xref: /linux/drivers/usb/dwc2/hcd.h (revision e80a48bade619ec5a92230b3d4ae84bfc2746822)
1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
2 /*
3  * hcd.h - DesignWare HS OTG Controller host-mode declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  */
7 
8 #ifndef __DWC2_HCD_H__
9 #define __DWC2_HCD_H__
10 
11 /*
12  * This file contains the structures, constants, and interfaces for the
13  * Host Contoller Driver (HCD)
14  *
15  * The Host Controller Driver (HCD) is responsible for translating requests
16  * from the USB Driver into the appropriate actions on the DWC_otg controller.
17  * It isolates the USBD from the specifics of the controller by providing an
18  * API to the USBD.
19  */
20 
21 struct dwc2_qh;
22 
23 /**
24  * struct dwc2_host_chan - Software host channel descriptor
25  *
26  * @hc_num:             Host channel number, used for register address lookup
27  * @dev_addr:           Address of the device
28  * @ep_num:             Endpoint of the device
29  * @ep_is_in:           Endpoint direction
30  * @speed:              Device speed. One of the following values:
31  *                       - USB_SPEED_LOW
32  *                       - USB_SPEED_FULL
33  *                       - USB_SPEED_HIGH
34  * @ep_type:            Endpoint type. One of the following values:
35  *                       - USB_ENDPOINT_XFER_CONTROL: 0
36  *                       - USB_ENDPOINT_XFER_ISOC:    1
37  *                       - USB_ENDPOINT_XFER_BULK:    2
38  *                       - USB_ENDPOINT_XFER_INTR:    3
39  * @max_packet:         Max packet size in bytes
40  * @data_pid_start:     PID for initial transaction.
41  *                       0: DATA0
42  *                       1: DATA2
43  *                       2: DATA1
44  *                       3: MDATA (non-Control EP),
45  *                          SETUP (Control EP)
46  * @multi_count:        Number of additional periodic transactions per
47  *                      (micro)frame
48  * @xfer_buf:           Pointer to current transfer buffer position
49  * @xfer_dma:           DMA address of xfer_buf
50  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
51  *                      DWORD aligned
52  * @xfer_len:           Total number of bytes to transfer
53  * @xfer_count:         Number of bytes transferred so far
54  * @start_pkt_count:    Packet count at start of transfer
55  * @xfer_started:       True if the transfer has been started
56  * @do_ping:            True if a PING request should be issued on this channel
57  * @error_state:        True if the error count for this transaction is non-zero
58  * @halt_on_queue:      True if this channel should be halted the next time a
59  *                      request is queued for the channel. This is necessary in
60  *                      slave mode if no request queue space is available when
61  *                      an attempt is made to halt the channel.
62  * @halt_pending:       True if the host channel has been halted, but the core
63  *                      is not finished flushing queued requests
64  * @do_split:           Enable split for the channel
65  * @complete_split:     Enable complete split
66  * @hub_addr:           Address of high speed hub for the split
67  * @hub_port:           Port of the low/full speed device for the split
68  * @xact_pos:           Split transaction position. One of the following values:
69  *                       - DWC2_HCSPLT_XACTPOS_MID
70  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
71  *                       - DWC2_HCSPLT_XACTPOS_END
72  *                       - DWC2_HCSPLT_XACTPOS_ALL
73  * @requests:           Number of requests issued for this channel since it was
74  *                      assigned to the current transfer (not counting PINGs)
75  * @schinfo:            Scheduling micro-frame bitmap
76  * @ntd:                Number of transfer descriptors for the transfer
77  * @halt_status:        Reason for halting the host channel
78  * @hcint:               Contents of the HCINT register when the interrupt came
79  * @qh:                 QH for the transfer being processed by this channel
80  * @hc_list_entry:      For linking to list of host channels
81  * @desc_list_addr:     Current QH's descriptor list DMA address
82  * @desc_list_sz:       Current QH's descriptor list size
83  * @split_order_list_entry: List entry for keeping track of the order of splits
84  *
85  * This structure represents the state of a single host channel when acting in
86  * host mode. It contains the data items needed to transfer packets to an
87  * endpoint via a host channel.
88  */
89 struct dwc2_host_chan {
90 	u8 hc_num;
91 
92 	unsigned dev_addr:7;
93 	unsigned ep_num:4;
94 	unsigned ep_is_in:1;
95 	unsigned speed:4;
96 	unsigned ep_type:2;
97 	unsigned max_packet:11;
98 	unsigned data_pid_start:2;
99 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
100 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
101 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
102 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
103 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
104 
105 	unsigned multi_count:2;
106 
107 	u8 *xfer_buf;
108 	dma_addr_t xfer_dma;
109 	dma_addr_t align_buf;
110 	u32 xfer_len;
111 	u32 xfer_count;
112 	u16 start_pkt_count;
113 	u8 xfer_started;
114 	u8 do_ping;
115 	u8 error_state;
116 	u8 halt_on_queue;
117 	u8 halt_pending;
118 	u8 do_split;
119 	u8 complete_split;
120 	u8 hub_addr;
121 	u8 hub_port;
122 	u8 xact_pos;
123 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
124 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
125 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
126 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
127 
128 	u8 requests;
129 	u8 schinfo;
130 	u16 ntd;
131 	enum dwc2_halt_status halt_status;
132 	u32 hcint;
133 	struct dwc2_qh *qh;
134 	struct list_head hc_list_entry;
135 	dma_addr_t desc_list_addr;
136 	u32 desc_list_sz;
137 	struct list_head split_order_list_entry;
138 };
139 
140 struct dwc2_hcd_pipe_info {
141 	u8 dev_addr;
142 	u8 ep_num;
143 	u8 pipe_type;
144 	u8 pipe_dir;
145 	u16 maxp;
146 	u16 maxp_mult;
147 };
148 
149 struct dwc2_hcd_iso_packet_desc {
150 	u32 offset;
151 	u32 length;
152 	u32 actual_length;
153 	u32 status;
154 };
155 
156 struct dwc2_qtd;
157 
158 struct dwc2_hcd_urb {
159 	void *priv;
160 	struct dwc2_qtd *qtd;
161 	void *buf;
162 	dma_addr_t dma;
163 	void *setup_packet;
164 	dma_addr_t setup_dma;
165 	u32 length;
166 	u32 actual_length;
167 	u32 status;
168 	u32 error_count;
169 	u32 packet_count;
170 	u32 flags;
171 	u16 interval;
172 	struct dwc2_hcd_pipe_info pipe_info;
173 	struct dwc2_hcd_iso_packet_desc iso_descs[];
174 };
175 
176 /* Phases for control transfers */
177 enum dwc2_control_phase {
178 	DWC2_CONTROL_SETUP,
179 	DWC2_CONTROL_DATA,
180 	DWC2_CONTROL_STATUS,
181 };
182 
183 /* Transaction types */
184 enum dwc2_transaction_type {
185 	DWC2_TRANSACTION_NONE,
186 	DWC2_TRANSACTION_PERIODIC,
187 	DWC2_TRANSACTION_NON_PERIODIC,
188 	DWC2_TRANSACTION_ALL,
189 };
190 
191 /* The number of elements per LS bitmap (per port on multi_tt) */
192 #define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
193 						     BITS_PER_LONG)
194 
195 /**
196  * struct dwc2_tt - dwc2 data associated with a usb_tt
197  *
198  * @refcount:           Number of Queue Heads (QHs) holding a reference.
199  * @usb_tt:             Pointer back to the official usb_tt.
200  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
201  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
202  *			elements (so sizeof(long) times that in bytes).
203  *
204  * This structure is stored in the hcpriv of the official usb_tt.
205  */
206 struct dwc2_tt {
207 	int refcount;
208 	struct usb_tt *usb_tt;
209 	unsigned long periodic_bitmaps[];
210 };
211 
212 /**
213  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
214  *
215  * @start_schedule_us:  The start time on the main bus schedule.  Note that
216  *                         the main bus schedule is tightly packed and this
217  *			   time should be interpreted as tightly packed (so
218  *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
219  *			   instead of 125 us).
220  * @duration_us:           How long this transfer goes.
221  */
222 
223 struct dwc2_hs_transfer_time {
224 	u32 start_schedule_us;
225 	u16 duration_us;
226 };
227 
228 /**
229  * struct dwc2_qh - Software queue head structure
230  *
231  * @hsotg:              The HCD state structure for the DWC OTG controller
232  * @ep_type:            Endpoint type. One of the following values:
233  *                       - USB_ENDPOINT_XFER_CONTROL
234  *                       - USB_ENDPOINT_XFER_BULK
235  *                       - USB_ENDPOINT_XFER_INT
236  *                       - USB_ENDPOINT_XFER_ISOC
237  * @ep_is_in:           Endpoint direction
238  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
239  * @maxp_mult:          Multiplier for maxp
240  * @dev_speed:          Device speed. One of the following values:
241  *                       - USB_SPEED_LOW
242  *                       - USB_SPEED_FULL
243  *                       - USB_SPEED_HIGH
244  * @data_toggle:        Determines the PID of the next data packet for
245  *                      non-controltransfers. Ignored for control transfers.
246  *                      One of the following values:
247  *                       - DWC2_HC_PID_DATA0
248  *                       - DWC2_HC_PID_DATA1
249  * @ping_state:         Ping state
250  * @do_split:           Full/low speed endpoint on high-speed hub requires split
251  * @td_first:           Index of first activated isochronous transfer descriptor
252  * @td_last:            Index of last activated isochronous transfer descriptor
253  * @host_us:            Bandwidth in microseconds per transfer as seen by host
254  * @device_us:          Bandwidth in microseconds per transfer as seen by device
255  * @host_interval:      Interval between transfers as seen by the host.  If
256  *                      the host is high speed and the device is low speed this
257  *                      will be 8 times device interval.
258  * @device_interval:    Interval between transfers as seen by the device.
259  *                      interval.
260  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
261  *                      the bus.  We'll move the qh to active here.  If the
262  *                      host is in high speed mode this will be a uframe.  If
263  *                      the host is in low speed mode this will be a full frame.
264  * @start_active_frame: If we are partway through a split transfer, this will be
265  *			what next_active_frame was when we started.  Otherwise
266  *			it should always be the same as next_active_frame.
267  * @num_hs_transfers:   Number of transfers in hs_transfers.
268  *                      Normally this is 1 but can be more than one for splits.
269  *                      Always >= 1 unless the host is in low/full speed mode.
270  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
271  *                      bus.  Not used if host is in low or full speed mode (but
272  *                      note that it IS USED if the device is low or full speed
273  *                      as long as the HOST is in high speed mode).
274  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
275  *                           schedule that's being used by this device.  This
276  *			     will be on the periodic_bitmap in a
277  *                           "struct dwc2_tt".  Not used if this device is high
278  *                           speed.  Note that this is in "schedule slice" which
279  *                           is tightly packed.
280  * @ntd:                Actual number of transfer descriptors in a list
281  * @dw_align_buf:       Used instead of original buffer if its physical address
282  *                      is not dword-aligned
283  * @dw_align_buf_dma:   DMA address for dw_align_buf
284  * @qtd_list:           List of QTDs for this QH
285  * @channel:            Host channel currently processing transfers for this QH
286  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
287  *                      schedule
288  * @desc_list:          List of transfer descriptors
289  * @desc_list_dma:      Physical address of desc_list
290  * @desc_list_sz:       Size of descriptors list
291  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
292  *                      descriptor and indicates original XferSize value for the
293  *                      descriptor
294  * @unreserve_timer:    Timer for releasing periodic reservation.
295  * @wait_timer:         Timer used to wait before re-queuing.
296  * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
297  * @ttport:             Port number within our tt.
298  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
299  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
300  * @schedule_low_speed: True if we have a low/full speed component (either the
301  *			host is in low/full speed mode or do_split).
302  * @want_wait:          We should wait before re-queuing; only matters for non-
303  *                      periodic transfers and is ignored for periodic ones.
304  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
305  *
306  * @tt_buffer_dirty:	True if EP's TT buffer is not clean.
307  * A Queue Head (QH) holds the static characteristics of an endpoint and
308  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
309  * be entered in either the non-periodic or periodic schedule.
310  */
311 struct dwc2_qh {
312 	struct dwc2_hsotg *hsotg;
313 	u8 ep_type;
314 	u8 ep_is_in;
315 	u16 maxp;
316 	u16 maxp_mult;
317 	u8 dev_speed;
318 	u8 data_toggle;
319 	u8 ping_state;
320 	u8 do_split;
321 	u8 td_first;
322 	u8 td_last;
323 	u16 host_us;
324 	u16 device_us;
325 	u16 host_interval;
326 	u16 device_interval;
327 	u16 next_active_frame;
328 	u16 start_active_frame;
329 	s16 num_hs_transfers;
330 	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
331 	u32 ls_start_schedule_slice;
332 	u16 ntd;
333 	u8 *dw_align_buf;
334 	dma_addr_t dw_align_buf_dma;
335 	struct list_head qtd_list;
336 	struct dwc2_host_chan *channel;
337 	struct list_head qh_list_entry;
338 	struct dwc2_dma_desc *desc_list;
339 	dma_addr_t desc_list_dma;
340 	u32 desc_list_sz;
341 	u32 *n_bytes;
342 	struct timer_list unreserve_timer;
343 	struct hrtimer wait_timer;
344 	struct dwc2_tt *dwc_tt;
345 	int ttport;
346 	unsigned tt_buffer_dirty:1;
347 	unsigned unreserve_pending:1;
348 	unsigned schedule_low_speed:1;
349 	unsigned want_wait:1;
350 	unsigned wait_timer_cancel:1;
351 };
352 
353 /**
354  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
355  *
356  * @control_phase:      Current phase for control transfers (Setup, Data, or
357  *                      Status)
358  * @in_process:         Indicates if this QTD is currently processed by HW
359  * @data_toggle:        Determines the PID of the next data packet for the
360  *                      data phase of control transfers. Ignored for other
361  *                      transfer types. One of the following values:
362  *                       - DWC2_HC_PID_DATA0
363  *                       - DWC2_HC_PID_DATA1
364  * @complete_split:     Keeps track of the current split type for FS/LS
365  *                      endpoints on a HS Hub
366  * @isoc_split_pos:     Position of the ISOC split in full/low speed
367  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
368  *                      transfer. A frame descriptor describes the buffer
369  *                      position and length of the data to be transferred in the
370  *                      next scheduled (micro)frame of an isochronous transfer.
371  *                      It also holds status for that transaction. The frame
372  *                      index starts at 0.
373  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
374  *                      current frame
375  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
376  * @error_count:        Holds the number of bus errors that have occurred for
377  *                      a transaction within this transfer
378  * @n_desc:             Number of DMA descriptors for this QTD
379  * @isoc_frame_index_last: Last activated frame (packet) index, used in
380  *                      descriptor DMA mode only
381  * @num_naks:           Number of NAKs received on this QTD.
382  * @urb:                URB for this transfer
383  * @qh:                 Queue head for this QTD
384  * @qtd_list_entry:     For linking to the QH's list of QTDs
385  * @isoc_td_first:	Index of first activated isochronous transfer
386  *			descriptor in Descriptor DMA mode
387  * @isoc_td_last:	Index of last activated isochronous transfer
388  *			descriptor in Descriptor DMA mode
389  *
390  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
391  * interrupt, or isochronous transfer. A single QTD is created for each URB
392  * (of one of these types) submitted to the HCD. The transfer associated with
393  * a QTD may require one or multiple transactions.
394  *
395  * A QTD is linked to a Queue Head, which is entered in either the
396  * non-periodic or periodic schedule for execution. When a QTD is chosen for
397  * execution, some or all of its transactions may be executed. After
398  * execution, the state of the QTD is updated. The QTD may be retired if all
399  * its transactions are complete or if an error occurred. Otherwise, it
400  * remains in the schedule so more transactions can be executed later.
401  */
402 struct dwc2_qtd {
403 	enum dwc2_control_phase control_phase;
404 	u8 in_process;
405 	u8 data_toggle;
406 	u8 complete_split;
407 	u8 isoc_split_pos;
408 	u16 isoc_frame_index;
409 	u16 isoc_split_offset;
410 	u16 isoc_td_last;
411 	u16 isoc_td_first;
412 	u32 ssplit_out_xfer_count;
413 	u8 error_count;
414 	u8 n_desc;
415 	u16 isoc_frame_index_last;
416 	u16 num_naks;
417 	struct dwc2_hcd_urb *urb;
418 	struct dwc2_qh *qh;
419 	struct list_head qtd_list_entry;
420 };
421 
422 #ifdef DEBUG
423 struct hc_xfer_info {
424 	struct dwc2_hsotg *hsotg;
425 	struct dwc2_host_chan *chan;
426 };
427 #endif
428 
429 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
430 
431 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
432 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
433 {
434 	return (struct usb_hcd *)hsotg->priv;
435 }
436 
437 /*
438  * Inline used to disable one channel interrupt. Channel interrupts are
439  * disabled when the channel is halted or released by the interrupt handler.
440  * There is no need to handle further interrupts of that type until the
441  * channel is re-assigned. In fact, subsequent handling may cause crashes
442  * because the channel structures are cleaned up when the channel is released.
443  */
444 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
445 {
446 	u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
447 
448 	mask &= ~intr;
449 	dwc2_writel(hsotg, mask, HCINTMSK(chnum));
450 }
451 
452 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
453 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
454 		  enum dwc2_halt_status halt_status);
455 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
456 				 struct dwc2_host_chan *chan);
457 
458 /*
459  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
460  * are read as 1, they won't clear when written back.
461  */
462 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
463 {
464 	u32 hprt0 = dwc2_readl(hsotg, HPRT0);
465 
466 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
467 	return hprt0;
468 }
469 
470 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
471 {
472 	return pipe->ep_num;
473 }
474 
475 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
476 {
477 	return pipe->pipe_type;
478 }
479 
480 static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
481 {
482 	return pipe->maxp;
483 }
484 
485 static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
486 {
487 	return pipe->maxp_mult;
488 }
489 
490 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
491 {
492 	return pipe->dev_addr;
493 }
494 
495 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
496 {
497 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
498 }
499 
500 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
501 {
502 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
503 }
504 
505 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
506 {
507 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
508 }
509 
510 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
511 {
512 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
513 }
514 
515 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
516 {
517 	return pipe->pipe_dir == USB_DIR_IN;
518 }
519 
520 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
521 {
522 	return !dwc2_hcd_is_pipe_in(pipe);
523 }
524 
525 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
526 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
527 
528 /* Transaction Execution Functions */
529 enum dwc2_transaction_type dwc2_hcd_select_transactions(
530 						struct dwc2_hsotg *hsotg);
531 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
532 				 enum dwc2_transaction_type tr_type);
533 
534 /* Schedule Queue Functions */
535 /* Implemented in hcd_queue.c */
536 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
537 				   struct dwc2_hcd_urb *urb,
538 					  gfp_t mem_flags);
539 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
540 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
541 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
542 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
543 			    int sched_csplit);
544 
545 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
546 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
547 		     struct dwc2_qh *qh);
548 
549 /* Unlinks and frees a QTD */
550 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
551 						struct dwc2_qtd *qtd,
552 						struct dwc2_qh *qh)
553 {
554 	list_del(&qtd->qtd_list_entry);
555 	kfree(qtd);
556 }
557 
558 /* Descriptor DMA support functions */
559 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
560 			      struct dwc2_qh *qh);
561 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
562 				 struct dwc2_host_chan *chan, int chnum,
563 					enum dwc2_halt_status halt_status);
564 
565 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
566 			  gfp_t mem_flags);
567 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
568 
569 /* Check if QH is non-periodic */
570 #define dwc2_qh_is_non_per(_qh_ptr_) \
571 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
572 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
573 
574 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
575 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
576 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
577 static inline bool dbg_urb(struct urb *urb) { return true; }
578 static inline bool dbg_perio(void) { return true; }
579 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
580 static inline bool dbg_hc(struct dwc2_host_chan *hc)
581 {
582 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
583 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
584 }
585 
586 static inline bool dbg_qh(struct dwc2_qh *qh)
587 {
588 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
589 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
590 }
591 
592 static inline bool dbg_urb(struct urb *urb)
593 {
594 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
595 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
596 }
597 
598 static inline bool dbg_perio(void) { return false; }
599 #endif
600 
601 /*
602  * Returns true if frame1 index is greater than frame2 index. The comparison
603  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
604  * frame number when the max index frame number is reached.
605  */
606 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
607 {
608 	u16 diff = fr_idx1 - fr_idx2;
609 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
610 
611 	return diff && !sign;
612 }
613 
614 /*
615  * Returns true if frame1 is less than or equal to frame2. The comparison is
616  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
617  * frame number when the max frame number is reached.
618  */
619 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
620 {
621 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
622 }
623 
624 /*
625  * Returns true if frame1 is greater than frame2. The comparison is done
626  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
627  * number when the max frame number is reached.
628  */
629 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
630 {
631 	return (frame1 != frame2) &&
632 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
633 }
634 
635 /*
636  * Increments frame by the amount specified by inc. The addition is done
637  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
638  */
639 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
640 {
641 	return (frame + inc) & HFNUM_MAX_FRNUM;
642 }
643 
644 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
645 {
646 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
647 }
648 
649 static inline u16 dwc2_full_frame_num(u16 frame)
650 {
651 	return (frame & HFNUM_MAX_FRNUM) >> 3;
652 }
653 
654 static inline u16 dwc2_micro_frame_num(u16 frame)
655 {
656 	return frame & 0x7;
657 }
658 
659 /*
660  * Returns the Core Interrupt Status register contents, ANDed with the Core
661  * Interrupt Mask register contents
662  */
663 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
664 {
665 	return dwc2_readl(hsotg, GINTSTS) &
666 	       dwc2_readl(hsotg, GINTMSK);
667 }
668 
669 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
670 {
671 	return dwc2_urb->status;
672 }
673 
674 static inline u32 dwc2_hcd_urb_get_actual_length(
675 		struct dwc2_hcd_urb *dwc2_urb)
676 {
677 	return dwc2_urb->actual_length;
678 }
679 
680 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
681 {
682 	return dwc2_urb->error_count;
683 }
684 
685 static inline void dwc2_hcd_urb_set_iso_desc_params(
686 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
687 		u32 length)
688 {
689 	dwc2_urb->iso_descs[desc_num].offset = offset;
690 	dwc2_urb->iso_descs[desc_num].length = length;
691 }
692 
693 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
694 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
695 {
696 	return dwc2_urb->iso_descs[desc_num].status;
697 }
698 
699 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
700 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
701 {
702 	return dwc2_urb->iso_descs[desc_num].actual_length;
703 }
704 
705 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
706 						  struct usb_host_endpoint *ep)
707 {
708 	struct dwc2_qh *qh = ep->hcpriv;
709 
710 	if (qh && !list_empty(&qh->qh_list_entry))
711 		return 1;
712 
713 	return 0;
714 }
715 
716 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
717 					    struct usb_host_endpoint *ep)
718 {
719 	struct dwc2_qh *qh = ep->hcpriv;
720 
721 	if (!qh) {
722 		WARN_ON(1);
723 		return 0;
724 	}
725 
726 	return qh->host_us;
727 }
728 
729 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
730 			       struct dwc2_host_chan *chan, int chnum,
731 				      struct dwc2_qtd *qtd);
732 
733 /* HCD Core API */
734 
735 /**
736  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
737  *
738  * @hsotg: The DWC2 HCD
739  *
740  * Returns IRQ_HANDLED if interrupt is handled
741  * Return IRQ_NONE if interrupt is not handled
742  */
743 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
744 
745 /**
746  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
747  *
748  * @hsotg: The DWC2 HCD
749  */
750 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
751 
752 /**
753  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
754  * and 0 otherwise
755  *
756  * @hsotg: The DWC2 HCD
757  */
758 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
759 
760 /**
761  * dwc2_hcd_dump_state() - Dumps hsotg state
762  *
763  * @hsotg: The DWC2 HCD
764  *
765  * NOTE: This function will be removed once the peripheral controller code
766  * is integrated and the driver is stable
767  */
768 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
769 
770 /* URB interface */
771 
772 /* Transfer flags */
773 #define URB_GIVEBACK_ASAP	0x1
774 #define URB_SEND_ZERO_PACKET	0x2
775 
776 /* Host driver callbacks */
777 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
778 				      void *context, gfp_t mem_flags,
779 				      int *ttport);
780 
781 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
782 			   struct dwc2_tt *dwc_tt);
783 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
784 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
785 			int status);
786 
787 #endif /* __DWC2_HCD_H__ */
788