1 /* 2 * hcd.c - DesignWare HS OTG Controller host-mode routines 3 * 4 * Copyright (C) 2004-2013 Synopsys, Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The names of the above-listed copyright holders may not be used 16 * to endorse or promote products derived from this software without 17 * specific prior written permission. 18 * 19 * ALTERNATIVELY, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") as published by the Free Software 21 * Foundation; either version 2 of the License, or (at your option) any 22 * later version. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 /* 38 * This file contains the core HCD code, and implements the Linux hc_driver 39 * API 40 */ 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/spinlock.h> 44 #include <linux/interrupt.h> 45 #include <linux/platform_device.h> 46 #include <linux/dma-mapping.h> 47 #include <linux/delay.h> 48 #include <linux/io.h> 49 #include <linux/slab.h> 50 #include <linux/usb.h> 51 52 #include <linux/usb/hcd.h> 53 #include <linux/usb/ch11.h> 54 55 #include "core.h" 56 #include "hcd.h" 57 58 static void dwc2_port_resume(struct dwc2_hsotg *hsotg); 59 60 /* 61 * ========================================================================= 62 * Host Core Layer Functions 63 * ========================================================================= 64 */ 65 66 /** 67 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts, 68 * used in both device and host modes 69 * 70 * @hsotg: Programming view of the DWC_otg controller 71 */ 72 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg) 73 { 74 u32 intmsk; 75 76 /* Clear any pending OTG Interrupts */ 77 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 78 79 /* Clear any pending interrupts */ 80 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 81 82 /* Enable the interrupts in the GINTMSK */ 83 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT; 84 85 if (!hsotg->params.host_dma) 86 intmsk |= GINTSTS_RXFLVL; 87 if (!hsotg->params.external_id_pin_ctl) 88 intmsk |= GINTSTS_CONIDSTSCHNG; 89 90 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP | 91 GINTSTS_SESSREQINT; 92 93 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 94 } 95 96 /* 97 * Initializes the FSLSPClkSel field of the HCFG register depending on the 98 * PHY type 99 */ 100 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg) 101 { 102 u32 hcfg, val; 103 104 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 105 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 106 hsotg->params.ulpi_fs_ls) || 107 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 108 /* Full speed PHY */ 109 val = HCFG_FSLSPCLKSEL_48_MHZ; 110 } else { 111 /* High speed PHY running at full speed or high speed */ 112 val = HCFG_FSLSPCLKSEL_30_60_MHZ; 113 } 114 115 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val); 116 hcfg = dwc2_readl(hsotg->regs + HCFG); 117 hcfg &= ~HCFG_FSLSPCLKSEL_MASK; 118 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT; 119 dwc2_writel(hcfg, hsotg->regs + HCFG); 120 } 121 122 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 123 { 124 u32 usbcfg, i2cctl; 125 int retval = 0; 126 127 /* 128 * core_init() is now called on every switch so only call the 129 * following for the first time through 130 */ 131 if (select_phy) { 132 dev_dbg(hsotg->dev, "FS PHY selected\n"); 133 134 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 135 if (!(usbcfg & GUSBCFG_PHYSEL)) { 136 usbcfg |= GUSBCFG_PHYSEL; 137 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 138 139 /* Reset after a PHY select */ 140 retval = dwc2_core_reset_and_force_dr_mode(hsotg); 141 142 if (retval) { 143 dev_err(hsotg->dev, 144 "%s: Reset failed, aborting", __func__); 145 return retval; 146 } 147 } 148 } 149 150 /* 151 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also 152 * do this on HNP Dev/Host mode switches (done in dev_init and 153 * host_init). 154 */ 155 if (dwc2_is_host_mode(hsotg)) 156 dwc2_init_fs_ls_pclk_sel(hsotg); 157 158 if (hsotg->params.i2c_enable) { 159 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n"); 160 161 /* Program GUSBCFG.OtgUtmiFsSel to I2C */ 162 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 163 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL; 164 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 165 166 /* Program GI2CCTL.I2CEn */ 167 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL); 168 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK; 169 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT; 170 i2cctl &= ~GI2CCTL_I2CEN; 171 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL); 172 i2cctl |= GI2CCTL_I2CEN; 173 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL); 174 } 175 176 return retval; 177 } 178 179 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 180 { 181 u32 usbcfg, usbcfg_old; 182 int retval = 0; 183 184 if (!select_phy) 185 return 0; 186 187 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 188 usbcfg_old = usbcfg; 189 190 /* 191 * HS PHY parameters. These parameters are preserved during soft reset 192 * so only program the first time. Do a soft reset immediately after 193 * setting phyif. 194 */ 195 switch (hsotg->params.phy_type) { 196 case DWC2_PHY_TYPE_PARAM_ULPI: 197 /* ULPI interface */ 198 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n"); 199 usbcfg |= GUSBCFG_ULPI_UTMI_SEL; 200 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL); 201 if (hsotg->params.phy_ulpi_ddr) 202 usbcfg |= GUSBCFG_DDRSEL; 203 break; 204 case DWC2_PHY_TYPE_PARAM_UTMI: 205 /* UTMI+ interface */ 206 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n"); 207 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16); 208 if (hsotg->params.phy_utmi_width == 16) 209 usbcfg |= GUSBCFG_PHYIF16; 210 break; 211 default: 212 dev_err(hsotg->dev, "FS PHY selected at HS!\n"); 213 break; 214 } 215 216 if (usbcfg != usbcfg_old) { 217 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 218 219 /* Reset after setting the PHY parameters */ 220 retval = dwc2_core_reset_and_force_dr_mode(hsotg); 221 if (retval) { 222 dev_err(hsotg->dev, 223 "%s: Reset failed, aborting", __func__); 224 return retval; 225 } 226 } 227 228 return retval; 229 } 230 231 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 232 { 233 u32 usbcfg; 234 int retval = 0; 235 236 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 237 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) && 238 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 239 /* If FS/LS mode with FS/LS PHY */ 240 retval = dwc2_fs_phy_init(hsotg, select_phy); 241 if (retval) 242 return retval; 243 } else { 244 /* High speed PHY */ 245 retval = dwc2_hs_phy_init(hsotg, select_phy); 246 if (retval) 247 return retval; 248 } 249 250 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 251 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 252 hsotg->params.ulpi_fs_ls) { 253 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n"); 254 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 255 usbcfg |= GUSBCFG_ULPI_FS_LS; 256 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M; 257 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 258 } else { 259 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 260 usbcfg &= ~GUSBCFG_ULPI_FS_LS; 261 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M; 262 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 263 } 264 265 return retval; 266 } 267 268 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg) 269 { 270 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); 271 272 switch (hsotg->hw_params.arch) { 273 case GHWCFG2_EXT_DMA_ARCH: 274 dev_err(hsotg->dev, "External DMA Mode not supported\n"); 275 return -EINVAL; 276 277 case GHWCFG2_INT_DMA_ARCH: 278 dev_dbg(hsotg->dev, "Internal DMA Mode\n"); 279 if (hsotg->params.ahbcfg != -1) { 280 ahbcfg &= GAHBCFG_CTRL_MASK; 281 ahbcfg |= hsotg->params.ahbcfg & 282 ~GAHBCFG_CTRL_MASK; 283 } 284 break; 285 286 case GHWCFG2_SLAVE_ONLY_ARCH: 287 default: 288 dev_dbg(hsotg->dev, "Slave Only Mode\n"); 289 break; 290 } 291 292 dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n", 293 hsotg->params.host_dma, 294 hsotg->params.dma_desc_enable); 295 296 if (hsotg->params.host_dma) { 297 if (hsotg->params.dma_desc_enable) 298 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n"); 299 else 300 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n"); 301 } else { 302 dev_dbg(hsotg->dev, "Using Slave mode\n"); 303 hsotg->params.dma_desc_enable = false; 304 } 305 306 if (hsotg->params.host_dma) 307 ahbcfg |= GAHBCFG_DMA_EN; 308 309 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); 310 311 return 0; 312 } 313 314 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg) 315 { 316 u32 usbcfg; 317 318 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 319 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP); 320 321 switch (hsotg->hw_params.op_mode) { 322 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: 323 if (hsotg->params.otg_cap == 324 DWC2_CAP_PARAM_HNP_SRP_CAPABLE) 325 usbcfg |= GUSBCFG_HNPCAP; 326 if (hsotg->params.otg_cap != 327 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 328 usbcfg |= GUSBCFG_SRPCAP; 329 break; 330 331 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: 332 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: 333 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: 334 if (hsotg->params.otg_cap != 335 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 336 usbcfg |= GUSBCFG_SRPCAP; 337 break; 338 339 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE: 340 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE: 341 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST: 342 default: 343 break; 344 } 345 346 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 347 } 348 349 /** 350 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts 351 * 352 * @hsotg: Programming view of DWC_otg controller 353 */ 354 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg) 355 { 356 u32 intmsk; 357 358 dev_dbg(hsotg->dev, "%s()\n", __func__); 359 360 /* Disable all interrupts */ 361 dwc2_writel(0, hsotg->regs + GINTMSK); 362 dwc2_writel(0, hsotg->regs + HAINTMSK); 363 364 /* Enable the common interrupts */ 365 dwc2_enable_common_interrupts(hsotg); 366 367 /* Enable host mode interrupts without disturbing common interrupts */ 368 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 369 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT; 370 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 371 } 372 373 /** 374 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts 375 * 376 * @hsotg: Programming view of DWC_otg controller 377 */ 378 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg) 379 { 380 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 381 382 /* Disable host mode interrupts without disturbing common interrupts */ 383 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT | 384 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT); 385 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 386 } 387 388 /* 389 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size 390 * For system that have a total fifo depth that is smaller than the default 391 * RX + TX fifo size. 392 * 393 * @hsotg: Programming view of DWC_otg controller 394 */ 395 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg) 396 { 397 struct dwc2_core_params *params = &hsotg->params; 398 struct dwc2_hw_params *hw = &hsotg->hw_params; 399 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size; 400 401 total_fifo_size = hw->total_fifo_size; 402 rxfsiz = params->host_rx_fifo_size; 403 nptxfsiz = params->host_nperio_tx_fifo_size; 404 ptxfsiz = params->host_perio_tx_fifo_size; 405 406 /* 407 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth 408 * allocation with support for high bandwidth endpoints. Synopsys 409 * defines MPS(Max Packet size) for a periodic EP=1024, and for 410 * non-periodic as 512. 411 */ 412 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) { 413 /* 414 * For Buffer DMA mode/Scatter Gather DMA mode 415 * 2 * ((Largest Packet size / 4) + 1 + 1) + n 416 * with n = number of host channel. 417 * 2 * ((1024/4) + 2) = 516 418 */ 419 rxfsiz = 516 + hw->host_channels; 420 421 /* 422 * min non-periodic tx fifo depth 423 * 2 * (largest non-periodic USB packet used / 4) 424 * 2 * (512/4) = 256 425 */ 426 nptxfsiz = 256; 427 428 /* 429 * min periodic tx fifo depth 430 * (largest packet size*MC)/4 431 * (1024 * 3)/4 = 768 432 */ 433 ptxfsiz = 768; 434 435 params->host_rx_fifo_size = rxfsiz; 436 params->host_nperio_tx_fifo_size = nptxfsiz; 437 params->host_perio_tx_fifo_size = ptxfsiz; 438 } 439 440 /* 441 * If the summation of RX, NPTX and PTX fifo sizes is still 442 * bigger than the total_fifo_size, then we have a problem. 443 * 444 * We won't be able to allocate as many endpoints. Right now, 445 * we're just printing an error message, but ideally this FIFO 446 * allocation algorithm would be improved in the future. 447 * 448 * FIXME improve this FIFO allocation algorithm. 449 */ 450 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz))) 451 dev_err(hsotg->dev, "invalid fifo sizes\n"); 452 } 453 454 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg) 455 { 456 struct dwc2_core_params *params = &hsotg->params; 457 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz; 458 459 if (!params->enable_dynamic_fifo) 460 return; 461 462 dwc2_calculate_dynamic_fifo(hsotg); 463 464 /* Rx FIFO */ 465 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ); 466 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz); 467 grxfsiz &= ~GRXFSIZ_DEPTH_MASK; 468 grxfsiz |= params->host_rx_fifo_size << 469 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK; 470 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ); 471 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", 472 dwc2_readl(hsotg->regs + GRXFSIZ)); 473 474 /* Non-periodic Tx FIFO */ 475 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n", 476 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 477 nptxfsiz = params->host_nperio_tx_fifo_size << 478 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 479 nptxfsiz |= params->host_rx_fifo_size << 480 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 481 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ); 482 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n", 483 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 484 485 /* Periodic Tx FIFO */ 486 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n", 487 dwc2_readl(hsotg->regs + HPTXFSIZ)); 488 hptxfsiz = params->host_perio_tx_fifo_size << 489 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 490 hptxfsiz |= (params->host_rx_fifo_size + 491 params->host_nperio_tx_fifo_size) << 492 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 493 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ); 494 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n", 495 dwc2_readl(hsotg->regs + HPTXFSIZ)); 496 497 if (hsotg->params.en_multiple_tx_fifo && 498 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) { 499 /* 500 * This feature was implemented in 2.91a version 501 * Global DFIFOCFG calculation for Host mode - 502 * include RxFIFO, NPTXFIFO and HPTXFIFO 503 */ 504 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG); 505 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK; 506 dfifocfg |= (params->host_rx_fifo_size + 507 params->host_nperio_tx_fifo_size + 508 params->host_perio_tx_fifo_size) << 509 GDFIFOCFG_EPINFOBASE_SHIFT & 510 GDFIFOCFG_EPINFOBASE_MASK; 511 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG); 512 } 513 } 514 515 /** 516 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for 517 * the HFIR register according to PHY type and speed 518 * 519 * @hsotg: Programming view of DWC_otg controller 520 * 521 * NOTE: The caller can modify the value of the HFIR register only after the 522 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort) 523 * has been set 524 */ 525 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg) 526 { 527 u32 usbcfg; 528 u32 hprt0; 529 int clock = 60; /* default value */ 530 531 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 532 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 533 534 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) && 535 !(usbcfg & GUSBCFG_PHYIF16)) 536 clock = 60; 537 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type == 538 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI) 539 clock = 48; 540 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 541 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 542 clock = 30; 543 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 544 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16)) 545 clock = 60; 546 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 547 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 548 clock = 48; 549 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) && 550 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI) 551 clock = 48; 552 if ((usbcfg & GUSBCFG_PHYSEL) && 553 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) 554 clock = 48; 555 556 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED) 557 /* High speed case */ 558 return 125 * clock - 1; 559 560 /* FS/LS case */ 561 return 1000 * clock - 1; 562 } 563 564 /** 565 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination 566 * buffer 567 * 568 * @core_if: Programming view of DWC_otg controller 569 * @dest: Destination buffer for the packet 570 * @bytes: Number of bytes to copy to the destination 571 */ 572 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes) 573 { 574 u32 __iomem *fifo = hsotg->regs + HCFIFO(0); 575 u32 *data_buf = (u32 *)dest; 576 int word_count = (bytes + 3) / 4; 577 int i; 578 579 /* 580 * Todo: Account for the case where dest is not dword aligned. This 581 * requires reading data from the FIFO into a u32 temp buffer, then 582 * moving it into the data buffer. 583 */ 584 585 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes); 586 587 for (i = 0; i < word_count; i++, data_buf++) 588 *data_buf = dwc2_readl(fifo); 589 } 590 591 /** 592 * dwc2_dump_channel_info() - Prints the state of a host channel 593 * 594 * @hsotg: Programming view of DWC_otg controller 595 * @chan: Pointer to the channel to dump 596 * 597 * Must be called with interrupt disabled and spinlock held 598 * 599 * NOTE: This function will be removed once the peripheral controller code 600 * is integrated and the driver is stable 601 */ 602 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg, 603 struct dwc2_host_chan *chan) 604 { 605 #ifdef VERBOSE_DEBUG 606 int num_channels = hsotg->params.host_channels; 607 struct dwc2_qh *qh; 608 u32 hcchar; 609 u32 hcsplt; 610 u32 hctsiz; 611 u32 hc_dma; 612 int i; 613 614 if (!chan) 615 return; 616 617 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 618 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); 619 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num)); 620 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num)); 621 622 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan); 623 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n", 624 hcchar, hcsplt); 625 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n", 626 hctsiz, hc_dma); 627 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 628 chan->dev_addr, chan->ep_num, chan->ep_is_in); 629 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 630 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 631 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); 632 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); 633 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 634 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 635 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 636 (unsigned long)chan->xfer_dma); 637 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 638 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 639 dev_dbg(hsotg->dev, " NP inactive sched:\n"); 640 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive, 641 qh_list_entry) 642 dev_dbg(hsotg->dev, " %p\n", qh); 643 dev_dbg(hsotg->dev, " NP active sched:\n"); 644 list_for_each_entry(qh, &hsotg->non_periodic_sched_active, 645 qh_list_entry) 646 dev_dbg(hsotg->dev, " %p\n", qh); 647 dev_dbg(hsotg->dev, " Channels:\n"); 648 for (i = 0; i < num_channels; i++) { 649 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 650 651 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan); 652 } 653 #endif /* VERBOSE_DEBUG */ 654 } 655 656 static int _dwc2_hcd_start(struct usb_hcd *hcd); 657 658 static void dwc2_host_start(struct dwc2_hsotg *hsotg) 659 { 660 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 661 662 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg); 663 _dwc2_hcd_start(hcd); 664 } 665 666 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg) 667 { 668 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 669 670 hcd->self.is_b_host = 0; 671 } 672 673 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, 674 int *hub_addr, int *hub_port) 675 { 676 struct urb *urb = context; 677 678 if (urb->dev->tt) 679 *hub_addr = urb->dev->tt->hub->devnum; 680 else 681 *hub_addr = 0; 682 *hub_port = urb->dev->ttport; 683 } 684 685 /* 686 * ========================================================================= 687 * Low Level Host Channel Access Functions 688 * ========================================================================= 689 */ 690 691 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg, 692 struct dwc2_host_chan *chan) 693 { 694 u32 hcintmsk = HCINTMSK_CHHLTD; 695 696 switch (chan->ep_type) { 697 case USB_ENDPOINT_XFER_CONTROL: 698 case USB_ENDPOINT_XFER_BULK: 699 dev_vdbg(hsotg->dev, "control/bulk\n"); 700 hcintmsk |= HCINTMSK_XFERCOMPL; 701 hcintmsk |= HCINTMSK_STALL; 702 hcintmsk |= HCINTMSK_XACTERR; 703 hcintmsk |= HCINTMSK_DATATGLERR; 704 if (chan->ep_is_in) { 705 hcintmsk |= HCINTMSK_BBLERR; 706 } else { 707 hcintmsk |= HCINTMSK_NAK; 708 hcintmsk |= HCINTMSK_NYET; 709 if (chan->do_ping) 710 hcintmsk |= HCINTMSK_ACK; 711 } 712 713 if (chan->do_split) { 714 hcintmsk |= HCINTMSK_NAK; 715 if (chan->complete_split) 716 hcintmsk |= HCINTMSK_NYET; 717 else 718 hcintmsk |= HCINTMSK_ACK; 719 } 720 721 if (chan->error_state) 722 hcintmsk |= HCINTMSK_ACK; 723 break; 724 725 case USB_ENDPOINT_XFER_INT: 726 if (dbg_perio()) 727 dev_vdbg(hsotg->dev, "intr\n"); 728 hcintmsk |= HCINTMSK_XFERCOMPL; 729 hcintmsk |= HCINTMSK_NAK; 730 hcintmsk |= HCINTMSK_STALL; 731 hcintmsk |= HCINTMSK_XACTERR; 732 hcintmsk |= HCINTMSK_DATATGLERR; 733 hcintmsk |= HCINTMSK_FRMOVRUN; 734 735 if (chan->ep_is_in) 736 hcintmsk |= HCINTMSK_BBLERR; 737 if (chan->error_state) 738 hcintmsk |= HCINTMSK_ACK; 739 if (chan->do_split) { 740 if (chan->complete_split) 741 hcintmsk |= HCINTMSK_NYET; 742 else 743 hcintmsk |= HCINTMSK_ACK; 744 } 745 break; 746 747 case USB_ENDPOINT_XFER_ISOC: 748 if (dbg_perio()) 749 dev_vdbg(hsotg->dev, "isoc\n"); 750 hcintmsk |= HCINTMSK_XFERCOMPL; 751 hcintmsk |= HCINTMSK_FRMOVRUN; 752 hcintmsk |= HCINTMSK_ACK; 753 754 if (chan->ep_is_in) { 755 hcintmsk |= HCINTMSK_XACTERR; 756 hcintmsk |= HCINTMSK_BBLERR; 757 } 758 break; 759 default: 760 dev_err(hsotg->dev, "## Unknown EP type ##\n"); 761 break; 762 } 763 764 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 765 if (dbg_hc(chan)) 766 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 767 } 768 769 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg, 770 struct dwc2_host_chan *chan) 771 { 772 u32 hcintmsk = HCINTMSK_CHHLTD; 773 774 /* 775 * For Descriptor DMA mode core halts the channel on AHB error. 776 * Interrupt is not required. 777 */ 778 if (!hsotg->params.dma_desc_enable) { 779 if (dbg_hc(chan)) 780 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 781 hcintmsk |= HCINTMSK_AHBERR; 782 } else { 783 if (dbg_hc(chan)) 784 dev_vdbg(hsotg->dev, "desc DMA enabled\n"); 785 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 786 hcintmsk |= HCINTMSK_XFERCOMPL; 787 } 788 789 if (chan->error_state && !chan->do_split && 790 chan->ep_type != USB_ENDPOINT_XFER_ISOC) { 791 if (dbg_hc(chan)) 792 dev_vdbg(hsotg->dev, "setting ACK\n"); 793 hcintmsk |= HCINTMSK_ACK; 794 if (chan->ep_is_in) { 795 hcintmsk |= HCINTMSK_DATATGLERR; 796 if (chan->ep_type != USB_ENDPOINT_XFER_INT) 797 hcintmsk |= HCINTMSK_NAK; 798 } 799 } 800 801 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 802 if (dbg_hc(chan)) 803 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 804 } 805 806 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg, 807 struct dwc2_host_chan *chan) 808 { 809 u32 intmsk; 810 811 if (hsotg->params.host_dma) { 812 if (dbg_hc(chan)) 813 dev_vdbg(hsotg->dev, "DMA enabled\n"); 814 dwc2_hc_enable_dma_ints(hsotg, chan); 815 } else { 816 if (dbg_hc(chan)) 817 dev_vdbg(hsotg->dev, "DMA disabled\n"); 818 dwc2_hc_enable_slave_ints(hsotg, chan); 819 } 820 821 /* Enable the top level host channel interrupt */ 822 intmsk = dwc2_readl(hsotg->regs + HAINTMSK); 823 intmsk |= 1 << chan->hc_num; 824 dwc2_writel(intmsk, hsotg->regs + HAINTMSK); 825 if (dbg_hc(chan)) 826 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk); 827 828 /* Make sure host channel interrupts are enabled */ 829 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 830 intmsk |= GINTSTS_HCHINT; 831 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 832 if (dbg_hc(chan)) 833 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk); 834 } 835 836 /** 837 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from 838 * a specific endpoint 839 * 840 * @hsotg: Programming view of DWC_otg controller 841 * @chan: Information needed to initialize the host channel 842 * 843 * The HCCHARn register is set up with the characteristics specified in chan. 844 * Host channel interrupts that may need to be serviced while this transfer is 845 * in progress are enabled. 846 */ 847 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 848 { 849 u8 hc_num = chan->hc_num; 850 u32 hcintmsk; 851 u32 hcchar; 852 u32 hcsplt = 0; 853 854 if (dbg_hc(chan)) 855 dev_vdbg(hsotg->dev, "%s()\n", __func__); 856 857 /* Clear old interrupt conditions for this host channel */ 858 hcintmsk = 0xffffffff; 859 hcintmsk &= ~HCINTMSK_RESERVED14_31; 860 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num)); 861 862 /* Enable channel interrupts required for this transfer */ 863 dwc2_hc_enable_ints(hsotg, chan); 864 865 /* 866 * Program the HCCHARn register with the endpoint characteristics for 867 * the current transfer 868 */ 869 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK; 870 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK; 871 if (chan->ep_is_in) 872 hcchar |= HCCHAR_EPDIR; 873 if (chan->speed == USB_SPEED_LOW) 874 hcchar |= HCCHAR_LSPDDEV; 875 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK; 876 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK; 877 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num)); 878 if (dbg_hc(chan)) { 879 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n", 880 hc_num, hcchar); 881 882 dev_vdbg(hsotg->dev, "%s: Channel %d\n", 883 __func__, hc_num); 884 dev_vdbg(hsotg->dev, " Dev Addr: %d\n", 885 chan->dev_addr); 886 dev_vdbg(hsotg->dev, " Ep Num: %d\n", 887 chan->ep_num); 888 dev_vdbg(hsotg->dev, " Is In: %d\n", 889 chan->ep_is_in); 890 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n", 891 chan->speed == USB_SPEED_LOW); 892 dev_vdbg(hsotg->dev, " Ep Type: %d\n", 893 chan->ep_type); 894 dev_vdbg(hsotg->dev, " Max Pkt: %d\n", 895 chan->max_packet); 896 } 897 898 /* Program the HCSPLT register for SPLITs */ 899 if (chan->do_split) { 900 if (dbg_hc(chan)) 901 dev_vdbg(hsotg->dev, 902 "Programming HC %d with split --> %s\n", 903 hc_num, 904 chan->complete_split ? "CSPLIT" : "SSPLIT"); 905 if (chan->complete_split) 906 hcsplt |= HCSPLT_COMPSPLT; 907 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT & 908 HCSPLT_XACTPOS_MASK; 909 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT & 910 HCSPLT_HUBADDR_MASK; 911 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT & 912 HCSPLT_PRTADDR_MASK; 913 if (dbg_hc(chan)) { 914 dev_vdbg(hsotg->dev, " comp split %d\n", 915 chan->complete_split); 916 dev_vdbg(hsotg->dev, " xact pos %d\n", 917 chan->xact_pos); 918 dev_vdbg(hsotg->dev, " hub addr %d\n", 919 chan->hub_addr); 920 dev_vdbg(hsotg->dev, " hub port %d\n", 921 chan->hub_port); 922 dev_vdbg(hsotg->dev, " is_in %d\n", 923 chan->ep_is_in); 924 dev_vdbg(hsotg->dev, " Max Pkt %d\n", 925 chan->max_packet); 926 dev_vdbg(hsotg->dev, " xferlen %d\n", 927 chan->xfer_len); 928 } 929 } 930 931 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num)); 932 } 933 934 /** 935 * dwc2_hc_halt() - Attempts to halt a host channel 936 * 937 * @hsotg: Controller register interface 938 * @chan: Host channel to halt 939 * @halt_status: Reason for halting the channel 940 * 941 * This function should only be called in Slave mode or to abort a transfer in 942 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the 943 * controller halts the channel when the transfer is complete or a condition 944 * occurs that requires application intervention. 945 * 946 * In slave mode, checks for a free request queue entry, then sets the Channel 947 * Enable and Channel Disable bits of the Host Channel Characteristics 948 * register of the specified channel to intiate the halt. If there is no free 949 * request queue entry, sets only the Channel Disable bit of the HCCHARn 950 * register to flush requests for this channel. In the latter case, sets a 951 * flag to indicate that the host channel needs to be halted when a request 952 * queue slot is open. 953 * 954 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the 955 * HCCHARn register. The controller ensures there is space in the request 956 * queue before submitting the halt request. 957 * 958 * Some time may elapse before the core flushes any posted requests for this 959 * host channel and halts. The Channel Halted interrupt handler completes the 960 * deactivation of the host channel. 961 */ 962 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, 963 enum dwc2_halt_status halt_status) 964 { 965 u32 nptxsts, hptxsts, hcchar; 966 967 if (dbg_hc(chan)) 968 dev_vdbg(hsotg->dev, "%s()\n", __func__); 969 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS) 970 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status); 971 972 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE || 973 halt_status == DWC2_HC_XFER_AHB_ERR) { 974 /* 975 * Disable all channel interrupts except Ch Halted. The QTD 976 * and QH state associated with this transfer has been cleared 977 * (in the case of URB_DEQUEUE), so the channel needs to be 978 * shut down carefully to prevent crashes. 979 */ 980 u32 hcintmsk = HCINTMSK_CHHLTD; 981 982 dev_vdbg(hsotg->dev, "dequeue/error\n"); 983 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 984 985 /* 986 * Make sure no other interrupts besides halt are currently 987 * pending. Handling another interrupt could cause a crash due 988 * to the QTD and QH state. 989 */ 990 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 991 992 /* 993 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR 994 * even if the channel was already halted for some other 995 * reason 996 */ 997 chan->halt_status = halt_status; 998 999 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1000 if (!(hcchar & HCCHAR_CHENA)) { 1001 /* 1002 * The channel is either already halted or it hasn't 1003 * started yet. In DMA mode, the transfer may halt if 1004 * it finishes normally or a condition occurs that 1005 * requires driver intervention. Don't want to halt 1006 * the channel again. In either Slave or DMA mode, 1007 * it's possible that the transfer has been assigned 1008 * to a channel, but not started yet when an URB is 1009 * dequeued. Don't want to halt a channel that hasn't 1010 * started yet. 1011 */ 1012 return; 1013 } 1014 } 1015 if (chan->halt_pending) { 1016 /* 1017 * A halt has already been issued for this channel. This might 1018 * happen when a transfer is aborted by a higher level in 1019 * the stack. 1020 */ 1021 dev_vdbg(hsotg->dev, 1022 "*** %s: Channel %d, chan->halt_pending already set ***\n", 1023 __func__, chan->hc_num); 1024 return; 1025 } 1026 1027 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1028 1029 /* No need to set the bit in DDMA for disabling the channel */ 1030 /* TODO check it everywhere channel is disabled */ 1031 if (!hsotg->params.dma_desc_enable) { 1032 if (dbg_hc(chan)) 1033 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 1034 hcchar |= HCCHAR_CHENA; 1035 } else { 1036 if (dbg_hc(chan)) 1037 dev_dbg(hsotg->dev, "desc DMA enabled\n"); 1038 } 1039 hcchar |= HCCHAR_CHDIS; 1040 1041 if (!hsotg->params.host_dma) { 1042 if (dbg_hc(chan)) 1043 dev_vdbg(hsotg->dev, "DMA not enabled\n"); 1044 hcchar |= HCCHAR_CHENA; 1045 1046 /* Check for space in the request queue to issue the halt */ 1047 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL || 1048 chan->ep_type == USB_ENDPOINT_XFER_BULK) { 1049 dev_vdbg(hsotg->dev, "control/bulk\n"); 1050 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 1051 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) { 1052 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1053 hcchar &= ~HCCHAR_CHENA; 1054 } 1055 } else { 1056 if (dbg_perio()) 1057 dev_vdbg(hsotg->dev, "isoc/intr\n"); 1058 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS); 1059 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 || 1060 hsotg->queuing_high_bandwidth) { 1061 if (dbg_perio()) 1062 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1063 hcchar &= ~HCCHAR_CHENA; 1064 } 1065 } 1066 } else { 1067 if (dbg_hc(chan)) 1068 dev_vdbg(hsotg->dev, "DMA enabled\n"); 1069 } 1070 1071 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1072 chan->halt_status = halt_status; 1073 1074 if (hcchar & HCCHAR_CHENA) { 1075 if (dbg_hc(chan)) 1076 dev_vdbg(hsotg->dev, "Channel enabled\n"); 1077 chan->halt_pending = 1; 1078 chan->halt_on_queue = 0; 1079 } else { 1080 if (dbg_hc(chan)) 1081 dev_vdbg(hsotg->dev, "Channel disabled\n"); 1082 chan->halt_on_queue = 1; 1083 } 1084 1085 if (dbg_hc(chan)) { 1086 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1087 chan->hc_num); 1088 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n", 1089 hcchar); 1090 dev_vdbg(hsotg->dev, " halt_pending: %d\n", 1091 chan->halt_pending); 1092 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n", 1093 chan->halt_on_queue); 1094 dev_vdbg(hsotg->dev, " halt_status: %d\n", 1095 chan->halt_status); 1096 } 1097 } 1098 1099 /** 1100 * dwc2_hc_cleanup() - Clears the transfer state for a host channel 1101 * 1102 * @hsotg: Programming view of DWC_otg controller 1103 * @chan: Identifies the host channel to clean up 1104 * 1105 * This function is normally called after a transfer is done and the host 1106 * channel is being released 1107 */ 1108 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 1109 { 1110 u32 hcintmsk; 1111 1112 chan->xfer_started = 0; 1113 1114 list_del_init(&chan->split_order_list_entry); 1115 1116 /* 1117 * Clear channel interrupt enables and any unhandled channel interrupt 1118 * conditions 1119 */ 1120 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num)); 1121 hcintmsk = 0xffffffff; 1122 hcintmsk &= ~HCINTMSK_RESERVED14_31; 1123 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 1124 } 1125 1126 /** 1127 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in 1128 * which frame a periodic transfer should occur 1129 * 1130 * @hsotg: Programming view of DWC_otg controller 1131 * @chan: Identifies the host channel to set up and its properties 1132 * @hcchar: Current value of the HCCHAR register for the specified host channel 1133 * 1134 * This function has no effect on non-periodic transfers 1135 */ 1136 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg, 1137 struct dwc2_host_chan *chan, u32 *hcchar) 1138 { 1139 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1140 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1141 int host_speed; 1142 int xfer_ns; 1143 int xfer_us; 1144 int bytes_in_fifo; 1145 u16 fifo_space; 1146 u16 frame_number; 1147 u16 wire_frame; 1148 1149 /* 1150 * Try to figure out if we're an even or odd frame. If we set 1151 * even and the current frame number is even the the transfer 1152 * will happen immediately. Similar if both are odd. If one is 1153 * even and the other is odd then the transfer will happen when 1154 * the frame number ticks. 1155 * 1156 * There's a bit of a balancing act to get this right. 1157 * Sometimes we may want to send data in the current frame (AK 1158 * right away). We might want to do this if the frame number 1159 * _just_ ticked, but we might also want to do this in order 1160 * to continue a split transaction that happened late in a 1161 * microframe (so we didn't know to queue the next transfer 1162 * until the frame number had ticked). The problem is that we 1163 * need a lot of knowledge to know if there's actually still 1164 * time to send things or if it would be better to wait until 1165 * the next frame. 1166 * 1167 * We can look at how much time is left in the current frame 1168 * and make a guess about whether we'll have time to transfer. 1169 * We'll do that. 1170 */ 1171 1172 /* Get speed host is running at */ 1173 host_speed = (chan->speed != USB_SPEED_HIGH && 1174 !chan->do_split) ? chan->speed : USB_SPEED_HIGH; 1175 1176 /* See how many bytes are in the periodic FIFO right now */ 1177 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) & 1178 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; 1179 bytes_in_fifo = sizeof(u32) * 1180 (hsotg->params.host_perio_tx_fifo_size - 1181 fifo_space); 1182 1183 /* 1184 * Roughly estimate bus time for everything in the periodic 1185 * queue + our new transfer. This is "rough" because we're 1186 * using a function that makes takes into account IN/OUT 1187 * and INT/ISO and we're just slamming in one value for all 1188 * transfers. This should be an over-estimate and that should 1189 * be OK, but we can probably tighten it. 1190 */ 1191 xfer_ns = usb_calc_bus_time(host_speed, false, false, 1192 chan->xfer_len + bytes_in_fifo); 1193 xfer_us = NS_TO_US(xfer_ns); 1194 1195 /* See what frame number we'll be at by the time we finish */ 1196 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us); 1197 1198 /* This is when we were scheduled to be on the wire */ 1199 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1); 1200 1201 /* 1202 * If we'd finish _after_ the frame we're scheduled in then 1203 * it's hopeless. Just schedule right away and hope for the 1204 * best. Note that it _might_ be wise to call back into the 1205 * scheduler to pick a better frame, but this is better than 1206 * nothing. 1207 */ 1208 if (dwc2_frame_num_gt(frame_number, wire_frame)) { 1209 dwc2_sch_vdbg(hsotg, 1210 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n", 1211 chan->qh, wire_frame, frame_number, 1212 dwc2_frame_num_dec(frame_number, 1213 wire_frame)); 1214 wire_frame = frame_number; 1215 1216 /* 1217 * We picked a different frame number; communicate this 1218 * back to the scheduler so it doesn't try to schedule 1219 * another in the same frame. 1220 * 1221 * Remember that next_active_frame is 1 before the wire 1222 * frame. 1223 */ 1224 chan->qh->next_active_frame = 1225 dwc2_frame_num_dec(frame_number, 1); 1226 } 1227 1228 if (wire_frame & 1) 1229 *hcchar |= HCCHAR_ODDFRM; 1230 else 1231 *hcchar &= ~HCCHAR_ODDFRM; 1232 } 1233 } 1234 1235 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan) 1236 { 1237 /* Set up the initial PID for the transfer */ 1238 if (chan->speed == USB_SPEED_HIGH) { 1239 if (chan->ep_is_in) { 1240 if (chan->multi_count == 1) 1241 chan->data_pid_start = DWC2_HC_PID_DATA0; 1242 else if (chan->multi_count == 2) 1243 chan->data_pid_start = DWC2_HC_PID_DATA1; 1244 else 1245 chan->data_pid_start = DWC2_HC_PID_DATA2; 1246 } else { 1247 if (chan->multi_count == 1) 1248 chan->data_pid_start = DWC2_HC_PID_DATA0; 1249 else 1250 chan->data_pid_start = DWC2_HC_PID_MDATA; 1251 } 1252 } else { 1253 chan->data_pid_start = DWC2_HC_PID_DATA0; 1254 } 1255 } 1256 1257 /** 1258 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with 1259 * the Host Channel 1260 * 1261 * @hsotg: Programming view of DWC_otg controller 1262 * @chan: Information needed to initialize the host channel 1263 * 1264 * This function should only be called in Slave mode. For a channel associated 1265 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel 1266 * associated with a periodic EP, the periodic Tx FIFO is written. 1267 * 1268 * Upon return the xfer_buf and xfer_count fields in chan are incremented by 1269 * the number of bytes written to the Tx FIFO. 1270 */ 1271 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg, 1272 struct dwc2_host_chan *chan) 1273 { 1274 u32 i; 1275 u32 remaining_count; 1276 u32 byte_count; 1277 u32 dword_count; 1278 u32 __iomem *data_fifo; 1279 u32 *data_buf = (u32 *)chan->xfer_buf; 1280 1281 if (dbg_hc(chan)) 1282 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1283 1284 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num)); 1285 1286 remaining_count = chan->xfer_len - chan->xfer_count; 1287 if (remaining_count > chan->max_packet) 1288 byte_count = chan->max_packet; 1289 else 1290 byte_count = remaining_count; 1291 1292 dword_count = (byte_count + 3) / 4; 1293 1294 if (((unsigned long)data_buf & 0x3) == 0) { 1295 /* xfer_buf is DWORD aligned */ 1296 for (i = 0; i < dword_count; i++, data_buf++) 1297 dwc2_writel(*data_buf, data_fifo); 1298 } else { 1299 /* xfer_buf is not DWORD aligned */ 1300 for (i = 0; i < dword_count; i++, data_buf++) { 1301 u32 data = data_buf[0] | data_buf[1] << 8 | 1302 data_buf[2] << 16 | data_buf[3] << 24; 1303 dwc2_writel(data, data_fifo); 1304 } 1305 } 1306 1307 chan->xfer_count += byte_count; 1308 chan->xfer_buf += byte_count; 1309 } 1310 1311 /** 1312 * dwc2_hc_do_ping() - Starts a PING transfer 1313 * 1314 * @hsotg: Programming view of DWC_otg controller 1315 * @chan: Information needed to initialize the host channel 1316 * 1317 * This function should only be called in Slave mode. The Do Ping bit is set in 1318 * the HCTSIZ register, then the channel is enabled. 1319 */ 1320 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, 1321 struct dwc2_host_chan *chan) 1322 { 1323 u32 hcchar; 1324 u32 hctsiz; 1325 1326 if (dbg_hc(chan)) 1327 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1328 chan->hc_num); 1329 1330 hctsiz = TSIZ_DOPNG; 1331 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT; 1332 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1333 1334 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1335 hcchar |= HCCHAR_CHENA; 1336 hcchar &= ~HCCHAR_CHDIS; 1337 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1338 } 1339 1340 /** 1341 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host 1342 * channel and starts the transfer 1343 * 1344 * @hsotg: Programming view of DWC_otg controller 1345 * @chan: Information needed to initialize the host channel. The xfer_len value 1346 * may be reduced to accommodate the max widths of the XferSize and 1347 * PktCnt fields in the HCTSIZn register. The multi_count value may be 1348 * changed to reflect the final xfer_len value. 1349 * 1350 * This function may be called in either Slave mode or DMA mode. In Slave mode, 1351 * the caller must ensure that there is sufficient space in the request queue 1352 * and Tx Data FIFO. 1353 * 1354 * For an OUT transfer in Slave mode, it loads a data packet into the 1355 * appropriate FIFO. If necessary, additional data packets are loaded in the 1356 * Host ISR. 1357 * 1358 * For an IN transfer in Slave mode, a data packet is requested. The data 1359 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, 1360 * additional data packets are requested in the Host ISR. 1361 * 1362 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ 1363 * register along with a packet count of 1 and the channel is enabled. This 1364 * causes a single PING transaction to occur. Other fields in HCTSIZ are 1365 * simply set to 0 since no data transfer occurs in this case. 1366 * 1367 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with 1368 * all the information required to perform the subsequent data transfer. In 1369 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the 1370 * controller performs the entire PING protocol, then starts the data 1371 * transfer. 1372 */ 1373 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg, 1374 struct dwc2_host_chan *chan) 1375 { 1376 u32 max_hc_xfer_size = hsotg->params.max_transfer_size; 1377 u16 max_hc_pkt_count = hsotg->params.max_packet_count; 1378 u32 hcchar; 1379 u32 hctsiz = 0; 1380 u16 num_packets; 1381 u32 ec_mc; 1382 1383 if (dbg_hc(chan)) 1384 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1385 1386 if (chan->do_ping) { 1387 if (!hsotg->params.host_dma) { 1388 if (dbg_hc(chan)) 1389 dev_vdbg(hsotg->dev, "ping, no DMA\n"); 1390 dwc2_hc_do_ping(hsotg, chan); 1391 chan->xfer_started = 1; 1392 return; 1393 } 1394 1395 if (dbg_hc(chan)) 1396 dev_vdbg(hsotg->dev, "ping, DMA\n"); 1397 1398 hctsiz |= TSIZ_DOPNG; 1399 } 1400 1401 if (chan->do_split) { 1402 if (dbg_hc(chan)) 1403 dev_vdbg(hsotg->dev, "split\n"); 1404 num_packets = 1; 1405 1406 if (chan->complete_split && !chan->ep_is_in) 1407 /* 1408 * For CSPLIT OUT Transfer, set the size to 0 so the 1409 * core doesn't expect any data written to the FIFO 1410 */ 1411 chan->xfer_len = 0; 1412 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet) 1413 chan->xfer_len = chan->max_packet; 1414 else if (!chan->ep_is_in && chan->xfer_len > 188) 1415 chan->xfer_len = 188; 1416 1417 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1418 TSIZ_XFERSIZE_MASK; 1419 1420 /* For split set ec_mc for immediate retries */ 1421 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1422 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1423 ec_mc = 3; 1424 else 1425 ec_mc = 1; 1426 } else { 1427 if (dbg_hc(chan)) 1428 dev_vdbg(hsotg->dev, "no split\n"); 1429 /* 1430 * Ensure that the transfer length and packet count will fit 1431 * in the widths allocated for them in the HCTSIZn register 1432 */ 1433 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1434 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1435 /* 1436 * Make sure the transfer size is no larger than one 1437 * (micro)frame's worth of data. (A check was done 1438 * when the periodic transfer was accepted to ensure 1439 * that a (micro)frame's worth of data can be 1440 * programmed into a channel.) 1441 */ 1442 u32 max_periodic_len = 1443 chan->multi_count * chan->max_packet; 1444 1445 if (chan->xfer_len > max_periodic_len) 1446 chan->xfer_len = max_periodic_len; 1447 } else if (chan->xfer_len > max_hc_xfer_size) { 1448 /* 1449 * Make sure that xfer_len is a multiple of max packet 1450 * size 1451 */ 1452 chan->xfer_len = 1453 max_hc_xfer_size - chan->max_packet + 1; 1454 } 1455 1456 if (chan->xfer_len > 0) { 1457 num_packets = (chan->xfer_len + chan->max_packet - 1) / 1458 chan->max_packet; 1459 if (num_packets > max_hc_pkt_count) { 1460 num_packets = max_hc_pkt_count; 1461 chan->xfer_len = num_packets * chan->max_packet; 1462 } 1463 } else { 1464 /* Need 1 packet for transfer length of 0 */ 1465 num_packets = 1; 1466 } 1467 1468 if (chan->ep_is_in) 1469 /* 1470 * Always program an integral # of max packets for IN 1471 * transfers 1472 */ 1473 chan->xfer_len = num_packets * chan->max_packet; 1474 1475 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1476 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1477 /* 1478 * Make sure that the multi_count field matches the 1479 * actual transfer length 1480 */ 1481 chan->multi_count = num_packets; 1482 1483 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1484 dwc2_set_pid_isoc(chan); 1485 1486 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1487 TSIZ_XFERSIZE_MASK; 1488 1489 /* The ec_mc gets the multi_count for non-split */ 1490 ec_mc = chan->multi_count; 1491 } 1492 1493 chan->start_pkt_count = num_packets; 1494 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK; 1495 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1496 TSIZ_SC_MC_PID_MASK; 1497 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1498 if (dbg_hc(chan)) { 1499 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n", 1500 hctsiz, chan->hc_num); 1501 1502 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1503 chan->hc_num); 1504 dev_vdbg(hsotg->dev, " Xfer Size: %d\n", 1505 (hctsiz & TSIZ_XFERSIZE_MASK) >> 1506 TSIZ_XFERSIZE_SHIFT); 1507 dev_vdbg(hsotg->dev, " Num Pkts: %d\n", 1508 (hctsiz & TSIZ_PKTCNT_MASK) >> 1509 TSIZ_PKTCNT_SHIFT); 1510 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1511 (hctsiz & TSIZ_SC_MC_PID_MASK) >> 1512 TSIZ_SC_MC_PID_SHIFT); 1513 } 1514 1515 if (hsotg->params.host_dma) { 1516 dwc2_writel((u32)chan->xfer_dma, 1517 hsotg->regs + HCDMA(chan->hc_num)); 1518 if (dbg_hc(chan)) 1519 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n", 1520 (unsigned long)chan->xfer_dma, chan->hc_num); 1521 } 1522 1523 /* Start the split */ 1524 if (chan->do_split) { 1525 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); 1526 1527 hcsplt |= HCSPLT_SPLTENA; 1528 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num)); 1529 } 1530 1531 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1532 hcchar &= ~HCCHAR_MULTICNT_MASK; 1533 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK; 1534 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1535 1536 if (hcchar & HCCHAR_CHDIS) 1537 dev_warn(hsotg->dev, 1538 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1539 __func__, chan->hc_num, hcchar); 1540 1541 /* Set host channel enable after all other setup is complete */ 1542 hcchar |= HCCHAR_CHENA; 1543 hcchar &= ~HCCHAR_CHDIS; 1544 1545 if (dbg_hc(chan)) 1546 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1547 (hcchar & HCCHAR_MULTICNT_MASK) >> 1548 HCCHAR_MULTICNT_SHIFT); 1549 1550 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1551 if (dbg_hc(chan)) 1552 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1553 chan->hc_num); 1554 1555 chan->xfer_started = 1; 1556 chan->requests++; 1557 1558 if (!hsotg->params.host_dma && 1559 !chan->ep_is_in && chan->xfer_len > 0) 1560 /* Load OUT packet into the appropriate Tx FIFO */ 1561 dwc2_hc_write_packet(hsotg, chan); 1562 } 1563 1564 /** 1565 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a 1566 * host channel and starts the transfer in Descriptor DMA mode 1567 * 1568 * @hsotg: Programming view of DWC_otg controller 1569 * @chan: Information needed to initialize the host channel 1570 * 1571 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set. 1572 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field 1573 * with micro-frame bitmap. 1574 * 1575 * Initializes HCDMA register with descriptor list address and CTD value then 1576 * starts the transfer via enabling the channel. 1577 */ 1578 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, 1579 struct dwc2_host_chan *chan) 1580 { 1581 u32 hcchar; 1582 u32 hctsiz = 0; 1583 1584 if (chan->do_ping) 1585 hctsiz |= TSIZ_DOPNG; 1586 1587 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1588 dwc2_set_pid_isoc(chan); 1589 1590 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */ 1591 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1592 TSIZ_SC_MC_PID_MASK; 1593 1594 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */ 1595 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK; 1596 1597 /* Non-zero only for high-speed interrupt endpoints */ 1598 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK; 1599 1600 if (dbg_hc(chan)) { 1601 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1602 chan->hc_num); 1603 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1604 chan->data_pid_start); 1605 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1); 1606 } 1607 1608 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1609 1610 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr, 1611 chan->desc_list_sz, DMA_TO_DEVICE); 1612 1613 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num)); 1614 1615 if (dbg_hc(chan)) 1616 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n", 1617 &chan->desc_list_addr, chan->hc_num); 1618 1619 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1620 hcchar &= ~HCCHAR_MULTICNT_MASK; 1621 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT & 1622 HCCHAR_MULTICNT_MASK; 1623 1624 if (hcchar & HCCHAR_CHDIS) 1625 dev_warn(hsotg->dev, 1626 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1627 __func__, chan->hc_num, hcchar); 1628 1629 /* Set host channel enable after all other setup is complete */ 1630 hcchar |= HCCHAR_CHENA; 1631 hcchar &= ~HCCHAR_CHDIS; 1632 1633 if (dbg_hc(chan)) 1634 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1635 (hcchar & HCCHAR_MULTICNT_MASK) >> 1636 HCCHAR_MULTICNT_SHIFT); 1637 1638 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1639 if (dbg_hc(chan)) 1640 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1641 chan->hc_num); 1642 1643 chan->xfer_started = 1; 1644 chan->requests++; 1645 } 1646 1647 /** 1648 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by 1649 * a previous call to dwc2_hc_start_transfer() 1650 * 1651 * @hsotg: Programming view of DWC_otg controller 1652 * @chan: Information needed to initialize the host channel 1653 * 1654 * The caller must ensure there is sufficient space in the request queue and Tx 1655 * Data FIFO. This function should only be called in Slave mode. In DMA mode, 1656 * the controller acts autonomously to complete transfers programmed to a host 1657 * channel. 1658 * 1659 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO 1660 * if there is any data remaining to be queued. For an IN transfer, another 1661 * data packet is always requested. For the SETUP phase of a control transfer, 1662 * this function does nothing. 1663 * 1664 * Return: 1 if a new request is queued, 0 if no more requests are required 1665 * for this transfer 1666 */ 1667 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg, 1668 struct dwc2_host_chan *chan) 1669 { 1670 if (dbg_hc(chan)) 1671 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1672 chan->hc_num); 1673 1674 if (chan->do_split) 1675 /* SPLITs always queue just once per channel */ 1676 return 0; 1677 1678 if (chan->data_pid_start == DWC2_HC_PID_SETUP) 1679 /* SETUPs are queued only once since they can't be NAK'd */ 1680 return 0; 1681 1682 if (chan->ep_is_in) { 1683 /* 1684 * Always queue another request for other IN transfers. If 1685 * back-to-back INs are issued and NAKs are received for both, 1686 * the driver may still be processing the first NAK when the 1687 * second NAK is received. When the interrupt handler clears 1688 * the NAK interrupt for the first NAK, the second NAK will 1689 * not be seen. So we can't depend on the NAK interrupt 1690 * handler to requeue a NAK'd request. Instead, IN requests 1691 * are issued each time this function is called. When the 1692 * transfer completes, the extra requests for the channel will 1693 * be flushed. 1694 */ 1695 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1696 1697 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1698 hcchar |= HCCHAR_CHENA; 1699 hcchar &= ~HCCHAR_CHDIS; 1700 if (dbg_hc(chan)) 1701 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n", 1702 hcchar); 1703 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1704 chan->requests++; 1705 return 1; 1706 } 1707 1708 /* OUT transfers */ 1709 1710 if (chan->xfer_count < chan->xfer_len) { 1711 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1712 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1713 u32 hcchar = dwc2_readl(hsotg->regs + 1714 HCCHAR(chan->hc_num)); 1715 1716 dwc2_hc_set_even_odd_frame(hsotg, chan, 1717 &hcchar); 1718 } 1719 1720 /* Load OUT packet into the appropriate Tx FIFO */ 1721 dwc2_hc_write_packet(hsotg, chan); 1722 chan->requests++; 1723 return 1; 1724 } 1725 1726 return 0; 1727 } 1728 1729 /* 1730 * ========================================================================= 1731 * HCD 1732 * ========================================================================= 1733 */ 1734 1735 /* 1736 * Processes all the URBs in a single list of QHs. Completes them with 1737 * -ETIMEDOUT and frees the QTD. 1738 * 1739 * Must be called with interrupt disabled and spinlock held 1740 */ 1741 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg, 1742 struct list_head *qh_list) 1743 { 1744 struct dwc2_qh *qh, *qh_tmp; 1745 struct dwc2_qtd *qtd, *qtd_tmp; 1746 1747 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1748 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1749 qtd_list_entry) { 1750 dwc2_host_complete(hsotg, qtd, -ECONNRESET); 1751 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1752 } 1753 } 1754 } 1755 1756 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg, 1757 struct list_head *qh_list) 1758 { 1759 struct dwc2_qtd *qtd, *qtd_tmp; 1760 struct dwc2_qh *qh, *qh_tmp; 1761 unsigned long flags; 1762 1763 if (!qh_list->next) 1764 /* The list hasn't been initialized yet */ 1765 return; 1766 1767 spin_lock_irqsave(&hsotg->lock, flags); 1768 1769 /* Ensure there are no QTDs or URBs left */ 1770 dwc2_kill_urbs_in_qh_list(hsotg, qh_list); 1771 1772 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1773 dwc2_hcd_qh_unlink(hsotg, qh); 1774 1775 /* Free each QTD in the QH's QTD list */ 1776 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1777 qtd_list_entry) 1778 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1779 1780 if (qh->channel && qh->channel->qh == qh) 1781 qh->channel->qh = NULL; 1782 1783 spin_unlock_irqrestore(&hsotg->lock, flags); 1784 dwc2_hcd_qh_free(hsotg, qh); 1785 spin_lock_irqsave(&hsotg->lock, flags); 1786 } 1787 1788 spin_unlock_irqrestore(&hsotg->lock, flags); 1789 } 1790 1791 /* 1792 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic 1793 * and periodic schedules. The QTD associated with each URB is removed from 1794 * the schedule and freed. This function may be called when a disconnect is 1795 * detected or when the HCD is being stopped. 1796 * 1797 * Must be called with interrupt disabled and spinlock held 1798 */ 1799 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg) 1800 { 1801 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive); 1802 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active); 1803 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive); 1804 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready); 1805 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned); 1806 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued); 1807 } 1808 1809 /** 1810 * dwc2_hcd_start() - Starts the HCD when switching to Host mode 1811 * 1812 * @hsotg: Pointer to struct dwc2_hsotg 1813 */ 1814 void dwc2_hcd_start(struct dwc2_hsotg *hsotg) 1815 { 1816 u32 hprt0; 1817 1818 if (hsotg->op_state == OTG_STATE_B_HOST) { 1819 /* 1820 * Reset the port. During a HNP mode switch the reset 1821 * needs to occur within 1ms and have a duration of at 1822 * least 50ms. 1823 */ 1824 hprt0 = dwc2_read_hprt0(hsotg); 1825 hprt0 |= HPRT0_RST; 1826 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1827 } 1828 1829 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work, 1830 msecs_to_jiffies(50)); 1831 } 1832 1833 /* Must be called with interrupt disabled and spinlock held */ 1834 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg) 1835 { 1836 int num_channels = hsotg->params.host_channels; 1837 struct dwc2_host_chan *channel; 1838 u32 hcchar; 1839 int i; 1840 1841 if (!hsotg->params.host_dma) { 1842 /* Flush out any channel requests in slave mode */ 1843 for (i = 0; i < num_channels; i++) { 1844 channel = hsotg->hc_ptr_array[i]; 1845 if (!list_empty(&channel->hc_list_entry)) 1846 continue; 1847 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 1848 if (hcchar & HCCHAR_CHENA) { 1849 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR); 1850 hcchar |= HCCHAR_CHDIS; 1851 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 1852 } 1853 } 1854 } 1855 1856 for (i = 0; i < num_channels; i++) { 1857 channel = hsotg->hc_ptr_array[i]; 1858 if (!list_empty(&channel->hc_list_entry)) 1859 continue; 1860 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 1861 if (hcchar & HCCHAR_CHENA) { 1862 /* Halt the channel */ 1863 hcchar |= HCCHAR_CHDIS; 1864 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 1865 } 1866 1867 dwc2_hc_cleanup(hsotg, channel); 1868 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list); 1869 /* 1870 * Added for Descriptor DMA to prevent channel double cleanup in 1871 * release_channel_ddma(), which is called from ep_disable when 1872 * device disconnects 1873 */ 1874 channel->qh = NULL; 1875 } 1876 /* All channels have been freed, mark them available */ 1877 if (hsotg->params.uframe_sched) { 1878 hsotg->available_host_channels = 1879 hsotg->params.host_channels; 1880 } else { 1881 hsotg->non_periodic_channels = 0; 1882 hsotg->periodic_channels = 0; 1883 } 1884 } 1885 1886 /** 1887 * dwc2_hcd_connect() - Handles connect of the HCD 1888 * 1889 * @hsotg: Pointer to struct dwc2_hsotg 1890 * 1891 * Must be called with interrupt disabled and spinlock held 1892 */ 1893 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) 1894 { 1895 if (hsotg->lx_state != DWC2_L0) 1896 usb_hcd_resume_root_hub(hsotg->priv); 1897 1898 hsotg->flags.b.port_connect_status_change = 1; 1899 hsotg->flags.b.port_connect_status = 1; 1900 } 1901 1902 /** 1903 * dwc2_hcd_disconnect() - Handles disconnect of the HCD 1904 * 1905 * @hsotg: Pointer to struct dwc2_hsotg 1906 * @force: If true, we won't try to reconnect even if we see device connected. 1907 * 1908 * Must be called with interrupt disabled and spinlock held 1909 */ 1910 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) 1911 { 1912 u32 intr; 1913 u32 hprt0; 1914 1915 /* Set status flags for the hub driver */ 1916 hsotg->flags.b.port_connect_status_change = 1; 1917 hsotg->flags.b.port_connect_status = 0; 1918 1919 /* 1920 * Shutdown any transfers in process by clearing the Tx FIFO Empty 1921 * interrupt mask and status bits and disabling subsequent host 1922 * channel interrupts. 1923 */ 1924 intr = dwc2_readl(hsotg->regs + GINTMSK); 1925 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT); 1926 dwc2_writel(intr, hsotg->regs + GINTMSK); 1927 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT; 1928 dwc2_writel(intr, hsotg->regs + GINTSTS); 1929 1930 /* 1931 * Turn off the vbus power only if the core has transitioned to device 1932 * mode. If still in host mode, need to keep power on to detect a 1933 * reconnection. 1934 */ 1935 if (dwc2_is_device_mode(hsotg)) { 1936 if (hsotg->op_state != OTG_STATE_A_SUSPEND) { 1937 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n"); 1938 dwc2_writel(0, hsotg->regs + HPRT0); 1939 } 1940 1941 dwc2_disable_host_interrupts(hsotg); 1942 } 1943 1944 /* Respond with an error status to all URBs in the schedule */ 1945 dwc2_kill_all_urbs(hsotg); 1946 1947 if (dwc2_is_host_mode(hsotg)) 1948 /* Clean up any host channels that were in use */ 1949 dwc2_hcd_cleanup_channels(hsotg); 1950 1951 dwc2_host_disconnect(hsotg); 1952 1953 /* 1954 * Add an extra check here to see if we're actually connected but 1955 * we don't have a detection interrupt pending. This can happen if: 1956 * 1. hardware sees connect 1957 * 2. hardware sees disconnect 1958 * 3. hardware sees connect 1959 * 4. dwc2_port_intr() - clears connect interrupt 1960 * 5. dwc2_handle_common_intr() - calls here 1961 * 1962 * Without the extra check here we will end calling disconnect 1963 * and won't get any future interrupts to handle the connect. 1964 */ 1965 if (!force) { 1966 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 1967 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS)) 1968 dwc2_hcd_connect(hsotg); 1969 } 1970 } 1971 1972 /** 1973 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup 1974 * 1975 * @hsotg: Pointer to struct dwc2_hsotg 1976 */ 1977 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg) 1978 { 1979 if (hsotg->bus_suspended) { 1980 hsotg->flags.b.port_suspend_change = 1; 1981 usb_hcd_resume_root_hub(hsotg->priv); 1982 } 1983 1984 if (hsotg->lx_state == DWC2_L1) 1985 hsotg->flags.b.port_l1_change = 1; 1986 } 1987 1988 /** 1989 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner 1990 * 1991 * @hsotg: Pointer to struct dwc2_hsotg 1992 * 1993 * Must be called with interrupt disabled and spinlock held 1994 */ 1995 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg) 1996 { 1997 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n"); 1998 1999 /* 2000 * The root hub should be disconnected before this function is called. 2001 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) 2002 * and the QH lists (via ..._hcd_endpoint_disable). 2003 */ 2004 2005 /* Turn off all host-specific interrupts */ 2006 dwc2_disable_host_interrupts(hsotg); 2007 2008 /* Turn off the vbus power */ 2009 dev_dbg(hsotg->dev, "PortPower off\n"); 2010 dwc2_writel(0, hsotg->regs + HPRT0); 2011 } 2012 2013 /* Caller must hold driver lock */ 2014 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, 2015 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, 2016 struct dwc2_qtd *qtd) 2017 { 2018 u32 intr_mask; 2019 int retval; 2020 int dev_speed; 2021 2022 if (!hsotg->flags.b.port_connect_status) { 2023 /* No longer connected */ 2024 dev_err(hsotg->dev, "Not connected\n"); 2025 return -ENODEV; 2026 } 2027 2028 dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 2029 2030 /* Some configurations cannot support LS traffic on a FS root port */ 2031 if ((dev_speed == USB_SPEED_LOW) && 2032 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) && 2033 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) { 2034 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 2035 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 2036 2037 if (prtspd == HPRT0_SPD_FULL_SPEED) 2038 return -ENODEV; 2039 } 2040 2041 if (!qtd) 2042 return -EINVAL; 2043 2044 dwc2_hcd_qtd_init(qtd, urb); 2045 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh); 2046 if (retval) { 2047 dev_err(hsotg->dev, 2048 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n", 2049 retval); 2050 return retval; 2051 } 2052 2053 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 2054 if (!(intr_mask & GINTSTS_SOF)) { 2055 enum dwc2_transaction_type tr_type; 2056 2057 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK && 2058 !(qtd->urb->flags & URB_GIVEBACK_ASAP)) 2059 /* 2060 * Do not schedule SG transactions until qtd has 2061 * URB_GIVEBACK_ASAP set 2062 */ 2063 return 0; 2064 2065 tr_type = dwc2_hcd_select_transactions(hsotg); 2066 if (tr_type != DWC2_TRANSACTION_NONE) 2067 dwc2_hcd_queue_transactions(hsotg, tr_type); 2068 } 2069 2070 return 0; 2071 } 2072 2073 /* Must be called with interrupt disabled and spinlock held */ 2074 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg, 2075 struct dwc2_hcd_urb *urb) 2076 { 2077 struct dwc2_qh *qh; 2078 struct dwc2_qtd *urb_qtd; 2079 2080 urb_qtd = urb->qtd; 2081 if (!urb_qtd) { 2082 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n"); 2083 return -EINVAL; 2084 } 2085 2086 qh = urb_qtd->qh; 2087 if (!qh) { 2088 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n"); 2089 return -EINVAL; 2090 } 2091 2092 urb->priv = NULL; 2093 2094 if (urb_qtd->in_process && qh->channel) { 2095 dwc2_dump_channel_info(hsotg, qh->channel); 2096 2097 /* The QTD is in process (it has been assigned to a channel) */ 2098 if (hsotg->flags.b.port_connect_status) 2099 /* 2100 * If still connected (i.e. in host mode), halt the 2101 * channel so it can be used for other transfers. If 2102 * no longer connected, the host registers can't be 2103 * written to halt the channel since the core is in 2104 * device mode. 2105 */ 2106 dwc2_hc_halt(hsotg, qh->channel, 2107 DWC2_HC_XFER_URB_DEQUEUE); 2108 } 2109 2110 /* 2111 * Free the QTD and clean up the associated QH. Leave the QH in the 2112 * schedule if it has any remaining QTDs. 2113 */ 2114 if (!hsotg->params.dma_desc_enable) { 2115 u8 in_process = urb_qtd->in_process; 2116 2117 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2118 if (in_process) { 2119 dwc2_hcd_qh_deactivate(hsotg, qh, 0); 2120 qh->channel = NULL; 2121 } else if (list_empty(&qh->qtd_list)) { 2122 dwc2_hcd_qh_unlink(hsotg, qh); 2123 } 2124 } else { 2125 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2126 } 2127 2128 return 0; 2129 } 2130 2131 /* Must NOT be called with interrupt disabled or spinlock held */ 2132 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg, 2133 struct usb_host_endpoint *ep, int retry) 2134 { 2135 struct dwc2_qtd *qtd, *qtd_tmp; 2136 struct dwc2_qh *qh; 2137 unsigned long flags; 2138 int rc; 2139 2140 spin_lock_irqsave(&hsotg->lock, flags); 2141 2142 qh = ep->hcpriv; 2143 if (!qh) { 2144 rc = -EINVAL; 2145 goto err; 2146 } 2147 2148 while (!list_empty(&qh->qtd_list) && retry--) { 2149 if (retry == 0) { 2150 dev_err(hsotg->dev, 2151 "## timeout in dwc2_hcd_endpoint_disable() ##\n"); 2152 rc = -EBUSY; 2153 goto err; 2154 } 2155 2156 spin_unlock_irqrestore(&hsotg->lock, flags); 2157 msleep(20); 2158 spin_lock_irqsave(&hsotg->lock, flags); 2159 qh = ep->hcpriv; 2160 if (!qh) { 2161 rc = -EINVAL; 2162 goto err; 2163 } 2164 } 2165 2166 dwc2_hcd_qh_unlink(hsotg, qh); 2167 2168 /* Free each QTD in the QH's QTD list */ 2169 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) 2170 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 2171 2172 ep->hcpriv = NULL; 2173 2174 if (qh->channel && qh->channel->qh == qh) 2175 qh->channel->qh = NULL; 2176 2177 spin_unlock_irqrestore(&hsotg->lock, flags); 2178 2179 dwc2_hcd_qh_free(hsotg, qh); 2180 2181 return 0; 2182 2183 err: 2184 ep->hcpriv = NULL; 2185 spin_unlock_irqrestore(&hsotg->lock, flags); 2186 2187 return rc; 2188 } 2189 2190 /* Must be called with interrupt disabled and spinlock held */ 2191 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg, 2192 struct usb_host_endpoint *ep) 2193 { 2194 struct dwc2_qh *qh = ep->hcpriv; 2195 2196 if (!qh) 2197 return -EINVAL; 2198 2199 qh->data_toggle = DWC2_HC_PID_DATA0; 2200 2201 return 0; 2202 } 2203 2204 /** 2205 * dwc2_core_init() - Initializes the DWC_otg controller registers and 2206 * prepares the core for device mode or host mode operation 2207 * 2208 * @hsotg: Programming view of the DWC_otg controller 2209 * @initial_setup: If true then this is the first init for this instance. 2210 */ 2211 static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 2212 { 2213 u32 usbcfg, otgctl; 2214 int retval; 2215 2216 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2217 2218 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 2219 2220 /* Set ULPI External VBUS bit if needed */ 2221 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV; 2222 if (hsotg->params.phy_ulpi_ext_vbus) 2223 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV; 2224 2225 /* Set external TS Dline pulsing bit if needed */ 2226 usbcfg &= ~GUSBCFG_TERMSELDLPULSE; 2227 if (hsotg->params.ts_dline) 2228 usbcfg |= GUSBCFG_TERMSELDLPULSE; 2229 2230 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 2231 2232 /* 2233 * Reset the Controller 2234 * 2235 * We only need to reset the controller if this is a re-init. 2236 * For the first init we know for sure that earlier code reset us (it 2237 * needed to in order to properly detect various parameters). 2238 */ 2239 if (!initial_setup) { 2240 retval = dwc2_core_reset_and_force_dr_mode(hsotg); 2241 if (retval) { 2242 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n", 2243 __func__); 2244 return retval; 2245 } 2246 } 2247 2248 /* 2249 * This needs to happen in FS mode before any other programming occurs 2250 */ 2251 retval = dwc2_phy_init(hsotg, initial_setup); 2252 if (retval) 2253 return retval; 2254 2255 /* Program the GAHBCFG Register */ 2256 retval = dwc2_gahbcfg_init(hsotg); 2257 if (retval) 2258 return retval; 2259 2260 /* Program the GUSBCFG register */ 2261 dwc2_gusbcfg_init(hsotg); 2262 2263 /* Program the GOTGCTL register */ 2264 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2265 otgctl &= ~GOTGCTL_OTGVER; 2266 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2267 2268 /* Clear the SRP success bit for FS-I2c */ 2269 hsotg->srp_success = 0; 2270 2271 /* Enable common interrupts */ 2272 dwc2_enable_common_interrupts(hsotg); 2273 2274 /* 2275 * Do device or host initialization based on mode during PCD and 2276 * HCD initialization 2277 */ 2278 if (dwc2_is_host_mode(hsotg)) { 2279 dev_dbg(hsotg->dev, "Host Mode\n"); 2280 hsotg->op_state = OTG_STATE_A_HOST; 2281 } else { 2282 dev_dbg(hsotg->dev, "Device Mode\n"); 2283 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 2284 } 2285 2286 return 0; 2287 } 2288 2289 /** 2290 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for 2291 * Host mode 2292 * 2293 * @hsotg: Programming view of DWC_otg controller 2294 * 2295 * This function flushes the Tx and Rx FIFOs and flushes any entries in the 2296 * request queues. Host channels are reset to ensure that they are ready for 2297 * performing transfers. 2298 */ 2299 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg) 2300 { 2301 u32 hcfg, hfir, otgctl; 2302 2303 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2304 2305 /* Restart the Phy Clock */ 2306 dwc2_writel(0, hsotg->regs + PCGCTL); 2307 2308 /* Initialize Host Configuration Register */ 2309 dwc2_init_fs_ls_pclk_sel(hsotg); 2310 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 2311 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) { 2312 hcfg = dwc2_readl(hsotg->regs + HCFG); 2313 hcfg |= HCFG_FSLSSUPP; 2314 dwc2_writel(hcfg, hsotg->regs + HCFG); 2315 } 2316 2317 /* 2318 * This bit allows dynamic reloading of the HFIR register during 2319 * runtime. This bit needs to be programmed during initial configuration 2320 * and its value must not be changed during runtime. 2321 */ 2322 if (hsotg->params.reload_ctl) { 2323 hfir = dwc2_readl(hsotg->regs + HFIR); 2324 hfir |= HFIR_RLDCTRL; 2325 dwc2_writel(hfir, hsotg->regs + HFIR); 2326 } 2327 2328 if (hsotg->params.dma_desc_enable) { 2329 u32 op_mode = hsotg->hw_params.op_mode; 2330 2331 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a || 2332 !hsotg->hw_params.dma_desc_enable || 2333 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE || 2334 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE || 2335 op_mode == GHWCFG2_OP_MODE_UNDEFINED) { 2336 dev_err(hsotg->dev, 2337 "Hardware does not support descriptor DMA mode -\n"); 2338 dev_err(hsotg->dev, 2339 "falling back to buffer DMA mode.\n"); 2340 hsotg->params.dma_desc_enable = false; 2341 } else { 2342 hcfg = dwc2_readl(hsotg->regs + HCFG); 2343 hcfg |= HCFG_DESCDMA; 2344 dwc2_writel(hcfg, hsotg->regs + HCFG); 2345 } 2346 } 2347 2348 /* Configure data FIFO sizes */ 2349 dwc2_config_fifos(hsotg); 2350 2351 /* TODO - check this */ 2352 /* Clear Host Set HNP Enable in the OTG Control Register */ 2353 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2354 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2355 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2356 2357 /* Make sure the FIFOs are flushed */ 2358 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */); 2359 dwc2_flush_rx_fifo(hsotg); 2360 2361 /* Clear Host Set HNP Enable in the OTG Control Register */ 2362 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2363 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2364 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2365 2366 if (!hsotg->params.dma_desc_enable) { 2367 int num_channels, i; 2368 u32 hcchar; 2369 2370 /* Flush out any leftover queued requests */ 2371 num_channels = hsotg->params.host_channels; 2372 for (i = 0; i < num_channels; i++) { 2373 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2374 hcchar &= ~HCCHAR_CHENA; 2375 hcchar |= HCCHAR_CHDIS; 2376 hcchar &= ~HCCHAR_EPDIR; 2377 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 2378 } 2379 2380 /* Halt all channels to put them into a known state */ 2381 for (i = 0; i < num_channels; i++) { 2382 int count = 0; 2383 2384 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2385 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS; 2386 hcchar &= ~HCCHAR_EPDIR; 2387 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 2388 dev_dbg(hsotg->dev, "%s: Halt channel %d\n", 2389 __func__, i); 2390 do { 2391 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2392 if (++count > 1000) { 2393 dev_err(hsotg->dev, 2394 "Unable to clear enable on channel %d\n", 2395 i); 2396 break; 2397 } 2398 udelay(1); 2399 } while (hcchar & HCCHAR_CHENA); 2400 } 2401 } 2402 2403 /* Turn on the vbus power */ 2404 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state); 2405 if (hsotg->op_state == OTG_STATE_A_HOST) { 2406 u32 hprt0 = dwc2_read_hprt0(hsotg); 2407 2408 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n", 2409 !!(hprt0 & HPRT0_PWR)); 2410 if (!(hprt0 & HPRT0_PWR)) { 2411 hprt0 |= HPRT0_PWR; 2412 dwc2_writel(hprt0, hsotg->regs + HPRT0); 2413 } 2414 } 2415 2416 dwc2_enable_host_interrupts(hsotg); 2417 } 2418 2419 /* 2420 * Initializes dynamic portions of the DWC_otg HCD state 2421 * 2422 * Must be called with interrupt disabled and spinlock held 2423 */ 2424 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg) 2425 { 2426 struct dwc2_host_chan *chan, *chan_tmp; 2427 int num_channels; 2428 int i; 2429 2430 hsotg->flags.d32 = 0; 2431 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active; 2432 2433 if (hsotg->params.uframe_sched) { 2434 hsotg->available_host_channels = 2435 hsotg->params.host_channels; 2436 } else { 2437 hsotg->non_periodic_channels = 0; 2438 hsotg->periodic_channels = 0; 2439 } 2440 2441 /* 2442 * Put all channels in the free channel list and clean up channel 2443 * states 2444 */ 2445 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list, 2446 hc_list_entry) 2447 list_del_init(&chan->hc_list_entry); 2448 2449 num_channels = hsotg->params.host_channels; 2450 for (i = 0; i < num_channels; i++) { 2451 chan = hsotg->hc_ptr_array[i]; 2452 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); 2453 dwc2_hc_cleanup(hsotg, chan); 2454 } 2455 2456 /* Initialize the DWC core for host mode operation */ 2457 dwc2_core_host_init(hsotg); 2458 } 2459 2460 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg, 2461 struct dwc2_host_chan *chan, 2462 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 2463 { 2464 int hub_addr, hub_port; 2465 2466 chan->do_split = 1; 2467 chan->xact_pos = qtd->isoc_split_pos; 2468 chan->complete_split = qtd->complete_split; 2469 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); 2470 chan->hub_addr = (u8)hub_addr; 2471 chan->hub_port = (u8)hub_port; 2472 } 2473 2474 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg, 2475 struct dwc2_host_chan *chan, 2476 struct dwc2_qtd *qtd) 2477 { 2478 struct dwc2_hcd_urb *urb = qtd->urb; 2479 struct dwc2_hcd_iso_packet_desc *frame_desc; 2480 2481 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) { 2482 case USB_ENDPOINT_XFER_CONTROL: 2483 chan->ep_type = USB_ENDPOINT_XFER_CONTROL; 2484 2485 switch (qtd->control_phase) { 2486 case DWC2_CONTROL_SETUP: 2487 dev_vdbg(hsotg->dev, " Control setup transaction\n"); 2488 chan->do_ping = 0; 2489 chan->ep_is_in = 0; 2490 chan->data_pid_start = DWC2_HC_PID_SETUP; 2491 if (hsotg->params.host_dma) 2492 chan->xfer_dma = urb->setup_dma; 2493 else 2494 chan->xfer_buf = urb->setup_packet; 2495 chan->xfer_len = 8; 2496 break; 2497 2498 case DWC2_CONTROL_DATA: 2499 dev_vdbg(hsotg->dev, " Control data transaction\n"); 2500 chan->data_pid_start = qtd->data_toggle; 2501 break; 2502 2503 case DWC2_CONTROL_STATUS: 2504 /* 2505 * Direction is opposite of data direction or IN if no 2506 * data 2507 */ 2508 dev_vdbg(hsotg->dev, " Control status transaction\n"); 2509 if (urb->length == 0) 2510 chan->ep_is_in = 1; 2511 else 2512 chan->ep_is_in = 2513 dwc2_hcd_is_pipe_out(&urb->pipe_info); 2514 if (chan->ep_is_in) 2515 chan->do_ping = 0; 2516 chan->data_pid_start = DWC2_HC_PID_DATA1; 2517 chan->xfer_len = 0; 2518 if (hsotg->params.host_dma) 2519 chan->xfer_dma = hsotg->status_buf_dma; 2520 else 2521 chan->xfer_buf = hsotg->status_buf; 2522 break; 2523 } 2524 break; 2525 2526 case USB_ENDPOINT_XFER_BULK: 2527 chan->ep_type = USB_ENDPOINT_XFER_BULK; 2528 break; 2529 2530 case USB_ENDPOINT_XFER_INT: 2531 chan->ep_type = USB_ENDPOINT_XFER_INT; 2532 break; 2533 2534 case USB_ENDPOINT_XFER_ISOC: 2535 chan->ep_type = USB_ENDPOINT_XFER_ISOC; 2536 if (hsotg->params.dma_desc_enable) 2537 break; 2538 2539 frame_desc = &urb->iso_descs[qtd->isoc_frame_index]; 2540 frame_desc->status = 0; 2541 2542 if (hsotg->params.host_dma) { 2543 chan->xfer_dma = urb->dma; 2544 chan->xfer_dma += frame_desc->offset + 2545 qtd->isoc_split_offset; 2546 } else { 2547 chan->xfer_buf = urb->buf; 2548 chan->xfer_buf += frame_desc->offset + 2549 qtd->isoc_split_offset; 2550 } 2551 2552 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset; 2553 2554 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) { 2555 if (chan->xfer_len <= 188) 2556 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL; 2557 else 2558 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN; 2559 } 2560 break; 2561 } 2562 } 2563 2564 #define DWC2_USB_DMA_ALIGN 4 2565 2566 struct dma_aligned_buffer { 2567 void *kmalloc_ptr; 2568 void *old_xfer_buffer; 2569 u8 data[0]; 2570 }; 2571 2572 static void dwc2_free_dma_aligned_buffer(struct urb *urb) 2573 { 2574 struct dma_aligned_buffer *temp; 2575 2576 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) 2577 return; 2578 2579 temp = container_of(urb->transfer_buffer, 2580 struct dma_aligned_buffer, data); 2581 2582 if (usb_urb_dir_in(urb)) 2583 memcpy(temp->old_xfer_buffer, temp->data, 2584 urb->transfer_buffer_length); 2585 urb->transfer_buffer = temp->old_xfer_buffer; 2586 kfree(temp->kmalloc_ptr); 2587 2588 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; 2589 } 2590 2591 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags) 2592 { 2593 struct dma_aligned_buffer *temp, *kmalloc_ptr; 2594 size_t kmalloc_size; 2595 2596 if (urb->num_sgs || urb->sg || 2597 urb->transfer_buffer_length == 0 || 2598 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1))) 2599 return 0; 2600 2601 /* Allocate a buffer with enough padding for alignment */ 2602 kmalloc_size = urb->transfer_buffer_length + 2603 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1; 2604 2605 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags); 2606 if (!kmalloc_ptr) 2607 return -ENOMEM; 2608 2609 /* Position our struct dma_aligned_buffer such that data is aligned */ 2610 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1; 2611 temp->kmalloc_ptr = kmalloc_ptr; 2612 temp->old_xfer_buffer = urb->transfer_buffer; 2613 if (usb_urb_dir_out(urb)) 2614 memcpy(temp->data, urb->transfer_buffer, 2615 urb->transfer_buffer_length); 2616 urb->transfer_buffer = temp->data; 2617 2618 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; 2619 2620 return 0; 2621 } 2622 2623 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 2624 gfp_t mem_flags) 2625 { 2626 int ret; 2627 2628 /* We assume setup_dma is always aligned; warn if not */ 2629 WARN_ON_ONCE(urb->setup_dma && 2630 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1))); 2631 2632 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags); 2633 if (ret) 2634 return ret; 2635 2636 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 2637 if (ret) 2638 dwc2_free_dma_aligned_buffer(urb); 2639 2640 return ret; 2641 } 2642 2643 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 2644 { 2645 usb_hcd_unmap_urb_for_dma(hcd, urb); 2646 dwc2_free_dma_aligned_buffer(urb); 2647 } 2648 2649 /** 2650 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host 2651 * channel and initializes the host channel to perform the transactions. The 2652 * host channel is removed from the free list. 2653 * 2654 * @hsotg: The HCD state structure 2655 * @qh: Transactions from the first QTD for this QH are selected and assigned 2656 * to a free host channel 2657 */ 2658 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 2659 { 2660 struct dwc2_host_chan *chan; 2661 struct dwc2_hcd_urb *urb; 2662 struct dwc2_qtd *qtd; 2663 2664 if (dbg_qh(qh)) 2665 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh); 2666 2667 if (list_empty(&qh->qtd_list)) { 2668 dev_dbg(hsotg->dev, "No QTDs in QH list\n"); 2669 return -ENOMEM; 2670 } 2671 2672 if (list_empty(&hsotg->free_hc_list)) { 2673 dev_dbg(hsotg->dev, "No free channel to assign\n"); 2674 return -ENOMEM; 2675 } 2676 2677 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan, 2678 hc_list_entry); 2679 2680 /* Remove host channel from free list */ 2681 list_del_init(&chan->hc_list_entry); 2682 2683 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry); 2684 urb = qtd->urb; 2685 qh->channel = chan; 2686 qtd->in_process = 1; 2687 2688 /* 2689 * Use usb_pipedevice to determine device address. This address is 2690 * 0 before the SET_ADDRESS command and the correct address afterward. 2691 */ 2692 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info); 2693 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info); 2694 chan->speed = qh->dev_speed; 2695 chan->max_packet = dwc2_max_packet(qh->maxp); 2696 2697 chan->xfer_started = 0; 2698 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS; 2699 chan->error_state = (qtd->error_count > 0); 2700 chan->halt_on_queue = 0; 2701 chan->halt_pending = 0; 2702 chan->requests = 0; 2703 2704 /* 2705 * The following values may be modified in the transfer type section 2706 * below. The xfer_len value may be reduced when the transfer is 2707 * started to accommodate the max widths of the XferSize and PktCnt 2708 * fields in the HCTSIZn register. 2709 */ 2710 2711 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0); 2712 if (chan->ep_is_in) 2713 chan->do_ping = 0; 2714 else 2715 chan->do_ping = qh->ping_state; 2716 2717 chan->data_pid_start = qh->data_toggle; 2718 chan->multi_count = 1; 2719 2720 if (urb->actual_length > urb->length && 2721 !dwc2_hcd_is_pipe_in(&urb->pipe_info)) 2722 urb->actual_length = urb->length; 2723 2724 if (hsotg->params.host_dma) 2725 chan->xfer_dma = urb->dma + urb->actual_length; 2726 else 2727 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length; 2728 2729 chan->xfer_len = urb->length - urb->actual_length; 2730 chan->xfer_count = 0; 2731 2732 /* Set the split attributes if required */ 2733 if (qh->do_split) 2734 dwc2_hc_init_split(hsotg, chan, qtd, urb); 2735 else 2736 chan->do_split = 0; 2737 2738 /* Set the transfer attributes */ 2739 dwc2_hc_init_xfer(hsotg, chan, qtd); 2740 2741 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 2742 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 2743 /* 2744 * This value may be modified when the transfer is started 2745 * to reflect the actual transfer length 2746 */ 2747 chan->multi_count = dwc2_hb_mult(qh->maxp); 2748 2749 if (hsotg->params.dma_desc_enable) { 2750 chan->desc_list_addr = qh->desc_list_dma; 2751 chan->desc_list_sz = qh->desc_list_sz; 2752 } 2753 2754 dwc2_hc_init(hsotg, chan); 2755 chan->qh = qh; 2756 2757 return 0; 2758 } 2759 2760 /** 2761 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer 2762 * schedule and assigns them to available host channels. Called from the HCD 2763 * interrupt handler functions. 2764 * 2765 * @hsotg: The HCD state structure 2766 * 2767 * Return: The types of new transactions that were assigned to host channels 2768 */ 2769 enum dwc2_transaction_type dwc2_hcd_select_transactions( 2770 struct dwc2_hsotg *hsotg) 2771 { 2772 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE; 2773 struct list_head *qh_ptr; 2774 struct dwc2_qh *qh; 2775 int num_channels; 2776 2777 #ifdef DWC2_DEBUG_SOF 2778 dev_vdbg(hsotg->dev, " Select Transactions\n"); 2779 #endif 2780 2781 /* Process entries in the periodic ready list */ 2782 qh_ptr = hsotg->periodic_sched_ready.next; 2783 while (qh_ptr != &hsotg->periodic_sched_ready) { 2784 if (list_empty(&hsotg->free_hc_list)) 2785 break; 2786 if (hsotg->params.uframe_sched) { 2787 if (hsotg->available_host_channels <= 1) 2788 break; 2789 hsotg->available_host_channels--; 2790 } 2791 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2792 if (dwc2_assign_and_init_hc(hsotg, qh)) 2793 break; 2794 2795 /* 2796 * Move the QH from the periodic ready schedule to the 2797 * periodic assigned schedule 2798 */ 2799 qh_ptr = qh_ptr->next; 2800 list_move_tail(&qh->qh_list_entry, 2801 &hsotg->periodic_sched_assigned); 2802 ret_val = DWC2_TRANSACTION_PERIODIC; 2803 } 2804 2805 /* 2806 * Process entries in the inactive portion of the non-periodic 2807 * schedule. Some free host channels may not be used if they are 2808 * reserved for periodic transfers. 2809 */ 2810 num_channels = hsotg->params.host_channels; 2811 qh_ptr = hsotg->non_periodic_sched_inactive.next; 2812 while (qh_ptr != &hsotg->non_periodic_sched_inactive) { 2813 if (!hsotg->params.uframe_sched && 2814 hsotg->non_periodic_channels >= num_channels - 2815 hsotg->periodic_channels) 2816 break; 2817 if (list_empty(&hsotg->free_hc_list)) 2818 break; 2819 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2820 if (hsotg->params.uframe_sched) { 2821 if (hsotg->available_host_channels < 1) 2822 break; 2823 hsotg->available_host_channels--; 2824 } 2825 2826 if (dwc2_assign_and_init_hc(hsotg, qh)) 2827 break; 2828 2829 /* 2830 * Move the QH from the non-periodic inactive schedule to the 2831 * non-periodic active schedule 2832 */ 2833 qh_ptr = qh_ptr->next; 2834 list_move_tail(&qh->qh_list_entry, 2835 &hsotg->non_periodic_sched_active); 2836 2837 if (ret_val == DWC2_TRANSACTION_NONE) 2838 ret_val = DWC2_TRANSACTION_NON_PERIODIC; 2839 else 2840 ret_val = DWC2_TRANSACTION_ALL; 2841 2842 if (!hsotg->params.uframe_sched) 2843 hsotg->non_periodic_channels++; 2844 } 2845 2846 return ret_val; 2847 } 2848 2849 /** 2850 * dwc2_queue_transaction() - Attempts to queue a single transaction request for 2851 * a host channel associated with either a periodic or non-periodic transfer 2852 * 2853 * @hsotg: The HCD state structure 2854 * @chan: Host channel descriptor associated with either a periodic or 2855 * non-periodic transfer 2856 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO 2857 * for periodic transfers or the non-periodic Tx FIFO 2858 * for non-periodic transfers 2859 * 2860 * Return: 1 if a request is queued and more requests may be needed to 2861 * complete the transfer, 0 if no more requests are required for this 2862 * transfer, -1 if there is insufficient space in the Tx FIFO 2863 * 2864 * This function assumes that there is space available in the appropriate 2865 * request queue. For an OUT transfer or SETUP transaction in Slave mode, 2866 * it checks whether space is available in the appropriate Tx FIFO. 2867 * 2868 * Must be called with interrupt disabled and spinlock held 2869 */ 2870 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg, 2871 struct dwc2_host_chan *chan, 2872 u16 fifo_dwords_avail) 2873 { 2874 int retval = 0; 2875 2876 if (chan->do_split) 2877 /* Put ourselves on the list to keep order straight */ 2878 list_move_tail(&chan->split_order_list_entry, 2879 &hsotg->split_order); 2880 2881 if (hsotg->params.host_dma) { 2882 if (hsotg->params.dma_desc_enable) { 2883 if (!chan->xfer_started || 2884 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 2885 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh); 2886 chan->qh->ping_state = 0; 2887 } 2888 } else if (!chan->xfer_started) { 2889 dwc2_hc_start_transfer(hsotg, chan); 2890 chan->qh->ping_state = 0; 2891 } 2892 } else if (chan->halt_pending) { 2893 /* Don't queue a request if the channel has been halted */ 2894 } else if (chan->halt_on_queue) { 2895 dwc2_hc_halt(hsotg, chan, chan->halt_status); 2896 } else if (chan->do_ping) { 2897 if (!chan->xfer_started) 2898 dwc2_hc_start_transfer(hsotg, chan); 2899 } else if (!chan->ep_is_in || 2900 chan->data_pid_start == DWC2_HC_PID_SETUP) { 2901 if ((fifo_dwords_avail * 4) >= chan->max_packet) { 2902 if (!chan->xfer_started) { 2903 dwc2_hc_start_transfer(hsotg, chan); 2904 retval = 1; 2905 } else { 2906 retval = dwc2_hc_continue_transfer(hsotg, chan); 2907 } 2908 } else { 2909 retval = -1; 2910 } 2911 } else { 2912 if (!chan->xfer_started) { 2913 dwc2_hc_start_transfer(hsotg, chan); 2914 retval = 1; 2915 } else { 2916 retval = dwc2_hc_continue_transfer(hsotg, chan); 2917 } 2918 } 2919 2920 return retval; 2921 } 2922 2923 /* 2924 * Processes periodic channels for the next frame and queues transactions for 2925 * these channels to the DWC_otg controller. After queueing transactions, the 2926 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions 2927 * to queue as Periodic Tx FIFO or request queue space becomes available. 2928 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. 2929 * 2930 * Must be called with interrupt disabled and spinlock held 2931 */ 2932 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg) 2933 { 2934 struct list_head *qh_ptr; 2935 struct dwc2_qh *qh; 2936 u32 tx_status; 2937 u32 fspcavail; 2938 u32 gintmsk; 2939 int status; 2940 bool no_queue_space = false; 2941 bool no_fifo_space = false; 2942 u32 qspcavail; 2943 2944 /* If empty list then just adjust interrupt enables */ 2945 if (list_empty(&hsotg->periodic_sched_assigned)) 2946 goto exit; 2947 2948 if (dbg_perio()) 2949 dev_vdbg(hsotg->dev, "Queue periodic transactions\n"); 2950 2951 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 2952 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 2953 TXSTS_QSPCAVAIL_SHIFT; 2954 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 2955 TXSTS_FSPCAVAIL_SHIFT; 2956 2957 if (dbg_perio()) { 2958 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n", 2959 qspcavail); 2960 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n", 2961 fspcavail); 2962 } 2963 2964 qh_ptr = hsotg->periodic_sched_assigned.next; 2965 while (qh_ptr != &hsotg->periodic_sched_assigned) { 2966 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 2967 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 2968 TXSTS_QSPCAVAIL_SHIFT; 2969 if (qspcavail == 0) { 2970 no_queue_space = true; 2971 break; 2972 } 2973 2974 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2975 if (!qh->channel) { 2976 qh_ptr = qh_ptr->next; 2977 continue; 2978 } 2979 2980 /* Make sure EP's TT buffer is clean before queueing qtds */ 2981 if (qh->tt_buffer_dirty) { 2982 qh_ptr = qh_ptr->next; 2983 continue; 2984 } 2985 2986 /* 2987 * Set a flag if we're queuing high-bandwidth in slave mode. 2988 * The flag prevents any halts to get into the request queue in 2989 * the middle of multiple high-bandwidth packets getting queued. 2990 */ 2991 if (!hsotg->params.host_dma && 2992 qh->channel->multi_count > 1) 2993 hsotg->queuing_high_bandwidth = 1; 2994 2995 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 2996 TXSTS_FSPCAVAIL_SHIFT; 2997 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 2998 if (status < 0) { 2999 no_fifo_space = true; 3000 break; 3001 } 3002 3003 /* 3004 * In Slave mode, stay on the current transfer until there is 3005 * nothing more to do or the high-bandwidth request count is 3006 * reached. In DMA mode, only need to queue one request. The 3007 * controller automatically handles multiple packets for 3008 * high-bandwidth transfers. 3009 */ 3010 if (hsotg->params.host_dma || status == 0 || 3011 qh->channel->requests == qh->channel->multi_count) { 3012 qh_ptr = qh_ptr->next; 3013 /* 3014 * Move the QH from the periodic assigned schedule to 3015 * the periodic queued schedule 3016 */ 3017 list_move_tail(&qh->qh_list_entry, 3018 &hsotg->periodic_sched_queued); 3019 3020 /* done queuing high bandwidth */ 3021 hsotg->queuing_high_bandwidth = 0; 3022 } 3023 } 3024 3025 exit: 3026 if (no_queue_space || no_fifo_space || 3027 (!hsotg->params.host_dma && 3028 !list_empty(&hsotg->periodic_sched_assigned))) { 3029 /* 3030 * May need to queue more transactions as the request 3031 * queue or Tx FIFO empties. Enable the periodic Tx 3032 * FIFO empty interrupt. (Always use the half-empty 3033 * level to ensure that new requests are loaded as 3034 * soon as possible.) 3035 */ 3036 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3037 if (!(gintmsk & GINTSTS_PTXFEMP)) { 3038 gintmsk |= GINTSTS_PTXFEMP; 3039 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3040 } 3041 } else { 3042 /* 3043 * Disable the Tx FIFO empty interrupt since there are 3044 * no more transactions that need to be queued right 3045 * now. This function is called from interrupt 3046 * handlers to queue more transactions as transfer 3047 * states change. 3048 */ 3049 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3050 if (gintmsk & GINTSTS_PTXFEMP) { 3051 gintmsk &= ~GINTSTS_PTXFEMP; 3052 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3053 } 3054 } 3055 } 3056 3057 /* 3058 * Processes active non-periodic channels and queues transactions for these 3059 * channels to the DWC_otg controller. After queueing transactions, the NP Tx 3060 * FIFO Empty interrupt is enabled if there are more transactions to queue as 3061 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx 3062 * FIFO Empty interrupt is disabled. 3063 * 3064 * Must be called with interrupt disabled and spinlock held 3065 */ 3066 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg) 3067 { 3068 struct list_head *orig_qh_ptr; 3069 struct dwc2_qh *qh; 3070 u32 tx_status; 3071 u32 qspcavail; 3072 u32 fspcavail; 3073 u32 gintmsk; 3074 int status; 3075 int no_queue_space = 0; 3076 int no_fifo_space = 0; 3077 int more_to_do = 0; 3078 3079 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n"); 3080 3081 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3082 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3083 TXSTS_QSPCAVAIL_SHIFT; 3084 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3085 TXSTS_FSPCAVAIL_SHIFT; 3086 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n", 3087 qspcavail); 3088 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n", 3089 fspcavail); 3090 3091 /* 3092 * Keep track of the starting point. Skip over the start-of-list 3093 * entry. 3094 */ 3095 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) 3096 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3097 orig_qh_ptr = hsotg->non_periodic_qh_ptr; 3098 3099 /* 3100 * Process once through the active list or until no more space is 3101 * available in the request queue or the Tx FIFO 3102 */ 3103 do { 3104 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3105 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3106 TXSTS_QSPCAVAIL_SHIFT; 3107 if (!hsotg->params.host_dma && qspcavail == 0) { 3108 no_queue_space = 1; 3109 break; 3110 } 3111 3112 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh, 3113 qh_list_entry); 3114 if (!qh->channel) 3115 goto next; 3116 3117 /* Make sure EP's TT buffer is clean before queueing qtds */ 3118 if (qh->tt_buffer_dirty) 3119 goto next; 3120 3121 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3122 TXSTS_FSPCAVAIL_SHIFT; 3123 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 3124 3125 if (status > 0) { 3126 more_to_do = 1; 3127 } else if (status < 0) { 3128 no_fifo_space = 1; 3129 break; 3130 } 3131 next: 3132 /* Advance to next QH, skipping start-of-list entry */ 3133 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3134 if (hsotg->non_periodic_qh_ptr == 3135 &hsotg->non_periodic_sched_active) 3136 hsotg->non_periodic_qh_ptr = 3137 hsotg->non_periodic_qh_ptr->next; 3138 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr); 3139 3140 if (!hsotg->params.host_dma) { 3141 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3142 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3143 TXSTS_QSPCAVAIL_SHIFT; 3144 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3145 TXSTS_FSPCAVAIL_SHIFT; 3146 dev_vdbg(hsotg->dev, 3147 " NP Tx Req Queue Space Avail (after queue): %d\n", 3148 qspcavail); 3149 dev_vdbg(hsotg->dev, 3150 " NP Tx FIFO Space Avail (after queue): %d\n", 3151 fspcavail); 3152 3153 if (more_to_do || no_queue_space || no_fifo_space) { 3154 /* 3155 * May need to queue more transactions as the request 3156 * queue or Tx FIFO empties. Enable the non-periodic 3157 * Tx FIFO empty interrupt. (Always use the half-empty 3158 * level to ensure that new requests are loaded as 3159 * soon as possible.) 3160 */ 3161 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3162 gintmsk |= GINTSTS_NPTXFEMP; 3163 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3164 } else { 3165 /* 3166 * Disable the Tx FIFO empty interrupt since there are 3167 * no more transactions that need to be queued right 3168 * now. This function is called from interrupt 3169 * handlers to queue more transactions as transfer 3170 * states change. 3171 */ 3172 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3173 gintmsk &= ~GINTSTS_NPTXFEMP; 3174 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3175 } 3176 } 3177 } 3178 3179 /** 3180 * dwc2_hcd_queue_transactions() - Processes the currently active host channels 3181 * and queues transactions for these channels to the DWC_otg controller. Called 3182 * from the HCD interrupt handler functions. 3183 * 3184 * @hsotg: The HCD state structure 3185 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic, 3186 * or both) 3187 * 3188 * Must be called with interrupt disabled and spinlock held 3189 */ 3190 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 3191 enum dwc2_transaction_type tr_type) 3192 { 3193 #ifdef DWC2_DEBUG_SOF 3194 dev_vdbg(hsotg->dev, "Queue Transactions\n"); 3195 #endif 3196 /* Process host channels associated with periodic transfers */ 3197 if (tr_type == DWC2_TRANSACTION_PERIODIC || 3198 tr_type == DWC2_TRANSACTION_ALL) 3199 dwc2_process_periodic_channels(hsotg); 3200 3201 /* Process host channels associated with non-periodic transfers */ 3202 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC || 3203 tr_type == DWC2_TRANSACTION_ALL) { 3204 if (!list_empty(&hsotg->non_periodic_sched_active)) { 3205 dwc2_process_non_periodic_channels(hsotg); 3206 } else { 3207 /* 3208 * Ensure NP Tx FIFO empty interrupt is disabled when 3209 * there are no non-periodic transfers to process 3210 */ 3211 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3212 3213 gintmsk &= ~GINTSTS_NPTXFEMP; 3214 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3215 } 3216 } 3217 } 3218 3219 static void dwc2_conn_id_status_change(struct work_struct *work) 3220 { 3221 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 3222 wf_otg); 3223 u32 count = 0; 3224 u32 gotgctl; 3225 unsigned long flags; 3226 3227 dev_dbg(hsotg->dev, "%s()\n", __func__); 3228 3229 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3230 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl); 3231 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n", 3232 !!(gotgctl & GOTGCTL_CONID_B)); 3233 3234 /* B-Device connector (Device Mode) */ 3235 if (gotgctl & GOTGCTL_CONID_B) { 3236 /* Wait for switch to device mode */ 3237 dev_dbg(hsotg->dev, "connId B\n"); 3238 if (hsotg->bus_suspended) { 3239 dev_info(hsotg->dev, 3240 "Do port resume before switching to device mode\n"); 3241 dwc2_port_resume(hsotg); 3242 } 3243 while (!dwc2_is_device_mode(hsotg)) { 3244 dev_info(hsotg->dev, 3245 "Waiting for Peripheral Mode, Mode=%s\n", 3246 dwc2_is_host_mode(hsotg) ? "Host" : 3247 "Peripheral"); 3248 msleep(20); 3249 /* 3250 * Sometimes the initial GOTGCTRL read is wrong, so 3251 * check it again and jump to host mode if that was 3252 * the case. 3253 */ 3254 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3255 if (!(gotgctl & GOTGCTL_CONID_B)) 3256 goto host; 3257 if (++count > 250) 3258 break; 3259 } 3260 if (count > 250) 3261 dev_err(hsotg->dev, 3262 "Connection id status change timed out\n"); 3263 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 3264 dwc2_core_init(hsotg, false); 3265 dwc2_enable_global_interrupts(hsotg); 3266 spin_lock_irqsave(&hsotg->lock, flags); 3267 dwc2_hsotg_core_init_disconnected(hsotg, false); 3268 spin_unlock_irqrestore(&hsotg->lock, flags); 3269 dwc2_hsotg_core_connect(hsotg); 3270 } else { 3271 host: 3272 /* A-Device connector (Host Mode) */ 3273 dev_dbg(hsotg->dev, "connId A\n"); 3274 while (!dwc2_is_host_mode(hsotg)) { 3275 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n", 3276 dwc2_is_host_mode(hsotg) ? 3277 "Host" : "Peripheral"); 3278 msleep(20); 3279 if (++count > 250) 3280 break; 3281 } 3282 if (count > 250) 3283 dev_err(hsotg->dev, 3284 "Connection id status change timed out\n"); 3285 hsotg->op_state = OTG_STATE_A_HOST; 3286 3287 /* Initialize the Core for Host mode */ 3288 dwc2_core_init(hsotg, false); 3289 dwc2_enable_global_interrupts(hsotg); 3290 dwc2_hcd_start(hsotg); 3291 } 3292 } 3293 3294 static void dwc2_wakeup_detected(unsigned long data) 3295 { 3296 struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data; 3297 u32 hprt0; 3298 3299 dev_dbg(hsotg->dev, "%s()\n", __func__); 3300 3301 /* 3302 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms 3303 * so that OPT tests pass with all PHYs.) 3304 */ 3305 hprt0 = dwc2_read_hprt0(hsotg); 3306 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0); 3307 hprt0 &= ~HPRT0_RES; 3308 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3309 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n", 3310 dwc2_readl(hsotg->regs + HPRT0)); 3311 3312 dwc2_hcd_rem_wakeup(hsotg); 3313 hsotg->bus_suspended = false; 3314 3315 /* Change to L0 state */ 3316 hsotg->lx_state = DWC2_L0; 3317 } 3318 3319 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg) 3320 { 3321 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 3322 3323 return hcd->self.b_hnp_enable; 3324 } 3325 3326 /* Must NOT be called with interrupt disabled or spinlock held */ 3327 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 3328 { 3329 unsigned long flags; 3330 u32 hprt0; 3331 u32 pcgctl; 3332 u32 gotgctl; 3333 3334 dev_dbg(hsotg->dev, "%s()\n", __func__); 3335 3336 spin_lock_irqsave(&hsotg->lock, flags); 3337 3338 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) { 3339 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3340 gotgctl |= GOTGCTL_HSTSETHNPEN; 3341 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL); 3342 hsotg->op_state = OTG_STATE_A_SUSPEND; 3343 } 3344 3345 hprt0 = dwc2_read_hprt0(hsotg); 3346 hprt0 |= HPRT0_SUSP; 3347 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3348 3349 hsotg->bus_suspended = true; 3350 3351 /* 3352 * If hibernation is supported, Phy clock will be suspended 3353 * after registers are backuped. 3354 */ 3355 if (!hsotg->params.hibernation) { 3356 /* Suspend the Phy Clock */ 3357 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3358 pcgctl |= PCGCTL_STOPPCLK; 3359 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3360 udelay(10); 3361 } 3362 3363 /* For HNP the bus must be suspended for at least 200ms */ 3364 if (dwc2_host_is_b_hnp_enabled(hsotg)) { 3365 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3366 pcgctl &= ~PCGCTL_STOPPCLK; 3367 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3368 3369 spin_unlock_irqrestore(&hsotg->lock, flags); 3370 3371 msleep(200); 3372 } else { 3373 spin_unlock_irqrestore(&hsotg->lock, flags); 3374 } 3375 } 3376 3377 /* Must NOT be called with interrupt disabled or spinlock held */ 3378 static void dwc2_port_resume(struct dwc2_hsotg *hsotg) 3379 { 3380 unsigned long flags; 3381 u32 hprt0; 3382 u32 pcgctl; 3383 3384 spin_lock_irqsave(&hsotg->lock, flags); 3385 3386 /* 3387 * If hibernation is supported, Phy clock is already resumed 3388 * after registers restore. 3389 */ 3390 if (!hsotg->params.hibernation) { 3391 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3392 pcgctl &= ~PCGCTL_STOPPCLK; 3393 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3394 spin_unlock_irqrestore(&hsotg->lock, flags); 3395 msleep(20); 3396 spin_lock_irqsave(&hsotg->lock, flags); 3397 } 3398 3399 hprt0 = dwc2_read_hprt0(hsotg); 3400 hprt0 |= HPRT0_RES; 3401 hprt0 &= ~HPRT0_SUSP; 3402 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3403 spin_unlock_irqrestore(&hsotg->lock, flags); 3404 3405 msleep(USB_RESUME_TIMEOUT); 3406 3407 spin_lock_irqsave(&hsotg->lock, flags); 3408 hprt0 = dwc2_read_hprt0(hsotg); 3409 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP); 3410 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3411 hsotg->bus_suspended = false; 3412 spin_unlock_irqrestore(&hsotg->lock, flags); 3413 } 3414 3415 /* Handles hub class-specific requests */ 3416 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq, 3417 u16 wvalue, u16 windex, char *buf, u16 wlength) 3418 { 3419 struct usb_hub_descriptor *hub_desc; 3420 int retval = 0; 3421 u32 hprt0; 3422 u32 port_status; 3423 u32 speed; 3424 u32 pcgctl; 3425 3426 switch (typereq) { 3427 case ClearHubFeature: 3428 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue); 3429 3430 switch (wvalue) { 3431 case C_HUB_LOCAL_POWER: 3432 case C_HUB_OVER_CURRENT: 3433 /* Nothing required here */ 3434 break; 3435 3436 default: 3437 retval = -EINVAL; 3438 dev_err(hsotg->dev, 3439 "ClearHubFeature request %1xh unknown\n", 3440 wvalue); 3441 } 3442 break; 3443 3444 case ClearPortFeature: 3445 if (wvalue != USB_PORT_FEAT_L1) 3446 if (!windex || windex > 1) 3447 goto error; 3448 switch (wvalue) { 3449 case USB_PORT_FEAT_ENABLE: 3450 dev_dbg(hsotg->dev, 3451 "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); 3452 hprt0 = dwc2_read_hprt0(hsotg); 3453 hprt0 |= HPRT0_ENA; 3454 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3455 break; 3456 3457 case USB_PORT_FEAT_SUSPEND: 3458 dev_dbg(hsotg->dev, 3459 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); 3460 3461 if (hsotg->bus_suspended) 3462 dwc2_port_resume(hsotg); 3463 break; 3464 3465 case USB_PORT_FEAT_POWER: 3466 dev_dbg(hsotg->dev, 3467 "ClearPortFeature USB_PORT_FEAT_POWER\n"); 3468 hprt0 = dwc2_read_hprt0(hsotg); 3469 hprt0 &= ~HPRT0_PWR; 3470 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3471 break; 3472 3473 case USB_PORT_FEAT_INDICATOR: 3474 dev_dbg(hsotg->dev, 3475 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); 3476 /* Port indicator not supported */ 3477 break; 3478 3479 case USB_PORT_FEAT_C_CONNECTION: 3480 /* 3481 * Clears driver's internal Connect Status Change flag 3482 */ 3483 dev_dbg(hsotg->dev, 3484 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); 3485 hsotg->flags.b.port_connect_status_change = 0; 3486 break; 3487 3488 case USB_PORT_FEAT_C_RESET: 3489 /* Clears driver's internal Port Reset Change flag */ 3490 dev_dbg(hsotg->dev, 3491 "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); 3492 hsotg->flags.b.port_reset_change = 0; 3493 break; 3494 3495 case USB_PORT_FEAT_C_ENABLE: 3496 /* 3497 * Clears the driver's internal Port Enable/Disable 3498 * Change flag 3499 */ 3500 dev_dbg(hsotg->dev, 3501 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); 3502 hsotg->flags.b.port_enable_change = 0; 3503 break; 3504 3505 case USB_PORT_FEAT_C_SUSPEND: 3506 /* 3507 * Clears the driver's internal Port Suspend Change 3508 * flag, which is set when resume signaling on the host 3509 * port is complete 3510 */ 3511 dev_dbg(hsotg->dev, 3512 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); 3513 hsotg->flags.b.port_suspend_change = 0; 3514 break; 3515 3516 case USB_PORT_FEAT_C_PORT_L1: 3517 dev_dbg(hsotg->dev, 3518 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n"); 3519 hsotg->flags.b.port_l1_change = 0; 3520 break; 3521 3522 case USB_PORT_FEAT_C_OVER_CURRENT: 3523 dev_dbg(hsotg->dev, 3524 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); 3525 hsotg->flags.b.port_over_current_change = 0; 3526 break; 3527 3528 default: 3529 retval = -EINVAL; 3530 dev_err(hsotg->dev, 3531 "ClearPortFeature request %1xh unknown or unsupported\n", 3532 wvalue); 3533 } 3534 break; 3535 3536 case GetHubDescriptor: 3537 dev_dbg(hsotg->dev, "GetHubDescriptor\n"); 3538 hub_desc = (struct usb_hub_descriptor *)buf; 3539 hub_desc->bDescLength = 9; 3540 hub_desc->bDescriptorType = USB_DT_HUB; 3541 hub_desc->bNbrPorts = 1; 3542 hub_desc->wHubCharacteristics = 3543 cpu_to_le16(HUB_CHAR_COMMON_LPSM | 3544 HUB_CHAR_INDV_PORT_OCPM); 3545 hub_desc->bPwrOn2PwrGood = 1; 3546 hub_desc->bHubContrCurrent = 0; 3547 hub_desc->u.hs.DeviceRemovable[0] = 0; 3548 hub_desc->u.hs.DeviceRemovable[1] = 0xff; 3549 break; 3550 3551 case GetHubStatus: 3552 dev_dbg(hsotg->dev, "GetHubStatus\n"); 3553 memset(buf, 0, 4); 3554 break; 3555 3556 case GetPortStatus: 3557 dev_vdbg(hsotg->dev, 3558 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex, 3559 hsotg->flags.d32); 3560 if (!windex || windex > 1) 3561 goto error; 3562 3563 port_status = 0; 3564 if (hsotg->flags.b.port_connect_status_change) 3565 port_status |= USB_PORT_STAT_C_CONNECTION << 16; 3566 if (hsotg->flags.b.port_enable_change) 3567 port_status |= USB_PORT_STAT_C_ENABLE << 16; 3568 if (hsotg->flags.b.port_suspend_change) 3569 port_status |= USB_PORT_STAT_C_SUSPEND << 16; 3570 if (hsotg->flags.b.port_l1_change) 3571 port_status |= USB_PORT_STAT_C_L1 << 16; 3572 if (hsotg->flags.b.port_reset_change) 3573 port_status |= USB_PORT_STAT_C_RESET << 16; 3574 if (hsotg->flags.b.port_over_current_change) { 3575 dev_warn(hsotg->dev, "Overcurrent change detected\n"); 3576 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3577 } 3578 3579 if (!hsotg->flags.b.port_connect_status) { 3580 /* 3581 * The port is disconnected, which means the core is 3582 * either in device mode or it soon will be. Just 3583 * return 0's for the remainder of the port status 3584 * since the port register can't be read if the core 3585 * is in device mode. 3586 */ 3587 *(__le32 *)buf = cpu_to_le32(port_status); 3588 break; 3589 } 3590 3591 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 3592 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0); 3593 3594 if (hprt0 & HPRT0_CONNSTS) 3595 port_status |= USB_PORT_STAT_CONNECTION; 3596 if (hprt0 & HPRT0_ENA) 3597 port_status |= USB_PORT_STAT_ENABLE; 3598 if (hprt0 & HPRT0_SUSP) 3599 port_status |= USB_PORT_STAT_SUSPEND; 3600 if (hprt0 & HPRT0_OVRCURRACT) 3601 port_status |= USB_PORT_STAT_OVERCURRENT; 3602 if (hprt0 & HPRT0_RST) 3603 port_status |= USB_PORT_STAT_RESET; 3604 if (hprt0 & HPRT0_PWR) 3605 port_status |= USB_PORT_STAT_POWER; 3606 3607 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 3608 if (speed == HPRT0_SPD_HIGH_SPEED) 3609 port_status |= USB_PORT_STAT_HIGH_SPEED; 3610 else if (speed == HPRT0_SPD_LOW_SPEED) 3611 port_status |= USB_PORT_STAT_LOW_SPEED; 3612 3613 if (hprt0 & HPRT0_TSTCTL_MASK) 3614 port_status |= USB_PORT_STAT_TEST; 3615 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ 3616 3617 if (hsotg->params.dma_desc_fs_enable) { 3618 /* 3619 * Enable descriptor DMA only if a full speed 3620 * device is connected. 3621 */ 3622 if (hsotg->new_connection && 3623 ((port_status & 3624 (USB_PORT_STAT_CONNECTION | 3625 USB_PORT_STAT_HIGH_SPEED | 3626 USB_PORT_STAT_LOW_SPEED)) == 3627 USB_PORT_STAT_CONNECTION)) { 3628 u32 hcfg; 3629 3630 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n"); 3631 hsotg->params.dma_desc_enable = true; 3632 hcfg = dwc2_readl(hsotg->regs + HCFG); 3633 hcfg |= HCFG_DESCDMA; 3634 dwc2_writel(hcfg, hsotg->regs + HCFG); 3635 hsotg->new_connection = false; 3636 } 3637 } 3638 3639 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status); 3640 *(__le32 *)buf = cpu_to_le32(port_status); 3641 break; 3642 3643 case SetHubFeature: 3644 dev_dbg(hsotg->dev, "SetHubFeature\n"); 3645 /* No HUB features supported */ 3646 break; 3647 3648 case SetPortFeature: 3649 dev_dbg(hsotg->dev, "SetPortFeature\n"); 3650 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1)) 3651 goto error; 3652 3653 if (!hsotg->flags.b.port_connect_status) { 3654 /* 3655 * The port is disconnected, which means the core is 3656 * either in device mode or it soon will be. Just 3657 * return without doing anything since the port 3658 * register can't be written if the core is in device 3659 * mode. 3660 */ 3661 break; 3662 } 3663 3664 switch (wvalue) { 3665 case USB_PORT_FEAT_SUSPEND: 3666 dev_dbg(hsotg->dev, 3667 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); 3668 if (windex != hsotg->otg_port) 3669 goto error; 3670 dwc2_port_suspend(hsotg, windex); 3671 break; 3672 3673 case USB_PORT_FEAT_POWER: 3674 dev_dbg(hsotg->dev, 3675 "SetPortFeature - USB_PORT_FEAT_POWER\n"); 3676 hprt0 = dwc2_read_hprt0(hsotg); 3677 hprt0 |= HPRT0_PWR; 3678 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3679 break; 3680 3681 case USB_PORT_FEAT_RESET: 3682 hprt0 = dwc2_read_hprt0(hsotg); 3683 dev_dbg(hsotg->dev, 3684 "SetPortFeature - USB_PORT_FEAT_RESET\n"); 3685 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3686 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK); 3687 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3688 /* ??? Original driver does this */ 3689 dwc2_writel(0, hsotg->regs + PCGCTL); 3690 3691 hprt0 = dwc2_read_hprt0(hsotg); 3692 /* Clear suspend bit if resetting from suspend state */ 3693 hprt0 &= ~HPRT0_SUSP; 3694 3695 /* 3696 * When B-Host the Port reset bit is set in the Start 3697 * HCD Callback function, so that the reset is started 3698 * within 1ms of the HNP success interrupt 3699 */ 3700 if (!dwc2_hcd_is_b_host(hsotg)) { 3701 hprt0 |= HPRT0_PWR | HPRT0_RST; 3702 dev_dbg(hsotg->dev, 3703 "In host mode, hprt0=%08x\n", hprt0); 3704 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3705 } 3706 3707 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ 3708 msleep(50); 3709 hprt0 &= ~HPRT0_RST; 3710 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3711 hsotg->lx_state = DWC2_L0; /* Now back to On state */ 3712 break; 3713 3714 case USB_PORT_FEAT_INDICATOR: 3715 dev_dbg(hsotg->dev, 3716 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); 3717 /* Not supported */ 3718 break; 3719 3720 case USB_PORT_FEAT_TEST: 3721 hprt0 = dwc2_read_hprt0(hsotg); 3722 dev_dbg(hsotg->dev, 3723 "SetPortFeature - USB_PORT_FEAT_TEST\n"); 3724 hprt0 &= ~HPRT0_TSTCTL_MASK; 3725 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT; 3726 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3727 break; 3728 3729 default: 3730 retval = -EINVAL; 3731 dev_err(hsotg->dev, 3732 "SetPortFeature %1xh unknown or unsupported\n", 3733 wvalue); 3734 break; 3735 } 3736 break; 3737 3738 default: 3739 error: 3740 retval = -EINVAL; 3741 dev_dbg(hsotg->dev, 3742 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n", 3743 typereq, windex, wvalue); 3744 break; 3745 } 3746 3747 return retval; 3748 } 3749 3750 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port) 3751 { 3752 int retval; 3753 3754 if (port != 1) 3755 return -EINVAL; 3756 3757 retval = (hsotg->flags.b.port_connect_status_change || 3758 hsotg->flags.b.port_reset_change || 3759 hsotg->flags.b.port_enable_change || 3760 hsotg->flags.b.port_suspend_change || 3761 hsotg->flags.b.port_over_current_change); 3762 3763 if (retval) { 3764 dev_dbg(hsotg->dev, 3765 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n"); 3766 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n", 3767 hsotg->flags.b.port_connect_status_change); 3768 dev_dbg(hsotg->dev, " port_reset_change: %d\n", 3769 hsotg->flags.b.port_reset_change); 3770 dev_dbg(hsotg->dev, " port_enable_change: %d\n", 3771 hsotg->flags.b.port_enable_change); 3772 dev_dbg(hsotg->dev, " port_suspend_change: %d\n", 3773 hsotg->flags.b.port_suspend_change); 3774 dev_dbg(hsotg->dev, " port_over_current_change: %d\n", 3775 hsotg->flags.b.port_over_current_change); 3776 } 3777 3778 return retval; 3779 } 3780 3781 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 3782 { 3783 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3784 3785 #ifdef DWC2_DEBUG_SOF 3786 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n", 3787 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT); 3788 #endif 3789 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3790 } 3791 3792 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us) 3793 { 3794 u32 hprt = dwc2_readl(hsotg->regs + HPRT0); 3795 u32 hfir = dwc2_readl(hsotg->regs + HFIR); 3796 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3797 unsigned int us_per_frame; 3798 unsigned int frame_number; 3799 unsigned int remaining; 3800 unsigned int interval; 3801 unsigned int phy_clks; 3802 3803 /* High speed has 125 us per (micro) frame; others are 1 ms per */ 3804 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125; 3805 3806 /* Extract fields */ 3807 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3808 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT; 3809 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT; 3810 3811 /* 3812 * Number of phy clocks since the last tick of the frame number after 3813 * "us" has passed. 3814 */ 3815 phy_clks = (interval - remaining) + 3816 DIV_ROUND_UP(interval * us, us_per_frame); 3817 3818 return dwc2_frame_num_inc(frame_number, phy_clks / interval); 3819 } 3820 3821 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg) 3822 { 3823 return hsotg->op_state == OTG_STATE_B_HOST; 3824 } 3825 3826 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg, 3827 int iso_desc_count, 3828 gfp_t mem_flags) 3829 { 3830 struct dwc2_hcd_urb *urb; 3831 u32 size = sizeof(*urb) + iso_desc_count * 3832 sizeof(struct dwc2_hcd_iso_packet_desc); 3833 3834 urb = kzalloc(size, mem_flags); 3835 if (urb) 3836 urb->packet_count = iso_desc_count; 3837 return urb; 3838 } 3839 3840 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg, 3841 struct dwc2_hcd_urb *urb, u8 dev_addr, 3842 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps) 3843 { 3844 if (dbg_perio() || 3845 ep_type == USB_ENDPOINT_XFER_BULK || 3846 ep_type == USB_ENDPOINT_XFER_CONTROL) 3847 dev_vdbg(hsotg->dev, 3848 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n", 3849 dev_addr, ep_num, ep_dir, ep_type, mps); 3850 urb->pipe_info.dev_addr = dev_addr; 3851 urb->pipe_info.ep_num = ep_num; 3852 urb->pipe_info.pipe_type = ep_type; 3853 urb->pipe_info.pipe_dir = ep_dir; 3854 urb->pipe_info.mps = mps; 3855 } 3856 3857 /* 3858 * NOTE: This function will be removed once the peripheral controller code 3859 * is integrated and the driver is stable 3860 */ 3861 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg) 3862 { 3863 #ifdef DEBUG 3864 struct dwc2_host_chan *chan; 3865 struct dwc2_hcd_urb *urb; 3866 struct dwc2_qtd *qtd; 3867 int num_channels; 3868 u32 np_tx_status; 3869 u32 p_tx_status; 3870 int i; 3871 3872 num_channels = hsotg->params.host_channels; 3873 dev_dbg(hsotg->dev, "\n"); 3874 dev_dbg(hsotg->dev, 3875 "************************************************************\n"); 3876 dev_dbg(hsotg->dev, "HCD State:\n"); 3877 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels); 3878 3879 for (i = 0; i < num_channels; i++) { 3880 chan = hsotg->hc_ptr_array[i]; 3881 dev_dbg(hsotg->dev, " Channel %d:\n", i); 3882 dev_dbg(hsotg->dev, 3883 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 3884 chan->dev_addr, chan->ep_num, chan->ep_is_in); 3885 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed); 3886 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 3887 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 3888 dev_dbg(hsotg->dev, " data_pid_start: %d\n", 3889 chan->data_pid_start); 3890 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count); 3891 dev_dbg(hsotg->dev, " xfer_started: %d\n", 3892 chan->xfer_started); 3893 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 3894 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 3895 (unsigned long)chan->xfer_dma); 3896 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 3897 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count); 3898 dev_dbg(hsotg->dev, " halt_on_queue: %d\n", 3899 chan->halt_on_queue); 3900 dev_dbg(hsotg->dev, " halt_pending: %d\n", 3901 chan->halt_pending); 3902 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 3903 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split); 3904 dev_dbg(hsotg->dev, " complete_split: %d\n", 3905 chan->complete_split); 3906 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr); 3907 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port); 3908 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos); 3909 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests); 3910 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 3911 3912 if (chan->xfer_started) { 3913 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk; 3914 3915 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3916 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 3917 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i)); 3918 hcint = dwc2_readl(hsotg->regs + HCINT(i)); 3919 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i)); 3920 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum); 3921 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); 3922 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz); 3923 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint); 3924 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk); 3925 } 3926 3927 if (!(chan->xfer_started && chan->qh)) 3928 continue; 3929 3930 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) { 3931 if (!qtd->in_process) 3932 break; 3933 urb = qtd->urb; 3934 dev_dbg(hsotg->dev, " URB Info:\n"); 3935 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n", 3936 qtd, urb); 3937 if (urb) { 3938 dev_dbg(hsotg->dev, 3939 " Dev: %d, EP: %d %s\n", 3940 dwc2_hcd_get_dev_addr(&urb->pipe_info), 3941 dwc2_hcd_get_ep_num(&urb->pipe_info), 3942 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 3943 "IN" : "OUT"); 3944 dev_dbg(hsotg->dev, 3945 " Max packet size: %d\n", 3946 dwc2_hcd_get_mps(&urb->pipe_info)); 3947 dev_dbg(hsotg->dev, 3948 " transfer_buffer: %p\n", 3949 urb->buf); 3950 dev_dbg(hsotg->dev, 3951 " transfer_dma: %08lx\n", 3952 (unsigned long)urb->dma); 3953 dev_dbg(hsotg->dev, 3954 " transfer_buffer_length: %d\n", 3955 urb->length); 3956 dev_dbg(hsotg->dev, " actual_length: %d\n", 3957 urb->actual_length); 3958 } 3959 } 3960 } 3961 3962 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n", 3963 hsotg->non_periodic_channels); 3964 dev_dbg(hsotg->dev, " periodic_channels: %d\n", 3965 hsotg->periodic_channels); 3966 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs); 3967 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3968 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n", 3969 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 3970 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n", 3971 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 3972 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 3973 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n", 3974 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 3975 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n", 3976 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 3977 dwc2_hcd_dump_frrem(hsotg); 3978 dwc2_dump_global_registers(hsotg); 3979 dwc2_dump_host_registers(hsotg); 3980 dev_dbg(hsotg->dev, 3981 "************************************************************\n"); 3982 dev_dbg(hsotg->dev, "\n"); 3983 #endif 3984 } 3985 3986 /* 3987 * NOTE: This function will be removed once the peripheral controller code 3988 * is integrated and the driver is stable 3989 */ 3990 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg) 3991 { 3992 #ifdef DWC2_DUMP_FRREM 3993 dev_dbg(hsotg->dev, "Frame remaining at SOF:\n"); 3994 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 3995 hsotg->frrem_samples, hsotg->frrem_accum, 3996 hsotg->frrem_samples > 0 ? 3997 hsotg->frrem_accum / hsotg->frrem_samples : 0); 3998 dev_dbg(hsotg->dev, "\n"); 3999 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n"); 4000 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4001 hsotg->hfnum_7_samples, 4002 hsotg->hfnum_7_frrem_accum, 4003 hsotg->hfnum_7_samples > 0 ? 4004 hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0); 4005 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n"); 4006 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4007 hsotg->hfnum_0_samples, 4008 hsotg->hfnum_0_frrem_accum, 4009 hsotg->hfnum_0_samples > 0 ? 4010 hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0); 4011 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n"); 4012 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4013 hsotg->hfnum_other_samples, 4014 hsotg->hfnum_other_frrem_accum, 4015 hsotg->hfnum_other_samples > 0 ? 4016 hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples : 4017 0); 4018 dev_dbg(hsotg->dev, "\n"); 4019 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n"); 4020 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4021 hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a, 4022 hsotg->hfnum_7_samples_a > 0 ? 4023 hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0); 4024 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n"); 4025 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4026 hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a, 4027 hsotg->hfnum_0_samples_a > 0 ? 4028 hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0); 4029 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n"); 4030 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4031 hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a, 4032 hsotg->hfnum_other_samples_a > 0 ? 4033 hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a 4034 : 0); 4035 dev_dbg(hsotg->dev, "\n"); 4036 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n"); 4037 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4038 hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b, 4039 hsotg->hfnum_7_samples_b > 0 ? 4040 hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0); 4041 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n"); 4042 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4043 hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b, 4044 (hsotg->hfnum_0_samples_b > 0) ? 4045 hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0); 4046 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n"); 4047 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n", 4048 hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b, 4049 (hsotg->hfnum_other_samples_b > 0) ? 4050 hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b 4051 : 0); 4052 #endif 4053 } 4054 4055 struct wrapper_priv_data { 4056 struct dwc2_hsotg *hsotg; 4057 }; 4058 4059 /* Gets the dwc2_hsotg from a usb_hcd */ 4060 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd) 4061 { 4062 struct wrapper_priv_data *p; 4063 4064 p = (struct wrapper_priv_data *)&hcd->hcd_priv; 4065 return p->hsotg; 4066 } 4067 4068 /** 4069 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context 4070 * 4071 * This will get the dwc2_tt structure (and ttport) associated with the given 4072 * context (which is really just a struct urb pointer). 4073 * 4074 * The first time this is called for a given TT we allocate memory for our 4075 * structure. When everyone is done and has called dwc2_host_put_tt_info() 4076 * then the refcount for the structure will go to 0 and we'll free it. 4077 * 4078 * @hsotg: The HCD state structure for the DWC OTG controller. 4079 * @qh: The QH structure. 4080 * @context: The priv pointer from a struct dwc2_hcd_urb. 4081 * @mem_flags: Flags for allocating memory. 4082 * @ttport: We'll return this device's port number here. That's used to 4083 * reference into the bitmap if we're on a multi_tt hub. 4084 * 4085 * Return: a pointer to a struct dwc2_tt. Don't forget to call 4086 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure. 4087 */ 4088 4089 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context, 4090 gfp_t mem_flags, int *ttport) 4091 { 4092 struct urb *urb = context; 4093 struct dwc2_tt *dwc_tt = NULL; 4094 4095 if (urb->dev->tt) { 4096 *ttport = urb->dev->ttport; 4097 4098 dwc_tt = urb->dev->tt->hcpriv; 4099 if (!dwc_tt) { 4100 size_t bitmap_size; 4101 4102 /* 4103 * For single_tt we need one schedule. For multi_tt 4104 * we need one per port. 4105 */ 4106 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP * 4107 sizeof(dwc_tt->periodic_bitmaps[0]); 4108 if (urb->dev->tt->multi) 4109 bitmap_size *= urb->dev->tt->hub->maxchild; 4110 4111 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size, 4112 mem_flags); 4113 if (!dwc_tt) 4114 return NULL; 4115 4116 dwc_tt->usb_tt = urb->dev->tt; 4117 dwc_tt->usb_tt->hcpriv = dwc_tt; 4118 } 4119 4120 dwc_tt->refcount++; 4121 } 4122 4123 return dwc_tt; 4124 } 4125 4126 /** 4127 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info() 4128 * 4129 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders 4130 * of the structure are done. 4131 * 4132 * It's OK to call this with NULL. 4133 * 4134 * @hsotg: The HCD state structure for the DWC OTG controller. 4135 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info. 4136 */ 4137 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt) 4138 { 4139 /* Model kfree and make put of NULL a no-op */ 4140 if (!dwc_tt) 4141 return; 4142 4143 WARN_ON(dwc_tt->refcount < 1); 4144 4145 dwc_tt->refcount--; 4146 if (!dwc_tt->refcount) { 4147 dwc_tt->usb_tt->hcpriv = NULL; 4148 kfree(dwc_tt); 4149 } 4150 } 4151 4152 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context) 4153 { 4154 struct urb *urb = context; 4155 4156 return urb->dev->speed; 4157 } 4158 4159 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4160 struct urb *urb) 4161 { 4162 struct usb_bus *bus = hcd_to_bus(hcd); 4163 4164 if (urb->interval) 4165 bus->bandwidth_allocated += bw / urb->interval; 4166 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4167 bus->bandwidth_isoc_reqs++; 4168 else 4169 bus->bandwidth_int_reqs++; 4170 } 4171 4172 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4173 struct urb *urb) 4174 { 4175 struct usb_bus *bus = hcd_to_bus(hcd); 4176 4177 if (urb->interval) 4178 bus->bandwidth_allocated -= bw / urb->interval; 4179 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4180 bus->bandwidth_isoc_reqs--; 4181 else 4182 bus->bandwidth_int_reqs--; 4183 } 4184 4185 /* 4186 * Sets the final status of an URB and returns it to the upper layer. Any 4187 * required cleanup of the URB is performed. 4188 * 4189 * Must be called with interrupt disabled and spinlock held 4190 */ 4191 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 4192 int status) 4193 { 4194 struct urb *urb; 4195 int i; 4196 4197 if (!qtd) { 4198 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__); 4199 return; 4200 } 4201 4202 if (!qtd->urb) { 4203 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__); 4204 return; 4205 } 4206 4207 urb = qtd->urb->priv; 4208 if (!urb) { 4209 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__); 4210 return; 4211 } 4212 4213 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb); 4214 4215 if (dbg_urb(urb)) 4216 dev_vdbg(hsotg->dev, 4217 "%s: urb %p device %d ep %d-%s status %d actual %d\n", 4218 __func__, urb, usb_pipedevice(urb->pipe), 4219 usb_pipeendpoint(urb->pipe), 4220 usb_pipein(urb->pipe) ? "IN" : "OUT", status, 4221 urb->actual_length); 4222 4223 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4224 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb); 4225 for (i = 0; i < urb->number_of_packets; ++i) { 4226 urb->iso_frame_desc[i].actual_length = 4227 dwc2_hcd_urb_get_iso_desc_actual_length( 4228 qtd->urb, i); 4229 urb->iso_frame_desc[i].status = 4230 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i); 4231 } 4232 } 4233 4234 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) { 4235 for (i = 0; i < urb->number_of_packets; i++) 4236 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n", 4237 i, urb->iso_frame_desc[i].status); 4238 } 4239 4240 urb->status = status; 4241 if (!status) { 4242 if ((urb->transfer_flags & URB_SHORT_NOT_OK) && 4243 urb->actual_length < urb->transfer_buffer_length) 4244 urb->status = -EREMOTEIO; 4245 } 4246 4247 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4248 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4249 struct usb_host_endpoint *ep = urb->ep; 4250 4251 if (ep) 4252 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg), 4253 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4254 urb); 4255 } 4256 4257 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb); 4258 urb->hcpriv = NULL; 4259 kfree(qtd->urb); 4260 qtd->urb = NULL; 4261 4262 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status); 4263 } 4264 4265 /* 4266 * Work queue function for starting the HCD when A-Cable is connected 4267 */ 4268 static void dwc2_hcd_start_func(struct work_struct *work) 4269 { 4270 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4271 start_work.work); 4272 4273 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg); 4274 dwc2_host_start(hsotg); 4275 } 4276 4277 /* 4278 * Reset work queue function 4279 */ 4280 static void dwc2_hcd_reset_func(struct work_struct *work) 4281 { 4282 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4283 reset_work.work); 4284 unsigned long flags; 4285 u32 hprt0; 4286 4287 dev_dbg(hsotg->dev, "USB RESET function called\n"); 4288 4289 spin_lock_irqsave(&hsotg->lock, flags); 4290 4291 hprt0 = dwc2_read_hprt0(hsotg); 4292 hprt0 &= ~HPRT0_RST; 4293 dwc2_writel(hprt0, hsotg->regs + HPRT0); 4294 hsotg->flags.b.port_reset_change = 1; 4295 4296 spin_unlock_irqrestore(&hsotg->lock, flags); 4297 } 4298 4299 /* 4300 * ========================================================================= 4301 * Linux HC Driver Functions 4302 * ========================================================================= 4303 */ 4304 4305 /* 4306 * Initializes the DWC_otg controller and its root hub and prepares it for host 4307 * mode operation. Activates the root port. Returns 0 on success and a negative 4308 * error code on failure. 4309 */ 4310 static int _dwc2_hcd_start(struct usb_hcd *hcd) 4311 { 4312 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4313 struct usb_bus *bus = hcd_to_bus(hcd); 4314 unsigned long flags; 4315 4316 dev_dbg(hsotg->dev, "DWC OTG HCD START\n"); 4317 4318 spin_lock_irqsave(&hsotg->lock, flags); 4319 hsotg->lx_state = DWC2_L0; 4320 hcd->state = HC_STATE_RUNNING; 4321 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4322 4323 if (dwc2_is_device_mode(hsotg)) { 4324 spin_unlock_irqrestore(&hsotg->lock, flags); 4325 return 0; /* why 0 ?? */ 4326 } 4327 4328 dwc2_hcd_reinit(hsotg); 4329 4330 /* Initialize and connect root hub if one is not already attached */ 4331 if (bus->root_hub) { 4332 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n"); 4333 /* Inform the HUB driver to resume */ 4334 usb_hcd_resume_root_hub(hcd); 4335 } 4336 4337 spin_unlock_irqrestore(&hsotg->lock, flags); 4338 return 0; 4339 } 4340 4341 /* 4342 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are 4343 * stopped. 4344 */ 4345 static void _dwc2_hcd_stop(struct usb_hcd *hcd) 4346 { 4347 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4348 unsigned long flags; 4349 4350 /* Turn off all host-specific interrupts */ 4351 dwc2_disable_host_interrupts(hsotg); 4352 4353 /* Wait for interrupt processing to finish */ 4354 synchronize_irq(hcd->irq); 4355 4356 spin_lock_irqsave(&hsotg->lock, flags); 4357 /* Ensure hcd is disconnected */ 4358 dwc2_hcd_disconnect(hsotg, true); 4359 dwc2_hcd_stop(hsotg); 4360 hsotg->lx_state = DWC2_L3; 4361 hcd->state = HC_STATE_HALT; 4362 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4363 spin_unlock_irqrestore(&hsotg->lock, flags); 4364 4365 usleep_range(1000, 3000); 4366 } 4367 4368 static int _dwc2_hcd_suspend(struct usb_hcd *hcd) 4369 { 4370 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4371 unsigned long flags; 4372 int ret = 0; 4373 u32 hprt0; 4374 4375 spin_lock_irqsave(&hsotg->lock, flags); 4376 4377 if (hsotg->lx_state != DWC2_L0) 4378 goto unlock; 4379 4380 if (!HCD_HW_ACCESSIBLE(hcd)) 4381 goto unlock; 4382 4383 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL) 4384 goto unlock; 4385 4386 if (!hsotg->params.hibernation) 4387 goto skip_power_saving; 4388 4389 /* 4390 * Drive USB suspend and disable port Power 4391 * if usb bus is not suspended. 4392 */ 4393 if (!hsotg->bus_suspended) { 4394 hprt0 = dwc2_read_hprt0(hsotg); 4395 hprt0 |= HPRT0_SUSP; 4396 hprt0 &= ~HPRT0_PWR; 4397 dwc2_writel(hprt0, hsotg->regs + HPRT0); 4398 } 4399 4400 /* Enter hibernation */ 4401 ret = dwc2_enter_hibernation(hsotg); 4402 if (ret) { 4403 if (ret != -ENOTSUPP) 4404 dev_err(hsotg->dev, 4405 "enter hibernation failed\n"); 4406 goto skip_power_saving; 4407 } 4408 4409 /* Ask phy to be suspended */ 4410 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4411 spin_unlock_irqrestore(&hsotg->lock, flags); 4412 usb_phy_set_suspend(hsotg->uphy, true); 4413 spin_lock_irqsave(&hsotg->lock, flags); 4414 } 4415 4416 /* After entering hibernation, hardware is no more accessible */ 4417 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4418 4419 skip_power_saving: 4420 hsotg->lx_state = DWC2_L2; 4421 unlock: 4422 spin_unlock_irqrestore(&hsotg->lock, flags); 4423 4424 return ret; 4425 } 4426 4427 static int _dwc2_hcd_resume(struct usb_hcd *hcd) 4428 { 4429 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4430 unsigned long flags; 4431 int ret = 0; 4432 4433 spin_lock_irqsave(&hsotg->lock, flags); 4434 4435 if (hsotg->lx_state != DWC2_L2) 4436 goto unlock; 4437 4438 if (!hsotg->params.hibernation) { 4439 hsotg->lx_state = DWC2_L0; 4440 goto unlock; 4441 } 4442 4443 /* 4444 * Set HW accessible bit before powering on the controller 4445 * since an interrupt may rise. 4446 */ 4447 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4448 4449 /* 4450 * Enable power if not already done. 4451 * This must not be spinlocked since duration 4452 * of this call is unknown. 4453 */ 4454 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4455 spin_unlock_irqrestore(&hsotg->lock, flags); 4456 usb_phy_set_suspend(hsotg->uphy, false); 4457 spin_lock_irqsave(&hsotg->lock, flags); 4458 } 4459 4460 /* Exit hibernation */ 4461 ret = dwc2_exit_hibernation(hsotg, true); 4462 if (ret && (ret != -ENOTSUPP)) 4463 dev_err(hsotg->dev, "exit hibernation failed\n"); 4464 4465 hsotg->lx_state = DWC2_L0; 4466 4467 spin_unlock_irqrestore(&hsotg->lock, flags); 4468 4469 if (hsotg->bus_suspended) { 4470 spin_lock_irqsave(&hsotg->lock, flags); 4471 hsotg->flags.b.port_suspend_change = 1; 4472 spin_unlock_irqrestore(&hsotg->lock, flags); 4473 dwc2_port_resume(hsotg); 4474 } else { 4475 /* Wait for controller to correctly update D+/D- level */ 4476 usleep_range(3000, 5000); 4477 4478 /* 4479 * Clear Port Enable and Port Status changes. 4480 * Enable Port Power. 4481 */ 4482 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET | 4483 HPRT0_ENACHG, hsotg->regs + HPRT0); 4484 /* Wait for controller to detect Port Connect */ 4485 usleep_range(5000, 7000); 4486 } 4487 4488 return ret; 4489 unlock: 4490 spin_unlock_irqrestore(&hsotg->lock, flags); 4491 4492 return ret; 4493 } 4494 4495 /* Returns the current frame number */ 4496 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd) 4497 { 4498 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4499 4500 return dwc2_hcd_get_frame_number(hsotg); 4501 } 4502 4503 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb, 4504 char *fn_name) 4505 { 4506 #ifdef VERBOSE_DEBUG 4507 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4508 char *pipetype = NULL; 4509 char *speed = NULL; 4510 4511 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb); 4512 dev_vdbg(hsotg->dev, " Device address: %d\n", 4513 usb_pipedevice(urb->pipe)); 4514 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n", 4515 usb_pipeendpoint(urb->pipe), 4516 usb_pipein(urb->pipe) ? "IN" : "OUT"); 4517 4518 switch (usb_pipetype(urb->pipe)) { 4519 case PIPE_CONTROL: 4520 pipetype = "CONTROL"; 4521 break; 4522 case PIPE_BULK: 4523 pipetype = "BULK"; 4524 break; 4525 case PIPE_INTERRUPT: 4526 pipetype = "INTERRUPT"; 4527 break; 4528 case PIPE_ISOCHRONOUS: 4529 pipetype = "ISOCHRONOUS"; 4530 break; 4531 } 4532 4533 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype, 4534 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ? 4535 "IN" : "OUT"); 4536 4537 switch (urb->dev->speed) { 4538 case USB_SPEED_HIGH: 4539 speed = "HIGH"; 4540 break; 4541 case USB_SPEED_FULL: 4542 speed = "FULL"; 4543 break; 4544 case USB_SPEED_LOW: 4545 speed = "LOW"; 4546 break; 4547 default: 4548 speed = "UNKNOWN"; 4549 break; 4550 } 4551 4552 dev_vdbg(hsotg->dev, " Speed: %s\n", speed); 4553 dev_vdbg(hsotg->dev, " Max packet size: %d\n", 4554 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); 4555 dev_vdbg(hsotg->dev, " Data buffer length: %d\n", 4556 urb->transfer_buffer_length); 4557 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n", 4558 urb->transfer_buffer, (unsigned long)urb->transfer_dma); 4559 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n", 4560 urb->setup_packet, (unsigned long)urb->setup_dma); 4561 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval); 4562 4563 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4564 int i; 4565 4566 for (i = 0; i < urb->number_of_packets; i++) { 4567 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i); 4568 dev_vdbg(hsotg->dev, " offset: %d, length %d\n", 4569 urb->iso_frame_desc[i].offset, 4570 urb->iso_frame_desc[i].length); 4571 } 4572 } 4573 #endif 4574 } 4575 4576 /* 4577 * Starts processing a USB transfer request specified by a USB Request Block 4578 * (URB). mem_flags indicates the type of memory allocation to use while 4579 * processing this URB. 4580 */ 4581 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 4582 gfp_t mem_flags) 4583 { 4584 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4585 struct usb_host_endpoint *ep = urb->ep; 4586 struct dwc2_hcd_urb *dwc2_urb; 4587 int i; 4588 int retval; 4589 int alloc_bandwidth = 0; 4590 u8 ep_type = 0; 4591 u32 tflags = 0; 4592 void *buf; 4593 unsigned long flags; 4594 struct dwc2_qh *qh; 4595 bool qh_allocated = false; 4596 struct dwc2_qtd *qtd; 4597 4598 if (dbg_urb(urb)) { 4599 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n"); 4600 dwc2_dump_urb_info(hcd, urb, "urb_enqueue"); 4601 } 4602 4603 if (!ep) 4604 return -EINVAL; 4605 4606 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4607 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4608 spin_lock_irqsave(&hsotg->lock, flags); 4609 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep)) 4610 alloc_bandwidth = 1; 4611 spin_unlock_irqrestore(&hsotg->lock, flags); 4612 } 4613 4614 switch (usb_pipetype(urb->pipe)) { 4615 case PIPE_CONTROL: 4616 ep_type = USB_ENDPOINT_XFER_CONTROL; 4617 break; 4618 case PIPE_ISOCHRONOUS: 4619 ep_type = USB_ENDPOINT_XFER_ISOC; 4620 break; 4621 case PIPE_BULK: 4622 ep_type = USB_ENDPOINT_XFER_BULK; 4623 break; 4624 case PIPE_INTERRUPT: 4625 ep_type = USB_ENDPOINT_XFER_INT; 4626 break; 4627 } 4628 4629 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets, 4630 mem_flags); 4631 if (!dwc2_urb) 4632 return -ENOMEM; 4633 4634 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe), 4635 usb_pipeendpoint(urb->pipe), ep_type, 4636 usb_pipein(urb->pipe), 4637 usb_maxpacket(urb->dev, urb->pipe, 4638 !(usb_pipein(urb->pipe)))); 4639 4640 buf = urb->transfer_buffer; 4641 4642 if (hcd->self.uses_dma) { 4643 if (!buf && (urb->transfer_dma & 3)) { 4644 dev_err(hsotg->dev, 4645 "%s: unaligned transfer with no transfer_buffer", 4646 __func__); 4647 retval = -EINVAL; 4648 goto fail0; 4649 } 4650 } 4651 4652 if (!(urb->transfer_flags & URB_NO_INTERRUPT)) 4653 tflags |= URB_GIVEBACK_ASAP; 4654 if (urb->transfer_flags & URB_ZERO_PACKET) 4655 tflags |= URB_SEND_ZERO_PACKET; 4656 4657 dwc2_urb->priv = urb; 4658 dwc2_urb->buf = buf; 4659 dwc2_urb->dma = urb->transfer_dma; 4660 dwc2_urb->length = urb->transfer_buffer_length; 4661 dwc2_urb->setup_packet = urb->setup_packet; 4662 dwc2_urb->setup_dma = urb->setup_dma; 4663 dwc2_urb->flags = tflags; 4664 dwc2_urb->interval = urb->interval; 4665 dwc2_urb->status = -EINPROGRESS; 4666 4667 for (i = 0; i < urb->number_of_packets; ++i) 4668 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i, 4669 urb->iso_frame_desc[i].offset, 4670 urb->iso_frame_desc[i].length); 4671 4672 urb->hcpriv = dwc2_urb; 4673 qh = (struct dwc2_qh *)ep->hcpriv; 4674 /* Create QH for the endpoint if it doesn't exist */ 4675 if (!qh) { 4676 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags); 4677 if (!qh) { 4678 retval = -ENOMEM; 4679 goto fail0; 4680 } 4681 ep->hcpriv = qh; 4682 qh_allocated = true; 4683 } 4684 4685 qtd = kzalloc(sizeof(*qtd), mem_flags); 4686 if (!qtd) { 4687 retval = -ENOMEM; 4688 goto fail1; 4689 } 4690 4691 spin_lock_irqsave(&hsotg->lock, flags); 4692 retval = usb_hcd_link_urb_to_ep(hcd, urb); 4693 if (retval) 4694 goto fail2; 4695 4696 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd); 4697 if (retval) 4698 goto fail3; 4699 4700 if (alloc_bandwidth) { 4701 dwc2_allocate_bus_bandwidth(hcd, 4702 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4703 urb); 4704 } 4705 4706 spin_unlock_irqrestore(&hsotg->lock, flags); 4707 4708 return 0; 4709 4710 fail3: 4711 dwc2_urb->priv = NULL; 4712 usb_hcd_unlink_urb_from_ep(hcd, urb); 4713 if (qh_allocated && qh->channel && qh->channel->qh == qh) 4714 qh->channel->qh = NULL; 4715 fail2: 4716 spin_unlock_irqrestore(&hsotg->lock, flags); 4717 urb->hcpriv = NULL; 4718 kfree(qtd); 4719 qtd = NULL; 4720 fail1: 4721 if (qh_allocated) { 4722 struct dwc2_qtd *qtd2, *qtd2_tmp; 4723 4724 ep->hcpriv = NULL; 4725 dwc2_hcd_qh_unlink(hsotg, qh); 4726 /* Free each QTD in the QH's QTD list */ 4727 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list, 4728 qtd_list_entry) 4729 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh); 4730 dwc2_hcd_qh_free(hsotg, qh); 4731 } 4732 fail0: 4733 kfree(dwc2_urb); 4734 4735 return retval; 4736 } 4737 4738 /* 4739 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success. 4740 */ 4741 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, 4742 int status) 4743 { 4744 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4745 int rc; 4746 unsigned long flags; 4747 4748 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n"); 4749 dwc2_dump_urb_info(hcd, urb, "urb_dequeue"); 4750 4751 spin_lock_irqsave(&hsotg->lock, flags); 4752 4753 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 4754 if (rc) 4755 goto out; 4756 4757 if (!urb->hcpriv) { 4758 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n"); 4759 goto out; 4760 } 4761 4762 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv); 4763 4764 usb_hcd_unlink_urb_from_ep(hcd, urb); 4765 4766 kfree(urb->hcpriv); 4767 urb->hcpriv = NULL; 4768 4769 /* Higher layer software sets URB status */ 4770 spin_unlock(&hsotg->lock); 4771 usb_hcd_giveback_urb(hcd, urb, status); 4772 spin_lock(&hsotg->lock); 4773 4774 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n"); 4775 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status); 4776 out: 4777 spin_unlock_irqrestore(&hsotg->lock, flags); 4778 4779 return rc; 4780 } 4781 4782 /* 4783 * Frees resources in the DWC_otg controller related to a given endpoint. Also 4784 * clears state in the HCD related to the endpoint. Any URBs for the endpoint 4785 * must already be dequeued. 4786 */ 4787 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd, 4788 struct usb_host_endpoint *ep) 4789 { 4790 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4791 4792 dev_dbg(hsotg->dev, 4793 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n", 4794 ep->desc.bEndpointAddress, ep->hcpriv); 4795 dwc2_hcd_endpoint_disable(hsotg, ep, 250); 4796 } 4797 4798 /* 4799 * Resets endpoint specific parameter values, in current version used to reset 4800 * the data toggle (as a WA). This function can be called from usb_clear_halt 4801 * routine. 4802 */ 4803 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd, 4804 struct usb_host_endpoint *ep) 4805 { 4806 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4807 unsigned long flags; 4808 4809 dev_dbg(hsotg->dev, 4810 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n", 4811 ep->desc.bEndpointAddress); 4812 4813 spin_lock_irqsave(&hsotg->lock, flags); 4814 dwc2_hcd_endpoint_reset(hsotg, ep); 4815 spin_unlock_irqrestore(&hsotg->lock, flags); 4816 } 4817 4818 /* 4819 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if 4820 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid 4821 * interrupt. 4822 * 4823 * This function is called by the USB core when an interrupt occurs 4824 */ 4825 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd) 4826 { 4827 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4828 4829 return dwc2_handle_hcd_intr(hsotg); 4830 } 4831 4832 /* 4833 * Creates Status Change bitmap for the root hub and root port. The bitmap is 4834 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 4835 * is the status change indicator for the single root port. Returns 1 if either 4836 * change indicator is 1, otherwise returns 0. 4837 */ 4838 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) 4839 { 4840 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4841 4842 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1; 4843 return buf[0] != 0; 4844 } 4845 4846 /* Handles hub class-specific requests */ 4847 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue, 4848 u16 windex, char *buf, u16 wlength) 4849 { 4850 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq, 4851 wvalue, windex, buf, wlength); 4852 return retval; 4853 } 4854 4855 /* Handles hub TT buffer clear completions */ 4856 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd, 4857 struct usb_host_endpoint *ep) 4858 { 4859 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4860 struct dwc2_qh *qh; 4861 unsigned long flags; 4862 4863 qh = ep->hcpriv; 4864 if (!qh) 4865 return; 4866 4867 spin_lock_irqsave(&hsotg->lock, flags); 4868 qh->tt_buffer_dirty = 0; 4869 4870 if (hsotg->flags.b.port_connect_status) 4871 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL); 4872 4873 spin_unlock_irqrestore(&hsotg->lock, flags); 4874 } 4875 4876 /* 4877 * HPRT0_SPD_HIGH_SPEED: high speed 4878 * HPRT0_SPD_FULL_SPEED: full speed 4879 */ 4880 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed) 4881 { 4882 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4883 4884 if (hsotg->params.speed == speed) 4885 return; 4886 4887 hsotg->params.speed = speed; 4888 queue_work(hsotg->wq_otg, &hsotg->wf_otg); 4889 } 4890 4891 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4892 { 4893 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4894 4895 if (!hsotg->params.change_speed_quirk) 4896 return; 4897 4898 /* 4899 * On removal, set speed to default high-speed. 4900 */ 4901 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN && 4902 udev->parent->speed < USB_SPEED_HIGH) { 4903 dev_info(hsotg->dev, "Set speed to default high-speed\n"); 4904 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 4905 } 4906 } 4907 4908 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 4909 { 4910 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4911 4912 if (!hsotg->params.change_speed_quirk) 4913 return 0; 4914 4915 if (udev->speed == USB_SPEED_HIGH) { 4916 dev_info(hsotg->dev, "Set speed to high-speed\n"); 4917 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 4918 } else if ((udev->speed == USB_SPEED_FULL || 4919 udev->speed == USB_SPEED_LOW)) { 4920 /* 4921 * Change speed setting to full-speed if there's 4922 * a full-speed or low-speed device plugged in. 4923 */ 4924 dev_info(hsotg->dev, "Set speed to full-speed\n"); 4925 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED); 4926 } 4927 4928 return 0; 4929 } 4930 4931 static struct hc_driver dwc2_hc_driver = { 4932 .description = "dwc2_hsotg", 4933 .product_desc = "DWC OTG Controller", 4934 .hcd_priv_size = sizeof(struct wrapper_priv_data), 4935 4936 .irq = _dwc2_hcd_irq, 4937 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH, 4938 4939 .start = _dwc2_hcd_start, 4940 .stop = _dwc2_hcd_stop, 4941 .urb_enqueue = _dwc2_hcd_urb_enqueue, 4942 .urb_dequeue = _dwc2_hcd_urb_dequeue, 4943 .endpoint_disable = _dwc2_hcd_endpoint_disable, 4944 .endpoint_reset = _dwc2_hcd_endpoint_reset, 4945 .get_frame_number = _dwc2_hcd_get_frame_number, 4946 4947 .hub_status_data = _dwc2_hcd_hub_status_data, 4948 .hub_control = _dwc2_hcd_hub_control, 4949 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete, 4950 4951 .bus_suspend = _dwc2_hcd_suspend, 4952 .bus_resume = _dwc2_hcd_resume, 4953 4954 .map_urb_for_dma = dwc2_map_urb_for_dma, 4955 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma, 4956 }; 4957 4958 /* 4959 * Frees secondary storage associated with the dwc2_hsotg structure contained 4960 * in the struct usb_hcd field 4961 */ 4962 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg) 4963 { 4964 u32 ahbcfg; 4965 u32 dctl; 4966 int i; 4967 4968 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n"); 4969 4970 /* Free memory for QH/QTD lists */ 4971 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive); 4972 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active); 4973 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive); 4974 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready); 4975 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned); 4976 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued); 4977 4978 /* Free memory for the host channels */ 4979 for (i = 0; i < MAX_EPS_CHANNELS; i++) { 4980 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 4981 4982 if (chan) { 4983 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n", 4984 i, chan); 4985 hsotg->hc_ptr_array[i] = NULL; 4986 kfree(chan); 4987 } 4988 } 4989 4990 if (hsotg->params.host_dma) { 4991 if (hsotg->status_buf) { 4992 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, 4993 hsotg->status_buf, 4994 hsotg->status_buf_dma); 4995 hsotg->status_buf = NULL; 4996 } 4997 } else { 4998 kfree(hsotg->status_buf); 4999 hsotg->status_buf = NULL; 5000 } 5001 5002 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); 5003 5004 /* Disable all interrupts */ 5005 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; 5006 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); 5007 dwc2_writel(0, hsotg->regs + GINTMSK); 5008 5009 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) { 5010 dctl = dwc2_readl(hsotg->regs + DCTL); 5011 dctl |= DCTL_SFTDISCON; 5012 dwc2_writel(dctl, hsotg->regs + DCTL); 5013 } 5014 5015 if (hsotg->wq_otg) { 5016 if (!cancel_work_sync(&hsotg->wf_otg)) 5017 flush_workqueue(hsotg->wq_otg); 5018 destroy_workqueue(hsotg->wq_otg); 5019 } 5020 5021 del_timer(&hsotg->wkp_timer); 5022 } 5023 5024 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg) 5025 { 5026 /* Turn off all host-specific interrupts */ 5027 dwc2_disable_host_interrupts(hsotg); 5028 5029 dwc2_hcd_free(hsotg); 5030 } 5031 5032 /* 5033 * Initializes the HCD. This function allocates memory for and initializes the 5034 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the 5035 * USB bus with the core and calls the hc_driver->start() function. It returns 5036 * a negative error on failure. 5037 */ 5038 int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 5039 { 5040 struct platform_device *pdev = to_platform_device(hsotg->dev); 5041 struct resource *res; 5042 struct usb_hcd *hcd; 5043 struct dwc2_host_chan *channel; 5044 u32 hcfg; 5045 int i, num_channels; 5046 int retval; 5047 5048 if (usb_disabled()) 5049 return -ENODEV; 5050 5051 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n"); 5052 5053 retval = -ENOMEM; 5054 5055 hcfg = dwc2_readl(hsotg->regs + HCFG); 5056 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg); 5057 5058 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5059 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) * 5060 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); 5061 if (!hsotg->frame_num_array) 5062 goto error1; 5063 hsotg->last_frame_num_array = kzalloc( 5064 sizeof(*hsotg->last_frame_num_array) * 5065 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL); 5066 if (!hsotg->last_frame_num_array) 5067 goto error1; 5068 #endif 5069 hsotg->last_frame_num = HFNUM_MAX_FRNUM; 5070 5071 /* Check if the bus driver or platform code has setup a dma_mask */ 5072 if (hsotg->params.host_dma && 5073 !hsotg->dev->dma_mask) { 5074 dev_warn(hsotg->dev, 5075 "dma_mask not set, disabling DMA\n"); 5076 hsotg->params.host_dma = false; 5077 hsotg->params.dma_desc_enable = false; 5078 } 5079 5080 /* Set device flags indicating whether the HCD supports DMA */ 5081 if (hsotg->params.host_dma) { 5082 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5083 dev_warn(hsotg->dev, "can't set DMA mask\n"); 5084 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5085 dev_warn(hsotg->dev, "can't set coherent DMA mask\n"); 5086 } 5087 5088 if (hsotg->params.change_speed_quirk) { 5089 dwc2_hc_driver.free_dev = dwc2_free_dev; 5090 dwc2_hc_driver.reset_device = dwc2_reset_device; 5091 } 5092 5093 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev)); 5094 if (!hcd) 5095 goto error1; 5096 5097 if (!hsotg->params.host_dma) 5098 hcd->self.uses_dma = 0; 5099 5100 hcd->has_tt = 1; 5101 5102 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 5103 hcd->rsrc_start = res->start; 5104 hcd->rsrc_len = resource_size(res); 5105 5106 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg; 5107 hsotg->priv = hcd; 5108 5109 /* 5110 * Disable the global interrupt until all the interrupt handlers are 5111 * installed 5112 */ 5113 dwc2_disable_global_interrupts(hsotg); 5114 5115 /* Initialize the DWC_otg core, and select the Phy type */ 5116 retval = dwc2_core_init(hsotg, true); 5117 if (retval) 5118 goto error2; 5119 5120 /* Create new workqueue and init work */ 5121 retval = -ENOMEM; 5122 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0); 5123 if (!hsotg->wq_otg) { 5124 dev_err(hsotg->dev, "Failed to create workqueue\n"); 5125 goto error2; 5126 } 5127 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change); 5128 5129 setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected, 5130 (unsigned long)hsotg); 5131 5132 /* Initialize the non-periodic schedule */ 5133 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive); 5134 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active); 5135 5136 /* Initialize the periodic schedule */ 5137 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive); 5138 INIT_LIST_HEAD(&hsotg->periodic_sched_ready); 5139 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned); 5140 INIT_LIST_HEAD(&hsotg->periodic_sched_queued); 5141 5142 INIT_LIST_HEAD(&hsotg->split_order); 5143 5144 /* 5145 * Create a host channel descriptor for each host channel implemented 5146 * in the controller. Initialize the channel descriptor array. 5147 */ 5148 INIT_LIST_HEAD(&hsotg->free_hc_list); 5149 num_channels = hsotg->params.host_channels; 5150 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array)); 5151 5152 for (i = 0; i < num_channels; i++) { 5153 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 5154 if (!channel) 5155 goto error3; 5156 channel->hc_num = i; 5157 INIT_LIST_HEAD(&channel->split_order_list_entry); 5158 hsotg->hc_ptr_array[i] = channel; 5159 } 5160 5161 /* Initialize hsotg start work */ 5162 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func); 5163 5164 /* Initialize port reset work */ 5165 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func); 5166 5167 /* 5168 * Allocate space for storing data on status transactions. Normally no 5169 * data is sent, but this space acts as a bit bucket. This must be 5170 * done after usb_add_hcd since that function allocates the DMA buffer 5171 * pool. 5172 */ 5173 if (hsotg->params.host_dma) 5174 hsotg->status_buf = dma_alloc_coherent(hsotg->dev, 5175 DWC2_HCD_STATUS_BUF_SIZE, 5176 &hsotg->status_buf_dma, GFP_KERNEL); 5177 else 5178 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE, 5179 GFP_KERNEL); 5180 5181 if (!hsotg->status_buf) 5182 goto error3; 5183 5184 /* 5185 * Create kmem caches to handle descriptor buffers in descriptor 5186 * DMA mode. 5187 * Alignment must be set to 512 bytes. 5188 */ 5189 if (hsotg->params.dma_desc_enable || 5190 hsotg->params.dma_desc_fs_enable) { 5191 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc", 5192 sizeof(struct dwc2_dma_desc) * 5193 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA, 5194 NULL); 5195 if (!hsotg->desc_gen_cache) { 5196 dev_err(hsotg->dev, 5197 "unable to create dwc2 generic desc cache\n"); 5198 5199 /* 5200 * Disable descriptor dma mode since it will not be 5201 * usable. 5202 */ 5203 hsotg->params.dma_desc_enable = false; 5204 hsotg->params.dma_desc_fs_enable = false; 5205 } 5206 5207 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc", 5208 sizeof(struct dwc2_dma_desc) * 5209 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL); 5210 if (!hsotg->desc_hsisoc_cache) { 5211 dev_err(hsotg->dev, 5212 "unable to create dwc2 hs isoc desc cache\n"); 5213 5214 kmem_cache_destroy(hsotg->desc_gen_cache); 5215 5216 /* 5217 * Disable descriptor dma mode since it will not be 5218 * usable. 5219 */ 5220 hsotg->params.dma_desc_enable = false; 5221 hsotg->params.dma_desc_fs_enable = false; 5222 } 5223 } 5224 5225 hsotg->otg_port = 1; 5226 hsotg->frame_list = NULL; 5227 hsotg->frame_list_dma = 0; 5228 hsotg->periodic_qh_count = 0; 5229 5230 /* Initiate lx_state to L3 disconnected state */ 5231 hsotg->lx_state = DWC2_L3; 5232 5233 hcd->self.otg_port = hsotg->otg_port; 5234 5235 /* Don't support SG list at this point */ 5236 hcd->self.sg_tablesize = 0; 5237 5238 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5239 otg_set_host(hsotg->uphy->otg, &hcd->self); 5240 5241 /* 5242 * Finish generic HCD initialization and start the HCD. This function 5243 * allocates the DMA buffer pool, registers the USB bus, requests the 5244 * IRQ line, and calls hcd_start method. 5245 */ 5246 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED); 5247 if (retval < 0) 5248 goto error4; 5249 5250 device_wakeup_enable(hcd->self.controller); 5251 5252 dwc2_hcd_dump_state(hsotg); 5253 5254 dwc2_enable_global_interrupts(hsotg); 5255 5256 return 0; 5257 5258 error4: 5259 kmem_cache_destroy(hsotg->desc_gen_cache); 5260 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5261 error3: 5262 dwc2_hcd_release(hsotg); 5263 error2: 5264 usb_put_hcd(hcd); 5265 error1: 5266 5267 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5268 kfree(hsotg->last_frame_num_array); 5269 kfree(hsotg->frame_num_array); 5270 #endif 5271 5272 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval); 5273 return retval; 5274 } 5275 5276 /* 5277 * Removes the HCD. 5278 * Frees memory and resources associated with the HCD and deregisters the bus. 5279 */ 5280 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) 5281 { 5282 struct usb_hcd *hcd; 5283 5284 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n"); 5285 5286 hcd = dwc2_hsotg_to_hcd(hsotg); 5287 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd); 5288 5289 if (!hcd) { 5290 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n", 5291 __func__); 5292 return; 5293 } 5294 5295 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5296 otg_set_host(hsotg->uphy->otg, NULL); 5297 5298 usb_remove_hcd(hcd); 5299 hsotg->priv = NULL; 5300 5301 kmem_cache_destroy(hsotg->desc_gen_cache); 5302 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5303 5304 dwc2_hcd_release(hsotg); 5305 usb_put_hcd(hcd); 5306 5307 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5308 kfree(hsotg->last_frame_num_array); 5309 kfree(hsotg->frame_num_array); 5310 #endif 5311 } 5312 5313 /** 5314 * dwc2_backup_host_registers() - Backup controller host registers. 5315 * When suspending usb bus, registers needs to be backuped 5316 * if controller power is disabled once suspended. 5317 * 5318 * @hsotg: Programming view of the DWC_otg controller 5319 */ 5320 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 5321 { 5322 struct dwc2_hregs_backup *hr; 5323 int i; 5324 5325 dev_dbg(hsotg->dev, "%s\n", __func__); 5326 5327 /* Backup Host regs */ 5328 hr = &hsotg->hr_backup; 5329 hr->hcfg = dwc2_readl(hsotg->regs + HCFG); 5330 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK); 5331 for (i = 0; i < hsotg->params.host_channels; ++i) 5332 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i)); 5333 5334 hr->hprt0 = dwc2_read_hprt0(hsotg); 5335 hr->hfir = dwc2_readl(hsotg->regs + HFIR); 5336 hr->valid = true; 5337 5338 return 0; 5339 } 5340 5341 /** 5342 * dwc2_restore_host_registers() - Restore controller host registers. 5343 * When resuming usb bus, device registers needs to be restored 5344 * if controller power were disabled. 5345 * 5346 * @hsotg: Programming view of the DWC_otg controller 5347 */ 5348 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 5349 { 5350 struct dwc2_hregs_backup *hr; 5351 int i; 5352 5353 dev_dbg(hsotg->dev, "%s\n", __func__); 5354 5355 /* Restore host regs */ 5356 hr = &hsotg->hr_backup; 5357 if (!hr->valid) { 5358 dev_err(hsotg->dev, "%s: no host registers to restore\n", 5359 __func__); 5360 return -EINVAL; 5361 } 5362 hr->valid = false; 5363 5364 dwc2_writel(hr->hcfg, hsotg->regs + HCFG); 5365 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK); 5366 5367 for (i = 0; i < hsotg->params.host_channels; ++i) 5368 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i)); 5369 5370 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0); 5371 dwc2_writel(hr->hfir, hsotg->regs + HFIR); 5372 hsotg->frame_number = 0; 5373 5374 return 0; 5375 } 5376