dev_dbg(hsotg->dev, 1359 "%s: Channel max transfer size too small for periodic transfer\n", 1360 __func__); 1361 return status; 1362 } 1363 1364 /* Cancel pending unreserve; if canceled OK, unreserve was pending */ 1365 if (del_timer(&qh->unreserve_timer)) 1366 WARN_ON(!qh->unreserve_pending); 1367 1368 /* 1369 * Only need to reserve if there's not an unreserve pending, since if an 1370 * unreserve is pending then by definition our old reservation is still 1371 * valid. Unreserve might still be pending even if we didn't cancel if 1372 * dwc2_unreserve_timer_fn() already started. Code in the timer handles 1373 * that case. 1374 */ 1375 if (!qh->unreserve_pending) { 1376 status = dwc2_do_reserve(hsotg, qh); 1377 if (status) 1378 return status; 1379 } else { 1380 /* 1381 * It might have been a while, so make sure that frame_number 1382 * is still good. Note: we could also try to use the similar 1383 * dwc2_next_periodic_start() but that schedules much more 1384 * tightly and we might need to hurry and queue things up. 1385 */ 1386 if (dwc2_frame_num_le(qh->next_active_frame, 1387 hsotg->frame_number)) 1388 dwc2_pick_first_frame(hsotg, qh); 1389 } 1390 1391 qh->unreserve_pending = 0; 1392 1393 if (hsotg->core_params->dma_desc_enable > 0) 1394 /* Don't rely on SOF and start in ready schedule */ 1395 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready); 1396 else 1397 /* Always start in inactive schedule */ 1398 list_add_tail(&qh->qh_list_entry, 1399 &hsotg->periodic_sched_inactive); 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer 1406 * from the periodic schedule 1407 * 1408 * @hsotg: The HCD state structure for the DWC OTG controller 1409 * @qh: QH for the periodic transfer 1410 */ 1411 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg, 1412 struct dwc2_qh *qh) 1413 { 1414 bool did_modify; 1415 1416 assert_spin_locked(&hsotg->lock); 1417 1418 /* 1419 * Schedule the unreserve to happen in a little bit. Cases here: 1420 * - Unreserve worker might be sitting there waiting to grab the lock. 1421 * In this case it will notice it's been schedule again and will 1422 * quit. 1423 * - Unreserve worker might not be scheduled. 1424 * 1425 * We should never already be scheduled since dwc2_schedule_periodic() 1426 * should have canceled the scheduled unreserve timer (hence the 1427 * warning on did_modify). 1428 * 1429 * We add + 1 to the timer to guarantee that at least 1 jiffy has 1430 * passed (otherwise if the jiffy counter might tick right after we 1431 * read it and we'll get no delay). 1432 */ 1433 did_modify = mod_timer(&qh->unreserve_timer, 1434 jiffies + DWC2_UNRESERVE_DELAY + 1); 1435 WARN_ON(did_modify); 1436 qh->unreserve_pending = 1; 1437 1438 list_del_init(&qh->qh_list_entry); 1439 } 1440 1441 /** 1442 * dwc2_qh_init() - Initializes a QH structure 1443 * 1444 * @hsotg: The HCD state structure for the DWC OTG controller 1445 * @qh: The QH to init 1446 * @urb: Holds the information about the device/endpoint needed to initialize 1447 * the QH 1448 * @mem_flags: Flags for allocating memory. 1449 */ 1450 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1451 struct dwc2_hcd_urb *urb, gfp_t mem_flags) 1452 { 1453 int dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 1454 u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info); 1455 bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info); 1456 bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC); 1457 bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT); 1458 u32 hprt = dwc2_readl(hsotg->regs + HPRT0); 1459 u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 1460 bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED && 1461 dev_speed != USB_SPEED_HIGH); 1462 int maxp = dwc2_hcd_get_mps(&urb->pipe_info); 1463 int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp); 1464 char *speed, *type; 1465 1466 /* Initialize QH */ 1467 qh->hsotg = hsotg; 1468 setup_timer(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 1469 (unsigned long)qh); 1470 qh->ep_type = ep_type; 1471 qh->ep_is_in = ep_is_in; 1472 1473 qh->data_toggle = DWC2_HC_PID_DATA0; 1474 qh->maxp = maxp; 1475 INIT_LIST_HEAD(&qh->qtd_list); 1476 INIT_LIST_HEAD(&qh->qh_list_entry); 1477 1478 qh->do_split = do_split; 1479 qh->dev_speed = dev_speed; 1480 1481 if (ep_is_int || ep_is_isoc) { 1482 /* Compute scheduling parameters once and save them */ 1483 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed; 1484 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv, 1485 mem_flags, 1486 &qh->ttport); 1487 int device_ns; 1488 1489 qh->dwc_tt = dwc_tt; 1490 1491 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in, 1492 ep_is_isoc, bytecount)); 1493 device_ns = usb_calc_bus_time(dev_speed, ep_is_in, 1494 ep_is_isoc, bytecount); 1495 1496 if (do_split && dwc_tt) 1497 device_ns += dwc_tt->usb_tt->think_time; 1498 qh->device_us = NS_TO_US(device_ns); 1499 1500 1501 qh->device_interval = urb->interval; 1502 qh->host_interval = urb->interval * (do_split ? 8 : 1); 1503 1504 /* 1505 * Schedule low speed if we're running the host in low or 1506 * full speed OR if we've got a "TT" to deal with to access this 1507 * device. 1508 */ 1509 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED || 1510 dwc_tt; 1511 1512 if (do_split) { 1513 /* We won't know num transfers until we schedule */ 1514 qh->num_hs_transfers = -1; 1515 } else if (dev_speed == USB_SPEED_HIGH) { 1516 qh->num_hs_transfers = 1; 1517 } else { 1518 qh->num_hs_transfers = 0; 1519 } 1520 1521 /* We'll schedule later when we have something to do */ 1522 } 1523 1524 switch (dev_speed) { 1525 case USB_SPEED_LOW: 1526 speed = "low"; 1527 break; 1528 case USB_SPEED_FULL: 1529 speed = "full"; 1530 break; 1531 case USB_SPEED_HIGH: 1532 speed = "high"; 1533 break; 1534 default: 1535 speed = "?"; 1536 break; 1537 } 1538 1539 switch (qh->ep_type) { 1540 case USB_ENDPOINT_XFER_ISOC: 1541 type = "isochronous"; 1542 break; 1543 case USB_ENDPOINT_XFER_INT: 1544 type = "interrupt"; 1545 break; 1546 case USB_ENDPOINT_XFER_CONTROL: 1547 type = "control"; 1548 break; 1549 case USB_ENDPOINT_XFER_BULK: 1550 type = "bulk"; 1551 break; 1552 default: 1553 type = "?"; 1554 break; 1555 } 1556 1557 dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type, 1558 speed, bytecount); 1559 dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh, 1560 dwc2_hcd_get_dev_addr(&urb->pipe_info), 1561 dwc2_hcd_get_ep_num(&urb->pipe_info), 1562 ep_is_in ? "IN" : "OUT"); 1563 if (ep_is_int || ep_is_isoc) { 1564 dwc2_sch_dbg(hsotg, 1565 "QH=%p ...duration: host=%d us, device=%d us\n", 1566 qh, qh->host_us, qh->device_us); 1567 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n", 1568 qh, qh->host_interval, qh->device_interval); 1569 if (qh->schedule_low_speed) 1570 dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n", 1571 qh, dwc2_get_ls_map(hsotg, qh)); 1572 } 1573 } 1574 1575 /** 1576 * dwc2_hcd_qh_create() - Allocates and initializes a QH 1577 * 1578 * @hsotg: The HCD state structure for the DWC OTG controller 1579 * @urb: Holds the information about the device/endpoint needed 1580 * to initialize the QH 1581 * @atomic_alloc: Flag to do atomic allocation if needed 1582 * 1583 * Return: Pointer to the newly allocated QH, or NULL on error 1584 */ 1585 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, 1586 struct dwc2_hcd_urb *urb, 1587 gfp_t mem_flags) 1588 { 1589 struct dwc2_qh *qh; 1590 1591 if (!urb->priv) 1592 return NULL; 1593 1594 /* Allocate memory */ 1595 qh = kzalloc(sizeof(*qh), mem_flags); 1596 if (!qh) 1597 return NULL; 1598 1599 dwc2_qh_init(hsotg, qh, urb, mem_flags); 1600 1601 if (hsotg->core_params->dma_desc_enable > 0 && 1602 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) { 1603 dwc2_hcd_qh_free(hsotg, qh); 1604 return NULL; 1605 } 1606 1607 return qh; 1608 } 1609 1610 /** 1611 * dwc2_hcd_qh_free() - Frees the QH 1612 * 1613 * @hsotg: HCD instance 1614 * @qh: The QH to free 1615 * 1616 * QH should already be removed from the list. QTD list should already be empty 1617 * if called from URB Dequeue. 1618 * 1619 * Must NOT be called with interrupt disabled or spinlock held 1620 */ 1621 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1622 { 1623 /* Make sure any unreserve work is finished. */ 1624 if (del_timer_sync(&qh->unreserve_timer)) { 1625 unsigned long flags; 1626 1627 spin_lock_irqsave(&hsotg->lock, flags); 1628 dwc2_do_unreserve(hsotg, qh); 1629 spin_unlock_irqrestore(&hsotg->lock, flags); 1630 } 1631 dwc2_host_put_tt_info(hsotg, qh->dwc_tt); 1632 1633 if (qh->desc_list) 1634 dwc2_hcd_qh_free_ddma(hsotg, qh); 1635 kfree(qh); 1636 } 1637 1638 /** 1639 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic 1640 * schedule if it is not already in the schedule. If the QH is already in 1641 * the schedule, no action is taken. 1642 * 1643 * @hsotg: The HCD state structure for the DWC OTG controller 1644 * @qh: The QH to add 1645 * 1646 * Return: 0 if successful, negative error code otherwise 1647 */ 1648 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1649 { 1650 int status; 1651 u32 intr_mask; 1652 1653 if (dbg_qh(qh)) 1654 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1655 1656 if (!list_empty(&qh->qh_list_entry)) 1657 /* QH already in a schedule */ 1658 return 0; 1659 1660 /* Add the new QH to the appropriate schedule */ 1661 if (dwc2_qh_is_non_per(qh)) { 1662 /* Schedule right away */ 1663 qh->start_active_frame = hsotg->frame_number; 1664 qh->next_active_frame = qh->start_active_frame; 1665 1666 /* Always start in inactive schedule */ 1667 list_add_tail(&qh->qh_list_entry, 1668 &hsotg->non_periodic_sched_inactive); 1669 return 0; 1670 } 1671 1672 status = dwc2_schedule_periodic(hsotg, qh); 1673 if (status) 1674 return status; 1675 if (!hsotg->periodic_qh_count) { 1676 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 1677 intr_mask |= GINTSTS_SOF; 1678 dwc2_writel(intr_mask, hsotg->regs + GINTMSK); 1679 } 1680 hsotg->periodic_qh_count++; 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic 1687 * schedule. Memory is not freed. 1688 * 1689 * @hsotg: The HCD state structure 1690 * @qh: QH to remove from schedule 1691 */ 1692 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 1693 { 1694 u32 intr_mask; 1695 1696 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1697 1698 if (list_empty(&qh->qh_list_entry)) 1699 /* QH is not in a schedule */ 1700 return; 1701 1702 if (dwc2_qh_is_non_per(qh)) { 1703 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry) 1704 hsotg->non_periodic_qh_ptr = 1705 hsotg->non_periodic_qh_ptr->next; 1706 list_del_init(&qh->qh_list_entry); 1707 return; 1708 } 1709 1710 dwc2_deschedule_periodic(hsotg, qh); 1711 hsotg->periodic_qh_count--; 1712 if (!hsotg->periodic_qh_count && 1713 hsotg->core_params->dma_desc_enable <= 0) { 1714 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 1715 intr_mask &= ~GINTSTS_SOF; 1716 dwc2_writel(intr_mask, hsotg->regs + GINTMSK); 1717 } 1718 } 1719 1720 /** 1721 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split. 1722 * 1723 * This is called for setting next_active_frame for periodic splits for all but 1724 * the first packet of the split. Confusing? I thought so... 1725 * 1726 * Periodic splits are single low/full speed transfers that we end up splitting 1727 * up into several high speed transfers. They always fit into one full (1 ms) 1728 * frame but might be split over several microframes (125 us each). We to put 1729 * each of the parts on a very specific high speed frame. 1730 * 1731 * This function figures out where the next active uFrame needs to be. 1732 * 1733 * @hsotg: The HCD state structure 1734 * @qh: QH for the periodic transfer. 1735 * @frame_number: The current frame number. 1736 * 1737 * Return: number missed by (or 0 if we didn't miss). 1738 */ 1739 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg, 1740 struct dwc2_qh *qh, u16 frame_number) 1741 { 1742 u16 old_frame = qh->next_active_frame; 1743 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1744 int missed = 0; 1745 u16 incr; 1746 1747 /* 1748 * See dwc2_uframe_schedule_split() for split scheduling. 1749 * 1750 * Basically: increment 1 normally, but 2 right after the start split 1751 * (except for ISOC out). 1752 */ 1753 if (old_frame == qh->start_active_frame && 1754 !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)) 1755 incr = 2; 1756 else 1757 incr = 1; 1758 1759 qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr); 1760 1761 /* 1762 * Note that it's OK for frame_number to be 1 frame past 1763 * next_active_frame. Remember that next_active_frame is supposed to 1764 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame 1765 * past it just means schedule ASAP. 1766 * 1767 * It's _not_ OK, however, if we're more than one frame past. 1768 */ 1769 if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) { 1770 /* 1771 * OOPS, we missed. That's actually pretty bad since 1772 * the hub will be unhappy; try ASAP I guess. 1773 */ 1774 missed = dwc2_frame_num_dec(prev_frame_number, 1775 qh->next_active_frame); 1776 qh->next_active_frame = frame_number; 1777 } 1778 1779 return missed; 1780 } 1781 1782 /** 1783 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start 1784 * 1785 * This is called for setting next_active_frame for a periodic transfer for 1786 * all cases other than midway through a periodic split. This will also update 1787 * start_active_frame. 1788 * 1789 * Since we _always_ keep start_active_frame as the start of the previous 1790 * transfer this is normally pretty easy: we just add our interval to 1791 * start_active_frame and we've got our answer. 1792 * 1793 * The tricks come into play if we miss. In that case we'll look for the next 1794 * slot we can fit into. 1795 * 1796 * @hsotg: The HCD state structure 1797 * @qh: QH for the periodic transfer. 1798 * @frame_number: The current frame number. 1799 * 1800 * Return: number missed by (or 0 if we didn't miss). 1801 */ 1802 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg, 1803 struct dwc2_qh *qh, u16 frame_number) 1804 { 1805 int missed = 0; 1806 u16 interval = qh->host_interval; 1807 u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1); 1808 1809 qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame, 1810 interval); 1811 1812 /* 1813 * The dwc2_frame_num_gt() function used below won't work terribly well 1814 * with if we just incremented by a really large intervals since the 1815 * frame counter only goes to 0x3fff. It's terribly unlikely that we 1816 * will have missed in this case anyway. Just go to exit. If we want 1817 * to try to do better we'll need to keep track of a bigger counter 1818 * somewhere in the driver and handle overflows. 1819 */ 1820 if (interval >= 0x1000) 1821 goto exit; 1822 1823 /* 1824 * Test for misses, which is when it's too late to schedule. 1825 * 1826 * A few things to note: 1827 * - We compare against prev_frame_number since start_active_frame 1828 * and next_active_frame are always 1 frame before we want things 1829 * to be active and we assume we can still get scheduled in the 1830 * current frame number. 1831 * - It's possible for start_active_frame (now incremented) to be 1832 * next_active_frame if we got an EO MISS (even_odd miss) which 1833 * basically means that we detected there wasn't enough time for 1834 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us 1835 * at the last second. We want to make sure we don't schedule 1836 * another transfer for the same frame. My test webcam doesn't seem 1837 * terribly upset by missing a transfer but really doesn't like when 1838 * we do two transfers in the same frame. 1839 * - Some misses are expected. Specifically, in order to work 1840 * perfectly dwc2 really needs quite spectacular interrupt latency 1841 * requirements. It needs to be able to handle its interrupts 1842 * completely within 125 us of them being asserted. That not only 1843 * means that the dwc2 interrupt handler needs to be fast but it 1844 * means that nothing else in the system has to block dwc2 for a long 1845 * time. We can help with the dwc2 parts of this, but it's hard to 1846 * guarantee that a system will have interrupt latency < 125 us, so 1847 * we have to be robust to some misses. 1848 */ 1849 if (qh->start_active_frame == qh->next_active_frame || 1850 dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) { 1851 u16 ideal_start = qh->start_active_frame; 1852 int periods_in_map; 1853 1854 /* 1855 * Adjust interval as per gcd with map size. 1856 * See pmap_schedule() for more details here. 1857 */ 1858 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH) 1859 periods_in_map = DWC2_HS_SCHEDULE_UFRAMES; 1860 else 1861 periods_in_map = DWC2_LS_SCHEDULE_FRAMES; 1862 interval = gcd(interval, periods_in_map); 1863 1864 do { 1865 qh->start_active_frame = dwc2_frame_num_inc( 1866 qh->start_active_frame, interval); 1867 } while (dwc2_frame_num_gt(prev_frame_number, 1868 qh->start_active_frame)); 1869 1870 missed = dwc2_frame_num_dec(qh->start_active_frame, 1871 ideal_start); 1872 } 1873 1874 exit: 1875 qh->next_active_frame = qh->start_active_frame; 1876 1877 return missed; 1878 } 1879 1880 /* 1881 * Deactivates a QH. For non-periodic QHs, removes the QH from the active 1882 * non-periodic schedule. The QH is added to the inactive non-periodic 1883 * schedule if any QTDs are still attached to the QH. 1884 * 1885 * For periodic QHs, the QH is removed from the periodic queued schedule. If 1886 * there are any QTDs still attached to the QH, the QH is added to either the 1887 * periodic inactive schedule or the periodic ready schedule and its next 1888 * scheduled frame is calculated. The QH is placed in the ready schedule if 1889 * the scheduled frame has been reached already. Otherwise it's placed in the 1890 * inactive schedule. If there are no QTDs attached to the QH, the QH is 1891 * completely removed from the periodic schedule. 1892 */ 1893 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, 1894 int sched_next_periodic_split) 1895 { 1896 u16 old_frame = qh->next_active_frame; 1897 u16 frame_number; 1898 int missed; 1899 1900 if (dbg_qh(qh)) 1901 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1902 1903 if (dwc2_qh_is_non_per(qh)) { 1904 dwc2_hcd_qh_unlink(hsotg, qh); 1905 if (!list_empty(&qh->qtd_list)) 1906 /* Add back to inactive non-periodic schedule */ 1907 dwc2_hcd_qh_add(hsotg, qh); 1908 return; 1909 } 1910 1911 /* 1912 * Use the real frame number rather than the cached value as of the 1913 * last SOF just to get us a little closer to reality. Note that 1914 * means we don't actually know if we've already handled the SOF 1915 * interrupt for this frame. 1916 */ 1917 frame_number = dwc2_hcd_get_frame_number(hsotg); 1918 1919 if (sched_next_periodic_split) 1920 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number); 1921 else 1922 missed = dwc2_next_periodic_start(hsotg, qh, frame_number); 1923 1924 dwc2_sch_vdbg(hsotg, 1925 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n", 1926 qh, sched_next_periodic_split, frame_number, old_frame, 1927 qh->next_active_frame, 1928 dwc2_frame_num_dec(qh->next_active_frame, old_frame), 1929 missed, missed ? "MISS" : ""); 1930 1931 if (list_empty(&qh->qtd_list)) { 1932 dwc2_hcd_qh_unlink(hsotg, qh); 1933 return; 1934 } 1935 1936 /* 1937 * Remove from periodic_sched_queued and move to 1938 * appropriate queue 1939 * 1940 * Note: we purposely use the frame_number from the "hsotg" structure 1941 * since we know SOF interrupt will handle future frames. 1942 */ 1943 if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number)) 1944 list_move_tail(&qh->qh_list_entry, 1945 &hsotg->periodic_sched_ready); 1946 else 1947 list_move_tail(&qh->qh_list_entry, 1948 &hsotg->periodic_sched_inactive); 1949 } 1950 1951 /** 1952 * dwc2_hcd_qtd_init() - Initializes a QTD structure 1953 * 1954 * @qtd: The QTD to initialize 1955 * @urb: The associated URB 1956 */ 1957 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 1958 { 1959 qtd->urb = urb; 1960 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) == 1961 USB_ENDPOINT_XFER_CONTROL) { 1962 /* 1963 * The only time the QTD data toggle is used is on the data 1964 * phase of control transfers. This phase always starts with 1965 * DATA1. 1966 */ 1967 qtd->data_toggle = DWC2_HC_PID_DATA1; 1968 qtd->control_phase = DWC2_CONTROL_SETUP; 1969 } 1970 1971 /* Start split */ 1972 qtd->complete_split = 0; 1973 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL; 1974 qtd->isoc_split_offset = 0; 1975 qtd->in_process = 0; 1976 1977 /* Store the qtd ptr in the urb to reference the QTD */ 1978 urb->qtd = qtd; 1979 } 1980 1981 /** 1982 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH 1983 * Caller must hold driver lock. 1984 * 1985 * @hsotg: The DWC HCD structure 1986 * @qtd: The QTD to add 1987 * @qh: Queue head to add qtd to 1988 * 1989 * Return: 0 if successful, negative error code otherwise 1990 * 1991 * If the QH to which the QTD is added is not currently scheduled, it is placed 1992 * into the proper schedule based on its EP type. 1993 */ 1994 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 1995 struct dwc2_qh *qh) 1996 { 1997 int retval; 1998 1999 if (unlikely(!qh)) { 2000 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__); 2001 retval = -EINVAL; 2002 goto fail; 2003 } 2004 2005 retval = dwc2_hcd_qh_add(hsotg, qh); 2006 if (retval) 2007 goto fail; 2008 2009 qtd->qh = qh; 2010 list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); 2011 2012 return 0; 2013 fail: 2014 return retval; 2015 } 2016