xref: /linux/drivers/usb/dwc2/hcd.c (revision c98be0c96db00e9b6b02d31e0fa7590c54cdaaac)
1 /*
2  * hcd.c - DesignWare HS OTG Controller host-mode routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This file contains the core HCD code, and implements the Linux hc_driver
39  * API
40  */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50 
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53 
54 #include "core.h"
55 #include "hcd.h"
56 
57 /**
58  * dwc2_dump_channel_info() - Prints the state of a host channel
59  *
60  * @hsotg: Programming view of DWC_otg controller
61  * @chan:  Pointer to the channel to dump
62  *
63  * Must be called with interrupt disabled and spinlock held
64  *
65  * NOTE: This function will be removed once the peripheral controller code
66  * is integrated and the driver is stable
67  */
68 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
69 				   struct dwc2_host_chan *chan)
70 {
71 #ifdef VERBOSE_DEBUG
72 	int num_channels = hsotg->core_params->host_channels;
73 	struct dwc2_qh *qh;
74 	u32 hcchar;
75 	u32 hcsplt;
76 	u32 hctsiz;
77 	u32 hc_dma;
78 	int i;
79 
80 	if (chan == NULL)
81 		return;
82 
83 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
84 	hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
85 	hctsiz = readl(hsotg->regs + HCTSIZ(chan->hc_num));
86 	hc_dma = readl(hsotg->regs + HCDMA(chan->hc_num));
87 
88 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
89 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
90 		hcchar, hcsplt);
91 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
92 		hctsiz, hc_dma);
93 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
94 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
95 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
96 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
97 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
98 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
99 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
100 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
101 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
102 		(unsigned long)chan->xfer_dma);
103 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
104 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
105 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
106 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
107 			    qh_list_entry)
108 		dev_dbg(hsotg->dev, "    %p\n", qh);
109 	dev_dbg(hsotg->dev, "  NP active sched:\n");
110 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
111 			    qh_list_entry)
112 		dev_dbg(hsotg->dev, "    %p\n", qh);
113 	dev_dbg(hsotg->dev, "  Channels:\n");
114 	for (i = 0; i < num_channels; i++) {
115 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
116 
117 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
118 	}
119 #endif /* VERBOSE_DEBUG */
120 }
121 
122 /*
123  * Processes all the URBs in a single list of QHs. Completes them with
124  * -ETIMEDOUT and frees the QTD.
125  *
126  * Must be called with interrupt disabled and spinlock held
127  */
128 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
129 				      struct list_head *qh_list)
130 {
131 	struct dwc2_qh *qh, *qh_tmp;
132 	struct dwc2_qtd *qtd, *qtd_tmp;
133 
134 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
135 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
136 					 qtd_list_entry) {
137 			dwc2_host_complete(hsotg, qtd, -ETIMEDOUT);
138 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
139 		}
140 	}
141 }
142 
143 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
144 			      struct list_head *qh_list)
145 {
146 	struct dwc2_qtd *qtd, *qtd_tmp;
147 	struct dwc2_qh *qh, *qh_tmp;
148 	unsigned long flags;
149 
150 	if (!qh_list->next)
151 		/* The list hasn't been initialized yet */
152 		return;
153 
154 	spin_lock_irqsave(&hsotg->lock, flags);
155 
156 	/* Ensure there are no QTDs or URBs left */
157 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
158 
159 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
160 		dwc2_hcd_qh_unlink(hsotg, qh);
161 
162 		/* Free each QTD in the QH's QTD list */
163 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
164 					 qtd_list_entry)
165 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
166 
167 		spin_unlock_irqrestore(&hsotg->lock, flags);
168 		dwc2_hcd_qh_free(hsotg, qh);
169 		spin_lock_irqsave(&hsotg->lock, flags);
170 	}
171 
172 	spin_unlock_irqrestore(&hsotg->lock, flags);
173 }
174 
175 /*
176  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
177  * and periodic schedules. The QTD associated with each URB is removed from
178  * the schedule and freed. This function may be called when a disconnect is
179  * detected or when the HCD is being stopped.
180  *
181  * Must be called with interrupt disabled and spinlock held
182  */
183 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
184 {
185 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
186 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
187 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
188 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
189 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
190 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
191 }
192 
193 /**
194  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
195  *
196  * @hsotg: Pointer to struct dwc2_hsotg
197  */
198 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
199 {
200 	u32 hprt0;
201 
202 	if (hsotg->op_state == OTG_STATE_B_HOST) {
203 		/*
204 		 * Reset the port. During a HNP mode switch the reset
205 		 * needs to occur within 1ms and have a duration of at
206 		 * least 50ms.
207 		 */
208 		hprt0 = dwc2_read_hprt0(hsotg);
209 		hprt0 |= HPRT0_RST;
210 		writel(hprt0, hsotg->regs + HPRT0);
211 	}
212 
213 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
214 			   msecs_to_jiffies(50));
215 }
216 
217 /* Must be called with interrupt disabled and spinlock held */
218 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
219 {
220 	int num_channels = hsotg->core_params->host_channels;
221 	struct dwc2_host_chan *channel;
222 	u32 hcchar;
223 	int i;
224 
225 	if (hsotg->core_params->dma_enable <= 0) {
226 		/* Flush out any channel requests in slave mode */
227 		for (i = 0; i < num_channels; i++) {
228 			channel = hsotg->hc_ptr_array[i];
229 			if (!list_empty(&channel->hc_list_entry))
230 				continue;
231 			hcchar = readl(hsotg->regs + HCCHAR(i));
232 			if (hcchar & HCCHAR_CHENA) {
233 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
234 				hcchar |= HCCHAR_CHDIS;
235 				writel(hcchar, hsotg->regs + HCCHAR(i));
236 			}
237 		}
238 	}
239 
240 	for (i = 0; i < num_channels; i++) {
241 		channel = hsotg->hc_ptr_array[i];
242 		if (!list_empty(&channel->hc_list_entry))
243 			continue;
244 		hcchar = readl(hsotg->regs + HCCHAR(i));
245 		if (hcchar & HCCHAR_CHENA) {
246 			/* Halt the channel */
247 			hcchar |= HCCHAR_CHDIS;
248 			writel(hcchar, hsotg->regs + HCCHAR(i));
249 		}
250 
251 		dwc2_hc_cleanup(hsotg, channel);
252 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
253 		/*
254 		 * Added for Descriptor DMA to prevent channel double cleanup in
255 		 * release_channel_ddma(), which is called from ep_disable when
256 		 * device disconnects
257 		 */
258 		channel->qh = NULL;
259 	}
260 }
261 
262 /**
263  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
264  *
265  * @hsotg: Pointer to struct dwc2_hsotg
266  *
267  * Must be called with interrupt disabled and spinlock held
268  */
269 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg)
270 {
271 	u32 intr;
272 
273 	/* Set status flags for the hub driver */
274 	hsotg->flags.b.port_connect_status_change = 1;
275 	hsotg->flags.b.port_connect_status = 0;
276 
277 	/*
278 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
279 	 * interrupt mask and status bits and disabling subsequent host
280 	 * channel interrupts.
281 	 */
282 	intr = readl(hsotg->regs + GINTMSK);
283 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
284 	writel(intr, hsotg->regs + GINTMSK);
285 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
286 	writel(intr, hsotg->regs + GINTSTS);
287 
288 	/*
289 	 * Turn off the vbus power only if the core has transitioned to device
290 	 * mode. If still in host mode, need to keep power on to detect a
291 	 * reconnection.
292 	 */
293 	if (dwc2_is_device_mode(hsotg)) {
294 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
295 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
296 			writel(0, hsotg->regs + HPRT0);
297 		}
298 
299 		dwc2_disable_host_interrupts(hsotg);
300 	}
301 
302 	/* Respond with an error status to all URBs in the schedule */
303 	dwc2_kill_all_urbs(hsotg);
304 
305 	if (dwc2_is_host_mode(hsotg))
306 		/* Clean up any host channels that were in use */
307 		dwc2_hcd_cleanup_channels(hsotg);
308 
309 	dwc2_host_disconnect(hsotg);
310 }
311 
312 /**
313  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
314  *
315  * @hsotg: Pointer to struct dwc2_hsotg
316  */
317 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
318 {
319 	if (hsotg->lx_state == DWC2_L2)
320 		hsotg->flags.b.port_suspend_change = 1;
321 	else
322 		hsotg->flags.b.port_l1_change = 1;
323 }
324 
325 /**
326  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
327  *
328  * @hsotg: Pointer to struct dwc2_hsotg
329  *
330  * Must be called with interrupt disabled and spinlock held
331  */
332 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
333 {
334 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
335 
336 	/*
337 	 * The root hub should be disconnected before this function is called.
338 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
339 	 * and the QH lists (via ..._hcd_endpoint_disable).
340 	 */
341 
342 	/* Turn off all host-specific interrupts */
343 	dwc2_disable_host_interrupts(hsotg);
344 
345 	/* Turn off the vbus power */
346 	dev_dbg(hsotg->dev, "PortPower off\n");
347 	writel(0, hsotg->regs + HPRT0);
348 }
349 
350 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
351 				struct dwc2_hcd_urb *urb, void **ep_handle,
352 				gfp_t mem_flags)
353 {
354 	struct dwc2_qtd *qtd;
355 	unsigned long flags;
356 	u32 intr_mask;
357 	int retval;
358 	int dev_speed;
359 
360 	if (!hsotg->flags.b.port_connect_status) {
361 		/* No longer connected */
362 		dev_err(hsotg->dev, "Not connected\n");
363 		return -ENODEV;
364 	}
365 
366 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
367 
368 	/* Some configurations cannot support LS traffic on a FS root port */
369 	if ((dev_speed == USB_SPEED_LOW) &&
370 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
371 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
372 		u32 hprt0 = readl(hsotg->regs + HPRT0);
373 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
374 
375 		if (prtspd == HPRT0_SPD_FULL_SPEED)
376 			return -ENODEV;
377 	}
378 
379 	qtd = kzalloc(sizeof(*qtd), mem_flags);
380 	if (!qtd)
381 		return -ENOMEM;
382 
383 	dwc2_hcd_qtd_init(qtd, urb);
384 	retval = dwc2_hcd_qtd_add(hsotg, qtd, (struct dwc2_qh **)ep_handle,
385 				  mem_flags);
386 	if (retval) {
387 		dev_err(hsotg->dev,
388 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
389 			retval);
390 		kfree(qtd);
391 		return retval;
392 	}
393 
394 	intr_mask = readl(hsotg->regs + GINTMSK);
395 	if (!(intr_mask & GINTSTS_SOF)) {
396 		enum dwc2_transaction_type tr_type;
397 
398 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
399 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
400 			/*
401 			 * Do not schedule SG transactions until qtd has
402 			 * URB_GIVEBACK_ASAP set
403 			 */
404 			return 0;
405 
406 		spin_lock_irqsave(&hsotg->lock, flags);
407 		tr_type = dwc2_hcd_select_transactions(hsotg);
408 		if (tr_type != DWC2_TRANSACTION_NONE)
409 			dwc2_hcd_queue_transactions(hsotg, tr_type);
410 		spin_unlock_irqrestore(&hsotg->lock, flags);
411 	}
412 
413 	return 0;
414 }
415 
416 /* Must be called with interrupt disabled and spinlock held */
417 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
418 				struct dwc2_hcd_urb *urb)
419 {
420 	struct dwc2_qh *qh;
421 	struct dwc2_qtd *urb_qtd;
422 
423 	urb_qtd = urb->qtd;
424 	if (!urb_qtd) {
425 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
426 		return -EINVAL;
427 	}
428 
429 	qh = urb_qtd->qh;
430 	if (!qh) {
431 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
432 		return -EINVAL;
433 	}
434 
435 	urb->priv = NULL;
436 
437 	if (urb_qtd->in_process && qh->channel) {
438 		dwc2_dump_channel_info(hsotg, qh->channel);
439 
440 		/* The QTD is in process (it has been assigned to a channel) */
441 		if (hsotg->flags.b.port_connect_status)
442 			/*
443 			 * If still connected (i.e. in host mode), halt the
444 			 * channel so it can be used for other transfers. If
445 			 * no longer connected, the host registers can't be
446 			 * written to halt the channel since the core is in
447 			 * device mode.
448 			 */
449 			dwc2_hc_halt(hsotg, qh->channel,
450 				     DWC2_HC_XFER_URB_DEQUEUE);
451 	}
452 
453 	/*
454 	 * Free the QTD and clean up the associated QH. Leave the QH in the
455 	 * schedule if it has any remaining QTDs.
456 	 */
457 	if (hsotg->core_params->dma_desc_enable <= 0) {
458 		u8 in_process = urb_qtd->in_process;
459 
460 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
461 		if (in_process) {
462 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
463 			qh->channel = NULL;
464 		} else if (list_empty(&qh->qtd_list)) {
465 			dwc2_hcd_qh_unlink(hsotg, qh);
466 		}
467 	} else {
468 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
469 	}
470 
471 	return 0;
472 }
473 
474 /* Must NOT be called with interrupt disabled or spinlock held */
475 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
476 				     struct usb_host_endpoint *ep, int retry)
477 {
478 	struct dwc2_qtd *qtd, *qtd_tmp;
479 	struct dwc2_qh *qh;
480 	unsigned long flags;
481 	int rc;
482 
483 	spin_lock_irqsave(&hsotg->lock, flags);
484 
485 	qh = ep->hcpriv;
486 	if (!qh) {
487 		rc = -EINVAL;
488 		goto err;
489 	}
490 
491 	while (!list_empty(&qh->qtd_list) && retry--) {
492 		if (retry == 0) {
493 			dev_err(hsotg->dev,
494 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
495 			rc = -EBUSY;
496 			goto err;
497 		}
498 
499 		spin_unlock_irqrestore(&hsotg->lock, flags);
500 		usleep_range(20000, 40000);
501 		spin_lock_irqsave(&hsotg->lock, flags);
502 		qh = ep->hcpriv;
503 		if (!qh) {
504 			rc = -EINVAL;
505 			goto err;
506 		}
507 	}
508 
509 	dwc2_hcd_qh_unlink(hsotg, qh);
510 
511 	/* Free each QTD in the QH's QTD list */
512 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
513 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
514 
515 	ep->hcpriv = NULL;
516 	spin_unlock_irqrestore(&hsotg->lock, flags);
517 	dwc2_hcd_qh_free(hsotg, qh);
518 
519 	return 0;
520 
521 err:
522 	ep->hcpriv = NULL;
523 	spin_unlock_irqrestore(&hsotg->lock, flags);
524 
525 	return rc;
526 }
527 
528 /* Must be called with interrupt disabled and spinlock held */
529 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
530 				   struct usb_host_endpoint *ep)
531 {
532 	struct dwc2_qh *qh = ep->hcpriv;
533 
534 	if (!qh)
535 		return -EINVAL;
536 
537 	qh->data_toggle = DWC2_HC_PID_DATA0;
538 
539 	return 0;
540 }
541 
542 /*
543  * Initializes dynamic portions of the DWC_otg HCD state
544  *
545  * Must be called with interrupt disabled and spinlock held
546  */
547 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
548 {
549 	struct dwc2_host_chan *chan, *chan_tmp;
550 	int num_channels;
551 	int i;
552 
553 	hsotg->flags.d32 = 0;
554 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
555 
556 	if (hsotg->core_params->uframe_sched > 0) {
557 		hsotg->available_host_channels =
558 			hsotg->core_params->host_channels;
559 	} else {
560 		hsotg->non_periodic_channels = 0;
561 		hsotg->periodic_channels = 0;
562 	}
563 
564 	/*
565 	 * Put all channels in the free channel list and clean up channel
566 	 * states
567 	 */
568 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
569 				 hc_list_entry)
570 		list_del_init(&chan->hc_list_entry);
571 
572 	num_channels = hsotg->core_params->host_channels;
573 	for (i = 0; i < num_channels; i++) {
574 		chan = hsotg->hc_ptr_array[i];
575 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
576 		dwc2_hc_cleanup(hsotg, chan);
577 	}
578 
579 	/* Initialize the DWC core for host mode operation */
580 	dwc2_core_host_init(hsotg);
581 }
582 
583 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
584 			       struct dwc2_host_chan *chan,
585 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
586 {
587 	int hub_addr, hub_port;
588 
589 	chan->do_split = 1;
590 	chan->xact_pos = qtd->isoc_split_pos;
591 	chan->complete_split = qtd->complete_split;
592 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
593 	chan->hub_addr = (u8)hub_addr;
594 	chan->hub_port = (u8)hub_port;
595 }
596 
597 static void *dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
598 			       struct dwc2_host_chan *chan,
599 			       struct dwc2_qtd *qtd, void *bufptr)
600 {
601 	struct dwc2_hcd_urb *urb = qtd->urb;
602 	struct dwc2_hcd_iso_packet_desc *frame_desc;
603 
604 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
605 	case USB_ENDPOINT_XFER_CONTROL:
606 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
607 
608 		switch (qtd->control_phase) {
609 		case DWC2_CONTROL_SETUP:
610 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
611 			chan->do_ping = 0;
612 			chan->ep_is_in = 0;
613 			chan->data_pid_start = DWC2_HC_PID_SETUP;
614 			if (hsotg->core_params->dma_enable > 0)
615 				chan->xfer_dma = urb->setup_dma;
616 			else
617 				chan->xfer_buf = urb->setup_packet;
618 			chan->xfer_len = 8;
619 			bufptr = NULL;
620 			break;
621 
622 		case DWC2_CONTROL_DATA:
623 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
624 			chan->data_pid_start = qtd->data_toggle;
625 			break;
626 
627 		case DWC2_CONTROL_STATUS:
628 			/*
629 			 * Direction is opposite of data direction or IN if no
630 			 * data
631 			 */
632 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
633 			if (urb->length == 0)
634 				chan->ep_is_in = 1;
635 			else
636 				chan->ep_is_in =
637 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
638 			if (chan->ep_is_in)
639 				chan->do_ping = 0;
640 			chan->data_pid_start = DWC2_HC_PID_DATA1;
641 			chan->xfer_len = 0;
642 			if (hsotg->core_params->dma_enable > 0)
643 				chan->xfer_dma = hsotg->status_buf_dma;
644 			else
645 				chan->xfer_buf = hsotg->status_buf;
646 			bufptr = NULL;
647 			break;
648 		}
649 		break;
650 
651 	case USB_ENDPOINT_XFER_BULK:
652 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
653 		break;
654 
655 	case USB_ENDPOINT_XFER_INT:
656 		chan->ep_type = USB_ENDPOINT_XFER_INT;
657 		break;
658 
659 	case USB_ENDPOINT_XFER_ISOC:
660 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
661 		if (hsotg->core_params->dma_desc_enable > 0)
662 			break;
663 
664 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
665 		frame_desc->status = 0;
666 
667 		if (hsotg->core_params->dma_enable > 0) {
668 			chan->xfer_dma = urb->dma;
669 			chan->xfer_dma += frame_desc->offset +
670 					qtd->isoc_split_offset;
671 		} else {
672 			chan->xfer_buf = urb->buf;
673 			chan->xfer_buf += frame_desc->offset +
674 					qtd->isoc_split_offset;
675 		}
676 
677 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
678 
679 		/* For non-dword aligned buffers */
680 		if (hsotg->core_params->dma_enable > 0 &&
681 		    (chan->xfer_dma & 0x3))
682 			bufptr = (u8 *)urb->buf + frame_desc->offset +
683 					qtd->isoc_split_offset;
684 		else
685 			bufptr = NULL;
686 
687 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
688 			if (chan->xfer_len <= 188)
689 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
690 			else
691 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
692 		}
693 		break;
694 	}
695 
696 	return bufptr;
697 }
698 
699 static int dwc2_hc_setup_align_buf(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
700 				   struct dwc2_host_chan *chan, void *bufptr)
701 {
702 	u32 buf_size;
703 
704 	if (chan->ep_type != USB_ENDPOINT_XFER_ISOC)
705 		buf_size = hsotg->core_params->max_transfer_size;
706 	else
707 		buf_size = 4096;
708 
709 	if (!qh->dw_align_buf) {
710 		qh->dw_align_buf = dma_alloc_coherent(hsotg->dev, buf_size,
711 						      &qh->dw_align_buf_dma,
712 						      GFP_ATOMIC);
713 		if (!qh->dw_align_buf)
714 			return -ENOMEM;
715 	}
716 
717 	if (!chan->ep_is_in && chan->xfer_len) {
718 		dma_sync_single_for_cpu(hsotg->dev, chan->xfer_dma, buf_size,
719 					DMA_TO_DEVICE);
720 		memcpy(qh->dw_align_buf, bufptr, chan->xfer_len);
721 		dma_sync_single_for_device(hsotg->dev, chan->xfer_dma, buf_size,
722 					   DMA_TO_DEVICE);
723 	}
724 
725 	chan->align_buf = qh->dw_align_buf_dma;
726 	return 0;
727 }
728 
729 /**
730  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
731  * channel and initializes the host channel to perform the transactions. The
732  * host channel is removed from the free list.
733  *
734  * @hsotg: The HCD state structure
735  * @qh:    Transactions from the first QTD for this QH are selected and assigned
736  *         to a free host channel
737  */
738 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
739 {
740 	struct dwc2_host_chan *chan;
741 	struct dwc2_hcd_urb *urb;
742 	struct dwc2_qtd *qtd;
743 	void *bufptr = NULL;
744 
745 	if (dbg_qh(qh))
746 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
747 
748 	if (list_empty(&qh->qtd_list)) {
749 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
750 		return -ENOMEM;
751 	}
752 
753 	if (list_empty(&hsotg->free_hc_list)) {
754 		dev_dbg(hsotg->dev, "No free channel to assign\n");
755 		return -ENOMEM;
756 	}
757 
758 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
759 				hc_list_entry);
760 
761 	/* Remove host channel from free list */
762 	list_del_init(&chan->hc_list_entry);
763 
764 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
765 	urb = qtd->urb;
766 	qh->channel = chan;
767 	qtd->in_process = 1;
768 
769 	/*
770 	 * Use usb_pipedevice to determine device address. This address is
771 	 * 0 before the SET_ADDRESS command and the correct address afterward.
772 	 */
773 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
774 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
775 	chan->speed = qh->dev_speed;
776 	chan->max_packet = dwc2_max_packet(qh->maxp);
777 
778 	chan->xfer_started = 0;
779 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
780 	chan->error_state = (qtd->error_count > 0);
781 	chan->halt_on_queue = 0;
782 	chan->halt_pending = 0;
783 	chan->requests = 0;
784 
785 	/*
786 	 * The following values may be modified in the transfer type section
787 	 * below. The xfer_len value may be reduced when the transfer is
788 	 * started to accommodate the max widths of the XferSize and PktCnt
789 	 * fields in the HCTSIZn register.
790 	 */
791 
792 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
793 	if (chan->ep_is_in)
794 		chan->do_ping = 0;
795 	else
796 		chan->do_ping = qh->ping_state;
797 
798 	chan->data_pid_start = qh->data_toggle;
799 	chan->multi_count = 1;
800 
801 	if (urb->actual_length > urb->length &&
802 		!dwc2_hcd_is_pipe_in(&urb->pipe_info))
803 		urb->actual_length = urb->length;
804 
805 	if (hsotg->core_params->dma_enable > 0) {
806 		chan->xfer_dma = urb->dma + urb->actual_length;
807 
808 		/* For non-dword aligned case */
809 		if (hsotg->core_params->dma_desc_enable <= 0 &&
810 		    (chan->xfer_dma & 0x3))
811 			bufptr = (u8 *)urb->buf + urb->actual_length;
812 	} else {
813 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
814 	}
815 
816 	chan->xfer_len = urb->length - urb->actual_length;
817 	chan->xfer_count = 0;
818 
819 	/* Set the split attributes if required */
820 	if (qh->do_split)
821 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
822 	else
823 		chan->do_split = 0;
824 
825 	/* Set the transfer attributes */
826 	bufptr = dwc2_hc_init_xfer(hsotg, chan, qtd, bufptr);
827 
828 	/* Non DWORD-aligned buffer case */
829 	if (bufptr) {
830 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
831 		if (dwc2_hc_setup_align_buf(hsotg, qh, chan, bufptr)) {
832 			dev_err(hsotg->dev,
833 				"%s: Failed to allocate memory to handle non-dword aligned buffer\n",
834 				__func__);
835 			/* Add channel back to free list */
836 			chan->align_buf = 0;
837 			chan->multi_count = 0;
838 			list_add_tail(&chan->hc_list_entry,
839 				      &hsotg->free_hc_list);
840 			qtd->in_process = 0;
841 			qh->channel = NULL;
842 			return -ENOMEM;
843 		}
844 	} else {
845 		chan->align_buf = 0;
846 	}
847 
848 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
849 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
850 		/*
851 		 * This value may be modified when the transfer is started
852 		 * to reflect the actual transfer length
853 		 */
854 		chan->multi_count = dwc2_hb_mult(qh->maxp);
855 
856 	if (hsotg->core_params->dma_desc_enable > 0)
857 		chan->desc_list_addr = qh->desc_list_dma;
858 
859 	dwc2_hc_init(hsotg, chan);
860 	chan->qh = qh;
861 
862 	return 0;
863 }
864 
865 /**
866  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
867  * schedule and assigns them to available host channels. Called from the HCD
868  * interrupt handler functions.
869  *
870  * @hsotg: The HCD state structure
871  *
872  * Return: The types of new transactions that were assigned to host channels
873  */
874 enum dwc2_transaction_type dwc2_hcd_select_transactions(
875 		struct dwc2_hsotg *hsotg)
876 {
877 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
878 	struct list_head *qh_ptr;
879 	struct dwc2_qh *qh;
880 	int num_channels;
881 
882 #ifdef DWC2_DEBUG_SOF
883 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
884 #endif
885 
886 	/* Process entries in the periodic ready list */
887 	qh_ptr = hsotg->periodic_sched_ready.next;
888 	while (qh_ptr != &hsotg->periodic_sched_ready) {
889 		if (list_empty(&hsotg->free_hc_list))
890 			break;
891 		if (hsotg->core_params->uframe_sched > 0) {
892 			if (hsotg->available_host_channels <= 1)
893 				break;
894 			hsotg->available_host_channels--;
895 		}
896 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
897 		if (dwc2_assign_and_init_hc(hsotg, qh))
898 			break;
899 
900 		/*
901 		 * Move the QH from the periodic ready schedule to the
902 		 * periodic assigned schedule
903 		 */
904 		qh_ptr = qh_ptr->next;
905 		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned);
906 		ret_val = DWC2_TRANSACTION_PERIODIC;
907 	}
908 
909 	/*
910 	 * Process entries in the inactive portion of the non-periodic
911 	 * schedule. Some free host channels may not be used if they are
912 	 * reserved for periodic transfers.
913 	 */
914 	num_channels = hsotg->core_params->host_channels;
915 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
916 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
917 		if (hsotg->core_params->uframe_sched <= 0 &&
918 		    hsotg->non_periodic_channels >= num_channels -
919 						hsotg->periodic_channels)
920 			break;
921 		if (list_empty(&hsotg->free_hc_list))
922 			break;
923 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
924 		if (hsotg->core_params->uframe_sched > 0) {
925 			if (hsotg->available_host_channels < 1)
926 				break;
927 			hsotg->available_host_channels--;
928 		}
929 
930 		if (dwc2_assign_and_init_hc(hsotg, qh))
931 			break;
932 
933 		/*
934 		 * Move the QH from the non-periodic inactive schedule to the
935 		 * non-periodic active schedule
936 		 */
937 		qh_ptr = qh_ptr->next;
938 		list_move(&qh->qh_list_entry,
939 			  &hsotg->non_periodic_sched_active);
940 
941 		if (ret_val == DWC2_TRANSACTION_NONE)
942 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
943 		else
944 			ret_val = DWC2_TRANSACTION_ALL;
945 
946 		if (hsotg->core_params->uframe_sched <= 0)
947 			hsotg->non_periodic_channels++;
948 	}
949 
950 	return ret_val;
951 }
952 
953 /**
954  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
955  * a host channel associated with either a periodic or non-periodic transfer
956  *
957  * @hsotg: The HCD state structure
958  * @chan:  Host channel descriptor associated with either a periodic or
959  *         non-periodic transfer
960  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
961  *                     for periodic transfers or the non-periodic Tx FIFO
962  *                     for non-periodic transfers
963  *
964  * Return: 1 if a request is queued and more requests may be needed to
965  * complete the transfer, 0 if no more requests are required for this
966  * transfer, -1 if there is insufficient space in the Tx FIFO
967  *
968  * This function assumes that there is space available in the appropriate
969  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
970  * it checks whether space is available in the appropriate Tx FIFO.
971  *
972  * Must be called with interrupt disabled and spinlock held
973  */
974 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
975 				  struct dwc2_host_chan *chan,
976 				  u16 fifo_dwords_avail)
977 {
978 	int retval = 0;
979 
980 	if (hsotg->core_params->dma_enable > 0) {
981 		if (hsotg->core_params->dma_desc_enable > 0) {
982 			if (!chan->xfer_started ||
983 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
984 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
985 				chan->qh->ping_state = 0;
986 			}
987 		} else if (!chan->xfer_started) {
988 			dwc2_hc_start_transfer(hsotg, chan);
989 			chan->qh->ping_state = 0;
990 		}
991 	} else if (chan->halt_pending) {
992 		/* Don't queue a request if the channel has been halted */
993 	} else if (chan->halt_on_queue) {
994 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
995 	} else if (chan->do_ping) {
996 		if (!chan->xfer_started)
997 			dwc2_hc_start_transfer(hsotg, chan);
998 	} else if (!chan->ep_is_in ||
999 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
1000 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
1001 			if (!chan->xfer_started) {
1002 				dwc2_hc_start_transfer(hsotg, chan);
1003 				retval = 1;
1004 			} else {
1005 				retval = dwc2_hc_continue_transfer(hsotg, chan);
1006 			}
1007 		} else {
1008 			retval = -1;
1009 		}
1010 	} else {
1011 		if (!chan->xfer_started) {
1012 			dwc2_hc_start_transfer(hsotg, chan);
1013 			retval = 1;
1014 		} else {
1015 			retval = dwc2_hc_continue_transfer(hsotg, chan);
1016 		}
1017 	}
1018 
1019 	return retval;
1020 }
1021 
1022 /*
1023  * Processes periodic channels for the next frame and queues transactions for
1024  * these channels to the DWC_otg controller. After queueing transactions, the
1025  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
1026  * to queue as Periodic Tx FIFO or request queue space becomes available.
1027  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
1028  *
1029  * Must be called with interrupt disabled and spinlock held
1030  */
1031 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
1032 {
1033 	struct list_head *qh_ptr;
1034 	struct dwc2_qh *qh;
1035 	u32 tx_status;
1036 	u32 fspcavail;
1037 	u32 gintmsk;
1038 	int status;
1039 	int no_queue_space = 0;
1040 	int no_fifo_space = 0;
1041 	u32 qspcavail;
1042 
1043 	if (dbg_perio())
1044 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
1045 
1046 	tx_status = readl(hsotg->regs + HPTXSTS);
1047 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1048 		    TXSTS_QSPCAVAIL_SHIFT;
1049 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1050 		    TXSTS_FSPCAVAIL_SHIFT;
1051 
1052 	if (dbg_perio()) {
1053 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
1054 			 qspcavail);
1055 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
1056 			 fspcavail);
1057 	}
1058 
1059 	qh_ptr = hsotg->periodic_sched_assigned.next;
1060 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
1061 		tx_status = readl(hsotg->regs + HPTXSTS);
1062 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1063 			    TXSTS_QSPCAVAIL_SHIFT;
1064 		if (qspcavail == 0) {
1065 			no_queue_space = 1;
1066 			break;
1067 		}
1068 
1069 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
1070 		if (!qh->channel) {
1071 			qh_ptr = qh_ptr->next;
1072 			continue;
1073 		}
1074 
1075 		/* Make sure EP's TT buffer is clean before queueing qtds */
1076 		if (qh->tt_buffer_dirty) {
1077 			qh_ptr = qh_ptr->next;
1078 			continue;
1079 		}
1080 
1081 		/*
1082 		 * Set a flag if we're queuing high-bandwidth in slave mode.
1083 		 * The flag prevents any halts to get into the request queue in
1084 		 * the middle of multiple high-bandwidth packets getting queued.
1085 		 */
1086 		if (hsotg->core_params->dma_enable <= 0 &&
1087 				qh->channel->multi_count > 1)
1088 			hsotg->queuing_high_bandwidth = 1;
1089 
1090 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1091 			    TXSTS_FSPCAVAIL_SHIFT;
1092 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1093 		if (status < 0) {
1094 			no_fifo_space = 1;
1095 			break;
1096 		}
1097 
1098 		/*
1099 		 * In Slave mode, stay on the current transfer until there is
1100 		 * nothing more to do or the high-bandwidth request count is
1101 		 * reached. In DMA mode, only need to queue one request. The
1102 		 * controller automatically handles multiple packets for
1103 		 * high-bandwidth transfers.
1104 		 */
1105 		if (hsotg->core_params->dma_enable > 0 || status == 0 ||
1106 		    qh->channel->requests == qh->channel->multi_count) {
1107 			qh_ptr = qh_ptr->next;
1108 			/*
1109 			 * Move the QH from the periodic assigned schedule to
1110 			 * the periodic queued schedule
1111 			 */
1112 			list_move(&qh->qh_list_entry,
1113 				  &hsotg->periodic_sched_queued);
1114 
1115 			/* done queuing high bandwidth */
1116 			hsotg->queuing_high_bandwidth = 0;
1117 		}
1118 	}
1119 
1120 	if (hsotg->core_params->dma_enable <= 0) {
1121 		tx_status = readl(hsotg->regs + HPTXSTS);
1122 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1123 			    TXSTS_QSPCAVAIL_SHIFT;
1124 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1125 			    TXSTS_FSPCAVAIL_SHIFT;
1126 		if (dbg_perio()) {
1127 			dev_vdbg(hsotg->dev,
1128 				 "  P Tx Req Queue Space Avail (after queue): %d\n",
1129 				 qspcavail);
1130 			dev_vdbg(hsotg->dev,
1131 				 "  P Tx FIFO Space Avail (after queue): %d\n",
1132 				 fspcavail);
1133 		}
1134 
1135 		if (!list_empty(&hsotg->periodic_sched_assigned) ||
1136 		    no_queue_space || no_fifo_space) {
1137 			/*
1138 			 * May need to queue more transactions as the request
1139 			 * queue or Tx FIFO empties. Enable the periodic Tx
1140 			 * FIFO empty interrupt. (Always use the half-empty
1141 			 * level to ensure that new requests are loaded as
1142 			 * soon as possible.)
1143 			 */
1144 			gintmsk = readl(hsotg->regs + GINTMSK);
1145 			gintmsk |= GINTSTS_PTXFEMP;
1146 			writel(gintmsk, hsotg->regs + GINTMSK);
1147 		} else {
1148 			/*
1149 			 * Disable the Tx FIFO empty interrupt since there are
1150 			 * no more transactions that need to be queued right
1151 			 * now. This function is called from interrupt
1152 			 * handlers to queue more transactions as transfer
1153 			 * states change.
1154 			 */
1155 			gintmsk = readl(hsotg->regs + GINTMSK);
1156 			gintmsk &= ~GINTSTS_PTXFEMP;
1157 			writel(gintmsk, hsotg->regs + GINTMSK);
1158 		}
1159 	}
1160 }
1161 
1162 /*
1163  * Processes active non-periodic channels and queues transactions for these
1164  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
1165  * FIFO Empty interrupt is enabled if there are more transactions to queue as
1166  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
1167  * FIFO Empty interrupt is disabled.
1168  *
1169  * Must be called with interrupt disabled and spinlock held
1170  */
1171 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
1172 {
1173 	struct list_head *orig_qh_ptr;
1174 	struct dwc2_qh *qh;
1175 	u32 tx_status;
1176 	u32 qspcavail;
1177 	u32 fspcavail;
1178 	u32 gintmsk;
1179 	int status;
1180 	int no_queue_space = 0;
1181 	int no_fifo_space = 0;
1182 	int more_to_do = 0;
1183 
1184 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
1185 
1186 	tx_status = readl(hsotg->regs + GNPTXSTS);
1187 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1188 		    TXSTS_QSPCAVAIL_SHIFT;
1189 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1190 		    TXSTS_FSPCAVAIL_SHIFT;
1191 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
1192 		 qspcavail);
1193 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
1194 		 fspcavail);
1195 
1196 	/*
1197 	 * Keep track of the starting point. Skip over the start-of-list
1198 	 * entry.
1199 	 */
1200 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
1201 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1202 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
1203 
1204 	/*
1205 	 * Process once through the active list or until no more space is
1206 	 * available in the request queue or the Tx FIFO
1207 	 */
1208 	do {
1209 		tx_status = readl(hsotg->regs + GNPTXSTS);
1210 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1211 			    TXSTS_QSPCAVAIL_SHIFT;
1212 		if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
1213 			no_queue_space = 1;
1214 			break;
1215 		}
1216 
1217 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
1218 				qh_list_entry);
1219 		if (!qh->channel)
1220 			goto next;
1221 
1222 		/* Make sure EP's TT buffer is clean before queueing qtds */
1223 		if (qh->tt_buffer_dirty)
1224 			goto next;
1225 
1226 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1227 			    TXSTS_FSPCAVAIL_SHIFT;
1228 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1229 
1230 		if (status > 0) {
1231 			more_to_do = 1;
1232 		} else if (status < 0) {
1233 			no_fifo_space = 1;
1234 			break;
1235 		}
1236 next:
1237 		/* Advance to next QH, skipping start-of-list entry */
1238 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1239 		if (hsotg->non_periodic_qh_ptr ==
1240 				&hsotg->non_periodic_sched_active)
1241 			hsotg->non_periodic_qh_ptr =
1242 					hsotg->non_periodic_qh_ptr->next;
1243 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
1244 
1245 	if (hsotg->core_params->dma_enable <= 0) {
1246 		tx_status = readl(hsotg->regs + GNPTXSTS);
1247 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1248 			    TXSTS_QSPCAVAIL_SHIFT;
1249 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1250 			    TXSTS_FSPCAVAIL_SHIFT;
1251 		dev_vdbg(hsotg->dev,
1252 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
1253 			 qspcavail);
1254 		dev_vdbg(hsotg->dev,
1255 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
1256 			 fspcavail);
1257 
1258 		if (more_to_do || no_queue_space || no_fifo_space) {
1259 			/*
1260 			 * May need to queue more transactions as the request
1261 			 * queue or Tx FIFO empties. Enable the non-periodic
1262 			 * Tx FIFO empty interrupt. (Always use the half-empty
1263 			 * level to ensure that new requests are loaded as
1264 			 * soon as possible.)
1265 			 */
1266 			gintmsk = readl(hsotg->regs + GINTMSK);
1267 			gintmsk |= GINTSTS_NPTXFEMP;
1268 			writel(gintmsk, hsotg->regs + GINTMSK);
1269 		} else {
1270 			/*
1271 			 * Disable the Tx FIFO empty interrupt since there are
1272 			 * no more transactions that need to be queued right
1273 			 * now. This function is called from interrupt
1274 			 * handlers to queue more transactions as transfer
1275 			 * states change.
1276 			 */
1277 			gintmsk = readl(hsotg->regs + GINTMSK);
1278 			gintmsk &= ~GINTSTS_NPTXFEMP;
1279 			writel(gintmsk, hsotg->regs + GINTMSK);
1280 		}
1281 	}
1282 }
1283 
1284 /**
1285  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
1286  * and queues transactions for these channels to the DWC_otg controller. Called
1287  * from the HCD interrupt handler functions.
1288  *
1289  * @hsotg:   The HCD state structure
1290  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
1291  *           or both)
1292  *
1293  * Must be called with interrupt disabled and spinlock held
1294  */
1295 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
1296 				 enum dwc2_transaction_type tr_type)
1297 {
1298 #ifdef DWC2_DEBUG_SOF
1299 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
1300 #endif
1301 	/* Process host channels associated with periodic transfers */
1302 	if ((tr_type == DWC2_TRANSACTION_PERIODIC ||
1303 	     tr_type == DWC2_TRANSACTION_ALL) &&
1304 	    !list_empty(&hsotg->periodic_sched_assigned))
1305 		dwc2_process_periodic_channels(hsotg);
1306 
1307 	/* Process host channels associated with non-periodic transfers */
1308 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
1309 	    tr_type == DWC2_TRANSACTION_ALL) {
1310 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
1311 			dwc2_process_non_periodic_channels(hsotg);
1312 		} else {
1313 			/*
1314 			 * Ensure NP Tx FIFO empty interrupt is disabled when
1315 			 * there are no non-periodic transfers to process
1316 			 */
1317 			u32 gintmsk = readl(hsotg->regs + GINTMSK);
1318 
1319 			gintmsk &= ~GINTSTS_NPTXFEMP;
1320 			writel(gintmsk, hsotg->regs + GINTMSK);
1321 		}
1322 	}
1323 }
1324 
1325 static void dwc2_conn_id_status_change(struct work_struct *work)
1326 {
1327 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
1328 						wf_otg);
1329 	u32 count = 0;
1330 	u32 gotgctl;
1331 
1332 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1333 
1334 	gotgctl = readl(hsotg->regs + GOTGCTL);
1335 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
1336 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
1337 		!!(gotgctl & GOTGCTL_CONID_B));
1338 
1339 	/* B-Device connector (Device Mode) */
1340 	if (gotgctl & GOTGCTL_CONID_B) {
1341 		/* Wait for switch to device mode */
1342 		dev_dbg(hsotg->dev, "connId B\n");
1343 		while (!dwc2_is_device_mode(hsotg)) {
1344 			dev_info(hsotg->dev,
1345 				 "Waiting for Peripheral Mode, Mode=%s\n",
1346 				 dwc2_is_host_mode(hsotg) ? "Host" :
1347 				 "Peripheral");
1348 			usleep_range(20000, 40000);
1349 			if (++count > 250)
1350 				break;
1351 		}
1352 		if (count > 250)
1353 			dev_err(hsotg->dev,
1354 				"Connection id status change timed out\n");
1355 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
1356 		dwc2_core_init(hsotg, false, -1);
1357 		dwc2_enable_global_interrupts(hsotg);
1358 	} else {
1359 		/* A-Device connector (Host Mode) */
1360 		dev_dbg(hsotg->dev, "connId A\n");
1361 		while (!dwc2_is_host_mode(hsotg)) {
1362 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
1363 				 dwc2_is_host_mode(hsotg) ?
1364 				 "Host" : "Peripheral");
1365 			usleep_range(20000, 40000);
1366 			if (++count > 250)
1367 				break;
1368 		}
1369 		if (count > 250)
1370 			dev_err(hsotg->dev,
1371 				"Connection id status change timed out\n");
1372 		hsotg->op_state = OTG_STATE_A_HOST;
1373 
1374 		/* Initialize the Core for Host mode */
1375 		dwc2_core_init(hsotg, false, -1);
1376 		dwc2_enable_global_interrupts(hsotg);
1377 		dwc2_hcd_start(hsotg);
1378 	}
1379 }
1380 
1381 static void dwc2_wakeup_detected(unsigned long data)
1382 {
1383 	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
1384 	u32 hprt0;
1385 
1386 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1387 
1388 	/*
1389 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
1390 	 * so that OPT tests pass with all PHYs.)
1391 	 */
1392 	hprt0 = dwc2_read_hprt0(hsotg);
1393 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
1394 	hprt0 &= ~HPRT0_RES;
1395 	writel(hprt0, hsotg->regs + HPRT0);
1396 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
1397 		readl(hsotg->regs + HPRT0));
1398 
1399 	dwc2_hcd_rem_wakeup(hsotg);
1400 
1401 	/* Change to L0 state */
1402 	hsotg->lx_state = DWC2_L0;
1403 }
1404 
1405 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
1406 {
1407 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
1408 
1409 	return hcd->self.b_hnp_enable;
1410 }
1411 
1412 /* Must NOT be called with interrupt disabled or spinlock held */
1413 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1414 {
1415 	unsigned long flags;
1416 	u32 hprt0;
1417 	u32 pcgctl;
1418 	u32 gotgctl;
1419 
1420 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1421 
1422 	spin_lock_irqsave(&hsotg->lock, flags);
1423 
1424 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
1425 		gotgctl = readl(hsotg->regs + GOTGCTL);
1426 		gotgctl |= GOTGCTL_HSTSETHNPEN;
1427 		writel(gotgctl, hsotg->regs + GOTGCTL);
1428 		hsotg->op_state = OTG_STATE_A_SUSPEND;
1429 	}
1430 
1431 	hprt0 = dwc2_read_hprt0(hsotg);
1432 	hprt0 |= HPRT0_SUSP;
1433 	writel(hprt0, hsotg->regs + HPRT0);
1434 
1435 	/* Update lx_state */
1436 	hsotg->lx_state = DWC2_L2;
1437 
1438 	/* Suspend the Phy Clock */
1439 	pcgctl = readl(hsotg->regs + PCGCTL);
1440 	pcgctl |= PCGCTL_STOPPCLK;
1441 	writel(pcgctl, hsotg->regs + PCGCTL);
1442 	udelay(10);
1443 
1444 	/* For HNP the bus must be suspended for at least 200ms */
1445 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
1446 		pcgctl = readl(hsotg->regs + PCGCTL);
1447 		pcgctl &= ~PCGCTL_STOPPCLK;
1448 		writel(pcgctl, hsotg->regs + PCGCTL);
1449 
1450 		spin_unlock_irqrestore(&hsotg->lock, flags);
1451 
1452 		usleep_range(200000, 250000);
1453 	} else {
1454 		spin_unlock_irqrestore(&hsotg->lock, flags);
1455 	}
1456 }
1457 
1458 /* Handles hub class-specific requests */
1459 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
1460 				u16 wvalue, u16 windex, char *buf, u16 wlength)
1461 {
1462 	struct usb_hub_descriptor *hub_desc;
1463 	int retval = 0;
1464 	u32 hprt0;
1465 	u32 port_status;
1466 	u32 speed;
1467 	u32 pcgctl;
1468 
1469 	switch (typereq) {
1470 	case ClearHubFeature:
1471 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
1472 
1473 		switch (wvalue) {
1474 		case C_HUB_LOCAL_POWER:
1475 		case C_HUB_OVER_CURRENT:
1476 			/* Nothing required here */
1477 			break;
1478 
1479 		default:
1480 			retval = -EINVAL;
1481 			dev_err(hsotg->dev,
1482 				"ClearHubFeature request %1xh unknown\n",
1483 				wvalue);
1484 		}
1485 		break;
1486 
1487 	case ClearPortFeature:
1488 		if (wvalue != USB_PORT_FEAT_L1)
1489 			if (!windex || windex > 1)
1490 				goto error;
1491 		switch (wvalue) {
1492 		case USB_PORT_FEAT_ENABLE:
1493 			dev_dbg(hsotg->dev,
1494 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
1495 			hprt0 = dwc2_read_hprt0(hsotg);
1496 			hprt0 |= HPRT0_ENA;
1497 			writel(hprt0, hsotg->regs + HPRT0);
1498 			break;
1499 
1500 		case USB_PORT_FEAT_SUSPEND:
1501 			dev_dbg(hsotg->dev,
1502 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
1503 			writel(0, hsotg->regs + PCGCTL);
1504 			usleep_range(20000, 40000);
1505 
1506 			hprt0 = dwc2_read_hprt0(hsotg);
1507 			hprt0 |= HPRT0_RES;
1508 			writel(hprt0, hsotg->regs + HPRT0);
1509 			hprt0 &= ~HPRT0_SUSP;
1510 			usleep_range(100000, 150000);
1511 
1512 			hprt0 &= ~HPRT0_RES;
1513 			writel(hprt0, hsotg->regs + HPRT0);
1514 			break;
1515 
1516 		case USB_PORT_FEAT_POWER:
1517 			dev_dbg(hsotg->dev,
1518 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
1519 			hprt0 = dwc2_read_hprt0(hsotg);
1520 			hprt0 &= ~HPRT0_PWR;
1521 			writel(hprt0, hsotg->regs + HPRT0);
1522 			break;
1523 
1524 		case USB_PORT_FEAT_INDICATOR:
1525 			dev_dbg(hsotg->dev,
1526 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
1527 			/* Port indicator not supported */
1528 			break;
1529 
1530 		case USB_PORT_FEAT_C_CONNECTION:
1531 			/*
1532 			 * Clears driver's internal Connect Status Change flag
1533 			 */
1534 			dev_dbg(hsotg->dev,
1535 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
1536 			hsotg->flags.b.port_connect_status_change = 0;
1537 			break;
1538 
1539 		case USB_PORT_FEAT_C_RESET:
1540 			/* Clears driver's internal Port Reset Change flag */
1541 			dev_dbg(hsotg->dev,
1542 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
1543 			hsotg->flags.b.port_reset_change = 0;
1544 			break;
1545 
1546 		case USB_PORT_FEAT_C_ENABLE:
1547 			/*
1548 			 * Clears the driver's internal Port Enable/Disable
1549 			 * Change flag
1550 			 */
1551 			dev_dbg(hsotg->dev,
1552 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
1553 			hsotg->flags.b.port_enable_change = 0;
1554 			break;
1555 
1556 		case USB_PORT_FEAT_C_SUSPEND:
1557 			/*
1558 			 * Clears the driver's internal Port Suspend Change
1559 			 * flag, which is set when resume signaling on the host
1560 			 * port is complete
1561 			 */
1562 			dev_dbg(hsotg->dev,
1563 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
1564 			hsotg->flags.b.port_suspend_change = 0;
1565 			break;
1566 
1567 		case USB_PORT_FEAT_C_PORT_L1:
1568 			dev_dbg(hsotg->dev,
1569 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
1570 			hsotg->flags.b.port_l1_change = 0;
1571 			break;
1572 
1573 		case USB_PORT_FEAT_C_OVER_CURRENT:
1574 			dev_dbg(hsotg->dev,
1575 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
1576 			hsotg->flags.b.port_over_current_change = 0;
1577 			break;
1578 
1579 		default:
1580 			retval = -EINVAL;
1581 			dev_err(hsotg->dev,
1582 				"ClearPortFeature request %1xh unknown or unsupported\n",
1583 				wvalue);
1584 		}
1585 		break;
1586 
1587 	case GetHubDescriptor:
1588 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
1589 		hub_desc = (struct usb_hub_descriptor *)buf;
1590 		hub_desc->bDescLength = 9;
1591 		hub_desc->bDescriptorType = 0x29;
1592 		hub_desc->bNbrPorts = 1;
1593 		hub_desc->wHubCharacteristics = cpu_to_le16(0x08);
1594 		hub_desc->bPwrOn2PwrGood = 1;
1595 		hub_desc->bHubContrCurrent = 0;
1596 		hub_desc->u.hs.DeviceRemovable[0] = 0;
1597 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
1598 		break;
1599 
1600 	case GetHubStatus:
1601 		dev_dbg(hsotg->dev, "GetHubStatus\n");
1602 		memset(buf, 0, 4);
1603 		break;
1604 
1605 	case GetPortStatus:
1606 		dev_vdbg(hsotg->dev,
1607 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
1608 			 hsotg->flags.d32);
1609 		if (!windex || windex > 1)
1610 			goto error;
1611 
1612 		port_status = 0;
1613 		if (hsotg->flags.b.port_connect_status_change)
1614 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
1615 		if (hsotg->flags.b.port_enable_change)
1616 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
1617 		if (hsotg->flags.b.port_suspend_change)
1618 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
1619 		if (hsotg->flags.b.port_l1_change)
1620 			port_status |= USB_PORT_STAT_C_L1 << 16;
1621 		if (hsotg->flags.b.port_reset_change)
1622 			port_status |= USB_PORT_STAT_C_RESET << 16;
1623 		if (hsotg->flags.b.port_over_current_change) {
1624 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
1625 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1626 		}
1627 
1628 		if (!hsotg->flags.b.port_connect_status) {
1629 			/*
1630 			 * The port is disconnected, which means the core is
1631 			 * either in device mode or it soon will be. Just
1632 			 * return 0's for the remainder of the port status
1633 			 * since the port register can't be read if the core
1634 			 * is in device mode.
1635 			 */
1636 			*(__le32 *)buf = cpu_to_le32(port_status);
1637 			break;
1638 		}
1639 
1640 		hprt0 = readl(hsotg->regs + HPRT0);
1641 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
1642 
1643 		if (hprt0 & HPRT0_CONNSTS)
1644 			port_status |= USB_PORT_STAT_CONNECTION;
1645 		if (hprt0 & HPRT0_ENA)
1646 			port_status |= USB_PORT_STAT_ENABLE;
1647 		if (hprt0 & HPRT0_SUSP)
1648 			port_status |= USB_PORT_STAT_SUSPEND;
1649 		if (hprt0 & HPRT0_OVRCURRACT)
1650 			port_status |= USB_PORT_STAT_OVERCURRENT;
1651 		if (hprt0 & HPRT0_RST)
1652 			port_status |= USB_PORT_STAT_RESET;
1653 		if (hprt0 & HPRT0_PWR)
1654 			port_status |= USB_PORT_STAT_POWER;
1655 
1656 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1657 		if (speed == HPRT0_SPD_HIGH_SPEED)
1658 			port_status |= USB_PORT_STAT_HIGH_SPEED;
1659 		else if (speed == HPRT0_SPD_LOW_SPEED)
1660 			port_status |= USB_PORT_STAT_LOW_SPEED;
1661 
1662 		if (hprt0 & HPRT0_TSTCTL_MASK)
1663 			port_status |= USB_PORT_STAT_TEST;
1664 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
1665 
1666 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
1667 		*(__le32 *)buf = cpu_to_le32(port_status);
1668 		break;
1669 
1670 	case SetHubFeature:
1671 		dev_dbg(hsotg->dev, "SetHubFeature\n");
1672 		/* No HUB features supported */
1673 		break;
1674 
1675 	case SetPortFeature:
1676 		dev_dbg(hsotg->dev, "SetPortFeature\n");
1677 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
1678 			goto error;
1679 
1680 		if (!hsotg->flags.b.port_connect_status) {
1681 			/*
1682 			 * The port is disconnected, which means the core is
1683 			 * either in device mode or it soon will be. Just
1684 			 * return without doing anything since the port
1685 			 * register can't be written if the core is in device
1686 			 * mode.
1687 			 */
1688 			break;
1689 		}
1690 
1691 		switch (wvalue) {
1692 		case USB_PORT_FEAT_SUSPEND:
1693 			dev_dbg(hsotg->dev,
1694 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
1695 			if (windex != hsotg->otg_port)
1696 				goto error;
1697 			dwc2_port_suspend(hsotg, windex);
1698 			break;
1699 
1700 		case USB_PORT_FEAT_POWER:
1701 			dev_dbg(hsotg->dev,
1702 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
1703 			hprt0 = dwc2_read_hprt0(hsotg);
1704 			hprt0 |= HPRT0_PWR;
1705 			writel(hprt0, hsotg->regs + HPRT0);
1706 			break;
1707 
1708 		case USB_PORT_FEAT_RESET:
1709 			hprt0 = dwc2_read_hprt0(hsotg);
1710 			dev_dbg(hsotg->dev,
1711 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
1712 			pcgctl = readl(hsotg->regs + PCGCTL);
1713 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
1714 			writel(pcgctl, hsotg->regs + PCGCTL);
1715 			/* ??? Original driver does this */
1716 			writel(0, hsotg->regs + PCGCTL);
1717 
1718 			hprt0 = dwc2_read_hprt0(hsotg);
1719 			/* Clear suspend bit if resetting from suspend state */
1720 			hprt0 &= ~HPRT0_SUSP;
1721 
1722 			/*
1723 			 * When B-Host the Port reset bit is set in the Start
1724 			 * HCD Callback function, so that the reset is started
1725 			 * within 1ms of the HNP success interrupt
1726 			 */
1727 			if (!dwc2_hcd_is_b_host(hsotg)) {
1728 				hprt0 |= HPRT0_PWR | HPRT0_RST;
1729 				dev_dbg(hsotg->dev,
1730 					"In host mode, hprt0=%08x\n", hprt0);
1731 				writel(hprt0, hsotg->regs + HPRT0);
1732 			}
1733 
1734 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
1735 			usleep_range(50000, 70000);
1736 			hprt0 &= ~HPRT0_RST;
1737 			writel(hprt0, hsotg->regs + HPRT0);
1738 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
1739 			break;
1740 
1741 		case USB_PORT_FEAT_INDICATOR:
1742 			dev_dbg(hsotg->dev,
1743 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
1744 			/* Not supported */
1745 			break;
1746 
1747 		default:
1748 			retval = -EINVAL;
1749 			dev_err(hsotg->dev,
1750 				"SetPortFeature %1xh unknown or unsupported\n",
1751 				wvalue);
1752 			break;
1753 		}
1754 		break;
1755 
1756 	default:
1757 error:
1758 		retval = -EINVAL;
1759 		dev_dbg(hsotg->dev,
1760 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
1761 			typereq, windex, wvalue);
1762 		break;
1763 	}
1764 
1765 	return retval;
1766 }
1767 
1768 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
1769 {
1770 	int retval;
1771 
1772 	if (port != 1)
1773 		return -EINVAL;
1774 
1775 	retval = (hsotg->flags.b.port_connect_status_change ||
1776 		  hsotg->flags.b.port_reset_change ||
1777 		  hsotg->flags.b.port_enable_change ||
1778 		  hsotg->flags.b.port_suspend_change ||
1779 		  hsotg->flags.b.port_over_current_change);
1780 
1781 	if (retval) {
1782 		dev_dbg(hsotg->dev,
1783 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
1784 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
1785 			hsotg->flags.b.port_connect_status_change);
1786 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
1787 			hsotg->flags.b.port_reset_change);
1788 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
1789 			hsotg->flags.b.port_enable_change);
1790 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
1791 			hsotg->flags.b.port_suspend_change);
1792 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
1793 			hsotg->flags.b.port_over_current_change);
1794 	}
1795 
1796 	return retval;
1797 }
1798 
1799 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1800 {
1801 	u32 hfnum = readl(hsotg->regs + HFNUM);
1802 
1803 #ifdef DWC2_DEBUG_SOF
1804 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
1805 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
1806 #endif
1807 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
1808 }
1809 
1810 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
1811 {
1812 	return hsotg->op_state == OTG_STATE_B_HOST;
1813 }
1814 
1815 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
1816 					       int iso_desc_count,
1817 					       gfp_t mem_flags)
1818 {
1819 	struct dwc2_hcd_urb *urb;
1820 	u32 size = sizeof(*urb) + iso_desc_count *
1821 		   sizeof(struct dwc2_hcd_iso_packet_desc);
1822 
1823 	urb = kzalloc(size, mem_flags);
1824 	if (urb)
1825 		urb->packet_count = iso_desc_count;
1826 	return urb;
1827 }
1828 
1829 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
1830 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
1831 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
1832 {
1833 	if (dbg_perio() ||
1834 	    ep_type == USB_ENDPOINT_XFER_BULK ||
1835 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
1836 		dev_vdbg(hsotg->dev,
1837 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
1838 			 dev_addr, ep_num, ep_dir, ep_type, mps);
1839 	urb->pipe_info.dev_addr = dev_addr;
1840 	urb->pipe_info.ep_num = ep_num;
1841 	urb->pipe_info.pipe_type = ep_type;
1842 	urb->pipe_info.pipe_dir = ep_dir;
1843 	urb->pipe_info.mps = mps;
1844 }
1845 
1846 /*
1847  * NOTE: This function will be removed once the peripheral controller code
1848  * is integrated and the driver is stable
1849  */
1850 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
1851 {
1852 #ifdef DEBUG
1853 	struct dwc2_host_chan *chan;
1854 	struct dwc2_hcd_urb *urb;
1855 	struct dwc2_qtd *qtd;
1856 	int num_channels;
1857 	u32 np_tx_status;
1858 	u32 p_tx_status;
1859 	int i;
1860 
1861 	num_channels = hsotg->core_params->host_channels;
1862 	dev_dbg(hsotg->dev, "\n");
1863 	dev_dbg(hsotg->dev,
1864 		"************************************************************\n");
1865 	dev_dbg(hsotg->dev, "HCD State:\n");
1866 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
1867 
1868 	for (i = 0; i < num_channels; i++) {
1869 		chan = hsotg->hc_ptr_array[i];
1870 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
1871 		dev_dbg(hsotg->dev,
1872 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
1873 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
1874 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
1875 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
1876 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
1877 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
1878 			chan->data_pid_start);
1879 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
1880 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
1881 			chan->xfer_started);
1882 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
1883 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
1884 			(unsigned long)chan->xfer_dma);
1885 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
1886 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
1887 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
1888 			chan->halt_on_queue);
1889 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
1890 			chan->halt_pending);
1891 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
1892 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
1893 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
1894 			chan->complete_split);
1895 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
1896 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
1897 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
1898 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
1899 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
1900 
1901 		if (chan->xfer_started) {
1902 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
1903 
1904 			hfnum = readl(hsotg->regs + HFNUM);
1905 			hcchar = readl(hsotg->regs + HCCHAR(i));
1906 			hctsiz = readl(hsotg->regs + HCTSIZ(i));
1907 			hcint = readl(hsotg->regs + HCINT(i));
1908 			hcintmsk = readl(hsotg->regs + HCINTMSK(i));
1909 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
1910 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
1911 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
1912 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
1913 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
1914 		}
1915 
1916 		if (!(chan->xfer_started && chan->qh))
1917 			continue;
1918 
1919 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
1920 			if (!qtd->in_process)
1921 				break;
1922 			urb = qtd->urb;
1923 			dev_dbg(hsotg->dev, "    URB Info:\n");
1924 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
1925 				qtd, urb);
1926 			if (urb) {
1927 				dev_dbg(hsotg->dev,
1928 					"      Dev: %d, EP: %d %s\n",
1929 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
1930 					dwc2_hcd_get_ep_num(&urb->pipe_info),
1931 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
1932 					"IN" : "OUT");
1933 				dev_dbg(hsotg->dev,
1934 					"      Max packet size: %d\n",
1935 					dwc2_hcd_get_mps(&urb->pipe_info));
1936 				dev_dbg(hsotg->dev,
1937 					"      transfer_buffer: %p\n",
1938 					urb->buf);
1939 				dev_dbg(hsotg->dev,
1940 					"      transfer_dma: %08lx\n",
1941 					(unsigned long)urb->dma);
1942 				dev_dbg(hsotg->dev,
1943 					"      transfer_buffer_length: %d\n",
1944 					urb->length);
1945 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
1946 					urb->actual_length);
1947 			}
1948 		}
1949 	}
1950 
1951 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
1952 		hsotg->non_periodic_channels);
1953 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
1954 		hsotg->periodic_channels);
1955 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
1956 	np_tx_status = readl(hsotg->regs + GNPTXSTS);
1957 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
1958 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
1959 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
1960 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
1961 	p_tx_status = readl(hsotg->regs + HPTXSTS);
1962 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
1963 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
1964 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
1965 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
1966 	dwc2_hcd_dump_frrem(hsotg);
1967 	dwc2_dump_global_registers(hsotg);
1968 	dwc2_dump_host_registers(hsotg);
1969 	dev_dbg(hsotg->dev,
1970 		"************************************************************\n");
1971 	dev_dbg(hsotg->dev, "\n");
1972 #endif
1973 }
1974 
1975 /*
1976  * NOTE: This function will be removed once the peripheral controller code
1977  * is integrated and the driver is stable
1978  */
1979 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
1980 {
1981 #ifdef DWC2_DUMP_FRREM
1982 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
1983 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1984 		hsotg->frrem_samples, hsotg->frrem_accum,
1985 		hsotg->frrem_samples > 0 ?
1986 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
1987 	dev_dbg(hsotg->dev, "\n");
1988 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
1989 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1990 		hsotg->hfnum_7_samples,
1991 		hsotg->hfnum_7_frrem_accum,
1992 		hsotg->hfnum_7_samples > 0 ?
1993 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
1994 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
1995 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
1996 		hsotg->hfnum_0_samples,
1997 		hsotg->hfnum_0_frrem_accum,
1998 		hsotg->hfnum_0_samples > 0 ?
1999 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
2000 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
2001 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2002 		hsotg->hfnum_other_samples,
2003 		hsotg->hfnum_other_frrem_accum,
2004 		hsotg->hfnum_other_samples > 0 ?
2005 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
2006 		0);
2007 	dev_dbg(hsotg->dev, "\n");
2008 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
2009 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2010 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
2011 		hsotg->hfnum_7_samples_a > 0 ?
2012 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
2013 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
2014 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2015 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
2016 		hsotg->hfnum_0_samples_a > 0 ?
2017 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
2018 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
2019 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2020 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
2021 		hsotg->hfnum_other_samples_a > 0 ?
2022 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
2023 		: 0);
2024 	dev_dbg(hsotg->dev, "\n");
2025 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
2026 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2027 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
2028 		hsotg->hfnum_7_samples_b > 0 ?
2029 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
2030 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
2031 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2032 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
2033 		(hsotg->hfnum_0_samples_b > 0) ?
2034 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
2035 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
2036 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2037 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
2038 		(hsotg->hfnum_other_samples_b > 0) ?
2039 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
2040 		: 0);
2041 #endif
2042 }
2043 
2044 struct wrapper_priv_data {
2045 	struct dwc2_hsotg *hsotg;
2046 };
2047 
2048 /* Gets the dwc2_hsotg from a usb_hcd */
2049 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
2050 {
2051 	struct wrapper_priv_data *p;
2052 
2053 	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
2054 	return p->hsotg;
2055 }
2056 
2057 static int _dwc2_hcd_start(struct usb_hcd *hcd);
2058 
2059 void dwc2_host_start(struct dwc2_hsotg *hsotg)
2060 {
2061 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2062 
2063 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
2064 	_dwc2_hcd_start(hcd);
2065 }
2066 
2067 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
2068 {
2069 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2070 
2071 	hcd->self.is_b_host = 0;
2072 }
2073 
2074 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
2075 			int *hub_port)
2076 {
2077 	struct urb *urb = context;
2078 
2079 	if (urb->dev->tt)
2080 		*hub_addr = urb->dev->tt->hub->devnum;
2081 	else
2082 		*hub_addr = 0;
2083 	*hub_port = urb->dev->ttport;
2084 }
2085 
2086 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
2087 {
2088 	struct urb *urb = context;
2089 
2090 	return urb->dev->speed;
2091 }
2092 
2093 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2094 					struct urb *urb)
2095 {
2096 	struct usb_bus *bus = hcd_to_bus(hcd);
2097 
2098 	if (urb->interval)
2099 		bus->bandwidth_allocated += bw / urb->interval;
2100 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2101 		bus->bandwidth_isoc_reqs++;
2102 	else
2103 		bus->bandwidth_int_reqs++;
2104 }
2105 
2106 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2107 				    struct urb *urb)
2108 {
2109 	struct usb_bus *bus = hcd_to_bus(hcd);
2110 
2111 	if (urb->interval)
2112 		bus->bandwidth_allocated -= bw / urb->interval;
2113 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2114 		bus->bandwidth_isoc_reqs--;
2115 	else
2116 		bus->bandwidth_int_reqs--;
2117 }
2118 
2119 /*
2120  * Sets the final status of an URB and returns it to the upper layer. Any
2121  * required cleanup of the URB is performed.
2122  *
2123  * Must be called with interrupt disabled and spinlock held
2124  */
2125 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2126 			int status)
2127 {
2128 	struct urb *urb;
2129 	int i;
2130 
2131 	if (!qtd) {
2132 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
2133 		return;
2134 	}
2135 
2136 	if (!qtd->urb) {
2137 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
2138 		return;
2139 	}
2140 
2141 	urb = qtd->urb->priv;
2142 	if (!urb) {
2143 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
2144 		return;
2145 	}
2146 
2147 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
2148 
2149 	if (dbg_urb(urb))
2150 		dev_vdbg(hsotg->dev,
2151 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
2152 			 __func__, urb, usb_pipedevice(urb->pipe),
2153 			 usb_pipeendpoint(urb->pipe),
2154 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
2155 			 urb->actual_length);
2156 
2157 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
2158 		for (i = 0; i < urb->number_of_packets; i++)
2159 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
2160 				 i, urb->iso_frame_desc[i].status);
2161 	}
2162 
2163 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2164 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
2165 		for (i = 0; i < urb->number_of_packets; ++i) {
2166 			urb->iso_frame_desc[i].actual_length =
2167 				dwc2_hcd_urb_get_iso_desc_actual_length(
2168 						qtd->urb, i);
2169 			urb->iso_frame_desc[i].status =
2170 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
2171 		}
2172 	}
2173 
2174 	urb->status = status;
2175 	if (!status) {
2176 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
2177 		    urb->actual_length < urb->transfer_buffer_length)
2178 			urb->status = -EREMOTEIO;
2179 	}
2180 
2181 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2182 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2183 		struct usb_host_endpoint *ep = urb->ep;
2184 
2185 		if (ep)
2186 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
2187 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2188 					urb);
2189 	}
2190 
2191 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
2192 	urb->hcpriv = NULL;
2193 	kfree(qtd->urb);
2194 	qtd->urb = NULL;
2195 
2196 	spin_unlock(&hsotg->lock);
2197 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
2198 	spin_lock(&hsotg->lock);
2199 }
2200 
2201 /*
2202  * Work queue function for starting the HCD when A-Cable is connected
2203  */
2204 static void dwc2_hcd_start_func(struct work_struct *work)
2205 {
2206 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2207 						start_work.work);
2208 
2209 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
2210 	dwc2_host_start(hsotg);
2211 }
2212 
2213 /*
2214  * Reset work queue function
2215  */
2216 static void dwc2_hcd_reset_func(struct work_struct *work)
2217 {
2218 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2219 						reset_work.work);
2220 	u32 hprt0;
2221 
2222 	dev_dbg(hsotg->dev, "USB RESET function called\n");
2223 	hprt0 = dwc2_read_hprt0(hsotg);
2224 	hprt0 &= ~HPRT0_RST;
2225 	writel(hprt0, hsotg->regs + HPRT0);
2226 	hsotg->flags.b.port_reset_change = 1;
2227 }
2228 
2229 /*
2230  * =========================================================================
2231  *  Linux HC Driver Functions
2232  * =========================================================================
2233  */
2234 
2235 /*
2236  * Initializes the DWC_otg controller and its root hub and prepares it for host
2237  * mode operation. Activates the root port. Returns 0 on success and a negative
2238  * error code on failure.
2239  */
2240 static int _dwc2_hcd_start(struct usb_hcd *hcd)
2241 {
2242 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2243 	struct usb_bus *bus = hcd_to_bus(hcd);
2244 	unsigned long flags;
2245 
2246 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
2247 
2248 	spin_lock_irqsave(&hsotg->lock, flags);
2249 
2250 	hcd->state = HC_STATE_RUNNING;
2251 
2252 	if (dwc2_is_device_mode(hsotg)) {
2253 		spin_unlock_irqrestore(&hsotg->lock, flags);
2254 		return 0;	/* why 0 ?? */
2255 	}
2256 
2257 	dwc2_hcd_reinit(hsotg);
2258 
2259 	/* Initialize and connect root hub if one is not already attached */
2260 	if (bus->root_hub) {
2261 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
2262 		/* Inform the HUB driver to resume */
2263 		usb_hcd_resume_root_hub(hcd);
2264 	}
2265 
2266 	spin_unlock_irqrestore(&hsotg->lock, flags);
2267 	return 0;
2268 }
2269 
2270 /*
2271  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
2272  * stopped.
2273  */
2274 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
2275 {
2276 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2277 	unsigned long flags;
2278 
2279 	spin_lock_irqsave(&hsotg->lock, flags);
2280 	dwc2_hcd_stop(hsotg);
2281 	spin_unlock_irqrestore(&hsotg->lock, flags);
2282 
2283 	usleep_range(1000, 3000);
2284 }
2285 
2286 /* Returns the current frame number */
2287 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
2288 {
2289 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2290 
2291 	return dwc2_hcd_get_frame_number(hsotg);
2292 }
2293 
2294 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
2295 			       char *fn_name)
2296 {
2297 #ifdef VERBOSE_DEBUG
2298 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2299 	char *pipetype;
2300 	char *speed;
2301 
2302 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
2303 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
2304 		 usb_pipedevice(urb->pipe));
2305 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
2306 		 usb_pipeendpoint(urb->pipe),
2307 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
2308 
2309 	switch (usb_pipetype(urb->pipe)) {
2310 	case PIPE_CONTROL:
2311 		pipetype = "CONTROL";
2312 		break;
2313 	case PIPE_BULK:
2314 		pipetype = "BULK";
2315 		break;
2316 	case PIPE_INTERRUPT:
2317 		pipetype = "INTERRUPT";
2318 		break;
2319 	case PIPE_ISOCHRONOUS:
2320 		pipetype = "ISOCHRONOUS";
2321 		break;
2322 	default:
2323 		pipetype = "UNKNOWN";
2324 		break;
2325 	}
2326 
2327 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
2328 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
2329 		 "IN" : "OUT");
2330 
2331 	switch (urb->dev->speed) {
2332 	case USB_SPEED_HIGH:
2333 		speed = "HIGH";
2334 		break;
2335 	case USB_SPEED_FULL:
2336 		speed = "FULL";
2337 		break;
2338 	case USB_SPEED_LOW:
2339 		speed = "LOW";
2340 		break;
2341 	default:
2342 		speed = "UNKNOWN";
2343 		break;
2344 	}
2345 
2346 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
2347 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
2348 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
2349 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
2350 		 urb->transfer_buffer_length);
2351 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
2352 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
2353 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
2354 		 urb->setup_packet, (unsigned long)urb->setup_dma);
2355 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
2356 
2357 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2358 		int i;
2359 
2360 		for (i = 0; i < urb->number_of_packets; i++) {
2361 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
2362 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
2363 				 urb->iso_frame_desc[i].offset,
2364 				 urb->iso_frame_desc[i].length);
2365 		}
2366 	}
2367 #endif
2368 }
2369 
2370 /*
2371  * Starts processing a USB transfer request specified by a USB Request Block
2372  * (URB). mem_flags indicates the type of memory allocation to use while
2373  * processing this URB.
2374  */
2375 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2376 				 gfp_t mem_flags)
2377 {
2378 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2379 	struct usb_host_endpoint *ep = urb->ep;
2380 	struct dwc2_hcd_urb *dwc2_urb;
2381 	int i;
2382 	int retval;
2383 	int alloc_bandwidth = 0;
2384 	u8 ep_type = 0;
2385 	u32 tflags = 0;
2386 	void *buf;
2387 	unsigned long flags;
2388 
2389 	if (dbg_urb(urb)) {
2390 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
2391 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
2392 	}
2393 
2394 	if (ep == NULL)
2395 		return -EINVAL;
2396 
2397 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2398 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2399 		spin_lock_irqsave(&hsotg->lock, flags);
2400 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
2401 			alloc_bandwidth = 1;
2402 		spin_unlock_irqrestore(&hsotg->lock, flags);
2403 	}
2404 
2405 	switch (usb_pipetype(urb->pipe)) {
2406 	case PIPE_CONTROL:
2407 		ep_type = USB_ENDPOINT_XFER_CONTROL;
2408 		break;
2409 	case PIPE_ISOCHRONOUS:
2410 		ep_type = USB_ENDPOINT_XFER_ISOC;
2411 		break;
2412 	case PIPE_BULK:
2413 		ep_type = USB_ENDPOINT_XFER_BULK;
2414 		break;
2415 	case PIPE_INTERRUPT:
2416 		ep_type = USB_ENDPOINT_XFER_INT;
2417 		break;
2418 	default:
2419 		dev_warn(hsotg->dev, "Wrong ep type\n");
2420 	}
2421 
2422 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
2423 				      mem_flags);
2424 	if (!dwc2_urb)
2425 		return -ENOMEM;
2426 
2427 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
2428 				  usb_pipeendpoint(urb->pipe), ep_type,
2429 				  usb_pipein(urb->pipe),
2430 				  usb_maxpacket(urb->dev, urb->pipe,
2431 						!(usb_pipein(urb->pipe))));
2432 
2433 	buf = urb->transfer_buffer;
2434 
2435 	if (hcd->self.uses_dma) {
2436 		if (!buf && (urb->transfer_dma & 3)) {
2437 			dev_err(hsotg->dev,
2438 				"%s: unaligned transfer with no transfer_buffer",
2439 				__func__);
2440 			retval = -EINVAL;
2441 			goto fail1;
2442 		}
2443 	}
2444 
2445 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
2446 		tflags |= URB_GIVEBACK_ASAP;
2447 	if (urb->transfer_flags & URB_ZERO_PACKET)
2448 		tflags |= URB_SEND_ZERO_PACKET;
2449 
2450 	dwc2_urb->priv = urb;
2451 	dwc2_urb->buf = buf;
2452 	dwc2_urb->dma = urb->transfer_dma;
2453 	dwc2_urb->length = urb->transfer_buffer_length;
2454 	dwc2_urb->setup_packet = urb->setup_packet;
2455 	dwc2_urb->setup_dma = urb->setup_dma;
2456 	dwc2_urb->flags = tflags;
2457 	dwc2_urb->interval = urb->interval;
2458 	dwc2_urb->status = -EINPROGRESS;
2459 
2460 	for (i = 0; i < urb->number_of_packets; ++i)
2461 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
2462 						 urb->iso_frame_desc[i].offset,
2463 						 urb->iso_frame_desc[i].length);
2464 
2465 	urb->hcpriv = dwc2_urb;
2466 
2467 	spin_lock_irqsave(&hsotg->lock, flags);
2468 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
2469 	spin_unlock_irqrestore(&hsotg->lock, flags);
2470 	if (retval)
2471 		goto fail1;
2472 
2473 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, &ep->hcpriv, mem_flags);
2474 	if (retval)
2475 		goto fail2;
2476 
2477 	if (alloc_bandwidth) {
2478 		spin_lock_irqsave(&hsotg->lock, flags);
2479 		dwc2_allocate_bus_bandwidth(hcd,
2480 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2481 				urb);
2482 		spin_unlock_irqrestore(&hsotg->lock, flags);
2483 	}
2484 
2485 	return 0;
2486 
2487 fail2:
2488 	spin_lock_irqsave(&hsotg->lock, flags);
2489 	dwc2_urb->priv = NULL;
2490 	usb_hcd_unlink_urb_from_ep(hcd, urb);
2491 	spin_unlock_irqrestore(&hsotg->lock, flags);
2492 fail1:
2493 	urb->hcpriv = NULL;
2494 	kfree(dwc2_urb);
2495 
2496 	return retval;
2497 }
2498 
2499 /*
2500  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
2501  */
2502 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
2503 				 int status)
2504 {
2505 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2506 	int rc;
2507 	unsigned long flags;
2508 
2509 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
2510 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
2511 
2512 	spin_lock_irqsave(&hsotg->lock, flags);
2513 
2514 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
2515 	if (rc)
2516 		goto out;
2517 
2518 	if (!urb->hcpriv) {
2519 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
2520 		goto out;
2521 	}
2522 
2523 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
2524 
2525 	usb_hcd_unlink_urb_from_ep(hcd, urb);
2526 
2527 	kfree(urb->hcpriv);
2528 	urb->hcpriv = NULL;
2529 
2530 	/* Higher layer software sets URB status */
2531 	spin_unlock(&hsotg->lock);
2532 	usb_hcd_giveback_urb(hcd, urb, status);
2533 	spin_lock(&hsotg->lock);
2534 
2535 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
2536 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
2537 out:
2538 	spin_unlock_irqrestore(&hsotg->lock, flags);
2539 
2540 	return rc;
2541 }
2542 
2543 /*
2544  * Frees resources in the DWC_otg controller related to a given endpoint. Also
2545  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
2546  * must already be dequeued.
2547  */
2548 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
2549 				       struct usb_host_endpoint *ep)
2550 {
2551 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2552 
2553 	dev_dbg(hsotg->dev,
2554 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
2555 		ep->desc.bEndpointAddress, ep->hcpriv);
2556 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
2557 }
2558 
2559 /*
2560  * Resets endpoint specific parameter values, in current version used to reset
2561  * the data toggle (as a WA). This function can be called from usb_clear_halt
2562  * routine.
2563  */
2564 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
2565 				     struct usb_host_endpoint *ep)
2566 {
2567 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2568 	unsigned long flags;
2569 
2570 	dev_dbg(hsotg->dev,
2571 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
2572 		ep->desc.bEndpointAddress);
2573 
2574 	spin_lock_irqsave(&hsotg->lock, flags);
2575 	dwc2_hcd_endpoint_reset(hsotg, ep);
2576 	spin_unlock_irqrestore(&hsotg->lock, flags);
2577 }
2578 
2579 /*
2580  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
2581  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
2582  * interrupt.
2583  *
2584  * This function is called by the USB core when an interrupt occurs
2585  */
2586 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
2587 {
2588 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2589 
2590 	return dwc2_handle_hcd_intr(hsotg);
2591 }
2592 
2593 /*
2594  * Creates Status Change bitmap for the root hub and root port. The bitmap is
2595  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
2596  * is the status change indicator for the single root port. Returns 1 if either
2597  * change indicator is 1, otherwise returns 0.
2598  */
2599 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
2600 {
2601 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2602 
2603 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
2604 	return buf[0] != 0;
2605 }
2606 
2607 /* Handles hub class-specific requests */
2608 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
2609 				 u16 windex, char *buf, u16 wlength)
2610 {
2611 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
2612 					  wvalue, windex, buf, wlength);
2613 	return retval;
2614 }
2615 
2616 /* Handles hub TT buffer clear completions */
2617 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
2618 					       struct usb_host_endpoint *ep)
2619 {
2620 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2621 	struct dwc2_qh *qh;
2622 	unsigned long flags;
2623 
2624 	qh = ep->hcpriv;
2625 	if (!qh)
2626 		return;
2627 
2628 	spin_lock_irqsave(&hsotg->lock, flags);
2629 	qh->tt_buffer_dirty = 0;
2630 
2631 	if (hsotg->flags.b.port_connect_status)
2632 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
2633 
2634 	spin_unlock_irqrestore(&hsotg->lock, flags);
2635 }
2636 
2637 static struct hc_driver dwc2_hc_driver = {
2638 	.description = "dwc2_hsotg",
2639 	.product_desc = "DWC OTG Controller",
2640 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
2641 
2642 	.irq = _dwc2_hcd_irq,
2643 	.flags = HCD_MEMORY | HCD_USB2,
2644 
2645 	.start = _dwc2_hcd_start,
2646 	.stop = _dwc2_hcd_stop,
2647 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
2648 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
2649 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
2650 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
2651 	.get_frame_number = _dwc2_hcd_get_frame_number,
2652 
2653 	.hub_status_data = _dwc2_hcd_hub_status_data,
2654 	.hub_control = _dwc2_hcd_hub_control,
2655 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
2656 };
2657 
2658 /*
2659  * Frees secondary storage associated with the dwc2_hsotg structure contained
2660  * in the struct usb_hcd field
2661  */
2662 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
2663 {
2664 	u32 ahbcfg;
2665 	u32 dctl;
2666 	int i;
2667 
2668 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
2669 
2670 	/* Free memory for QH/QTD lists */
2671 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
2672 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
2673 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
2674 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
2675 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
2676 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
2677 
2678 	/* Free memory for the host channels */
2679 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
2680 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
2681 
2682 		if (chan != NULL) {
2683 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
2684 				i, chan);
2685 			hsotg->hc_ptr_array[i] = NULL;
2686 			kfree(chan);
2687 		}
2688 	}
2689 
2690 	if (hsotg->core_params->dma_enable > 0) {
2691 		if (hsotg->status_buf) {
2692 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
2693 					  hsotg->status_buf,
2694 					  hsotg->status_buf_dma);
2695 			hsotg->status_buf = NULL;
2696 		}
2697 	} else {
2698 		kfree(hsotg->status_buf);
2699 		hsotg->status_buf = NULL;
2700 	}
2701 
2702 	ahbcfg = readl(hsotg->regs + GAHBCFG);
2703 
2704 	/* Disable all interrupts */
2705 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
2706 	writel(ahbcfg, hsotg->regs + GAHBCFG);
2707 	writel(0, hsotg->regs + GINTMSK);
2708 
2709 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
2710 		dctl = readl(hsotg->regs + DCTL);
2711 		dctl |= DCTL_SFTDISCON;
2712 		writel(dctl, hsotg->regs + DCTL);
2713 	}
2714 
2715 	if (hsotg->wq_otg) {
2716 		if (!cancel_work_sync(&hsotg->wf_otg))
2717 			flush_workqueue(hsotg->wq_otg);
2718 		destroy_workqueue(hsotg->wq_otg);
2719 	}
2720 
2721 	kfree(hsotg->core_params);
2722 	hsotg->core_params = NULL;
2723 	del_timer(&hsotg->wkp_timer);
2724 }
2725 
2726 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
2727 {
2728 	/* Turn off all host-specific interrupts */
2729 	dwc2_disable_host_interrupts(hsotg);
2730 
2731 	dwc2_hcd_free(hsotg);
2732 }
2733 
2734 /*
2735  * Sets all parameters to the given value.
2736  *
2737  * Assumes that the dwc2_core_params struct contains only integers.
2738  */
2739 void dwc2_set_all_params(struct dwc2_core_params *params, int value)
2740 {
2741 	int *p = (int *)params;
2742 	size_t size = sizeof(*params) / sizeof(*p);
2743 	int i;
2744 
2745 	for (i = 0; i < size; i++)
2746 		p[i] = value;
2747 }
2748 EXPORT_SYMBOL_GPL(dwc2_set_all_params);
2749 
2750 /*
2751  * Initializes the HCD. This function allocates memory for and initializes the
2752  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
2753  * USB bus with the core and calls the hc_driver->start() function. It returns
2754  * a negative error on failure.
2755  */
2756 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
2757 		  const struct dwc2_core_params *params)
2758 {
2759 	struct usb_hcd *hcd;
2760 	struct dwc2_host_chan *channel;
2761 	u32 hcfg;
2762 	int i, num_channels;
2763 	int retval;
2764 
2765 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
2766 
2767 	/* Detect config values from hardware */
2768 	retval = dwc2_get_hwparams(hsotg);
2769 
2770 	if (retval)
2771 		return retval;
2772 
2773 	retval = -ENOMEM;
2774 
2775 	hcfg = readl(hsotg->regs + HCFG);
2776 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
2777 
2778 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2779 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
2780 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
2781 	if (!hsotg->frame_num_array)
2782 		goto error1;
2783 	hsotg->last_frame_num_array = kzalloc(
2784 			sizeof(*hsotg->last_frame_num_array) *
2785 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
2786 	if (!hsotg->last_frame_num_array)
2787 		goto error1;
2788 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
2789 #endif
2790 
2791 	hsotg->core_params = kzalloc(sizeof(*hsotg->core_params), GFP_KERNEL);
2792 	if (!hsotg->core_params)
2793 		goto error1;
2794 
2795 	dwc2_set_all_params(hsotg->core_params, -1);
2796 
2797 	/* Validate parameter values */
2798 	dwc2_set_parameters(hsotg, params);
2799 
2800 	/* Check if the bus driver or platform code has setup a dma_mask */
2801 	if (hsotg->core_params->dma_enable > 0 &&
2802 	    hsotg->dev->dma_mask == NULL) {
2803 		dev_warn(hsotg->dev,
2804 			 "dma_mask not set, disabling DMA\n");
2805 		hsotg->core_params->dma_enable = 0;
2806 		hsotg->core_params->dma_desc_enable = 0;
2807 	}
2808 
2809 	/* Set device flags indicating whether the HCD supports DMA */
2810 	if (hsotg->core_params->dma_enable > 0) {
2811 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
2812 			dev_warn(hsotg->dev, "can't set DMA mask\n");
2813 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
2814 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
2815 	}
2816 
2817 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
2818 	if (!hcd)
2819 		goto error1;
2820 
2821 	if (hsotg->core_params->dma_enable <= 0)
2822 		hcd->self.uses_dma = 0;
2823 
2824 	hcd->has_tt = 1;
2825 
2826 	spin_lock_init(&hsotg->lock);
2827 	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
2828 	hsotg->priv = hcd;
2829 
2830 	/*
2831 	 * Disable the global interrupt until all the interrupt handlers are
2832 	 * installed
2833 	 */
2834 	dwc2_disable_global_interrupts(hsotg);
2835 
2836 	/* Initialize the DWC_otg core, and select the Phy type */
2837 	retval = dwc2_core_init(hsotg, true, irq);
2838 	if (retval)
2839 		goto error2;
2840 
2841 	/* Create new workqueue and init work */
2842 	retval = -ENOMEM;
2843 	hsotg->wq_otg = create_singlethread_workqueue("dwc2");
2844 	if (!hsotg->wq_otg) {
2845 		dev_err(hsotg->dev, "Failed to create workqueue\n");
2846 		goto error2;
2847 	}
2848 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
2849 
2850 	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
2851 		    (unsigned long)hsotg);
2852 
2853 	/* Initialize the non-periodic schedule */
2854 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
2855 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
2856 
2857 	/* Initialize the periodic schedule */
2858 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
2859 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
2860 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
2861 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
2862 
2863 	/*
2864 	 * Create a host channel descriptor for each host channel implemented
2865 	 * in the controller. Initialize the channel descriptor array.
2866 	 */
2867 	INIT_LIST_HEAD(&hsotg->free_hc_list);
2868 	num_channels = hsotg->core_params->host_channels;
2869 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
2870 
2871 	for (i = 0; i < num_channels; i++) {
2872 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
2873 		if (channel == NULL)
2874 			goto error3;
2875 		channel->hc_num = i;
2876 		hsotg->hc_ptr_array[i] = channel;
2877 	}
2878 
2879 	if (hsotg->core_params->uframe_sched > 0)
2880 		dwc2_hcd_init_usecs(hsotg);
2881 
2882 	/* Initialize hsotg start work */
2883 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
2884 
2885 	/* Initialize port reset work */
2886 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
2887 
2888 	/*
2889 	 * Allocate space for storing data on status transactions. Normally no
2890 	 * data is sent, but this space acts as a bit bucket. This must be
2891 	 * done after usb_add_hcd since that function allocates the DMA buffer
2892 	 * pool.
2893 	 */
2894 	if (hsotg->core_params->dma_enable > 0)
2895 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
2896 					DWC2_HCD_STATUS_BUF_SIZE,
2897 					&hsotg->status_buf_dma, GFP_KERNEL);
2898 	else
2899 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
2900 					  GFP_KERNEL);
2901 
2902 	if (!hsotg->status_buf)
2903 		goto error3;
2904 
2905 	hsotg->otg_port = 1;
2906 	hsotg->frame_list = NULL;
2907 	hsotg->frame_list_dma = 0;
2908 	hsotg->periodic_qh_count = 0;
2909 
2910 	/* Initiate lx_state to L3 disconnected state */
2911 	hsotg->lx_state = DWC2_L3;
2912 
2913 	hcd->self.otg_port = hsotg->otg_port;
2914 
2915 	/* Don't support SG list at this point */
2916 	hcd->self.sg_tablesize = 0;
2917 
2918 	/*
2919 	 * Finish generic HCD initialization and start the HCD. This function
2920 	 * allocates the DMA buffer pool, registers the USB bus, requests the
2921 	 * IRQ line, and calls hcd_start method.
2922 	 */
2923 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
2924 	if (retval < 0)
2925 		goto error3;
2926 
2927 	device_wakeup_enable(hcd->self.controller);
2928 
2929 	dwc2_hcd_dump_state(hsotg);
2930 
2931 	dwc2_enable_global_interrupts(hsotg);
2932 
2933 	return 0;
2934 
2935 error3:
2936 	dwc2_hcd_release(hsotg);
2937 error2:
2938 	usb_put_hcd(hcd);
2939 error1:
2940 	kfree(hsotg->core_params);
2941 
2942 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2943 	kfree(hsotg->last_frame_num_array);
2944 	kfree(hsotg->frame_num_array);
2945 #endif
2946 
2947 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
2948 	return retval;
2949 }
2950 EXPORT_SYMBOL_GPL(dwc2_hcd_init);
2951 
2952 /*
2953  * Removes the HCD.
2954  * Frees memory and resources associated with the HCD and deregisters the bus.
2955  */
2956 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
2957 {
2958 	struct usb_hcd *hcd;
2959 
2960 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
2961 
2962 	hcd = dwc2_hsotg_to_hcd(hsotg);
2963 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
2964 
2965 	if (!hcd) {
2966 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
2967 			__func__);
2968 		return;
2969 	}
2970 
2971 	usb_remove_hcd(hcd);
2972 	hsotg->priv = NULL;
2973 	dwc2_hcd_release(hsotg);
2974 	usb_put_hcd(hcd);
2975 
2976 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2977 	kfree(hsotg->last_frame_num_array);
2978 	kfree(hsotg->frame_num_array);
2979 #endif
2980 }
2981 EXPORT_SYMBOL_GPL(dwc2_hcd_remove);
2982