xref: /linux/drivers/usb/dwc2/hcd.h (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.h - DesignWare HS OTG Controller host-mode declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 #ifndef __DWC2_HCD_H__
38 #define __DWC2_HCD_H__
39 
40 /*
41  * This file contains the structures, constants, and interfaces for the
42  * Host Contoller Driver (HCD)
43  *
44  * The Host Controller Driver (HCD) is responsible for translating requests
45  * from the USB Driver into the appropriate actions on the DWC_otg controller.
46  * It isolates the USBD from the specifics of the controller by providing an
47  * API to the USBD.
48  */
49 
50 struct dwc2_qh;
51 
52 /**
53  * struct dwc2_host_chan - Software host channel descriptor
54  *
55  * @hc_num:             Host channel number, used for register address lookup
56  * @dev_addr:           Address of the device
57  * @ep_num:             Endpoint of the device
58  * @ep_is_in:           Endpoint direction
59  * @speed:              Device speed. One of the following values:
60  *                       - USB_SPEED_LOW
61  *                       - USB_SPEED_FULL
62  *                       - USB_SPEED_HIGH
63  * @ep_type:            Endpoint type. One of the following values:
64  *                       - USB_ENDPOINT_XFER_CONTROL: 0
65  *                       - USB_ENDPOINT_XFER_ISOC:    1
66  *                       - USB_ENDPOINT_XFER_BULK:    2
67  *                       - USB_ENDPOINT_XFER_INTR:    3
68  * @max_packet:         Max packet size in bytes
69  * @data_pid_start:     PID for initial transaction.
70  *                       0: DATA0
71  *                       1: DATA2
72  *                       2: DATA1
73  *                       3: MDATA (non-Control EP),
74  *                          SETUP (Control EP)
75  * @multi_count:        Number of additional periodic transactions per
76  *                      (micro)frame
77  * @xfer_buf:           Pointer to current transfer buffer position
78  * @xfer_dma:           DMA address of xfer_buf
79  * @xfer_len:           Total number of bytes to transfer
80  * @xfer_count:         Number of bytes transferred so far
81  * @start_pkt_count:    Packet count at start of transfer
82  * @xfer_started:       True if the transfer has been started
83  * @ping:               True if a PING request should be issued on this channel
84  * @error_state:        True if the error count for this transaction is non-zero
85  * @halt_on_queue:      True if this channel should be halted the next time a
86  *                      request is queued for the channel. This is necessary in
87  *                      slave mode if no request queue space is available when
88  *                      an attempt is made to halt the channel.
89  * @halt_pending:       True if the host channel has been halted, but the core
90  *                      is not finished flushing queued requests
91  * @do_split:           Enable split for the channel
92  * @complete_split:     Enable complete split
93  * @hub_addr:           Address of high speed hub for the split
94  * @hub_port:           Port of the low/full speed device for the split
95  * @xact_pos:           Split transaction position. One of the following values:
96  *                       - DWC2_HCSPLT_XACTPOS_MID
97  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
98  *                       - DWC2_HCSPLT_XACTPOS_END
99  *                       - DWC2_HCSPLT_XACTPOS_ALL
100  * @requests:           Number of requests issued for this channel since it was
101  *                      assigned to the current transfer (not counting PINGs)
102  * @schinfo:            Scheduling micro-frame bitmap
103  * @ntd:                Number of transfer descriptors for the transfer
104  * @halt_status:        Reason for halting the host channel
105  * @hcint               Contents of the HCINT register when the interrupt came
106  * @qh:                 QH for the transfer being processed by this channel
107  * @hc_list_entry:      For linking to list of host channels
108  * @desc_list_addr:     Current QH's descriptor list DMA address
109  * @desc_list_sz:       Current QH's descriptor list size
110  * @split_order_list_entry: List entry for keeping track of the order of splits
111  *
112  * This structure represents the state of a single host channel when acting in
113  * host mode. It contains the data items needed to transfer packets to an
114  * endpoint via a host channel.
115  */
116 struct dwc2_host_chan {
117 	u8 hc_num;
118 
119 	unsigned dev_addr:7;
120 	unsigned ep_num:4;
121 	unsigned ep_is_in:1;
122 	unsigned speed:4;
123 	unsigned ep_type:2;
124 	unsigned max_packet:11;
125 	unsigned data_pid_start:2;
126 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
127 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
128 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
129 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
130 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
131 
132 	unsigned multi_count:2;
133 
134 	u8 *xfer_buf;
135 	dma_addr_t xfer_dma;
136 	u32 xfer_len;
137 	u32 xfer_count;
138 	u16 start_pkt_count;
139 	u8 xfer_started;
140 	u8 do_ping;
141 	u8 error_state;
142 	u8 halt_on_queue;
143 	u8 halt_pending;
144 	u8 do_split;
145 	u8 complete_split;
146 	u8 hub_addr;
147 	u8 hub_port;
148 	u8 xact_pos;
149 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
153 
154 	u8 requests;
155 	u8 schinfo;
156 	u16 ntd;
157 	enum dwc2_halt_status halt_status;
158 	u32 hcint;
159 	struct dwc2_qh *qh;
160 	struct list_head hc_list_entry;
161 	dma_addr_t desc_list_addr;
162 	u32 desc_list_sz;
163 	struct list_head split_order_list_entry;
164 };
165 
166 struct dwc2_hcd_pipe_info {
167 	u8 dev_addr;
168 	u8 ep_num;
169 	u8 pipe_type;
170 	u8 pipe_dir;
171 	u16 mps;
172 };
173 
174 struct dwc2_hcd_iso_packet_desc {
175 	u32 offset;
176 	u32 length;
177 	u32 actual_length;
178 	u32 status;
179 };
180 
181 struct dwc2_qtd;
182 
183 struct dwc2_hcd_urb {
184 	void *priv;
185 	struct dwc2_qtd *qtd;
186 	void *buf;
187 	dma_addr_t dma;
188 	void *setup_packet;
189 	dma_addr_t setup_dma;
190 	u32 length;
191 	u32 actual_length;
192 	u32 status;
193 	u32 error_count;
194 	u32 packet_count;
195 	u32 flags;
196 	u16 interval;
197 	struct dwc2_hcd_pipe_info pipe_info;
198 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
199 };
200 
201 /* Phases for control transfers */
202 enum dwc2_control_phase {
203 	DWC2_CONTROL_SETUP,
204 	DWC2_CONTROL_DATA,
205 	DWC2_CONTROL_STATUS,
206 };
207 
208 /* Transaction types */
209 enum dwc2_transaction_type {
210 	DWC2_TRANSACTION_NONE,
211 	DWC2_TRANSACTION_PERIODIC,
212 	DWC2_TRANSACTION_NON_PERIODIC,
213 	DWC2_TRANSACTION_ALL,
214 };
215 
216 /* The number of elements per LS bitmap (per port on multi_tt) */
217 #define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
218 						     BITS_PER_LONG)
219 
220 /**
221  * struct dwc2_tt - dwc2 data associated with a usb_tt
222  *
223  * @refcount:           Number of Queue Heads (QHs) holding a reference.
224  * @usb_tt:             Pointer back to the official usb_tt.
225  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
226  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
227  *			elements (so sizeof(long) times that in bytes).
228  *
229  * This structure is stored in the hcpriv of the official usb_tt.
230  */
231 struct dwc2_tt {
232 	int refcount;
233 	struct usb_tt *usb_tt;
234 	unsigned long periodic_bitmaps[];
235 };
236 
237 /**
238  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
239  *
240  * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
241  *                         the main bus schedule is tightly packed and this
242  *			   time should be interpreted as tightly packed (so
243  *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
244  *			   instead of 125 us).
245  * @duration_us:           How long this transfer goes.
246  */
247 
248 struct dwc2_hs_transfer_time {
249 	u32 start_schedule_us;
250 	u16 duration_us;
251 };
252 
253 /**
254  * struct dwc2_qh - Software queue head structure
255  *
256  * @hsotg:              The HCD state structure for the DWC OTG controller
257  * @ep_type:            Endpoint type. One of the following values:
258  *                       - USB_ENDPOINT_XFER_CONTROL
259  *                       - USB_ENDPOINT_XFER_BULK
260  *                       - USB_ENDPOINT_XFER_INT
261  *                       - USB_ENDPOINT_XFER_ISOC
262  * @ep_is_in:           Endpoint direction
263  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
264  * @dev_speed:          Device speed. One of the following values:
265  *                       - USB_SPEED_LOW
266  *                       - USB_SPEED_FULL
267  *                       - USB_SPEED_HIGH
268  * @data_toggle:        Determines the PID of the next data packet for
269  *                      non-controltransfers. Ignored for control transfers.
270  *                      One of the following values:
271  *                       - DWC2_HC_PID_DATA0
272  *                       - DWC2_HC_PID_DATA1
273  * @ping_state:         Ping state
274  * @do_split:           Full/low speed endpoint on high-speed hub requires split
275  * @td_first:           Index of first activated isochronous transfer descriptor
276  * @td_last:            Index of last activated isochronous transfer descriptor
277  * @host_us:            Bandwidth in microseconds per transfer as seen by host
278  * @device_us:          Bandwidth in microseconds per transfer as seen by device
279  * @host_interval:      Interval between transfers as seen by the host.  If
280  *                      the host is high speed and the device is low speed this
281  *                      will be 8 times device interval.
282  * @device_interval:    Interval between transfers as seen by the device.
283  *                      interval.
284  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
285  *                      the bus.  We'll move the qh to active here.  If the
286  *                      host is in high speed mode this will be a uframe.  If
287  *                      the host is in low speed mode this will be a full frame.
288  * @start_active_frame: If we are partway through a split transfer, this will be
289  *			what next_active_frame was when we started.  Otherwise
290  *			it should always be the same as next_active_frame.
291  * @num_hs_transfers:   Number of transfers in hs_transfers.
292  *                      Normally this is 1 but can be more than one for splits.
293  *                      Always >= 1 unless the host is in low/full speed mode.
294  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
295  *                      bus.  Not used if host is in low or full speed mode (but
296  *                      note that it IS USED if the device is low or full speed
297  *                      as long as the HOST is in high speed mode).
298  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
299  *                           schedule that's being used by this device.  This
300  *			     will be on the periodic_bitmap in a
301  *                           "struct dwc2_tt".  Not used if this device is high
302  *                           speed.  Note that this is in "schedule slice" which
303  *                           is tightly packed.
304  * @ls_duration_us:     Duration on the low speed bus schedule.
305  * @ntd:                Actual number of transfer descriptors in a list
306  * @qtd_list:           List of QTDs for this QH
307  * @channel:            Host channel currently processing transfers for this QH
308  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
309  *                      schedule
310  * @desc_list:          List of transfer descriptors
311  * @desc_list_dma:      Physical address of desc_list
312  * @desc_list_sz:       Size of descriptors list
313  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
314  *                      descriptor and indicates original XferSize value for the
315  *                      descriptor
316  * @unreserve_timer:    Timer for releasing periodic reservation.
317  * @wait_timer:         Timer used to wait before re-queuing.
318  * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
319  * @ttport:             Port number within our tt.
320  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
321  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
322  * @schedule_low_speed: True if we have a low/full speed component (either the
323  *			host is in low/full speed mode or do_split).
324  * @want_wait:          We should wait before re-queuing; only matters for non-
325  *                      periodic transfers and is ignored for periodic ones.
326  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
327  *
328  * A Queue Head (QH) holds the static characteristics of an endpoint and
329  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
330  * be entered in either the non-periodic or periodic schedule.
331  */
332 struct dwc2_qh {
333 	struct dwc2_hsotg *hsotg;
334 	u8 ep_type;
335 	u8 ep_is_in;
336 	u16 maxp;
337 	u8 dev_speed;
338 	u8 data_toggle;
339 	u8 ping_state;
340 	u8 do_split;
341 	u8 td_first;
342 	u8 td_last;
343 	u16 host_us;
344 	u16 device_us;
345 	u16 host_interval;
346 	u16 device_interval;
347 	u16 next_active_frame;
348 	u16 start_active_frame;
349 	s16 num_hs_transfers;
350 	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
351 	u32 ls_start_schedule_slice;
352 	u16 ntd;
353 	struct list_head qtd_list;
354 	struct dwc2_host_chan *channel;
355 	struct list_head qh_list_entry;
356 	struct dwc2_dma_desc *desc_list;
357 	dma_addr_t desc_list_dma;
358 	u32 desc_list_sz;
359 	u32 *n_bytes;
360 	struct timer_list unreserve_timer;
361 	struct timer_list wait_timer;
362 	struct dwc2_tt *dwc_tt;
363 	int ttport;
364 	unsigned tt_buffer_dirty:1;
365 	unsigned unreserve_pending:1;
366 	unsigned schedule_low_speed:1;
367 	unsigned want_wait:1;
368 	unsigned wait_timer_cancel:1;
369 };
370 
371 /**
372  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
373  *
374  * @control_phase:      Current phase for control transfers (Setup, Data, or
375  *                      Status)
376  * @in_process:         Indicates if this QTD is currently processed by HW
377  * @data_toggle:        Determines the PID of the next data packet for the
378  *                      data phase of control transfers. Ignored for other
379  *                      transfer types. One of the following values:
380  *                       - DWC2_HC_PID_DATA0
381  *                       - DWC2_HC_PID_DATA1
382  * @complete_split:     Keeps track of the current split type for FS/LS
383  *                      endpoints on a HS Hub
384  * @isoc_split_pos:     Position of the ISOC split in full/low speed
385  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
386  *                      transfer. A frame descriptor describes the buffer
387  *                      position and length of the data to be transferred in the
388  *                      next scheduled (micro)frame of an isochronous transfer.
389  *                      It also holds status for that transaction. The frame
390  *                      index starts at 0.
391  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
392  *                      current frame
393  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
394  * @error_count:        Holds the number of bus errors that have occurred for
395  *                      a transaction within this transfer
396  * @n_desc:             Number of DMA descriptors for this QTD
397  * @isoc_frame_index_last: Last activated frame (packet) index, used in
398  *                      descriptor DMA mode only
399  * @num_naks:           Number of NAKs received on this QTD.
400  * @urb:                URB for this transfer
401  * @qh:                 Queue head for this QTD
402  * @qtd_list_entry:     For linking to the QH's list of QTDs
403  *
404  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
405  * interrupt, or isochronous transfer. A single QTD is created for each URB
406  * (of one of these types) submitted to the HCD. The transfer associated with
407  * a QTD may require one or multiple transactions.
408  *
409  * A QTD is linked to a Queue Head, which is entered in either the
410  * non-periodic or periodic schedule for execution. When a QTD is chosen for
411  * execution, some or all of its transactions may be executed. After
412  * execution, the state of the QTD is updated. The QTD may be retired if all
413  * its transactions are complete or if an error occurred. Otherwise, it
414  * remains in the schedule so more transactions can be executed later.
415  */
416 struct dwc2_qtd {
417 	enum dwc2_control_phase control_phase;
418 	u8 in_process;
419 	u8 data_toggle;
420 	u8 complete_split;
421 	u8 isoc_split_pos;
422 	u16 isoc_frame_index;
423 	u16 isoc_split_offset;
424 	u16 isoc_td_last;
425 	u16 isoc_td_first;
426 	u32 ssplit_out_xfer_count;
427 	u8 error_count;
428 	u8 n_desc;
429 	u16 isoc_frame_index_last;
430 	u16 num_naks;
431 	struct dwc2_hcd_urb *urb;
432 	struct dwc2_qh *qh;
433 	struct list_head qtd_list_entry;
434 };
435 
436 #ifdef DEBUG
437 struct hc_xfer_info {
438 	struct dwc2_hsotg *hsotg;
439 	struct dwc2_host_chan *chan;
440 };
441 #endif
442 
443 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
444 
445 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
446 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
447 {
448 	return (struct usb_hcd *)hsotg->priv;
449 }
450 
451 /*
452  * Inline used to disable one channel interrupt. Channel interrupts are
453  * disabled when the channel is halted or released by the interrupt handler.
454  * There is no need to handle further interrupts of that type until the
455  * channel is re-assigned. In fact, subsequent handling may cause crashes
456  * because the channel structures are cleaned up when the channel is released.
457  */
458 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
459 {
460 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
461 
462 	mask &= ~intr;
463 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
464 }
465 
466 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
467 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
468 		  enum dwc2_halt_status halt_status);
469 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
470 				 struct dwc2_host_chan *chan);
471 
472 /*
473  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
474  * are read as 1, they won't clear when written back.
475  */
476 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
477 {
478 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
479 
480 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
481 	return hprt0;
482 }
483 
484 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
485 {
486 	return pipe->ep_num;
487 }
488 
489 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
490 {
491 	return pipe->pipe_type;
492 }
493 
494 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
495 {
496 	return pipe->mps;
497 }
498 
499 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
500 {
501 	return pipe->dev_addr;
502 }
503 
504 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
505 {
506 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
507 }
508 
509 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
510 {
511 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
512 }
513 
514 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
515 {
516 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
517 }
518 
519 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
520 {
521 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
522 }
523 
524 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
525 {
526 	return pipe->pipe_dir == USB_DIR_IN;
527 }
528 
529 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
530 {
531 	return !dwc2_hcd_is_pipe_in(pipe);
532 }
533 
534 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
535 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
536 
537 /* Transaction Execution Functions */
538 enum dwc2_transaction_type dwc2_hcd_select_transactions(
539 						struct dwc2_hsotg *hsotg);
540 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
541 				 enum dwc2_transaction_type tr_type);
542 
543 /* Schedule Queue Functions */
544 /* Implemented in hcd_queue.c */
545 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
546 				   struct dwc2_hcd_urb *urb,
547 					  gfp_t mem_flags);
548 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
549 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
550 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
551 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
552 			    int sched_csplit);
553 
554 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
555 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
556 		     struct dwc2_qh *qh);
557 
558 /* Unlinks and frees a QTD */
559 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
560 						struct dwc2_qtd *qtd,
561 						struct dwc2_qh *qh)
562 {
563 	list_del(&qtd->qtd_list_entry);
564 	kfree(qtd);
565 	qtd = NULL;
566 }
567 
568 /* Descriptor DMA support functions */
569 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
570 			      struct dwc2_qh *qh);
571 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
572 				 struct dwc2_host_chan *chan, int chnum,
573 					enum dwc2_halt_status halt_status);
574 
575 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
576 			  gfp_t mem_flags);
577 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
578 
579 /* Check if QH is non-periodic */
580 #define dwc2_qh_is_non_per(_qh_ptr_) \
581 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
582 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
583 
584 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
585 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
586 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
587 static inline bool dbg_urb(struct urb *urb) { return true; }
588 static inline bool dbg_perio(void) { return true; }
589 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
590 static inline bool dbg_hc(struct dwc2_host_chan *hc)
591 {
592 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
593 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
594 }
595 
596 static inline bool dbg_qh(struct dwc2_qh *qh)
597 {
598 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
599 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
600 }
601 
602 static inline bool dbg_urb(struct urb *urb)
603 {
604 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
605 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
606 }
607 
608 static inline bool dbg_perio(void) { return false; }
609 #endif
610 
611 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
612 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
613 
614 /* Packet size for any kind of endpoint descriptor */
615 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
616 
617 /*
618  * Returns true if frame1 index is greater than frame2 index. The comparison
619  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
620  * frame number when the max index frame number is reached.
621  */
622 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
623 {
624 	u16 diff = fr_idx1 - fr_idx2;
625 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
626 
627 	return diff && !sign;
628 }
629 
630 /*
631  * Returns true if frame1 is less than or equal to frame2. The comparison is
632  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
633  * frame number when the max frame number is reached.
634  */
635 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
636 {
637 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
638 }
639 
640 /*
641  * Returns true if frame1 is greater than frame2. The comparison is done
642  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
643  * number when the max frame number is reached.
644  */
645 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
646 {
647 	return (frame1 != frame2) &&
648 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
649 }
650 
651 /*
652  * Increments frame by the amount specified by inc. The addition is done
653  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
654  */
655 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
656 {
657 	return (frame + inc) & HFNUM_MAX_FRNUM;
658 }
659 
660 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
661 {
662 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
663 }
664 
665 static inline u16 dwc2_full_frame_num(u16 frame)
666 {
667 	return (frame & HFNUM_MAX_FRNUM) >> 3;
668 }
669 
670 static inline u16 dwc2_micro_frame_num(u16 frame)
671 {
672 	return frame & 0x7;
673 }
674 
675 /*
676  * Returns the Core Interrupt Status register contents, ANDed with the Core
677  * Interrupt Mask register contents
678  */
679 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
680 {
681 	return dwc2_readl(hsotg->regs + GINTSTS) &
682 	       dwc2_readl(hsotg->regs + GINTMSK);
683 }
684 
685 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
686 {
687 	return dwc2_urb->status;
688 }
689 
690 static inline u32 dwc2_hcd_urb_get_actual_length(
691 		struct dwc2_hcd_urb *dwc2_urb)
692 {
693 	return dwc2_urb->actual_length;
694 }
695 
696 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
697 {
698 	return dwc2_urb->error_count;
699 }
700 
701 static inline void dwc2_hcd_urb_set_iso_desc_params(
702 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
703 		u32 length)
704 {
705 	dwc2_urb->iso_descs[desc_num].offset = offset;
706 	dwc2_urb->iso_descs[desc_num].length = length;
707 }
708 
709 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
710 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
711 {
712 	return dwc2_urb->iso_descs[desc_num].status;
713 }
714 
715 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
716 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
717 {
718 	return dwc2_urb->iso_descs[desc_num].actual_length;
719 }
720 
721 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
722 						  struct usb_host_endpoint *ep)
723 {
724 	struct dwc2_qh *qh = ep->hcpriv;
725 
726 	if (qh && !list_empty(&qh->qh_list_entry))
727 		return 1;
728 
729 	return 0;
730 }
731 
732 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
733 					    struct usb_host_endpoint *ep)
734 {
735 	struct dwc2_qh *qh = ep->hcpriv;
736 
737 	if (!qh) {
738 		WARN_ON(1);
739 		return 0;
740 	}
741 
742 	return qh->host_us;
743 }
744 
745 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
746 			       struct dwc2_host_chan *chan, int chnum,
747 				      struct dwc2_qtd *qtd);
748 
749 /* HCD Core API */
750 
751 /**
752  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
753  *
754  * @hsotg: The DWC2 HCD
755  *
756  * Returns IRQ_HANDLED if interrupt is handled
757  * Return IRQ_NONE if interrupt is not handled
758  */
759 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
760 
761 /**
762  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
763  *
764  * @hsotg: The DWC2 HCD
765  */
766 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
767 
768 /**
769  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
770  * and 0 otherwise
771  *
772  * @hsotg: The DWC2 HCD
773  */
774 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
775 
776 /**
777  * dwc2_hcd_dump_state() - Dumps hsotg state
778  *
779  * @hsotg: The DWC2 HCD
780  *
781  * NOTE: This function will be removed once the peripheral controller code
782  * is integrated and the driver is stable
783  */
784 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
785 
786 /**
787  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
788  *
789  * @hsotg: The DWC2 HCD
790  *
791  * This can be used to determine average interrupt latency. Frame remaining is
792  * also shown for start transfer and two additional sample points.
793  *
794  * NOTE: This function will be removed once the peripheral controller code
795  * is integrated and the driver is stable
796  */
797 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
798 
799 /* URB interface */
800 
801 /* Transfer flags */
802 #define URB_GIVEBACK_ASAP	0x1
803 #define URB_SEND_ZERO_PACKET	0x2
804 
805 /* Host driver callbacks */
806 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
807 				      void *context, gfp_t mem_flags,
808 				      int *ttport);
809 
810 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
811 			   struct dwc2_tt *dwc_tt);
812 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
813 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
814 			int status);
815 
816 #ifdef DEBUG
817 /*
818  * Macro to sample the remaining PHY clocks left in the current frame. This
819  * may be used during debugging to determine the average time it takes to
820  * execute sections of code. There are two possible sample points, "a" and
821  * "b", so the _letter_ argument must be one of these values.
822  *
823  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
824  * example, "cat /sys/devices/lm0/hcd_frrem".
825  */
826 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
827 do {									\
828 	struct hfnum_data _hfnum_;					\
829 	struct dwc2_qtd *_qtd_;						\
830 									\
831 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
832 			   qtd_list_entry);				\
833 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
834 	    (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
835 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
836 		switch (_hfnum_.b.frnum & 0x7) {			\
837 		case 7:							\
838 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
839 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
840 				_hfnum_.b.frrem;			\
841 			break;						\
842 		case 0:							\
843 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
844 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
845 				_hfnum_.b.frrem;			\
846 			break;						\
847 		default:						\
848 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
849 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
850 				_hfnum_.b.frrem;			\
851 			break;						\
852 		}							\
853 	}								\
854 } while (0)
855 #else
856 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
857 #endif
858 
859 #endif /* __DWC2_HCD_H__ */
860