xref: /linux/drivers/usb/dwc2/hcd.c (revision 96ac6d435100450f0565708d9b885ea2a7400e0a)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99 
100 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
101 {
102 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
103 
104 	switch (hsotg->hw_params.arch) {
105 	case GHWCFG2_EXT_DMA_ARCH:
106 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
107 		return -EINVAL;
108 
109 	case GHWCFG2_INT_DMA_ARCH:
110 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
111 		if (hsotg->params.ahbcfg != -1) {
112 			ahbcfg &= GAHBCFG_CTRL_MASK;
113 			ahbcfg |= hsotg->params.ahbcfg &
114 				  ~GAHBCFG_CTRL_MASK;
115 		}
116 		break;
117 
118 	case GHWCFG2_SLAVE_ONLY_ARCH:
119 	default:
120 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
121 		break;
122 	}
123 
124 	if (hsotg->params.host_dma)
125 		ahbcfg |= GAHBCFG_DMA_EN;
126 	else
127 		hsotg->params.dma_desc_enable = false;
128 
129 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
130 
131 	return 0;
132 }
133 
134 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
135 {
136 	u32 usbcfg;
137 
138 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
140 
141 	switch (hsotg->hw_params.op_mode) {
142 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
143 		if (hsotg->params.otg_cap ==
144 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
145 			usbcfg |= GUSBCFG_HNPCAP;
146 		if (hsotg->params.otg_cap !=
147 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
148 			usbcfg |= GUSBCFG_SRPCAP;
149 		break;
150 
151 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
152 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
153 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
154 		if (hsotg->params.otg_cap !=
155 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
156 			usbcfg |= GUSBCFG_SRPCAP;
157 		break;
158 
159 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
160 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
161 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
162 	default:
163 		break;
164 	}
165 
166 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
167 }
168 
169 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
170 {
171 	if (hsotg->vbus_supply)
172 		return regulator_enable(hsotg->vbus_supply);
173 
174 	return 0;
175 }
176 
177 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
178 {
179 	if (hsotg->vbus_supply)
180 		return regulator_disable(hsotg->vbus_supply);
181 
182 	return 0;
183 }
184 
185 /**
186  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
187  *
188  * @hsotg: Programming view of DWC_otg controller
189  */
190 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
191 {
192 	u32 intmsk;
193 
194 	dev_dbg(hsotg->dev, "%s()\n", __func__);
195 
196 	/* Disable all interrupts */
197 	dwc2_writel(hsotg, 0, GINTMSK);
198 	dwc2_writel(hsotg, 0, HAINTMSK);
199 
200 	/* Enable the common interrupts */
201 	dwc2_enable_common_interrupts(hsotg);
202 
203 	/* Enable host mode interrupts without disturbing common interrupts */
204 	intmsk = dwc2_readl(hsotg, GINTMSK);
205 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
206 	dwc2_writel(hsotg, intmsk, GINTMSK);
207 }
208 
209 /**
210  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
211  *
212  * @hsotg: Programming view of DWC_otg controller
213  */
214 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
215 {
216 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
217 
218 	/* Disable host mode interrupts without disturbing common interrupts */
219 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
220 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
221 	dwc2_writel(hsotg, intmsk, GINTMSK);
222 }
223 
224 /*
225  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226  * For system that have a total fifo depth that is smaller than the default
227  * RX + TX fifo size.
228  *
229  * @hsotg: Programming view of DWC_otg controller
230  */
231 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
232 {
233 	struct dwc2_core_params *params = &hsotg->params;
234 	struct dwc2_hw_params *hw = &hsotg->hw_params;
235 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
236 
237 	total_fifo_size = hw->total_fifo_size;
238 	rxfsiz = params->host_rx_fifo_size;
239 	nptxfsiz = params->host_nperio_tx_fifo_size;
240 	ptxfsiz = params->host_perio_tx_fifo_size;
241 
242 	/*
243 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244 	 * allocation with support for high bandwidth endpoints. Synopsys
245 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
246 	 * non-periodic as 512.
247 	 */
248 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
249 		/*
250 		 * For Buffer DMA mode/Scatter Gather DMA mode
251 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252 		 * with n = number of host channel.
253 		 * 2 * ((1024/4) + 2) = 516
254 		 */
255 		rxfsiz = 516 + hw->host_channels;
256 
257 		/*
258 		 * min non-periodic tx fifo depth
259 		 * 2 * (largest non-periodic USB packet used / 4)
260 		 * 2 * (512/4) = 256
261 		 */
262 		nptxfsiz = 256;
263 
264 		/*
265 		 * min periodic tx fifo depth
266 		 * (largest packet size*MC)/4
267 		 * (1024 * 3)/4 = 768
268 		 */
269 		ptxfsiz = 768;
270 
271 		params->host_rx_fifo_size = rxfsiz;
272 		params->host_nperio_tx_fifo_size = nptxfsiz;
273 		params->host_perio_tx_fifo_size = ptxfsiz;
274 	}
275 
276 	/*
277 	 * If the summation of RX, NPTX and PTX fifo sizes is still
278 	 * bigger than the total_fifo_size, then we have a problem.
279 	 *
280 	 * We won't be able to allocate as many endpoints. Right now,
281 	 * we're just printing an error message, but ideally this FIFO
282 	 * allocation algorithm would be improved in the future.
283 	 *
284 	 * FIXME improve this FIFO allocation algorithm.
285 	 */
286 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
287 		dev_err(hsotg->dev, "invalid fifo sizes\n");
288 }
289 
290 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
291 {
292 	struct dwc2_core_params *params = &hsotg->params;
293 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
294 
295 	if (!params->enable_dynamic_fifo)
296 		return;
297 
298 	dwc2_calculate_dynamic_fifo(hsotg);
299 
300 	/* Rx FIFO */
301 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
302 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
303 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
304 	grxfsiz |= params->host_rx_fifo_size <<
305 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
306 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
307 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
308 		dwc2_readl(hsotg, GRXFSIZ));
309 
310 	/* Non-periodic Tx FIFO */
311 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
312 		dwc2_readl(hsotg, GNPTXFSIZ));
313 	nptxfsiz = params->host_nperio_tx_fifo_size <<
314 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
315 	nptxfsiz |= params->host_rx_fifo_size <<
316 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
317 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
318 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
319 		dwc2_readl(hsotg, GNPTXFSIZ));
320 
321 	/* Periodic Tx FIFO */
322 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
323 		dwc2_readl(hsotg, HPTXFSIZ));
324 	hptxfsiz = params->host_perio_tx_fifo_size <<
325 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
326 	hptxfsiz |= (params->host_rx_fifo_size +
327 		     params->host_nperio_tx_fifo_size) <<
328 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
329 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
330 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
331 		dwc2_readl(hsotg, HPTXFSIZ));
332 
333 	if (hsotg->params.en_multiple_tx_fifo &&
334 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
335 		/*
336 		 * This feature was implemented in 2.91a version
337 		 * Global DFIFOCFG calculation for Host mode -
338 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
339 		 */
340 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
341 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
342 		dfifocfg |= (params->host_rx_fifo_size +
343 			     params->host_nperio_tx_fifo_size +
344 			     params->host_perio_tx_fifo_size) <<
345 			    GDFIFOCFG_EPINFOBASE_SHIFT &
346 			    GDFIFOCFG_EPINFOBASE_MASK;
347 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
348 	}
349 }
350 
351 /**
352  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353  * the HFIR register according to PHY type and speed
354  *
355  * @hsotg: Programming view of DWC_otg controller
356  *
357  * NOTE: The caller can modify the value of the HFIR register only after the
358  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
359  * has been set
360  */
361 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
362 {
363 	u32 usbcfg;
364 	u32 hprt0;
365 	int clock = 60;	/* default value */
366 
367 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
368 	hprt0 = dwc2_readl(hsotg, HPRT0);
369 
370 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
371 	    !(usbcfg & GUSBCFG_PHYIF16))
372 		clock = 60;
373 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
374 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
375 		clock = 48;
376 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378 		clock = 30;
379 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
380 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
381 		clock = 60;
382 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
383 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
384 		clock = 48;
385 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
386 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
387 		clock = 48;
388 	if ((usbcfg & GUSBCFG_PHYSEL) &&
389 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
390 		clock = 48;
391 
392 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
393 		/* High speed case */
394 		return 125 * clock - 1;
395 
396 	/* FS/LS case */
397 	return 1000 * clock - 1;
398 }
399 
400 /**
401  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
402  * buffer
403  *
404  * @hsotg: Programming view of DWC_otg controller
405  * @dest:    Destination buffer for the packet
406  * @bytes:   Number of bytes to copy to the destination
407  */
408 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
409 {
410 	u32 *data_buf = (u32 *)dest;
411 	int word_count = (bytes + 3) / 4;
412 	int i;
413 
414 	/*
415 	 * Todo: Account for the case where dest is not dword aligned. This
416 	 * requires reading data from the FIFO into a u32 temp buffer, then
417 	 * moving it into the data buffer.
418 	 */
419 
420 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
421 
422 	for (i = 0; i < word_count; i++, data_buf++)
423 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
424 }
425 
426 /**
427  * dwc2_dump_channel_info() - Prints the state of a host channel
428  *
429  * @hsotg: Programming view of DWC_otg controller
430  * @chan:  Pointer to the channel to dump
431  *
432  * Must be called with interrupt disabled and spinlock held
433  *
434  * NOTE: This function will be removed once the peripheral controller code
435  * is integrated and the driver is stable
436  */
437 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
438 				   struct dwc2_host_chan *chan)
439 {
440 #ifdef VERBOSE_DEBUG
441 	int num_channels = hsotg->params.host_channels;
442 	struct dwc2_qh *qh;
443 	u32 hcchar;
444 	u32 hcsplt;
445 	u32 hctsiz;
446 	u32 hc_dma;
447 	int i;
448 
449 	if (!chan)
450 		return;
451 
452 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
453 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
454 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
455 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
456 
457 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
458 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
459 		hcchar, hcsplt);
460 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
461 		hctsiz, hc_dma);
462 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
464 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
465 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
466 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
467 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
468 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
469 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
470 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
471 		(unsigned long)chan->xfer_dma);
472 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
473 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
474 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
475 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
476 			    qh_list_entry)
477 		dev_dbg(hsotg->dev, "    %p\n", qh);
478 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
479 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
480 			    qh_list_entry)
481 		dev_dbg(hsotg->dev, "    %p\n", qh);
482 	dev_dbg(hsotg->dev, "  NP active sched:\n");
483 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
484 			    qh_list_entry)
485 		dev_dbg(hsotg->dev, "    %p\n", qh);
486 	dev_dbg(hsotg->dev, "  Channels:\n");
487 	for (i = 0; i < num_channels; i++) {
488 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
489 
490 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
491 	}
492 #endif /* VERBOSE_DEBUG */
493 }
494 
495 static int _dwc2_hcd_start(struct usb_hcd *hcd);
496 
497 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
498 {
499 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
500 
501 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
502 	_dwc2_hcd_start(hcd);
503 }
504 
505 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
506 {
507 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
508 
509 	hcd->self.is_b_host = 0;
510 }
511 
512 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
513 			       int *hub_addr, int *hub_port)
514 {
515 	struct urb *urb = context;
516 
517 	if (urb->dev->tt)
518 		*hub_addr = urb->dev->tt->hub->devnum;
519 	else
520 		*hub_addr = 0;
521 	*hub_port = urb->dev->ttport;
522 }
523 
524 /*
525  * =========================================================================
526  *  Low Level Host Channel Access Functions
527  * =========================================================================
528  */
529 
530 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
531 				      struct dwc2_host_chan *chan)
532 {
533 	u32 hcintmsk = HCINTMSK_CHHLTD;
534 
535 	switch (chan->ep_type) {
536 	case USB_ENDPOINT_XFER_CONTROL:
537 	case USB_ENDPOINT_XFER_BULK:
538 		dev_vdbg(hsotg->dev, "control/bulk\n");
539 		hcintmsk |= HCINTMSK_XFERCOMPL;
540 		hcintmsk |= HCINTMSK_STALL;
541 		hcintmsk |= HCINTMSK_XACTERR;
542 		hcintmsk |= HCINTMSK_DATATGLERR;
543 		if (chan->ep_is_in) {
544 			hcintmsk |= HCINTMSK_BBLERR;
545 		} else {
546 			hcintmsk |= HCINTMSK_NAK;
547 			hcintmsk |= HCINTMSK_NYET;
548 			if (chan->do_ping)
549 				hcintmsk |= HCINTMSK_ACK;
550 		}
551 
552 		if (chan->do_split) {
553 			hcintmsk |= HCINTMSK_NAK;
554 			if (chan->complete_split)
555 				hcintmsk |= HCINTMSK_NYET;
556 			else
557 				hcintmsk |= HCINTMSK_ACK;
558 		}
559 
560 		if (chan->error_state)
561 			hcintmsk |= HCINTMSK_ACK;
562 		break;
563 
564 	case USB_ENDPOINT_XFER_INT:
565 		if (dbg_perio())
566 			dev_vdbg(hsotg->dev, "intr\n");
567 		hcintmsk |= HCINTMSK_XFERCOMPL;
568 		hcintmsk |= HCINTMSK_NAK;
569 		hcintmsk |= HCINTMSK_STALL;
570 		hcintmsk |= HCINTMSK_XACTERR;
571 		hcintmsk |= HCINTMSK_DATATGLERR;
572 		hcintmsk |= HCINTMSK_FRMOVRUN;
573 
574 		if (chan->ep_is_in)
575 			hcintmsk |= HCINTMSK_BBLERR;
576 		if (chan->error_state)
577 			hcintmsk |= HCINTMSK_ACK;
578 		if (chan->do_split) {
579 			if (chan->complete_split)
580 				hcintmsk |= HCINTMSK_NYET;
581 			else
582 				hcintmsk |= HCINTMSK_ACK;
583 		}
584 		break;
585 
586 	case USB_ENDPOINT_XFER_ISOC:
587 		if (dbg_perio())
588 			dev_vdbg(hsotg->dev, "isoc\n");
589 		hcintmsk |= HCINTMSK_XFERCOMPL;
590 		hcintmsk |= HCINTMSK_FRMOVRUN;
591 		hcintmsk |= HCINTMSK_ACK;
592 
593 		if (chan->ep_is_in) {
594 			hcintmsk |= HCINTMSK_XACTERR;
595 			hcintmsk |= HCINTMSK_BBLERR;
596 		}
597 		break;
598 	default:
599 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
600 		break;
601 	}
602 
603 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
604 	if (dbg_hc(chan))
605 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
606 }
607 
608 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
609 				    struct dwc2_host_chan *chan)
610 {
611 	u32 hcintmsk = HCINTMSK_CHHLTD;
612 
613 	/*
614 	 * For Descriptor DMA mode core halts the channel on AHB error.
615 	 * Interrupt is not required.
616 	 */
617 	if (!hsotg->params.dma_desc_enable) {
618 		if (dbg_hc(chan))
619 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
620 		hcintmsk |= HCINTMSK_AHBERR;
621 	} else {
622 		if (dbg_hc(chan))
623 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
624 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
625 			hcintmsk |= HCINTMSK_XFERCOMPL;
626 	}
627 
628 	if (chan->error_state && !chan->do_split &&
629 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
630 		if (dbg_hc(chan))
631 			dev_vdbg(hsotg->dev, "setting ACK\n");
632 		hcintmsk |= HCINTMSK_ACK;
633 		if (chan->ep_is_in) {
634 			hcintmsk |= HCINTMSK_DATATGLERR;
635 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
636 				hcintmsk |= HCINTMSK_NAK;
637 		}
638 	}
639 
640 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
641 	if (dbg_hc(chan))
642 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
643 }
644 
645 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
646 				struct dwc2_host_chan *chan)
647 {
648 	u32 intmsk;
649 
650 	if (hsotg->params.host_dma) {
651 		if (dbg_hc(chan))
652 			dev_vdbg(hsotg->dev, "DMA enabled\n");
653 		dwc2_hc_enable_dma_ints(hsotg, chan);
654 	} else {
655 		if (dbg_hc(chan))
656 			dev_vdbg(hsotg->dev, "DMA disabled\n");
657 		dwc2_hc_enable_slave_ints(hsotg, chan);
658 	}
659 
660 	/* Enable the top level host channel interrupt */
661 	intmsk = dwc2_readl(hsotg, HAINTMSK);
662 	intmsk |= 1 << chan->hc_num;
663 	dwc2_writel(hsotg, intmsk, HAINTMSK);
664 	if (dbg_hc(chan))
665 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
666 
667 	/* Make sure host channel interrupts are enabled */
668 	intmsk = dwc2_readl(hsotg, GINTMSK);
669 	intmsk |= GINTSTS_HCHINT;
670 	dwc2_writel(hsotg, intmsk, GINTMSK);
671 	if (dbg_hc(chan))
672 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
673 }
674 
675 /**
676  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677  * a specific endpoint
678  *
679  * @hsotg: Programming view of DWC_otg controller
680  * @chan:  Information needed to initialize the host channel
681  *
682  * The HCCHARn register is set up with the characteristics specified in chan.
683  * Host channel interrupts that may need to be serviced while this transfer is
684  * in progress are enabled.
685  */
686 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
687 {
688 	u8 hc_num = chan->hc_num;
689 	u32 hcintmsk;
690 	u32 hcchar;
691 	u32 hcsplt = 0;
692 
693 	if (dbg_hc(chan))
694 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
695 
696 	/* Clear old interrupt conditions for this host channel */
697 	hcintmsk = 0xffffffff;
698 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
699 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
700 
701 	/* Enable channel interrupts required for this transfer */
702 	dwc2_hc_enable_ints(hsotg, chan);
703 
704 	/*
705 	 * Program the HCCHARn register with the endpoint characteristics for
706 	 * the current transfer
707 	 */
708 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
709 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
710 	if (chan->ep_is_in)
711 		hcchar |= HCCHAR_EPDIR;
712 	if (chan->speed == USB_SPEED_LOW)
713 		hcchar |= HCCHAR_LSPDDEV;
714 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
715 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
716 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
717 	if (dbg_hc(chan)) {
718 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
719 			 hc_num, hcchar);
720 
721 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
722 			 __func__, hc_num);
723 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
724 			 chan->dev_addr);
725 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
726 			 chan->ep_num);
727 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
728 			 chan->ep_is_in);
729 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
730 			 chan->speed == USB_SPEED_LOW);
731 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
732 			 chan->ep_type);
733 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
734 			 chan->max_packet);
735 	}
736 
737 	/* Program the HCSPLT register for SPLITs */
738 	if (chan->do_split) {
739 		if (dbg_hc(chan))
740 			dev_vdbg(hsotg->dev,
741 				 "Programming HC %d with split --> %s\n",
742 				 hc_num,
743 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
744 		if (chan->complete_split)
745 			hcsplt |= HCSPLT_COMPSPLT;
746 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
747 			  HCSPLT_XACTPOS_MASK;
748 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
749 			  HCSPLT_HUBADDR_MASK;
750 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
751 			  HCSPLT_PRTADDR_MASK;
752 		if (dbg_hc(chan)) {
753 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
754 				 chan->complete_split);
755 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
756 				 chan->xact_pos);
757 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
758 				 chan->hub_addr);
759 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
760 				 chan->hub_port);
761 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
762 				 chan->ep_is_in);
763 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
764 				 chan->max_packet);
765 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
766 				 chan->xfer_len);
767 		}
768 	}
769 
770 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
771 }
772 
773 /**
774  * dwc2_hc_halt() - Attempts to halt a host channel
775  *
776  * @hsotg:       Controller register interface
777  * @chan:        Host channel to halt
778  * @halt_status: Reason for halting the channel
779  *
780  * This function should only be called in Slave mode or to abort a transfer in
781  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782  * controller halts the channel when the transfer is complete or a condition
783  * occurs that requires application intervention.
784  *
785  * In slave mode, checks for a free request queue entry, then sets the Channel
786  * Enable and Channel Disable bits of the Host Channel Characteristics
787  * register of the specified channel to intiate the halt. If there is no free
788  * request queue entry, sets only the Channel Disable bit of the HCCHARn
789  * register to flush requests for this channel. In the latter case, sets a
790  * flag to indicate that the host channel needs to be halted when a request
791  * queue slot is open.
792  *
793  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794  * HCCHARn register. The controller ensures there is space in the request
795  * queue before submitting the halt request.
796  *
797  * Some time may elapse before the core flushes any posted requests for this
798  * host channel and halts. The Channel Halted interrupt handler completes the
799  * deactivation of the host channel.
800  */
801 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
802 		  enum dwc2_halt_status halt_status)
803 {
804 	u32 nptxsts, hptxsts, hcchar;
805 
806 	if (dbg_hc(chan))
807 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
808 
809 	/*
810 	 * In buffer DMA or external DMA mode channel can't be halted
811 	 * for non-split periodic channels. At the end of the next
812 	 * uframe/frame (in the worst case), the core generates a channel
813 	 * halted and disables the channel automatically.
814 	 */
815 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
816 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
817 		if (!chan->do_split &&
818 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
819 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
820 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
821 				__func__);
822 			return;
823 		}
824 	}
825 
826 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
827 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
828 
829 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
830 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
831 		/*
832 		 * Disable all channel interrupts except Ch Halted. The QTD
833 		 * and QH state associated with this transfer has been cleared
834 		 * (in the case of URB_DEQUEUE), so the channel needs to be
835 		 * shut down carefully to prevent crashes.
836 		 */
837 		u32 hcintmsk = HCINTMSK_CHHLTD;
838 
839 		dev_vdbg(hsotg->dev, "dequeue/error\n");
840 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
841 
842 		/*
843 		 * Make sure no other interrupts besides halt are currently
844 		 * pending. Handling another interrupt could cause a crash due
845 		 * to the QTD and QH state.
846 		 */
847 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
848 
849 		/*
850 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851 		 * even if the channel was already halted for some other
852 		 * reason
853 		 */
854 		chan->halt_status = halt_status;
855 
856 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
857 		if (!(hcchar & HCCHAR_CHENA)) {
858 			/*
859 			 * The channel is either already halted or it hasn't
860 			 * started yet. In DMA mode, the transfer may halt if
861 			 * it finishes normally or a condition occurs that
862 			 * requires driver intervention. Don't want to halt
863 			 * the channel again. In either Slave or DMA mode,
864 			 * it's possible that the transfer has been assigned
865 			 * to a channel, but not started yet when an URB is
866 			 * dequeued. Don't want to halt a channel that hasn't
867 			 * started yet.
868 			 */
869 			return;
870 		}
871 	}
872 	if (chan->halt_pending) {
873 		/*
874 		 * A halt has already been issued for this channel. This might
875 		 * happen when a transfer is aborted by a higher level in
876 		 * the stack.
877 		 */
878 		dev_vdbg(hsotg->dev,
879 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
880 			 __func__, chan->hc_num);
881 		return;
882 	}
883 
884 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
885 
886 	/* No need to set the bit in DDMA for disabling the channel */
887 	/* TODO check it everywhere channel is disabled */
888 	if (!hsotg->params.dma_desc_enable) {
889 		if (dbg_hc(chan))
890 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
891 		hcchar |= HCCHAR_CHENA;
892 	} else {
893 		if (dbg_hc(chan))
894 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
895 	}
896 	hcchar |= HCCHAR_CHDIS;
897 
898 	if (!hsotg->params.host_dma) {
899 		if (dbg_hc(chan))
900 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
901 		hcchar |= HCCHAR_CHENA;
902 
903 		/* Check for space in the request queue to issue the halt */
904 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
905 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
906 			dev_vdbg(hsotg->dev, "control/bulk\n");
907 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
908 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
909 				dev_vdbg(hsotg->dev, "Disabling channel\n");
910 				hcchar &= ~HCCHAR_CHENA;
911 			}
912 		} else {
913 			if (dbg_perio())
914 				dev_vdbg(hsotg->dev, "isoc/intr\n");
915 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
916 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
917 			    hsotg->queuing_high_bandwidth) {
918 				if (dbg_perio())
919 					dev_vdbg(hsotg->dev, "Disabling channel\n");
920 				hcchar &= ~HCCHAR_CHENA;
921 			}
922 		}
923 	} else {
924 		if (dbg_hc(chan))
925 			dev_vdbg(hsotg->dev, "DMA enabled\n");
926 	}
927 
928 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
929 	chan->halt_status = halt_status;
930 
931 	if (hcchar & HCCHAR_CHENA) {
932 		if (dbg_hc(chan))
933 			dev_vdbg(hsotg->dev, "Channel enabled\n");
934 		chan->halt_pending = 1;
935 		chan->halt_on_queue = 0;
936 	} else {
937 		if (dbg_hc(chan))
938 			dev_vdbg(hsotg->dev, "Channel disabled\n");
939 		chan->halt_on_queue = 1;
940 	}
941 
942 	if (dbg_hc(chan)) {
943 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
944 			 chan->hc_num);
945 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
946 			 hcchar);
947 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
948 			 chan->halt_pending);
949 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
950 			 chan->halt_on_queue);
951 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
952 			 chan->halt_status);
953 	}
954 }
955 
956 /**
957  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
958  *
959  * @hsotg: Programming view of DWC_otg controller
960  * @chan:  Identifies the host channel to clean up
961  *
962  * This function is normally called after a transfer is done and the host
963  * channel is being released
964  */
965 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
966 {
967 	u32 hcintmsk;
968 
969 	chan->xfer_started = 0;
970 
971 	list_del_init(&chan->split_order_list_entry);
972 
973 	/*
974 	 * Clear channel interrupt enables and any unhandled channel interrupt
975 	 * conditions
976 	 */
977 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
978 	hcintmsk = 0xffffffff;
979 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
980 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
981 }
982 
983 /**
984  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985  * which frame a periodic transfer should occur
986  *
987  * @hsotg:  Programming view of DWC_otg controller
988  * @chan:   Identifies the host channel to set up and its properties
989  * @hcchar: Current value of the HCCHAR register for the specified host channel
990  *
991  * This function has no effect on non-periodic transfers
992  */
993 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
994 				       struct dwc2_host_chan *chan, u32 *hcchar)
995 {
996 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
997 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
998 		int host_speed;
999 		int xfer_ns;
1000 		int xfer_us;
1001 		int bytes_in_fifo;
1002 		u16 fifo_space;
1003 		u16 frame_number;
1004 		u16 wire_frame;
1005 
1006 		/*
1007 		 * Try to figure out if we're an even or odd frame. If we set
1008 		 * even and the current frame number is even the the transfer
1009 		 * will happen immediately.  Similar if both are odd. If one is
1010 		 * even and the other is odd then the transfer will happen when
1011 		 * the frame number ticks.
1012 		 *
1013 		 * There's a bit of a balancing act to get this right.
1014 		 * Sometimes we may want to send data in the current frame (AK
1015 		 * right away).  We might want to do this if the frame number
1016 		 * _just_ ticked, but we might also want to do this in order
1017 		 * to continue a split transaction that happened late in a
1018 		 * microframe (so we didn't know to queue the next transfer
1019 		 * until the frame number had ticked).  The problem is that we
1020 		 * need a lot of knowledge to know if there's actually still
1021 		 * time to send things or if it would be better to wait until
1022 		 * the next frame.
1023 		 *
1024 		 * We can look at how much time is left in the current frame
1025 		 * and make a guess about whether we'll have time to transfer.
1026 		 * We'll do that.
1027 		 */
1028 
1029 		/* Get speed host is running at */
1030 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1031 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032 
1033 		/* See how many bytes are in the periodic FIFO right now */
1034 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036 		bytes_in_fifo = sizeof(u32) *
1037 				(hsotg->params.host_perio_tx_fifo_size -
1038 				 fifo_space);
1039 
1040 		/*
1041 		 * Roughly estimate bus time for everything in the periodic
1042 		 * queue + our new transfer.  This is "rough" because we're
1043 		 * using a function that makes takes into account IN/OUT
1044 		 * and INT/ISO and we're just slamming in one value for all
1045 		 * transfers.  This should be an over-estimate and that should
1046 		 * be OK, but we can probably tighten it.
1047 		 */
1048 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049 					    chan->xfer_len + bytes_in_fifo);
1050 		xfer_us = NS_TO_US(xfer_ns);
1051 
1052 		/* See what frame number we'll be at by the time we finish */
1053 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054 
1055 		/* This is when we were scheduled to be on the wire */
1056 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057 
1058 		/*
1059 		 * If we'd finish _after_ the frame we're scheduled in then
1060 		 * it's hopeless.  Just schedule right away and hope for the
1061 		 * best.  Note that it _might_ be wise to call back into the
1062 		 * scheduler to pick a better frame, but this is better than
1063 		 * nothing.
1064 		 */
1065 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066 			dwc2_sch_vdbg(hsotg,
1067 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068 				      chan->qh, wire_frame, frame_number,
1069 				      dwc2_frame_num_dec(frame_number,
1070 							 wire_frame));
1071 			wire_frame = frame_number;
1072 
1073 			/*
1074 			 * We picked a different frame number; communicate this
1075 			 * back to the scheduler so it doesn't try to schedule
1076 			 * another in the same frame.
1077 			 *
1078 			 * Remember that next_active_frame is 1 before the wire
1079 			 * frame.
1080 			 */
1081 			chan->qh->next_active_frame =
1082 				dwc2_frame_num_dec(frame_number, 1);
1083 		}
1084 
1085 		if (wire_frame & 1)
1086 			*hcchar |= HCCHAR_ODDFRM;
1087 		else
1088 			*hcchar &= ~HCCHAR_ODDFRM;
1089 	}
1090 }
1091 
1092 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093 {
1094 	/* Set up the initial PID for the transfer */
1095 	if (chan->speed == USB_SPEED_HIGH) {
1096 		if (chan->ep_is_in) {
1097 			if (chan->multi_count == 1)
1098 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1099 			else if (chan->multi_count == 2)
1100 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1101 			else
1102 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1103 		} else {
1104 			if (chan->multi_count == 1)
1105 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1106 			else
1107 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1108 		}
1109 	} else {
1110 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1111 	}
1112 }
1113 
1114 /**
1115  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116  * the Host Channel
1117  *
1118  * @hsotg: Programming view of DWC_otg controller
1119  * @chan:  Information needed to initialize the host channel
1120  *
1121  * This function should only be called in Slave mode. For a channel associated
1122  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123  * associated with a periodic EP, the periodic Tx FIFO is written.
1124  *
1125  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126  * the number of bytes written to the Tx FIFO.
1127  */
1128 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129 				 struct dwc2_host_chan *chan)
1130 {
1131 	u32 i;
1132 	u32 remaining_count;
1133 	u32 byte_count;
1134 	u32 dword_count;
1135 	u32 *data_buf = (u32 *)chan->xfer_buf;
1136 
1137 	if (dbg_hc(chan))
1138 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139 
1140 	remaining_count = chan->xfer_len - chan->xfer_count;
1141 	if (remaining_count > chan->max_packet)
1142 		byte_count = chan->max_packet;
1143 	else
1144 		byte_count = remaining_count;
1145 
1146 	dword_count = (byte_count + 3) / 4;
1147 
1148 	if (((unsigned long)data_buf & 0x3) == 0) {
1149 		/* xfer_buf is DWORD aligned */
1150 		for (i = 0; i < dword_count; i++, data_buf++)
1151 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152 	} else {
1153 		/* xfer_buf is not DWORD aligned */
1154 		for (i = 0; i < dword_count; i++, data_buf++) {
1155 			u32 data = data_buf[0] | data_buf[1] << 8 |
1156 				   data_buf[2] << 16 | data_buf[3] << 24;
1157 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158 		}
1159 	}
1160 
1161 	chan->xfer_count += byte_count;
1162 	chan->xfer_buf += byte_count;
1163 }
1164 
1165 /**
1166  * dwc2_hc_do_ping() - Starts a PING transfer
1167  *
1168  * @hsotg: Programming view of DWC_otg controller
1169  * @chan:  Information needed to initialize the host channel
1170  *
1171  * This function should only be called in Slave mode. The Do Ping bit is set in
1172  * the HCTSIZ register, then the channel is enabled.
1173  */
1174 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175 			    struct dwc2_host_chan *chan)
1176 {
1177 	u32 hcchar;
1178 	u32 hctsiz;
1179 
1180 	if (dbg_hc(chan))
1181 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182 			 chan->hc_num);
1183 
1184 	hctsiz = TSIZ_DOPNG;
1185 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187 
1188 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189 	hcchar |= HCCHAR_CHENA;
1190 	hcchar &= ~HCCHAR_CHDIS;
1191 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192 }
1193 
1194 /**
1195  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196  * channel and starts the transfer
1197  *
1198  * @hsotg: Programming view of DWC_otg controller
1199  * @chan:  Information needed to initialize the host channel. The xfer_len value
1200  *         may be reduced to accommodate the max widths of the XferSize and
1201  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1202  *         changed to reflect the final xfer_len value.
1203  *
1204  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205  * the caller must ensure that there is sufficient space in the request queue
1206  * and Tx Data FIFO.
1207  *
1208  * For an OUT transfer in Slave mode, it loads a data packet into the
1209  * appropriate FIFO. If necessary, additional data packets are loaded in the
1210  * Host ISR.
1211  *
1212  * For an IN transfer in Slave mode, a data packet is requested. The data
1213  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214  * additional data packets are requested in the Host ISR.
1215  *
1216  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217  * register along with a packet count of 1 and the channel is enabled. This
1218  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219  * simply set to 0 since no data transfer occurs in this case.
1220  *
1221  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222  * all the information required to perform the subsequent data transfer. In
1223  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224  * controller performs the entire PING protocol, then starts the data
1225  * transfer.
1226  */
1227 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228 				   struct dwc2_host_chan *chan)
1229 {
1230 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232 	u32 hcchar;
1233 	u32 hctsiz = 0;
1234 	u16 num_packets;
1235 	u32 ec_mc;
1236 
1237 	if (dbg_hc(chan))
1238 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239 
1240 	if (chan->do_ping) {
1241 		if (!hsotg->params.host_dma) {
1242 			if (dbg_hc(chan))
1243 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244 			dwc2_hc_do_ping(hsotg, chan);
1245 			chan->xfer_started = 1;
1246 			return;
1247 		}
1248 
1249 		if (dbg_hc(chan))
1250 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1251 
1252 		hctsiz |= TSIZ_DOPNG;
1253 	}
1254 
1255 	if (chan->do_split) {
1256 		if (dbg_hc(chan))
1257 			dev_vdbg(hsotg->dev, "split\n");
1258 		num_packets = 1;
1259 
1260 		if (chan->complete_split && !chan->ep_is_in)
1261 			/*
1262 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1263 			 * core doesn't expect any data written to the FIFO
1264 			 */
1265 			chan->xfer_len = 0;
1266 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267 			chan->xfer_len = chan->max_packet;
1268 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1269 			chan->xfer_len = 188;
1270 
1271 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272 			  TSIZ_XFERSIZE_MASK;
1273 
1274 		/* For split set ec_mc for immediate retries */
1275 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277 			ec_mc = 3;
1278 		else
1279 			ec_mc = 1;
1280 	} else {
1281 		if (dbg_hc(chan))
1282 			dev_vdbg(hsotg->dev, "no split\n");
1283 		/*
1284 		 * Ensure that the transfer length and packet count will fit
1285 		 * in the widths allocated for them in the HCTSIZn register
1286 		 */
1287 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289 			/*
1290 			 * Make sure the transfer size is no larger than one
1291 			 * (micro)frame's worth of data. (A check was done
1292 			 * when the periodic transfer was accepted to ensure
1293 			 * that a (micro)frame's worth of data can be
1294 			 * programmed into a channel.)
1295 			 */
1296 			u32 max_periodic_len =
1297 				chan->multi_count * chan->max_packet;
1298 
1299 			if (chan->xfer_len > max_periodic_len)
1300 				chan->xfer_len = max_periodic_len;
1301 		} else if (chan->xfer_len > max_hc_xfer_size) {
1302 			/*
1303 			 * Make sure that xfer_len is a multiple of max packet
1304 			 * size
1305 			 */
1306 			chan->xfer_len =
1307 				max_hc_xfer_size - chan->max_packet + 1;
1308 		}
1309 
1310 		if (chan->xfer_len > 0) {
1311 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312 					chan->max_packet;
1313 			if (num_packets > max_hc_pkt_count) {
1314 				num_packets = max_hc_pkt_count;
1315 				chan->xfer_len = num_packets * chan->max_packet;
1316 			}
1317 		} else {
1318 			/* Need 1 packet for transfer length of 0 */
1319 			num_packets = 1;
1320 		}
1321 
1322 		if (chan->ep_is_in)
1323 			/*
1324 			 * Always program an integral # of max packets for IN
1325 			 * transfers
1326 			 */
1327 			chan->xfer_len = num_packets * chan->max_packet;
1328 
1329 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1330 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1331 			/*
1332 			 * Make sure that the multi_count field matches the
1333 			 * actual transfer length
1334 			 */
1335 			chan->multi_count = num_packets;
1336 
1337 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1338 			dwc2_set_pid_isoc(chan);
1339 
1340 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1341 			  TSIZ_XFERSIZE_MASK;
1342 
1343 		/* The ec_mc gets the multi_count for non-split */
1344 		ec_mc = chan->multi_count;
1345 	}
1346 
1347 	chan->start_pkt_count = num_packets;
1348 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1349 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1350 		  TSIZ_SC_MC_PID_MASK;
1351 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1352 	if (dbg_hc(chan)) {
1353 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1354 			 hctsiz, chan->hc_num);
1355 
1356 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1357 			 chan->hc_num);
1358 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1359 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1360 			 TSIZ_XFERSIZE_SHIFT);
1361 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1362 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1363 			 TSIZ_PKTCNT_SHIFT);
1364 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1365 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1366 			 TSIZ_SC_MC_PID_SHIFT);
1367 	}
1368 
1369 	if (hsotg->params.host_dma) {
1370 		dma_addr_t dma_addr;
1371 
1372 		if (chan->align_buf) {
1373 			if (dbg_hc(chan))
1374 				dev_vdbg(hsotg->dev, "align_buf\n");
1375 			dma_addr = chan->align_buf;
1376 		} else {
1377 			dma_addr = chan->xfer_dma;
1378 		}
1379 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1380 
1381 		if (dbg_hc(chan))
1382 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1383 				 (unsigned long)dma_addr, chan->hc_num);
1384 	}
1385 
1386 	/* Start the split */
1387 	if (chan->do_split) {
1388 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1389 
1390 		hcsplt |= HCSPLT_SPLTENA;
1391 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1392 	}
1393 
1394 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1395 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1396 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1397 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1398 
1399 	if (hcchar & HCCHAR_CHDIS)
1400 		dev_warn(hsotg->dev,
1401 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1402 			 __func__, chan->hc_num, hcchar);
1403 
1404 	/* Set host channel enable after all other setup is complete */
1405 	hcchar |= HCCHAR_CHENA;
1406 	hcchar &= ~HCCHAR_CHDIS;
1407 
1408 	if (dbg_hc(chan))
1409 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1410 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1411 			 HCCHAR_MULTICNT_SHIFT);
1412 
1413 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1414 	if (dbg_hc(chan))
1415 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1416 			 chan->hc_num);
1417 
1418 	chan->xfer_started = 1;
1419 	chan->requests++;
1420 
1421 	if (!hsotg->params.host_dma &&
1422 	    !chan->ep_is_in && chan->xfer_len > 0)
1423 		/* Load OUT packet into the appropriate Tx FIFO */
1424 		dwc2_hc_write_packet(hsotg, chan);
1425 }
1426 
1427 /**
1428  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1429  * host channel and starts the transfer in Descriptor DMA mode
1430  *
1431  * @hsotg: Programming view of DWC_otg controller
1432  * @chan:  Information needed to initialize the host channel
1433  *
1434  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1435  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1436  * with micro-frame bitmap.
1437  *
1438  * Initializes HCDMA register with descriptor list address and CTD value then
1439  * starts the transfer via enabling the channel.
1440  */
1441 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1442 				 struct dwc2_host_chan *chan)
1443 {
1444 	u32 hcchar;
1445 	u32 hctsiz = 0;
1446 
1447 	if (chan->do_ping)
1448 		hctsiz |= TSIZ_DOPNG;
1449 
1450 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1451 		dwc2_set_pid_isoc(chan);
1452 
1453 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1454 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1455 		  TSIZ_SC_MC_PID_MASK;
1456 
1457 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1458 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1459 
1460 	/* Non-zero only for high-speed interrupt endpoints */
1461 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1462 
1463 	if (dbg_hc(chan)) {
1464 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1465 			 chan->hc_num);
1466 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1467 			 chan->data_pid_start);
1468 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1469 	}
1470 
1471 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1472 
1473 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1474 				   chan->desc_list_sz, DMA_TO_DEVICE);
1475 
1476 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1477 
1478 	if (dbg_hc(chan))
1479 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1480 			 &chan->desc_list_addr, chan->hc_num);
1481 
1482 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1483 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1484 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1485 		  HCCHAR_MULTICNT_MASK;
1486 
1487 	if (hcchar & HCCHAR_CHDIS)
1488 		dev_warn(hsotg->dev,
1489 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1490 			 __func__, chan->hc_num, hcchar);
1491 
1492 	/* Set host channel enable after all other setup is complete */
1493 	hcchar |= HCCHAR_CHENA;
1494 	hcchar &= ~HCCHAR_CHDIS;
1495 
1496 	if (dbg_hc(chan))
1497 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1498 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1499 			 HCCHAR_MULTICNT_SHIFT);
1500 
1501 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1502 	if (dbg_hc(chan))
1503 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1504 			 chan->hc_num);
1505 
1506 	chan->xfer_started = 1;
1507 	chan->requests++;
1508 }
1509 
1510 /**
1511  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1512  * a previous call to dwc2_hc_start_transfer()
1513  *
1514  * @hsotg: Programming view of DWC_otg controller
1515  * @chan:  Information needed to initialize the host channel
1516  *
1517  * The caller must ensure there is sufficient space in the request queue and Tx
1518  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1519  * the controller acts autonomously to complete transfers programmed to a host
1520  * channel.
1521  *
1522  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1523  * if there is any data remaining to be queued. For an IN transfer, another
1524  * data packet is always requested. For the SETUP phase of a control transfer,
1525  * this function does nothing.
1526  *
1527  * Return: 1 if a new request is queued, 0 if no more requests are required
1528  * for this transfer
1529  */
1530 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1531 				     struct dwc2_host_chan *chan)
1532 {
1533 	if (dbg_hc(chan))
1534 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1535 			 chan->hc_num);
1536 
1537 	if (chan->do_split)
1538 		/* SPLITs always queue just once per channel */
1539 		return 0;
1540 
1541 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1542 		/* SETUPs are queued only once since they can't be NAK'd */
1543 		return 0;
1544 
1545 	if (chan->ep_is_in) {
1546 		/*
1547 		 * Always queue another request for other IN transfers. If
1548 		 * back-to-back INs are issued and NAKs are received for both,
1549 		 * the driver may still be processing the first NAK when the
1550 		 * second NAK is received. When the interrupt handler clears
1551 		 * the NAK interrupt for the first NAK, the second NAK will
1552 		 * not be seen. So we can't depend on the NAK interrupt
1553 		 * handler to requeue a NAK'd request. Instead, IN requests
1554 		 * are issued each time this function is called. When the
1555 		 * transfer completes, the extra requests for the channel will
1556 		 * be flushed.
1557 		 */
1558 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1559 
1560 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1561 		hcchar |= HCCHAR_CHENA;
1562 		hcchar &= ~HCCHAR_CHDIS;
1563 		if (dbg_hc(chan))
1564 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1565 				 hcchar);
1566 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1567 		chan->requests++;
1568 		return 1;
1569 	}
1570 
1571 	/* OUT transfers */
1572 
1573 	if (chan->xfer_count < chan->xfer_len) {
1574 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1575 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1576 			u32 hcchar = dwc2_readl(hsotg,
1577 						HCCHAR(chan->hc_num));
1578 
1579 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1580 						   &hcchar);
1581 		}
1582 
1583 		/* Load OUT packet into the appropriate Tx FIFO */
1584 		dwc2_hc_write_packet(hsotg, chan);
1585 		chan->requests++;
1586 		return 1;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 /*
1593  * =========================================================================
1594  *  HCD
1595  * =========================================================================
1596  */
1597 
1598 /*
1599  * Processes all the URBs in a single list of QHs. Completes them with
1600  * -ETIMEDOUT and frees the QTD.
1601  *
1602  * Must be called with interrupt disabled and spinlock held
1603  */
1604 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1605 				      struct list_head *qh_list)
1606 {
1607 	struct dwc2_qh *qh, *qh_tmp;
1608 	struct dwc2_qtd *qtd, *qtd_tmp;
1609 
1610 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1611 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1612 					 qtd_list_entry) {
1613 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1614 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1615 		}
1616 	}
1617 }
1618 
1619 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1620 			      struct list_head *qh_list)
1621 {
1622 	struct dwc2_qtd *qtd, *qtd_tmp;
1623 	struct dwc2_qh *qh, *qh_tmp;
1624 	unsigned long flags;
1625 
1626 	if (!qh_list->next)
1627 		/* The list hasn't been initialized yet */
1628 		return;
1629 
1630 	spin_lock_irqsave(&hsotg->lock, flags);
1631 
1632 	/* Ensure there are no QTDs or URBs left */
1633 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1634 
1635 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1636 		dwc2_hcd_qh_unlink(hsotg, qh);
1637 
1638 		/* Free each QTD in the QH's QTD list */
1639 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1640 					 qtd_list_entry)
1641 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1642 
1643 		if (qh->channel && qh->channel->qh == qh)
1644 			qh->channel->qh = NULL;
1645 
1646 		spin_unlock_irqrestore(&hsotg->lock, flags);
1647 		dwc2_hcd_qh_free(hsotg, qh);
1648 		spin_lock_irqsave(&hsotg->lock, flags);
1649 	}
1650 
1651 	spin_unlock_irqrestore(&hsotg->lock, flags);
1652 }
1653 
1654 /*
1655  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1656  * and periodic schedules. The QTD associated with each URB is removed from
1657  * the schedule and freed. This function may be called when a disconnect is
1658  * detected or when the HCD is being stopped.
1659  *
1660  * Must be called with interrupt disabled and spinlock held
1661  */
1662 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1663 {
1664 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1665 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1666 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1667 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1668 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1669 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1670 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1671 }
1672 
1673 /**
1674  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1675  *
1676  * @hsotg: Pointer to struct dwc2_hsotg
1677  */
1678 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1679 {
1680 	u32 hprt0;
1681 
1682 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1683 		/*
1684 		 * Reset the port. During a HNP mode switch the reset
1685 		 * needs to occur within 1ms and have a duration of at
1686 		 * least 50ms.
1687 		 */
1688 		hprt0 = dwc2_read_hprt0(hsotg);
1689 		hprt0 |= HPRT0_RST;
1690 		dwc2_writel(hsotg, hprt0, HPRT0);
1691 	}
1692 
1693 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1694 			   msecs_to_jiffies(50));
1695 }
1696 
1697 /* Must be called with interrupt disabled and spinlock held */
1698 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1699 {
1700 	int num_channels = hsotg->params.host_channels;
1701 	struct dwc2_host_chan *channel;
1702 	u32 hcchar;
1703 	int i;
1704 
1705 	if (!hsotg->params.host_dma) {
1706 		/* Flush out any channel requests in slave mode */
1707 		for (i = 0; i < num_channels; i++) {
1708 			channel = hsotg->hc_ptr_array[i];
1709 			if (!list_empty(&channel->hc_list_entry))
1710 				continue;
1711 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1712 			if (hcchar & HCCHAR_CHENA) {
1713 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1714 				hcchar |= HCCHAR_CHDIS;
1715 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1716 			}
1717 		}
1718 	}
1719 
1720 	for (i = 0; i < num_channels; i++) {
1721 		channel = hsotg->hc_ptr_array[i];
1722 		if (!list_empty(&channel->hc_list_entry))
1723 			continue;
1724 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1725 		if (hcchar & HCCHAR_CHENA) {
1726 			/* Halt the channel */
1727 			hcchar |= HCCHAR_CHDIS;
1728 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1729 		}
1730 
1731 		dwc2_hc_cleanup(hsotg, channel);
1732 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1733 		/*
1734 		 * Added for Descriptor DMA to prevent channel double cleanup in
1735 		 * release_channel_ddma(), which is called from ep_disable when
1736 		 * device disconnects
1737 		 */
1738 		channel->qh = NULL;
1739 	}
1740 	/* All channels have been freed, mark them available */
1741 	if (hsotg->params.uframe_sched) {
1742 		hsotg->available_host_channels =
1743 			hsotg->params.host_channels;
1744 	} else {
1745 		hsotg->non_periodic_channels = 0;
1746 		hsotg->periodic_channels = 0;
1747 	}
1748 }
1749 
1750 /**
1751  * dwc2_hcd_connect() - Handles connect of the HCD
1752  *
1753  * @hsotg: Pointer to struct dwc2_hsotg
1754  *
1755  * Must be called with interrupt disabled and spinlock held
1756  */
1757 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1758 {
1759 	if (hsotg->lx_state != DWC2_L0)
1760 		usb_hcd_resume_root_hub(hsotg->priv);
1761 
1762 	hsotg->flags.b.port_connect_status_change = 1;
1763 	hsotg->flags.b.port_connect_status = 1;
1764 }
1765 
1766 /**
1767  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1768  *
1769  * @hsotg: Pointer to struct dwc2_hsotg
1770  * @force: If true, we won't try to reconnect even if we see device connected.
1771  *
1772  * Must be called with interrupt disabled and spinlock held
1773  */
1774 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1775 {
1776 	u32 intr;
1777 	u32 hprt0;
1778 
1779 	/* Set status flags for the hub driver */
1780 	hsotg->flags.b.port_connect_status_change = 1;
1781 	hsotg->flags.b.port_connect_status = 0;
1782 
1783 	/*
1784 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1785 	 * interrupt mask and status bits and disabling subsequent host
1786 	 * channel interrupts.
1787 	 */
1788 	intr = dwc2_readl(hsotg, GINTMSK);
1789 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1790 	dwc2_writel(hsotg, intr, GINTMSK);
1791 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1792 	dwc2_writel(hsotg, intr, GINTSTS);
1793 
1794 	/*
1795 	 * Turn off the vbus power only if the core has transitioned to device
1796 	 * mode. If still in host mode, need to keep power on to detect a
1797 	 * reconnection.
1798 	 */
1799 	if (dwc2_is_device_mode(hsotg)) {
1800 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1801 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1802 			dwc2_writel(hsotg, 0, HPRT0);
1803 		}
1804 
1805 		dwc2_disable_host_interrupts(hsotg);
1806 	}
1807 
1808 	/* Respond with an error status to all URBs in the schedule */
1809 	dwc2_kill_all_urbs(hsotg);
1810 
1811 	if (dwc2_is_host_mode(hsotg))
1812 		/* Clean up any host channels that were in use */
1813 		dwc2_hcd_cleanup_channels(hsotg);
1814 
1815 	dwc2_host_disconnect(hsotg);
1816 
1817 	/*
1818 	 * Add an extra check here to see if we're actually connected but
1819 	 * we don't have a detection interrupt pending.  This can happen if:
1820 	 *   1. hardware sees connect
1821 	 *   2. hardware sees disconnect
1822 	 *   3. hardware sees connect
1823 	 *   4. dwc2_port_intr() - clears connect interrupt
1824 	 *   5. dwc2_handle_common_intr() - calls here
1825 	 *
1826 	 * Without the extra check here we will end calling disconnect
1827 	 * and won't get any future interrupts to handle the connect.
1828 	 */
1829 	if (!force) {
1830 		hprt0 = dwc2_readl(hsotg, HPRT0);
1831 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1832 			dwc2_hcd_connect(hsotg);
1833 	}
1834 }
1835 
1836 /**
1837  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1838  *
1839  * @hsotg: Pointer to struct dwc2_hsotg
1840  */
1841 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1842 {
1843 	if (hsotg->bus_suspended) {
1844 		hsotg->flags.b.port_suspend_change = 1;
1845 		usb_hcd_resume_root_hub(hsotg->priv);
1846 	}
1847 
1848 	if (hsotg->lx_state == DWC2_L1)
1849 		hsotg->flags.b.port_l1_change = 1;
1850 }
1851 
1852 /**
1853  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1854  *
1855  * @hsotg: Pointer to struct dwc2_hsotg
1856  *
1857  * Must be called with interrupt disabled and spinlock held
1858  */
1859 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1860 {
1861 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1862 
1863 	/*
1864 	 * The root hub should be disconnected before this function is called.
1865 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1866 	 * and the QH lists (via ..._hcd_endpoint_disable).
1867 	 */
1868 
1869 	/* Turn off all host-specific interrupts */
1870 	dwc2_disable_host_interrupts(hsotg);
1871 
1872 	/* Turn off the vbus power */
1873 	dev_dbg(hsotg->dev, "PortPower off\n");
1874 	dwc2_writel(hsotg, 0, HPRT0);
1875 }
1876 
1877 /* Caller must hold driver lock */
1878 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1879 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1880 				struct dwc2_qtd *qtd)
1881 {
1882 	u32 intr_mask;
1883 	int retval;
1884 	int dev_speed;
1885 
1886 	if (!hsotg->flags.b.port_connect_status) {
1887 		/* No longer connected */
1888 		dev_err(hsotg->dev, "Not connected\n");
1889 		return -ENODEV;
1890 	}
1891 
1892 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1893 
1894 	/* Some configurations cannot support LS traffic on a FS root port */
1895 	if ((dev_speed == USB_SPEED_LOW) &&
1896 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1897 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1898 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1899 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1900 
1901 		if (prtspd == HPRT0_SPD_FULL_SPEED)
1902 			return -ENODEV;
1903 	}
1904 
1905 	if (!qtd)
1906 		return -EINVAL;
1907 
1908 	dwc2_hcd_qtd_init(qtd, urb);
1909 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1910 	if (retval) {
1911 		dev_err(hsotg->dev,
1912 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1913 			retval);
1914 		return retval;
1915 	}
1916 
1917 	intr_mask = dwc2_readl(hsotg, GINTMSK);
1918 	if (!(intr_mask & GINTSTS_SOF)) {
1919 		enum dwc2_transaction_type tr_type;
1920 
1921 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1922 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1923 			/*
1924 			 * Do not schedule SG transactions until qtd has
1925 			 * URB_GIVEBACK_ASAP set
1926 			 */
1927 			return 0;
1928 
1929 		tr_type = dwc2_hcd_select_transactions(hsotg);
1930 		if (tr_type != DWC2_TRANSACTION_NONE)
1931 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 /* Must be called with interrupt disabled and spinlock held */
1938 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1939 				struct dwc2_hcd_urb *urb)
1940 {
1941 	struct dwc2_qh *qh;
1942 	struct dwc2_qtd *urb_qtd;
1943 
1944 	urb_qtd = urb->qtd;
1945 	if (!urb_qtd) {
1946 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1947 		return -EINVAL;
1948 	}
1949 
1950 	qh = urb_qtd->qh;
1951 	if (!qh) {
1952 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1953 		return -EINVAL;
1954 	}
1955 
1956 	urb->priv = NULL;
1957 
1958 	if (urb_qtd->in_process && qh->channel) {
1959 		dwc2_dump_channel_info(hsotg, qh->channel);
1960 
1961 		/* The QTD is in process (it has been assigned to a channel) */
1962 		if (hsotg->flags.b.port_connect_status)
1963 			/*
1964 			 * If still connected (i.e. in host mode), halt the
1965 			 * channel so it can be used for other transfers. If
1966 			 * no longer connected, the host registers can't be
1967 			 * written to halt the channel since the core is in
1968 			 * device mode.
1969 			 */
1970 			dwc2_hc_halt(hsotg, qh->channel,
1971 				     DWC2_HC_XFER_URB_DEQUEUE);
1972 	}
1973 
1974 	/*
1975 	 * Free the QTD and clean up the associated QH. Leave the QH in the
1976 	 * schedule if it has any remaining QTDs.
1977 	 */
1978 	if (!hsotg->params.dma_desc_enable) {
1979 		u8 in_process = urb_qtd->in_process;
1980 
1981 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1982 		if (in_process) {
1983 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1984 			qh->channel = NULL;
1985 		} else if (list_empty(&qh->qtd_list)) {
1986 			dwc2_hcd_qh_unlink(hsotg, qh);
1987 		}
1988 	} else {
1989 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /* Must NOT be called with interrupt disabled or spinlock held */
1996 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1997 				     struct usb_host_endpoint *ep, int retry)
1998 {
1999 	struct dwc2_qtd *qtd, *qtd_tmp;
2000 	struct dwc2_qh *qh;
2001 	unsigned long flags;
2002 	int rc;
2003 
2004 	spin_lock_irqsave(&hsotg->lock, flags);
2005 
2006 	qh = ep->hcpriv;
2007 	if (!qh) {
2008 		rc = -EINVAL;
2009 		goto err;
2010 	}
2011 
2012 	while (!list_empty(&qh->qtd_list) && retry--) {
2013 		if (retry == 0) {
2014 			dev_err(hsotg->dev,
2015 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2016 			rc = -EBUSY;
2017 			goto err;
2018 		}
2019 
2020 		spin_unlock_irqrestore(&hsotg->lock, flags);
2021 		msleep(20);
2022 		spin_lock_irqsave(&hsotg->lock, flags);
2023 		qh = ep->hcpriv;
2024 		if (!qh) {
2025 			rc = -EINVAL;
2026 			goto err;
2027 		}
2028 	}
2029 
2030 	dwc2_hcd_qh_unlink(hsotg, qh);
2031 
2032 	/* Free each QTD in the QH's QTD list */
2033 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2034 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2035 
2036 	ep->hcpriv = NULL;
2037 
2038 	if (qh->channel && qh->channel->qh == qh)
2039 		qh->channel->qh = NULL;
2040 
2041 	spin_unlock_irqrestore(&hsotg->lock, flags);
2042 
2043 	dwc2_hcd_qh_free(hsotg, qh);
2044 
2045 	return 0;
2046 
2047 err:
2048 	ep->hcpriv = NULL;
2049 	spin_unlock_irqrestore(&hsotg->lock, flags);
2050 
2051 	return rc;
2052 }
2053 
2054 /* Must be called with interrupt disabled and spinlock held */
2055 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2056 				   struct usb_host_endpoint *ep)
2057 {
2058 	struct dwc2_qh *qh = ep->hcpriv;
2059 
2060 	if (!qh)
2061 		return -EINVAL;
2062 
2063 	qh->data_toggle = DWC2_HC_PID_DATA0;
2064 
2065 	return 0;
2066 }
2067 
2068 /**
2069  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2070  * prepares the core for device mode or host mode operation
2071  *
2072  * @hsotg:         Programming view of the DWC_otg controller
2073  * @initial_setup: If true then this is the first init for this instance.
2074  */
2075 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2076 {
2077 	u32 usbcfg, otgctl;
2078 	int retval;
2079 
2080 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2081 
2082 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2083 
2084 	/* Set ULPI External VBUS bit if needed */
2085 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2086 	if (hsotg->params.phy_ulpi_ext_vbus)
2087 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2088 
2089 	/* Set external TS Dline pulsing bit if needed */
2090 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2091 	if (hsotg->params.ts_dline)
2092 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2093 
2094 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2095 
2096 	/*
2097 	 * Reset the Controller
2098 	 *
2099 	 * We only need to reset the controller if this is a re-init.
2100 	 * For the first init we know for sure that earlier code reset us (it
2101 	 * needed to in order to properly detect various parameters).
2102 	 */
2103 	if (!initial_setup) {
2104 		retval = dwc2_core_reset(hsotg, false);
2105 		if (retval) {
2106 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2107 				__func__);
2108 			return retval;
2109 		}
2110 	}
2111 
2112 	/*
2113 	 * This needs to happen in FS mode before any other programming occurs
2114 	 */
2115 	retval = dwc2_phy_init(hsotg, initial_setup);
2116 	if (retval)
2117 		return retval;
2118 
2119 	/* Program the GAHBCFG Register */
2120 	retval = dwc2_gahbcfg_init(hsotg);
2121 	if (retval)
2122 		return retval;
2123 
2124 	/* Program the GUSBCFG register */
2125 	dwc2_gusbcfg_init(hsotg);
2126 
2127 	/* Program the GOTGCTL register */
2128 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2129 	otgctl &= ~GOTGCTL_OTGVER;
2130 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2131 
2132 	/* Clear the SRP success bit for FS-I2c */
2133 	hsotg->srp_success = 0;
2134 
2135 	/* Enable common interrupts */
2136 	dwc2_enable_common_interrupts(hsotg);
2137 
2138 	/*
2139 	 * Do device or host initialization based on mode during PCD and
2140 	 * HCD initialization
2141 	 */
2142 	if (dwc2_is_host_mode(hsotg)) {
2143 		dev_dbg(hsotg->dev, "Host Mode\n");
2144 		hsotg->op_state = OTG_STATE_A_HOST;
2145 	} else {
2146 		dev_dbg(hsotg->dev, "Device Mode\n");
2147 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 /**
2154  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2155  * Host mode
2156  *
2157  * @hsotg: Programming view of DWC_otg controller
2158  *
2159  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2160  * request queues. Host channels are reset to ensure that they are ready for
2161  * performing transfers.
2162  */
2163 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2164 {
2165 	u32 hcfg, hfir, otgctl, usbcfg;
2166 
2167 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2168 
2169 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2170 	 * The number of PHY clocks that the application programs in
2171 	 * this field is added to the high/full speed interpacket timeout
2172 	 * duration in the core to account for any additional delays
2173 	 * introduced by the PHY. This can be required, because the delay
2174 	 * introduced by the PHY in generating the linestate condition
2175 	 * can vary from one PHY to another.
2176 	 */
2177 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2178 	usbcfg |= GUSBCFG_TOUTCAL(7);
2179 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2180 
2181 	/* Restart the Phy Clock */
2182 	dwc2_writel(hsotg, 0, PCGCTL);
2183 
2184 	/* Initialize Host Configuration Register */
2185 	dwc2_init_fs_ls_pclk_sel(hsotg);
2186 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2187 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2188 		hcfg = dwc2_readl(hsotg, HCFG);
2189 		hcfg |= HCFG_FSLSSUPP;
2190 		dwc2_writel(hsotg, hcfg, HCFG);
2191 	}
2192 
2193 	/*
2194 	 * This bit allows dynamic reloading of the HFIR register during
2195 	 * runtime. This bit needs to be programmed during initial configuration
2196 	 * and its value must not be changed during runtime.
2197 	 */
2198 	if (hsotg->params.reload_ctl) {
2199 		hfir = dwc2_readl(hsotg, HFIR);
2200 		hfir |= HFIR_RLDCTRL;
2201 		dwc2_writel(hsotg, hfir, HFIR);
2202 	}
2203 
2204 	if (hsotg->params.dma_desc_enable) {
2205 		u32 op_mode = hsotg->hw_params.op_mode;
2206 
2207 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2208 		    !hsotg->hw_params.dma_desc_enable ||
2209 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2210 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2211 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2212 			dev_err(hsotg->dev,
2213 				"Hardware does not support descriptor DMA mode -\n");
2214 			dev_err(hsotg->dev,
2215 				"falling back to buffer DMA mode.\n");
2216 			hsotg->params.dma_desc_enable = false;
2217 		} else {
2218 			hcfg = dwc2_readl(hsotg, HCFG);
2219 			hcfg |= HCFG_DESCDMA;
2220 			dwc2_writel(hsotg, hcfg, HCFG);
2221 		}
2222 	}
2223 
2224 	/* Configure data FIFO sizes */
2225 	dwc2_config_fifos(hsotg);
2226 
2227 	/* TODO - check this */
2228 	/* Clear Host Set HNP Enable in the OTG Control Register */
2229 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2230 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2231 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2232 
2233 	/* Make sure the FIFOs are flushed */
2234 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2235 	dwc2_flush_rx_fifo(hsotg);
2236 
2237 	/* Clear Host Set HNP Enable in the OTG Control Register */
2238 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2239 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2240 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2241 
2242 	if (!hsotg->params.dma_desc_enable) {
2243 		int num_channels, i;
2244 		u32 hcchar;
2245 
2246 		/* Flush out any leftover queued requests */
2247 		num_channels = hsotg->params.host_channels;
2248 		for (i = 0; i < num_channels; i++) {
2249 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2250 			if (hcchar & HCCHAR_CHENA) {
2251 				hcchar &= ~HCCHAR_CHENA;
2252 				hcchar |= HCCHAR_CHDIS;
2253 				hcchar &= ~HCCHAR_EPDIR;
2254 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2255 			}
2256 		}
2257 
2258 		/* Halt all channels to put them into a known state */
2259 		for (i = 0; i < num_channels; i++) {
2260 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2261 			if (hcchar & HCCHAR_CHENA) {
2262 				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2263 				hcchar &= ~HCCHAR_EPDIR;
2264 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2265 				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2266 					__func__, i);
2267 
2268 				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2269 							      HCCHAR_CHENA,
2270 							      1000)) {
2271 					dev_warn(hsotg->dev,
2272 						 "Unable to clear enable on channel %d\n",
2273 						 i);
2274 				}
2275 			}
2276 		}
2277 	}
2278 
2279 	/* Enable ACG feature in host mode, if supported */
2280 	dwc2_enable_acg(hsotg);
2281 
2282 	/* Turn on the vbus power */
2283 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2284 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2285 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2286 
2287 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2288 			!!(hprt0 & HPRT0_PWR));
2289 		if (!(hprt0 & HPRT0_PWR)) {
2290 			hprt0 |= HPRT0_PWR;
2291 			dwc2_writel(hsotg, hprt0, HPRT0);
2292 		}
2293 	}
2294 
2295 	dwc2_enable_host_interrupts(hsotg);
2296 }
2297 
2298 /*
2299  * Initializes dynamic portions of the DWC_otg HCD state
2300  *
2301  * Must be called with interrupt disabled and spinlock held
2302  */
2303 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2304 {
2305 	struct dwc2_host_chan *chan, *chan_tmp;
2306 	int num_channels;
2307 	int i;
2308 
2309 	hsotg->flags.d32 = 0;
2310 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2311 
2312 	if (hsotg->params.uframe_sched) {
2313 		hsotg->available_host_channels =
2314 			hsotg->params.host_channels;
2315 	} else {
2316 		hsotg->non_periodic_channels = 0;
2317 		hsotg->periodic_channels = 0;
2318 	}
2319 
2320 	/*
2321 	 * Put all channels in the free channel list and clean up channel
2322 	 * states
2323 	 */
2324 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2325 				 hc_list_entry)
2326 		list_del_init(&chan->hc_list_entry);
2327 
2328 	num_channels = hsotg->params.host_channels;
2329 	for (i = 0; i < num_channels; i++) {
2330 		chan = hsotg->hc_ptr_array[i];
2331 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2332 		dwc2_hc_cleanup(hsotg, chan);
2333 	}
2334 
2335 	/* Initialize the DWC core for host mode operation */
2336 	dwc2_core_host_init(hsotg);
2337 }
2338 
2339 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2340 			       struct dwc2_host_chan *chan,
2341 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2342 {
2343 	int hub_addr, hub_port;
2344 
2345 	chan->do_split = 1;
2346 	chan->xact_pos = qtd->isoc_split_pos;
2347 	chan->complete_split = qtd->complete_split;
2348 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2349 	chan->hub_addr = (u8)hub_addr;
2350 	chan->hub_port = (u8)hub_port;
2351 }
2352 
2353 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2354 			      struct dwc2_host_chan *chan,
2355 			      struct dwc2_qtd *qtd)
2356 {
2357 	struct dwc2_hcd_urb *urb = qtd->urb;
2358 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2359 
2360 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2361 	case USB_ENDPOINT_XFER_CONTROL:
2362 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2363 
2364 		switch (qtd->control_phase) {
2365 		case DWC2_CONTROL_SETUP:
2366 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2367 			chan->do_ping = 0;
2368 			chan->ep_is_in = 0;
2369 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2370 			if (hsotg->params.host_dma)
2371 				chan->xfer_dma = urb->setup_dma;
2372 			else
2373 				chan->xfer_buf = urb->setup_packet;
2374 			chan->xfer_len = 8;
2375 			break;
2376 
2377 		case DWC2_CONTROL_DATA:
2378 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2379 			chan->data_pid_start = qtd->data_toggle;
2380 			break;
2381 
2382 		case DWC2_CONTROL_STATUS:
2383 			/*
2384 			 * Direction is opposite of data direction or IN if no
2385 			 * data
2386 			 */
2387 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2388 			if (urb->length == 0)
2389 				chan->ep_is_in = 1;
2390 			else
2391 				chan->ep_is_in =
2392 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2393 			if (chan->ep_is_in)
2394 				chan->do_ping = 0;
2395 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2396 			chan->xfer_len = 0;
2397 			if (hsotg->params.host_dma)
2398 				chan->xfer_dma = hsotg->status_buf_dma;
2399 			else
2400 				chan->xfer_buf = hsotg->status_buf;
2401 			break;
2402 		}
2403 		break;
2404 
2405 	case USB_ENDPOINT_XFER_BULK:
2406 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2407 		break;
2408 
2409 	case USB_ENDPOINT_XFER_INT:
2410 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2411 		break;
2412 
2413 	case USB_ENDPOINT_XFER_ISOC:
2414 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2415 		if (hsotg->params.dma_desc_enable)
2416 			break;
2417 
2418 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2419 		frame_desc->status = 0;
2420 
2421 		if (hsotg->params.host_dma) {
2422 			chan->xfer_dma = urb->dma;
2423 			chan->xfer_dma += frame_desc->offset +
2424 					qtd->isoc_split_offset;
2425 		} else {
2426 			chan->xfer_buf = urb->buf;
2427 			chan->xfer_buf += frame_desc->offset +
2428 					qtd->isoc_split_offset;
2429 		}
2430 
2431 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2432 
2433 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2434 			if (chan->xfer_len <= 188)
2435 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2436 			else
2437 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2438 		}
2439 		break;
2440 	}
2441 }
2442 
2443 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2444 					    struct dwc2_qh *qh,
2445 					    struct dwc2_host_chan *chan)
2446 {
2447 	if (!hsotg->unaligned_cache ||
2448 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2449 		return -ENOMEM;
2450 
2451 	if (!qh->dw_align_buf) {
2452 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2453 						    GFP_ATOMIC | GFP_DMA);
2454 		if (!qh->dw_align_buf)
2455 			return -ENOMEM;
2456 	}
2457 
2458 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2459 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2460 					      DMA_FROM_DEVICE);
2461 
2462 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2463 		dev_err(hsotg->dev, "can't map align_buf\n");
2464 		chan->align_buf = 0;
2465 		return -EINVAL;
2466 	}
2467 
2468 	chan->align_buf = qh->dw_align_buf_dma;
2469 	return 0;
2470 }
2471 
2472 #define DWC2_USB_DMA_ALIGN 4
2473 
2474 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2475 {
2476 	void *stored_xfer_buffer;
2477 	size_t length;
2478 
2479 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2480 		return;
2481 
2482 	/* Restore urb->transfer_buffer from the end of the allocated area */
2483 	memcpy(&stored_xfer_buffer, urb->transfer_buffer +
2484 	       urb->transfer_buffer_length, sizeof(urb->transfer_buffer));
2485 
2486 	if (usb_urb_dir_in(urb)) {
2487 		if (usb_pipeisoc(urb->pipe))
2488 			length = urb->transfer_buffer_length;
2489 		else
2490 			length = urb->actual_length;
2491 
2492 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2493 	}
2494 	kfree(urb->transfer_buffer);
2495 	urb->transfer_buffer = stored_xfer_buffer;
2496 
2497 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2498 }
2499 
2500 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2501 {
2502 	void *kmalloc_ptr;
2503 	size_t kmalloc_size;
2504 
2505 	if (urb->num_sgs || urb->sg ||
2506 	    urb->transfer_buffer_length == 0 ||
2507 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2508 		return 0;
2509 
2510 	/*
2511 	 * Allocate a buffer with enough padding for original transfer_buffer
2512 	 * pointer. This allocation is guaranteed to be aligned properly for
2513 	 * DMA
2514 	 */
2515 	kmalloc_size = urb->transfer_buffer_length +
2516 		sizeof(urb->transfer_buffer);
2517 
2518 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2519 	if (!kmalloc_ptr)
2520 		return -ENOMEM;
2521 
2522 	/*
2523 	 * Position value of original urb->transfer_buffer pointer to the end
2524 	 * of allocation for later referencing
2525 	 */
2526 	memcpy(kmalloc_ptr + urb->transfer_buffer_length,
2527 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2528 
2529 	if (usb_urb_dir_out(urb))
2530 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2531 		       urb->transfer_buffer_length);
2532 	urb->transfer_buffer = kmalloc_ptr;
2533 
2534 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2535 
2536 	return 0;
2537 }
2538 
2539 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2540 				gfp_t mem_flags)
2541 {
2542 	int ret;
2543 
2544 	/* We assume setup_dma is always aligned; warn if not */
2545 	WARN_ON_ONCE(urb->setup_dma &&
2546 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2547 
2548 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2549 	if (ret)
2550 		return ret;
2551 
2552 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2553 	if (ret)
2554 		dwc2_free_dma_aligned_buffer(urb);
2555 
2556 	return ret;
2557 }
2558 
2559 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2560 {
2561 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2562 	dwc2_free_dma_aligned_buffer(urb);
2563 }
2564 
2565 /**
2566  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2567  * channel and initializes the host channel to perform the transactions. The
2568  * host channel is removed from the free list.
2569  *
2570  * @hsotg: The HCD state structure
2571  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2572  *         to a free host channel
2573  */
2574 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2575 {
2576 	struct dwc2_host_chan *chan;
2577 	struct dwc2_hcd_urb *urb;
2578 	struct dwc2_qtd *qtd;
2579 
2580 	if (dbg_qh(qh))
2581 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2582 
2583 	if (list_empty(&qh->qtd_list)) {
2584 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2585 		return -ENOMEM;
2586 	}
2587 
2588 	if (list_empty(&hsotg->free_hc_list)) {
2589 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2590 		return -ENOMEM;
2591 	}
2592 
2593 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2594 				hc_list_entry);
2595 
2596 	/* Remove host channel from free list */
2597 	list_del_init(&chan->hc_list_entry);
2598 
2599 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2600 	urb = qtd->urb;
2601 	qh->channel = chan;
2602 	qtd->in_process = 1;
2603 
2604 	/*
2605 	 * Use usb_pipedevice to determine device address. This address is
2606 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2607 	 */
2608 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2609 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2610 	chan->speed = qh->dev_speed;
2611 	chan->max_packet = dwc2_max_packet(qh->maxp);
2612 
2613 	chan->xfer_started = 0;
2614 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2615 	chan->error_state = (qtd->error_count > 0);
2616 	chan->halt_on_queue = 0;
2617 	chan->halt_pending = 0;
2618 	chan->requests = 0;
2619 
2620 	/*
2621 	 * The following values may be modified in the transfer type section
2622 	 * below. The xfer_len value may be reduced when the transfer is
2623 	 * started to accommodate the max widths of the XferSize and PktCnt
2624 	 * fields in the HCTSIZn register.
2625 	 */
2626 
2627 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2628 	if (chan->ep_is_in)
2629 		chan->do_ping = 0;
2630 	else
2631 		chan->do_ping = qh->ping_state;
2632 
2633 	chan->data_pid_start = qh->data_toggle;
2634 	chan->multi_count = 1;
2635 
2636 	if (urb->actual_length > urb->length &&
2637 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2638 		urb->actual_length = urb->length;
2639 
2640 	if (hsotg->params.host_dma)
2641 		chan->xfer_dma = urb->dma + urb->actual_length;
2642 	else
2643 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2644 
2645 	chan->xfer_len = urb->length - urb->actual_length;
2646 	chan->xfer_count = 0;
2647 
2648 	/* Set the split attributes if required */
2649 	if (qh->do_split)
2650 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2651 	else
2652 		chan->do_split = 0;
2653 
2654 	/* Set the transfer attributes */
2655 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2656 
2657 	/* For non-dword aligned buffers */
2658 	if (hsotg->params.host_dma && qh->do_split &&
2659 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2660 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2661 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2662 			dev_err(hsotg->dev,
2663 				"Failed to allocate memory to handle non-aligned buffer\n");
2664 			/* Add channel back to free list */
2665 			chan->align_buf = 0;
2666 			chan->multi_count = 0;
2667 			list_add_tail(&chan->hc_list_entry,
2668 				      &hsotg->free_hc_list);
2669 			qtd->in_process = 0;
2670 			qh->channel = NULL;
2671 			return -ENOMEM;
2672 		}
2673 	} else {
2674 		/*
2675 		 * We assume that DMA is always aligned in non-split
2676 		 * case or split out case. Warn if not.
2677 		 */
2678 		WARN_ON_ONCE(hsotg->params.host_dma &&
2679 			     (chan->xfer_dma & 0x3));
2680 		chan->align_buf = 0;
2681 	}
2682 
2683 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2684 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2685 		/*
2686 		 * This value may be modified when the transfer is started
2687 		 * to reflect the actual transfer length
2688 		 */
2689 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2690 
2691 	if (hsotg->params.dma_desc_enable) {
2692 		chan->desc_list_addr = qh->desc_list_dma;
2693 		chan->desc_list_sz = qh->desc_list_sz;
2694 	}
2695 
2696 	dwc2_hc_init(hsotg, chan);
2697 	chan->qh = qh;
2698 
2699 	return 0;
2700 }
2701 
2702 /**
2703  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2704  * schedule and assigns them to available host channels. Called from the HCD
2705  * interrupt handler functions.
2706  *
2707  * @hsotg: The HCD state structure
2708  *
2709  * Return: The types of new transactions that were assigned to host channels
2710  */
2711 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2712 		struct dwc2_hsotg *hsotg)
2713 {
2714 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2715 	struct list_head *qh_ptr;
2716 	struct dwc2_qh *qh;
2717 	int num_channels;
2718 
2719 #ifdef DWC2_DEBUG_SOF
2720 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2721 #endif
2722 
2723 	/* Process entries in the periodic ready list */
2724 	qh_ptr = hsotg->periodic_sched_ready.next;
2725 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2726 		if (list_empty(&hsotg->free_hc_list))
2727 			break;
2728 		if (hsotg->params.uframe_sched) {
2729 			if (hsotg->available_host_channels <= 1)
2730 				break;
2731 			hsotg->available_host_channels--;
2732 		}
2733 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2734 		if (dwc2_assign_and_init_hc(hsotg, qh))
2735 			break;
2736 
2737 		/*
2738 		 * Move the QH from the periodic ready schedule to the
2739 		 * periodic assigned schedule
2740 		 */
2741 		qh_ptr = qh_ptr->next;
2742 		list_move_tail(&qh->qh_list_entry,
2743 			       &hsotg->periodic_sched_assigned);
2744 		ret_val = DWC2_TRANSACTION_PERIODIC;
2745 	}
2746 
2747 	/*
2748 	 * Process entries in the inactive portion of the non-periodic
2749 	 * schedule. Some free host channels may not be used if they are
2750 	 * reserved for periodic transfers.
2751 	 */
2752 	num_channels = hsotg->params.host_channels;
2753 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2754 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2755 		if (!hsotg->params.uframe_sched &&
2756 		    hsotg->non_periodic_channels >= num_channels -
2757 						hsotg->periodic_channels)
2758 			break;
2759 		if (list_empty(&hsotg->free_hc_list))
2760 			break;
2761 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2762 		if (hsotg->params.uframe_sched) {
2763 			if (hsotg->available_host_channels < 1)
2764 				break;
2765 			hsotg->available_host_channels--;
2766 		}
2767 
2768 		if (dwc2_assign_and_init_hc(hsotg, qh))
2769 			break;
2770 
2771 		/*
2772 		 * Move the QH from the non-periodic inactive schedule to the
2773 		 * non-periodic active schedule
2774 		 */
2775 		qh_ptr = qh_ptr->next;
2776 		list_move_tail(&qh->qh_list_entry,
2777 			       &hsotg->non_periodic_sched_active);
2778 
2779 		if (ret_val == DWC2_TRANSACTION_NONE)
2780 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2781 		else
2782 			ret_val = DWC2_TRANSACTION_ALL;
2783 
2784 		if (!hsotg->params.uframe_sched)
2785 			hsotg->non_periodic_channels++;
2786 	}
2787 
2788 	return ret_val;
2789 }
2790 
2791 /**
2792  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2793  * a host channel associated with either a periodic or non-periodic transfer
2794  *
2795  * @hsotg: The HCD state structure
2796  * @chan:  Host channel descriptor associated with either a periodic or
2797  *         non-periodic transfer
2798  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2799  *                     for periodic transfers or the non-periodic Tx FIFO
2800  *                     for non-periodic transfers
2801  *
2802  * Return: 1 if a request is queued and more requests may be needed to
2803  * complete the transfer, 0 if no more requests are required for this
2804  * transfer, -1 if there is insufficient space in the Tx FIFO
2805  *
2806  * This function assumes that there is space available in the appropriate
2807  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2808  * it checks whether space is available in the appropriate Tx FIFO.
2809  *
2810  * Must be called with interrupt disabled and spinlock held
2811  */
2812 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2813 				  struct dwc2_host_chan *chan,
2814 				  u16 fifo_dwords_avail)
2815 {
2816 	int retval = 0;
2817 
2818 	if (chan->do_split)
2819 		/* Put ourselves on the list to keep order straight */
2820 		list_move_tail(&chan->split_order_list_entry,
2821 			       &hsotg->split_order);
2822 
2823 	if (hsotg->params.host_dma) {
2824 		if (hsotg->params.dma_desc_enable) {
2825 			if (!chan->xfer_started ||
2826 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2827 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2828 				chan->qh->ping_state = 0;
2829 			}
2830 		} else if (!chan->xfer_started) {
2831 			dwc2_hc_start_transfer(hsotg, chan);
2832 			chan->qh->ping_state = 0;
2833 		}
2834 	} else if (chan->halt_pending) {
2835 		/* Don't queue a request if the channel has been halted */
2836 	} else if (chan->halt_on_queue) {
2837 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2838 	} else if (chan->do_ping) {
2839 		if (!chan->xfer_started)
2840 			dwc2_hc_start_transfer(hsotg, chan);
2841 	} else if (!chan->ep_is_in ||
2842 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2843 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2844 			if (!chan->xfer_started) {
2845 				dwc2_hc_start_transfer(hsotg, chan);
2846 				retval = 1;
2847 			} else {
2848 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2849 			}
2850 		} else {
2851 			retval = -1;
2852 		}
2853 	} else {
2854 		if (!chan->xfer_started) {
2855 			dwc2_hc_start_transfer(hsotg, chan);
2856 			retval = 1;
2857 		} else {
2858 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2859 		}
2860 	}
2861 
2862 	return retval;
2863 }
2864 
2865 /*
2866  * Processes periodic channels for the next frame and queues transactions for
2867  * these channels to the DWC_otg controller. After queueing transactions, the
2868  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2869  * to queue as Periodic Tx FIFO or request queue space becomes available.
2870  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2871  *
2872  * Must be called with interrupt disabled and spinlock held
2873  */
2874 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2875 {
2876 	struct list_head *qh_ptr;
2877 	struct dwc2_qh *qh;
2878 	u32 tx_status;
2879 	u32 fspcavail;
2880 	u32 gintmsk;
2881 	int status;
2882 	bool no_queue_space = false;
2883 	bool no_fifo_space = false;
2884 	u32 qspcavail;
2885 
2886 	/* If empty list then just adjust interrupt enables */
2887 	if (list_empty(&hsotg->periodic_sched_assigned))
2888 		goto exit;
2889 
2890 	if (dbg_perio())
2891 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2892 
2893 	tx_status = dwc2_readl(hsotg, HPTXSTS);
2894 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2895 		    TXSTS_QSPCAVAIL_SHIFT;
2896 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2897 		    TXSTS_FSPCAVAIL_SHIFT;
2898 
2899 	if (dbg_perio()) {
2900 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2901 			 qspcavail);
2902 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2903 			 fspcavail);
2904 	}
2905 
2906 	qh_ptr = hsotg->periodic_sched_assigned.next;
2907 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2908 		tx_status = dwc2_readl(hsotg, HPTXSTS);
2909 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2910 			    TXSTS_QSPCAVAIL_SHIFT;
2911 		if (qspcavail == 0) {
2912 			no_queue_space = true;
2913 			break;
2914 		}
2915 
2916 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2917 		if (!qh->channel) {
2918 			qh_ptr = qh_ptr->next;
2919 			continue;
2920 		}
2921 
2922 		/* Make sure EP's TT buffer is clean before queueing qtds */
2923 		if (qh->tt_buffer_dirty) {
2924 			qh_ptr = qh_ptr->next;
2925 			continue;
2926 		}
2927 
2928 		/*
2929 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2930 		 * The flag prevents any halts to get into the request queue in
2931 		 * the middle of multiple high-bandwidth packets getting queued.
2932 		 */
2933 		if (!hsotg->params.host_dma &&
2934 		    qh->channel->multi_count > 1)
2935 			hsotg->queuing_high_bandwidth = 1;
2936 
2937 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2938 			    TXSTS_FSPCAVAIL_SHIFT;
2939 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2940 		if (status < 0) {
2941 			no_fifo_space = true;
2942 			break;
2943 		}
2944 
2945 		/*
2946 		 * In Slave mode, stay on the current transfer until there is
2947 		 * nothing more to do or the high-bandwidth request count is
2948 		 * reached. In DMA mode, only need to queue one request. The
2949 		 * controller automatically handles multiple packets for
2950 		 * high-bandwidth transfers.
2951 		 */
2952 		if (hsotg->params.host_dma || status == 0 ||
2953 		    qh->channel->requests == qh->channel->multi_count) {
2954 			qh_ptr = qh_ptr->next;
2955 			/*
2956 			 * Move the QH from the periodic assigned schedule to
2957 			 * the periodic queued schedule
2958 			 */
2959 			list_move_tail(&qh->qh_list_entry,
2960 				       &hsotg->periodic_sched_queued);
2961 
2962 			/* done queuing high bandwidth */
2963 			hsotg->queuing_high_bandwidth = 0;
2964 		}
2965 	}
2966 
2967 exit:
2968 	if (no_queue_space || no_fifo_space ||
2969 	    (!hsotg->params.host_dma &&
2970 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2971 		/*
2972 		 * May need to queue more transactions as the request
2973 		 * queue or Tx FIFO empties. Enable the periodic Tx
2974 		 * FIFO empty interrupt. (Always use the half-empty
2975 		 * level to ensure that new requests are loaded as
2976 		 * soon as possible.)
2977 		 */
2978 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2979 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2980 			gintmsk |= GINTSTS_PTXFEMP;
2981 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2982 		}
2983 	} else {
2984 		/*
2985 		 * Disable the Tx FIFO empty interrupt since there are
2986 		 * no more transactions that need to be queued right
2987 		 * now. This function is called from interrupt
2988 		 * handlers to queue more transactions as transfer
2989 		 * states change.
2990 		 */
2991 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2992 		if (gintmsk & GINTSTS_PTXFEMP) {
2993 			gintmsk &= ~GINTSTS_PTXFEMP;
2994 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2995 		}
2996 	}
2997 }
2998 
2999 /*
3000  * Processes active non-periodic channels and queues transactions for these
3001  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3002  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3003  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3004  * FIFO Empty interrupt is disabled.
3005  *
3006  * Must be called with interrupt disabled and spinlock held
3007  */
3008 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3009 {
3010 	struct list_head *orig_qh_ptr;
3011 	struct dwc2_qh *qh;
3012 	u32 tx_status;
3013 	u32 qspcavail;
3014 	u32 fspcavail;
3015 	u32 gintmsk;
3016 	int status;
3017 	int no_queue_space = 0;
3018 	int no_fifo_space = 0;
3019 	int more_to_do = 0;
3020 
3021 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3022 
3023 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3024 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3025 		    TXSTS_QSPCAVAIL_SHIFT;
3026 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3027 		    TXSTS_FSPCAVAIL_SHIFT;
3028 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3029 		 qspcavail);
3030 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3031 		 fspcavail);
3032 
3033 	/*
3034 	 * Keep track of the starting point. Skip over the start-of-list
3035 	 * entry.
3036 	 */
3037 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3038 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3039 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3040 
3041 	/*
3042 	 * Process once through the active list or until no more space is
3043 	 * available in the request queue or the Tx FIFO
3044 	 */
3045 	do {
3046 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3047 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3048 			    TXSTS_QSPCAVAIL_SHIFT;
3049 		if (!hsotg->params.host_dma && qspcavail == 0) {
3050 			no_queue_space = 1;
3051 			break;
3052 		}
3053 
3054 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3055 				qh_list_entry);
3056 		if (!qh->channel)
3057 			goto next;
3058 
3059 		/* Make sure EP's TT buffer is clean before queueing qtds */
3060 		if (qh->tt_buffer_dirty)
3061 			goto next;
3062 
3063 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3064 			    TXSTS_FSPCAVAIL_SHIFT;
3065 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3066 
3067 		if (status > 0) {
3068 			more_to_do = 1;
3069 		} else if (status < 0) {
3070 			no_fifo_space = 1;
3071 			break;
3072 		}
3073 next:
3074 		/* Advance to next QH, skipping start-of-list entry */
3075 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3076 		if (hsotg->non_periodic_qh_ptr ==
3077 				&hsotg->non_periodic_sched_active)
3078 			hsotg->non_periodic_qh_ptr =
3079 					hsotg->non_periodic_qh_ptr->next;
3080 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3081 
3082 	if (!hsotg->params.host_dma) {
3083 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3084 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3085 			    TXSTS_QSPCAVAIL_SHIFT;
3086 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3087 			    TXSTS_FSPCAVAIL_SHIFT;
3088 		dev_vdbg(hsotg->dev,
3089 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3090 			 qspcavail);
3091 		dev_vdbg(hsotg->dev,
3092 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3093 			 fspcavail);
3094 
3095 		if (more_to_do || no_queue_space || no_fifo_space) {
3096 			/*
3097 			 * May need to queue more transactions as the request
3098 			 * queue or Tx FIFO empties. Enable the non-periodic
3099 			 * Tx FIFO empty interrupt. (Always use the half-empty
3100 			 * level to ensure that new requests are loaded as
3101 			 * soon as possible.)
3102 			 */
3103 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3104 			gintmsk |= GINTSTS_NPTXFEMP;
3105 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3106 		} else {
3107 			/*
3108 			 * Disable the Tx FIFO empty interrupt since there are
3109 			 * no more transactions that need to be queued right
3110 			 * now. This function is called from interrupt
3111 			 * handlers to queue more transactions as transfer
3112 			 * states change.
3113 			 */
3114 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3115 			gintmsk &= ~GINTSTS_NPTXFEMP;
3116 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3117 		}
3118 	}
3119 }
3120 
3121 /**
3122  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3123  * and queues transactions for these channels to the DWC_otg controller. Called
3124  * from the HCD interrupt handler functions.
3125  *
3126  * @hsotg:   The HCD state structure
3127  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3128  *           or both)
3129  *
3130  * Must be called with interrupt disabled and spinlock held
3131  */
3132 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3133 				 enum dwc2_transaction_type tr_type)
3134 {
3135 #ifdef DWC2_DEBUG_SOF
3136 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3137 #endif
3138 	/* Process host channels associated with periodic transfers */
3139 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3140 	    tr_type == DWC2_TRANSACTION_ALL)
3141 		dwc2_process_periodic_channels(hsotg);
3142 
3143 	/* Process host channels associated with non-periodic transfers */
3144 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3145 	    tr_type == DWC2_TRANSACTION_ALL) {
3146 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3147 			dwc2_process_non_periodic_channels(hsotg);
3148 		} else {
3149 			/*
3150 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3151 			 * there are no non-periodic transfers to process
3152 			 */
3153 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3154 
3155 			gintmsk &= ~GINTSTS_NPTXFEMP;
3156 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3157 		}
3158 	}
3159 }
3160 
3161 static void dwc2_conn_id_status_change(struct work_struct *work)
3162 {
3163 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3164 						wf_otg);
3165 	u32 count = 0;
3166 	u32 gotgctl;
3167 	unsigned long flags;
3168 
3169 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3170 
3171 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3172 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3173 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3174 		!!(gotgctl & GOTGCTL_CONID_B));
3175 
3176 	/* B-Device connector (Device Mode) */
3177 	if (gotgctl & GOTGCTL_CONID_B) {
3178 		dwc2_vbus_supply_exit(hsotg);
3179 		/* Wait for switch to device mode */
3180 		dev_dbg(hsotg->dev, "connId B\n");
3181 		if (hsotg->bus_suspended) {
3182 			dev_info(hsotg->dev,
3183 				 "Do port resume before switching to device mode\n");
3184 			dwc2_port_resume(hsotg);
3185 		}
3186 		while (!dwc2_is_device_mode(hsotg)) {
3187 			dev_info(hsotg->dev,
3188 				 "Waiting for Peripheral Mode, Mode=%s\n",
3189 				 dwc2_is_host_mode(hsotg) ? "Host" :
3190 				 "Peripheral");
3191 			msleep(20);
3192 			/*
3193 			 * Sometimes the initial GOTGCTRL read is wrong, so
3194 			 * check it again and jump to host mode if that was
3195 			 * the case.
3196 			 */
3197 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3198 			if (!(gotgctl & GOTGCTL_CONID_B))
3199 				goto host;
3200 			if (++count > 250)
3201 				break;
3202 		}
3203 		if (count > 250)
3204 			dev_err(hsotg->dev,
3205 				"Connection id status change timed out\n");
3206 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3207 		dwc2_core_init(hsotg, false);
3208 		dwc2_enable_global_interrupts(hsotg);
3209 		spin_lock_irqsave(&hsotg->lock, flags);
3210 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3211 		spin_unlock_irqrestore(&hsotg->lock, flags);
3212 		/* Enable ACG feature in device mode,if supported */
3213 		dwc2_enable_acg(hsotg);
3214 		dwc2_hsotg_core_connect(hsotg);
3215 	} else {
3216 host:
3217 		/* A-Device connector (Host Mode) */
3218 		dev_dbg(hsotg->dev, "connId A\n");
3219 		while (!dwc2_is_host_mode(hsotg)) {
3220 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3221 				 dwc2_is_host_mode(hsotg) ?
3222 				 "Host" : "Peripheral");
3223 			msleep(20);
3224 			if (++count > 250)
3225 				break;
3226 		}
3227 		if (count > 250)
3228 			dev_err(hsotg->dev,
3229 				"Connection id status change timed out\n");
3230 
3231 		spin_lock_irqsave(&hsotg->lock, flags);
3232 		dwc2_hsotg_disconnect(hsotg);
3233 		spin_unlock_irqrestore(&hsotg->lock, flags);
3234 
3235 		hsotg->op_state = OTG_STATE_A_HOST;
3236 		/* Initialize the Core for Host mode */
3237 		dwc2_core_init(hsotg, false);
3238 		dwc2_enable_global_interrupts(hsotg);
3239 		dwc2_hcd_start(hsotg);
3240 	}
3241 }
3242 
3243 static void dwc2_wakeup_detected(struct timer_list *t)
3244 {
3245 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3246 	u32 hprt0;
3247 
3248 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3249 
3250 	/*
3251 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3252 	 * so that OPT tests pass with all PHYs.)
3253 	 */
3254 	hprt0 = dwc2_read_hprt0(hsotg);
3255 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3256 	hprt0 &= ~HPRT0_RES;
3257 	dwc2_writel(hsotg, hprt0, HPRT0);
3258 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3259 		dwc2_readl(hsotg, HPRT0));
3260 
3261 	dwc2_hcd_rem_wakeup(hsotg);
3262 	hsotg->bus_suspended = false;
3263 
3264 	/* Change to L0 state */
3265 	hsotg->lx_state = DWC2_L0;
3266 }
3267 
3268 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3269 {
3270 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3271 
3272 	return hcd->self.b_hnp_enable;
3273 }
3274 
3275 /* Must NOT be called with interrupt disabled or spinlock held */
3276 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3277 {
3278 	unsigned long flags;
3279 	u32 hprt0;
3280 	u32 pcgctl;
3281 	u32 gotgctl;
3282 
3283 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3284 
3285 	spin_lock_irqsave(&hsotg->lock, flags);
3286 
3287 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3288 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3289 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3290 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3291 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3292 	}
3293 
3294 	hprt0 = dwc2_read_hprt0(hsotg);
3295 	hprt0 |= HPRT0_SUSP;
3296 	dwc2_writel(hsotg, hprt0, HPRT0);
3297 
3298 	hsotg->bus_suspended = true;
3299 
3300 	/*
3301 	 * If power_down is supported, Phy clock will be suspended
3302 	 * after registers are backuped.
3303 	 */
3304 	if (!hsotg->params.power_down) {
3305 		/* Suspend the Phy Clock */
3306 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3307 		pcgctl |= PCGCTL_STOPPCLK;
3308 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3309 		udelay(10);
3310 	}
3311 
3312 	/* For HNP the bus must be suspended for at least 200ms */
3313 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3314 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3315 		pcgctl &= ~PCGCTL_STOPPCLK;
3316 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3317 
3318 		spin_unlock_irqrestore(&hsotg->lock, flags);
3319 
3320 		msleep(200);
3321 	} else {
3322 		spin_unlock_irqrestore(&hsotg->lock, flags);
3323 	}
3324 }
3325 
3326 /* Must NOT be called with interrupt disabled or spinlock held */
3327 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3328 {
3329 	unsigned long flags;
3330 	u32 hprt0;
3331 	u32 pcgctl;
3332 
3333 	spin_lock_irqsave(&hsotg->lock, flags);
3334 
3335 	/*
3336 	 * If power_down is supported, Phy clock is already resumed
3337 	 * after registers restore.
3338 	 */
3339 	if (!hsotg->params.power_down) {
3340 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3341 		pcgctl &= ~PCGCTL_STOPPCLK;
3342 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3343 		spin_unlock_irqrestore(&hsotg->lock, flags);
3344 		msleep(20);
3345 		spin_lock_irqsave(&hsotg->lock, flags);
3346 	}
3347 
3348 	hprt0 = dwc2_read_hprt0(hsotg);
3349 	hprt0 |= HPRT0_RES;
3350 	hprt0 &= ~HPRT0_SUSP;
3351 	dwc2_writel(hsotg, hprt0, HPRT0);
3352 	spin_unlock_irqrestore(&hsotg->lock, flags);
3353 
3354 	msleep(USB_RESUME_TIMEOUT);
3355 
3356 	spin_lock_irqsave(&hsotg->lock, flags);
3357 	hprt0 = dwc2_read_hprt0(hsotg);
3358 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3359 	dwc2_writel(hsotg, hprt0, HPRT0);
3360 	hsotg->bus_suspended = false;
3361 	spin_unlock_irqrestore(&hsotg->lock, flags);
3362 }
3363 
3364 /* Handles hub class-specific requests */
3365 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3366 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3367 {
3368 	struct usb_hub_descriptor *hub_desc;
3369 	int retval = 0;
3370 	u32 hprt0;
3371 	u32 port_status;
3372 	u32 speed;
3373 	u32 pcgctl;
3374 	u32 pwr;
3375 
3376 	switch (typereq) {
3377 	case ClearHubFeature:
3378 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3379 
3380 		switch (wvalue) {
3381 		case C_HUB_LOCAL_POWER:
3382 		case C_HUB_OVER_CURRENT:
3383 			/* Nothing required here */
3384 			break;
3385 
3386 		default:
3387 			retval = -EINVAL;
3388 			dev_err(hsotg->dev,
3389 				"ClearHubFeature request %1xh unknown\n",
3390 				wvalue);
3391 		}
3392 		break;
3393 
3394 	case ClearPortFeature:
3395 		if (wvalue != USB_PORT_FEAT_L1)
3396 			if (!windex || windex > 1)
3397 				goto error;
3398 		switch (wvalue) {
3399 		case USB_PORT_FEAT_ENABLE:
3400 			dev_dbg(hsotg->dev,
3401 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3402 			hprt0 = dwc2_read_hprt0(hsotg);
3403 			hprt0 |= HPRT0_ENA;
3404 			dwc2_writel(hsotg, hprt0, HPRT0);
3405 			break;
3406 
3407 		case USB_PORT_FEAT_SUSPEND:
3408 			dev_dbg(hsotg->dev,
3409 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3410 
3411 			if (hsotg->bus_suspended) {
3412 				if (hsotg->hibernated)
3413 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3414 				else
3415 					dwc2_port_resume(hsotg);
3416 			}
3417 			break;
3418 
3419 		case USB_PORT_FEAT_POWER:
3420 			dev_dbg(hsotg->dev,
3421 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3422 			hprt0 = dwc2_read_hprt0(hsotg);
3423 			pwr = hprt0 & HPRT0_PWR;
3424 			hprt0 &= ~HPRT0_PWR;
3425 			dwc2_writel(hsotg, hprt0, HPRT0);
3426 			if (pwr)
3427 				dwc2_vbus_supply_exit(hsotg);
3428 			break;
3429 
3430 		case USB_PORT_FEAT_INDICATOR:
3431 			dev_dbg(hsotg->dev,
3432 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3433 			/* Port indicator not supported */
3434 			break;
3435 
3436 		case USB_PORT_FEAT_C_CONNECTION:
3437 			/*
3438 			 * Clears driver's internal Connect Status Change flag
3439 			 */
3440 			dev_dbg(hsotg->dev,
3441 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3442 			hsotg->flags.b.port_connect_status_change = 0;
3443 			break;
3444 
3445 		case USB_PORT_FEAT_C_RESET:
3446 			/* Clears driver's internal Port Reset Change flag */
3447 			dev_dbg(hsotg->dev,
3448 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3449 			hsotg->flags.b.port_reset_change = 0;
3450 			break;
3451 
3452 		case USB_PORT_FEAT_C_ENABLE:
3453 			/*
3454 			 * Clears the driver's internal Port Enable/Disable
3455 			 * Change flag
3456 			 */
3457 			dev_dbg(hsotg->dev,
3458 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3459 			hsotg->flags.b.port_enable_change = 0;
3460 			break;
3461 
3462 		case USB_PORT_FEAT_C_SUSPEND:
3463 			/*
3464 			 * Clears the driver's internal Port Suspend Change
3465 			 * flag, which is set when resume signaling on the host
3466 			 * port is complete
3467 			 */
3468 			dev_dbg(hsotg->dev,
3469 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3470 			hsotg->flags.b.port_suspend_change = 0;
3471 			break;
3472 
3473 		case USB_PORT_FEAT_C_PORT_L1:
3474 			dev_dbg(hsotg->dev,
3475 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3476 			hsotg->flags.b.port_l1_change = 0;
3477 			break;
3478 
3479 		case USB_PORT_FEAT_C_OVER_CURRENT:
3480 			dev_dbg(hsotg->dev,
3481 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3482 			hsotg->flags.b.port_over_current_change = 0;
3483 			break;
3484 
3485 		default:
3486 			retval = -EINVAL;
3487 			dev_err(hsotg->dev,
3488 				"ClearPortFeature request %1xh unknown or unsupported\n",
3489 				wvalue);
3490 		}
3491 		break;
3492 
3493 	case GetHubDescriptor:
3494 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3495 		hub_desc = (struct usb_hub_descriptor *)buf;
3496 		hub_desc->bDescLength = 9;
3497 		hub_desc->bDescriptorType = USB_DT_HUB;
3498 		hub_desc->bNbrPorts = 1;
3499 		hub_desc->wHubCharacteristics =
3500 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3501 				    HUB_CHAR_INDV_PORT_OCPM);
3502 		hub_desc->bPwrOn2PwrGood = 1;
3503 		hub_desc->bHubContrCurrent = 0;
3504 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3505 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3506 		break;
3507 
3508 	case GetHubStatus:
3509 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3510 		memset(buf, 0, 4);
3511 		break;
3512 
3513 	case GetPortStatus:
3514 		dev_vdbg(hsotg->dev,
3515 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3516 			 hsotg->flags.d32);
3517 		if (!windex || windex > 1)
3518 			goto error;
3519 
3520 		port_status = 0;
3521 		if (hsotg->flags.b.port_connect_status_change)
3522 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3523 		if (hsotg->flags.b.port_enable_change)
3524 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3525 		if (hsotg->flags.b.port_suspend_change)
3526 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3527 		if (hsotg->flags.b.port_l1_change)
3528 			port_status |= USB_PORT_STAT_C_L1 << 16;
3529 		if (hsotg->flags.b.port_reset_change)
3530 			port_status |= USB_PORT_STAT_C_RESET << 16;
3531 		if (hsotg->flags.b.port_over_current_change) {
3532 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3533 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3534 		}
3535 
3536 		if (!hsotg->flags.b.port_connect_status) {
3537 			/*
3538 			 * The port is disconnected, which means the core is
3539 			 * either in device mode or it soon will be. Just
3540 			 * return 0's for the remainder of the port status
3541 			 * since the port register can't be read if the core
3542 			 * is in device mode.
3543 			 */
3544 			*(__le32 *)buf = cpu_to_le32(port_status);
3545 			break;
3546 		}
3547 
3548 		hprt0 = dwc2_readl(hsotg, HPRT0);
3549 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3550 
3551 		if (hprt0 & HPRT0_CONNSTS)
3552 			port_status |= USB_PORT_STAT_CONNECTION;
3553 		if (hprt0 & HPRT0_ENA)
3554 			port_status |= USB_PORT_STAT_ENABLE;
3555 		if (hprt0 & HPRT0_SUSP)
3556 			port_status |= USB_PORT_STAT_SUSPEND;
3557 		if (hprt0 & HPRT0_OVRCURRACT)
3558 			port_status |= USB_PORT_STAT_OVERCURRENT;
3559 		if (hprt0 & HPRT0_RST)
3560 			port_status |= USB_PORT_STAT_RESET;
3561 		if (hprt0 & HPRT0_PWR)
3562 			port_status |= USB_PORT_STAT_POWER;
3563 
3564 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3565 		if (speed == HPRT0_SPD_HIGH_SPEED)
3566 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3567 		else if (speed == HPRT0_SPD_LOW_SPEED)
3568 			port_status |= USB_PORT_STAT_LOW_SPEED;
3569 
3570 		if (hprt0 & HPRT0_TSTCTL_MASK)
3571 			port_status |= USB_PORT_STAT_TEST;
3572 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3573 
3574 		if (hsotg->params.dma_desc_fs_enable) {
3575 			/*
3576 			 * Enable descriptor DMA only if a full speed
3577 			 * device is connected.
3578 			 */
3579 			if (hsotg->new_connection &&
3580 			    ((port_status &
3581 			      (USB_PORT_STAT_CONNECTION |
3582 			       USB_PORT_STAT_HIGH_SPEED |
3583 			       USB_PORT_STAT_LOW_SPEED)) ==
3584 			       USB_PORT_STAT_CONNECTION)) {
3585 				u32 hcfg;
3586 
3587 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3588 				hsotg->params.dma_desc_enable = true;
3589 				hcfg = dwc2_readl(hsotg, HCFG);
3590 				hcfg |= HCFG_DESCDMA;
3591 				dwc2_writel(hsotg, hcfg, HCFG);
3592 				hsotg->new_connection = false;
3593 			}
3594 		}
3595 
3596 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3597 		*(__le32 *)buf = cpu_to_le32(port_status);
3598 		break;
3599 
3600 	case SetHubFeature:
3601 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3602 		/* No HUB features supported */
3603 		break;
3604 
3605 	case SetPortFeature:
3606 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3607 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3608 			goto error;
3609 
3610 		if (!hsotg->flags.b.port_connect_status) {
3611 			/*
3612 			 * The port is disconnected, which means the core is
3613 			 * either in device mode or it soon will be. Just
3614 			 * return without doing anything since the port
3615 			 * register can't be written if the core is in device
3616 			 * mode.
3617 			 */
3618 			break;
3619 		}
3620 
3621 		switch (wvalue) {
3622 		case USB_PORT_FEAT_SUSPEND:
3623 			dev_dbg(hsotg->dev,
3624 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3625 			if (windex != hsotg->otg_port)
3626 				goto error;
3627 			if (hsotg->params.power_down == 2)
3628 				dwc2_enter_hibernation(hsotg, 1);
3629 			else
3630 				dwc2_port_suspend(hsotg, windex);
3631 			break;
3632 
3633 		case USB_PORT_FEAT_POWER:
3634 			dev_dbg(hsotg->dev,
3635 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3636 			hprt0 = dwc2_read_hprt0(hsotg);
3637 			pwr = hprt0 & HPRT0_PWR;
3638 			hprt0 |= HPRT0_PWR;
3639 			dwc2_writel(hsotg, hprt0, HPRT0);
3640 			if (!pwr)
3641 				dwc2_vbus_supply_init(hsotg);
3642 			break;
3643 
3644 		case USB_PORT_FEAT_RESET:
3645 			if (hsotg->params.power_down == 2 &&
3646 			    hsotg->hibernated)
3647 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3648 			hprt0 = dwc2_read_hprt0(hsotg);
3649 			dev_dbg(hsotg->dev,
3650 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3651 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3652 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3653 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3654 			/* ??? Original driver does this */
3655 			dwc2_writel(hsotg, 0, PCGCTL);
3656 
3657 			hprt0 = dwc2_read_hprt0(hsotg);
3658 			pwr = hprt0 & HPRT0_PWR;
3659 			/* Clear suspend bit if resetting from suspend state */
3660 			hprt0 &= ~HPRT0_SUSP;
3661 
3662 			/*
3663 			 * When B-Host the Port reset bit is set in the Start
3664 			 * HCD Callback function, so that the reset is started
3665 			 * within 1ms of the HNP success interrupt
3666 			 */
3667 			if (!dwc2_hcd_is_b_host(hsotg)) {
3668 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3669 				dev_dbg(hsotg->dev,
3670 					"In host mode, hprt0=%08x\n", hprt0);
3671 				dwc2_writel(hsotg, hprt0, HPRT0);
3672 				if (!pwr)
3673 					dwc2_vbus_supply_init(hsotg);
3674 			}
3675 
3676 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3677 			msleep(50);
3678 			hprt0 &= ~HPRT0_RST;
3679 			dwc2_writel(hsotg, hprt0, HPRT0);
3680 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3681 			break;
3682 
3683 		case USB_PORT_FEAT_INDICATOR:
3684 			dev_dbg(hsotg->dev,
3685 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3686 			/* Not supported */
3687 			break;
3688 
3689 		case USB_PORT_FEAT_TEST:
3690 			hprt0 = dwc2_read_hprt0(hsotg);
3691 			dev_dbg(hsotg->dev,
3692 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3693 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3694 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3695 			dwc2_writel(hsotg, hprt0, HPRT0);
3696 			break;
3697 
3698 		default:
3699 			retval = -EINVAL;
3700 			dev_err(hsotg->dev,
3701 				"SetPortFeature %1xh unknown or unsupported\n",
3702 				wvalue);
3703 			break;
3704 		}
3705 		break;
3706 
3707 	default:
3708 error:
3709 		retval = -EINVAL;
3710 		dev_dbg(hsotg->dev,
3711 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3712 			typereq, windex, wvalue);
3713 		break;
3714 	}
3715 
3716 	return retval;
3717 }
3718 
3719 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3720 {
3721 	int retval;
3722 
3723 	if (port != 1)
3724 		return -EINVAL;
3725 
3726 	retval = (hsotg->flags.b.port_connect_status_change ||
3727 		  hsotg->flags.b.port_reset_change ||
3728 		  hsotg->flags.b.port_enable_change ||
3729 		  hsotg->flags.b.port_suspend_change ||
3730 		  hsotg->flags.b.port_over_current_change);
3731 
3732 	if (retval) {
3733 		dev_dbg(hsotg->dev,
3734 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3735 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3736 			hsotg->flags.b.port_connect_status_change);
3737 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3738 			hsotg->flags.b.port_reset_change);
3739 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3740 			hsotg->flags.b.port_enable_change);
3741 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3742 			hsotg->flags.b.port_suspend_change);
3743 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3744 			hsotg->flags.b.port_over_current_change);
3745 	}
3746 
3747 	return retval;
3748 }
3749 
3750 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3751 {
3752 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3753 
3754 #ifdef DWC2_DEBUG_SOF
3755 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3756 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3757 #endif
3758 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3759 }
3760 
3761 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3762 {
3763 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3764 	u32 hfir = dwc2_readl(hsotg, HFIR);
3765 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3766 	unsigned int us_per_frame;
3767 	unsigned int frame_number;
3768 	unsigned int remaining;
3769 	unsigned int interval;
3770 	unsigned int phy_clks;
3771 
3772 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3773 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3774 
3775 	/* Extract fields */
3776 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3777 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3778 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3779 
3780 	/*
3781 	 * Number of phy clocks since the last tick of the frame number after
3782 	 * "us" has passed.
3783 	 */
3784 	phy_clks = (interval - remaining) +
3785 		   DIV_ROUND_UP(interval * us, us_per_frame);
3786 
3787 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3788 }
3789 
3790 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3791 {
3792 	return hsotg->op_state == OTG_STATE_B_HOST;
3793 }
3794 
3795 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3796 					       int iso_desc_count,
3797 					       gfp_t mem_flags)
3798 {
3799 	struct dwc2_hcd_urb *urb;
3800 
3801 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3802 	if (urb)
3803 		urb->packet_count = iso_desc_count;
3804 	return urb;
3805 }
3806 
3807 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3808 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3809 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3810 {
3811 	if (dbg_perio() ||
3812 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3813 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3814 		dev_vdbg(hsotg->dev,
3815 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3816 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3817 	urb->pipe_info.dev_addr = dev_addr;
3818 	urb->pipe_info.ep_num = ep_num;
3819 	urb->pipe_info.pipe_type = ep_type;
3820 	urb->pipe_info.pipe_dir = ep_dir;
3821 	urb->pipe_info.mps = mps;
3822 }
3823 
3824 /*
3825  * NOTE: This function will be removed once the peripheral controller code
3826  * is integrated and the driver is stable
3827  */
3828 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3829 {
3830 #ifdef DEBUG
3831 	struct dwc2_host_chan *chan;
3832 	struct dwc2_hcd_urb *urb;
3833 	struct dwc2_qtd *qtd;
3834 	int num_channels;
3835 	u32 np_tx_status;
3836 	u32 p_tx_status;
3837 	int i;
3838 
3839 	num_channels = hsotg->params.host_channels;
3840 	dev_dbg(hsotg->dev, "\n");
3841 	dev_dbg(hsotg->dev,
3842 		"************************************************************\n");
3843 	dev_dbg(hsotg->dev, "HCD State:\n");
3844 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3845 
3846 	for (i = 0; i < num_channels; i++) {
3847 		chan = hsotg->hc_ptr_array[i];
3848 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3849 		dev_dbg(hsotg->dev,
3850 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3851 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3852 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3853 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3854 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3855 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3856 			chan->data_pid_start);
3857 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3858 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3859 			chan->xfer_started);
3860 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3861 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3862 			(unsigned long)chan->xfer_dma);
3863 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3864 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3865 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3866 			chan->halt_on_queue);
3867 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3868 			chan->halt_pending);
3869 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3870 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3871 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3872 			chan->complete_split);
3873 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3874 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3875 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3876 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3877 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3878 
3879 		if (chan->xfer_started) {
3880 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3881 
3882 			hfnum = dwc2_readl(hsotg, HFNUM);
3883 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3884 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3885 			hcint = dwc2_readl(hsotg, HCINT(i));
3886 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3887 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3888 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3889 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3890 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3891 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3892 		}
3893 
3894 		if (!(chan->xfer_started && chan->qh))
3895 			continue;
3896 
3897 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3898 			if (!qtd->in_process)
3899 				break;
3900 			urb = qtd->urb;
3901 			dev_dbg(hsotg->dev, "    URB Info:\n");
3902 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3903 				qtd, urb);
3904 			if (urb) {
3905 				dev_dbg(hsotg->dev,
3906 					"      Dev: %d, EP: %d %s\n",
3907 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3908 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3909 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3910 					"IN" : "OUT");
3911 				dev_dbg(hsotg->dev,
3912 					"      Max packet size: %d\n",
3913 					dwc2_hcd_get_mps(&urb->pipe_info));
3914 				dev_dbg(hsotg->dev,
3915 					"      transfer_buffer: %p\n",
3916 					urb->buf);
3917 				dev_dbg(hsotg->dev,
3918 					"      transfer_dma: %08lx\n",
3919 					(unsigned long)urb->dma);
3920 				dev_dbg(hsotg->dev,
3921 					"      transfer_buffer_length: %d\n",
3922 					urb->length);
3923 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3924 					urb->actual_length);
3925 			}
3926 		}
3927 	}
3928 
3929 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3930 		hsotg->non_periodic_channels);
3931 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3932 		hsotg->periodic_channels);
3933 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3934 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3935 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3936 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3937 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3938 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3939 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3940 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3941 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3942 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3943 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3944 	dwc2_dump_global_registers(hsotg);
3945 	dwc2_dump_host_registers(hsotg);
3946 	dev_dbg(hsotg->dev,
3947 		"************************************************************\n");
3948 	dev_dbg(hsotg->dev, "\n");
3949 #endif
3950 }
3951 
3952 struct wrapper_priv_data {
3953 	struct dwc2_hsotg *hsotg;
3954 };
3955 
3956 /* Gets the dwc2_hsotg from a usb_hcd */
3957 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3958 {
3959 	struct wrapper_priv_data *p;
3960 
3961 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3962 	return p->hsotg;
3963 }
3964 
3965 /**
3966  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3967  *
3968  * This will get the dwc2_tt structure (and ttport) associated with the given
3969  * context (which is really just a struct urb pointer).
3970  *
3971  * The first time this is called for a given TT we allocate memory for our
3972  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3973  * then the refcount for the structure will go to 0 and we'll free it.
3974  *
3975  * @hsotg:     The HCD state structure for the DWC OTG controller.
3976  * @context:   The priv pointer from a struct dwc2_hcd_urb.
3977  * @mem_flags: Flags for allocating memory.
3978  * @ttport:    We'll return this device's port number here.  That's used to
3979  *             reference into the bitmap if we're on a multi_tt hub.
3980  *
3981  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
3982  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
3983  */
3984 
3985 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3986 				      gfp_t mem_flags, int *ttport)
3987 {
3988 	struct urb *urb = context;
3989 	struct dwc2_tt *dwc_tt = NULL;
3990 
3991 	if (urb->dev->tt) {
3992 		*ttport = urb->dev->ttport;
3993 
3994 		dwc_tt = urb->dev->tt->hcpriv;
3995 		if (!dwc_tt) {
3996 			size_t bitmap_size;
3997 
3998 			/*
3999 			 * For single_tt we need one schedule.  For multi_tt
4000 			 * we need one per port.
4001 			 */
4002 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4003 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4004 			if (urb->dev->tt->multi)
4005 				bitmap_size *= urb->dev->tt->hub->maxchild;
4006 
4007 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4008 					 mem_flags);
4009 			if (!dwc_tt)
4010 				return NULL;
4011 
4012 			dwc_tt->usb_tt = urb->dev->tt;
4013 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4014 		}
4015 
4016 		dwc_tt->refcount++;
4017 	}
4018 
4019 	return dwc_tt;
4020 }
4021 
4022 /**
4023  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4024  *
4025  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4026  * of the structure are done.
4027  *
4028  * It's OK to call this with NULL.
4029  *
4030  * @hsotg:     The HCD state structure for the DWC OTG controller.
4031  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4032  */
4033 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4034 {
4035 	/* Model kfree and make put of NULL a no-op */
4036 	if (!dwc_tt)
4037 		return;
4038 
4039 	WARN_ON(dwc_tt->refcount < 1);
4040 
4041 	dwc_tt->refcount--;
4042 	if (!dwc_tt->refcount) {
4043 		dwc_tt->usb_tt->hcpriv = NULL;
4044 		kfree(dwc_tt);
4045 	}
4046 }
4047 
4048 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4049 {
4050 	struct urb *urb = context;
4051 
4052 	return urb->dev->speed;
4053 }
4054 
4055 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4056 					struct urb *urb)
4057 {
4058 	struct usb_bus *bus = hcd_to_bus(hcd);
4059 
4060 	if (urb->interval)
4061 		bus->bandwidth_allocated += bw / urb->interval;
4062 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4063 		bus->bandwidth_isoc_reqs++;
4064 	else
4065 		bus->bandwidth_int_reqs++;
4066 }
4067 
4068 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4069 				    struct urb *urb)
4070 {
4071 	struct usb_bus *bus = hcd_to_bus(hcd);
4072 
4073 	if (urb->interval)
4074 		bus->bandwidth_allocated -= bw / urb->interval;
4075 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4076 		bus->bandwidth_isoc_reqs--;
4077 	else
4078 		bus->bandwidth_int_reqs--;
4079 }
4080 
4081 /*
4082  * Sets the final status of an URB and returns it to the upper layer. Any
4083  * required cleanup of the URB is performed.
4084  *
4085  * Must be called with interrupt disabled and spinlock held
4086  */
4087 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4088 			int status)
4089 {
4090 	struct urb *urb;
4091 	int i;
4092 
4093 	if (!qtd) {
4094 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4095 		return;
4096 	}
4097 
4098 	if (!qtd->urb) {
4099 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4100 		return;
4101 	}
4102 
4103 	urb = qtd->urb->priv;
4104 	if (!urb) {
4105 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4106 		return;
4107 	}
4108 
4109 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4110 
4111 	if (dbg_urb(urb))
4112 		dev_vdbg(hsotg->dev,
4113 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4114 			 __func__, urb, usb_pipedevice(urb->pipe),
4115 			 usb_pipeendpoint(urb->pipe),
4116 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4117 			 urb->actual_length);
4118 
4119 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4120 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4121 		for (i = 0; i < urb->number_of_packets; ++i) {
4122 			urb->iso_frame_desc[i].actual_length =
4123 				dwc2_hcd_urb_get_iso_desc_actual_length(
4124 						qtd->urb, i);
4125 			urb->iso_frame_desc[i].status =
4126 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4127 		}
4128 	}
4129 
4130 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4131 		for (i = 0; i < urb->number_of_packets; i++)
4132 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4133 				 i, urb->iso_frame_desc[i].status);
4134 	}
4135 
4136 	urb->status = status;
4137 	if (!status) {
4138 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4139 		    urb->actual_length < urb->transfer_buffer_length)
4140 			urb->status = -EREMOTEIO;
4141 	}
4142 
4143 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4144 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4145 		struct usb_host_endpoint *ep = urb->ep;
4146 
4147 		if (ep)
4148 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4149 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4150 					urb);
4151 	}
4152 
4153 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4154 	urb->hcpriv = NULL;
4155 	kfree(qtd->urb);
4156 	qtd->urb = NULL;
4157 
4158 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4159 }
4160 
4161 /*
4162  * Work queue function for starting the HCD when A-Cable is connected
4163  */
4164 static void dwc2_hcd_start_func(struct work_struct *work)
4165 {
4166 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4167 						start_work.work);
4168 
4169 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4170 	dwc2_host_start(hsotg);
4171 }
4172 
4173 /*
4174  * Reset work queue function
4175  */
4176 static void dwc2_hcd_reset_func(struct work_struct *work)
4177 {
4178 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4179 						reset_work.work);
4180 	unsigned long flags;
4181 	u32 hprt0;
4182 
4183 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4184 
4185 	spin_lock_irqsave(&hsotg->lock, flags);
4186 
4187 	hprt0 = dwc2_read_hprt0(hsotg);
4188 	hprt0 &= ~HPRT0_RST;
4189 	dwc2_writel(hsotg, hprt0, HPRT0);
4190 	hsotg->flags.b.port_reset_change = 1;
4191 
4192 	spin_unlock_irqrestore(&hsotg->lock, flags);
4193 }
4194 
4195 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4196 {
4197 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4198 						phy_reset_work);
4199 	int ret;
4200 
4201 	ret = phy_reset(hsotg->phy);
4202 	if (ret)
4203 		dev_warn(hsotg->dev, "PHY reset failed\n");
4204 }
4205 
4206 /*
4207  * =========================================================================
4208  *  Linux HC Driver Functions
4209  * =========================================================================
4210  */
4211 
4212 /*
4213  * Initializes the DWC_otg controller and its root hub and prepares it for host
4214  * mode operation. Activates the root port. Returns 0 on success and a negative
4215  * error code on failure.
4216  */
4217 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4218 {
4219 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4220 	struct usb_bus *bus = hcd_to_bus(hcd);
4221 	unsigned long flags;
4222 	u32 hprt0;
4223 	int ret;
4224 
4225 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4226 
4227 	spin_lock_irqsave(&hsotg->lock, flags);
4228 	hsotg->lx_state = DWC2_L0;
4229 	hcd->state = HC_STATE_RUNNING;
4230 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4231 
4232 	if (dwc2_is_device_mode(hsotg)) {
4233 		spin_unlock_irqrestore(&hsotg->lock, flags);
4234 		return 0;	/* why 0 ?? */
4235 	}
4236 
4237 	dwc2_hcd_reinit(hsotg);
4238 
4239 	hprt0 = dwc2_read_hprt0(hsotg);
4240 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4241 	if (hprt0 & HPRT0_PWR) {
4242 		/* Enable external vbus supply before resuming root hub */
4243 		spin_unlock_irqrestore(&hsotg->lock, flags);
4244 		ret = dwc2_vbus_supply_init(hsotg);
4245 		if (ret)
4246 			return ret;
4247 		spin_lock_irqsave(&hsotg->lock, flags);
4248 	}
4249 
4250 	/* Initialize and connect root hub if one is not already attached */
4251 	if (bus->root_hub) {
4252 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4253 		/* Inform the HUB driver to resume */
4254 		usb_hcd_resume_root_hub(hcd);
4255 	}
4256 
4257 	spin_unlock_irqrestore(&hsotg->lock, flags);
4258 
4259 	return 0;
4260 }
4261 
4262 /*
4263  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4264  * stopped.
4265  */
4266 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4267 {
4268 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4269 	unsigned long flags;
4270 	u32 hprt0;
4271 
4272 	/* Turn off all host-specific interrupts */
4273 	dwc2_disable_host_interrupts(hsotg);
4274 
4275 	/* Wait for interrupt processing to finish */
4276 	synchronize_irq(hcd->irq);
4277 
4278 	spin_lock_irqsave(&hsotg->lock, flags);
4279 	hprt0 = dwc2_read_hprt0(hsotg);
4280 	/* Ensure hcd is disconnected */
4281 	dwc2_hcd_disconnect(hsotg, true);
4282 	dwc2_hcd_stop(hsotg);
4283 	hsotg->lx_state = DWC2_L3;
4284 	hcd->state = HC_STATE_HALT;
4285 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4286 	spin_unlock_irqrestore(&hsotg->lock, flags);
4287 
4288 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4289 	if (hprt0 & HPRT0_PWR)
4290 		dwc2_vbus_supply_exit(hsotg);
4291 
4292 	usleep_range(1000, 3000);
4293 }
4294 
4295 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4296 {
4297 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4298 	unsigned long flags;
4299 	int ret = 0;
4300 	u32 hprt0;
4301 	u32 pcgctl;
4302 
4303 	spin_lock_irqsave(&hsotg->lock, flags);
4304 
4305 	if (dwc2_is_device_mode(hsotg))
4306 		goto unlock;
4307 
4308 	if (hsotg->lx_state != DWC2_L0)
4309 		goto unlock;
4310 
4311 	if (!HCD_HW_ACCESSIBLE(hcd))
4312 		goto unlock;
4313 
4314 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4315 		goto unlock;
4316 
4317 	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4318 		goto skip_power_saving;
4319 
4320 	/*
4321 	 * Drive USB suspend and disable port Power
4322 	 * if usb bus is not suspended.
4323 	 */
4324 	if (!hsotg->bus_suspended) {
4325 		hprt0 = dwc2_read_hprt0(hsotg);
4326 		if (hprt0 & HPRT0_CONNSTS) {
4327 			hprt0 |= HPRT0_SUSP;
4328 			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4329 				hprt0 &= ~HPRT0_PWR;
4330 			dwc2_writel(hsotg, hprt0, HPRT0);
4331 		}
4332 		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4333 			spin_unlock_irqrestore(&hsotg->lock, flags);
4334 			dwc2_vbus_supply_exit(hsotg);
4335 			spin_lock_irqsave(&hsotg->lock, flags);
4336 		} else {
4337 			pcgctl = readl(hsotg->regs + PCGCTL);
4338 			pcgctl |= PCGCTL_STOPPCLK;
4339 			writel(pcgctl, hsotg->regs + PCGCTL);
4340 		}
4341 	}
4342 
4343 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4344 		/* Enter partial_power_down */
4345 		ret = dwc2_enter_partial_power_down(hsotg);
4346 		if (ret) {
4347 			if (ret != -ENOTSUPP)
4348 				dev_err(hsotg->dev,
4349 					"enter partial_power_down failed\n");
4350 			goto skip_power_saving;
4351 		}
4352 
4353 		/* After entering partial_power_down, hardware is no more accessible */
4354 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4355 	}
4356 
4357 	/* Ask phy to be suspended */
4358 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4359 		spin_unlock_irqrestore(&hsotg->lock, flags);
4360 		usb_phy_set_suspend(hsotg->uphy, true);
4361 		spin_lock_irqsave(&hsotg->lock, flags);
4362 	}
4363 
4364 skip_power_saving:
4365 	hsotg->lx_state = DWC2_L2;
4366 unlock:
4367 	spin_unlock_irqrestore(&hsotg->lock, flags);
4368 
4369 	return ret;
4370 }
4371 
4372 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4373 {
4374 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4375 	unsigned long flags;
4376 	u32 pcgctl;
4377 	int ret = 0;
4378 
4379 	spin_lock_irqsave(&hsotg->lock, flags);
4380 
4381 	if (dwc2_is_device_mode(hsotg))
4382 		goto unlock;
4383 
4384 	if (hsotg->lx_state != DWC2_L2)
4385 		goto unlock;
4386 
4387 	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4388 		hsotg->lx_state = DWC2_L0;
4389 		goto unlock;
4390 	}
4391 
4392 	/*
4393 	 * Enable power if not already done.
4394 	 * This must not be spinlocked since duration
4395 	 * of this call is unknown.
4396 	 */
4397 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4398 		spin_unlock_irqrestore(&hsotg->lock, flags);
4399 		usb_phy_set_suspend(hsotg->uphy, false);
4400 		spin_lock_irqsave(&hsotg->lock, flags);
4401 	}
4402 
4403 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4404 		/*
4405 		 * Set HW accessible bit before powering on the controller
4406 		 * since an interrupt may rise.
4407 		 */
4408 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4409 
4410 
4411 		/* Exit partial_power_down */
4412 		ret = dwc2_exit_partial_power_down(hsotg, true);
4413 		if (ret && (ret != -ENOTSUPP))
4414 			dev_err(hsotg->dev, "exit partial_power_down failed\n");
4415 	} else {
4416 		pcgctl = readl(hsotg->regs + PCGCTL);
4417 		pcgctl &= ~PCGCTL_STOPPCLK;
4418 		writel(pcgctl, hsotg->regs + PCGCTL);
4419 	}
4420 
4421 	hsotg->lx_state = DWC2_L0;
4422 
4423 	spin_unlock_irqrestore(&hsotg->lock, flags);
4424 
4425 	if (hsotg->bus_suspended) {
4426 		spin_lock_irqsave(&hsotg->lock, flags);
4427 		hsotg->flags.b.port_suspend_change = 1;
4428 		spin_unlock_irqrestore(&hsotg->lock, flags);
4429 		dwc2_port_resume(hsotg);
4430 	} else {
4431 		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4432 			dwc2_vbus_supply_init(hsotg);
4433 
4434 			/* Wait for controller to correctly update D+/D- level */
4435 			usleep_range(3000, 5000);
4436 		}
4437 
4438 		/*
4439 		 * Clear Port Enable and Port Status changes.
4440 		 * Enable Port Power.
4441 		 */
4442 		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4443 				HPRT0_ENACHG, HPRT0);
4444 		/* Wait for controller to detect Port Connect */
4445 		usleep_range(5000, 7000);
4446 	}
4447 
4448 	return ret;
4449 unlock:
4450 	spin_unlock_irqrestore(&hsotg->lock, flags);
4451 
4452 	return ret;
4453 }
4454 
4455 /* Returns the current frame number */
4456 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4457 {
4458 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4459 
4460 	return dwc2_hcd_get_frame_number(hsotg);
4461 }
4462 
4463 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4464 			       char *fn_name)
4465 {
4466 #ifdef VERBOSE_DEBUG
4467 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4468 	char *pipetype = NULL;
4469 	char *speed = NULL;
4470 
4471 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4472 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4473 		 usb_pipedevice(urb->pipe));
4474 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4475 		 usb_pipeendpoint(urb->pipe),
4476 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4477 
4478 	switch (usb_pipetype(urb->pipe)) {
4479 	case PIPE_CONTROL:
4480 		pipetype = "CONTROL";
4481 		break;
4482 	case PIPE_BULK:
4483 		pipetype = "BULK";
4484 		break;
4485 	case PIPE_INTERRUPT:
4486 		pipetype = "INTERRUPT";
4487 		break;
4488 	case PIPE_ISOCHRONOUS:
4489 		pipetype = "ISOCHRONOUS";
4490 		break;
4491 	}
4492 
4493 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4494 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4495 		 "IN" : "OUT");
4496 
4497 	switch (urb->dev->speed) {
4498 	case USB_SPEED_HIGH:
4499 		speed = "HIGH";
4500 		break;
4501 	case USB_SPEED_FULL:
4502 		speed = "FULL";
4503 		break;
4504 	case USB_SPEED_LOW:
4505 		speed = "LOW";
4506 		break;
4507 	default:
4508 		speed = "UNKNOWN";
4509 		break;
4510 	}
4511 
4512 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4513 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4514 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4515 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4516 		 urb->transfer_buffer_length);
4517 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4518 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4519 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4520 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4521 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4522 
4523 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4524 		int i;
4525 
4526 		for (i = 0; i < urb->number_of_packets; i++) {
4527 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4528 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4529 				 urb->iso_frame_desc[i].offset,
4530 				 urb->iso_frame_desc[i].length);
4531 		}
4532 	}
4533 #endif
4534 }
4535 
4536 /*
4537  * Starts processing a USB transfer request specified by a USB Request Block
4538  * (URB). mem_flags indicates the type of memory allocation to use while
4539  * processing this URB.
4540  */
4541 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4542 				 gfp_t mem_flags)
4543 {
4544 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4545 	struct usb_host_endpoint *ep = urb->ep;
4546 	struct dwc2_hcd_urb *dwc2_urb;
4547 	int i;
4548 	int retval;
4549 	int alloc_bandwidth = 0;
4550 	u8 ep_type = 0;
4551 	u32 tflags = 0;
4552 	void *buf;
4553 	unsigned long flags;
4554 	struct dwc2_qh *qh;
4555 	bool qh_allocated = false;
4556 	struct dwc2_qtd *qtd;
4557 
4558 	if (dbg_urb(urb)) {
4559 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4560 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4561 	}
4562 
4563 	if (!ep)
4564 		return -EINVAL;
4565 
4566 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4567 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4568 		spin_lock_irqsave(&hsotg->lock, flags);
4569 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4570 			alloc_bandwidth = 1;
4571 		spin_unlock_irqrestore(&hsotg->lock, flags);
4572 	}
4573 
4574 	switch (usb_pipetype(urb->pipe)) {
4575 	case PIPE_CONTROL:
4576 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4577 		break;
4578 	case PIPE_ISOCHRONOUS:
4579 		ep_type = USB_ENDPOINT_XFER_ISOC;
4580 		break;
4581 	case PIPE_BULK:
4582 		ep_type = USB_ENDPOINT_XFER_BULK;
4583 		break;
4584 	case PIPE_INTERRUPT:
4585 		ep_type = USB_ENDPOINT_XFER_INT;
4586 		break;
4587 	}
4588 
4589 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4590 				      mem_flags);
4591 	if (!dwc2_urb)
4592 		return -ENOMEM;
4593 
4594 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4595 				  usb_pipeendpoint(urb->pipe), ep_type,
4596 				  usb_pipein(urb->pipe),
4597 				  usb_maxpacket(urb->dev, urb->pipe,
4598 						!(usb_pipein(urb->pipe))));
4599 
4600 	buf = urb->transfer_buffer;
4601 
4602 	if (hcd->self.uses_dma) {
4603 		if (!buf && (urb->transfer_dma & 3)) {
4604 			dev_err(hsotg->dev,
4605 				"%s: unaligned transfer with no transfer_buffer",
4606 				__func__);
4607 			retval = -EINVAL;
4608 			goto fail0;
4609 		}
4610 	}
4611 
4612 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4613 		tflags |= URB_GIVEBACK_ASAP;
4614 	if (urb->transfer_flags & URB_ZERO_PACKET)
4615 		tflags |= URB_SEND_ZERO_PACKET;
4616 
4617 	dwc2_urb->priv = urb;
4618 	dwc2_urb->buf = buf;
4619 	dwc2_urb->dma = urb->transfer_dma;
4620 	dwc2_urb->length = urb->transfer_buffer_length;
4621 	dwc2_urb->setup_packet = urb->setup_packet;
4622 	dwc2_urb->setup_dma = urb->setup_dma;
4623 	dwc2_urb->flags = tflags;
4624 	dwc2_urb->interval = urb->interval;
4625 	dwc2_urb->status = -EINPROGRESS;
4626 
4627 	for (i = 0; i < urb->number_of_packets; ++i)
4628 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4629 						 urb->iso_frame_desc[i].offset,
4630 						 urb->iso_frame_desc[i].length);
4631 
4632 	urb->hcpriv = dwc2_urb;
4633 	qh = (struct dwc2_qh *)ep->hcpriv;
4634 	/* Create QH for the endpoint if it doesn't exist */
4635 	if (!qh) {
4636 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4637 		if (!qh) {
4638 			retval = -ENOMEM;
4639 			goto fail0;
4640 		}
4641 		ep->hcpriv = qh;
4642 		qh_allocated = true;
4643 	}
4644 
4645 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4646 	if (!qtd) {
4647 		retval = -ENOMEM;
4648 		goto fail1;
4649 	}
4650 
4651 	spin_lock_irqsave(&hsotg->lock, flags);
4652 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4653 	if (retval)
4654 		goto fail2;
4655 
4656 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4657 	if (retval)
4658 		goto fail3;
4659 
4660 	if (alloc_bandwidth) {
4661 		dwc2_allocate_bus_bandwidth(hcd,
4662 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4663 				urb);
4664 	}
4665 
4666 	spin_unlock_irqrestore(&hsotg->lock, flags);
4667 
4668 	return 0;
4669 
4670 fail3:
4671 	dwc2_urb->priv = NULL;
4672 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4673 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4674 		qh->channel->qh = NULL;
4675 fail2:
4676 	spin_unlock_irqrestore(&hsotg->lock, flags);
4677 	urb->hcpriv = NULL;
4678 	kfree(qtd);
4679 	qtd = NULL;
4680 fail1:
4681 	if (qh_allocated) {
4682 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4683 
4684 		ep->hcpriv = NULL;
4685 		dwc2_hcd_qh_unlink(hsotg, qh);
4686 		/* Free each QTD in the QH's QTD list */
4687 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4688 					 qtd_list_entry)
4689 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4690 		dwc2_hcd_qh_free(hsotg, qh);
4691 	}
4692 fail0:
4693 	kfree(dwc2_urb);
4694 
4695 	return retval;
4696 }
4697 
4698 /*
4699  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4700  */
4701 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4702 				 int status)
4703 {
4704 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4705 	int rc;
4706 	unsigned long flags;
4707 
4708 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4709 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4710 
4711 	spin_lock_irqsave(&hsotg->lock, flags);
4712 
4713 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4714 	if (rc)
4715 		goto out;
4716 
4717 	if (!urb->hcpriv) {
4718 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4719 		goto out;
4720 	}
4721 
4722 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4723 
4724 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4725 
4726 	kfree(urb->hcpriv);
4727 	urb->hcpriv = NULL;
4728 
4729 	/* Higher layer software sets URB status */
4730 	spin_unlock(&hsotg->lock);
4731 	usb_hcd_giveback_urb(hcd, urb, status);
4732 	spin_lock(&hsotg->lock);
4733 
4734 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4735 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4736 out:
4737 	spin_unlock_irqrestore(&hsotg->lock, flags);
4738 
4739 	return rc;
4740 }
4741 
4742 /*
4743  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4744  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4745  * must already be dequeued.
4746  */
4747 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4748 				       struct usb_host_endpoint *ep)
4749 {
4750 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4751 
4752 	dev_dbg(hsotg->dev,
4753 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4754 		ep->desc.bEndpointAddress, ep->hcpriv);
4755 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4756 }
4757 
4758 /*
4759  * Resets endpoint specific parameter values, in current version used to reset
4760  * the data toggle (as a WA). This function can be called from usb_clear_halt
4761  * routine.
4762  */
4763 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4764 				     struct usb_host_endpoint *ep)
4765 {
4766 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4767 	unsigned long flags;
4768 
4769 	dev_dbg(hsotg->dev,
4770 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4771 		ep->desc.bEndpointAddress);
4772 
4773 	spin_lock_irqsave(&hsotg->lock, flags);
4774 	dwc2_hcd_endpoint_reset(hsotg, ep);
4775 	spin_unlock_irqrestore(&hsotg->lock, flags);
4776 }
4777 
4778 /*
4779  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4780  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4781  * interrupt.
4782  *
4783  * This function is called by the USB core when an interrupt occurs
4784  */
4785 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4786 {
4787 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4788 
4789 	return dwc2_handle_hcd_intr(hsotg);
4790 }
4791 
4792 /*
4793  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4794  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4795  * is the status change indicator for the single root port. Returns 1 if either
4796  * change indicator is 1, otherwise returns 0.
4797  */
4798 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4799 {
4800 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4801 
4802 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4803 	return buf[0] != 0;
4804 }
4805 
4806 /* Handles hub class-specific requests */
4807 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4808 				 u16 windex, char *buf, u16 wlength)
4809 {
4810 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4811 					  wvalue, windex, buf, wlength);
4812 	return retval;
4813 }
4814 
4815 /* Handles hub TT buffer clear completions */
4816 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4817 					       struct usb_host_endpoint *ep)
4818 {
4819 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4820 	struct dwc2_qh *qh;
4821 	unsigned long flags;
4822 
4823 	qh = ep->hcpriv;
4824 	if (!qh)
4825 		return;
4826 
4827 	spin_lock_irqsave(&hsotg->lock, flags);
4828 	qh->tt_buffer_dirty = 0;
4829 
4830 	if (hsotg->flags.b.port_connect_status)
4831 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4832 
4833 	spin_unlock_irqrestore(&hsotg->lock, flags);
4834 }
4835 
4836 /*
4837  * HPRT0_SPD_HIGH_SPEED: high speed
4838  * HPRT0_SPD_FULL_SPEED: full speed
4839  */
4840 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4841 {
4842 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4843 
4844 	if (hsotg->params.speed == speed)
4845 		return;
4846 
4847 	hsotg->params.speed = speed;
4848 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4849 }
4850 
4851 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4852 {
4853 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4854 
4855 	if (!hsotg->params.change_speed_quirk)
4856 		return;
4857 
4858 	/*
4859 	 * On removal, set speed to default high-speed.
4860 	 */
4861 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4862 	    udev->parent->speed < USB_SPEED_HIGH) {
4863 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4864 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4865 	}
4866 }
4867 
4868 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4869 {
4870 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4871 
4872 	if (!hsotg->params.change_speed_quirk)
4873 		return 0;
4874 
4875 	if (udev->speed == USB_SPEED_HIGH) {
4876 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4877 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4878 	} else if ((udev->speed == USB_SPEED_FULL ||
4879 				udev->speed == USB_SPEED_LOW)) {
4880 		/*
4881 		 * Change speed setting to full-speed if there's
4882 		 * a full-speed or low-speed device plugged in.
4883 		 */
4884 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4885 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4886 	}
4887 
4888 	return 0;
4889 }
4890 
4891 static struct hc_driver dwc2_hc_driver = {
4892 	.description = "dwc2_hsotg",
4893 	.product_desc = "DWC OTG Controller",
4894 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4895 
4896 	.irq = _dwc2_hcd_irq,
4897 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4898 
4899 	.start = _dwc2_hcd_start,
4900 	.stop = _dwc2_hcd_stop,
4901 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4902 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4903 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4904 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4905 	.get_frame_number = _dwc2_hcd_get_frame_number,
4906 
4907 	.hub_status_data = _dwc2_hcd_hub_status_data,
4908 	.hub_control = _dwc2_hcd_hub_control,
4909 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4910 
4911 	.bus_suspend = _dwc2_hcd_suspend,
4912 	.bus_resume = _dwc2_hcd_resume,
4913 
4914 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4915 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4916 };
4917 
4918 /*
4919  * Frees secondary storage associated with the dwc2_hsotg structure contained
4920  * in the struct usb_hcd field
4921  */
4922 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4923 {
4924 	u32 ahbcfg;
4925 	u32 dctl;
4926 	int i;
4927 
4928 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4929 
4930 	/* Free memory for QH/QTD lists */
4931 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4932 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4933 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4934 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4935 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4936 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4937 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4938 
4939 	/* Free memory for the host channels */
4940 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4941 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4942 
4943 		if (chan) {
4944 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4945 				i, chan);
4946 			hsotg->hc_ptr_array[i] = NULL;
4947 			kfree(chan);
4948 		}
4949 	}
4950 
4951 	if (hsotg->params.host_dma) {
4952 		if (hsotg->status_buf) {
4953 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4954 					  hsotg->status_buf,
4955 					  hsotg->status_buf_dma);
4956 			hsotg->status_buf = NULL;
4957 		}
4958 	} else {
4959 		kfree(hsotg->status_buf);
4960 		hsotg->status_buf = NULL;
4961 	}
4962 
4963 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4964 
4965 	/* Disable all interrupts */
4966 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4967 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4968 	dwc2_writel(hsotg, 0, GINTMSK);
4969 
4970 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4971 		dctl = dwc2_readl(hsotg, DCTL);
4972 		dctl |= DCTL_SFTDISCON;
4973 		dwc2_writel(hsotg, dctl, DCTL);
4974 	}
4975 
4976 	if (hsotg->wq_otg) {
4977 		if (!cancel_work_sync(&hsotg->wf_otg))
4978 			flush_workqueue(hsotg->wq_otg);
4979 		destroy_workqueue(hsotg->wq_otg);
4980 	}
4981 
4982 	cancel_work_sync(&hsotg->phy_reset_work);
4983 
4984 	del_timer(&hsotg->wkp_timer);
4985 }
4986 
4987 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4988 {
4989 	/* Turn off all host-specific interrupts */
4990 	dwc2_disable_host_interrupts(hsotg);
4991 
4992 	dwc2_hcd_free(hsotg);
4993 }
4994 
4995 /*
4996  * Initializes the HCD. This function allocates memory for and initializes the
4997  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4998  * USB bus with the core and calls the hc_driver->start() function. It returns
4999  * a negative error on failure.
5000  */
5001 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5002 {
5003 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5004 	struct resource *res;
5005 	struct usb_hcd *hcd;
5006 	struct dwc2_host_chan *channel;
5007 	u32 hcfg;
5008 	int i, num_channels;
5009 	int retval;
5010 
5011 	if (usb_disabled())
5012 		return -ENODEV;
5013 
5014 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5015 
5016 	retval = -ENOMEM;
5017 
5018 	hcfg = dwc2_readl(hsotg, HCFG);
5019 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5020 
5021 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5022 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5023 					 sizeof(*hsotg->frame_num_array),
5024 					 GFP_KERNEL);
5025 	if (!hsotg->frame_num_array)
5026 		goto error1;
5027 	hsotg->last_frame_num_array =
5028 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5029 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5030 	if (!hsotg->last_frame_num_array)
5031 		goto error1;
5032 #endif
5033 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5034 
5035 	/* Check if the bus driver or platform code has setup a dma_mask */
5036 	if (hsotg->params.host_dma &&
5037 	    !hsotg->dev->dma_mask) {
5038 		dev_warn(hsotg->dev,
5039 			 "dma_mask not set, disabling DMA\n");
5040 		hsotg->params.host_dma = false;
5041 		hsotg->params.dma_desc_enable = false;
5042 	}
5043 
5044 	/* Set device flags indicating whether the HCD supports DMA */
5045 	if (hsotg->params.host_dma) {
5046 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5047 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5048 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5049 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5050 	}
5051 
5052 	if (hsotg->params.change_speed_quirk) {
5053 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5054 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5055 	}
5056 
5057 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5058 	if (!hcd)
5059 		goto error1;
5060 
5061 	if (!hsotg->params.host_dma)
5062 		hcd->self.uses_dma = 0;
5063 
5064 	hcd->has_tt = 1;
5065 
5066 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5067 	hcd->rsrc_start = res->start;
5068 	hcd->rsrc_len = resource_size(res);
5069 
5070 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5071 	hsotg->priv = hcd;
5072 
5073 	/*
5074 	 * Disable the global interrupt until all the interrupt handlers are
5075 	 * installed
5076 	 */
5077 	dwc2_disable_global_interrupts(hsotg);
5078 
5079 	/* Initialize the DWC_otg core, and select the Phy type */
5080 	retval = dwc2_core_init(hsotg, true);
5081 	if (retval)
5082 		goto error2;
5083 
5084 	/* Create new workqueue and init work */
5085 	retval = -ENOMEM;
5086 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5087 	if (!hsotg->wq_otg) {
5088 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5089 		goto error2;
5090 	}
5091 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5092 
5093 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5094 
5095 	/* Initialize the non-periodic schedule */
5096 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5097 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5098 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5099 
5100 	/* Initialize the periodic schedule */
5101 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5102 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5103 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5104 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5105 
5106 	INIT_LIST_HEAD(&hsotg->split_order);
5107 
5108 	/*
5109 	 * Create a host channel descriptor for each host channel implemented
5110 	 * in the controller. Initialize the channel descriptor array.
5111 	 */
5112 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5113 	num_channels = hsotg->params.host_channels;
5114 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5115 
5116 	for (i = 0; i < num_channels; i++) {
5117 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5118 		if (!channel)
5119 			goto error3;
5120 		channel->hc_num = i;
5121 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5122 		hsotg->hc_ptr_array[i] = channel;
5123 	}
5124 
5125 	/* Initialize work */
5126 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5127 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5128 	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5129 
5130 	/*
5131 	 * Allocate space for storing data on status transactions. Normally no
5132 	 * data is sent, but this space acts as a bit bucket. This must be
5133 	 * done after usb_add_hcd since that function allocates the DMA buffer
5134 	 * pool.
5135 	 */
5136 	if (hsotg->params.host_dma)
5137 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5138 					DWC2_HCD_STATUS_BUF_SIZE,
5139 					&hsotg->status_buf_dma, GFP_KERNEL);
5140 	else
5141 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5142 					  GFP_KERNEL);
5143 
5144 	if (!hsotg->status_buf)
5145 		goto error3;
5146 
5147 	/*
5148 	 * Create kmem caches to handle descriptor buffers in descriptor
5149 	 * DMA mode.
5150 	 * Alignment must be set to 512 bytes.
5151 	 */
5152 	if (hsotg->params.dma_desc_enable ||
5153 	    hsotg->params.dma_desc_fs_enable) {
5154 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5155 				sizeof(struct dwc2_dma_desc) *
5156 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5157 				NULL);
5158 		if (!hsotg->desc_gen_cache) {
5159 			dev_err(hsotg->dev,
5160 				"unable to create dwc2 generic desc cache\n");
5161 
5162 			/*
5163 			 * Disable descriptor dma mode since it will not be
5164 			 * usable.
5165 			 */
5166 			hsotg->params.dma_desc_enable = false;
5167 			hsotg->params.dma_desc_fs_enable = false;
5168 		}
5169 
5170 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5171 				sizeof(struct dwc2_dma_desc) *
5172 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5173 		if (!hsotg->desc_hsisoc_cache) {
5174 			dev_err(hsotg->dev,
5175 				"unable to create dwc2 hs isoc desc cache\n");
5176 
5177 			kmem_cache_destroy(hsotg->desc_gen_cache);
5178 
5179 			/*
5180 			 * Disable descriptor dma mode since it will not be
5181 			 * usable.
5182 			 */
5183 			hsotg->params.dma_desc_enable = false;
5184 			hsotg->params.dma_desc_fs_enable = false;
5185 		}
5186 	}
5187 
5188 	if (hsotg->params.host_dma) {
5189 		/*
5190 		 * Create kmem caches to handle non-aligned buffer
5191 		 * in Buffer DMA mode.
5192 		 */
5193 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5194 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5195 						SLAB_CACHE_DMA, NULL);
5196 		if (!hsotg->unaligned_cache)
5197 			dev_err(hsotg->dev,
5198 				"unable to create dwc2 unaligned cache\n");
5199 	}
5200 
5201 	hsotg->otg_port = 1;
5202 	hsotg->frame_list = NULL;
5203 	hsotg->frame_list_dma = 0;
5204 	hsotg->periodic_qh_count = 0;
5205 
5206 	/* Initiate lx_state to L3 disconnected state */
5207 	hsotg->lx_state = DWC2_L3;
5208 
5209 	hcd->self.otg_port = hsotg->otg_port;
5210 
5211 	/* Don't support SG list at this point */
5212 	hcd->self.sg_tablesize = 0;
5213 
5214 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5215 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5216 
5217 	/*
5218 	 * Finish generic HCD initialization and start the HCD. This function
5219 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5220 	 * IRQ line, and calls hcd_start method.
5221 	 */
5222 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5223 	if (retval < 0)
5224 		goto error4;
5225 
5226 	device_wakeup_enable(hcd->self.controller);
5227 
5228 	dwc2_hcd_dump_state(hsotg);
5229 
5230 	dwc2_enable_global_interrupts(hsotg);
5231 
5232 	return 0;
5233 
5234 error4:
5235 	kmem_cache_destroy(hsotg->unaligned_cache);
5236 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5237 	kmem_cache_destroy(hsotg->desc_gen_cache);
5238 error3:
5239 	dwc2_hcd_release(hsotg);
5240 error2:
5241 	usb_put_hcd(hcd);
5242 error1:
5243 
5244 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5245 	kfree(hsotg->last_frame_num_array);
5246 	kfree(hsotg->frame_num_array);
5247 #endif
5248 
5249 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5250 	return retval;
5251 }
5252 
5253 /*
5254  * Removes the HCD.
5255  * Frees memory and resources associated with the HCD and deregisters the bus.
5256  */
5257 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5258 {
5259 	struct usb_hcd *hcd;
5260 
5261 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5262 
5263 	hcd = dwc2_hsotg_to_hcd(hsotg);
5264 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5265 
5266 	if (!hcd) {
5267 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5268 			__func__);
5269 		return;
5270 	}
5271 
5272 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5273 		otg_set_host(hsotg->uphy->otg, NULL);
5274 
5275 	usb_remove_hcd(hcd);
5276 	hsotg->priv = NULL;
5277 
5278 	kmem_cache_destroy(hsotg->unaligned_cache);
5279 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5280 	kmem_cache_destroy(hsotg->desc_gen_cache);
5281 
5282 	dwc2_hcd_release(hsotg);
5283 	usb_put_hcd(hcd);
5284 
5285 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5286 	kfree(hsotg->last_frame_num_array);
5287 	kfree(hsotg->frame_num_array);
5288 #endif
5289 }
5290 
5291 /**
5292  * dwc2_backup_host_registers() - Backup controller host registers.
5293  * When suspending usb bus, registers needs to be backuped
5294  * if controller power is disabled once suspended.
5295  *
5296  * @hsotg: Programming view of the DWC_otg controller
5297  */
5298 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5299 {
5300 	struct dwc2_hregs_backup *hr;
5301 	int i;
5302 
5303 	dev_dbg(hsotg->dev, "%s\n", __func__);
5304 
5305 	/* Backup Host regs */
5306 	hr = &hsotg->hr_backup;
5307 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5308 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5309 	for (i = 0; i < hsotg->params.host_channels; ++i)
5310 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5311 
5312 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5313 	hr->hfir = dwc2_readl(hsotg, HFIR);
5314 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5315 	hr->valid = true;
5316 
5317 	return 0;
5318 }
5319 
5320 /**
5321  * dwc2_restore_host_registers() - Restore controller host registers.
5322  * When resuming usb bus, device registers needs to be restored
5323  * if controller power were disabled.
5324  *
5325  * @hsotg: Programming view of the DWC_otg controller
5326  */
5327 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5328 {
5329 	struct dwc2_hregs_backup *hr;
5330 	int i;
5331 
5332 	dev_dbg(hsotg->dev, "%s\n", __func__);
5333 
5334 	/* Restore host regs */
5335 	hr = &hsotg->hr_backup;
5336 	if (!hr->valid) {
5337 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5338 			__func__);
5339 		return -EINVAL;
5340 	}
5341 	hr->valid = false;
5342 
5343 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5344 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5345 
5346 	for (i = 0; i < hsotg->params.host_channels; ++i)
5347 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5348 
5349 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5350 	dwc2_writel(hsotg, hr->hfir, HFIR);
5351 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5352 	hsotg->frame_number = 0;
5353 
5354 	return 0;
5355 }
5356 
5357 /**
5358  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5359  *
5360  * @hsotg: Programming view of the DWC_otg controller
5361  */
5362 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5363 {
5364 	unsigned long flags;
5365 	int ret = 0;
5366 	u32 hprt0;
5367 	u32 pcgcctl;
5368 	u32 gusbcfg;
5369 	u32 gpwrdn;
5370 
5371 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5372 	ret = dwc2_backup_global_registers(hsotg);
5373 	if (ret) {
5374 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5375 			__func__);
5376 		return ret;
5377 	}
5378 	ret = dwc2_backup_host_registers(hsotg);
5379 	if (ret) {
5380 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5381 			__func__);
5382 		return ret;
5383 	}
5384 
5385 	/* Enter USB Suspend Mode */
5386 	hprt0 = dwc2_readl(hsotg, HPRT0);
5387 	hprt0 |= HPRT0_SUSP;
5388 	hprt0 &= ~HPRT0_ENA;
5389 	dwc2_writel(hsotg, hprt0, HPRT0);
5390 
5391 	/* Wait for the HPRT0.PrtSusp register field to be set */
5392 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5393 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5394 
5395 	/*
5396 	 * We need to disable interrupts to prevent servicing of any IRQ
5397 	 * during going to hibernation
5398 	 */
5399 	spin_lock_irqsave(&hsotg->lock, flags);
5400 	hsotg->lx_state = DWC2_L2;
5401 
5402 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5403 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5404 		/* ULPI interface */
5405 		/* Suspend the Phy Clock */
5406 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5407 		pcgcctl |= PCGCTL_STOPPCLK;
5408 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5409 		udelay(10);
5410 
5411 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5412 		gpwrdn |= GPWRDN_PMUACTV;
5413 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5414 		udelay(10);
5415 	} else {
5416 		/* UTMI+ Interface */
5417 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5418 		gpwrdn |= GPWRDN_PMUACTV;
5419 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5420 		udelay(10);
5421 
5422 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5423 		pcgcctl |= PCGCTL_STOPPCLK;
5424 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5425 		udelay(10);
5426 	}
5427 
5428 	/* Enable interrupts from wake up logic */
5429 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5430 	gpwrdn |= GPWRDN_PMUINTSEL;
5431 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5432 	udelay(10);
5433 
5434 	/* Unmask host mode interrupts in GPWRDN */
5435 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5436 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5437 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5438 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5439 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5440 	udelay(10);
5441 
5442 	/* Enable Power Down Clamp */
5443 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5444 	gpwrdn |= GPWRDN_PWRDNCLMP;
5445 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5446 	udelay(10);
5447 
5448 	/* Switch off VDD */
5449 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5450 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5451 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5452 
5453 	hsotg->hibernated = 1;
5454 	hsotg->bus_suspended = 1;
5455 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5456 	spin_unlock_irqrestore(&hsotg->lock, flags);
5457 	return ret;
5458 }
5459 
5460 /*
5461  * dwc2_host_exit_hibernation()
5462  *
5463  * @hsotg: Programming view of the DWC_otg controller
5464  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5465  * @param reset: indicates whether resume is initiated by Reset.
5466  *
5467  * Return: non-zero if failed to enter to hibernation.
5468  *
5469  * This function is for exiting from Host mode hibernation by
5470  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5471  */
5472 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5473 			       int reset)
5474 {
5475 	u32 gpwrdn;
5476 	u32 hprt0;
5477 	int ret = 0;
5478 	struct dwc2_gregs_backup *gr;
5479 	struct dwc2_hregs_backup *hr;
5480 
5481 	gr = &hsotg->gr_backup;
5482 	hr = &hsotg->hr_backup;
5483 
5484 	dev_dbg(hsotg->dev,
5485 		"%s: called with rem_wakeup = %d reset = %d\n",
5486 		__func__, rem_wakeup, reset);
5487 
5488 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5489 	hsotg->hibernated = 0;
5490 
5491 	/*
5492 	 * This step is not described in functional spec but if not wait for
5493 	 * this delay, mismatch interrupts occurred because just after restore
5494 	 * core is in Device mode(gintsts.curmode == 0)
5495 	 */
5496 	mdelay(100);
5497 
5498 	/* Clear all pending interupts */
5499 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5500 
5501 	/* De-assert Restore */
5502 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5503 	gpwrdn &= ~GPWRDN_RESTORE;
5504 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5505 	udelay(10);
5506 
5507 	/* Restore GUSBCFG, HCFG */
5508 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5509 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5510 
5511 	/* De-assert Wakeup Logic */
5512 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5513 	gpwrdn &= ~GPWRDN_PMUACTV;
5514 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5515 	udelay(10);
5516 
5517 	hprt0 = hr->hprt0;
5518 	hprt0 |= HPRT0_PWR;
5519 	hprt0 &= ~HPRT0_ENA;
5520 	hprt0 &= ~HPRT0_SUSP;
5521 	dwc2_writel(hsotg, hprt0, HPRT0);
5522 
5523 	hprt0 = hr->hprt0;
5524 	hprt0 |= HPRT0_PWR;
5525 	hprt0 &= ~HPRT0_ENA;
5526 	hprt0 &= ~HPRT0_SUSP;
5527 
5528 	if (reset) {
5529 		hprt0 |= HPRT0_RST;
5530 		dwc2_writel(hsotg, hprt0, HPRT0);
5531 
5532 		/* Wait for Resume time and then program HPRT again */
5533 		mdelay(60);
5534 		hprt0 &= ~HPRT0_RST;
5535 		dwc2_writel(hsotg, hprt0, HPRT0);
5536 	} else {
5537 		hprt0 |= HPRT0_RES;
5538 		dwc2_writel(hsotg, hprt0, HPRT0);
5539 
5540 		/* Wait for Resume time and then program HPRT again */
5541 		mdelay(100);
5542 		hprt0 &= ~HPRT0_RES;
5543 		dwc2_writel(hsotg, hprt0, HPRT0);
5544 	}
5545 	/* Clear all interrupt status */
5546 	hprt0 = dwc2_readl(hsotg, HPRT0);
5547 	hprt0 |= HPRT0_CONNDET;
5548 	hprt0 |= HPRT0_ENACHG;
5549 	hprt0 &= ~HPRT0_ENA;
5550 	dwc2_writel(hsotg, hprt0, HPRT0);
5551 
5552 	hprt0 = dwc2_readl(hsotg, HPRT0);
5553 
5554 	/* Clear all pending interupts */
5555 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5556 
5557 	/* Restore global registers */
5558 	ret = dwc2_restore_global_registers(hsotg);
5559 	if (ret) {
5560 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5561 			__func__);
5562 		return ret;
5563 	}
5564 
5565 	/* Restore host registers */
5566 	ret = dwc2_restore_host_registers(hsotg);
5567 	if (ret) {
5568 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5569 			__func__);
5570 		return ret;
5571 	}
5572 
5573 	dwc2_hcd_rem_wakeup(hsotg);
5574 
5575 	hsotg->hibernated = 0;
5576 	hsotg->bus_suspended = 0;
5577 	hsotg->lx_state = DWC2_L0;
5578 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5579 	return ret;
5580 }
5581