1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * hcd.c - DesignWare HS OTG Controller host-mode routines 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The names of the above-listed copyright holders may not be used 17 * to endorse or promote products derived from this software without 18 * specific prior written permission. 19 * 20 * ALTERNATIVELY, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") as published by the Free Software 22 * Foundation; either version 2 of the License, or (at your option) any 23 * later version. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * This file contains the core HCD code, and implements the Linux hc_driver 40 * API 41 */ 42 #include <linux/kernel.h> 43 #include <linux/module.h> 44 #include <linux/spinlock.h> 45 #include <linux/interrupt.h> 46 #include <linux/platform_device.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/delay.h> 49 #include <linux/io.h> 50 #include <linux/slab.h> 51 #include <linux/usb.h> 52 53 #include <linux/usb/hcd.h> 54 #include <linux/usb/ch11.h> 55 56 #include "core.h" 57 #include "hcd.h" 58 59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg); 60 61 /* 62 * ========================================================================= 63 * Host Core Layer Functions 64 * ========================================================================= 65 */ 66 67 /** 68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts, 69 * used in both device and host modes 70 * 71 * @hsotg: Programming view of the DWC_otg controller 72 */ 73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg) 74 { 75 u32 intmsk; 76 77 /* Clear any pending OTG Interrupts */ 78 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 79 80 /* Clear any pending interrupts */ 81 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 82 83 /* Enable the interrupts in the GINTMSK */ 84 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT; 85 86 if (!hsotg->params.host_dma) 87 intmsk |= GINTSTS_RXFLVL; 88 if (!hsotg->params.external_id_pin_ctl) 89 intmsk |= GINTSTS_CONIDSTSCHNG; 90 91 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP | 92 GINTSTS_SESSREQINT; 93 94 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm) 95 intmsk |= GINTSTS_LPMTRANRCVD; 96 97 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 98 } 99 100 /* 101 * Initializes the FSLSPClkSel field of the HCFG register depending on the 102 * PHY type 103 */ 104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg) 105 { 106 u32 hcfg, val; 107 108 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 109 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 110 hsotg->params.ulpi_fs_ls) || 111 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 112 /* Full speed PHY */ 113 val = HCFG_FSLSPCLKSEL_48_MHZ; 114 } else { 115 /* High speed PHY running at full speed or high speed */ 116 val = HCFG_FSLSPCLKSEL_30_60_MHZ; 117 } 118 119 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val); 120 hcfg = dwc2_readl(hsotg->regs + HCFG); 121 hcfg &= ~HCFG_FSLSPCLKSEL_MASK; 122 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT; 123 dwc2_writel(hcfg, hsotg->regs + HCFG); 124 } 125 126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 127 { 128 u32 usbcfg, ggpio, i2cctl; 129 int retval = 0; 130 131 /* 132 * core_init() is now called on every switch so only call the 133 * following for the first time through 134 */ 135 if (select_phy) { 136 dev_dbg(hsotg->dev, "FS PHY selected\n"); 137 138 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 139 if (!(usbcfg & GUSBCFG_PHYSEL)) { 140 usbcfg |= GUSBCFG_PHYSEL; 141 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 142 143 /* Reset after a PHY select */ 144 retval = dwc2_core_reset(hsotg, false); 145 146 if (retval) { 147 dev_err(hsotg->dev, 148 "%s: Reset failed, aborting", __func__); 149 return retval; 150 } 151 } 152 153 if (hsotg->params.activate_stm_fs_transceiver) { 154 ggpio = dwc2_readl(hsotg->regs + GGPIO); 155 if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) { 156 dev_dbg(hsotg->dev, "Activating transceiver\n"); 157 /* 158 * STM32F4x9 uses the GGPIO register as general 159 * core configuration register. 160 */ 161 ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN; 162 dwc2_writel(ggpio, hsotg->regs + GGPIO); 163 } 164 } 165 } 166 167 /* 168 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also 169 * do this on HNP Dev/Host mode switches (done in dev_init and 170 * host_init). 171 */ 172 if (dwc2_is_host_mode(hsotg)) 173 dwc2_init_fs_ls_pclk_sel(hsotg); 174 175 if (hsotg->params.i2c_enable) { 176 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n"); 177 178 /* Program GUSBCFG.OtgUtmiFsSel to I2C */ 179 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 180 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL; 181 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 182 183 /* Program GI2CCTL.I2CEn */ 184 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL); 185 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK; 186 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT; 187 i2cctl &= ~GI2CCTL_I2CEN; 188 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL); 189 i2cctl |= GI2CCTL_I2CEN; 190 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL); 191 } 192 193 return retval; 194 } 195 196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 197 { 198 u32 usbcfg, usbcfg_old; 199 int retval = 0; 200 201 if (!select_phy) 202 return 0; 203 204 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 205 usbcfg_old = usbcfg; 206 207 /* 208 * HS PHY parameters. These parameters are preserved during soft reset 209 * so only program the first time. Do a soft reset immediately after 210 * setting phyif. 211 */ 212 switch (hsotg->params.phy_type) { 213 case DWC2_PHY_TYPE_PARAM_ULPI: 214 /* ULPI interface */ 215 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n"); 216 usbcfg |= GUSBCFG_ULPI_UTMI_SEL; 217 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL); 218 if (hsotg->params.phy_ulpi_ddr) 219 usbcfg |= GUSBCFG_DDRSEL; 220 221 /* Set external VBUS indicator as needed. */ 222 if (hsotg->params.oc_disable) 223 usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND | 224 GUSBCFG_INDICATORPASSTHROUGH); 225 break; 226 case DWC2_PHY_TYPE_PARAM_UTMI: 227 /* UTMI+ interface */ 228 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n"); 229 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16); 230 if (hsotg->params.phy_utmi_width == 16) 231 usbcfg |= GUSBCFG_PHYIF16; 232 break; 233 default: 234 dev_err(hsotg->dev, "FS PHY selected at HS!\n"); 235 break; 236 } 237 238 if (usbcfg != usbcfg_old) { 239 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 240 241 /* Reset after setting the PHY parameters */ 242 retval = dwc2_core_reset(hsotg, false); 243 if (retval) { 244 dev_err(hsotg->dev, 245 "%s: Reset failed, aborting", __func__); 246 return retval; 247 } 248 } 249 250 return retval; 251 } 252 253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 254 { 255 u32 usbcfg; 256 int retval = 0; 257 258 if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 259 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) && 260 hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) { 261 /* If FS/LS mode with FS/LS PHY */ 262 retval = dwc2_fs_phy_init(hsotg, select_phy); 263 if (retval) 264 return retval; 265 } else { 266 /* High speed PHY */ 267 retval = dwc2_hs_phy_init(hsotg, select_phy); 268 if (retval) 269 return retval; 270 } 271 272 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 273 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 274 hsotg->params.ulpi_fs_ls) { 275 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n"); 276 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 277 usbcfg |= GUSBCFG_ULPI_FS_LS; 278 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M; 279 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 280 } else { 281 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 282 usbcfg &= ~GUSBCFG_ULPI_FS_LS; 283 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M; 284 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 285 } 286 287 return retval; 288 } 289 290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg) 291 { 292 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); 293 294 switch (hsotg->hw_params.arch) { 295 case GHWCFG2_EXT_DMA_ARCH: 296 dev_err(hsotg->dev, "External DMA Mode not supported\n"); 297 return -EINVAL; 298 299 case GHWCFG2_INT_DMA_ARCH: 300 dev_dbg(hsotg->dev, "Internal DMA Mode\n"); 301 if (hsotg->params.ahbcfg != -1) { 302 ahbcfg &= GAHBCFG_CTRL_MASK; 303 ahbcfg |= hsotg->params.ahbcfg & 304 ~GAHBCFG_CTRL_MASK; 305 } 306 break; 307 308 case GHWCFG2_SLAVE_ONLY_ARCH: 309 default: 310 dev_dbg(hsotg->dev, "Slave Only Mode\n"); 311 break; 312 } 313 314 if (hsotg->params.host_dma) 315 ahbcfg |= GAHBCFG_DMA_EN; 316 else 317 hsotg->params.dma_desc_enable = false; 318 319 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); 320 321 return 0; 322 } 323 324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg) 325 { 326 u32 usbcfg; 327 328 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 329 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP); 330 331 switch (hsotg->hw_params.op_mode) { 332 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: 333 if (hsotg->params.otg_cap == 334 DWC2_CAP_PARAM_HNP_SRP_CAPABLE) 335 usbcfg |= GUSBCFG_HNPCAP; 336 if (hsotg->params.otg_cap != 337 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 338 usbcfg |= GUSBCFG_SRPCAP; 339 break; 340 341 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: 342 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: 343 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: 344 if (hsotg->params.otg_cap != 345 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 346 usbcfg |= GUSBCFG_SRPCAP; 347 break; 348 349 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE: 350 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE: 351 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST: 352 default: 353 break; 354 } 355 356 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 357 } 358 359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg) 360 { 361 int ret; 362 363 hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus"); 364 if (IS_ERR(hsotg->vbus_supply)) { 365 ret = PTR_ERR(hsotg->vbus_supply); 366 hsotg->vbus_supply = NULL; 367 return ret == -ENODEV ? 0 : ret; 368 } 369 370 return regulator_enable(hsotg->vbus_supply); 371 } 372 373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg) 374 { 375 if (hsotg->vbus_supply) 376 return regulator_disable(hsotg->vbus_supply); 377 378 return 0; 379 } 380 381 /** 382 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts 383 * 384 * @hsotg: Programming view of DWC_otg controller 385 */ 386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg) 387 { 388 u32 intmsk; 389 390 dev_dbg(hsotg->dev, "%s()\n", __func__); 391 392 /* Disable all interrupts */ 393 dwc2_writel(0, hsotg->regs + GINTMSK); 394 dwc2_writel(0, hsotg->regs + HAINTMSK); 395 396 /* Enable the common interrupts */ 397 dwc2_enable_common_interrupts(hsotg); 398 399 /* Enable host mode interrupts without disturbing common interrupts */ 400 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 401 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT; 402 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 403 } 404 405 /** 406 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts 407 * 408 * @hsotg: Programming view of DWC_otg controller 409 */ 410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg) 411 { 412 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 413 414 /* Disable host mode interrupts without disturbing common interrupts */ 415 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT | 416 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT); 417 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 418 } 419 420 /* 421 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size 422 * For system that have a total fifo depth that is smaller than the default 423 * RX + TX fifo size. 424 * 425 * @hsotg: Programming view of DWC_otg controller 426 */ 427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg) 428 { 429 struct dwc2_core_params *params = &hsotg->params; 430 struct dwc2_hw_params *hw = &hsotg->hw_params; 431 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size; 432 433 total_fifo_size = hw->total_fifo_size; 434 rxfsiz = params->host_rx_fifo_size; 435 nptxfsiz = params->host_nperio_tx_fifo_size; 436 ptxfsiz = params->host_perio_tx_fifo_size; 437 438 /* 439 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth 440 * allocation with support for high bandwidth endpoints. Synopsys 441 * defines MPS(Max Packet size) for a periodic EP=1024, and for 442 * non-periodic as 512. 443 */ 444 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) { 445 /* 446 * For Buffer DMA mode/Scatter Gather DMA mode 447 * 2 * ((Largest Packet size / 4) + 1 + 1) + n 448 * with n = number of host channel. 449 * 2 * ((1024/4) + 2) = 516 450 */ 451 rxfsiz = 516 + hw->host_channels; 452 453 /* 454 * min non-periodic tx fifo depth 455 * 2 * (largest non-periodic USB packet used / 4) 456 * 2 * (512/4) = 256 457 */ 458 nptxfsiz = 256; 459 460 /* 461 * min periodic tx fifo depth 462 * (largest packet size*MC)/4 463 * (1024 * 3)/4 = 768 464 */ 465 ptxfsiz = 768; 466 467 params->host_rx_fifo_size = rxfsiz; 468 params->host_nperio_tx_fifo_size = nptxfsiz; 469 params->host_perio_tx_fifo_size = ptxfsiz; 470 } 471 472 /* 473 * If the summation of RX, NPTX and PTX fifo sizes is still 474 * bigger than the total_fifo_size, then we have a problem. 475 * 476 * We won't be able to allocate as many endpoints. Right now, 477 * we're just printing an error message, but ideally this FIFO 478 * allocation algorithm would be improved in the future. 479 * 480 * FIXME improve this FIFO allocation algorithm. 481 */ 482 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz))) 483 dev_err(hsotg->dev, "invalid fifo sizes\n"); 484 } 485 486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg) 487 { 488 struct dwc2_core_params *params = &hsotg->params; 489 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz; 490 491 if (!params->enable_dynamic_fifo) 492 return; 493 494 dwc2_calculate_dynamic_fifo(hsotg); 495 496 /* Rx FIFO */ 497 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ); 498 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz); 499 grxfsiz &= ~GRXFSIZ_DEPTH_MASK; 500 grxfsiz |= params->host_rx_fifo_size << 501 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK; 502 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ); 503 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", 504 dwc2_readl(hsotg->regs + GRXFSIZ)); 505 506 /* Non-periodic Tx FIFO */ 507 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n", 508 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 509 nptxfsiz = params->host_nperio_tx_fifo_size << 510 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 511 nptxfsiz |= params->host_rx_fifo_size << 512 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 513 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ); 514 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n", 515 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 516 517 /* Periodic Tx FIFO */ 518 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n", 519 dwc2_readl(hsotg->regs + HPTXFSIZ)); 520 hptxfsiz = params->host_perio_tx_fifo_size << 521 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 522 hptxfsiz |= (params->host_rx_fifo_size + 523 params->host_nperio_tx_fifo_size) << 524 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 525 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ); 526 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n", 527 dwc2_readl(hsotg->regs + HPTXFSIZ)); 528 529 if (hsotg->params.en_multiple_tx_fifo && 530 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) { 531 /* 532 * This feature was implemented in 2.91a version 533 * Global DFIFOCFG calculation for Host mode - 534 * include RxFIFO, NPTXFIFO and HPTXFIFO 535 */ 536 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG); 537 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK; 538 dfifocfg |= (params->host_rx_fifo_size + 539 params->host_nperio_tx_fifo_size + 540 params->host_perio_tx_fifo_size) << 541 GDFIFOCFG_EPINFOBASE_SHIFT & 542 GDFIFOCFG_EPINFOBASE_MASK; 543 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG); 544 } 545 } 546 547 /** 548 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for 549 * the HFIR register according to PHY type and speed 550 * 551 * @hsotg: Programming view of DWC_otg controller 552 * 553 * NOTE: The caller can modify the value of the HFIR register only after the 554 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort) 555 * has been set 556 */ 557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg) 558 { 559 u32 usbcfg; 560 u32 hprt0; 561 int clock = 60; /* default value */ 562 563 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 564 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 565 566 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) && 567 !(usbcfg & GUSBCFG_PHYIF16)) 568 clock = 60; 569 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type == 570 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI) 571 clock = 48; 572 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 573 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 574 clock = 30; 575 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 576 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16)) 577 clock = 60; 578 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 579 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 580 clock = 48; 581 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) && 582 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI) 583 clock = 48; 584 if ((usbcfg & GUSBCFG_PHYSEL) && 585 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) 586 clock = 48; 587 588 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED) 589 /* High speed case */ 590 return 125 * clock - 1; 591 592 /* FS/LS case */ 593 return 1000 * clock - 1; 594 } 595 596 /** 597 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination 598 * buffer 599 * 600 * @hsotg: Programming view of DWC_otg controller 601 * @dest: Destination buffer for the packet 602 * @bytes: Number of bytes to copy to the destination 603 */ 604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes) 605 { 606 u32 __iomem *fifo = hsotg->regs + HCFIFO(0); 607 u32 *data_buf = (u32 *)dest; 608 int word_count = (bytes + 3) / 4; 609 int i; 610 611 /* 612 * Todo: Account for the case where dest is not dword aligned. This 613 * requires reading data from the FIFO into a u32 temp buffer, then 614 * moving it into the data buffer. 615 */ 616 617 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes); 618 619 for (i = 0; i < word_count; i++, data_buf++) 620 *data_buf = dwc2_readl(fifo); 621 } 622 623 /** 624 * dwc2_dump_channel_info() - Prints the state of a host channel 625 * 626 * @hsotg: Programming view of DWC_otg controller 627 * @chan: Pointer to the channel to dump 628 * 629 * Must be called with interrupt disabled and spinlock held 630 * 631 * NOTE: This function will be removed once the peripheral controller code 632 * is integrated and the driver is stable 633 */ 634 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg, 635 struct dwc2_host_chan *chan) 636 { 637 #ifdef VERBOSE_DEBUG 638 int num_channels = hsotg->params.host_channels; 639 struct dwc2_qh *qh; 640 u32 hcchar; 641 u32 hcsplt; 642 u32 hctsiz; 643 u32 hc_dma; 644 int i; 645 646 if (!chan) 647 return; 648 649 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 650 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); 651 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num)); 652 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num)); 653 654 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan); 655 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n", 656 hcchar, hcsplt); 657 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n", 658 hctsiz, hc_dma); 659 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 660 chan->dev_addr, chan->ep_num, chan->ep_is_in); 661 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 662 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 663 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); 664 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); 665 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 666 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 667 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 668 (unsigned long)chan->xfer_dma); 669 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 670 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 671 dev_dbg(hsotg->dev, " NP inactive sched:\n"); 672 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive, 673 qh_list_entry) 674 dev_dbg(hsotg->dev, " %p\n", qh); 675 dev_dbg(hsotg->dev, " NP waiting sched:\n"); 676 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting, 677 qh_list_entry) 678 dev_dbg(hsotg->dev, " %p\n", qh); 679 dev_dbg(hsotg->dev, " NP active sched:\n"); 680 list_for_each_entry(qh, &hsotg->non_periodic_sched_active, 681 qh_list_entry) 682 dev_dbg(hsotg->dev, " %p\n", qh); 683 dev_dbg(hsotg->dev, " Channels:\n"); 684 for (i = 0; i < num_channels; i++) { 685 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 686 687 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan); 688 } 689 #endif /* VERBOSE_DEBUG */ 690 } 691 692 static int _dwc2_hcd_start(struct usb_hcd *hcd); 693 694 static void dwc2_host_start(struct dwc2_hsotg *hsotg) 695 { 696 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 697 698 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg); 699 _dwc2_hcd_start(hcd); 700 } 701 702 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg) 703 { 704 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 705 706 hcd->self.is_b_host = 0; 707 } 708 709 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, 710 int *hub_addr, int *hub_port) 711 { 712 struct urb *urb = context; 713 714 if (urb->dev->tt) 715 *hub_addr = urb->dev->tt->hub->devnum; 716 else 717 *hub_addr = 0; 718 *hub_port = urb->dev->ttport; 719 } 720 721 /* 722 * ========================================================================= 723 * Low Level Host Channel Access Functions 724 * ========================================================================= 725 */ 726 727 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg, 728 struct dwc2_host_chan *chan) 729 { 730 u32 hcintmsk = HCINTMSK_CHHLTD; 731 732 switch (chan->ep_type) { 733 case USB_ENDPOINT_XFER_CONTROL: 734 case USB_ENDPOINT_XFER_BULK: 735 dev_vdbg(hsotg->dev, "control/bulk\n"); 736 hcintmsk |= HCINTMSK_XFERCOMPL; 737 hcintmsk |= HCINTMSK_STALL; 738 hcintmsk |= HCINTMSK_XACTERR; 739 hcintmsk |= HCINTMSK_DATATGLERR; 740 if (chan->ep_is_in) { 741 hcintmsk |= HCINTMSK_BBLERR; 742 } else { 743 hcintmsk |= HCINTMSK_NAK; 744 hcintmsk |= HCINTMSK_NYET; 745 if (chan->do_ping) 746 hcintmsk |= HCINTMSK_ACK; 747 } 748 749 if (chan->do_split) { 750 hcintmsk |= HCINTMSK_NAK; 751 if (chan->complete_split) 752 hcintmsk |= HCINTMSK_NYET; 753 else 754 hcintmsk |= HCINTMSK_ACK; 755 } 756 757 if (chan->error_state) 758 hcintmsk |= HCINTMSK_ACK; 759 break; 760 761 case USB_ENDPOINT_XFER_INT: 762 if (dbg_perio()) 763 dev_vdbg(hsotg->dev, "intr\n"); 764 hcintmsk |= HCINTMSK_XFERCOMPL; 765 hcintmsk |= HCINTMSK_NAK; 766 hcintmsk |= HCINTMSK_STALL; 767 hcintmsk |= HCINTMSK_XACTERR; 768 hcintmsk |= HCINTMSK_DATATGLERR; 769 hcintmsk |= HCINTMSK_FRMOVRUN; 770 771 if (chan->ep_is_in) 772 hcintmsk |= HCINTMSK_BBLERR; 773 if (chan->error_state) 774 hcintmsk |= HCINTMSK_ACK; 775 if (chan->do_split) { 776 if (chan->complete_split) 777 hcintmsk |= HCINTMSK_NYET; 778 else 779 hcintmsk |= HCINTMSK_ACK; 780 } 781 break; 782 783 case USB_ENDPOINT_XFER_ISOC: 784 if (dbg_perio()) 785 dev_vdbg(hsotg->dev, "isoc\n"); 786 hcintmsk |= HCINTMSK_XFERCOMPL; 787 hcintmsk |= HCINTMSK_FRMOVRUN; 788 hcintmsk |= HCINTMSK_ACK; 789 790 if (chan->ep_is_in) { 791 hcintmsk |= HCINTMSK_XACTERR; 792 hcintmsk |= HCINTMSK_BBLERR; 793 } 794 break; 795 default: 796 dev_err(hsotg->dev, "## Unknown EP type ##\n"); 797 break; 798 } 799 800 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 801 if (dbg_hc(chan)) 802 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 803 } 804 805 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg, 806 struct dwc2_host_chan *chan) 807 { 808 u32 hcintmsk = HCINTMSK_CHHLTD; 809 810 /* 811 * For Descriptor DMA mode core halts the channel on AHB error. 812 * Interrupt is not required. 813 */ 814 if (!hsotg->params.dma_desc_enable) { 815 if (dbg_hc(chan)) 816 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 817 hcintmsk |= HCINTMSK_AHBERR; 818 } else { 819 if (dbg_hc(chan)) 820 dev_vdbg(hsotg->dev, "desc DMA enabled\n"); 821 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 822 hcintmsk |= HCINTMSK_XFERCOMPL; 823 } 824 825 if (chan->error_state && !chan->do_split && 826 chan->ep_type != USB_ENDPOINT_XFER_ISOC) { 827 if (dbg_hc(chan)) 828 dev_vdbg(hsotg->dev, "setting ACK\n"); 829 hcintmsk |= HCINTMSK_ACK; 830 if (chan->ep_is_in) { 831 hcintmsk |= HCINTMSK_DATATGLERR; 832 if (chan->ep_type != USB_ENDPOINT_XFER_INT) 833 hcintmsk |= HCINTMSK_NAK; 834 } 835 } 836 837 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 838 if (dbg_hc(chan)) 839 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 840 } 841 842 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg, 843 struct dwc2_host_chan *chan) 844 { 845 u32 intmsk; 846 847 if (hsotg->params.host_dma) { 848 if (dbg_hc(chan)) 849 dev_vdbg(hsotg->dev, "DMA enabled\n"); 850 dwc2_hc_enable_dma_ints(hsotg, chan); 851 } else { 852 if (dbg_hc(chan)) 853 dev_vdbg(hsotg->dev, "DMA disabled\n"); 854 dwc2_hc_enable_slave_ints(hsotg, chan); 855 } 856 857 /* Enable the top level host channel interrupt */ 858 intmsk = dwc2_readl(hsotg->regs + HAINTMSK); 859 intmsk |= 1 << chan->hc_num; 860 dwc2_writel(intmsk, hsotg->regs + HAINTMSK); 861 if (dbg_hc(chan)) 862 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk); 863 864 /* Make sure host channel interrupts are enabled */ 865 intmsk = dwc2_readl(hsotg->regs + GINTMSK); 866 intmsk |= GINTSTS_HCHINT; 867 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 868 if (dbg_hc(chan)) 869 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk); 870 } 871 872 /** 873 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from 874 * a specific endpoint 875 * 876 * @hsotg: Programming view of DWC_otg controller 877 * @chan: Information needed to initialize the host channel 878 * 879 * The HCCHARn register is set up with the characteristics specified in chan. 880 * Host channel interrupts that may need to be serviced while this transfer is 881 * in progress are enabled. 882 */ 883 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 884 { 885 u8 hc_num = chan->hc_num; 886 u32 hcintmsk; 887 u32 hcchar; 888 u32 hcsplt = 0; 889 890 if (dbg_hc(chan)) 891 dev_vdbg(hsotg->dev, "%s()\n", __func__); 892 893 /* Clear old interrupt conditions for this host channel */ 894 hcintmsk = 0xffffffff; 895 hcintmsk &= ~HCINTMSK_RESERVED14_31; 896 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num)); 897 898 /* Enable channel interrupts required for this transfer */ 899 dwc2_hc_enable_ints(hsotg, chan); 900 901 /* 902 * Program the HCCHARn register with the endpoint characteristics for 903 * the current transfer 904 */ 905 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK; 906 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK; 907 if (chan->ep_is_in) 908 hcchar |= HCCHAR_EPDIR; 909 if (chan->speed == USB_SPEED_LOW) 910 hcchar |= HCCHAR_LSPDDEV; 911 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK; 912 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK; 913 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num)); 914 if (dbg_hc(chan)) { 915 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n", 916 hc_num, hcchar); 917 918 dev_vdbg(hsotg->dev, "%s: Channel %d\n", 919 __func__, hc_num); 920 dev_vdbg(hsotg->dev, " Dev Addr: %d\n", 921 chan->dev_addr); 922 dev_vdbg(hsotg->dev, " Ep Num: %d\n", 923 chan->ep_num); 924 dev_vdbg(hsotg->dev, " Is In: %d\n", 925 chan->ep_is_in); 926 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n", 927 chan->speed == USB_SPEED_LOW); 928 dev_vdbg(hsotg->dev, " Ep Type: %d\n", 929 chan->ep_type); 930 dev_vdbg(hsotg->dev, " Max Pkt: %d\n", 931 chan->max_packet); 932 } 933 934 /* Program the HCSPLT register for SPLITs */ 935 if (chan->do_split) { 936 if (dbg_hc(chan)) 937 dev_vdbg(hsotg->dev, 938 "Programming HC %d with split --> %s\n", 939 hc_num, 940 chan->complete_split ? "CSPLIT" : "SSPLIT"); 941 if (chan->complete_split) 942 hcsplt |= HCSPLT_COMPSPLT; 943 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT & 944 HCSPLT_XACTPOS_MASK; 945 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT & 946 HCSPLT_HUBADDR_MASK; 947 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT & 948 HCSPLT_PRTADDR_MASK; 949 if (dbg_hc(chan)) { 950 dev_vdbg(hsotg->dev, " comp split %d\n", 951 chan->complete_split); 952 dev_vdbg(hsotg->dev, " xact pos %d\n", 953 chan->xact_pos); 954 dev_vdbg(hsotg->dev, " hub addr %d\n", 955 chan->hub_addr); 956 dev_vdbg(hsotg->dev, " hub port %d\n", 957 chan->hub_port); 958 dev_vdbg(hsotg->dev, " is_in %d\n", 959 chan->ep_is_in); 960 dev_vdbg(hsotg->dev, " Max Pkt %d\n", 961 chan->max_packet); 962 dev_vdbg(hsotg->dev, " xferlen %d\n", 963 chan->xfer_len); 964 } 965 } 966 967 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num)); 968 } 969 970 /** 971 * dwc2_hc_halt() - Attempts to halt a host channel 972 * 973 * @hsotg: Controller register interface 974 * @chan: Host channel to halt 975 * @halt_status: Reason for halting the channel 976 * 977 * This function should only be called in Slave mode or to abort a transfer in 978 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the 979 * controller halts the channel when the transfer is complete or a condition 980 * occurs that requires application intervention. 981 * 982 * In slave mode, checks for a free request queue entry, then sets the Channel 983 * Enable and Channel Disable bits of the Host Channel Characteristics 984 * register of the specified channel to intiate the halt. If there is no free 985 * request queue entry, sets only the Channel Disable bit of the HCCHARn 986 * register to flush requests for this channel. In the latter case, sets a 987 * flag to indicate that the host channel needs to be halted when a request 988 * queue slot is open. 989 * 990 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the 991 * HCCHARn register. The controller ensures there is space in the request 992 * queue before submitting the halt request. 993 * 994 * Some time may elapse before the core flushes any posted requests for this 995 * host channel and halts. The Channel Halted interrupt handler completes the 996 * deactivation of the host channel. 997 */ 998 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, 999 enum dwc2_halt_status halt_status) 1000 { 1001 u32 nptxsts, hptxsts, hcchar; 1002 1003 if (dbg_hc(chan)) 1004 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1005 1006 /* 1007 * In buffer DMA or external DMA mode channel can't be halted 1008 * for non-split periodic channels. At the end of the next 1009 * uframe/frame (in the worst case), the core generates a channel 1010 * halted and disables the channel automatically. 1011 */ 1012 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) || 1013 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) { 1014 if (!chan->do_split && 1015 (chan->ep_type == USB_ENDPOINT_XFER_ISOC || 1016 chan->ep_type == USB_ENDPOINT_XFER_INT)) { 1017 dev_err(hsotg->dev, "%s() Channel can't be halted\n", 1018 __func__); 1019 return; 1020 } 1021 } 1022 1023 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS) 1024 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status); 1025 1026 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE || 1027 halt_status == DWC2_HC_XFER_AHB_ERR) { 1028 /* 1029 * Disable all channel interrupts except Ch Halted. The QTD 1030 * and QH state associated with this transfer has been cleared 1031 * (in the case of URB_DEQUEUE), so the channel needs to be 1032 * shut down carefully to prevent crashes. 1033 */ 1034 u32 hcintmsk = HCINTMSK_CHHLTD; 1035 1036 dev_vdbg(hsotg->dev, "dequeue/error\n"); 1037 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 1038 1039 /* 1040 * Make sure no other interrupts besides halt are currently 1041 * pending. Handling another interrupt could cause a crash due 1042 * to the QTD and QH state. 1043 */ 1044 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 1045 1046 /* 1047 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR 1048 * even if the channel was already halted for some other 1049 * reason 1050 */ 1051 chan->halt_status = halt_status; 1052 1053 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1054 if (!(hcchar & HCCHAR_CHENA)) { 1055 /* 1056 * The channel is either already halted or it hasn't 1057 * started yet. In DMA mode, the transfer may halt if 1058 * it finishes normally or a condition occurs that 1059 * requires driver intervention. Don't want to halt 1060 * the channel again. In either Slave or DMA mode, 1061 * it's possible that the transfer has been assigned 1062 * to a channel, but not started yet when an URB is 1063 * dequeued. Don't want to halt a channel that hasn't 1064 * started yet. 1065 */ 1066 return; 1067 } 1068 } 1069 if (chan->halt_pending) { 1070 /* 1071 * A halt has already been issued for this channel. This might 1072 * happen when a transfer is aborted by a higher level in 1073 * the stack. 1074 */ 1075 dev_vdbg(hsotg->dev, 1076 "*** %s: Channel %d, chan->halt_pending already set ***\n", 1077 __func__, chan->hc_num); 1078 return; 1079 } 1080 1081 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1082 1083 /* No need to set the bit in DDMA for disabling the channel */ 1084 /* TODO check it everywhere channel is disabled */ 1085 if (!hsotg->params.dma_desc_enable) { 1086 if (dbg_hc(chan)) 1087 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 1088 hcchar |= HCCHAR_CHENA; 1089 } else { 1090 if (dbg_hc(chan)) 1091 dev_dbg(hsotg->dev, "desc DMA enabled\n"); 1092 } 1093 hcchar |= HCCHAR_CHDIS; 1094 1095 if (!hsotg->params.host_dma) { 1096 if (dbg_hc(chan)) 1097 dev_vdbg(hsotg->dev, "DMA not enabled\n"); 1098 hcchar |= HCCHAR_CHENA; 1099 1100 /* Check for space in the request queue to issue the halt */ 1101 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL || 1102 chan->ep_type == USB_ENDPOINT_XFER_BULK) { 1103 dev_vdbg(hsotg->dev, "control/bulk\n"); 1104 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 1105 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) { 1106 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1107 hcchar &= ~HCCHAR_CHENA; 1108 } 1109 } else { 1110 if (dbg_perio()) 1111 dev_vdbg(hsotg->dev, "isoc/intr\n"); 1112 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS); 1113 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 || 1114 hsotg->queuing_high_bandwidth) { 1115 if (dbg_perio()) 1116 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1117 hcchar &= ~HCCHAR_CHENA; 1118 } 1119 } 1120 } else { 1121 if (dbg_hc(chan)) 1122 dev_vdbg(hsotg->dev, "DMA enabled\n"); 1123 } 1124 1125 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1126 chan->halt_status = halt_status; 1127 1128 if (hcchar & HCCHAR_CHENA) { 1129 if (dbg_hc(chan)) 1130 dev_vdbg(hsotg->dev, "Channel enabled\n"); 1131 chan->halt_pending = 1; 1132 chan->halt_on_queue = 0; 1133 } else { 1134 if (dbg_hc(chan)) 1135 dev_vdbg(hsotg->dev, "Channel disabled\n"); 1136 chan->halt_on_queue = 1; 1137 } 1138 1139 if (dbg_hc(chan)) { 1140 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1141 chan->hc_num); 1142 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n", 1143 hcchar); 1144 dev_vdbg(hsotg->dev, " halt_pending: %d\n", 1145 chan->halt_pending); 1146 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n", 1147 chan->halt_on_queue); 1148 dev_vdbg(hsotg->dev, " halt_status: %d\n", 1149 chan->halt_status); 1150 } 1151 } 1152 1153 /** 1154 * dwc2_hc_cleanup() - Clears the transfer state for a host channel 1155 * 1156 * @hsotg: Programming view of DWC_otg controller 1157 * @chan: Identifies the host channel to clean up 1158 * 1159 * This function is normally called after a transfer is done and the host 1160 * channel is being released 1161 */ 1162 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 1163 { 1164 u32 hcintmsk; 1165 1166 chan->xfer_started = 0; 1167 1168 list_del_init(&chan->split_order_list_entry); 1169 1170 /* 1171 * Clear channel interrupt enables and any unhandled channel interrupt 1172 * conditions 1173 */ 1174 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num)); 1175 hcintmsk = 0xffffffff; 1176 hcintmsk &= ~HCINTMSK_RESERVED14_31; 1177 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 1178 } 1179 1180 /** 1181 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in 1182 * which frame a periodic transfer should occur 1183 * 1184 * @hsotg: Programming view of DWC_otg controller 1185 * @chan: Identifies the host channel to set up and its properties 1186 * @hcchar: Current value of the HCCHAR register for the specified host channel 1187 * 1188 * This function has no effect on non-periodic transfers 1189 */ 1190 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg, 1191 struct dwc2_host_chan *chan, u32 *hcchar) 1192 { 1193 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1194 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1195 int host_speed; 1196 int xfer_ns; 1197 int xfer_us; 1198 int bytes_in_fifo; 1199 u16 fifo_space; 1200 u16 frame_number; 1201 u16 wire_frame; 1202 1203 /* 1204 * Try to figure out if we're an even or odd frame. If we set 1205 * even and the current frame number is even the the transfer 1206 * will happen immediately. Similar if both are odd. If one is 1207 * even and the other is odd then the transfer will happen when 1208 * the frame number ticks. 1209 * 1210 * There's a bit of a balancing act to get this right. 1211 * Sometimes we may want to send data in the current frame (AK 1212 * right away). We might want to do this if the frame number 1213 * _just_ ticked, but we might also want to do this in order 1214 * to continue a split transaction that happened late in a 1215 * microframe (so we didn't know to queue the next transfer 1216 * until the frame number had ticked). The problem is that we 1217 * need a lot of knowledge to know if there's actually still 1218 * time to send things or if it would be better to wait until 1219 * the next frame. 1220 * 1221 * We can look at how much time is left in the current frame 1222 * and make a guess about whether we'll have time to transfer. 1223 * We'll do that. 1224 */ 1225 1226 /* Get speed host is running at */ 1227 host_speed = (chan->speed != USB_SPEED_HIGH && 1228 !chan->do_split) ? chan->speed : USB_SPEED_HIGH; 1229 1230 /* See how many bytes are in the periodic FIFO right now */ 1231 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) & 1232 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; 1233 bytes_in_fifo = sizeof(u32) * 1234 (hsotg->params.host_perio_tx_fifo_size - 1235 fifo_space); 1236 1237 /* 1238 * Roughly estimate bus time for everything in the periodic 1239 * queue + our new transfer. This is "rough" because we're 1240 * using a function that makes takes into account IN/OUT 1241 * and INT/ISO and we're just slamming in one value for all 1242 * transfers. This should be an over-estimate and that should 1243 * be OK, but we can probably tighten it. 1244 */ 1245 xfer_ns = usb_calc_bus_time(host_speed, false, false, 1246 chan->xfer_len + bytes_in_fifo); 1247 xfer_us = NS_TO_US(xfer_ns); 1248 1249 /* See what frame number we'll be at by the time we finish */ 1250 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us); 1251 1252 /* This is when we were scheduled to be on the wire */ 1253 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1); 1254 1255 /* 1256 * If we'd finish _after_ the frame we're scheduled in then 1257 * it's hopeless. Just schedule right away and hope for the 1258 * best. Note that it _might_ be wise to call back into the 1259 * scheduler to pick a better frame, but this is better than 1260 * nothing. 1261 */ 1262 if (dwc2_frame_num_gt(frame_number, wire_frame)) { 1263 dwc2_sch_vdbg(hsotg, 1264 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n", 1265 chan->qh, wire_frame, frame_number, 1266 dwc2_frame_num_dec(frame_number, 1267 wire_frame)); 1268 wire_frame = frame_number; 1269 1270 /* 1271 * We picked a different frame number; communicate this 1272 * back to the scheduler so it doesn't try to schedule 1273 * another in the same frame. 1274 * 1275 * Remember that next_active_frame is 1 before the wire 1276 * frame. 1277 */ 1278 chan->qh->next_active_frame = 1279 dwc2_frame_num_dec(frame_number, 1); 1280 } 1281 1282 if (wire_frame & 1) 1283 *hcchar |= HCCHAR_ODDFRM; 1284 else 1285 *hcchar &= ~HCCHAR_ODDFRM; 1286 } 1287 } 1288 1289 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan) 1290 { 1291 /* Set up the initial PID for the transfer */ 1292 if (chan->speed == USB_SPEED_HIGH) { 1293 if (chan->ep_is_in) { 1294 if (chan->multi_count == 1) 1295 chan->data_pid_start = DWC2_HC_PID_DATA0; 1296 else if (chan->multi_count == 2) 1297 chan->data_pid_start = DWC2_HC_PID_DATA1; 1298 else 1299 chan->data_pid_start = DWC2_HC_PID_DATA2; 1300 } else { 1301 if (chan->multi_count == 1) 1302 chan->data_pid_start = DWC2_HC_PID_DATA0; 1303 else 1304 chan->data_pid_start = DWC2_HC_PID_MDATA; 1305 } 1306 } else { 1307 chan->data_pid_start = DWC2_HC_PID_DATA0; 1308 } 1309 } 1310 1311 /** 1312 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with 1313 * the Host Channel 1314 * 1315 * @hsotg: Programming view of DWC_otg controller 1316 * @chan: Information needed to initialize the host channel 1317 * 1318 * This function should only be called in Slave mode. For a channel associated 1319 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel 1320 * associated with a periodic EP, the periodic Tx FIFO is written. 1321 * 1322 * Upon return the xfer_buf and xfer_count fields in chan are incremented by 1323 * the number of bytes written to the Tx FIFO. 1324 */ 1325 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg, 1326 struct dwc2_host_chan *chan) 1327 { 1328 u32 i; 1329 u32 remaining_count; 1330 u32 byte_count; 1331 u32 dword_count; 1332 u32 __iomem *data_fifo; 1333 u32 *data_buf = (u32 *)chan->xfer_buf; 1334 1335 if (dbg_hc(chan)) 1336 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1337 1338 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num)); 1339 1340 remaining_count = chan->xfer_len - chan->xfer_count; 1341 if (remaining_count > chan->max_packet) 1342 byte_count = chan->max_packet; 1343 else 1344 byte_count = remaining_count; 1345 1346 dword_count = (byte_count + 3) / 4; 1347 1348 if (((unsigned long)data_buf & 0x3) == 0) { 1349 /* xfer_buf is DWORD aligned */ 1350 for (i = 0; i < dword_count; i++, data_buf++) 1351 dwc2_writel(*data_buf, data_fifo); 1352 } else { 1353 /* xfer_buf is not DWORD aligned */ 1354 for (i = 0; i < dword_count; i++, data_buf++) { 1355 u32 data = data_buf[0] | data_buf[1] << 8 | 1356 data_buf[2] << 16 | data_buf[3] << 24; 1357 dwc2_writel(data, data_fifo); 1358 } 1359 } 1360 1361 chan->xfer_count += byte_count; 1362 chan->xfer_buf += byte_count; 1363 } 1364 1365 /** 1366 * dwc2_hc_do_ping() - Starts a PING transfer 1367 * 1368 * @hsotg: Programming view of DWC_otg controller 1369 * @chan: Information needed to initialize the host channel 1370 * 1371 * This function should only be called in Slave mode. The Do Ping bit is set in 1372 * the HCTSIZ register, then the channel is enabled. 1373 */ 1374 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, 1375 struct dwc2_host_chan *chan) 1376 { 1377 u32 hcchar; 1378 u32 hctsiz; 1379 1380 if (dbg_hc(chan)) 1381 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1382 chan->hc_num); 1383 1384 hctsiz = TSIZ_DOPNG; 1385 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT; 1386 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1387 1388 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1389 hcchar |= HCCHAR_CHENA; 1390 hcchar &= ~HCCHAR_CHDIS; 1391 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1392 } 1393 1394 /** 1395 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host 1396 * channel and starts the transfer 1397 * 1398 * @hsotg: Programming view of DWC_otg controller 1399 * @chan: Information needed to initialize the host channel. The xfer_len value 1400 * may be reduced to accommodate the max widths of the XferSize and 1401 * PktCnt fields in the HCTSIZn register. The multi_count value may be 1402 * changed to reflect the final xfer_len value. 1403 * 1404 * This function may be called in either Slave mode or DMA mode. In Slave mode, 1405 * the caller must ensure that there is sufficient space in the request queue 1406 * and Tx Data FIFO. 1407 * 1408 * For an OUT transfer in Slave mode, it loads a data packet into the 1409 * appropriate FIFO. If necessary, additional data packets are loaded in the 1410 * Host ISR. 1411 * 1412 * For an IN transfer in Slave mode, a data packet is requested. The data 1413 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, 1414 * additional data packets are requested in the Host ISR. 1415 * 1416 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ 1417 * register along with a packet count of 1 and the channel is enabled. This 1418 * causes a single PING transaction to occur. Other fields in HCTSIZ are 1419 * simply set to 0 since no data transfer occurs in this case. 1420 * 1421 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with 1422 * all the information required to perform the subsequent data transfer. In 1423 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the 1424 * controller performs the entire PING protocol, then starts the data 1425 * transfer. 1426 */ 1427 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg, 1428 struct dwc2_host_chan *chan) 1429 { 1430 u32 max_hc_xfer_size = hsotg->params.max_transfer_size; 1431 u16 max_hc_pkt_count = hsotg->params.max_packet_count; 1432 u32 hcchar; 1433 u32 hctsiz = 0; 1434 u16 num_packets; 1435 u32 ec_mc; 1436 1437 if (dbg_hc(chan)) 1438 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1439 1440 if (chan->do_ping) { 1441 if (!hsotg->params.host_dma) { 1442 if (dbg_hc(chan)) 1443 dev_vdbg(hsotg->dev, "ping, no DMA\n"); 1444 dwc2_hc_do_ping(hsotg, chan); 1445 chan->xfer_started = 1; 1446 return; 1447 } 1448 1449 if (dbg_hc(chan)) 1450 dev_vdbg(hsotg->dev, "ping, DMA\n"); 1451 1452 hctsiz |= TSIZ_DOPNG; 1453 } 1454 1455 if (chan->do_split) { 1456 if (dbg_hc(chan)) 1457 dev_vdbg(hsotg->dev, "split\n"); 1458 num_packets = 1; 1459 1460 if (chan->complete_split && !chan->ep_is_in) 1461 /* 1462 * For CSPLIT OUT Transfer, set the size to 0 so the 1463 * core doesn't expect any data written to the FIFO 1464 */ 1465 chan->xfer_len = 0; 1466 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet) 1467 chan->xfer_len = chan->max_packet; 1468 else if (!chan->ep_is_in && chan->xfer_len > 188) 1469 chan->xfer_len = 188; 1470 1471 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1472 TSIZ_XFERSIZE_MASK; 1473 1474 /* For split set ec_mc for immediate retries */ 1475 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1476 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1477 ec_mc = 3; 1478 else 1479 ec_mc = 1; 1480 } else { 1481 if (dbg_hc(chan)) 1482 dev_vdbg(hsotg->dev, "no split\n"); 1483 /* 1484 * Ensure that the transfer length and packet count will fit 1485 * in the widths allocated for them in the HCTSIZn register 1486 */ 1487 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1488 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1489 /* 1490 * Make sure the transfer size is no larger than one 1491 * (micro)frame's worth of data. (A check was done 1492 * when the periodic transfer was accepted to ensure 1493 * that a (micro)frame's worth of data can be 1494 * programmed into a channel.) 1495 */ 1496 u32 max_periodic_len = 1497 chan->multi_count * chan->max_packet; 1498 1499 if (chan->xfer_len > max_periodic_len) 1500 chan->xfer_len = max_periodic_len; 1501 } else if (chan->xfer_len > max_hc_xfer_size) { 1502 /* 1503 * Make sure that xfer_len is a multiple of max packet 1504 * size 1505 */ 1506 chan->xfer_len = 1507 max_hc_xfer_size - chan->max_packet + 1; 1508 } 1509 1510 if (chan->xfer_len > 0) { 1511 num_packets = (chan->xfer_len + chan->max_packet - 1) / 1512 chan->max_packet; 1513 if (num_packets > max_hc_pkt_count) { 1514 num_packets = max_hc_pkt_count; 1515 chan->xfer_len = num_packets * chan->max_packet; 1516 } 1517 } else { 1518 /* Need 1 packet for transfer length of 0 */ 1519 num_packets = 1; 1520 } 1521 1522 if (chan->ep_is_in) 1523 /* 1524 * Always program an integral # of max packets for IN 1525 * transfers 1526 */ 1527 chan->xfer_len = num_packets * chan->max_packet; 1528 1529 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1530 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1531 /* 1532 * Make sure that the multi_count field matches the 1533 * actual transfer length 1534 */ 1535 chan->multi_count = num_packets; 1536 1537 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1538 dwc2_set_pid_isoc(chan); 1539 1540 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1541 TSIZ_XFERSIZE_MASK; 1542 1543 /* The ec_mc gets the multi_count for non-split */ 1544 ec_mc = chan->multi_count; 1545 } 1546 1547 chan->start_pkt_count = num_packets; 1548 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK; 1549 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1550 TSIZ_SC_MC_PID_MASK; 1551 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1552 if (dbg_hc(chan)) { 1553 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n", 1554 hctsiz, chan->hc_num); 1555 1556 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1557 chan->hc_num); 1558 dev_vdbg(hsotg->dev, " Xfer Size: %d\n", 1559 (hctsiz & TSIZ_XFERSIZE_MASK) >> 1560 TSIZ_XFERSIZE_SHIFT); 1561 dev_vdbg(hsotg->dev, " Num Pkts: %d\n", 1562 (hctsiz & TSIZ_PKTCNT_MASK) >> 1563 TSIZ_PKTCNT_SHIFT); 1564 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1565 (hctsiz & TSIZ_SC_MC_PID_MASK) >> 1566 TSIZ_SC_MC_PID_SHIFT); 1567 } 1568 1569 if (hsotg->params.host_dma) { 1570 dma_addr_t dma_addr; 1571 1572 if (chan->align_buf) { 1573 if (dbg_hc(chan)) 1574 dev_vdbg(hsotg->dev, "align_buf\n"); 1575 dma_addr = chan->align_buf; 1576 } else { 1577 dma_addr = chan->xfer_dma; 1578 } 1579 dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num)); 1580 1581 if (dbg_hc(chan)) 1582 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n", 1583 (unsigned long)dma_addr, chan->hc_num); 1584 } 1585 1586 /* Start the split */ 1587 if (chan->do_split) { 1588 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num)); 1589 1590 hcsplt |= HCSPLT_SPLTENA; 1591 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num)); 1592 } 1593 1594 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1595 hcchar &= ~HCCHAR_MULTICNT_MASK; 1596 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK; 1597 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1598 1599 if (hcchar & HCCHAR_CHDIS) 1600 dev_warn(hsotg->dev, 1601 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1602 __func__, chan->hc_num, hcchar); 1603 1604 /* Set host channel enable after all other setup is complete */ 1605 hcchar |= HCCHAR_CHENA; 1606 hcchar &= ~HCCHAR_CHDIS; 1607 1608 if (dbg_hc(chan)) 1609 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1610 (hcchar & HCCHAR_MULTICNT_MASK) >> 1611 HCCHAR_MULTICNT_SHIFT); 1612 1613 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1614 if (dbg_hc(chan)) 1615 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1616 chan->hc_num); 1617 1618 chan->xfer_started = 1; 1619 chan->requests++; 1620 1621 if (!hsotg->params.host_dma && 1622 !chan->ep_is_in && chan->xfer_len > 0) 1623 /* Load OUT packet into the appropriate Tx FIFO */ 1624 dwc2_hc_write_packet(hsotg, chan); 1625 } 1626 1627 /** 1628 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a 1629 * host channel and starts the transfer in Descriptor DMA mode 1630 * 1631 * @hsotg: Programming view of DWC_otg controller 1632 * @chan: Information needed to initialize the host channel 1633 * 1634 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set. 1635 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field 1636 * with micro-frame bitmap. 1637 * 1638 * Initializes HCDMA register with descriptor list address and CTD value then 1639 * starts the transfer via enabling the channel. 1640 */ 1641 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, 1642 struct dwc2_host_chan *chan) 1643 { 1644 u32 hcchar; 1645 u32 hctsiz = 0; 1646 1647 if (chan->do_ping) 1648 hctsiz |= TSIZ_DOPNG; 1649 1650 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1651 dwc2_set_pid_isoc(chan); 1652 1653 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */ 1654 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1655 TSIZ_SC_MC_PID_MASK; 1656 1657 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */ 1658 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK; 1659 1660 /* Non-zero only for high-speed interrupt endpoints */ 1661 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK; 1662 1663 if (dbg_hc(chan)) { 1664 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1665 chan->hc_num); 1666 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1667 chan->data_pid_start); 1668 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1); 1669 } 1670 1671 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1672 1673 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr, 1674 chan->desc_list_sz, DMA_TO_DEVICE); 1675 1676 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num)); 1677 1678 if (dbg_hc(chan)) 1679 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n", 1680 &chan->desc_list_addr, chan->hc_num); 1681 1682 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1683 hcchar &= ~HCCHAR_MULTICNT_MASK; 1684 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT & 1685 HCCHAR_MULTICNT_MASK; 1686 1687 if (hcchar & HCCHAR_CHDIS) 1688 dev_warn(hsotg->dev, 1689 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1690 __func__, chan->hc_num, hcchar); 1691 1692 /* Set host channel enable after all other setup is complete */ 1693 hcchar |= HCCHAR_CHENA; 1694 hcchar &= ~HCCHAR_CHDIS; 1695 1696 if (dbg_hc(chan)) 1697 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1698 (hcchar & HCCHAR_MULTICNT_MASK) >> 1699 HCCHAR_MULTICNT_SHIFT); 1700 1701 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1702 if (dbg_hc(chan)) 1703 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1704 chan->hc_num); 1705 1706 chan->xfer_started = 1; 1707 chan->requests++; 1708 } 1709 1710 /** 1711 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by 1712 * a previous call to dwc2_hc_start_transfer() 1713 * 1714 * @hsotg: Programming view of DWC_otg controller 1715 * @chan: Information needed to initialize the host channel 1716 * 1717 * The caller must ensure there is sufficient space in the request queue and Tx 1718 * Data FIFO. This function should only be called in Slave mode. In DMA mode, 1719 * the controller acts autonomously to complete transfers programmed to a host 1720 * channel. 1721 * 1722 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO 1723 * if there is any data remaining to be queued. For an IN transfer, another 1724 * data packet is always requested. For the SETUP phase of a control transfer, 1725 * this function does nothing. 1726 * 1727 * Return: 1 if a new request is queued, 0 if no more requests are required 1728 * for this transfer 1729 */ 1730 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg, 1731 struct dwc2_host_chan *chan) 1732 { 1733 if (dbg_hc(chan)) 1734 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1735 chan->hc_num); 1736 1737 if (chan->do_split) 1738 /* SPLITs always queue just once per channel */ 1739 return 0; 1740 1741 if (chan->data_pid_start == DWC2_HC_PID_SETUP) 1742 /* SETUPs are queued only once since they can't be NAK'd */ 1743 return 0; 1744 1745 if (chan->ep_is_in) { 1746 /* 1747 * Always queue another request for other IN transfers. If 1748 * back-to-back INs are issued and NAKs are received for both, 1749 * the driver may still be processing the first NAK when the 1750 * second NAK is received. When the interrupt handler clears 1751 * the NAK interrupt for the first NAK, the second NAK will 1752 * not be seen. So we can't depend on the NAK interrupt 1753 * handler to requeue a NAK'd request. Instead, IN requests 1754 * are issued each time this function is called. When the 1755 * transfer completes, the extra requests for the channel will 1756 * be flushed. 1757 */ 1758 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num)); 1759 1760 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1761 hcchar |= HCCHAR_CHENA; 1762 hcchar &= ~HCCHAR_CHDIS; 1763 if (dbg_hc(chan)) 1764 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n", 1765 hcchar); 1766 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1767 chan->requests++; 1768 return 1; 1769 } 1770 1771 /* OUT transfers */ 1772 1773 if (chan->xfer_count < chan->xfer_len) { 1774 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1775 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1776 u32 hcchar = dwc2_readl(hsotg->regs + 1777 HCCHAR(chan->hc_num)); 1778 1779 dwc2_hc_set_even_odd_frame(hsotg, chan, 1780 &hcchar); 1781 } 1782 1783 /* Load OUT packet into the appropriate Tx FIFO */ 1784 dwc2_hc_write_packet(hsotg, chan); 1785 chan->requests++; 1786 return 1; 1787 } 1788 1789 return 0; 1790 } 1791 1792 /* 1793 * ========================================================================= 1794 * HCD 1795 * ========================================================================= 1796 */ 1797 1798 /* 1799 * Processes all the URBs in a single list of QHs. Completes them with 1800 * -ETIMEDOUT and frees the QTD. 1801 * 1802 * Must be called with interrupt disabled and spinlock held 1803 */ 1804 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg, 1805 struct list_head *qh_list) 1806 { 1807 struct dwc2_qh *qh, *qh_tmp; 1808 struct dwc2_qtd *qtd, *qtd_tmp; 1809 1810 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1811 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1812 qtd_list_entry) { 1813 dwc2_host_complete(hsotg, qtd, -ECONNRESET); 1814 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1815 } 1816 } 1817 } 1818 1819 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg, 1820 struct list_head *qh_list) 1821 { 1822 struct dwc2_qtd *qtd, *qtd_tmp; 1823 struct dwc2_qh *qh, *qh_tmp; 1824 unsigned long flags; 1825 1826 if (!qh_list->next) 1827 /* The list hasn't been initialized yet */ 1828 return; 1829 1830 spin_lock_irqsave(&hsotg->lock, flags); 1831 1832 /* Ensure there are no QTDs or URBs left */ 1833 dwc2_kill_urbs_in_qh_list(hsotg, qh_list); 1834 1835 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { 1836 dwc2_hcd_qh_unlink(hsotg, qh); 1837 1838 /* Free each QTD in the QH's QTD list */ 1839 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, 1840 qtd_list_entry) 1841 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 1842 1843 if (qh->channel && qh->channel->qh == qh) 1844 qh->channel->qh = NULL; 1845 1846 spin_unlock_irqrestore(&hsotg->lock, flags); 1847 dwc2_hcd_qh_free(hsotg, qh); 1848 spin_lock_irqsave(&hsotg->lock, flags); 1849 } 1850 1851 spin_unlock_irqrestore(&hsotg->lock, flags); 1852 } 1853 1854 /* 1855 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic 1856 * and periodic schedules. The QTD associated with each URB is removed from 1857 * the schedule and freed. This function may be called when a disconnect is 1858 * detected or when the HCD is being stopped. 1859 * 1860 * Must be called with interrupt disabled and spinlock held 1861 */ 1862 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg) 1863 { 1864 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive); 1865 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting); 1866 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active); 1867 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive); 1868 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready); 1869 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned); 1870 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued); 1871 } 1872 1873 /** 1874 * dwc2_hcd_start() - Starts the HCD when switching to Host mode 1875 * 1876 * @hsotg: Pointer to struct dwc2_hsotg 1877 */ 1878 void dwc2_hcd_start(struct dwc2_hsotg *hsotg) 1879 { 1880 u32 hprt0; 1881 1882 if (hsotg->op_state == OTG_STATE_B_HOST) { 1883 /* 1884 * Reset the port. During a HNP mode switch the reset 1885 * needs to occur within 1ms and have a duration of at 1886 * least 50ms. 1887 */ 1888 hprt0 = dwc2_read_hprt0(hsotg); 1889 hprt0 |= HPRT0_RST; 1890 dwc2_writel(hprt0, hsotg->regs + HPRT0); 1891 } 1892 1893 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work, 1894 msecs_to_jiffies(50)); 1895 } 1896 1897 /* Must be called with interrupt disabled and spinlock held */ 1898 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg) 1899 { 1900 int num_channels = hsotg->params.host_channels; 1901 struct dwc2_host_chan *channel; 1902 u32 hcchar; 1903 int i; 1904 1905 if (!hsotg->params.host_dma) { 1906 /* Flush out any channel requests in slave mode */ 1907 for (i = 0; i < num_channels; i++) { 1908 channel = hsotg->hc_ptr_array[i]; 1909 if (!list_empty(&channel->hc_list_entry)) 1910 continue; 1911 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 1912 if (hcchar & HCCHAR_CHENA) { 1913 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR); 1914 hcchar |= HCCHAR_CHDIS; 1915 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 1916 } 1917 } 1918 } 1919 1920 for (i = 0; i < num_channels; i++) { 1921 channel = hsotg->hc_ptr_array[i]; 1922 if (!list_empty(&channel->hc_list_entry)) 1923 continue; 1924 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 1925 if (hcchar & HCCHAR_CHENA) { 1926 /* Halt the channel */ 1927 hcchar |= HCCHAR_CHDIS; 1928 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 1929 } 1930 1931 dwc2_hc_cleanup(hsotg, channel); 1932 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list); 1933 /* 1934 * Added for Descriptor DMA to prevent channel double cleanup in 1935 * release_channel_ddma(), which is called from ep_disable when 1936 * device disconnects 1937 */ 1938 channel->qh = NULL; 1939 } 1940 /* All channels have been freed, mark them available */ 1941 if (hsotg->params.uframe_sched) { 1942 hsotg->available_host_channels = 1943 hsotg->params.host_channels; 1944 } else { 1945 hsotg->non_periodic_channels = 0; 1946 hsotg->periodic_channels = 0; 1947 } 1948 } 1949 1950 /** 1951 * dwc2_hcd_connect() - Handles connect of the HCD 1952 * 1953 * @hsotg: Pointer to struct dwc2_hsotg 1954 * 1955 * Must be called with interrupt disabled and spinlock held 1956 */ 1957 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) 1958 { 1959 if (hsotg->lx_state != DWC2_L0) 1960 usb_hcd_resume_root_hub(hsotg->priv); 1961 1962 hsotg->flags.b.port_connect_status_change = 1; 1963 hsotg->flags.b.port_connect_status = 1; 1964 } 1965 1966 /** 1967 * dwc2_hcd_disconnect() - Handles disconnect of the HCD 1968 * 1969 * @hsotg: Pointer to struct dwc2_hsotg 1970 * @force: If true, we won't try to reconnect even if we see device connected. 1971 * 1972 * Must be called with interrupt disabled and spinlock held 1973 */ 1974 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) 1975 { 1976 u32 intr; 1977 u32 hprt0; 1978 1979 /* Set status flags for the hub driver */ 1980 hsotg->flags.b.port_connect_status_change = 1; 1981 hsotg->flags.b.port_connect_status = 0; 1982 1983 /* 1984 * Shutdown any transfers in process by clearing the Tx FIFO Empty 1985 * interrupt mask and status bits and disabling subsequent host 1986 * channel interrupts. 1987 */ 1988 intr = dwc2_readl(hsotg->regs + GINTMSK); 1989 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT); 1990 dwc2_writel(intr, hsotg->regs + GINTMSK); 1991 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT; 1992 dwc2_writel(intr, hsotg->regs + GINTSTS); 1993 1994 /* 1995 * Turn off the vbus power only if the core has transitioned to device 1996 * mode. If still in host mode, need to keep power on to detect a 1997 * reconnection. 1998 */ 1999 if (dwc2_is_device_mode(hsotg)) { 2000 if (hsotg->op_state != OTG_STATE_A_SUSPEND) { 2001 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n"); 2002 dwc2_writel(0, hsotg->regs + HPRT0); 2003 } 2004 2005 dwc2_disable_host_interrupts(hsotg); 2006 } 2007 2008 /* Respond with an error status to all URBs in the schedule */ 2009 dwc2_kill_all_urbs(hsotg); 2010 2011 if (dwc2_is_host_mode(hsotg)) 2012 /* Clean up any host channels that were in use */ 2013 dwc2_hcd_cleanup_channels(hsotg); 2014 2015 dwc2_host_disconnect(hsotg); 2016 2017 /* 2018 * Add an extra check here to see if we're actually connected but 2019 * we don't have a detection interrupt pending. This can happen if: 2020 * 1. hardware sees connect 2021 * 2. hardware sees disconnect 2022 * 3. hardware sees connect 2023 * 4. dwc2_port_intr() - clears connect interrupt 2024 * 5. dwc2_handle_common_intr() - calls here 2025 * 2026 * Without the extra check here we will end calling disconnect 2027 * and won't get any future interrupts to handle the connect. 2028 */ 2029 if (!force) { 2030 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 2031 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS)) 2032 dwc2_hcd_connect(hsotg); 2033 } 2034 } 2035 2036 /** 2037 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup 2038 * 2039 * @hsotg: Pointer to struct dwc2_hsotg 2040 */ 2041 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg) 2042 { 2043 if (hsotg->bus_suspended) { 2044 hsotg->flags.b.port_suspend_change = 1; 2045 usb_hcd_resume_root_hub(hsotg->priv); 2046 } 2047 2048 if (hsotg->lx_state == DWC2_L1) 2049 hsotg->flags.b.port_l1_change = 1; 2050 } 2051 2052 /** 2053 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner 2054 * 2055 * @hsotg: Pointer to struct dwc2_hsotg 2056 * 2057 * Must be called with interrupt disabled and spinlock held 2058 */ 2059 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg) 2060 { 2061 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n"); 2062 2063 /* 2064 * The root hub should be disconnected before this function is called. 2065 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) 2066 * and the QH lists (via ..._hcd_endpoint_disable). 2067 */ 2068 2069 /* Turn off all host-specific interrupts */ 2070 dwc2_disable_host_interrupts(hsotg); 2071 2072 /* Turn off the vbus power */ 2073 dev_dbg(hsotg->dev, "PortPower off\n"); 2074 dwc2_writel(0, hsotg->regs + HPRT0); 2075 } 2076 2077 /* Caller must hold driver lock */ 2078 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, 2079 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, 2080 struct dwc2_qtd *qtd) 2081 { 2082 u32 intr_mask; 2083 int retval; 2084 int dev_speed; 2085 2086 if (!hsotg->flags.b.port_connect_status) { 2087 /* No longer connected */ 2088 dev_err(hsotg->dev, "Not connected\n"); 2089 return -ENODEV; 2090 } 2091 2092 dev_speed = dwc2_host_get_speed(hsotg, urb->priv); 2093 2094 /* Some configurations cannot support LS traffic on a FS root port */ 2095 if ((dev_speed == USB_SPEED_LOW) && 2096 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) && 2097 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) { 2098 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 2099 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 2100 2101 if (prtspd == HPRT0_SPD_FULL_SPEED) 2102 return -ENODEV; 2103 } 2104 2105 if (!qtd) 2106 return -EINVAL; 2107 2108 dwc2_hcd_qtd_init(qtd, urb); 2109 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh); 2110 if (retval) { 2111 dev_err(hsotg->dev, 2112 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n", 2113 retval); 2114 return retval; 2115 } 2116 2117 intr_mask = dwc2_readl(hsotg->regs + GINTMSK); 2118 if (!(intr_mask & GINTSTS_SOF)) { 2119 enum dwc2_transaction_type tr_type; 2120 2121 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK && 2122 !(qtd->urb->flags & URB_GIVEBACK_ASAP)) 2123 /* 2124 * Do not schedule SG transactions until qtd has 2125 * URB_GIVEBACK_ASAP set 2126 */ 2127 return 0; 2128 2129 tr_type = dwc2_hcd_select_transactions(hsotg); 2130 if (tr_type != DWC2_TRANSACTION_NONE) 2131 dwc2_hcd_queue_transactions(hsotg, tr_type); 2132 } 2133 2134 return 0; 2135 } 2136 2137 /* Must be called with interrupt disabled and spinlock held */ 2138 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg, 2139 struct dwc2_hcd_urb *urb) 2140 { 2141 struct dwc2_qh *qh; 2142 struct dwc2_qtd *urb_qtd; 2143 2144 urb_qtd = urb->qtd; 2145 if (!urb_qtd) { 2146 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n"); 2147 return -EINVAL; 2148 } 2149 2150 qh = urb_qtd->qh; 2151 if (!qh) { 2152 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n"); 2153 return -EINVAL; 2154 } 2155 2156 urb->priv = NULL; 2157 2158 if (urb_qtd->in_process && qh->channel) { 2159 dwc2_dump_channel_info(hsotg, qh->channel); 2160 2161 /* The QTD is in process (it has been assigned to a channel) */ 2162 if (hsotg->flags.b.port_connect_status) 2163 /* 2164 * If still connected (i.e. in host mode), halt the 2165 * channel so it can be used for other transfers. If 2166 * no longer connected, the host registers can't be 2167 * written to halt the channel since the core is in 2168 * device mode. 2169 */ 2170 dwc2_hc_halt(hsotg, qh->channel, 2171 DWC2_HC_XFER_URB_DEQUEUE); 2172 } 2173 2174 /* 2175 * Free the QTD and clean up the associated QH. Leave the QH in the 2176 * schedule if it has any remaining QTDs. 2177 */ 2178 if (!hsotg->params.dma_desc_enable) { 2179 u8 in_process = urb_qtd->in_process; 2180 2181 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2182 if (in_process) { 2183 dwc2_hcd_qh_deactivate(hsotg, qh, 0); 2184 qh->channel = NULL; 2185 } else if (list_empty(&qh->qtd_list)) { 2186 dwc2_hcd_qh_unlink(hsotg, qh); 2187 } 2188 } else { 2189 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); 2190 } 2191 2192 return 0; 2193 } 2194 2195 /* Must NOT be called with interrupt disabled or spinlock held */ 2196 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg, 2197 struct usb_host_endpoint *ep, int retry) 2198 { 2199 struct dwc2_qtd *qtd, *qtd_tmp; 2200 struct dwc2_qh *qh; 2201 unsigned long flags; 2202 int rc; 2203 2204 spin_lock_irqsave(&hsotg->lock, flags); 2205 2206 qh = ep->hcpriv; 2207 if (!qh) { 2208 rc = -EINVAL; 2209 goto err; 2210 } 2211 2212 while (!list_empty(&qh->qtd_list) && retry--) { 2213 if (retry == 0) { 2214 dev_err(hsotg->dev, 2215 "## timeout in dwc2_hcd_endpoint_disable() ##\n"); 2216 rc = -EBUSY; 2217 goto err; 2218 } 2219 2220 spin_unlock_irqrestore(&hsotg->lock, flags); 2221 msleep(20); 2222 spin_lock_irqsave(&hsotg->lock, flags); 2223 qh = ep->hcpriv; 2224 if (!qh) { 2225 rc = -EINVAL; 2226 goto err; 2227 } 2228 } 2229 2230 dwc2_hcd_qh_unlink(hsotg, qh); 2231 2232 /* Free each QTD in the QH's QTD list */ 2233 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) 2234 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); 2235 2236 ep->hcpriv = NULL; 2237 2238 if (qh->channel && qh->channel->qh == qh) 2239 qh->channel->qh = NULL; 2240 2241 spin_unlock_irqrestore(&hsotg->lock, flags); 2242 2243 dwc2_hcd_qh_free(hsotg, qh); 2244 2245 return 0; 2246 2247 err: 2248 ep->hcpriv = NULL; 2249 spin_unlock_irqrestore(&hsotg->lock, flags); 2250 2251 return rc; 2252 } 2253 2254 /* Must be called with interrupt disabled and spinlock held */ 2255 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg, 2256 struct usb_host_endpoint *ep) 2257 { 2258 struct dwc2_qh *qh = ep->hcpriv; 2259 2260 if (!qh) 2261 return -EINVAL; 2262 2263 qh->data_toggle = DWC2_HC_PID_DATA0; 2264 2265 return 0; 2266 } 2267 2268 /** 2269 * dwc2_core_init() - Initializes the DWC_otg controller registers and 2270 * prepares the core for device mode or host mode operation 2271 * 2272 * @hsotg: Programming view of the DWC_otg controller 2273 * @initial_setup: If true then this is the first init for this instance. 2274 */ 2275 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 2276 { 2277 u32 usbcfg, otgctl; 2278 int retval; 2279 2280 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2281 2282 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 2283 2284 /* Set ULPI External VBUS bit if needed */ 2285 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV; 2286 if (hsotg->params.phy_ulpi_ext_vbus) 2287 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV; 2288 2289 /* Set external TS Dline pulsing bit if needed */ 2290 usbcfg &= ~GUSBCFG_TERMSELDLPULSE; 2291 if (hsotg->params.ts_dline) 2292 usbcfg |= GUSBCFG_TERMSELDLPULSE; 2293 2294 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 2295 2296 /* 2297 * Reset the Controller 2298 * 2299 * We only need to reset the controller if this is a re-init. 2300 * For the first init we know for sure that earlier code reset us (it 2301 * needed to in order to properly detect various parameters). 2302 */ 2303 if (!initial_setup) { 2304 retval = dwc2_core_reset(hsotg, false); 2305 if (retval) { 2306 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n", 2307 __func__); 2308 return retval; 2309 } 2310 } 2311 2312 /* 2313 * This needs to happen in FS mode before any other programming occurs 2314 */ 2315 retval = dwc2_phy_init(hsotg, initial_setup); 2316 if (retval) 2317 return retval; 2318 2319 /* Program the GAHBCFG Register */ 2320 retval = dwc2_gahbcfg_init(hsotg); 2321 if (retval) 2322 return retval; 2323 2324 /* Program the GUSBCFG register */ 2325 dwc2_gusbcfg_init(hsotg); 2326 2327 /* Program the GOTGCTL register */ 2328 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2329 otgctl &= ~GOTGCTL_OTGVER; 2330 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2331 2332 /* Clear the SRP success bit for FS-I2c */ 2333 hsotg->srp_success = 0; 2334 2335 /* Enable common interrupts */ 2336 dwc2_enable_common_interrupts(hsotg); 2337 2338 /* 2339 * Do device or host initialization based on mode during PCD and 2340 * HCD initialization 2341 */ 2342 if (dwc2_is_host_mode(hsotg)) { 2343 dev_dbg(hsotg->dev, "Host Mode\n"); 2344 hsotg->op_state = OTG_STATE_A_HOST; 2345 } else { 2346 dev_dbg(hsotg->dev, "Device Mode\n"); 2347 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 2348 } 2349 2350 return 0; 2351 } 2352 2353 /** 2354 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for 2355 * Host mode 2356 * 2357 * @hsotg: Programming view of DWC_otg controller 2358 * 2359 * This function flushes the Tx and Rx FIFOs and flushes any entries in the 2360 * request queues. Host channels are reset to ensure that they are ready for 2361 * performing transfers. 2362 */ 2363 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg) 2364 { 2365 u32 hcfg, hfir, otgctl, usbcfg; 2366 2367 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 2368 2369 /* Set HS/FS Timeout Calibration to 7 (max available value). 2370 * The number of PHY clocks that the application programs in 2371 * this field is added to the high/full speed interpacket timeout 2372 * duration in the core to account for any additional delays 2373 * introduced by the PHY. This can be required, because the delay 2374 * introduced by the PHY in generating the linestate condition 2375 * can vary from one PHY to another. 2376 */ 2377 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 2378 usbcfg |= GUSBCFG_TOUTCAL(7); 2379 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 2380 2381 /* Restart the Phy Clock */ 2382 dwc2_writel(0, hsotg->regs + PCGCTL); 2383 2384 /* Initialize Host Configuration Register */ 2385 dwc2_init_fs_ls_pclk_sel(hsotg); 2386 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 2387 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) { 2388 hcfg = dwc2_readl(hsotg->regs + HCFG); 2389 hcfg |= HCFG_FSLSSUPP; 2390 dwc2_writel(hcfg, hsotg->regs + HCFG); 2391 } 2392 2393 /* 2394 * This bit allows dynamic reloading of the HFIR register during 2395 * runtime. This bit needs to be programmed during initial configuration 2396 * and its value must not be changed during runtime. 2397 */ 2398 if (hsotg->params.reload_ctl) { 2399 hfir = dwc2_readl(hsotg->regs + HFIR); 2400 hfir |= HFIR_RLDCTRL; 2401 dwc2_writel(hfir, hsotg->regs + HFIR); 2402 } 2403 2404 if (hsotg->params.dma_desc_enable) { 2405 u32 op_mode = hsotg->hw_params.op_mode; 2406 2407 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a || 2408 !hsotg->hw_params.dma_desc_enable || 2409 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE || 2410 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE || 2411 op_mode == GHWCFG2_OP_MODE_UNDEFINED) { 2412 dev_err(hsotg->dev, 2413 "Hardware does not support descriptor DMA mode -\n"); 2414 dev_err(hsotg->dev, 2415 "falling back to buffer DMA mode.\n"); 2416 hsotg->params.dma_desc_enable = false; 2417 } else { 2418 hcfg = dwc2_readl(hsotg->regs + HCFG); 2419 hcfg |= HCFG_DESCDMA; 2420 dwc2_writel(hcfg, hsotg->regs + HCFG); 2421 } 2422 } 2423 2424 /* Configure data FIFO sizes */ 2425 dwc2_config_fifos(hsotg); 2426 2427 /* TODO - check this */ 2428 /* Clear Host Set HNP Enable in the OTG Control Register */ 2429 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2430 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2431 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2432 2433 /* Make sure the FIFOs are flushed */ 2434 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */); 2435 dwc2_flush_rx_fifo(hsotg); 2436 2437 /* Clear Host Set HNP Enable in the OTG Control Register */ 2438 otgctl = dwc2_readl(hsotg->regs + GOTGCTL); 2439 otgctl &= ~GOTGCTL_HSTSETHNPEN; 2440 dwc2_writel(otgctl, hsotg->regs + GOTGCTL); 2441 2442 if (!hsotg->params.dma_desc_enable) { 2443 int num_channels, i; 2444 u32 hcchar; 2445 2446 /* Flush out any leftover queued requests */ 2447 num_channels = hsotg->params.host_channels; 2448 for (i = 0; i < num_channels; i++) { 2449 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2450 hcchar &= ~HCCHAR_CHENA; 2451 hcchar |= HCCHAR_CHDIS; 2452 hcchar &= ~HCCHAR_EPDIR; 2453 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 2454 } 2455 2456 /* Halt all channels to put them into a known state */ 2457 for (i = 0; i < num_channels; i++) { 2458 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 2459 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS; 2460 hcchar &= ~HCCHAR_EPDIR; 2461 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i)); 2462 dev_dbg(hsotg->dev, "%s: Halt channel %d\n", 2463 __func__, i); 2464 2465 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i), 2466 HCCHAR_CHENA, 1000)) { 2467 dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n", 2468 i); 2469 } 2470 } 2471 } 2472 2473 /* Enable ACG feature in host mode, if supported */ 2474 dwc2_enable_acg(hsotg); 2475 2476 /* Turn on the vbus power */ 2477 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state); 2478 if (hsotg->op_state == OTG_STATE_A_HOST) { 2479 u32 hprt0 = dwc2_read_hprt0(hsotg); 2480 2481 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n", 2482 !!(hprt0 & HPRT0_PWR)); 2483 if (!(hprt0 & HPRT0_PWR)) { 2484 hprt0 |= HPRT0_PWR; 2485 dwc2_writel(hprt0, hsotg->regs + HPRT0); 2486 } 2487 } 2488 2489 dwc2_enable_host_interrupts(hsotg); 2490 } 2491 2492 /* 2493 * Initializes dynamic portions of the DWC_otg HCD state 2494 * 2495 * Must be called with interrupt disabled and spinlock held 2496 */ 2497 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg) 2498 { 2499 struct dwc2_host_chan *chan, *chan_tmp; 2500 int num_channels; 2501 int i; 2502 2503 hsotg->flags.d32 = 0; 2504 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active; 2505 2506 if (hsotg->params.uframe_sched) { 2507 hsotg->available_host_channels = 2508 hsotg->params.host_channels; 2509 } else { 2510 hsotg->non_periodic_channels = 0; 2511 hsotg->periodic_channels = 0; 2512 } 2513 2514 /* 2515 * Put all channels in the free channel list and clean up channel 2516 * states 2517 */ 2518 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list, 2519 hc_list_entry) 2520 list_del_init(&chan->hc_list_entry); 2521 2522 num_channels = hsotg->params.host_channels; 2523 for (i = 0; i < num_channels; i++) { 2524 chan = hsotg->hc_ptr_array[i]; 2525 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); 2526 dwc2_hc_cleanup(hsotg, chan); 2527 } 2528 2529 /* Initialize the DWC core for host mode operation */ 2530 dwc2_core_host_init(hsotg); 2531 } 2532 2533 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg, 2534 struct dwc2_host_chan *chan, 2535 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) 2536 { 2537 int hub_addr, hub_port; 2538 2539 chan->do_split = 1; 2540 chan->xact_pos = qtd->isoc_split_pos; 2541 chan->complete_split = qtd->complete_split; 2542 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); 2543 chan->hub_addr = (u8)hub_addr; 2544 chan->hub_port = (u8)hub_port; 2545 } 2546 2547 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg, 2548 struct dwc2_host_chan *chan, 2549 struct dwc2_qtd *qtd) 2550 { 2551 struct dwc2_hcd_urb *urb = qtd->urb; 2552 struct dwc2_hcd_iso_packet_desc *frame_desc; 2553 2554 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) { 2555 case USB_ENDPOINT_XFER_CONTROL: 2556 chan->ep_type = USB_ENDPOINT_XFER_CONTROL; 2557 2558 switch (qtd->control_phase) { 2559 case DWC2_CONTROL_SETUP: 2560 dev_vdbg(hsotg->dev, " Control setup transaction\n"); 2561 chan->do_ping = 0; 2562 chan->ep_is_in = 0; 2563 chan->data_pid_start = DWC2_HC_PID_SETUP; 2564 if (hsotg->params.host_dma) 2565 chan->xfer_dma = urb->setup_dma; 2566 else 2567 chan->xfer_buf = urb->setup_packet; 2568 chan->xfer_len = 8; 2569 break; 2570 2571 case DWC2_CONTROL_DATA: 2572 dev_vdbg(hsotg->dev, " Control data transaction\n"); 2573 chan->data_pid_start = qtd->data_toggle; 2574 break; 2575 2576 case DWC2_CONTROL_STATUS: 2577 /* 2578 * Direction is opposite of data direction or IN if no 2579 * data 2580 */ 2581 dev_vdbg(hsotg->dev, " Control status transaction\n"); 2582 if (urb->length == 0) 2583 chan->ep_is_in = 1; 2584 else 2585 chan->ep_is_in = 2586 dwc2_hcd_is_pipe_out(&urb->pipe_info); 2587 if (chan->ep_is_in) 2588 chan->do_ping = 0; 2589 chan->data_pid_start = DWC2_HC_PID_DATA1; 2590 chan->xfer_len = 0; 2591 if (hsotg->params.host_dma) 2592 chan->xfer_dma = hsotg->status_buf_dma; 2593 else 2594 chan->xfer_buf = hsotg->status_buf; 2595 break; 2596 } 2597 break; 2598 2599 case USB_ENDPOINT_XFER_BULK: 2600 chan->ep_type = USB_ENDPOINT_XFER_BULK; 2601 break; 2602 2603 case USB_ENDPOINT_XFER_INT: 2604 chan->ep_type = USB_ENDPOINT_XFER_INT; 2605 break; 2606 2607 case USB_ENDPOINT_XFER_ISOC: 2608 chan->ep_type = USB_ENDPOINT_XFER_ISOC; 2609 if (hsotg->params.dma_desc_enable) 2610 break; 2611 2612 frame_desc = &urb->iso_descs[qtd->isoc_frame_index]; 2613 frame_desc->status = 0; 2614 2615 if (hsotg->params.host_dma) { 2616 chan->xfer_dma = urb->dma; 2617 chan->xfer_dma += frame_desc->offset + 2618 qtd->isoc_split_offset; 2619 } else { 2620 chan->xfer_buf = urb->buf; 2621 chan->xfer_buf += frame_desc->offset + 2622 qtd->isoc_split_offset; 2623 } 2624 2625 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset; 2626 2627 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) { 2628 if (chan->xfer_len <= 188) 2629 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL; 2630 else 2631 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN; 2632 } 2633 break; 2634 } 2635 } 2636 2637 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg, 2638 struct dwc2_qh *qh, 2639 struct dwc2_host_chan *chan) 2640 { 2641 if (!hsotg->unaligned_cache || 2642 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE) 2643 return -ENOMEM; 2644 2645 if (!qh->dw_align_buf) { 2646 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache, 2647 GFP_ATOMIC | GFP_DMA); 2648 if (!qh->dw_align_buf) 2649 return -ENOMEM; 2650 } 2651 2652 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf, 2653 DWC2_KMEM_UNALIGNED_BUF_SIZE, 2654 DMA_FROM_DEVICE); 2655 2656 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) { 2657 dev_err(hsotg->dev, "can't map align_buf\n"); 2658 chan->align_buf = 0; 2659 return -EINVAL; 2660 } 2661 2662 chan->align_buf = qh->dw_align_buf_dma; 2663 return 0; 2664 } 2665 2666 #define DWC2_USB_DMA_ALIGN 4 2667 2668 static void dwc2_free_dma_aligned_buffer(struct urb *urb) 2669 { 2670 void *stored_xfer_buffer; 2671 size_t length; 2672 2673 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) 2674 return; 2675 2676 /* Restore urb->transfer_buffer from the end of the allocated area */ 2677 memcpy(&stored_xfer_buffer, urb->transfer_buffer + 2678 urb->transfer_buffer_length, sizeof(urb->transfer_buffer)); 2679 2680 if (usb_urb_dir_in(urb)) { 2681 if (usb_pipeisoc(urb->pipe)) 2682 length = urb->transfer_buffer_length; 2683 else 2684 length = urb->actual_length; 2685 2686 memcpy(stored_xfer_buffer, urb->transfer_buffer, length); 2687 } 2688 kfree(urb->transfer_buffer); 2689 urb->transfer_buffer = stored_xfer_buffer; 2690 2691 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; 2692 } 2693 2694 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags) 2695 { 2696 void *kmalloc_ptr; 2697 size_t kmalloc_size; 2698 2699 if (urb->num_sgs || urb->sg || 2700 urb->transfer_buffer_length == 0 || 2701 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1))) 2702 return 0; 2703 2704 /* 2705 * Allocate a buffer with enough padding for original transfer_buffer 2706 * pointer. This allocation is guaranteed to be aligned properly for 2707 * DMA 2708 */ 2709 kmalloc_size = urb->transfer_buffer_length + 2710 sizeof(urb->transfer_buffer); 2711 2712 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags); 2713 if (!kmalloc_ptr) 2714 return -ENOMEM; 2715 2716 /* 2717 * Position value of original urb->transfer_buffer pointer to the end 2718 * of allocation for later referencing 2719 */ 2720 memcpy(kmalloc_ptr + urb->transfer_buffer_length, 2721 &urb->transfer_buffer, sizeof(urb->transfer_buffer)); 2722 2723 if (usb_urb_dir_out(urb)) 2724 memcpy(kmalloc_ptr, urb->transfer_buffer, 2725 urb->transfer_buffer_length); 2726 urb->transfer_buffer = kmalloc_ptr; 2727 2728 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; 2729 2730 return 0; 2731 } 2732 2733 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 2734 gfp_t mem_flags) 2735 { 2736 int ret; 2737 2738 /* We assume setup_dma is always aligned; warn if not */ 2739 WARN_ON_ONCE(urb->setup_dma && 2740 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1))); 2741 2742 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags); 2743 if (ret) 2744 return ret; 2745 2746 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 2747 if (ret) 2748 dwc2_free_dma_aligned_buffer(urb); 2749 2750 return ret; 2751 } 2752 2753 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 2754 { 2755 usb_hcd_unmap_urb_for_dma(hcd, urb); 2756 dwc2_free_dma_aligned_buffer(urb); 2757 } 2758 2759 /** 2760 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host 2761 * channel and initializes the host channel to perform the transactions. The 2762 * host channel is removed from the free list. 2763 * 2764 * @hsotg: The HCD state structure 2765 * @qh: Transactions from the first QTD for this QH are selected and assigned 2766 * to a free host channel 2767 */ 2768 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) 2769 { 2770 struct dwc2_host_chan *chan; 2771 struct dwc2_hcd_urb *urb; 2772 struct dwc2_qtd *qtd; 2773 2774 if (dbg_qh(qh)) 2775 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh); 2776 2777 if (list_empty(&qh->qtd_list)) { 2778 dev_dbg(hsotg->dev, "No QTDs in QH list\n"); 2779 return -ENOMEM; 2780 } 2781 2782 if (list_empty(&hsotg->free_hc_list)) { 2783 dev_dbg(hsotg->dev, "No free channel to assign\n"); 2784 return -ENOMEM; 2785 } 2786 2787 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan, 2788 hc_list_entry); 2789 2790 /* Remove host channel from free list */ 2791 list_del_init(&chan->hc_list_entry); 2792 2793 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry); 2794 urb = qtd->urb; 2795 qh->channel = chan; 2796 qtd->in_process = 1; 2797 2798 /* 2799 * Use usb_pipedevice to determine device address. This address is 2800 * 0 before the SET_ADDRESS command and the correct address afterward. 2801 */ 2802 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info); 2803 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info); 2804 chan->speed = qh->dev_speed; 2805 chan->max_packet = dwc2_max_packet(qh->maxp); 2806 2807 chan->xfer_started = 0; 2808 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS; 2809 chan->error_state = (qtd->error_count > 0); 2810 chan->halt_on_queue = 0; 2811 chan->halt_pending = 0; 2812 chan->requests = 0; 2813 2814 /* 2815 * The following values may be modified in the transfer type section 2816 * below. The xfer_len value may be reduced when the transfer is 2817 * started to accommodate the max widths of the XferSize and PktCnt 2818 * fields in the HCTSIZn register. 2819 */ 2820 2821 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0); 2822 if (chan->ep_is_in) 2823 chan->do_ping = 0; 2824 else 2825 chan->do_ping = qh->ping_state; 2826 2827 chan->data_pid_start = qh->data_toggle; 2828 chan->multi_count = 1; 2829 2830 if (urb->actual_length > urb->length && 2831 !dwc2_hcd_is_pipe_in(&urb->pipe_info)) 2832 urb->actual_length = urb->length; 2833 2834 if (hsotg->params.host_dma) 2835 chan->xfer_dma = urb->dma + urb->actual_length; 2836 else 2837 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length; 2838 2839 chan->xfer_len = urb->length - urb->actual_length; 2840 chan->xfer_count = 0; 2841 2842 /* Set the split attributes if required */ 2843 if (qh->do_split) 2844 dwc2_hc_init_split(hsotg, chan, qtd, urb); 2845 else 2846 chan->do_split = 0; 2847 2848 /* Set the transfer attributes */ 2849 dwc2_hc_init_xfer(hsotg, chan, qtd); 2850 2851 /* For non-dword aligned buffers */ 2852 if (hsotg->params.host_dma && qh->do_split && 2853 chan->ep_is_in && (chan->xfer_dma & 0x3)) { 2854 dev_vdbg(hsotg->dev, "Non-aligned buffer\n"); 2855 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) { 2856 dev_err(hsotg->dev, 2857 "Failed to allocate memory to handle non-aligned buffer\n"); 2858 /* Add channel back to free list */ 2859 chan->align_buf = 0; 2860 chan->multi_count = 0; 2861 list_add_tail(&chan->hc_list_entry, 2862 &hsotg->free_hc_list); 2863 qtd->in_process = 0; 2864 qh->channel = NULL; 2865 return -ENOMEM; 2866 } 2867 } else { 2868 /* 2869 * We assume that DMA is always aligned in non-split 2870 * case or split out case. Warn if not. 2871 */ 2872 WARN_ON_ONCE(hsotg->params.host_dma && 2873 (chan->xfer_dma & 0x3)); 2874 chan->align_buf = 0; 2875 } 2876 2877 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 2878 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 2879 /* 2880 * This value may be modified when the transfer is started 2881 * to reflect the actual transfer length 2882 */ 2883 chan->multi_count = dwc2_hb_mult(qh->maxp); 2884 2885 if (hsotg->params.dma_desc_enable) { 2886 chan->desc_list_addr = qh->desc_list_dma; 2887 chan->desc_list_sz = qh->desc_list_sz; 2888 } 2889 2890 dwc2_hc_init(hsotg, chan); 2891 chan->qh = qh; 2892 2893 return 0; 2894 } 2895 2896 /** 2897 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer 2898 * schedule and assigns them to available host channels. Called from the HCD 2899 * interrupt handler functions. 2900 * 2901 * @hsotg: The HCD state structure 2902 * 2903 * Return: The types of new transactions that were assigned to host channels 2904 */ 2905 enum dwc2_transaction_type dwc2_hcd_select_transactions( 2906 struct dwc2_hsotg *hsotg) 2907 { 2908 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE; 2909 struct list_head *qh_ptr; 2910 struct dwc2_qh *qh; 2911 int num_channels; 2912 2913 #ifdef DWC2_DEBUG_SOF 2914 dev_vdbg(hsotg->dev, " Select Transactions\n"); 2915 #endif 2916 2917 /* Process entries in the periodic ready list */ 2918 qh_ptr = hsotg->periodic_sched_ready.next; 2919 while (qh_ptr != &hsotg->periodic_sched_ready) { 2920 if (list_empty(&hsotg->free_hc_list)) 2921 break; 2922 if (hsotg->params.uframe_sched) { 2923 if (hsotg->available_host_channels <= 1) 2924 break; 2925 hsotg->available_host_channels--; 2926 } 2927 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2928 if (dwc2_assign_and_init_hc(hsotg, qh)) 2929 break; 2930 2931 /* 2932 * Move the QH from the periodic ready schedule to the 2933 * periodic assigned schedule 2934 */ 2935 qh_ptr = qh_ptr->next; 2936 list_move_tail(&qh->qh_list_entry, 2937 &hsotg->periodic_sched_assigned); 2938 ret_val = DWC2_TRANSACTION_PERIODIC; 2939 } 2940 2941 /* 2942 * Process entries in the inactive portion of the non-periodic 2943 * schedule. Some free host channels may not be used if they are 2944 * reserved for periodic transfers. 2945 */ 2946 num_channels = hsotg->params.host_channels; 2947 qh_ptr = hsotg->non_periodic_sched_inactive.next; 2948 while (qh_ptr != &hsotg->non_periodic_sched_inactive) { 2949 if (!hsotg->params.uframe_sched && 2950 hsotg->non_periodic_channels >= num_channels - 2951 hsotg->periodic_channels) 2952 break; 2953 if (list_empty(&hsotg->free_hc_list)) 2954 break; 2955 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 2956 if (hsotg->params.uframe_sched) { 2957 if (hsotg->available_host_channels < 1) 2958 break; 2959 hsotg->available_host_channels--; 2960 } 2961 2962 if (dwc2_assign_and_init_hc(hsotg, qh)) 2963 break; 2964 2965 /* 2966 * Move the QH from the non-periodic inactive schedule to the 2967 * non-periodic active schedule 2968 */ 2969 qh_ptr = qh_ptr->next; 2970 list_move_tail(&qh->qh_list_entry, 2971 &hsotg->non_periodic_sched_active); 2972 2973 if (ret_val == DWC2_TRANSACTION_NONE) 2974 ret_val = DWC2_TRANSACTION_NON_PERIODIC; 2975 else 2976 ret_val = DWC2_TRANSACTION_ALL; 2977 2978 if (!hsotg->params.uframe_sched) 2979 hsotg->non_periodic_channels++; 2980 } 2981 2982 return ret_val; 2983 } 2984 2985 /** 2986 * dwc2_queue_transaction() - Attempts to queue a single transaction request for 2987 * a host channel associated with either a periodic or non-periodic transfer 2988 * 2989 * @hsotg: The HCD state structure 2990 * @chan: Host channel descriptor associated with either a periodic or 2991 * non-periodic transfer 2992 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO 2993 * for periodic transfers or the non-periodic Tx FIFO 2994 * for non-periodic transfers 2995 * 2996 * Return: 1 if a request is queued and more requests may be needed to 2997 * complete the transfer, 0 if no more requests are required for this 2998 * transfer, -1 if there is insufficient space in the Tx FIFO 2999 * 3000 * This function assumes that there is space available in the appropriate 3001 * request queue. For an OUT transfer or SETUP transaction in Slave mode, 3002 * it checks whether space is available in the appropriate Tx FIFO. 3003 * 3004 * Must be called with interrupt disabled and spinlock held 3005 */ 3006 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg, 3007 struct dwc2_host_chan *chan, 3008 u16 fifo_dwords_avail) 3009 { 3010 int retval = 0; 3011 3012 if (chan->do_split) 3013 /* Put ourselves on the list to keep order straight */ 3014 list_move_tail(&chan->split_order_list_entry, 3015 &hsotg->split_order); 3016 3017 if (hsotg->params.host_dma) { 3018 if (hsotg->params.dma_desc_enable) { 3019 if (!chan->xfer_started || 3020 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 3021 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh); 3022 chan->qh->ping_state = 0; 3023 } 3024 } else if (!chan->xfer_started) { 3025 dwc2_hc_start_transfer(hsotg, chan); 3026 chan->qh->ping_state = 0; 3027 } 3028 } else if (chan->halt_pending) { 3029 /* Don't queue a request if the channel has been halted */ 3030 } else if (chan->halt_on_queue) { 3031 dwc2_hc_halt(hsotg, chan, chan->halt_status); 3032 } else if (chan->do_ping) { 3033 if (!chan->xfer_started) 3034 dwc2_hc_start_transfer(hsotg, chan); 3035 } else if (!chan->ep_is_in || 3036 chan->data_pid_start == DWC2_HC_PID_SETUP) { 3037 if ((fifo_dwords_avail * 4) >= chan->max_packet) { 3038 if (!chan->xfer_started) { 3039 dwc2_hc_start_transfer(hsotg, chan); 3040 retval = 1; 3041 } else { 3042 retval = dwc2_hc_continue_transfer(hsotg, chan); 3043 } 3044 } else { 3045 retval = -1; 3046 } 3047 } else { 3048 if (!chan->xfer_started) { 3049 dwc2_hc_start_transfer(hsotg, chan); 3050 retval = 1; 3051 } else { 3052 retval = dwc2_hc_continue_transfer(hsotg, chan); 3053 } 3054 } 3055 3056 return retval; 3057 } 3058 3059 /* 3060 * Processes periodic channels for the next frame and queues transactions for 3061 * these channels to the DWC_otg controller. After queueing transactions, the 3062 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions 3063 * to queue as Periodic Tx FIFO or request queue space becomes available. 3064 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. 3065 * 3066 * Must be called with interrupt disabled and spinlock held 3067 */ 3068 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg) 3069 { 3070 struct list_head *qh_ptr; 3071 struct dwc2_qh *qh; 3072 u32 tx_status; 3073 u32 fspcavail; 3074 u32 gintmsk; 3075 int status; 3076 bool no_queue_space = false; 3077 bool no_fifo_space = false; 3078 u32 qspcavail; 3079 3080 /* If empty list then just adjust interrupt enables */ 3081 if (list_empty(&hsotg->periodic_sched_assigned)) 3082 goto exit; 3083 3084 if (dbg_perio()) 3085 dev_vdbg(hsotg->dev, "Queue periodic transactions\n"); 3086 3087 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 3088 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3089 TXSTS_QSPCAVAIL_SHIFT; 3090 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3091 TXSTS_FSPCAVAIL_SHIFT; 3092 3093 if (dbg_perio()) { 3094 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n", 3095 qspcavail); 3096 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n", 3097 fspcavail); 3098 } 3099 3100 qh_ptr = hsotg->periodic_sched_assigned.next; 3101 while (qh_ptr != &hsotg->periodic_sched_assigned) { 3102 tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 3103 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3104 TXSTS_QSPCAVAIL_SHIFT; 3105 if (qspcavail == 0) { 3106 no_queue_space = true; 3107 break; 3108 } 3109 3110 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); 3111 if (!qh->channel) { 3112 qh_ptr = qh_ptr->next; 3113 continue; 3114 } 3115 3116 /* Make sure EP's TT buffer is clean before queueing qtds */ 3117 if (qh->tt_buffer_dirty) { 3118 qh_ptr = qh_ptr->next; 3119 continue; 3120 } 3121 3122 /* 3123 * Set a flag if we're queuing high-bandwidth in slave mode. 3124 * The flag prevents any halts to get into the request queue in 3125 * the middle of multiple high-bandwidth packets getting queued. 3126 */ 3127 if (!hsotg->params.host_dma && 3128 qh->channel->multi_count > 1) 3129 hsotg->queuing_high_bandwidth = 1; 3130 3131 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3132 TXSTS_FSPCAVAIL_SHIFT; 3133 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 3134 if (status < 0) { 3135 no_fifo_space = true; 3136 break; 3137 } 3138 3139 /* 3140 * In Slave mode, stay on the current transfer until there is 3141 * nothing more to do or the high-bandwidth request count is 3142 * reached. In DMA mode, only need to queue one request. The 3143 * controller automatically handles multiple packets for 3144 * high-bandwidth transfers. 3145 */ 3146 if (hsotg->params.host_dma || status == 0 || 3147 qh->channel->requests == qh->channel->multi_count) { 3148 qh_ptr = qh_ptr->next; 3149 /* 3150 * Move the QH from the periodic assigned schedule to 3151 * the periodic queued schedule 3152 */ 3153 list_move_tail(&qh->qh_list_entry, 3154 &hsotg->periodic_sched_queued); 3155 3156 /* done queuing high bandwidth */ 3157 hsotg->queuing_high_bandwidth = 0; 3158 } 3159 } 3160 3161 exit: 3162 if (no_queue_space || no_fifo_space || 3163 (!hsotg->params.host_dma && 3164 !list_empty(&hsotg->periodic_sched_assigned))) { 3165 /* 3166 * May need to queue more transactions as the request 3167 * queue or Tx FIFO empties. Enable the periodic Tx 3168 * FIFO empty interrupt. (Always use the half-empty 3169 * level to ensure that new requests are loaded as 3170 * soon as possible.) 3171 */ 3172 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3173 if (!(gintmsk & GINTSTS_PTXFEMP)) { 3174 gintmsk |= GINTSTS_PTXFEMP; 3175 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3176 } 3177 } else { 3178 /* 3179 * Disable the Tx FIFO empty interrupt since there are 3180 * no more transactions that need to be queued right 3181 * now. This function is called from interrupt 3182 * handlers to queue more transactions as transfer 3183 * states change. 3184 */ 3185 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3186 if (gintmsk & GINTSTS_PTXFEMP) { 3187 gintmsk &= ~GINTSTS_PTXFEMP; 3188 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3189 } 3190 } 3191 } 3192 3193 /* 3194 * Processes active non-periodic channels and queues transactions for these 3195 * channels to the DWC_otg controller. After queueing transactions, the NP Tx 3196 * FIFO Empty interrupt is enabled if there are more transactions to queue as 3197 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx 3198 * FIFO Empty interrupt is disabled. 3199 * 3200 * Must be called with interrupt disabled and spinlock held 3201 */ 3202 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg) 3203 { 3204 struct list_head *orig_qh_ptr; 3205 struct dwc2_qh *qh; 3206 u32 tx_status; 3207 u32 qspcavail; 3208 u32 fspcavail; 3209 u32 gintmsk; 3210 int status; 3211 int no_queue_space = 0; 3212 int no_fifo_space = 0; 3213 int more_to_do = 0; 3214 3215 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n"); 3216 3217 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3218 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3219 TXSTS_QSPCAVAIL_SHIFT; 3220 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3221 TXSTS_FSPCAVAIL_SHIFT; 3222 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n", 3223 qspcavail); 3224 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n", 3225 fspcavail); 3226 3227 /* 3228 * Keep track of the starting point. Skip over the start-of-list 3229 * entry. 3230 */ 3231 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) 3232 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3233 orig_qh_ptr = hsotg->non_periodic_qh_ptr; 3234 3235 /* 3236 * Process once through the active list or until no more space is 3237 * available in the request queue or the Tx FIFO 3238 */ 3239 do { 3240 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3241 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3242 TXSTS_QSPCAVAIL_SHIFT; 3243 if (!hsotg->params.host_dma && qspcavail == 0) { 3244 no_queue_space = 1; 3245 break; 3246 } 3247 3248 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh, 3249 qh_list_entry); 3250 if (!qh->channel) 3251 goto next; 3252 3253 /* Make sure EP's TT buffer is clean before queueing qtds */ 3254 if (qh->tt_buffer_dirty) 3255 goto next; 3256 3257 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3258 TXSTS_FSPCAVAIL_SHIFT; 3259 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); 3260 3261 if (status > 0) { 3262 more_to_do = 1; 3263 } else if (status < 0) { 3264 no_fifo_space = 1; 3265 break; 3266 } 3267 next: 3268 /* Advance to next QH, skipping start-of-list entry */ 3269 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; 3270 if (hsotg->non_periodic_qh_ptr == 3271 &hsotg->non_periodic_sched_active) 3272 hsotg->non_periodic_qh_ptr = 3273 hsotg->non_periodic_qh_ptr->next; 3274 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr); 3275 3276 if (!hsotg->params.host_dma) { 3277 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 3278 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> 3279 TXSTS_QSPCAVAIL_SHIFT; 3280 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> 3281 TXSTS_FSPCAVAIL_SHIFT; 3282 dev_vdbg(hsotg->dev, 3283 " NP Tx Req Queue Space Avail (after queue): %d\n", 3284 qspcavail); 3285 dev_vdbg(hsotg->dev, 3286 " NP Tx FIFO Space Avail (after queue): %d\n", 3287 fspcavail); 3288 3289 if (more_to_do || no_queue_space || no_fifo_space) { 3290 /* 3291 * May need to queue more transactions as the request 3292 * queue or Tx FIFO empties. Enable the non-periodic 3293 * Tx FIFO empty interrupt. (Always use the half-empty 3294 * level to ensure that new requests are loaded as 3295 * soon as possible.) 3296 */ 3297 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3298 gintmsk |= GINTSTS_NPTXFEMP; 3299 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3300 } else { 3301 /* 3302 * Disable the Tx FIFO empty interrupt since there are 3303 * no more transactions that need to be queued right 3304 * now. This function is called from interrupt 3305 * handlers to queue more transactions as transfer 3306 * states change. 3307 */ 3308 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3309 gintmsk &= ~GINTSTS_NPTXFEMP; 3310 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3311 } 3312 } 3313 } 3314 3315 /** 3316 * dwc2_hcd_queue_transactions() - Processes the currently active host channels 3317 * and queues transactions for these channels to the DWC_otg controller. Called 3318 * from the HCD interrupt handler functions. 3319 * 3320 * @hsotg: The HCD state structure 3321 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic, 3322 * or both) 3323 * 3324 * Must be called with interrupt disabled and spinlock held 3325 */ 3326 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, 3327 enum dwc2_transaction_type tr_type) 3328 { 3329 #ifdef DWC2_DEBUG_SOF 3330 dev_vdbg(hsotg->dev, "Queue Transactions\n"); 3331 #endif 3332 /* Process host channels associated with periodic transfers */ 3333 if (tr_type == DWC2_TRANSACTION_PERIODIC || 3334 tr_type == DWC2_TRANSACTION_ALL) 3335 dwc2_process_periodic_channels(hsotg); 3336 3337 /* Process host channels associated with non-periodic transfers */ 3338 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC || 3339 tr_type == DWC2_TRANSACTION_ALL) { 3340 if (!list_empty(&hsotg->non_periodic_sched_active)) { 3341 dwc2_process_non_periodic_channels(hsotg); 3342 } else { 3343 /* 3344 * Ensure NP Tx FIFO empty interrupt is disabled when 3345 * there are no non-periodic transfers to process 3346 */ 3347 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3348 3349 gintmsk &= ~GINTSTS_NPTXFEMP; 3350 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3351 } 3352 } 3353 } 3354 3355 static void dwc2_conn_id_status_change(struct work_struct *work) 3356 { 3357 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 3358 wf_otg); 3359 u32 count = 0; 3360 u32 gotgctl; 3361 unsigned long flags; 3362 3363 dev_dbg(hsotg->dev, "%s()\n", __func__); 3364 3365 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3366 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl); 3367 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n", 3368 !!(gotgctl & GOTGCTL_CONID_B)); 3369 3370 /* B-Device connector (Device Mode) */ 3371 if (gotgctl & GOTGCTL_CONID_B) { 3372 dwc2_vbus_supply_exit(hsotg); 3373 /* Wait for switch to device mode */ 3374 dev_dbg(hsotg->dev, "connId B\n"); 3375 if (hsotg->bus_suspended) { 3376 dev_info(hsotg->dev, 3377 "Do port resume before switching to device mode\n"); 3378 dwc2_port_resume(hsotg); 3379 } 3380 while (!dwc2_is_device_mode(hsotg)) { 3381 dev_info(hsotg->dev, 3382 "Waiting for Peripheral Mode, Mode=%s\n", 3383 dwc2_is_host_mode(hsotg) ? "Host" : 3384 "Peripheral"); 3385 msleep(20); 3386 /* 3387 * Sometimes the initial GOTGCTRL read is wrong, so 3388 * check it again and jump to host mode if that was 3389 * the case. 3390 */ 3391 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3392 if (!(gotgctl & GOTGCTL_CONID_B)) 3393 goto host; 3394 if (++count > 250) 3395 break; 3396 } 3397 if (count > 250) 3398 dev_err(hsotg->dev, 3399 "Connection id status change timed out\n"); 3400 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 3401 dwc2_core_init(hsotg, false); 3402 dwc2_enable_global_interrupts(hsotg); 3403 spin_lock_irqsave(&hsotg->lock, flags); 3404 dwc2_hsotg_core_init_disconnected(hsotg, false); 3405 spin_unlock_irqrestore(&hsotg->lock, flags); 3406 /* Enable ACG feature in device mode,if supported */ 3407 dwc2_enable_acg(hsotg); 3408 dwc2_hsotg_core_connect(hsotg); 3409 } else { 3410 host: 3411 /* A-Device connector (Host Mode) */ 3412 dev_dbg(hsotg->dev, "connId A\n"); 3413 while (!dwc2_is_host_mode(hsotg)) { 3414 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n", 3415 dwc2_is_host_mode(hsotg) ? 3416 "Host" : "Peripheral"); 3417 msleep(20); 3418 if (++count > 250) 3419 break; 3420 } 3421 if (count > 250) 3422 dev_err(hsotg->dev, 3423 "Connection id status change timed out\n"); 3424 3425 spin_lock_irqsave(&hsotg->lock, flags); 3426 dwc2_hsotg_disconnect(hsotg); 3427 spin_unlock_irqrestore(&hsotg->lock, flags); 3428 3429 hsotg->op_state = OTG_STATE_A_HOST; 3430 /* Initialize the Core for Host mode */ 3431 dwc2_core_init(hsotg, false); 3432 dwc2_enable_global_interrupts(hsotg); 3433 dwc2_hcd_start(hsotg); 3434 } 3435 } 3436 3437 static void dwc2_wakeup_detected(struct timer_list *t) 3438 { 3439 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer); 3440 u32 hprt0; 3441 3442 dev_dbg(hsotg->dev, "%s()\n", __func__); 3443 3444 /* 3445 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms 3446 * so that OPT tests pass with all PHYs.) 3447 */ 3448 hprt0 = dwc2_read_hprt0(hsotg); 3449 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0); 3450 hprt0 &= ~HPRT0_RES; 3451 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3452 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n", 3453 dwc2_readl(hsotg->regs + HPRT0)); 3454 3455 dwc2_hcd_rem_wakeup(hsotg); 3456 hsotg->bus_suspended = false; 3457 3458 /* Change to L0 state */ 3459 hsotg->lx_state = DWC2_L0; 3460 } 3461 3462 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg) 3463 { 3464 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); 3465 3466 return hcd->self.b_hnp_enable; 3467 } 3468 3469 /* Must NOT be called with interrupt disabled or spinlock held */ 3470 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 3471 { 3472 unsigned long flags; 3473 u32 hprt0; 3474 u32 pcgctl; 3475 u32 gotgctl; 3476 3477 dev_dbg(hsotg->dev, "%s()\n", __func__); 3478 3479 spin_lock_irqsave(&hsotg->lock, flags); 3480 3481 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) { 3482 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL); 3483 gotgctl |= GOTGCTL_HSTSETHNPEN; 3484 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL); 3485 hsotg->op_state = OTG_STATE_A_SUSPEND; 3486 } 3487 3488 hprt0 = dwc2_read_hprt0(hsotg); 3489 hprt0 |= HPRT0_SUSP; 3490 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3491 3492 hsotg->bus_suspended = true; 3493 3494 /* 3495 * If power_down is supported, Phy clock will be suspended 3496 * after registers are backuped. 3497 */ 3498 if (!hsotg->params.power_down) { 3499 /* Suspend the Phy Clock */ 3500 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3501 pcgctl |= PCGCTL_STOPPCLK; 3502 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3503 udelay(10); 3504 } 3505 3506 /* For HNP the bus must be suspended for at least 200ms */ 3507 if (dwc2_host_is_b_hnp_enabled(hsotg)) { 3508 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3509 pcgctl &= ~PCGCTL_STOPPCLK; 3510 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3511 3512 spin_unlock_irqrestore(&hsotg->lock, flags); 3513 3514 msleep(200); 3515 } else { 3516 spin_unlock_irqrestore(&hsotg->lock, flags); 3517 } 3518 } 3519 3520 /* Must NOT be called with interrupt disabled or spinlock held */ 3521 static void dwc2_port_resume(struct dwc2_hsotg *hsotg) 3522 { 3523 unsigned long flags; 3524 u32 hprt0; 3525 u32 pcgctl; 3526 3527 spin_lock_irqsave(&hsotg->lock, flags); 3528 3529 /* 3530 * If power_down is supported, Phy clock is already resumed 3531 * after registers restore. 3532 */ 3533 if (!hsotg->params.power_down) { 3534 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3535 pcgctl &= ~PCGCTL_STOPPCLK; 3536 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3537 spin_unlock_irqrestore(&hsotg->lock, flags); 3538 msleep(20); 3539 spin_lock_irqsave(&hsotg->lock, flags); 3540 } 3541 3542 hprt0 = dwc2_read_hprt0(hsotg); 3543 hprt0 |= HPRT0_RES; 3544 hprt0 &= ~HPRT0_SUSP; 3545 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3546 spin_unlock_irqrestore(&hsotg->lock, flags); 3547 3548 msleep(USB_RESUME_TIMEOUT); 3549 3550 spin_lock_irqsave(&hsotg->lock, flags); 3551 hprt0 = dwc2_read_hprt0(hsotg); 3552 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP); 3553 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3554 hsotg->bus_suspended = false; 3555 spin_unlock_irqrestore(&hsotg->lock, flags); 3556 } 3557 3558 /* Handles hub class-specific requests */ 3559 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq, 3560 u16 wvalue, u16 windex, char *buf, u16 wlength) 3561 { 3562 struct usb_hub_descriptor *hub_desc; 3563 int retval = 0; 3564 u32 hprt0; 3565 u32 port_status; 3566 u32 speed; 3567 u32 pcgctl; 3568 3569 switch (typereq) { 3570 case ClearHubFeature: 3571 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue); 3572 3573 switch (wvalue) { 3574 case C_HUB_LOCAL_POWER: 3575 case C_HUB_OVER_CURRENT: 3576 /* Nothing required here */ 3577 break; 3578 3579 default: 3580 retval = -EINVAL; 3581 dev_err(hsotg->dev, 3582 "ClearHubFeature request %1xh unknown\n", 3583 wvalue); 3584 } 3585 break; 3586 3587 case ClearPortFeature: 3588 if (wvalue != USB_PORT_FEAT_L1) 3589 if (!windex || windex > 1) 3590 goto error; 3591 switch (wvalue) { 3592 case USB_PORT_FEAT_ENABLE: 3593 dev_dbg(hsotg->dev, 3594 "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); 3595 hprt0 = dwc2_read_hprt0(hsotg); 3596 hprt0 |= HPRT0_ENA; 3597 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3598 break; 3599 3600 case USB_PORT_FEAT_SUSPEND: 3601 dev_dbg(hsotg->dev, 3602 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); 3603 3604 if (hsotg->bus_suspended) { 3605 if (hsotg->hibernated) 3606 dwc2_exit_hibernation(hsotg, 0, 0, 1); 3607 else 3608 dwc2_port_resume(hsotg); 3609 } 3610 break; 3611 3612 case USB_PORT_FEAT_POWER: 3613 dev_dbg(hsotg->dev, 3614 "ClearPortFeature USB_PORT_FEAT_POWER\n"); 3615 hprt0 = dwc2_read_hprt0(hsotg); 3616 hprt0 &= ~HPRT0_PWR; 3617 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3618 break; 3619 3620 case USB_PORT_FEAT_INDICATOR: 3621 dev_dbg(hsotg->dev, 3622 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); 3623 /* Port indicator not supported */ 3624 break; 3625 3626 case USB_PORT_FEAT_C_CONNECTION: 3627 /* 3628 * Clears driver's internal Connect Status Change flag 3629 */ 3630 dev_dbg(hsotg->dev, 3631 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); 3632 hsotg->flags.b.port_connect_status_change = 0; 3633 break; 3634 3635 case USB_PORT_FEAT_C_RESET: 3636 /* Clears driver's internal Port Reset Change flag */ 3637 dev_dbg(hsotg->dev, 3638 "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); 3639 hsotg->flags.b.port_reset_change = 0; 3640 break; 3641 3642 case USB_PORT_FEAT_C_ENABLE: 3643 /* 3644 * Clears the driver's internal Port Enable/Disable 3645 * Change flag 3646 */ 3647 dev_dbg(hsotg->dev, 3648 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); 3649 hsotg->flags.b.port_enable_change = 0; 3650 break; 3651 3652 case USB_PORT_FEAT_C_SUSPEND: 3653 /* 3654 * Clears the driver's internal Port Suspend Change 3655 * flag, which is set when resume signaling on the host 3656 * port is complete 3657 */ 3658 dev_dbg(hsotg->dev, 3659 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); 3660 hsotg->flags.b.port_suspend_change = 0; 3661 break; 3662 3663 case USB_PORT_FEAT_C_PORT_L1: 3664 dev_dbg(hsotg->dev, 3665 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n"); 3666 hsotg->flags.b.port_l1_change = 0; 3667 break; 3668 3669 case USB_PORT_FEAT_C_OVER_CURRENT: 3670 dev_dbg(hsotg->dev, 3671 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); 3672 hsotg->flags.b.port_over_current_change = 0; 3673 break; 3674 3675 default: 3676 retval = -EINVAL; 3677 dev_err(hsotg->dev, 3678 "ClearPortFeature request %1xh unknown or unsupported\n", 3679 wvalue); 3680 } 3681 break; 3682 3683 case GetHubDescriptor: 3684 dev_dbg(hsotg->dev, "GetHubDescriptor\n"); 3685 hub_desc = (struct usb_hub_descriptor *)buf; 3686 hub_desc->bDescLength = 9; 3687 hub_desc->bDescriptorType = USB_DT_HUB; 3688 hub_desc->bNbrPorts = 1; 3689 hub_desc->wHubCharacteristics = 3690 cpu_to_le16(HUB_CHAR_COMMON_LPSM | 3691 HUB_CHAR_INDV_PORT_OCPM); 3692 hub_desc->bPwrOn2PwrGood = 1; 3693 hub_desc->bHubContrCurrent = 0; 3694 hub_desc->u.hs.DeviceRemovable[0] = 0; 3695 hub_desc->u.hs.DeviceRemovable[1] = 0xff; 3696 break; 3697 3698 case GetHubStatus: 3699 dev_dbg(hsotg->dev, "GetHubStatus\n"); 3700 memset(buf, 0, 4); 3701 break; 3702 3703 case GetPortStatus: 3704 dev_vdbg(hsotg->dev, 3705 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex, 3706 hsotg->flags.d32); 3707 if (!windex || windex > 1) 3708 goto error; 3709 3710 port_status = 0; 3711 if (hsotg->flags.b.port_connect_status_change) 3712 port_status |= USB_PORT_STAT_C_CONNECTION << 16; 3713 if (hsotg->flags.b.port_enable_change) 3714 port_status |= USB_PORT_STAT_C_ENABLE << 16; 3715 if (hsotg->flags.b.port_suspend_change) 3716 port_status |= USB_PORT_STAT_C_SUSPEND << 16; 3717 if (hsotg->flags.b.port_l1_change) 3718 port_status |= USB_PORT_STAT_C_L1 << 16; 3719 if (hsotg->flags.b.port_reset_change) 3720 port_status |= USB_PORT_STAT_C_RESET << 16; 3721 if (hsotg->flags.b.port_over_current_change) { 3722 dev_warn(hsotg->dev, "Overcurrent change detected\n"); 3723 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3724 } 3725 3726 if (!hsotg->flags.b.port_connect_status) { 3727 /* 3728 * The port is disconnected, which means the core is 3729 * either in device mode or it soon will be. Just 3730 * return 0's for the remainder of the port status 3731 * since the port register can't be read if the core 3732 * is in device mode. 3733 */ 3734 *(__le32 *)buf = cpu_to_le32(port_status); 3735 break; 3736 } 3737 3738 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 3739 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0); 3740 3741 if (hprt0 & HPRT0_CONNSTS) 3742 port_status |= USB_PORT_STAT_CONNECTION; 3743 if (hprt0 & HPRT0_ENA) 3744 port_status |= USB_PORT_STAT_ENABLE; 3745 if (hprt0 & HPRT0_SUSP) 3746 port_status |= USB_PORT_STAT_SUSPEND; 3747 if (hprt0 & HPRT0_OVRCURRACT) 3748 port_status |= USB_PORT_STAT_OVERCURRENT; 3749 if (hprt0 & HPRT0_RST) 3750 port_status |= USB_PORT_STAT_RESET; 3751 if (hprt0 & HPRT0_PWR) 3752 port_status |= USB_PORT_STAT_POWER; 3753 3754 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; 3755 if (speed == HPRT0_SPD_HIGH_SPEED) 3756 port_status |= USB_PORT_STAT_HIGH_SPEED; 3757 else if (speed == HPRT0_SPD_LOW_SPEED) 3758 port_status |= USB_PORT_STAT_LOW_SPEED; 3759 3760 if (hprt0 & HPRT0_TSTCTL_MASK) 3761 port_status |= USB_PORT_STAT_TEST; 3762 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ 3763 3764 if (hsotg->params.dma_desc_fs_enable) { 3765 /* 3766 * Enable descriptor DMA only if a full speed 3767 * device is connected. 3768 */ 3769 if (hsotg->new_connection && 3770 ((port_status & 3771 (USB_PORT_STAT_CONNECTION | 3772 USB_PORT_STAT_HIGH_SPEED | 3773 USB_PORT_STAT_LOW_SPEED)) == 3774 USB_PORT_STAT_CONNECTION)) { 3775 u32 hcfg; 3776 3777 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n"); 3778 hsotg->params.dma_desc_enable = true; 3779 hcfg = dwc2_readl(hsotg->regs + HCFG); 3780 hcfg |= HCFG_DESCDMA; 3781 dwc2_writel(hcfg, hsotg->regs + HCFG); 3782 hsotg->new_connection = false; 3783 } 3784 } 3785 3786 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status); 3787 *(__le32 *)buf = cpu_to_le32(port_status); 3788 break; 3789 3790 case SetHubFeature: 3791 dev_dbg(hsotg->dev, "SetHubFeature\n"); 3792 /* No HUB features supported */ 3793 break; 3794 3795 case SetPortFeature: 3796 dev_dbg(hsotg->dev, "SetPortFeature\n"); 3797 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1)) 3798 goto error; 3799 3800 if (!hsotg->flags.b.port_connect_status) { 3801 /* 3802 * The port is disconnected, which means the core is 3803 * either in device mode or it soon will be. Just 3804 * return without doing anything since the port 3805 * register can't be written if the core is in device 3806 * mode. 3807 */ 3808 break; 3809 } 3810 3811 switch (wvalue) { 3812 case USB_PORT_FEAT_SUSPEND: 3813 dev_dbg(hsotg->dev, 3814 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); 3815 if (windex != hsotg->otg_port) 3816 goto error; 3817 if (hsotg->params.power_down == 2) 3818 dwc2_enter_hibernation(hsotg, 1); 3819 else 3820 dwc2_port_suspend(hsotg, windex); 3821 break; 3822 3823 case USB_PORT_FEAT_POWER: 3824 dev_dbg(hsotg->dev, 3825 "SetPortFeature - USB_PORT_FEAT_POWER\n"); 3826 hprt0 = dwc2_read_hprt0(hsotg); 3827 hprt0 |= HPRT0_PWR; 3828 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3829 break; 3830 3831 case USB_PORT_FEAT_RESET: 3832 if (hsotg->params.power_down == 2 && 3833 hsotg->hibernated) 3834 dwc2_exit_hibernation(hsotg, 0, 1, 1); 3835 hprt0 = dwc2_read_hprt0(hsotg); 3836 dev_dbg(hsotg->dev, 3837 "SetPortFeature - USB_PORT_FEAT_RESET\n"); 3838 pcgctl = dwc2_readl(hsotg->regs + PCGCTL); 3839 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK); 3840 dwc2_writel(pcgctl, hsotg->regs + PCGCTL); 3841 /* ??? Original driver does this */ 3842 dwc2_writel(0, hsotg->regs + PCGCTL); 3843 3844 hprt0 = dwc2_read_hprt0(hsotg); 3845 /* Clear suspend bit if resetting from suspend state */ 3846 hprt0 &= ~HPRT0_SUSP; 3847 3848 /* 3849 * When B-Host the Port reset bit is set in the Start 3850 * HCD Callback function, so that the reset is started 3851 * within 1ms of the HNP success interrupt 3852 */ 3853 if (!dwc2_hcd_is_b_host(hsotg)) { 3854 hprt0 |= HPRT0_PWR | HPRT0_RST; 3855 dev_dbg(hsotg->dev, 3856 "In host mode, hprt0=%08x\n", hprt0); 3857 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3858 } 3859 3860 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ 3861 msleep(50); 3862 hprt0 &= ~HPRT0_RST; 3863 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3864 hsotg->lx_state = DWC2_L0; /* Now back to On state */ 3865 break; 3866 3867 case USB_PORT_FEAT_INDICATOR: 3868 dev_dbg(hsotg->dev, 3869 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); 3870 /* Not supported */ 3871 break; 3872 3873 case USB_PORT_FEAT_TEST: 3874 hprt0 = dwc2_read_hprt0(hsotg); 3875 dev_dbg(hsotg->dev, 3876 "SetPortFeature - USB_PORT_FEAT_TEST\n"); 3877 hprt0 &= ~HPRT0_TSTCTL_MASK; 3878 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT; 3879 dwc2_writel(hprt0, hsotg->regs + HPRT0); 3880 break; 3881 3882 default: 3883 retval = -EINVAL; 3884 dev_err(hsotg->dev, 3885 "SetPortFeature %1xh unknown or unsupported\n", 3886 wvalue); 3887 break; 3888 } 3889 break; 3890 3891 default: 3892 error: 3893 retval = -EINVAL; 3894 dev_dbg(hsotg->dev, 3895 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n", 3896 typereq, windex, wvalue); 3897 break; 3898 } 3899 3900 return retval; 3901 } 3902 3903 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port) 3904 { 3905 int retval; 3906 3907 if (port != 1) 3908 return -EINVAL; 3909 3910 retval = (hsotg->flags.b.port_connect_status_change || 3911 hsotg->flags.b.port_reset_change || 3912 hsotg->flags.b.port_enable_change || 3913 hsotg->flags.b.port_suspend_change || 3914 hsotg->flags.b.port_over_current_change); 3915 3916 if (retval) { 3917 dev_dbg(hsotg->dev, 3918 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n"); 3919 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n", 3920 hsotg->flags.b.port_connect_status_change); 3921 dev_dbg(hsotg->dev, " port_reset_change: %d\n", 3922 hsotg->flags.b.port_reset_change); 3923 dev_dbg(hsotg->dev, " port_enable_change: %d\n", 3924 hsotg->flags.b.port_enable_change); 3925 dev_dbg(hsotg->dev, " port_suspend_change: %d\n", 3926 hsotg->flags.b.port_suspend_change); 3927 dev_dbg(hsotg->dev, " port_over_current_change: %d\n", 3928 hsotg->flags.b.port_over_current_change); 3929 } 3930 3931 return retval; 3932 } 3933 3934 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 3935 { 3936 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3937 3938 #ifdef DWC2_DEBUG_SOF 3939 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n", 3940 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT); 3941 #endif 3942 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3943 } 3944 3945 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us) 3946 { 3947 u32 hprt = dwc2_readl(hsotg->regs + HPRT0); 3948 u32 hfir = dwc2_readl(hsotg->regs + HFIR); 3949 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM); 3950 unsigned int us_per_frame; 3951 unsigned int frame_number; 3952 unsigned int remaining; 3953 unsigned int interval; 3954 unsigned int phy_clks; 3955 3956 /* High speed has 125 us per (micro) frame; others are 1 ms per */ 3957 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125; 3958 3959 /* Extract fields */ 3960 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; 3961 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT; 3962 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT; 3963 3964 /* 3965 * Number of phy clocks since the last tick of the frame number after 3966 * "us" has passed. 3967 */ 3968 phy_clks = (interval - remaining) + 3969 DIV_ROUND_UP(interval * us, us_per_frame); 3970 3971 return dwc2_frame_num_inc(frame_number, phy_clks / interval); 3972 } 3973 3974 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg) 3975 { 3976 return hsotg->op_state == OTG_STATE_B_HOST; 3977 } 3978 3979 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg, 3980 int iso_desc_count, 3981 gfp_t mem_flags) 3982 { 3983 struct dwc2_hcd_urb *urb; 3984 u32 size = sizeof(*urb) + iso_desc_count * 3985 sizeof(struct dwc2_hcd_iso_packet_desc); 3986 3987 urb = kzalloc(size, mem_flags); 3988 if (urb) 3989 urb->packet_count = iso_desc_count; 3990 return urb; 3991 } 3992 3993 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg, 3994 struct dwc2_hcd_urb *urb, u8 dev_addr, 3995 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps) 3996 { 3997 if (dbg_perio() || 3998 ep_type == USB_ENDPOINT_XFER_BULK || 3999 ep_type == USB_ENDPOINT_XFER_CONTROL) 4000 dev_vdbg(hsotg->dev, 4001 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n", 4002 dev_addr, ep_num, ep_dir, ep_type, mps); 4003 urb->pipe_info.dev_addr = dev_addr; 4004 urb->pipe_info.ep_num = ep_num; 4005 urb->pipe_info.pipe_type = ep_type; 4006 urb->pipe_info.pipe_dir = ep_dir; 4007 urb->pipe_info.mps = mps; 4008 } 4009 4010 /* 4011 * NOTE: This function will be removed once the peripheral controller code 4012 * is integrated and the driver is stable 4013 */ 4014 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg) 4015 { 4016 #ifdef DEBUG 4017 struct dwc2_host_chan *chan; 4018 struct dwc2_hcd_urb *urb; 4019 struct dwc2_qtd *qtd; 4020 int num_channels; 4021 u32 np_tx_status; 4022 u32 p_tx_status; 4023 int i; 4024 4025 num_channels = hsotg->params.host_channels; 4026 dev_dbg(hsotg->dev, "\n"); 4027 dev_dbg(hsotg->dev, 4028 "************************************************************\n"); 4029 dev_dbg(hsotg->dev, "HCD State:\n"); 4030 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels); 4031 4032 for (i = 0; i < num_channels; i++) { 4033 chan = hsotg->hc_ptr_array[i]; 4034 dev_dbg(hsotg->dev, " Channel %d:\n", i); 4035 dev_dbg(hsotg->dev, 4036 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", 4037 chan->dev_addr, chan->ep_num, chan->ep_is_in); 4038 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed); 4039 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); 4040 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); 4041 dev_dbg(hsotg->dev, " data_pid_start: %d\n", 4042 chan->data_pid_start); 4043 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count); 4044 dev_dbg(hsotg->dev, " xfer_started: %d\n", 4045 chan->xfer_started); 4046 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); 4047 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", 4048 (unsigned long)chan->xfer_dma); 4049 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); 4050 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count); 4051 dev_dbg(hsotg->dev, " halt_on_queue: %d\n", 4052 chan->halt_on_queue); 4053 dev_dbg(hsotg->dev, " halt_pending: %d\n", 4054 chan->halt_pending); 4055 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); 4056 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split); 4057 dev_dbg(hsotg->dev, " complete_split: %d\n", 4058 chan->complete_split); 4059 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr); 4060 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port); 4061 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos); 4062 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests); 4063 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); 4064 4065 if (chan->xfer_started) { 4066 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk; 4067 4068 hfnum = dwc2_readl(hsotg->regs + HFNUM); 4069 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i)); 4070 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i)); 4071 hcint = dwc2_readl(hsotg->regs + HCINT(i)); 4072 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i)); 4073 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum); 4074 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); 4075 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz); 4076 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint); 4077 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk); 4078 } 4079 4080 if (!(chan->xfer_started && chan->qh)) 4081 continue; 4082 4083 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) { 4084 if (!qtd->in_process) 4085 break; 4086 urb = qtd->urb; 4087 dev_dbg(hsotg->dev, " URB Info:\n"); 4088 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n", 4089 qtd, urb); 4090 if (urb) { 4091 dev_dbg(hsotg->dev, 4092 " Dev: %d, EP: %d %s\n", 4093 dwc2_hcd_get_dev_addr(&urb->pipe_info), 4094 dwc2_hcd_get_ep_num(&urb->pipe_info), 4095 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 4096 "IN" : "OUT"); 4097 dev_dbg(hsotg->dev, 4098 " Max packet size: %d\n", 4099 dwc2_hcd_get_mps(&urb->pipe_info)); 4100 dev_dbg(hsotg->dev, 4101 " transfer_buffer: %p\n", 4102 urb->buf); 4103 dev_dbg(hsotg->dev, 4104 " transfer_dma: %08lx\n", 4105 (unsigned long)urb->dma); 4106 dev_dbg(hsotg->dev, 4107 " transfer_buffer_length: %d\n", 4108 urb->length); 4109 dev_dbg(hsotg->dev, " actual_length: %d\n", 4110 urb->actual_length); 4111 } 4112 } 4113 } 4114 4115 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n", 4116 hsotg->non_periodic_channels); 4117 dev_dbg(hsotg->dev, " periodic_channels: %d\n", 4118 hsotg->periodic_channels); 4119 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs); 4120 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS); 4121 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n", 4122 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 4123 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n", 4124 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 4125 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS); 4126 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n", 4127 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); 4128 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n", 4129 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); 4130 dwc2_dump_global_registers(hsotg); 4131 dwc2_dump_host_registers(hsotg); 4132 dev_dbg(hsotg->dev, 4133 "************************************************************\n"); 4134 dev_dbg(hsotg->dev, "\n"); 4135 #endif 4136 } 4137 4138 struct wrapper_priv_data { 4139 struct dwc2_hsotg *hsotg; 4140 }; 4141 4142 /* Gets the dwc2_hsotg from a usb_hcd */ 4143 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd) 4144 { 4145 struct wrapper_priv_data *p; 4146 4147 p = (struct wrapper_priv_data *)&hcd->hcd_priv; 4148 return p->hsotg; 4149 } 4150 4151 /** 4152 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context 4153 * 4154 * This will get the dwc2_tt structure (and ttport) associated with the given 4155 * context (which is really just a struct urb pointer). 4156 * 4157 * The first time this is called for a given TT we allocate memory for our 4158 * structure. When everyone is done and has called dwc2_host_put_tt_info() 4159 * then the refcount for the structure will go to 0 and we'll free it. 4160 * 4161 * @hsotg: The HCD state structure for the DWC OTG controller. 4162 * @context: The priv pointer from a struct dwc2_hcd_urb. 4163 * @mem_flags: Flags for allocating memory. 4164 * @ttport: We'll return this device's port number here. That's used to 4165 * reference into the bitmap if we're on a multi_tt hub. 4166 * 4167 * Return: a pointer to a struct dwc2_tt. Don't forget to call 4168 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure. 4169 */ 4170 4171 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context, 4172 gfp_t mem_flags, int *ttport) 4173 { 4174 struct urb *urb = context; 4175 struct dwc2_tt *dwc_tt = NULL; 4176 4177 if (urb->dev->tt) { 4178 *ttport = urb->dev->ttport; 4179 4180 dwc_tt = urb->dev->tt->hcpriv; 4181 if (!dwc_tt) { 4182 size_t bitmap_size; 4183 4184 /* 4185 * For single_tt we need one schedule. For multi_tt 4186 * we need one per port. 4187 */ 4188 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP * 4189 sizeof(dwc_tt->periodic_bitmaps[0]); 4190 if (urb->dev->tt->multi) 4191 bitmap_size *= urb->dev->tt->hub->maxchild; 4192 4193 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size, 4194 mem_flags); 4195 if (!dwc_tt) 4196 return NULL; 4197 4198 dwc_tt->usb_tt = urb->dev->tt; 4199 dwc_tt->usb_tt->hcpriv = dwc_tt; 4200 } 4201 4202 dwc_tt->refcount++; 4203 } 4204 4205 return dwc_tt; 4206 } 4207 4208 /** 4209 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info() 4210 * 4211 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders 4212 * of the structure are done. 4213 * 4214 * It's OK to call this with NULL. 4215 * 4216 * @hsotg: The HCD state structure for the DWC OTG controller. 4217 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info. 4218 */ 4219 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt) 4220 { 4221 /* Model kfree and make put of NULL a no-op */ 4222 if (!dwc_tt) 4223 return; 4224 4225 WARN_ON(dwc_tt->refcount < 1); 4226 4227 dwc_tt->refcount--; 4228 if (!dwc_tt->refcount) { 4229 dwc_tt->usb_tt->hcpriv = NULL; 4230 kfree(dwc_tt); 4231 } 4232 } 4233 4234 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context) 4235 { 4236 struct urb *urb = context; 4237 4238 return urb->dev->speed; 4239 } 4240 4241 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4242 struct urb *urb) 4243 { 4244 struct usb_bus *bus = hcd_to_bus(hcd); 4245 4246 if (urb->interval) 4247 bus->bandwidth_allocated += bw / urb->interval; 4248 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4249 bus->bandwidth_isoc_reqs++; 4250 else 4251 bus->bandwidth_int_reqs++; 4252 } 4253 4254 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw, 4255 struct urb *urb) 4256 { 4257 struct usb_bus *bus = hcd_to_bus(hcd); 4258 4259 if (urb->interval) 4260 bus->bandwidth_allocated -= bw / urb->interval; 4261 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 4262 bus->bandwidth_isoc_reqs--; 4263 else 4264 bus->bandwidth_int_reqs--; 4265 } 4266 4267 /* 4268 * Sets the final status of an URB and returns it to the upper layer. Any 4269 * required cleanup of the URB is performed. 4270 * 4271 * Must be called with interrupt disabled and spinlock held 4272 */ 4273 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, 4274 int status) 4275 { 4276 struct urb *urb; 4277 int i; 4278 4279 if (!qtd) { 4280 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__); 4281 return; 4282 } 4283 4284 if (!qtd->urb) { 4285 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__); 4286 return; 4287 } 4288 4289 urb = qtd->urb->priv; 4290 if (!urb) { 4291 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__); 4292 return; 4293 } 4294 4295 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb); 4296 4297 if (dbg_urb(urb)) 4298 dev_vdbg(hsotg->dev, 4299 "%s: urb %p device %d ep %d-%s status %d actual %d\n", 4300 __func__, urb, usb_pipedevice(urb->pipe), 4301 usb_pipeendpoint(urb->pipe), 4302 usb_pipein(urb->pipe) ? "IN" : "OUT", status, 4303 urb->actual_length); 4304 4305 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4306 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb); 4307 for (i = 0; i < urb->number_of_packets; ++i) { 4308 urb->iso_frame_desc[i].actual_length = 4309 dwc2_hcd_urb_get_iso_desc_actual_length( 4310 qtd->urb, i); 4311 urb->iso_frame_desc[i].status = 4312 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i); 4313 } 4314 } 4315 4316 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) { 4317 for (i = 0; i < urb->number_of_packets; i++) 4318 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n", 4319 i, urb->iso_frame_desc[i].status); 4320 } 4321 4322 urb->status = status; 4323 if (!status) { 4324 if ((urb->transfer_flags & URB_SHORT_NOT_OK) && 4325 urb->actual_length < urb->transfer_buffer_length) 4326 urb->status = -EREMOTEIO; 4327 } 4328 4329 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4330 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4331 struct usb_host_endpoint *ep = urb->ep; 4332 4333 if (ep) 4334 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg), 4335 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4336 urb); 4337 } 4338 4339 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb); 4340 urb->hcpriv = NULL; 4341 kfree(qtd->urb); 4342 qtd->urb = NULL; 4343 4344 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status); 4345 } 4346 4347 /* 4348 * Work queue function for starting the HCD when A-Cable is connected 4349 */ 4350 static void dwc2_hcd_start_func(struct work_struct *work) 4351 { 4352 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4353 start_work.work); 4354 4355 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg); 4356 dwc2_host_start(hsotg); 4357 } 4358 4359 /* 4360 * Reset work queue function 4361 */ 4362 static void dwc2_hcd_reset_func(struct work_struct *work) 4363 { 4364 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, 4365 reset_work.work); 4366 unsigned long flags; 4367 u32 hprt0; 4368 4369 dev_dbg(hsotg->dev, "USB RESET function called\n"); 4370 4371 spin_lock_irqsave(&hsotg->lock, flags); 4372 4373 hprt0 = dwc2_read_hprt0(hsotg); 4374 hprt0 &= ~HPRT0_RST; 4375 dwc2_writel(hprt0, hsotg->regs + HPRT0); 4376 hsotg->flags.b.port_reset_change = 1; 4377 4378 spin_unlock_irqrestore(&hsotg->lock, flags); 4379 } 4380 4381 /* 4382 * ========================================================================= 4383 * Linux HC Driver Functions 4384 * ========================================================================= 4385 */ 4386 4387 /* 4388 * Initializes the DWC_otg controller and its root hub and prepares it for host 4389 * mode operation. Activates the root port. Returns 0 on success and a negative 4390 * error code on failure. 4391 */ 4392 static int _dwc2_hcd_start(struct usb_hcd *hcd) 4393 { 4394 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4395 struct usb_bus *bus = hcd_to_bus(hcd); 4396 unsigned long flags; 4397 4398 dev_dbg(hsotg->dev, "DWC OTG HCD START\n"); 4399 4400 spin_lock_irqsave(&hsotg->lock, flags); 4401 hsotg->lx_state = DWC2_L0; 4402 hcd->state = HC_STATE_RUNNING; 4403 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4404 4405 if (dwc2_is_device_mode(hsotg)) { 4406 spin_unlock_irqrestore(&hsotg->lock, flags); 4407 return 0; /* why 0 ?? */ 4408 } 4409 4410 dwc2_hcd_reinit(hsotg); 4411 4412 /* Initialize and connect root hub if one is not already attached */ 4413 if (bus->root_hub) { 4414 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n"); 4415 /* Inform the HUB driver to resume */ 4416 usb_hcd_resume_root_hub(hcd); 4417 } 4418 4419 spin_unlock_irqrestore(&hsotg->lock, flags); 4420 4421 return dwc2_vbus_supply_init(hsotg); 4422 } 4423 4424 /* 4425 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are 4426 * stopped. 4427 */ 4428 static void _dwc2_hcd_stop(struct usb_hcd *hcd) 4429 { 4430 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4431 unsigned long flags; 4432 4433 /* Turn off all host-specific interrupts */ 4434 dwc2_disable_host_interrupts(hsotg); 4435 4436 /* Wait for interrupt processing to finish */ 4437 synchronize_irq(hcd->irq); 4438 4439 spin_lock_irqsave(&hsotg->lock, flags); 4440 /* Ensure hcd is disconnected */ 4441 dwc2_hcd_disconnect(hsotg, true); 4442 dwc2_hcd_stop(hsotg); 4443 hsotg->lx_state = DWC2_L3; 4444 hcd->state = HC_STATE_HALT; 4445 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4446 spin_unlock_irqrestore(&hsotg->lock, flags); 4447 4448 dwc2_vbus_supply_exit(hsotg); 4449 4450 usleep_range(1000, 3000); 4451 } 4452 4453 static int _dwc2_hcd_suspend(struct usb_hcd *hcd) 4454 { 4455 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4456 unsigned long flags; 4457 int ret = 0; 4458 u32 hprt0; 4459 4460 spin_lock_irqsave(&hsotg->lock, flags); 4461 4462 if (dwc2_is_device_mode(hsotg)) 4463 goto unlock; 4464 4465 if (hsotg->lx_state != DWC2_L0) 4466 goto unlock; 4467 4468 if (!HCD_HW_ACCESSIBLE(hcd)) 4469 goto unlock; 4470 4471 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL) 4472 goto unlock; 4473 4474 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) 4475 goto skip_power_saving; 4476 4477 /* 4478 * Drive USB suspend and disable port Power 4479 * if usb bus is not suspended. 4480 */ 4481 if (!hsotg->bus_suspended) { 4482 hprt0 = dwc2_read_hprt0(hsotg); 4483 hprt0 |= HPRT0_SUSP; 4484 hprt0 &= ~HPRT0_PWR; 4485 dwc2_writel(hprt0, hsotg->regs + HPRT0); 4486 dwc2_vbus_supply_exit(hsotg); 4487 } 4488 4489 /* Enter partial_power_down */ 4490 ret = dwc2_enter_partial_power_down(hsotg); 4491 if (ret) { 4492 if (ret != -ENOTSUPP) 4493 dev_err(hsotg->dev, 4494 "enter partial_power_down failed\n"); 4495 goto skip_power_saving; 4496 } 4497 4498 /* Ask phy to be suspended */ 4499 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4500 spin_unlock_irqrestore(&hsotg->lock, flags); 4501 usb_phy_set_suspend(hsotg->uphy, true); 4502 spin_lock_irqsave(&hsotg->lock, flags); 4503 } 4504 4505 /* After entering partial_power_down, hardware is no more accessible */ 4506 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4507 4508 skip_power_saving: 4509 hsotg->lx_state = DWC2_L2; 4510 unlock: 4511 spin_unlock_irqrestore(&hsotg->lock, flags); 4512 4513 return ret; 4514 } 4515 4516 static int _dwc2_hcd_resume(struct usb_hcd *hcd) 4517 { 4518 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4519 unsigned long flags; 4520 int ret = 0; 4521 4522 spin_lock_irqsave(&hsotg->lock, flags); 4523 4524 if (dwc2_is_device_mode(hsotg)) 4525 goto unlock; 4526 4527 if (hsotg->lx_state != DWC2_L2) 4528 goto unlock; 4529 4530 if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) { 4531 hsotg->lx_state = DWC2_L0; 4532 goto unlock; 4533 } 4534 4535 /* 4536 * Set HW accessible bit before powering on the controller 4537 * since an interrupt may rise. 4538 */ 4539 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 4540 4541 /* 4542 * Enable power if not already done. 4543 * This must not be spinlocked since duration 4544 * of this call is unknown. 4545 */ 4546 if (!IS_ERR_OR_NULL(hsotg->uphy)) { 4547 spin_unlock_irqrestore(&hsotg->lock, flags); 4548 usb_phy_set_suspend(hsotg->uphy, false); 4549 spin_lock_irqsave(&hsotg->lock, flags); 4550 } 4551 4552 /* Exit partial_power_down */ 4553 ret = dwc2_exit_partial_power_down(hsotg, true); 4554 if (ret && (ret != -ENOTSUPP)) 4555 dev_err(hsotg->dev, "exit partial_power_down failed\n"); 4556 4557 hsotg->lx_state = DWC2_L0; 4558 4559 spin_unlock_irqrestore(&hsotg->lock, flags); 4560 4561 if (hsotg->bus_suspended) { 4562 spin_lock_irqsave(&hsotg->lock, flags); 4563 hsotg->flags.b.port_suspend_change = 1; 4564 spin_unlock_irqrestore(&hsotg->lock, flags); 4565 dwc2_port_resume(hsotg); 4566 } else { 4567 dwc2_vbus_supply_init(hsotg); 4568 4569 /* Wait for controller to correctly update D+/D- level */ 4570 usleep_range(3000, 5000); 4571 4572 /* 4573 * Clear Port Enable and Port Status changes. 4574 * Enable Port Power. 4575 */ 4576 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET | 4577 HPRT0_ENACHG, hsotg->regs + HPRT0); 4578 /* Wait for controller to detect Port Connect */ 4579 usleep_range(5000, 7000); 4580 } 4581 4582 return ret; 4583 unlock: 4584 spin_unlock_irqrestore(&hsotg->lock, flags); 4585 4586 return ret; 4587 } 4588 4589 /* Returns the current frame number */ 4590 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd) 4591 { 4592 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4593 4594 return dwc2_hcd_get_frame_number(hsotg); 4595 } 4596 4597 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb, 4598 char *fn_name) 4599 { 4600 #ifdef VERBOSE_DEBUG 4601 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4602 char *pipetype = NULL; 4603 char *speed = NULL; 4604 4605 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb); 4606 dev_vdbg(hsotg->dev, " Device address: %d\n", 4607 usb_pipedevice(urb->pipe)); 4608 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n", 4609 usb_pipeendpoint(urb->pipe), 4610 usb_pipein(urb->pipe) ? "IN" : "OUT"); 4611 4612 switch (usb_pipetype(urb->pipe)) { 4613 case PIPE_CONTROL: 4614 pipetype = "CONTROL"; 4615 break; 4616 case PIPE_BULK: 4617 pipetype = "BULK"; 4618 break; 4619 case PIPE_INTERRUPT: 4620 pipetype = "INTERRUPT"; 4621 break; 4622 case PIPE_ISOCHRONOUS: 4623 pipetype = "ISOCHRONOUS"; 4624 break; 4625 } 4626 4627 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype, 4628 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ? 4629 "IN" : "OUT"); 4630 4631 switch (urb->dev->speed) { 4632 case USB_SPEED_HIGH: 4633 speed = "HIGH"; 4634 break; 4635 case USB_SPEED_FULL: 4636 speed = "FULL"; 4637 break; 4638 case USB_SPEED_LOW: 4639 speed = "LOW"; 4640 break; 4641 default: 4642 speed = "UNKNOWN"; 4643 break; 4644 } 4645 4646 dev_vdbg(hsotg->dev, " Speed: %s\n", speed); 4647 dev_vdbg(hsotg->dev, " Max packet size: %d\n", 4648 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); 4649 dev_vdbg(hsotg->dev, " Data buffer length: %d\n", 4650 urb->transfer_buffer_length); 4651 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n", 4652 urb->transfer_buffer, (unsigned long)urb->transfer_dma); 4653 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n", 4654 urb->setup_packet, (unsigned long)urb->setup_dma); 4655 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval); 4656 4657 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 4658 int i; 4659 4660 for (i = 0; i < urb->number_of_packets; i++) { 4661 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i); 4662 dev_vdbg(hsotg->dev, " offset: %d, length %d\n", 4663 urb->iso_frame_desc[i].offset, 4664 urb->iso_frame_desc[i].length); 4665 } 4666 } 4667 #endif 4668 } 4669 4670 /* 4671 * Starts processing a USB transfer request specified by a USB Request Block 4672 * (URB). mem_flags indicates the type of memory allocation to use while 4673 * processing this URB. 4674 */ 4675 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 4676 gfp_t mem_flags) 4677 { 4678 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4679 struct usb_host_endpoint *ep = urb->ep; 4680 struct dwc2_hcd_urb *dwc2_urb; 4681 int i; 4682 int retval; 4683 int alloc_bandwidth = 0; 4684 u8 ep_type = 0; 4685 u32 tflags = 0; 4686 void *buf; 4687 unsigned long flags; 4688 struct dwc2_qh *qh; 4689 bool qh_allocated = false; 4690 struct dwc2_qtd *qtd; 4691 4692 if (dbg_urb(urb)) { 4693 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n"); 4694 dwc2_dump_urb_info(hcd, urb, "urb_enqueue"); 4695 } 4696 4697 if (!ep) 4698 return -EINVAL; 4699 4700 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || 4701 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 4702 spin_lock_irqsave(&hsotg->lock, flags); 4703 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep)) 4704 alloc_bandwidth = 1; 4705 spin_unlock_irqrestore(&hsotg->lock, flags); 4706 } 4707 4708 switch (usb_pipetype(urb->pipe)) { 4709 case PIPE_CONTROL: 4710 ep_type = USB_ENDPOINT_XFER_CONTROL; 4711 break; 4712 case PIPE_ISOCHRONOUS: 4713 ep_type = USB_ENDPOINT_XFER_ISOC; 4714 break; 4715 case PIPE_BULK: 4716 ep_type = USB_ENDPOINT_XFER_BULK; 4717 break; 4718 case PIPE_INTERRUPT: 4719 ep_type = USB_ENDPOINT_XFER_INT; 4720 break; 4721 } 4722 4723 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets, 4724 mem_flags); 4725 if (!dwc2_urb) 4726 return -ENOMEM; 4727 4728 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe), 4729 usb_pipeendpoint(urb->pipe), ep_type, 4730 usb_pipein(urb->pipe), 4731 usb_maxpacket(urb->dev, urb->pipe, 4732 !(usb_pipein(urb->pipe)))); 4733 4734 buf = urb->transfer_buffer; 4735 4736 if (hcd->self.uses_dma) { 4737 if (!buf && (urb->transfer_dma & 3)) { 4738 dev_err(hsotg->dev, 4739 "%s: unaligned transfer with no transfer_buffer", 4740 __func__); 4741 retval = -EINVAL; 4742 goto fail0; 4743 } 4744 } 4745 4746 if (!(urb->transfer_flags & URB_NO_INTERRUPT)) 4747 tflags |= URB_GIVEBACK_ASAP; 4748 if (urb->transfer_flags & URB_ZERO_PACKET) 4749 tflags |= URB_SEND_ZERO_PACKET; 4750 4751 dwc2_urb->priv = urb; 4752 dwc2_urb->buf = buf; 4753 dwc2_urb->dma = urb->transfer_dma; 4754 dwc2_urb->length = urb->transfer_buffer_length; 4755 dwc2_urb->setup_packet = urb->setup_packet; 4756 dwc2_urb->setup_dma = urb->setup_dma; 4757 dwc2_urb->flags = tflags; 4758 dwc2_urb->interval = urb->interval; 4759 dwc2_urb->status = -EINPROGRESS; 4760 4761 for (i = 0; i < urb->number_of_packets; ++i) 4762 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i, 4763 urb->iso_frame_desc[i].offset, 4764 urb->iso_frame_desc[i].length); 4765 4766 urb->hcpriv = dwc2_urb; 4767 qh = (struct dwc2_qh *)ep->hcpriv; 4768 /* Create QH for the endpoint if it doesn't exist */ 4769 if (!qh) { 4770 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags); 4771 if (!qh) { 4772 retval = -ENOMEM; 4773 goto fail0; 4774 } 4775 ep->hcpriv = qh; 4776 qh_allocated = true; 4777 } 4778 4779 qtd = kzalloc(sizeof(*qtd), mem_flags); 4780 if (!qtd) { 4781 retval = -ENOMEM; 4782 goto fail1; 4783 } 4784 4785 spin_lock_irqsave(&hsotg->lock, flags); 4786 retval = usb_hcd_link_urb_to_ep(hcd, urb); 4787 if (retval) 4788 goto fail2; 4789 4790 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd); 4791 if (retval) 4792 goto fail3; 4793 4794 if (alloc_bandwidth) { 4795 dwc2_allocate_bus_bandwidth(hcd, 4796 dwc2_hcd_get_ep_bandwidth(hsotg, ep), 4797 urb); 4798 } 4799 4800 spin_unlock_irqrestore(&hsotg->lock, flags); 4801 4802 return 0; 4803 4804 fail3: 4805 dwc2_urb->priv = NULL; 4806 usb_hcd_unlink_urb_from_ep(hcd, urb); 4807 if (qh_allocated && qh->channel && qh->channel->qh == qh) 4808 qh->channel->qh = NULL; 4809 fail2: 4810 spin_unlock_irqrestore(&hsotg->lock, flags); 4811 urb->hcpriv = NULL; 4812 kfree(qtd); 4813 qtd = NULL; 4814 fail1: 4815 if (qh_allocated) { 4816 struct dwc2_qtd *qtd2, *qtd2_tmp; 4817 4818 ep->hcpriv = NULL; 4819 dwc2_hcd_qh_unlink(hsotg, qh); 4820 /* Free each QTD in the QH's QTD list */ 4821 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list, 4822 qtd_list_entry) 4823 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh); 4824 dwc2_hcd_qh_free(hsotg, qh); 4825 } 4826 fail0: 4827 kfree(dwc2_urb); 4828 4829 return retval; 4830 } 4831 4832 /* 4833 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success. 4834 */ 4835 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, 4836 int status) 4837 { 4838 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4839 int rc; 4840 unsigned long flags; 4841 4842 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n"); 4843 dwc2_dump_urb_info(hcd, urb, "urb_dequeue"); 4844 4845 spin_lock_irqsave(&hsotg->lock, flags); 4846 4847 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 4848 if (rc) 4849 goto out; 4850 4851 if (!urb->hcpriv) { 4852 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n"); 4853 goto out; 4854 } 4855 4856 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv); 4857 4858 usb_hcd_unlink_urb_from_ep(hcd, urb); 4859 4860 kfree(urb->hcpriv); 4861 urb->hcpriv = NULL; 4862 4863 /* Higher layer software sets URB status */ 4864 spin_unlock(&hsotg->lock); 4865 usb_hcd_giveback_urb(hcd, urb, status); 4866 spin_lock(&hsotg->lock); 4867 4868 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n"); 4869 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status); 4870 out: 4871 spin_unlock_irqrestore(&hsotg->lock, flags); 4872 4873 return rc; 4874 } 4875 4876 /* 4877 * Frees resources in the DWC_otg controller related to a given endpoint. Also 4878 * clears state in the HCD related to the endpoint. Any URBs for the endpoint 4879 * must already be dequeued. 4880 */ 4881 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd, 4882 struct usb_host_endpoint *ep) 4883 { 4884 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4885 4886 dev_dbg(hsotg->dev, 4887 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n", 4888 ep->desc.bEndpointAddress, ep->hcpriv); 4889 dwc2_hcd_endpoint_disable(hsotg, ep, 250); 4890 } 4891 4892 /* 4893 * Resets endpoint specific parameter values, in current version used to reset 4894 * the data toggle (as a WA). This function can be called from usb_clear_halt 4895 * routine. 4896 */ 4897 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd, 4898 struct usb_host_endpoint *ep) 4899 { 4900 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4901 unsigned long flags; 4902 4903 dev_dbg(hsotg->dev, 4904 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n", 4905 ep->desc.bEndpointAddress); 4906 4907 spin_lock_irqsave(&hsotg->lock, flags); 4908 dwc2_hcd_endpoint_reset(hsotg, ep); 4909 spin_unlock_irqrestore(&hsotg->lock, flags); 4910 } 4911 4912 /* 4913 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if 4914 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid 4915 * interrupt. 4916 * 4917 * This function is called by the USB core when an interrupt occurs 4918 */ 4919 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd) 4920 { 4921 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4922 4923 return dwc2_handle_hcd_intr(hsotg); 4924 } 4925 4926 /* 4927 * Creates Status Change bitmap for the root hub and root port. The bitmap is 4928 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 4929 * is the status change indicator for the single root port. Returns 1 if either 4930 * change indicator is 1, otherwise returns 0. 4931 */ 4932 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) 4933 { 4934 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4935 4936 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1; 4937 return buf[0] != 0; 4938 } 4939 4940 /* Handles hub class-specific requests */ 4941 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue, 4942 u16 windex, char *buf, u16 wlength) 4943 { 4944 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq, 4945 wvalue, windex, buf, wlength); 4946 return retval; 4947 } 4948 4949 /* Handles hub TT buffer clear completions */ 4950 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd, 4951 struct usb_host_endpoint *ep) 4952 { 4953 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4954 struct dwc2_qh *qh; 4955 unsigned long flags; 4956 4957 qh = ep->hcpriv; 4958 if (!qh) 4959 return; 4960 4961 spin_lock_irqsave(&hsotg->lock, flags); 4962 qh->tt_buffer_dirty = 0; 4963 4964 if (hsotg->flags.b.port_connect_status) 4965 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL); 4966 4967 spin_unlock_irqrestore(&hsotg->lock, flags); 4968 } 4969 4970 /* 4971 * HPRT0_SPD_HIGH_SPEED: high speed 4972 * HPRT0_SPD_FULL_SPEED: full speed 4973 */ 4974 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed) 4975 { 4976 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4977 4978 if (hsotg->params.speed == speed) 4979 return; 4980 4981 hsotg->params.speed = speed; 4982 queue_work(hsotg->wq_otg, &hsotg->wf_otg); 4983 } 4984 4985 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 4986 { 4987 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 4988 4989 if (!hsotg->params.change_speed_quirk) 4990 return; 4991 4992 /* 4993 * On removal, set speed to default high-speed. 4994 */ 4995 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN && 4996 udev->parent->speed < USB_SPEED_HIGH) { 4997 dev_info(hsotg->dev, "Set speed to default high-speed\n"); 4998 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 4999 } 5000 } 5001 5002 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 5003 { 5004 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); 5005 5006 if (!hsotg->params.change_speed_quirk) 5007 return 0; 5008 5009 if (udev->speed == USB_SPEED_HIGH) { 5010 dev_info(hsotg->dev, "Set speed to high-speed\n"); 5011 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); 5012 } else if ((udev->speed == USB_SPEED_FULL || 5013 udev->speed == USB_SPEED_LOW)) { 5014 /* 5015 * Change speed setting to full-speed if there's 5016 * a full-speed or low-speed device plugged in. 5017 */ 5018 dev_info(hsotg->dev, "Set speed to full-speed\n"); 5019 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED); 5020 } 5021 5022 return 0; 5023 } 5024 5025 static struct hc_driver dwc2_hc_driver = { 5026 .description = "dwc2_hsotg", 5027 .product_desc = "DWC OTG Controller", 5028 .hcd_priv_size = sizeof(struct wrapper_priv_data), 5029 5030 .irq = _dwc2_hcd_irq, 5031 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH, 5032 5033 .start = _dwc2_hcd_start, 5034 .stop = _dwc2_hcd_stop, 5035 .urb_enqueue = _dwc2_hcd_urb_enqueue, 5036 .urb_dequeue = _dwc2_hcd_urb_dequeue, 5037 .endpoint_disable = _dwc2_hcd_endpoint_disable, 5038 .endpoint_reset = _dwc2_hcd_endpoint_reset, 5039 .get_frame_number = _dwc2_hcd_get_frame_number, 5040 5041 .hub_status_data = _dwc2_hcd_hub_status_data, 5042 .hub_control = _dwc2_hcd_hub_control, 5043 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete, 5044 5045 .bus_suspend = _dwc2_hcd_suspend, 5046 .bus_resume = _dwc2_hcd_resume, 5047 5048 .map_urb_for_dma = dwc2_map_urb_for_dma, 5049 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma, 5050 }; 5051 5052 /* 5053 * Frees secondary storage associated with the dwc2_hsotg structure contained 5054 * in the struct usb_hcd field 5055 */ 5056 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg) 5057 { 5058 u32 ahbcfg; 5059 u32 dctl; 5060 int i; 5061 5062 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n"); 5063 5064 /* Free memory for QH/QTD lists */ 5065 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive); 5066 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting); 5067 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active); 5068 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive); 5069 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready); 5070 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned); 5071 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued); 5072 5073 /* Free memory for the host channels */ 5074 for (i = 0; i < MAX_EPS_CHANNELS; i++) { 5075 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; 5076 5077 if (chan) { 5078 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n", 5079 i, chan); 5080 hsotg->hc_ptr_array[i] = NULL; 5081 kfree(chan); 5082 } 5083 } 5084 5085 if (hsotg->params.host_dma) { 5086 if (hsotg->status_buf) { 5087 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, 5088 hsotg->status_buf, 5089 hsotg->status_buf_dma); 5090 hsotg->status_buf = NULL; 5091 } 5092 } else { 5093 kfree(hsotg->status_buf); 5094 hsotg->status_buf = NULL; 5095 } 5096 5097 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG); 5098 5099 /* Disable all interrupts */ 5100 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; 5101 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG); 5102 dwc2_writel(0, hsotg->regs + GINTMSK); 5103 5104 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) { 5105 dctl = dwc2_readl(hsotg->regs + DCTL); 5106 dctl |= DCTL_SFTDISCON; 5107 dwc2_writel(dctl, hsotg->regs + DCTL); 5108 } 5109 5110 if (hsotg->wq_otg) { 5111 if (!cancel_work_sync(&hsotg->wf_otg)) 5112 flush_workqueue(hsotg->wq_otg); 5113 destroy_workqueue(hsotg->wq_otg); 5114 } 5115 5116 del_timer(&hsotg->wkp_timer); 5117 } 5118 5119 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg) 5120 { 5121 /* Turn off all host-specific interrupts */ 5122 dwc2_disable_host_interrupts(hsotg); 5123 5124 dwc2_hcd_free(hsotg); 5125 } 5126 5127 /* 5128 * Initializes the HCD. This function allocates memory for and initializes the 5129 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the 5130 * USB bus with the core and calls the hc_driver->start() function. It returns 5131 * a negative error on failure. 5132 */ 5133 int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 5134 { 5135 struct platform_device *pdev = to_platform_device(hsotg->dev); 5136 struct resource *res; 5137 struct usb_hcd *hcd; 5138 struct dwc2_host_chan *channel; 5139 u32 hcfg; 5140 int i, num_channels; 5141 int retval; 5142 5143 if (usb_disabled()) 5144 return -ENODEV; 5145 5146 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n"); 5147 5148 retval = -ENOMEM; 5149 5150 hcfg = dwc2_readl(hsotg->regs + HCFG); 5151 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg); 5152 5153 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5154 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE, 5155 sizeof(*hsotg->frame_num_array), 5156 GFP_KERNEL); 5157 if (!hsotg->frame_num_array) 5158 goto error1; 5159 hsotg->last_frame_num_array = 5160 kcalloc(FRAME_NUM_ARRAY_SIZE, 5161 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL); 5162 if (!hsotg->last_frame_num_array) 5163 goto error1; 5164 #endif 5165 hsotg->last_frame_num = HFNUM_MAX_FRNUM; 5166 5167 /* Check if the bus driver or platform code has setup a dma_mask */ 5168 if (hsotg->params.host_dma && 5169 !hsotg->dev->dma_mask) { 5170 dev_warn(hsotg->dev, 5171 "dma_mask not set, disabling DMA\n"); 5172 hsotg->params.host_dma = false; 5173 hsotg->params.dma_desc_enable = false; 5174 } 5175 5176 /* Set device flags indicating whether the HCD supports DMA */ 5177 if (hsotg->params.host_dma) { 5178 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5179 dev_warn(hsotg->dev, "can't set DMA mask\n"); 5180 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) 5181 dev_warn(hsotg->dev, "can't set coherent DMA mask\n"); 5182 } 5183 5184 if (hsotg->params.change_speed_quirk) { 5185 dwc2_hc_driver.free_dev = dwc2_free_dev; 5186 dwc2_hc_driver.reset_device = dwc2_reset_device; 5187 } 5188 5189 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev)); 5190 if (!hcd) 5191 goto error1; 5192 5193 if (!hsotg->params.host_dma) 5194 hcd->self.uses_dma = 0; 5195 5196 hcd->has_tt = 1; 5197 5198 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 5199 hcd->rsrc_start = res->start; 5200 hcd->rsrc_len = resource_size(res); 5201 5202 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg; 5203 hsotg->priv = hcd; 5204 5205 /* 5206 * Disable the global interrupt until all the interrupt handlers are 5207 * installed 5208 */ 5209 dwc2_disable_global_interrupts(hsotg); 5210 5211 /* Initialize the DWC_otg core, and select the Phy type */ 5212 retval = dwc2_core_init(hsotg, true); 5213 if (retval) 5214 goto error2; 5215 5216 /* Create new workqueue and init work */ 5217 retval = -ENOMEM; 5218 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0); 5219 if (!hsotg->wq_otg) { 5220 dev_err(hsotg->dev, "Failed to create workqueue\n"); 5221 goto error2; 5222 } 5223 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change); 5224 5225 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0); 5226 5227 /* Initialize the non-periodic schedule */ 5228 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive); 5229 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting); 5230 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active); 5231 5232 /* Initialize the periodic schedule */ 5233 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive); 5234 INIT_LIST_HEAD(&hsotg->periodic_sched_ready); 5235 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned); 5236 INIT_LIST_HEAD(&hsotg->periodic_sched_queued); 5237 5238 INIT_LIST_HEAD(&hsotg->split_order); 5239 5240 /* 5241 * Create a host channel descriptor for each host channel implemented 5242 * in the controller. Initialize the channel descriptor array. 5243 */ 5244 INIT_LIST_HEAD(&hsotg->free_hc_list); 5245 num_channels = hsotg->params.host_channels; 5246 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array)); 5247 5248 for (i = 0; i < num_channels; i++) { 5249 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 5250 if (!channel) 5251 goto error3; 5252 channel->hc_num = i; 5253 INIT_LIST_HEAD(&channel->split_order_list_entry); 5254 hsotg->hc_ptr_array[i] = channel; 5255 } 5256 5257 /* Initialize hsotg start work */ 5258 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func); 5259 5260 /* Initialize port reset work */ 5261 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func); 5262 5263 /* 5264 * Allocate space for storing data on status transactions. Normally no 5265 * data is sent, but this space acts as a bit bucket. This must be 5266 * done after usb_add_hcd since that function allocates the DMA buffer 5267 * pool. 5268 */ 5269 if (hsotg->params.host_dma) 5270 hsotg->status_buf = dma_alloc_coherent(hsotg->dev, 5271 DWC2_HCD_STATUS_BUF_SIZE, 5272 &hsotg->status_buf_dma, GFP_KERNEL); 5273 else 5274 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE, 5275 GFP_KERNEL); 5276 5277 if (!hsotg->status_buf) 5278 goto error3; 5279 5280 /* 5281 * Create kmem caches to handle descriptor buffers in descriptor 5282 * DMA mode. 5283 * Alignment must be set to 512 bytes. 5284 */ 5285 if (hsotg->params.dma_desc_enable || 5286 hsotg->params.dma_desc_fs_enable) { 5287 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc", 5288 sizeof(struct dwc2_dma_desc) * 5289 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA, 5290 NULL); 5291 if (!hsotg->desc_gen_cache) { 5292 dev_err(hsotg->dev, 5293 "unable to create dwc2 generic desc cache\n"); 5294 5295 /* 5296 * Disable descriptor dma mode since it will not be 5297 * usable. 5298 */ 5299 hsotg->params.dma_desc_enable = false; 5300 hsotg->params.dma_desc_fs_enable = false; 5301 } 5302 5303 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc", 5304 sizeof(struct dwc2_dma_desc) * 5305 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL); 5306 if (!hsotg->desc_hsisoc_cache) { 5307 dev_err(hsotg->dev, 5308 "unable to create dwc2 hs isoc desc cache\n"); 5309 5310 kmem_cache_destroy(hsotg->desc_gen_cache); 5311 5312 /* 5313 * Disable descriptor dma mode since it will not be 5314 * usable. 5315 */ 5316 hsotg->params.dma_desc_enable = false; 5317 hsotg->params.dma_desc_fs_enable = false; 5318 } 5319 } 5320 5321 if (hsotg->params.host_dma) { 5322 /* 5323 * Create kmem caches to handle non-aligned buffer 5324 * in Buffer DMA mode. 5325 */ 5326 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma", 5327 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4, 5328 SLAB_CACHE_DMA, NULL); 5329 if (!hsotg->unaligned_cache) 5330 dev_err(hsotg->dev, 5331 "unable to create dwc2 unaligned cache\n"); 5332 } 5333 5334 hsotg->otg_port = 1; 5335 hsotg->frame_list = NULL; 5336 hsotg->frame_list_dma = 0; 5337 hsotg->periodic_qh_count = 0; 5338 5339 /* Initiate lx_state to L3 disconnected state */ 5340 hsotg->lx_state = DWC2_L3; 5341 5342 hcd->self.otg_port = hsotg->otg_port; 5343 5344 /* Don't support SG list at this point */ 5345 hcd->self.sg_tablesize = 0; 5346 5347 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5348 otg_set_host(hsotg->uphy->otg, &hcd->self); 5349 5350 /* 5351 * Finish generic HCD initialization and start the HCD. This function 5352 * allocates the DMA buffer pool, registers the USB bus, requests the 5353 * IRQ line, and calls hcd_start method. 5354 */ 5355 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED); 5356 if (retval < 0) 5357 goto error4; 5358 5359 device_wakeup_enable(hcd->self.controller); 5360 5361 dwc2_hcd_dump_state(hsotg); 5362 5363 dwc2_enable_global_interrupts(hsotg); 5364 5365 return 0; 5366 5367 error4: 5368 kmem_cache_destroy(hsotg->unaligned_cache); 5369 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5370 kmem_cache_destroy(hsotg->desc_gen_cache); 5371 error3: 5372 dwc2_hcd_release(hsotg); 5373 error2: 5374 usb_put_hcd(hcd); 5375 error1: 5376 5377 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5378 kfree(hsotg->last_frame_num_array); 5379 kfree(hsotg->frame_num_array); 5380 #endif 5381 5382 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval); 5383 return retval; 5384 } 5385 5386 /* 5387 * Removes the HCD. 5388 * Frees memory and resources associated with the HCD and deregisters the bus. 5389 */ 5390 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) 5391 { 5392 struct usb_hcd *hcd; 5393 5394 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n"); 5395 5396 hcd = dwc2_hsotg_to_hcd(hsotg); 5397 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd); 5398 5399 if (!hcd) { 5400 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n", 5401 __func__); 5402 return; 5403 } 5404 5405 if (!IS_ERR_OR_NULL(hsotg->uphy)) 5406 otg_set_host(hsotg->uphy->otg, NULL); 5407 5408 usb_remove_hcd(hcd); 5409 hsotg->priv = NULL; 5410 5411 kmem_cache_destroy(hsotg->unaligned_cache); 5412 kmem_cache_destroy(hsotg->desc_hsisoc_cache); 5413 kmem_cache_destroy(hsotg->desc_gen_cache); 5414 5415 dwc2_hcd_release(hsotg); 5416 usb_put_hcd(hcd); 5417 5418 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 5419 kfree(hsotg->last_frame_num_array); 5420 kfree(hsotg->frame_num_array); 5421 #endif 5422 } 5423 5424 /** 5425 * dwc2_backup_host_registers() - Backup controller host registers. 5426 * When suspending usb bus, registers needs to be backuped 5427 * if controller power is disabled once suspended. 5428 * 5429 * @hsotg: Programming view of the DWC_otg controller 5430 */ 5431 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 5432 { 5433 struct dwc2_hregs_backup *hr; 5434 int i; 5435 5436 dev_dbg(hsotg->dev, "%s\n", __func__); 5437 5438 /* Backup Host regs */ 5439 hr = &hsotg->hr_backup; 5440 hr->hcfg = dwc2_readl(hsotg->regs + HCFG); 5441 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK); 5442 for (i = 0; i < hsotg->params.host_channels; ++i) 5443 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i)); 5444 5445 hr->hprt0 = dwc2_read_hprt0(hsotg); 5446 hr->hfir = dwc2_readl(hsotg->regs + HFIR); 5447 hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ); 5448 hr->valid = true; 5449 5450 return 0; 5451 } 5452 5453 /** 5454 * dwc2_restore_host_registers() - Restore controller host registers. 5455 * When resuming usb bus, device registers needs to be restored 5456 * if controller power were disabled. 5457 * 5458 * @hsotg: Programming view of the DWC_otg controller 5459 */ 5460 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 5461 { 5462 struct dwc2_hregs_backup *hr; 5463 int i; 5464 5465 dev_dbg(hsotg->dev, "%s\n", __func__); 5466 5467 /* Restore host regs */ 5468 hr = &hsotg->hr_backup; 5469 if (!hr->valid) { 5470 dev_err(hsotg->dev, "%s: no host registers to restore\n", 5471 __func__); 5472 return -EINVAL; 5473 } 5474 hr->valid = false; 5475 5476 dwc2_writel(hr->hcfg, hsotg->regs + HCFG); 5477 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK); 5478 5479 for (i = 0; i < hsotg->params.host_channels; ++i) 5480 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i)); 5481 5482 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0); 5483 dwc2_writel(hr->hfir, hsotg->regs + HFIR); 5484 dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ); 5485 hsotg->frame_number = 0; 5486 5487 return 0; 5488 } 5489 5490 /** 5491 * dwc2_host_enter_hibernation() - Put controller in Hibernation. 5492 * 5493 * @hsotg: Programming view of the DWC_otg controller 5494 */ 5495 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) 5496 { 5497 unsigned long flags; 5498 int ret = 0; 5499 u32 hprt0; 5500 u32 pcgcctl; 5501 u32 gusbcfg; 5502 u32 gpwrdn; 5503 5504 dev_dbg(hsotg->dev, "Preparing host for hibernation\n"); 5505 ret = dwc2_backup_global_registers(hsotg); 5506 if (ret) { 5507 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5508 __func__); 5509 return ret; 5510 } 5511 ret = dwc2_backup_host_registers(hsotg); 5512 if (ret) { 5513 dev_err(hsotg->dev, "%s: failed to backup host registers\n", 5514 __func__); 5515 return ret; 5516 } 5517 5518 /* Enter USB Suspend Mode */ 5519 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 5520 hprt0 |= HPRT0_SUSP; 5521 hprt0 &= ~HPRT0_ENA; 5522 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5523 5524 /* Wait for the HPRT0.PrtSusp register field to be set */ 5525 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000)) 5526 dev_warn(hsotg->dev, "Suspend wasn't generated\n"); 5527 5528 /* 5529 * We need to disable interrupts to prevent servicing of any IRQ 5530 * during going to hibernation 5531 */ 5532 spin_lock_irqsave(&hsotg->lock, flags); 5533 hsotg->lx_state = DWC2_L2; 5534 5535 gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 5536 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) { 5537 /* ULPI interface */ 5538 /* Suspend the Phy Clock */ 5539 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL); 5540 pcgcctl |= PCGCTL_STOPPCLK; 5541 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL); 5542 udelay(10); 5543 5544 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5545 gpwrdn |= GPWRDN_PMUACTV; 5546 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5547 udelay(10); 5548 } else { 5549 /* UTMI+ Interface */ 5550 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5551 gpwrdn |= GPWRDN_PMUACTV; 5552 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5553 udelay(10); 5554 5555 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL); 5556 pcgcctl |= PCGCTL_STOPPCLK; 5557 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL); 5558 udelay(10); 5559 } 5560 5561 /* Enable interrupts from wake up logic */ 5562 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5563 gpwrdn |= GPWRDN_PMUINTSEL; 5564 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5565 udelay(10); 5566 5567 /* Unmask host mode interrupts in GPWRDN */ 5568 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5569 gpwrdn |= GPWRDN_DISCONN_DET_MSK; 5570 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5571 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5572 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5573 udelay(10); 5574 5575 /* Enable Power Down Clamp */ 5576 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5577 gpwrdn |= GPWRDN_PWRDNCLMP; 5578 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5579 udelay(10); 5580 5581 /* Switch off VDD */ 5582 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5583 gpwrdn |= GPWRDN_PWRDNSWTCH; 5584 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5585 5586 hsotg->hibernated = 1; 5587 hsotg->bus_suspended = 1; 5588 dev_dbg(hsotg->dev, "Host hibernation completed\n"); 5589 spin_unlock_irqrestore(&hsotg->lock, flags); 5590 return ret; 5591 } 5592 5593 /* 5594 * dwc2_host_exit_hibernation() 5595 * 5596 * @hsotg: Programming view of the DWC_otg controller 5597 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5598 * @param reset: indicates whether resume is initiated by Reset. 5599 * 5600 * Return: non-zero if failed to enter to hibernation. 5601 * 5602 * This function is for exiting from Host mode hibernation by 5603 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup. 5604 */ 5605 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, 5606 int reset) 5607 { 5608 u32 gpwrdn; 5609 u32 hprt0; 5610 int ret = 0; 5611 struct dwc2_gregs_backup *gr; 5612 struct dwc2_hregs_backup *hr; 5613 5614 gr = &hsotg->gr_backup; 5615 hr = &hsotg->hr_backup; 5616 5617 dev_dbg(hsotg->dev, 5618 "%s: called with rem_wakeup = %d reset = %d\n", 5619 __func__, rem_wakeup, reset); 5620 5621 dwc2_hib_restore_common(hsotg, rem_wakeup, 1); 5622 hsotg->hibernated = 0; 5623 5624 /* 5625 * This step is not described in functional spec but if not wait for 5626 * this delay, mismatch interrupts occurred because just after restore 5627 * core is in Device mode(gintsts.curmode == 0) 5628 */ 5629 mdelay(100); 5630 5631 /* Clear all pending interupts */ 5632 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5633 5634 /* De-assert Restore */ 5635 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5636 gpwrdn &= ~GPWRDN_RESTORE; 5637 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5638 udelay(10); 5639 5640 /* Restore GUSBCFG, HCFG */ 5641 dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG); 5642 dwc2_writel(hr->hcfg, hsotg->regs + HCFG); 5643 5644 /* De-assert Wakeup Logic */ 5645 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN); 5646 gpwrdn &= ~GPWRDN_PMUACTV; 5647 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN); 5648 udelay(10); 5649 5650 hprt0 = hr->hprt0; 5651 hprt0 |= HPRT0_PWR; 5652 hprt0 &= ~HPRT0_ENA; 5653 hprt0 &= ~HPRT0_SUSP; 5654 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5655 5656 hprt0 = hr->hprt0; 5657 hprt0 |= HPRT0_PWR; 5658 hprt0 &= ~HPRT0_ENA; 5659 hprt0 &= ~HPRT0_SUSP; 5660 5661 if (reset) { 5662 hprt0 |= HPRT0_RST; 5663 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5664 5665 /* Wait for Resume time and then program HPRT again */ 5666 mdelay(60); 5667 hprt0 &= ~HPRT0_RST; 5668 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5669 } else { 5670 hprt0 |= HPRT0_RES; 5671 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5672 5673 /* Wait for Resume time and then program HPRT again */ 5674 mdelay(100); 5675 hprt0 &= ~HPRT0_RES; 5676 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5677 } 5678 /* Clear all interrupt status */ 5679 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 5680 hprt0 |= HPRT0_CONNDET; 5681 hprt0 |= HPRT0_ENACHG; 5682 hprt0 &= ~HPRT0_ENA; 5683 dwc2_writel(hprt0, hsotg->regs + HPRT0); 5684 5685 hprt0 = dwc2_readl(hsotg->regs + HPRT0); 5686 5687 /* Clear all pending interupts */ 5688 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 5689 5690 /* Restore global registers */ 5691 ret = dwc2_restore_global_registers(hsotg); 5692 if (ret) { 5693 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5694 __func__); 5695 return ret; 5696 } 5697 5698 /* Restore host registers */ 5699 ret = dwc2_restore_host_registers(hsotg); 5700 if (ret) { 5701 dev_err(hsotg->dev, "%s: failed to restore host registers\n", 5702 __func__); 5703 return ret; 5704 } 5705 5706 dwc2_hcd_rem_wakeup(hsotg); 5707 5708 hsotg->hibernated = 0; 5709 hsotg->bus_suspended = 0; 5710 hsotg->lx_state = DWC2_L0; 5711 dev_dbg(hsotg->dev, "Host hibernation restore complete\n"); 5712 return ret; 5713 } 5714