xref: /linux/drivers/usb/dwc2/hcd.c (revision 6a143a7cf94730f57544ea14a987dc025364dbb8)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99 
100 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
101 {
102 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
103 
104 	switch (hsotg->hw_params.arch) {
105 	case GHWCFG2_EXT_DMA_ARCH:
106 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
107 		return -EINVAL;
108 
109 	case GHWCFG2_INT_DMA_ARCH:
110 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
111 		if (hsotg->params.ahbcfg != -1) {
112 			ahbcfg &= GAHBCFG_CTRL_MASK;
113 			ahbcfg |= hsotg->params.ahbcfg &
114 				  ~GAHBCFG_CTRL_MASK;
115 		}
116 		break;
117 
118 	case GHWCFG2_SLAVE_ONLY_ARCH:
119 	default:
120 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
121 		break;
122 	}
123 
124 	if (hsotg->params.host_dma)
125 		ahbcfg |= GAHBCFG_DMA_EN;
126 	else
127 		hsotg->params.dma_desc_enable = false;
128 
129 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
130 
131 	return 0;
132 }
133 
134 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
135 {
136 	u32 usbcfg;
137 
138 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
140 
141 	switch (hsotg->hw_params.op_mode) {
142 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
143 		if (hsotg->params.otg_cap ==
144 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
145 			usbcfg |= GUSBCFG_HNPCAP;
146 		if (hsotg->params.otg_cap !=
147 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
148 			usbcfg |= GUSBCFG_SRPCAP;
149 		break;
150 
151 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
152 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
153 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
154 		if (hsotg->params.otg_cap !=
155 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
156 			usbcfg |= GUSBCFG_SRPCAP;
157 		break;
158 
159 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
160 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
161 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
162 	default:
163 		break;
164 	}
165 
166 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
167 }
168 
169 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
170 {
171 	if (hsotg->vbus_supply)
172 		return regulator_enable(hsotg->vbus_supply);
173 
174 	return 0;
175 }
176 
177 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
178 {
179 	if (hsotg->vbus_supply)
180 		return regulator_disable(hsotg->vbus_supply);
181 
182 	return 0;
183 }
184 
185 /**
186  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
187  *
188  * @hsotg: Programming view of DWC_otg controller
189  */
190 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
191 {
192 	u32 intmsk;
193 
194 	dev_dbg(hsotg->dev, "%s()\n", __func__);
195 
196 	/* Disable all interrupts */
197 	dwc2_writel(hsotg, 0, GINTMSK);
198 	dwc2_writel(hsotg, 0, HAINTMSK);
199 
200 	/* Enable the common interrupts */
201 	dwc2_enable_common_interrupts(hsotg);
202 
203 	/* Enable host mode interrupts without disturbing common interrupts */
204 	intmsk = dwc2_readl(hsotg, GINTMSK);
205 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
206 	dwc2_writel(hsotg, intmsk, GINTMSK);
207 }
208 
209 /**
210  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
211  *
212  * @hsotg: Programming view of DWC_otg controller
213  */
214 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
215 {
216 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
217 
218 	/* Disable host mode interrupts without disturbing common interrupts */
219 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
220 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
221 	dwc2_writel(hsotg, intmsk, GINTMSK);
222 }
223 
224 /*
225  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226  * For system that have a total fifo depth that is smaller than the default
227  * RX + TX fifo size.
228  *
229  * @hsotg: Programming view of DWC_otg controller
230  */
231 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
232 {
233 	struct dwc2_core_params *params = &hsotg->params;
234 	struct dwc2_hw_params *hw = &hsotg->hw_params;
235 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
236 
237 	total_fifo_size = hw->total_fifo_size;
238 	rxfsiz = params->host_rx_fifo_size;
239 	nptxfsiz = params->host_nperio_tx_fifo_size;
240 	ptxfsiz = params->host_perio_tx_fifo_size;
241 
242 	/*
243 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244 	 * allocation with support for high bandwidth endpoints. Synopsys
245 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
246 	 * non-periodic as 512.
247 	 */
248 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
249 		/*
250 		 * For Buffer DMA mode/Scatter Gather DMA mode
251 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252 		 * with n = number of host channel.
253 		 * 2 * ((1024/4) + 2) = 516
254 		 */
255 		rxfsiz = 516 + hw->host_channels;
256 
257 		/*
258 		 * min non-periodic tx fifo depth
259 		 * 2 * (largest non-periodic USB packet used / 4)
260 		 * 2 * (512/4) = 256
261 		 */
262 		nptxfsiz = 256;
263 
264 		/*
265 		 * min periodic tx fifo depth
266 		 * (largest packet size*MC)/4
267 		 * (1024 * 3)/4 = 768
268 		 */
269 		ptxfsiz = 768;
270 
271 		params->host_rx_fifo_size = rxfsiz;
272 		params->host_nperio_tx_fifo_size = nptxfsiz;
273 		params->host_perio_tx_fifo_size = ptxfsiz;
274 	}
275 
276 	/*
277 	 * If the summation of RX, NPTX and PTX fifo sizes is still
278 	 * bigger than the total_fifo_size, then we have a problem.
279 	 *
280 	 * We won't be able to allocate as many endpoints. Right now,
281 	 * we're just printing an error message, but ideally this FIFO
282 	 * allocation algorithm would be improved in the future.
283 	 *
284 	 * FIXME improve this FIFO allocation algorithm.
285 	 */
286 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
287 		dev_err(hsotg->dev, "invalid fifo sizes\n");
288 }
289 
290 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
291 {
292 	struct dwc2_core_params *params = &hsotg->params;
293 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
294 
295 	if (!params->enable_dynamic_fifo)
296 		return;
297 
298 	dwc2_calculate_dynamic_fifo(hsotg);
299 
300 	/* Rx FIFO */
301 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
302 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
303 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
304 	grxfsiz |= params->host_rx_fifo_size <<
305 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
306 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
307 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
308 		dwc2_readl(hsotg, GRXFSIZ));
309 
310 	/* Non-periodic Tx FIFO */
311 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
312 		dwc2_readl(hsotg, GNPTXFSIZ));
313 	nptxfsiz = params->host_nperio_tx_fifo_size <<
314 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
315 	nptxfsiz |= params->host_rx_fifo_size <<
316 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
317 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
318 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
319 		dwc2_readl(hsotg, GNPTXFSIZ));
320 
321 	/* Periodic Tx FIFO */
322 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
323 		dwc2_readl(hsotg, HPTXFSIZ));
324 	hptxfsiz = params->host_perio_tx_fifo_size <<
325 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
326 	hptxfsiz |= (params->host_rx_fifo_size +
327 		     params->host_nperio_tx_fifo_size) <<
328 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
329 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
330 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
331 		dwc2_readl(hsotg, HPTXFSIZ));
332 
333 	if (hsotg->params.en_multiple_tx_fifo &&
334 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
335 		/*
336 		 * This feature was implemented in 2.91a version
337 		 * Global DFIFOCFG calculation for Host mode -
338 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
339 		 */
340 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
341 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
342 		dfifocfg |= (params->host_rx_fifo_size +
343 			     params->host_nperio_tx_fifo_size +
344 			     params->host_perio_tx_fifo_size) <<
345 			    GDFIFOCFG_EPINFOBASE_SHIFT &
346 			    GDFIFOCFG_EPINFOBASE_MASK;
347 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
348 	}
349 }
350 
351 /**
352  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353  * the HFIR register according to PHY type and speed
354  *
355  * @hsotg: Programming view of DWC_otg controller
356  *
357  * NOTE: The caller can modify the value of the HFIR register only after the
358  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
359  * has been set
360  */
361 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
362 {
363 	u32 usbcfg;
364 	u32 hprt0;
365 	int clock = 60;	/* default value */
366 
367 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
368 	hprt0 = dwc2_readl(hsotg, HPRT0);
369 
370 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
371 	    !(usbcfg & GUSBCFG_PHYIF16))
372 		clock = 60;
373 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
374 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
375 		clock = 48;
376 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378 		clock = 30;
379 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
380 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
381 		clock = 60;
382 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
383 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
384 		clock = 48;
385 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
386 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
387 		clock = 48;
388 	if ((usbcfg & GUSBCFG_PHYSEL) &&
389 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
390 		clock = 48;
391 
392 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
393 		/* High speed case */
394 		return 125 * clock - 1;
395 
396 	/* FS/LS case */
397 	return 1000 * clock - 1;
398 }
399 
400 /**
401  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
402  * buffer
403  *
404  * @hsotg: Programming view of DWC_otg controller
405  * @dest:    Destination buffer for the packet
406  * @bytes:   Number of bytes to copy to the destination
407  */
408 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
409 {
410 	u32 *data_buf = (u32 *)dest;
411 	int word_count = (bytes + 3) / 4;
412 	int i;
413 
414 	/*
415 	 * Todo: Account for the case where dest is not dword aligned. This
416 	 * requires reading data from the FIFO into a u32 temp buffer, then
417 	 * moving it into the data buffer.
418 	 */
419 
420 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
421 
422 	for (i = 0; i < word_count; i++, data_buf++)
423 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
424 }
425 
426 /**
427  * dwc2_dump_channel_info() - Prints the state of a host channel
428  *
429  * @hsotg: Programming view of DWC_otg controller
430  * @chan:  Pointer to the channel to dump
431  *
432  * Must be called with interrupt disabled and spinlock held
433  *
434  * NOTE: This function will be removed once the peripheral controller code
435  * is integrated and the driver is stable
436  */
437 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
438 				   struct dwc2_host_chan *chan)
439 {
440 #ifdef VERBOSE_DEBUG
441 	int num_channels = hsotg->params.host_channels;
442 	struct dwc2_qh *qh;
443 	u32 hcchar;
444 	u32 hcsplt;
445 	u32 hctsiz;
446 	u32 hc_dma;
447 	int i;
448 
449 	if (!chan)
450 		return;
451 
452 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
453 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
454 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
455 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
456 
457 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
458 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
459 		hcchar, hcsplt);
460 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
461 		hctsiz, hc_dma);
462 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
464 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
465 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
466 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
467 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
468 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
469 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
470 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
471 		(unsigned long)chan->xfer_dma);
472 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
473 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
474 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
475 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
476 			    qh_list_entry)
477 		dev_dbg(hsotg->dev, "    %p\n", qh);
478 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
479 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
480 			    qh_list_entry)
481 		dev_dbg(hsotg->dev, "    %p\n", qh);
482 	dev_dbg(hsotg->dev, "  NP active sched:\n");
483 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
484 			    qh_list_entry)
485 		dev_dbg(hsotg->dev, "    %p\n", qh);
486 	dev_dbg(hsotg->dev, "  Channels:\n");
487 	for (i = 0; i < num_channels; i++) {
488 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
489 
490 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
491 	}
492 #endif /* VERBOSE_DEBUG */
493 }
494 
495 static int _dwc2_hcd_start(struct usb_hcd *hcd);
496 
497 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
498 {
499 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
500 
501 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
502 	_dwc2_hcd_start(hcd);
503 }
504 
505 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
506 {
507 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
508 
509 	hcd->self.is_b_host = 0;
510 }
511 
512 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
513 			       int *hub_addr, int *hub_port)
514 {
515 	struct urb *urb = context;
516 
517 	if (urb->dev->tt)
518 		*hub_addr = urb->dev->tt->hub->devnum;
519 	else
520 		*hub_addr = 0;
521 	*hub_port = urb->dev->ttport;
522 }
523 
524 /*
525  * =========================================================================
526  *  Low Level Host Channel Access Functions
527  * =========================================================================
528  */
529 
530 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
531 				      struct dwc2_host_chan *chan)
532 {
533 	u32 hcintmsk = HCINTMSK_CHHLTD;
534 
535 	switch (chan->ep_type) {
536 	case USB_ENDPOINT_XFER_CONTROL:
537 	case USB_ENDPOINT_XFER_BULK:
538 		dev_vdbg(hsotg->dev, "control/bulk\n");
539 		hcintmsk |= HCINTMSK_XFERCOMPL;
540 		hcintmsk |= HCINTMSK_STALL;
541 		hcintmsk |= HCINTMSK_XACTERR;
542 		hcintmsk |= HCINTMSK_DATATGLERR;
543 		if (chan->ep_is_in) {
544 			hcintmsk |= HCINTMSK_BBLERR;
545 		} else {
546 			hcintmsk |= HCINTMSK_NAK;
547 			hcintmsk |= HCINTMSK_NYET;
548 			if (chan->do_ping)
549 				hcintmsk |= HCINTMSK_ACK;
550 		}
551 
552 		if (chan->do_split) {
553 			hcintmsk |= HCINTMSK_NAK;
554 			if (chan->complete_split)
555 				hcintmsk |= HCINTMSK_NYET;
556 			else
557 				hcintmsk |= HCINTMSK_ACK;
558 		}
559 
560 		if (chan->error_state)
561 			hcintmsk |= HCINTMSK_ACK;
562 		break;
563 
564 	case USB_ENDPOINT_XFER_INT:
565 		if (dbg_perio())
566 			dev_vdbg(hsotg->dev, "intr\n");
567 		hcintmsk |= HCINTMSK_XFERCOMPL;
568 		hcintmsk |= HCINTMSK_NAK;
569 		hcintmsk |= HCINTMSK_STALL;
570 		hcintmsk |= HCINTMSK_XACTERR;
571 		hcintmsk |= HCINTMSK_DATATGLERR;
572 		hcintmsk |= HCINTMSK_FRMOVRUN;
573 
574 		if (chan->ep_is_in)
575 			hcintmsk |= HCINTMSK_BBLERR;
576 		if (chan->error_state)
577 			hcintmsk |= HCINTMSK_ACK;
578 		if (chan->do_split) {
579 			if (chan->complete_split)
580 				hcintmsk |= HCINTMSK_NYET;
581 			else
582 				hcintmsk |= HCINTMSK_ACK;
583 		}
584 		break;
585 
586 	case USB_ENDPOINT_XFER_ISOC:
587 		if (dbg_perio())
588 			dev_vdbg(hsotg->dev, "isoc\n");
589 		hcintmsk |= HCINTMSK_XFERCOMPL;
590 		hcintmsk |= HCINTMSK_FRMOVRUN;
591 		hcintmsk |= HCINTMSK_ACK;
592 
593 		if (chan->ep_is_in) {
594 			hcintmsk |= HCINTMSK_XACTERR;
595 			hcintmsk |= HCINTMSK_BBLERR;
596 		}
597 		break;
598 	default:
599 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
600 		break;
601 	}
602 
603 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
604 	if (dbg_hc(chan))
605 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
606 }
607 
608 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
609 				    struct dwc2_host_chan *chan)
610 {
611 	u32 hcintmsk = HCINTMSK_CHHLTD;
612 
613 	/*
614 	 * For Descriptor DMA mode core halts the channel on AHB error.
615 	 * Interrupt is not required.
616 	 */
617 	if (!hsotg->params.dma_desc_enable) {
618 		if (dbg_hc(chan))
619 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
620 		hcintmsk |= HCINTMSK_AHBERR;
621 	} else {
622 		if (dbg_hc(chan))
623 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
624 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
625 			hcintmsk |= HCINTMSK_XFERCOMPL;
626 	}
627 
628 	if (chan->error_state && !chan->do_split &&
629 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
630 		if (dbg_hc(chan))
631 			dev_vdbg(hsotg->dev, "setting ACK\n");
632 		hcintmsk |= HCINTMSK_ACK;
633 		if (chan->ep_is_in) {
634 			hcintmsk |= HCINTMSK_DATATGLERR;
635 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
636 				hcintmsk |= HCINTMSK_NAK;
637 		}
638 	}
639 
640 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
641 	if (dbg_hc(chan))
642 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
643 }
644 
645 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
646 				struct dwc2_host_chan *chan)
647 {
648 	u32 intmsk;
649 
650 	if (hsotg->params.host_dma) {
651 		if (dbg_hc(chan))
652 			dev_vdbg(hsotg->dev, "DMA enabled\n");
653 		dwc2_hc_enable_dma_ints(hsotg, chan);
654 	} else {
655 		if (dbg_hc(chan))
656 			dev_vdbg(hsotg->dev, "DMA disabled\n");
657 		dwc2_hc_enable_slave_ints(hsotg, chan);
658 	}
659 
660 	/* Enable the top level host channel interrupt */
661 	intmsk = dwc2_readl(hsotg, HAINTMSK);
662 	intmsk |= 1 << chan->hc_num;
663 	dwc2_writel(hsotg, intmsk, HAINTMSK);
664 	if (dbg_hc(chan))
665 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
666 
667 	/* Make sure host channel interrupts are enabled */
668 	intmsk = dwc2_readl(hsotg, GINTMSK);
669 	intmsk |= GINTSTS_HCHINT;
670 	dwc2_writel(hsotg, intmsk, GINTMSK);
671 	if (dbg_hc(chan))
672 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
673 }
674 
675 /**
676  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677  * a specific endpoint
678  *
679  * @hsotg: Programming view of DWC_otg controller
680  * @chan:  Information needed to initialize the host channel
681  *
682  * The HCCHARn register is set up with the characteristics specified in chan.
683  * Host channel interrupts that may need to be serviced while this transfer is
684  * in progress are enabled.
685  */
686 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
687 {
688 	u8 hc_num = chan->hc_num;
689 	u32 hcintmsk;
690 	u32 hcchar;
691 	u32 hcsplt = 0;
692 
693 	if (dbg_hc(chan))
694 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
695 
696 	/* Clear old interrupt conditions for this host channel */
697 	hcintmsk = 0xffffffff;
698 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
699 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
700 
701 	/* Enable channel interrupts required for this transfer */
702 	dwc2_hc_enable_ints(hsotg, chan);
703 
704 	/*
705 	 * Program the HCCHARn register with the endpoint characteristics for
706 	 * the current transfer
707 	 */
708 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
709 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
710 	if (chan->ep_is_in)
711 		hcchar |= HCCHAR_EPDIR;
712 	if (chan->speed == USB_SPEED_LOW)
713 		hcchar |= HCCHAR_LSPDDEV;
714 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
715 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
716 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
717 	if (dbg_hc(chan)) {
718 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
719 			 hc_num, hcchar);
720 
721 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
722 			 __func__, hc_num);
723 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
724 			 chan->dev_addr);
725 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
726 			 chan->ep_num);
727 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
728 			 chan->ep_is_in);
729 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
730 			 chan->speed == USB_SPEED_LOW);
731 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
732 			 chan->ep_type);
733 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
734 			 chan->max_packet);
735 	}
736 
737 	/* Program the HCSPLT register for SPLITs */
738 	if (chan->do_split) {
739 		if (dbg_hc(chan))
740 			dev_vdbg(hsotg->dev,
741 				 "Programming HC %d with split --> %s\n",
742 				 hc_num,
743 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
744 		if (chan->complete_split)
745 			hcsplt |= HCSPLT_COMPSPLT;
746 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
747 			  HCSPLT_XACTPOS_MASK;
748 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
749 			  HCSPLT_HUBADDR_MASK;
750 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
751 			  HCSPLT_PRTADDR_MASK;
752 		if (dbg_hc(chan)) {
753 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
754 				 chan->complete_split);
755 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
756 				 chan->xact_pos);
757 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
758 				 chan->hub_addr);
759 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
760 				 chan->hub_port);
761 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
762 				 chan->ep_is_in);
763 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
764 				 chan->max_packet);
765 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
766 				 chan->xfer_len);
767 		}
768 	}
769 
770 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
771 }
772 
773 /**
774  * dwc2_hc_halt() - Attempts to halt a host channel
775  *
776  * @hsotg:       Controller register interface
777  * @chan:        Host channel to halt
778  * @halt_status: Reason for halting the channel
779  *
780  * This function should only be called in Slave mode or to abort a transfer in
781  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782  * controller halts the channel when the transfer is complete or a condition
783  * occurs that requires application intervention.
784  *
785  * In slave mode, checks for a free request queue entry, then sets the Channel
786  * Enable and Channel Disable bits of the Host Channel Characteristics
787  * register of the specified channel to intiate the halt. If there is no free
788  * request queue entry, sets only the Channel Disable bit of the HCCHARn
789  * register to flush requests for this channel. In the latter case, sets a
790  * flag to indicate that the host channel needs to be halted when a request
791  * queue slot is open.
792  *
793  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794  * HCCHARn register. The controller ensures there is space in the request
795  * queue before submitting the halt request.
796  *
797  * Some time may elapse before the core flushes any posted requests for this
798  * host channel and halts. The Channel Halted interrupt handler completes the
799  * deactivation of the host channel.
800  */
801 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
802 		  enum dwc2_halt_status halt_status)
803 {
804 	u32 nptxsts, hptxsts, hcchar;
805 
806 	if (dbg_hc(chan))
807 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
808 
809 	/*
810 	 * In buffer DMA or external DMA mode channel can't be halted
811 	 * for non-split periodic channels. At the end of the next
812 	 * uframe/frame (in the worst case), the core generates a channel
813 	 * halted and disables the channel automatically.
814 	 */
815 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
816 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
817 		if (!chan->do_split &&
818 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
819 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
820 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
821 				__func__);
822 			return;
823 		}
824 	}
825 
826 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
827 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
828 
829 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
830 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
831 		/*
832 		 * Disable all channel interrupts except Ch Halted. The QTD
833 		 * and QH state associated with this transfer has been cleared
834 		 * (in the case of URB_DEQUEUE), so the channel needs to be
835 		 * shut down carefully to prevent crashes.
836 		 */
837 		u32 hcintmsk = HCINTMSK_CHHLTD;
838 
839 		dev_vdbg(hsotg->dev, "dequeue/error\n");
840 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
841 
842 		/*
843 		 * Make sure no other interrupts besides halt are currently
844 		 * pending. Handling another interrupt could cause a crash due
845 		 * to the QTD and QH state.
846 		 */
847 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
848 
849 		/*
850 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851 		 * even if the channel was already halted for some other
852 		 * reason
853 		 */
854 		chan->halt_status = halt_status;
855 
856 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
857 		if (!(hcchar & HCCHAR_CHENA)) {
858 			/*
859 			 * The channel is either already halted or it hasn't
860 			 * started yet. In DMA mode, the transfer may halt if
861 			 * it finishes normally or a condition occurs that
862 			 * requires driver intervention. Don't want to halt
863 			 * the channel again. In either Slave or DMA mode,
864 			 * it's possible that the transfer has been assigned
865 			 * to a channel, but not started yet when an URB is
866 			 * dequeued. Don't want to halt a channel that hasn't
867 			 * started yet.
868 			 */
869 			return;
870 		}
871 	}
872 	if (chan->halt_pending) {
873 		/*
874 		 * A halt has already been issued for this channel. This might
875 		 * happen when a transfer is aborted by a higher level in
876 		 * the stack.
877 		 */
878 		dev_vdbg(hsotg->dev,
879 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
880 			 __func__, chan->hc_num);
881 		return;
882 	}
883 
884 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
885 
886 	/* No need to set the bit in DDMA for disabling the channel */
887 	/* TODO check it everywhere channel is disabled */
888 	if (!hsotg->params.dma_desc_enable) {
889 		if (dbg_hc(chan))
890 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
891 		hcchar |= HCCHAR_CHENA;
892 	} else {
893 		if (dbg_hc(chan))
894 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
895 	}
896 	hcchar |= HCCHAR_CHDIS;
897 
898 	if (!hsotg->params.host_dma) {
899 		if (dbg_hc(chan))
900 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
901 		hcchar |= HCCHAR_CHENA;
902 
903 		/* Check for space in the request queue to issue the halt */
904 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
905 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
906 			dev_vdbg(hsotg->dev, "control/bulk\n");
907 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
908 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
909 				dev_vdbg(hsotg->dev, "Disabling channel\n");
910 				hcchar &= ~HCCHAR_CHENA;
911 			}
912 		} else {
913 			if (dbg_perio())
914 				dev_vdbg(hsotg->dev, "isoc/intr\n");
915 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
916 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
917 			    hsotg->queuing_high_bandwidth) {
918 				if (dbg_perio())
919 					dev_vdbg(hsotg->dev, "Disabling channel\n");
920 				hcchar &= ~HCCHAR_CHENA;
921 			}
922 		}
923 	} else {
924 		if (dbg_hc(chan))
925 			dev_vdbg(hsotg->dev, "DMA enabled\n");
926 	}
927 
928 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
929 	chan->halt_status = halt_status;
930 
931 	if (hcchar & HCCHAR_CHENA) {
932 		if (dbg_hc(chan))
933 			dev_vdbg(hsotg->dev, "Channel enabled\n");
934 		chan->halt_pending = 1;
935 		chan->halt_on_queue = 0;
936 	} else {
937 		if (dbg_hc(chan))
938 			dev_vdbg(hsotg->dev, "Channel disabled\n");
939 		chan->halt_on_queue = 1;
940 	}
941 
942 	if (dbg_hc(chan)) {
943 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
944 			 chan->hc_num);
945 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
946 			 hcchar);
947 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
948 			 chan->halt_pending);
949 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
950 			 chan->halt_on_queue);
951 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
952 			 chan->halt_status);
953 	}
954 }
955 
956 /**
957  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
958  *
959  * @hsotg: Programming view of DWC_otg controller
960  * @chan:  Identifies the host channel to clean up
961  *
962  * This function is normally called after a transfer is done and the host
963  * channel is being released
964  */
965 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
966 {
967 	u32 hcintmsk;
968 
969 	chan->xfer_started = 0;
970 
971 	list_del_init(&chan->split_order_list_entry);
972 
973 	/*
974 	 * Clear channel interrupt enables and any unhandled channel interrupt
975 	 * conditions
976 	 */
977 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
978 	hcintmsk = 0xffffffff;
979 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
980 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
981 }
982 
983 /**
984  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985  * which frame a periodic transfer should occur
986  *
987  * @hsotg:  Programming view of DWC_otg controller
988  * @chan:   Identifies the host channel to set up and its properties
989  * @hcchar: Current value of the HCCHAR register for the specified host channel
990  *
991  * This function has no effect on non-periodic transfers
992  */
993 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
994 				       struct dwc2_host_chan *chan, u32 *hcchar)
995 {
996 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
997 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
998 		int host_speed;
999 		int xfer_ns;
1000 		int xfer_us;
1001 		int bytes_in_fifo;
1002 		u16 fifo_space;
1003 		u16 frame_number;
1004 		u16 wire_frame;
1005 
1006 		/*
1007 		 * Try to figure out if we're an even or odd frame. If we set
1008 		 * even and the current frame number is even the the transfer
1009 		 * will happen immediately.  Similar if both are odd. If one is
1010 		 * even and the other is odd then the transfer will happen when
1011 		 * the frame number ticks.
1012 		 *
1013 		 * There's a bit of a balancing act to get this right.
1014 		 * Sometimes we may want to send data in the current frame (AK
1015 		 * right away).  We might want to do this if the frame number
1016 		 * _just_ ticked, but we might also want to do this in order
1017 		 * to continue a split transaction that happened late in a
1018 		 * microframe (so we didn't know to queue the next transfer
1019 		 * until the frame number had ticked).  The problem is that we
1020 		 * need a lot of knowledge to know if there's actually still
1021 		 * time to send things or if it would be better to wait until
1022 		 * the next frame.
1023 		 *
1024 		 * We can look at how much time is left in the current frame
1025 		 * and make a guess about whether we'll have time to transfer.
1026 		 * We'll do that.
1027 		 */
1028 
1029 		/* Get speed host is running at */
1030 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1031 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032 
1033 		/* See how many bytes are in the periodic FIFO right now */
1034 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036 		bytes_in_fifo = sizeof(u32) *
1037 				(hsotg->params.host_perio_tx_fifo_size -
1038 				 fifo_space);
1039 
1040 		/*
1041 		 * Roughly estimate bus time for everything in the periodic
1042 		 * queue + our new transfer.  This is "rough" because we're
1043 		 * using a function that makes takes into account IN/OUT
1044 		 * and INT/ISO and we're just slamming in one value for all
1045 		 * transfers.  This should be an over-estimate and that should
1046 		 * be OK, but we can probably tighten it.
1047 		 */
1048 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049 					    chan->xfer_len + bytes_in_fifo);
1050 		xfer_us = NS_TO_US(xfer_ns);
1051 
1052 		/* See what frame number we'll be at by the time we finish */
1053 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054 
1055 		/* This is when we were scheduled to be on the wire */
1056 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057 
1058 		/*
1059 		 * If we'd finish _after_ the frame we're scheduled in then
1060 		 * it's hopeless.  Just schedule right away and hope for the
1061 		 * best.  Note that it _might_ be wise to call back into the
1062 		 * scheduler to pick a better frame, but this is better than
1063 		 * nothing.
1064 		 */
1065 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066 			dwc2_sch_vdbg(hsotg,
1067 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068 				      chan->qh, wire_frame, frame_number,
1069 				      dwc2_frame_num_dec(frame_number,
1070 							 wire_frame));
1071 			wire_frame = frame_number;
1072 
1073 			/*
1074 			 * We picked a different frame number; communicate this
1075 			 * back to the scheduler so it doesn't try to schedule
1076 			 * another in the same frame.
1077 			 *
1078 			 * Remember that next_active_frame is 1 before the wire
1079 			 * frame.
1080 			 */
1081 			chan->qh->next_active_frame =
1082 				dwc2_frame_num_dec(frame_number, 1);
1083 		}
1084 
1085 		if (wire_frame & 1)
1086 			*hcchar |= HCCHAR_ODDFRM;
1087 		else
1088 			*hcchar &= ~HCCHAR_ODDFRM;
1089 	}
1090 }
1091 
1092 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093 {
1094 	/* Set up the initial PID for the transfer */
1095 	if (chan->speed == USB_SPEED_HIGH) {
1096 		if (chan->ep_is_in) {
1097 			if (chan->multi_count == 1)
1098 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1099 			else if (chan->multi_count == 2)
1100 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1101 			else
1102 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1103 		} else {
1104 			if (chan->multi_count == 1)
1105 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1106 			else
1107 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1108 		}
1109 	} else {
1110 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1111 	}
1112 }
1113 
1114 /**
1115  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116  * the Host Channel
1117  *
1118  * @hsotg: Programming view of DWC_otg controller
1119  * @chan:  Information needed to initialize the host channel
1120  *
1121  * This function should only be called in Slave mode. For a channel associated
1122  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123  * associated with a periodic EP, the periodic Tx FIFO is written.
1124  *
1125  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126  * the number of bytes written to the Tx FIFO.
1127  */
1128 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129 				 struct dwc2_host_chan *chan)
1130 {
1131 	u32 i;
1132 	u32 remaining_count;
1133 	u32 byte_count;
1134 	u32 dword_count;
1135 	u32 *data_buf = (u32 *)chan->xfer_buf;
1136 
1137 	if (dbg_hc(chan))
1138 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139 
1140 	remaining_count = chan->xfer_len - chan->xfer_count;
1141 	if (remaining_count > chan->max_packet)
1142 		byte_count = chan->max_packet;
1143 	else
1144 		byte_count = remaining_count;
1145 
1146 	dword_count = (byte_count + 3) / 4;
1147 
1148 	if (((unsigned long)data_buf & 0x3) == 0) {
1149 		/* xfer_buf is DWORD aligned */
1150 		for (i = 0; i < dword_count; i++, data_buf++)
1151 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152 	} else {
1153 		/* xfer_buf is not DWORD aligned */
1154 		for (i = 0; i < dword_count; i++, data_buf++) {
1155 			u32 data = data_buf[0] | data_buf[1] << 8 |
1156 				   data_buf[2] << 16 | data_buf[3] << 24;
1157 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158 		}
1159 	}
1160 
1161 	chan->xfer_count += byte_count;
1162 	chan->xfer_buf += byte_count;
1163 }
1164 
1165 /**
1166  * dwc2_hc_do_ping() - Starts a PING transfer
1167  *
1168  * @hsotg: Programming view of DWC_otg controller
1169  * @chan:  Information needed to initialize the host channel
1170  *
1171  * This function should only be called in Slave mode. The Do Ping bit is set in
1172  * the HCTSIZ register, then the channel is enabled.
1173  */
1174 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175 			    struct dwc2_host_chan *chan)
1176 {
1177 	u32 hcchar;
1178 	u32 hctsiz;
1179 
1180 	if (dbg_hc(chan))
1181 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182 			 chan->hc_num);
1183 
1184 	hctsiz = TSIZ_DOPNG;
1185 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187 
1188 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189 	hcchar |= HCCHAR_CHENA;
1190 	hcchar &= ~HCCHAR_CHDIS;
1191 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192 }
1193 
1194 /**
1195  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196  * channel and starts the transfer
1197  *
1198  * @hsotg: Programming view of DWC_otg controller
1199  * @chan:  Information needed to initialize the host channel. The xfer_len value
1200  *         may be reduced to accommodate the max widths of the XferSize and
1201  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1202  *         changed to reflect the final xfer_len value.
1203  *
1204  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205  * the caller must ensure that there is sufficient space in the request queue
1206  * and Tx Data FIFO.
1207  *
1208  * For an OUT transfer in Slave mode, it loads a data packet into the
1209  * appropriate FIFO. If necessary, additional data packets are loaded in the
1210  * Host ISR.
1211  *
1212  * For an IN transfer in Slave mode, a data packet is requested. The data
1213  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214  * additional data packets are requested in the Host ISR.
1215  *
1216  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217  * register along with a packet count of 1 and the channel is enabled. This
1218  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219  * simply set to 0 since no data transfer occurs in this case.
1220  *
1221  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222  * all the information required to perform the subsequent data transfer. In
1223  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224  * controller performs the entire PING protocol, then starts the data
1225  * transfer.
1226  */
1227 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228 				   struct dwc2_host_chan *chan)
1229 {
1230 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232 	u32 hcchar;
1233 	u32 hctsiz = 0;
1234 	u16 num_packets;
1235 	u32 ec_mc;
1236 
1237 	if (dbg_hc(chan))
1238 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239 
1240 	if (chan->do_ping) {
1241 		if (!hsotg->params.host_dma) {
1242 			if (dbg_hc(chan))
1243 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244 			dwc2_hc_do_ping(hsotg, chan);
1245 			chan->xfer_started = 1;
1246 			return;
1247 		}
1248 
1249 		if (dbg_hc(chan))
1250 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1251 
1252 		hctsiz |= TSIZ_DOPNG;
1253 	}
1254 
1255 	if (chan->do_split) {
1256 		if (dbg_hc(chan))
1257 			dev_vdbg(hsotg->dev, "split\n");
1258 		num_packets = 1;
1259 
1260 		if (chan->complete_split && !chan->ep_is_in)
1261 			/*
1262 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1263 			 * core doesn't expect any data written to the FIFO
1264 			 */
1265 			chan->xfer_len = 0;
1266 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267 			chan->xfer_len = chan->max_packet;
1268 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1269 			chan->xfer_len = 188;
1270 
1271 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272 			  TSIZ_XFERSIZE_MASK;
1273 
1274 		/* For split set ec_mc for immediate retries */
1275 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277 			ec_mc = 3;
1278 		else
1279 			ec_mc = 1;
1280 	} else {
1281 		if (dbg_hc(chan))
1282 			dev_vdbg(hsotg->dev, "no split\n");
1283 		/*
1284 		 * Ensure that the transfer length and packet count will fit
1285 		 * in the widths allocated for them in the HCTSIZn register
1286 		 */
1287 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289 			/*
1290 			 * Make sure the transfer size is no larger than one
1291 			 * (micro)frame's worth of data. (A check was done
1292 			 * when the periodic transfer was accepted to ensure
1293 			 * that a (micro)frame's worth of data can be
1294 			 * programmed into a channel.)
1295 			 */
1296 			u32 max_periodic_len =
1297 				chan->multi_count * chan->max_packet;
1298 
1299 			if (chan->xfer_len > max_periodic_len)
1300 				chan->xfer_len = max_periodic_len;
1301 		} else if (chan->xfer_len > max_hc_xfer_size) {
1302 			/*
1303 			 * Make sure that xfer_len is a multiple of max packet
1304 			 * size
1305 			 */
1306 			chan->xfer_len =
1307 				max_hc_xfer_size - chan->max_packet + 1;
1308 		}
1309 
1310 		if (chan->xfer_len > 0) {
1311 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312 					chan->max_packet;
1313 			if (num_packets > max_hc_pkt_count) {
1314 				num_packets = max_hc_pkt_count;
1315 				chan->xfer_len = num_packets * chan->max_packet;
1316 			} else if (chan->ep_is_in) {
1317 				/*
1318 				 * Always program an integral # of max packets
1319 				 * for IN transfers.
1320 				 * Note: This assumes that the input buffer is
1321 				 * aligned and sized accordingly.
1322 				 */
1323 				chan->xfer_len = num_packets * chan->max_packet;
1324 			}
1325 		} else {
1326 			/* Need 1 packet for transfer length of 0 */
1327 			num_packets = 1;
1328 		}
1329 
1330 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1331 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1332 			/*
1333 			 * Make sure that the multi_count field matches the
1334 			 * actual transfer length
1335 			 */
1336 			chan->multi_count = num_packets;
1337 
1338 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1339 			dwc2_set_pid_isoc(chan);
1340 
1341 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1342 			  TSIZ_XFERSIZE_MASK;
1343 
1344 		/* The ec_mc gets the multi_count for non-split */
1345 		ec_mc = chan->multi_count;
1346 	}
1347 
1348 	chan->start_pkt_count = num_packets;
1349 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1350 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1351 		  TSIZ_SC_MC_PID_MASK;
1352 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1353 	if (dbg_hc(chan)) {
1354 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1355 			 hctsiz, chan->hc_num);
1356 
1357 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1358 			 chan->hc_num);
1359 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1360 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1361 			 TSIZ_XFERSIZE_SHIFT);
1362 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1363 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1364 			 TSIZ_PKTCNT_SHIFT);
1365 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1366 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1367 			 TSIZ_SC_MC_PID_SHIFT);
1368 	}
1369 
1370 	if (hsotg->params.host_dma) {
1371 		dma_addr_t dma_addr;
1372 
1373 		if (chan->align_buf) {
1374 			if (dbg_hc(chan))
1375 				dev_vdbg(hsotg->dev, "align_buf\n");
1376 			dma_addr = chan->align_buf;
1377 		} else {
1378 			dma_addr = chan->xfer_dma;
1379 		}
1380 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1381 
1382 		if (dbg_hc(chan))
1383 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1384 				 (unsigned long)dma_addr, chan->hc_num);
1385 	}
1386 
1387 	/* Start the split */
1388 	if (chan->do_split) {
1389 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1390 
1391 		hcsplt |= HCSPLT_SPLTENA;
1392 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1393 	}
1394 
1395 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1396 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1397 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1398 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1399 
1400 	if (hcchar & HCCHAR_CHDIS)
1401 		dev_warn(hsotg->dev,
1402 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1403 			 __func__, chan->hc_num, hcchar);
1404 
1405 	/* Set host channel enable after all other setup is complete */
1406 	hcchar |= HCCHAR_CHENA;
1407 	hcchar &= ~HCCHAR_CHDIS;
1408 
1409 	if (dbg_hc(chan))
1410 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1411 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1412 			 HCCHAR_MULTICNT_SHIFT);
1413 
1414 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1415 	if (dbg_hc(chan))
1416 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1417 			 chan->hc_num);
1418 
1419 	chan->xfer_started = 1;
1420 	chan->requests++;
1421 
1422 	if (!hsotg->params.host_dma &&
1423 	    !chan->ep_is_in && chan->xfer_len > 0)
1424 		/* Load OUT packet into the appropriate Tx FIFO */
1425 		dwc2_hc_write_packet(hsotg, chan);
1426 }
1427 
1428 /**
1429  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1430  * host channel and starts the transfer in Descriptor DMA mode
1431  *
1432  * @hsotg: Programming view of DWC_otg controller
1433  * @chan:  Information needed to initialize the host channel
1434  *
1435  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1436  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1437  * with micro-frame bitmap.
1438  *
1439  * Initializes HCDMA register with descriptor list address and CTD value then
1440  * starts the transfer via enabling the channel.
1441  */
1442 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1443 				 struct dwc2_host_chan *chan)
1444 {
1445 	u32 hcchar;
1446 	u32 hctsiz = 0;
1447 
1448 	if (chan->do_ping)
1449 		hctsiz |= TSIZ_DOPNG;
1450 
1451 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1452 		dwc2_set_pid_isoc(chan);
1453 
1454 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1455 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1456 		  TSIZ_SC_MC_PID_MASK;
1457 
1458 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1459 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1460 
1461 	/* Non-zero only for high-speed interrupt endpoints */
1462 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1463 
1464 	if (dbg_hc(chan)) {
1465 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1466 			 chan->hc_num);
1467 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1468 			 chan->data_pid_start);
1469 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1470 	}
1471 
1472 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1473 
1474 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1475 				   chan->desc_list_sz, DMA_TO_DEVICE);
1476 
1477 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1478 
1479 	if (dbg_hc(chan))
1480 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1481 			 &chan->desc_list_addr, chan->hc_num);
1482 
1483 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1484 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1485 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1486 		  HCCHAR_MULTICNT_MASK;
1487 
1488 	if (hcchar & HCCHAR_CHDIS)
1489 		dev_warn(hsotg->dev,
1490 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1491 			 __func__, chan->hc_num, hcchar);
1492 
1493 	/* Set host channel enable after all other setup is complete */
1494 	hcchar |= HCCHAR_CHENA;
1495 	hcchar &= ~HCCHAR_CHDIS;
1496 
1497 	if (dbg_hc(chan))
1498 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1499 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1500 			 HCCHAR_MULTICNT_SHIFT);
1501 
1502 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1503 	if (dbg_hc(chan))
1504 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1505 			 chan->hc_num);
1506 
1507 	chan->xfer_started = 1;
1508 	chan->requests++;
1509 }
1510 
1511 /**
1512  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1513  * a previous call to dwc2_hc_start_transfer()
1514  *
1515  * @hsotg: Programming view of DWC_otg controller
1516  * @chan:  Information needed to initialize the host channel
1517  *
1518  * The caller must ensure there is sufficient space in the request queue and Tx
1519  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1520  * the controller acts autonomously to complete transfers programmed to a host
1521  * channel.
1522  *
1523  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1524  * if there is any data remaining to be queued. For an IN transfer, another
1525  * data packet is always requested. For the SETUP phase of a control transfer,
1526  * this function does nothing.
1527  *
1528  * Return: 1 if a new request is queued, 0 if no more requests are required
1529  * for this transfer
1530  */
1531 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1532 				     struct dwc2_host_chan *chan)
1533 {
1534 	if (dbg_hc(chan))
1535 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1536 			 chan->hc_num);
1537 
1538 	if (chan->do_split)
1539 		/* SPLITs always queue just once per channel */
1540 		return 0;
1541 
1542 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1543 		/* SETUPs are queued only once since they can't be NAK'd */
1544 		return 0;
1545 
1546 	if (chan->ep_is_in) {
1547 		/*
1548 		 * Always queue another request for other IN transfers. If
1549 		 * back-to-back INs are issued and NAKs are received for both,
1550 		 * the driver may still be processing the first NAK when the
1551 		 * second NAK is received. When the interrupt handler clears
1552 		 * the NAK interrupt for the first NAK, the second NAK will
1553 		 * not be seen. So we can't depend on the NAK interrupt
1554 		 * handler to requeue a NAK'd request. Instead, IN requests
1555 		 * are issued each time this function is called. When the
1556 		 * transfer completes, the extra requests for the channel will
1557 		 * be flushed.
1558 		 */
1559 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1560 
1561 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1562 		hcchar |= HCCHAR_CHENA;
1563 		hcchar &= ~HCCHAR_CHDIS;
1564 		if (dbg_hc(chan))
1565 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1566 				 hcchar);
1567 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1568 		chan->requests++;
1569 		return 1;
1570 	}
1571 
1572 	/* OUT transfers */
1573 
1574 	if (chan->xfer_count < chan->xfer_len) {
1575 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1576 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1577 			u32 hcchar = dwc2_readl(hsotg,
1578 						HCCHAR(chan->hc_num));
1579 
1580 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1581 						   &hcchar);
1582 		}
1583 
1584 		/* Load OUT packet into the appropriate Tx FIFO */
1585 		dwc2_hc_write_packet(hsotg, chan);
1586 		chan->requests++;
1587 		return 1;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 /*
1594  * =========================================================================
1595  *  HCD
1596  * =========================================================================
1597  */
1598 
1599 /*
1600  * Processes all the URBs in a single list of QHs. Completes them with
1601  * -ETIMEDOUT and frees the QTD.
1602  *
1603  * Must be called with interrupt disabled and spinlock held
1604  */
1605 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1606 				      struct list_head *qh_list)
1607 {
1608 	struct dwc2_qh *qh, *qh_tmp;
1609 	struct dwc2_qtd *qtd, *qtd_tmp;
1610 
1611 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1612 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1613 					 qtd_list_entry) {
1614 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1615 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1616 		}
1617 	}
1618 }
1619 
1620 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1621 			      struct list_head *qh_list)
1622 {
1623 	struct dwc2_qtd *qtd, *qtd_tmp;
1624 	struct dwc2_qh *qh, *qh_tmp;
1625 	unsigned long flags;
1626 
1627 	if (!qh_list->next)
1628 		/* The list hasn't been initialized yet */
1629 		return;
1630 
1631 	spin_lock_irqsave(&hsotg->lock, flags);
1632 
1633 	/* Ensure there are no QTDs or URBs left */
1634 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1635 
1636 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1637 		dwc2_hcd_qh_unlink(hsotg, qh);
1638 
1639 		/* Free each QTD in the QH's QTD list */
1640 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1641 					 qtd_list_entry)
1642 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1643 
1644 		if (qh->channel && qh->channel->qh == qh)
1645 			qh->channel->qh = NULL;
1646 
1647 		spin_unlock_irqrestore(&hsotg->lock, flags);
1648 		dwc2_hcd_qh_free(hsotg, qh);
1649 		spin_lock_irqsave(&hsotg->lock, flags);
1650 	}
1651 
1652 	spin_unlock_irqrestore(&hsotg->lock, flags);
1653 }
1654 
1655 /*
1656  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1657  * and periodic schedules. The QTD associated with each URB is removed from
1658  * the schedule and freed. This function may be called when a disconnect is
1659  * detected or when the HCD is being stopped.
1660  *
1661  * Must be called with interrupt disabled and spinlock held
1662  */
1663 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1664 {
1665 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1666 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1667 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1668 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1669 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1670 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1671 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1672 }
1673 
1674 /**
1675  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1676  *
1677  * @hsotg: Pointer to struct dwc2_hsotg
1678  */
1679 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1680 {
1681 	u32 hprt0;
1682 
1683 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1684 		/*
1685 		 * Reset the port. During a HNP mode switch the reset
1686 		 * needs to occur within 1ms and have a duration of at
1687 		 * least 50ms.
1688 		 */
1689 		hprt0 = dwc2_read_hprt0(hsotg);
1690 		hprt0 |= HPRT0_RST;
1691 		dwc2_writel(hsotg, hprt0, HPRT0);
1692 	}
1693 
1694 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1695 			   msecs_to_jiffies(50));
1696 }
1697 
1698 /* Must be called with interrupt disabled and spinlock held */
1699 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1700 {
1701 	int num_channels = hsotg->params.host_channels;
1702 	struct dwc2_host_chan *channel;
1703 	u32 hcchar;
1704 	int i;
1705 
1706 	if (!hsotg->params.host_dma) {
1707 		/* Flush out any channel requests in slave mode */
1708 		for (i = 0; i < num_channels; i++) {
1709 			channel = hsotg->hc_ptr_array[i];
1710 			if (!list_empty(&channel->hc_list_entry))
1711 				continue;
1712 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1713 			if (hcchar & HCCHAR_CHENA) {
1714 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1715 				hcchar |= HCCHAR_CHDIS;
1716 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1717 			}
1718 		}
1719 	}
1720 
1721 	for (i = 0; i < num_channels; i++) {
1722 		channel = hsotg->hc_ptr_array[i];
1723 		if (!list_empty(&channel->hc_list_entry))
1724 			continue;
1725 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1726 		if (hcchar & HCCHAR_CHENA) {
1727 			/* Halt the channel */
1728 			hcchar |= HCCHAR_CHDIS;
1729 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1730 		}
1731 
1732 		dwc2_hc_cleanup(hsotg, channel);
1733 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1734 		/*
1735 		 * Added for Descriptor DMA to prevent channel double cleanup in
1736 		 * release_channel_ddma(), which is called from ep_disable when
1737 		 * device disconnects
1738 		 */
1739 		channel->qh = NULL;
1740 	}
1741 	/* All channels have been freed, mark them available */
1742 	if (hsotg->params.uframe_sched) {
1743 		hsotg->available_host_channels =
1744 			hsotg->params.host_channels;
1745 	} else {
1746 		hsotg->non_periodic_channels = 0;
1747 		hsotg->periodic_channels = 0;
1748 	}
1749 }
1750 
1751 /**
1752  * dwc2_hcd_connect() - Handles connect of the HCD
1753  *
1754  * @hsotg: Pointer to struct dwc2_hsotg
1755  *
1756  * Must be called with interrupt disabled and spinlock held
1757  */
1758 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1759 {
1760 	if (hsotg->lx_state != DWC2_L0)
1761 		usb_hcd_resume_root_hub(hsotg->priv);
1762 
1763 	hsotg->flags.b.port_connect_status_change = 1;
1764 	hsotg->flags.b.port_connect_status = 1;
1765 }
1766 
1767 /**
1768  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1769  *
1770  * @hsotg: Pointer to struct dwc2_hsotg
1771  * @force: If true, we won't try to reconnect even if we see device connected.
1772  *
1773  * Must be called with interrupt disabled and spinlock held
1774  */
1775 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1776 {
1777 	u32 intr;
1778 	u32 hprt0;
1779 
1780 	/* Set status flags for the hub driver */
1781 	hsotg->flags.b.port_connect_status_change = 1;
1782 	hsotg->flags.b.port_connect_status = 0;
1783 
1784 	/*
1785 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1786 	 * interrupt mask and status bits and disabling subsequent host
1787 	 * channel interrupts.
1788 	 */
1789 	intr = dwc2_readl(hsotg, GINTMSK);
1790 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1791 	dwc2_writel(hsotg, intr, GINTMSK);
1792 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1793 	dwc2_writel(hsotg, intr, GINTSTS);
1794 
1795 	/*
1796 	 * Turn off the vbus power only if the core has transitioned to device
1797 	 * mode. If still in host mode, need to keep power on to detect a
1798 	 * reconnection.
1799 	 */
1800 	if (dwc2_is_device_mode(hsotg)) {
1801 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1802 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1803 			dwc2_writel(hsotg, 0, HPRT0);
1804 		}
1805 
1806 		dwc2_disable_host_interrupts(hsotg);
1807 	}
1808 
1809 	/* Respond with an error status to all URBs in the schedule */
1810 	dwc2_kill_all_urbs(hsotg);
1811 
1812 	if (dwc2_is_host_mode(hsotg))
1813 		/* Clean up any host channels that were in use */
1814 		dwc2_hcd_cleanup_channels(hsotg);
1815 
1816 	dwc2_host_disconnect(hsotg);
1817 
1818 	/*
1819 	 * Add an extra check here to see if we're actually connected but
1820 	 * we don't have a detection interrupt pending.  This can happen if:
1821 	 *   1. hardware sees connect
1822 	 *   2. hardware sees disconnect
1823 	 *   3. hardware sees connect
1824 	 *   4. dwc2_port_intr() - clears connect interrupt
1825 	 *   5. dwc2_handle_common_intr() - calls here
1826 	 *
1827 	 * Without the extra check here we will end calling disconnect
1828 	 * and won't get any future interrupts to handle the connect.
1829 	 */
1830 	if (!force) {
1831 		hprt0 = dwc2_readl(hsotg, HPRT0);
1832 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1833 			dwc2_hcd_connect(hsotg);
1834 	}
1835 }
1836 
1837 /**
1838  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1839  *
1840  * @hsotg: Pointer to struct dwc2_hsotg
1841  */
1842 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1843 {
1844 	if (hsotg->bus_suspended) {
1845 		hsotg->flags.b.port_suspend_change = 1;
1846 		usb_hcd_resume_root_hub(hsotg->priv);
1847 	}
1848 
1849 	if (hsotg->lx_state == DWC2_L1)
1850 		hsotg->flags.b.port_l1_change = 1;
1851 }
1852 
1853 /**
1854  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1855  *
1856  * @hsotg: Pointer to struct dwc2_hsotg
1857  *
1858  * Must be called with interrupt disabled and spinlock held
1859  */
1860 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1861 {
1862 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1863 
1864 	/*
1865 	 * The root hub should be disconnected before this function is called.
1866 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1867 	 * and the QH lists (via ..._hcd_endpoint_disable).
1868 	 */
1869 
1870 	/* Turn off all host-specific interrupts */
1871 	dwc2_disable_host_interrupts(hsotg);
1872 
1873 	/* Turn off the vbus power */
1874 	dev_dbg(hsotg->dev, "PortPower off\n");
1875 	dwc2_writel(hsotg, 0, HPRT0);
1876 }
1877 
1878 /* Caller must hold driver lock */
1879 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1880 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1881 				struct dwc2_qtd *qtd)
1882 {
1883 	u32 intr_mask;
1884 	int retval;
1885 	int dev_speed;
1886 
1887 	if (!hsotg->flags.b.port_connect_status) {
1888 		/* No longer connected */
1889 		dev_err(hsotg->dev, "Not connected\n");
1890 		return -ENODEV;
1891 	}
1892 
1893 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1894 
1895 	/* Some configurations cannot support LS traffic on a FS root port */
1896 	if ((dev_speed == USB_SPEED_LOW) &&
1897 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1898 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1899 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1900 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1901 
1902 		if (prtspd == HPRT0_SPD_FULL_SPEED)
1903 			return -ENODEV;
1904 	}
1905 
1906 	if (!qtd)
1907 		return -EINVAL;
1908 
1909 	dwc2_hcd_qtd_init(qtd, urb);
1910 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1911 	if (retval) {
1912 		dev_err(hsotg->dev,
1913 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1914 			retval);
1915 		return retval;
1916 	}
1917 
1918 	intr_mask = dwc2_readl(hsotg, GINTMSK);
1919 	if (!(intr_mask & GINTSTS_SOF)) {
1920 		enum dwc2_transaction_type tr_type;
1921 
1922 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1923 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1924 			/*
1925 			 * Do not schedule SG transactions until qtd has
1926 			 * URB_GIVEBACK_ASAP set
1927 			 */
1928 			return 0;
1929 
1930 		tr_type = dwc2_hcd_select_transactions(hsotg);
1931 		if (tr_type != DWC2_TRANSACTION_NONE)
1932 			dwc2_hcd_queue_transactions(hsotg, tr_type);
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Must be called with interrupt disabled and spinlock held */
1939 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1940 				struct dwc2_hcd_urb *urb)
1941 {
1942 	struct dwc2_qh *qh;
1943 	struct dwc2_qtd *urb_qtd;
1944 
1945 	urb_qtd = urb->qtd;
1946 	if (!urb_qtd) {
1947 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1948 		return -EINVAL;
1949 	}
1950 
1951 	qh = urb_qtd->qh;
1952 	if (!qh) {
1953 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1954 		return -EINVAL;
1955 	}
1956 
1957 	urb->priv = NULL;
1958 
1959 	if (urb_qtd->in_process && qh->channel) {
1960 		dwc2_dump_channel_info(hsotg, qh->channel);
1961 
1962 		/* The QTD is in process (it has been assigned to a channel) */
1963 		if (hsotg->flags.b.port_connect_status)
1964 			/*
1965 			 * If still connected (i.e. in host mode), halt the
1966 			 * channel so it can be used for other transfers. If
1967 			 * no longer connected, the host registers can't be
1968 			 * written to halt the channel since the core is in
1969 			 * device mode.
1970 			 */
1971 			dwc2_hc_halt(hsotg, qh->channel,
1972 				     DWC2_HC_XFER_URB_DEQUEUE);
1973 	}
1974 
1975 	/*
1976 	 * Free the QTD and clean up the associated QH. Leave the QH in the
1977 	 * schedule if it has any remaining QTDs.
1978 	 */
1979 	if (!hsotg->params.dma_desc_enable) {
1980 		u8 in_process = urb_qtd->in_process;
1981 
1982 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1983 		if (in_process) {
1984 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1985 			qh->channel = NULL;
1986 		} else if (list_empty(&qh->qtd_list)) {
1987 			dwc2_hcd_qh_unlink(hsotg, qh);
1988 		}
1989 	} else {
1990 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 /* Must NOT be called with interrupt disabled or spinlock held */
1997 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1998 				     struct usb_host_endpoint *ep, int retry)
1999 {
2000 	struct dwc2_qtd *qtd, *qtd_tmp;
2001 	struct dwc2_qh *qh;
2002 	unsigned long flags;
2003 	int rc;
2004 
2005 	spin_lock_irqsave(&hsotg->lock, flags);
2006 
2007 	qh = ep->hcpriv;
2008 	if (!qh) {
2009 		rc = -EINVAL;
2010 		goto err;
2011 	}
2012 
2013 	while (!list_empty(&qh->qtd_list) && retry--) {
2014 		if (retry == 0) {
2015 			dev_err(hsotg->dev,
2016 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2017 			rc = -EBUSY;
2018 			goto err;
2019 		}
2020 
2021 		spin_unlock_irqrestore(&hsotg->lock, flags);
2022 		msleep(20);
2023 		spin_lock_irqsave(&hsotg->lock, flags);
2024 		qh = ep->hcpriv;
2025 		if (!qh) {
2026 			rc = -EINVAL;
2027 			goto err;
2028 		}
2029 	}
2030 
2031 	dwc2_hcd_qh_unlink(hsotg, qh);
2032 
2033 	/* Free each QTD in the QH's QTD list */
2034 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2035 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2036 
2037 	ep->hcpriv = NULL;
2038 
2039 	if (qh->channel && qh->channel->qh == qh)
2040 		qh->channel->qh = NULL;
2041 
2042 	spin_unlock_irqrestore(&hsotg->lock, flags);
2043 
2044 	dwc2_hcd_qh_free(hsotg, qh);
2045 
2046 	return 0;
2047 
2048 err:
2049 	ep->hcpriv = NULL;
2050 	spin_unlock_irqrestore(&hsotg->lock, flags);
2051 
2052 	return rc;
2053 }
2054 
2055 /* Must be called with interrupt disabled and spinlock held */
2056 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2057 				   struct usb_host_endpoint *ep)
2058 {
2059 	struct dwc2_qh *qh = ep->hcpriv;
2060 
2061 	if (!qh)
2062 		return -EINVAL;
2063 
2064 	qh->data_toggle = DWC2_HC_PID_DATA0;
2065 
2066 	return 0;
2067 }
2068 
2069 /**
2070  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2071  * prepares the core for device mode or host mode operation
2072  *
2073  * @hsotg:         Programming view of the DWC_otg controller
2074  * @initial_setup: If true then this is the first init for this instance.
2075  */
2076 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2077 {
2078 	u32 usbcfg, otgctl;
2079 	int retval;
2080 
2081 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2082 
2083 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2084 
2085 	/* Set ULPI External VBUS bit if needed */
2086 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2087 	if (hsotg->params.phy_ulpi_ext_vbus)
2088 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2089 
2090 	/* Set external TS Dline pulsing bit if needed */
2091 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2092 	if (hsotg->params.ts_dline)
2093 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2094 
2095 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2096 
2097 	/*
2098 	 * Reset the Controller
2099 	 *
2100 	 * We only need to reset the controller if this is a re-init.
2101 	 * For the first init we know for sure that earlier code reset us (it
2102 	 * needed to in order to properly detect various parameters).
2103 	 */
2104 	if (!initial_setup) {
2105 		retval = dwc2_core_reset(hsotg, false);
2106 		if (retval) {
2107 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2108 				__func__);
2109 			return retval;
2110 		}
2111 	}
2112 
2113 	/*
2114 	 * This needs to happen in FS mode before any other programming occurs
2115 	 */
2116 	retval = dwc2_phy_init(hsotg, initial_setup);
2117 	if (retval)
2118 		return retval;
2119 
2120 	/* Program the GAHBCFG Register */
2121 	retval = dwc2_gahbcfg_init(hsotg);
2122 	if (retval)
2123 		return retval;
2124 
2125 	/* Program the GUSBCFG register */
2126 	dwc2_gusbcfg_init(hsotg);
2127 
2128 	/* Program the GOTGCTL register */
2129 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2130 	otgctl &= ~GOTGCTL_OTGVER;
2131 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2132 
2133 	/* Clear the SRP success bit for FS-I2c */
2134 	hsotg->srp_success = 0;
2135 
2136 	/* Enable common interrupts */
2137 	dwc2_enable_common_interrupts(hsotg);
2138 
2139 	/*
2140 	 * Do device or host initialization based on mode during PCD and
2141 	 * HCD initialization
2142 	 */
2143 	if (dwc2_is_host_mode(hsotg)) {
2144 		dev_dbg(hsotg->dev, "Host Mode\n");
2145 		hsotg->op_state = OTG_STATE_A_HOST;
2146 	} else {
2147 		dev_dbg(hsotg->dev, "Device Mode\n");
2148 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 /**
2155  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2156  * Host mode
2157  *
2158  * @hsotg: Programming view of DWC_otg controller
2159  *
2160  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2161  * request queues. Host channels are reset to ensure that they are ready for
2162  * performing transfers.
2163  */
2164 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2165 {
2166 	u32 hcfg, hfir, otgctl, usbcfg;
2167 
2168 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2169 
2170 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2171 	 * The number of PHY clocks that the application programs in
2172 	 * this field is added to the high/full speed interpacket timeout
2173 	 * duration in the core to account for any additional delays
2174 	 * introduced by the PHY. This can be required, because the delay
2175 	 * introduced by the PHY in generating the linestate condition
2176 	 * can vary from one PHY to another.
2177 	 */
2178 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2179 	usbcfg |= GUSBCFG_TOUTCAL(7);
2180 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2181 
2182 	/* Restart the Phy Clock */
2183 	dwc2_writel(hsotg, 0, PCGCTL);
2184 
2185 	/* Initialize Host Configuration Register */
2186 	dwc2_init_fs_ls_pclk_sel(hsotg);
2187 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2188 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2189 		hcfg = dwc2_readl(hsotg, HCFG);
2190 		hcfg |= HCFG_FSLSSUPP;
2191 		dwc2_writel(hsotg, hcfg, HCFG);
2192 	}
2193 
2194 	/*
2195 	 * This bit allows dynamic reloading of the HFIR register during
2196 	 * runtime. This bit needs to be programmed during initial configuration
2197 	 * and its value must not be changed during runtime.
2198 	 */
2199 	if (hsotg->params.reload_ctl) {
2200 		hfir = dwc2_readl(hsotg, HFIR);
2201 		hfir |= HFIR_RLDCTRL;
2202 		dwc2_writel(hsotg, hfir, HFIR);
2203 	}
2204 
2205 	if (hsotg->params.dma_desc_enable) {
2206 		u32 op_mode = hsotg->hw_params.op_mode;
2207 
2208 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2209 		    !hsotg->hw_params.dma_desc_enable ||
2210 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2211 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2212 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2213 			dev_err(hsotg->dev,
2214 				"Hardware does not support descriptor DMA mode -\n");
2215 			dev_err(hsotg->dev,
2216 				"falling back to buffer DMA mode.\n");
2217 			hsotg->params.dma_desc_enable = false;
2218 		} else {
2219 			hcfg = dwc2_readl(hsotg, HCFG);
2220 			hcfg |= HCFG_DESCDMA;
2221 			dwc2_writel(hsotg, hcfg, HCFG);
2222 		}
2223 	}
2224 
2225 	/* Configure data FIFO sizes */
2226 	dwc2_config_fifos(hsotg);
2227 
2228 	/* TODO - check this */
2229 	/* Clear Host Set HNP Enable in the OTG Control Register */
2230 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2231 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2232 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2233 
2234 	/* Make sure the FIFOs are flushed */
2235 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2236 	dwc2_flush_rx_fifo(hsotg);
2237 
2238 	/* Clear Host Set HNP Enable in the OTG Control Register */
2239 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2240 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2241 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2242 
2243 	if (!hsotg->params.dma_desc_enable) {
2244 		int num_channels, i;
2245 		u32 hcchar;
2246 
2247 		/* Flush out any leftover queued requests */
2248 		num_channels = hsotg->params.host_channels;
2249 		for (i = 0; i < num_channels; i++) {
2250 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2251 			if (hcchar & HCCHAR_CHENA) {
2252 				hcchar &= ~HCCHAR_CHENA;
2253 				hcchar |= HCCHAR_CHDIS;
2254 				hcchar &= ~HCCHAR_EPDIR;
2255 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2256 			}
2257 		}
2258 
2259 		/* Halt all channels to put them into a known state */
2260 		for (i = 0; i < num_channels; i++) {
2261 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2262 			if (hcchar & HCCHAR_CHENA) {
2263 				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2264 				hcchar &= ~HCCHAR_EPDIR;
2265 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2266 				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2267 					__func__, i);
2268 
2269 				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2270 							      HCCHAR_CHENA,
2271 							      1000)) {
2272 					dev_warn(hsotg->dev,
2273 						 "Unable to clear enable on channel %d\n",
2274 						 i);
2275 				}
2276 			}
2277 		}
2278 	}
2279 
2280 	/* Enable ACG feature in host mode, if supported */
2281 	dwc2_enable_acg(hsotg);
2282 
2283 	/* Turn on the vbus power */
2284 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2285 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2286 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2287 
2288 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2289 			!!(hprt0 & HPRT0_PWR));
2290 		if (!(hprt0 & HPRT0_PWR)) {
2291 			hprt0 |= HPRT0_PWR;
2292 			dwc2_writel(hsotg, hprt0, HPRT0);
2293 		}
2294 	}
2295 
2296 	dwc2_enable_host_interrupts(hsotg);
2297 }
2298 
2299 /*
2300  * Initializes dynamic portions of the DWC_otg HCD state
2301  *
2302  * Must be called with interrupt disabled and spinlock held
2303  */
2304 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2305 {
2306 	struct dwc2_host_chan *chan, *chan_tmp;
2307 	int num_channels;
2308 	int i;
2309 
2310 	hsotg->flags.d32 = 0;
2311 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2312 
2313 	if (hsotg->params.uframe_sched) {
2314 		hsotg->available_host_channels =
2315 			hsotg->params.host_channels;
2316 	} else {
2317 		hsotg->non_periodic_channels = 0;
2318 		hsotg->periodic_channels = 0;
2319 	}
2320 
2321 	/*
2322 	 * Put all channels in the free channel list and clean up channel
2323 	 * states
2324 	 */
2325 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2326 				 hc_list_entry)
2327 		list_del_init(&chan->hc_list_entry);
2328 
2329 	num_channels = hsotg->params.host_channels;
2330 	for (i = 0; i < num_channels; i++) {
2331 		chan = hsotg->hc_ptr_array[i];
2332 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2333 		dwc2_hc_cleanup(hsotg, chan);
2334 	}
2335 
2336 	/* Initialize the DWC core for host mode operation */
2337 	dwc2_core_host_init(hsotg);
2338 }
2339 
2340 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2341 			       struct dwc2_host_chan *chan,
2342 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2343 {
2344 	int hub_addr, hub_port;
2345 
2346 	chan->do_split = 1;
2347 	chan->xact_pos = qtd->isoc_split_pos;
2348 	chan->complete_split = qtd->complete_split;
2349 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2350 	chan->hub_addr = (u8)hub_addr;
2351 	chan->hub_port = (u8)hub_port;
2352 }
2353 
2354 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2355 			      struct dwc2_host_chan *chan,
2356 			      struct dwc2_qtd *qtd)
2357 {
2358 	struct dwc2_hcd_urb *urb = qtd->urb;
2359 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2360 
2361 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2362 	case USB_ENDPOINT_XFER_CONTROL:
2363 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2364 
2365 		switch (qtd->control_phase) {
2366 		case DWC2_CONTROL_SETUP:
2367 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2368 			chan->do_ping = 0;
2369 			chan->ep_is_in = 0;
2370 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2371 			if (hsotg->params.host_dma)
2372 				chan->xfer_dma = urb->setup_dma;
2373 			else
2374 				chan->xfer_buf = urb->setup_packet;
2375 			chan->xfer_len = 8;
2376 			break;
2377 
2378 		case DWC2_CONTROL_DATA:
2379 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2380 			chan->data_pid_start = qtd->data_toggle;
2381 			break;
2382 
2383 		case DWC2_CONTROL_STATUS:
2384 			/*
2385 			 * Direction is opposite of data direction or IN if no
2386 			 * data
2387 			 */
2388 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2389 			if (urb->length == 0)
2390 				chan->ep_is_in = 1;
2391 			else
2392 				chan->ep_is_in =
2393 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2394 			if (chan->ep_is_in)
2395 				chan->do_ping = 0;
2396 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2397 			chan->xfer_len = 0;
2398 			if (hsotg->params.host_dma)
2399 				chan->xfer_dma = hsotg->status_buf_dma;
2400 			else
2401 				chan->xfer_buf = hsotg->status_buf;
2402 			break;
2403 		}
2404 		break;
2405 
2406 	case USB_ENDPOINT_XFER_BULK:
2407 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2408 		break;
2409 
2410 	case USB_ENDPOINT_XFER_INT:
2411 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2412 		break;
2413 
2414 	case USB_ENDPOINT_XFER_ISOC:
2415 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2416 		if (hsotg->params.dma_desc_enable)
2417 			break;
2418 
2419 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2420 		frame_desc->status = 0;
2421 
2422 		if (hsotg->params.host_dma) {
2423 			chan->xfer_dma = urb->dma;
2424 			chan->xfer_dma += frame_desc->offset +
2425 					qtd->isoc_split_offset;
2426 		} else {
2427 			chan->xfer_buf = urb->buf;
2428 			chan->xfer_buf += frame_desc->offset +
2429 					qtd->isoc_split_offset;
2430 		}
2431 
2432 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2433 
2434 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2435 			if (chan->xfer_len <= 188)
2436 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2437 			else
2438 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2439 		}
2440 		break;
2441 	}
2442 }
2443 
2444 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2445 					    struct dwc2_qh *qh,
2446 					    struct dwc2_host_chan *chan)
2447 {
2448 	if (!hsotg->unaligned_cache ||
2449 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2450 		return -ENOMEM;
2451 
2452 	if (!qh->dw_align_buf) {
2453 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2454 						    GFP_ATOMIC | GFP_DMA);
2455 		if (!qh->dw_align_buf)
2456 			return -ENOMEM;
2457 	}
2458 
2459 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2460 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2461 					      DMA_FROM_DEVICE);
2462 
2463 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2464 		dev_err(hsotg->dev, "can't map align_buf\n");
2465 		chan->align_buf = 0;
2466 		return -EINVAL;
2467 	}
2468 
2469 	chan->align_buf = qh->dw_align_buf_dma;
2470 	return 0;
2471 }
2472 
2473 #define DWC2_USB_DMA_ALIGN 4
2474 
2475 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2476 {
2477 	void *stored_xfer_buffer;
2478 	size_t length;
2479 
2480 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2481 		return;
2482 
2483 	/* Restore urb->transfer_buffer from the end of the allocated area */
2484 	memcpy(&stored_xfer_buffer,
2485 	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2486 			 dma_get_cache_alignment()),
2487 	       sizeof(urb->transfer_buffer));
2488 
2489 	if (usb_urb_dir_in(urb)) {
2490 		if (usb_pipeisoc(urb->pipe))
2491 			length = urb->transfer_buffer_length;
2492 		else
2493 			length = urb->actual_length;
2494 
2495 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2496 	}
2497 	kfree(urb->transfer_buffer);
2498 	urb->transfer_buffer = stored_xfer_buffer;
2499 
2500 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2501 }
2502 
2503 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2504 {
2505 	void *kmalloc_ptr;
2506 	size_t kmalloc_size;
2507 
2508 	if (urb->num_sgs || urb->sg ||
2509 	    urb->transfer_buffer_length == 0 ||
2510 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2511 		return 0;
2512 
2513 	/*
2514 	 * Allocate a buffer with enough padding for original transfer_buffer
2515 	 * pointer. This allocation is guaranteed to be aligned properly for
2516 	 * DMA
2517 	 */
2518 	kmalloc_size = urb->transfer_buffer_length +
2519 		(dma_get_cache_alignment() - 1) +
2520 		sizeof(urb->transfer_buffer);
2521 
2522 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2523 	if (!kmalloc_ptr)
2524 		return -ENOMEM;
2525 
2526 	/*
2527 	 * Position value of original urb->transfer_buffer pointer to the end
2528 	 * of allocation for later referencing
2529 	 */
2530 	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2531 			 dma_get_cache_alignment()),
2532 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2533 
2534 	if (usb_urb_dir_out(urb))
2535 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2536 		       urb->transfer_buffer_length);
2537 	urb->transfer_buffer = kmalloc_ptr;
2538 
2539 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2540 
2541 	return 0;
2542 }
2543 
2544 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2545 				gfp_t mem_flags)
2546 {
2547 	int ret;
2548 
2549 	/* We assume setup_dma is always aligned; warn if not */
2550 	WARN_ON_ONCE(urb->setup_dma &&
2551 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2552 
2553 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2554 	if (ret)
2555 		return ret;
2556 
2557 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2558 	if (ret)
2559 		dwc2_free_dma_aligned_buffer(urb);
2560 
2561 	return ret;
2562 }
2563 
2564 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2565 {
2566 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2567 	dwc2_free_dma_aligned_buffer(urb);
2568 }
2569 
2570 /**
2571  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2572  * channel and initializes the host channel to perform the transactions. The
2573  * host channel is removed from the free list.
2574  *
2575  * @hsotg: The HCD state structure
2576  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2577  *         to a free host channel
2578  */
2579 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2580 {
2581 	struct dwc2_host_chan *chan;
2582 	struct dwc2_hcd_urb *urb;
2583 	struct dwc2_qtd *qtd;
2584 
2585 	if (dbg_qh(qh))
2586 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2587 
2588 	if (list_empty(&qh->qtd_list)) {
2589 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2590 		return -ENOMEM;
2591 	}
2592 
2593 	if (list_empty(&hsotg->free_hc_list)) {
2594 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2595 		return -ENOMEM;
2596 	}
2597 
2598 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2599 				hc_list_entry);
2600 
2601 	/* Remove host channel from free list */
2602 	list_del_init(&chan->hc_list_entry);
2603 
2604 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2605 	urb = qtd->urb;
2606 	qh->channel = chan;
2607 	qtd->in_process = 1;
2608 
2609 	/*
2610 	 * Use usb_pipedevice to determine device address. This address is
2611 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2612 	 */
2613 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2614 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2615 	chan->speed = qh->dev_speed;
2616 	chan->max_packet = qh->maxp;
2617 
2618 	chan->xfer_started = 0;
2619 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2620 	chan->error_state = (qtd->error_count > 0);
2621 	chan->halt_on_queue = 0;
2622 	chan->halt_pending = 0;
2623 	chan->requests = 0;
2624 
2625 	/*
2626 	 * The following values may be modified in the transfer type section
2627 	 * below. The xfer_len value may be reduced when the transfer is
2628 	 * started to accommodate the max widths of the XferSize and PktCnt
2629 	 * fields in the HCTSIZn register.
2630 	 */
2631 
2632 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2633 	if (chan->ep_is_in)
2634 		chan->do_ping = 0;
2635 	else
2636 		chan->do_ping = qh->ping_state;
2637 
2638 	chan->data_pid_start = qh->data_toggle;
2639 	chan->multi_count = 1;
2640 
2641 	if (urb->actual_length > urb->length &&
2642 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2643 		urb->actual_length = urb->length;
2644 
2645 	if (hsotg->params.host_dma)
2646 		chan->xfer_dma = urb->dma + urb->actual_length;
2647 	else
2648 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2649 
2650 	chan->xfer_len = urb->length - urb->actual_length;
2651 	chan->xfer_count = 0;
2652 
2653 	/* Set the split attributes if required */
2654 	if (qh->do_split)
2655 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2656 	else
2657 		chan->do_split = 0;
2658 
2659 	/* Set the transfer attributes */
2660 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2661 
2662 	/* For non-dword aligned buffers */
2663 	if (hsotg->params.host_dma && qh->do_split &&
2664 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2665 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2666 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2667 			dev_err(hsotg->dev,
2668 				"Failed to allocate memory to handle non-aligned buffer\n");
2669 			/* Add channel back to free list */
2670 			chan->align_buf = 0;
2671 			chan->multi_count = 0;
2672 			list_add_tail(&chan->hc_list_entry,
2673 				      &hsotg->free_hc_list);
2674 			qtd->in_process = 0;
2675 			qh->channel = NULL;
2676 			return -ENOMEM;
2677 		}
2678 	} else {
2679 		/*
2680 		 * We assume that DMA is always aligned in non-split
2681 		 * case or split out case. Warn if not.
2682 		 */
2683 		WARN_ON_ONCE(hsotg->params.host_dma &&
2684 			     (chan->xfer_dma & 0x3));
2685 		chan->align_buf = 0;
2686 	}
2687 
2688 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2689 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2690 		/*
2691 		 * This value may be modified when the transfer is started
2692 		 * to reflect the actual transfer length
2693 		 */
2694 		chan->multi_count = qh->maxp_mult;
2695 
2696 	if (hsotg->params.dma_desc_enable) {
2697 		chan->desc_list_addr = qh->desc_list_dma;
2698 		chan->desc_list_sz = qh->desc_list_sz;
2699 	}
2700 
2701 	dwc2_hc_init(hsotg, chan);
2702 	chan->qh = qh;
2703 
2704 	return 0;
2705 }
2706 
2707 /**
2708  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2709  * schedule and assigns them to available host channels. Called from the HCD
2710  * interrupt handler functions.
2711  *
2712  * @hsotg: The HCD state structure
2713  *
2714  * Return: The types of new transactions that were assigned to host channels
2715  */
2716 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2717 		struct dwc2_hsotg *hsotg)
2718 {
2719 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2720 	struct list_head *qh_ptr;
2721 	struct dwc2_qh *qh;
2722 	int num_channels;
2723 
2724 #ifdef DWC2_DEBUG_SOF
2725 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2726 #endif
2727 
2728 	/* Process entries in the periodic ready list */
2729 	qh_ptr = hsotg->periodic_sched_ready.next;
2730 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2731 		if (list_empty(&hsotg->free_hc_list))
2732 			break;
2733 		if (hsotg->params.uframe_sched) {
2734 			if (hsotg->available_host_channels <= 1)
2735 				break;
2736 			hsotg->available_host_channels--;
2737 		}
2738 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2739 		if (dwc2_assign_and_init_hc(hsotg, qh))
2740 			break;
2741 
2742 		/*
2743 		 * Move the QH from the periodic ready schedule to the
2744 		 * periodic assigned schedule
2745 		 */
2746 		qh_ptr = qh_ptr->next;
2747 		list_move_tail(&qh->qh_list_entry,
2748 			       &hsotg->periodic_sched_assigned);
2749 		ret_val = DWC2_TRANSACTION_PERIODIC;
2750 	}
2751 
2752 	/*
2753 	 * Process entries in the inactive portion of the non-periodic
2754 	 * schedule. Some free host channels may not be used if they are
2755 	 * reserved for periodic transfers.
2756 	 */
2757 	num_channels = hsotg->params.host_channels;
2758 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2759 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2760 		if (!hsotg->params.uframe_sched &&
2761 		    hsotg->non_periodic_channels >= num_channels -
2762 						hsotg->periodic_channels)
2763 			break;
2764 		if (list_empty(&hsotg->free_hc_list))
2765 			break;
2766 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2767 		if (hsotg->params.uframe_sched) {
2768 			if (hsotg->available_host_channels < 1)
2769 				break;
2770 			hsotg->available_host_channels--;
2771 		}
2772 
2773 		if (dwc2_assign_and_init_hc(hsotg, qh))
2774 			break;
2775 
2776 		/*
2777 		 * Move the QH from the non-periodic inactive schedule to the
2778 		 * non-periodic active schedule
2779 		 */
2780 		qh_ptr = qh_ptr->next;
2781 		list_move_tail(&qh->qh_list_entry,
2782 			       &hsotg->non_periodic_sched_active);
2783 
2784 		if (ret_val == DWC2_TRANSACTION_NONE)
2785 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2786 		else
2787 			ret_val = DWC2_TRANSACTION_ALL;
2788 
2789 		if (!hsotg->params.uframe_sched)
2790 			hsotg->non_periodic_channels++;
2791 	}
2792 
2793 	return ret_val;
2794 }
2795 
2796 /**
2797  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2798  * a host channel associated with either a periodic or non-periodic transfer
2799  *
2800  * @hsotg: The HCD state structure
2801  * @chan:  Host channel descriptor associated with either a periodic or
2802  *         non-periodic transfer
2803  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2804  *                     for periodic transfers or the non-periodic Tx FIFO
2805  *                     for non-periodic transfers
2806  *
2807  * Return: 1 if a request is queued and more requests may be needed to
2808  * complete the transfer, 0 if no more requests are required for this
2809  * transfer, -1 if there is insufficient space in the Tx FIFO
2810  *
2811  * This function assumes that there is space available in the appropriate
2812  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2813  * it checks whether space is available in the appropriate Tx FIFO.
2814  *
2815  * Must be called with interrupt disabled and spinlock held
2816  */
2817 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2818 				  struct dwc2_host_chan *chan,
2819 				  u16 fifo_dwords_avail)
2820 {
2821 	int retval = 0;
2822 
2823 	if (chan->do_split)
2824 		/* Put ourselves on the list to keep order straight */
2825 		list_move_tail(&chan->split_order_list_entry,
2826 			       &hsotg->split_order);
2827 
2828 	if (hsotg->params.host_dma && chan->qh) {
2829 		if (hsotg->params.dma_desc_enable) {
2830 			if (!chan->xfer_started ||
2831 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2832 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2833 				chan->qh->ping_state = 0;
2834 			}
2835 		} else if (!chan->xfer_started) {
2836 			dwc2_hc_start_transfer(hsotg, chan);
2837 			chan->qh->ping_state = 0;
2838 		}
2839 	} else if (chan->halt_pending) {
2840 		/* Don't queue a request if the channel has been halted */
2841 	} else if (chan->halt_on_queue) {
2842 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2843 	} else if (chan->do_ping) {
2844 		if (!chan->xfer_started)
2845 			dwc2_hc_start_transfer(hsotg, chan);
2846 	} else if (!chan->ep_is_in ||
2847 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2848 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2849 			if (!chan->xfer_started) {
2850 				dwc2_hc_start_transfer(hsotg, chan);
2851 				retval = 1;
2852 			} else {
2853 				retval = dwc2_hc_continue_transfer(hsotg, chan);
2854 			}
2855 		} else {
2856 			retval = -1;
2857 		}
2858 	} else {
2859 		if (!chan->xfer_started) {
2860 			dwc2_hc_start_transfer(hsotg, chan);
2861 			retval = 1;
2862 		} else {
2863 			retval = dwc2_hc_continue_transfer(hsotg, chan);
2864 		}
2865 	}
2866 
2867 	return retval;
2868 }
2869 
2870 /*
2871  * Processes periodic channels for the next frame and queues transactions for
2872  * these channels to the DWC_otg controller. After queueing transactions, the
2873  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2874  * to queue as Periodic Tx FIFO or request queue space becomes available.
2875  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2876  *
2877  * Must be called with interrupt disabled and spinlock held
2878  */
2879 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2880 {
2881 	struct list_head *qh_ptr;
2882 	struct dwc2_qh *qh;
2883 	u32 tx_status;
2884 	u32 fspcavail;
2885 	u32 gintmsk;
2886 	int status;
2887 	bool no_queue_space = false;
2888 	bool no_fifo_space = false;
2889 	u32 qspcavail;
2890 
2891 	/* If empty list then just adjust interrupt enables */
2892 	if (list_empty(&hsotg->periodic_sched_assigned))
2893 		goto exit;
2894 
2895 	if (dbg_perio())
2896 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2897 
2898 	tx_status = dwc2_readl(hsotg, HPTXSTS);
2899 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2900 		    TXSTS_QSPCAVAIL_SHIFT;
2901 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2902 		    TXSTS_FSPCAVAIL_SHIFT;
2903 
2904 	if (dbg_perio()) {
2905 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2906 			 qspcavail);
2907 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2908 			 fspcavail);
2909 	}
2910 
2911 	qh_ptr = hsotg->periodic_sched_assigned.next;
2912 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2913 		tx_status = dwc2_readl(hsotg, HPTXSTS);
2914 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2915 			    TXSTS_QSPCAVAIL_SHIFT;
2916 		if (qspcavail == 0) {
2917 			no_queue_space = true;
2918 			break;
2919 		}
2920 
2921 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2922 		if (!qh->channel) {
2923 			qh_ptr = qh_ptr->next;
2924 			continue;
2925 		}
2926 
2927 		/* Make sure EP's TT buffer is clean before queueing qtds */
2928 		if (qh->tt_buffer_dirty) {
2929 			qh_ptr = qh_ptr->next;
2930 			continue;
2931 		}
2932 
2933 		/*
2934 		 * Set a flag if we're queuing high-bandwidth in slave mode.
2935 		 * The flag prevents any halts to get into the request queue in
2936 		 * the middle of multiple high-bandwidth packets getting queued.
2937 		 */
2938 		if (!hsotg->params.host_dma &&
2939 		    qh->channel->multi_count > 1)
2940 			hsotg->queuing_high_bandwidth = 1;
2941 
2942 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2943 			    TXSTS_FSPCAVAIL_SHIFT;
2944 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2945 		if (status < 0) {
2946 			no_fifo_space = true;
2947 			break;
2948 		}
2949 
2950 		/*
2951 		 * In Slave mode, stay on the current transfer until there is
2952 		 * nothing more to do or the high-bandwidth request count is
2953 		 * reached. In DMA mode, only need to queue one request. The
2954 		 * controller automatically handles multiple packets for
2955 		 * high-bandwidth transfers.
2956 		 */
2957 		if (hsotg->params.host_dma || status == 0 ||
2958 		    qh->channel->requests == qh->channel->multi_count) {
2959 			qh_ptr = qh_ptr->next;
2960 			/*
2961 			 * Move the QH from the periodic assigned schedule to
2962 			 * the periodic queued schedule
2963 			 */
2964 			list_move_tail(&qh->qh_list_entry,
2965 				       &hsotg->periodic_sched_queued);
2966 
2967 			/* done queuing high bandwidth */
2968 			hsotg->queuing_high_bandwidth = 0;
2969 		}
2970 	}
2971 
2972 exit:
2973 	if (no_queue_space || no_fifo_space ||
2974 	    (!hsotg->params.host_dma &&
2975 	     !list_empty(&hsotg->periodic_sched_assigned))) {
2976 		/*
2977 		 * May need to queue more transactions as the request
2978 		 * queue or Tx FIFO empties. Enable the periodic Tx
2979 		 * FIFO empty interrupt. (Always use the half-empty
2980 		 * level to ensure that new requests are loaded as
2981 		 * soon as possible.)
2982 		 */
2983 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2984 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2985 			gintmsk |= GINTSTS_PTXFEMP;
2986 			dwc2_writel(hsotg, gintmsk, GINTMSK);
2987 		}
2988 	} else {
2989 		/*
2990 		 * Disable the Tx FIFO empty interrupt since there are
2991 		 * no more transactions that need to be queued right
2992 		 * now. This function is called from interrupt
2993 		 * handlers to queue more transactions as transfer
2994 		 * states change.
2995 		 */
2996 		gintmsk = dwc2_readl(hsotg, GINTMSK);
2997 		if (gintmsk & GINTSTS_PTXFEMP) {
2998 			gintmsk &= ~GINTSTS_PTXFEMP;
2999 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3000 		}
3001 	}
3002 }
3003 
3004 /*
3005  * Processes active non-periodic channels and queues transactions for these
3006  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3007  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3008  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3009  * FIFO Empty interrupt is disabled.
3010  *
3011  * Must be called with interrupt disabled and spinlock held
3012  */
3013 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3014 {
3015 	struct list_head *orig_qh_ptr;
3016 	struct dwc2_qh *qh;
3017 	u32 tx_status;
3018 	u32 qspcavail;
3019 	u32 fspcavail;
3020 	u32 gintmsk;
3021 	int status;
3022 	int no_queue_space = 0;
3023 	int no_fifo_space = 0;
3024 	int more_to_do = 0;
3025 
3026 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3027 
3028 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3029 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3030 		    TXSTS_QSPCAVAIL_SHIFT;
3031 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3032 		    TXSTS_FSPCAVAIL_SHIFT;
3033 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3034 		 qspcavail);
3035 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3036 		 fspcavail);
3037 
3038 	/*
3039 	 * Keep track of the starting point. Skip over the start-of-list
3040 	 * entry.
3041 	 */
3042 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3043 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3044 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3045 
3046 	/*
3047 	 * Process once through the active list or until no more space is
3048 	 * available in the request queue or the Tx FIFO
3049 	 */
3050 	do {
3051 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3052 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3053 			    TXSTS_QSPCAVAIL_SHIFT;
3054 		if (!hsotg->params.host_dma && qspcavail == 0) {
3055 			no_queue_space = 1;
3056 			break;
3057 		}
3058 
3059 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3060 				qh_list_entry);
3061 		if (!qh->channel)
3062 			goto next;
3063 
3064 		/* Make sure EP's TT buffer is clean before queueing qtds */
3065 		if (qh->tt_buffer_dirty)
3066 			goto next;
3067 
3068 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3069 			    TXSTS_FSPCAVAIL_SHIFT;
3070 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3071 
3072 		if (status > 0) {
3073 			more_to_do = 1;
3074 		} else if (status < 0) {
3075 			no_fifo_space = 1;
3076 			break;
3077 		}
3078 next:
3079 		/* Advance to next QH, skipping start-of-list entry */
3080 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3081 		if (hsotg->non_periodic_qh_ptr ==
3082 				&hsotg->non_periodic_sched_active)
3083 			hsotg->non_periodic_qh_ptr =
3084 					hsotg->non_periodic_qh_ptr->next;
3085 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3086 
3087 	if (!hsotg->params.host_dma) {
3088 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3089 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3090 			    TXSTS_QSPCAVAIL_SHIFT;
3091 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3092 			    TXSTS_FSPCAVAIL_SHIFT;
3093 		dev_vdbg(hsotg->dev,
3094 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3095 			 qspcavail);
3096 		dev_vdbg(hsotg->dev,
3097 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3098 			 fspcavail);
3099 
3100 		if (more_to_do || no_queue_space || no_fifo_space) {
3101 			/*
3102 			 * May need to queue more transactions as the request
3103 			 * queue or Tx FIFO empties. Enable the non-periodic
3104 			 * Tx FIFO empty interrupt. (Always use the half-empty
3105 			 * level to ensure that new requests are loaded as
3106 			 * soon as possible.)
3107 			 */
3108 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3109 			gintmsk |= GINTSTS_NPTXFEMP;
3110 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3111 		} else {
3112 			/*
3113 			 * Disable the Tx FIFO empty interrupt since there are
3114 			 * no more transactions that need to be queued right
3115 			 * now. This function is called from interrupt
3116 			 * handlers to queue more transactions as transfer
3117 			 * states change.
3118 			 */
3119 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3120 			gintmsk &= ~GINTSTS_NPTXFEMP;
3121 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3122 		}
3123 	}
3124 }
3125 
3126 /**
3127  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3128  * and queues transactions for these channels to the DWC_otg controller. Called
3129  * from the HCD interrupt handler functions.
3130  *
3131  * @hsotg:   The HCD state structure
3132  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3133  *           or both)
3134  *
3135  * Must be called with interrupt disabled and spinlock held
3136  */
3137 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3138 				 enum dwc2_transaction_type tr_type)
3139 {
3140 #ifdef DWC2_DEBUG_SOF
3141 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3142 #endif
3143 	/* Process host channels associated with periodic transfers */
3144 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3145 	    tr_type == DWC2_TRANSACTION_ALL)
3146 		dwc2_process_periodic_channels(hsotg);
3147 
3148 	/* Process host channels associated with non-periodic transfers */
3149 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3150 	    tr_type == DWC2_TRANSACTION_ALL) {
3151 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3152 			dwc2_process_non_periodic_channels(hsotg);
3153 		} else {
3154 			/*
3155 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3156 			 * there are no non-periodic transfers to process
3157 			 */
3158 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3159 
3160 			gintmsk &= ~GINTSTS_NPTXFEMP;
3161 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3162 		}
3163 	}
3164 }
3165 
3166 static void dwc2_conn_id_status_change(struct work_struct *work)
3167 {
3168 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3169 						wf_otg);
3170 	u32 count = 0;
3171 	u32 gotgctl;
3172 	unsigned long flags;
3173 
3174 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3175 
3176 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3177 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3178 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3179 		!!(gotgctl & GOTGCTL_CONID_B));
3180 
3181 	/* B-Device connector (Device Mode) */
3182 	if (gotgctl & GOTGCTL_CONID_B) {
3183 		dwc2_vbus_supply_exit(hsotg);
3184 		/* Wait for switch to device mode */
3185 		dev_dbg(hsotg->dev, "connId B\n");
3186 		if (hsotg->bus_suspended) {
3187 			dev_info(hsotg->dev,
3188 				 "Do port resume before switching to device mode\n");
3189 			dwc2_port_resume(hsotg);
3190 		}
3191 		while (!dwc2_is_device_mode(hsotg)) {
3192 			dev_info(hsotg->dev,
3193 				 "Waiting for Peripheral Mode, Mode=%s\n",
3194 				 dwc2_is_host_mode(hsotg) ? "Host" :
3195 				 "Peripheral");
3196 			msleep(20);
3197 			/*
3198 			 * Sometimes the initial GOTGCTRL read is wrong, so
3199 			 * check it again and jump to host mode if that was
3200 			 * the case.
3201 			 */
3202 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3203 			if (!(gotgctl & GOTGCTL_CONID_B))
3204 				goto host;
3205 			if (++count > 250)
3206 				break;
3207 		}
3208 		if (count > 250)
3209 			dev_err(hsotg->dev,
3210 				"Connection id status change timed out\n");
3211 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3212 		dwc2_core_init(hsotg, false);
3213 		dwc2_enable_global_interrupts(hsotg);
3214 		spin_lock_irqsave(&hsotg->lock, flags);
3215 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3216 		spin_unlock_irqrestore(&hsotg->lock, flags);
3217 		/* Enable ACG feature in device mode,if supported */
3218 		dwc2_enable_acg(hsotg);
3219 		dwc2_hsotg_core_connect(hsotg);
3220 	} else {
3221 host:
3222 		/* A-Device connector (Host Mode) */
3223 		dev_dbg(hsotg->dev, "connId A\n");
3224 		while (!dwc2_is_host_mode(hsotg)) {
3225 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3226 				 dwc2_is_host_mode(hsotg) ?
3227 				 "Host" : "Peripheral");
3228 			msleep(20);
3229 			if (++count > 250)
3230 				break;
3231 		}
3232 		if (count > 250)
3233 			dev_err(hsotg->dev,
3234 				"Connection id status change timed out\n");
3235 
3236 		spin_lock_irqsave(&hsotg->lock, flags);
3237 		dwc2_hsotg_disconnect(hsotg);
3238 		spin_unlock_irqrestore(&hsotg->lock, flags);
3239 
3240 		hsotg->op_state = OTG_STATE_A_HOST;
3241 		/* Initialize the Core for Host mode */
3242 		dwc2_core_init(hsotg, false);
3243 		dwc2_enable_global_interrupts(hsotg);
3244 		dwc2_hcd_start(hsotg);
3245 	}
3246 }
3247 
3248 static void dwc2_wakeup_detected(struct timer_list *t)
3249 {
3250 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3251 	u32 hprt0;
3252 
3253 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3254 
3255 	/*
3256 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3257 	 * so that OPT tests pass with all PHYs.)
3258 	 */
3259 	hprt0 = dwc2_read_hprt0(hsotg);
3260 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3261 	hprt0 &= ~HPRT0_RES;
3262 	dwc2_writel(hsotg, hprt0, HPRT0);
3263 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3264 		dwc2_readl(hsotg, HPRT0));
3265 
3266 	dwc2_hcd_rem_wakeup(hsotg);
3267 	hsotg->bus_suspended = false;
3268 
3269 	/* Change to L0 state */
3270 	hsotg->lx_state = DWC2_L0;
3271 }
3272 
3273 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3274 {
3275 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3276 
3277 	return hcd->self.b_hnp_enable;
3278 }
3279 
3280 /* Must NOT be called with interrupt disabled or spinlock held */
3281 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3282 {
3283 	unsigned long flags;
3284 	u32 hprt0;
3285 	u32 pcgctl;
3286 	u32 gotgctl;
3287 
3288 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3289 
3290 	spin_lock_irqsave(&hsotg->lock, flags);
3291 
3292 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3293 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3294 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3295 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3296 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3297 	}
3298 
3299 	hprt0 = dwc2_read_hprt0(hsotg);
3300 	hprt0 |= HPRT0_SUSP;
3301 	dwc2_writel(hsotg, hprt0, HPRT0);
3302 
3303 	hsotg->bus_suspended = true;
3304 
3305 	/*
3306 	 * If power_down is supported, Phy clock will be suspended
3307 	 * after registers are backuped.
3308 	 */
3309 	if (!hsotg->params.power_down) {
3310 		/* Suspend the Phy Clock */
3311 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3312 		pcgctl |= PCGCTL_STOPPCLK;
3313 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3314 		udelay(10);
3315 	}
3316 
3317 	/* For HNP the bus must be suspended for at least 200ms */
3318 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3319 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3320 		pcgctl &= ~PCGCTL_STOPPCLK;
3321 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3322 
3323 		spin_unlock_irqrestore(&hsotg->lock, flags);
3324 
3325 		msleep(200);
3326 	} else {
3327 		spin_unlock_irqrestore(&hsotg->lock, flags);
3328 	}
3329 }
3330 
3331 /* Must NOT be called with interrupt disabled or spinlock held */
3332 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3333 {
3334 	unsigned long flags;
3335 	u32 hprt0;
3336 	u32 pcgctl;
3337 
3338 	spin_lock_irqsave(&hsotg->lock, flags);
3339 
3340 	/*
3341 	 * If power_down is supported, Phy clock is already resumed
3342 	 * after registers restore.
3343 	 */
3344 	if (!hsotg->params.power_down) {
3345 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3346 		pcgctl &= ~PCGCTL_STOPPCLK;
3347 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3348 		spin_unlock_irqrestore(&hsotg->lock, flags);
3349 		msleep(20);
3350 		spin_lock_irqsave(&hsotg->lock, flags);
3351 	}
3352 
3353 	hprt0 = dwc2_read_hprt0(hsotg);
3354 	hprt0 |= HPRT0_RES;
3355 	hprt0 &= ~HPRT0_SUSP;
3356 	dwc2_writel(hsotg, hprt0, HPRT0);
3357 	spin_unlock_irqrestore(&hsotg->lock, flags);
3358 
3359 	msleep(USB_RESUME_TIMEOUT);
3360 
3361 	spin_lock_irqsave(&hsotg->lock, flags);
3362 	hprt0 = dwc2_read_hprt0(hsotg);
3363 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3364 	dwc2_writel(hsotg, hprt0, HPRT0);
3365 	hsotg->bus_suspended = false;
3366 	spin_unlock_irqrestore(&hsotg->lock, flags);
3367 }
3368 
3369 /* Handles hub class-specific requests */
3370 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3371 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3372 {
3373 	struct usb_hub_descriptor *hub_desc;
3374 	int retval = 0;
3375 	u32 hprt0;
3376 	u32 port_status;
3377 	u32 speed;
3378 	u32 pcgctl;
3379 	u32 pwr;
3380 
3381 	switch (typereq) {
3382 	case ClearHubFeature:
3383 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3384 
3385 		switch (wvalue) {
3386 		case C_HUB_LOCAL_POWER:
3387 		case C_HUB_OVER_CURRENT:
3388 			/* Nothing required here */
3389 			break;
3390 
3391 		default:
3392 			retval = -EINVAL;
3393 			dev_err(hsotg->dev,
3394 				"ClearHubFeature request %1xh unknown\n",
3395 				wvalue);
3396 		}
3397 		break;
3398 
3399 	case ClearPortFeature:
3400 		if (wvalue != USB_PORT_FEAT_L1)
3401 			if (!windex || windex > 1)
3402 				goto error;
3403 		switch (wvalue) {
3404 		case USB_PORT_FEAT_ENABLE:
3405 			dev_dbg(hsotg->dev,
3406 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3407 			hprt0 = dwc2_read_hprt0(hsotg);
3408 			hprt0 |= HPRT0_ENA;
3409 			dwc2_writel(hsotg, hprt0, HPRT0);
3410 			break;
3411 
3412 		case USB_PORT_FEAT_SUSPEND:
3413 			dev_dbg(hsotg->dev,
3414 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3415 
3416 			if (hsotg->bus_suspended) {
3417 				if (hsotg->hibernated)
3418 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3419 				else
3420 					dwc2_port_resume(hsotg);
3421 			}
3422 			break;
3423 
3424 		case USB_PORT_FEAT_POWER:
3425 			dev_dbg(hsotg->dev,
3426 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3427 			hprt0 = dwc2_read_hprt0(hsotg);
3428 			pwr = hprt0 & HPRT0_PWR;
3429 			hprt0 &= ~HPRT0_PWR;
3430 			dwc2_writel(hsotg, hprt0, HPRT0);
3431 			if (pwr)
3432 				dwc2_vbus_supply_exit(hsotg);
3433 			break;
3434 
3435 		case USB_PORT_FEAT_INDICATOR:
3436 			dev_dbg(hsotg->dev,
3437 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3438 			/* Port indicator not supported */
3439 			break;
3440 
3441 		case USB_PORT_FEAT_C_CONNECTION:
3442 			/*
3443 			 * Clears driver's internal Connect Status Change flag
3444 			 */
3445 			dev_dbg(hsotg->dev,
3446 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3447 			hsotg->flags.b.port_connect_status_change = 0;
3448 			break;
3449 
3450 		case USB_PORT_FEAT_C_RESET:
3451 			/* Clears driver's internal Port Reset Change flag */
3452 			dev_dbg(hsotg->dev,
3453 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3454 			hsotg->flags.b.port_reset_change = 0;
3455 			break;
3456 
3457 		case USB_PORT_FEAT_C_ENABLE:
3458 			/*
3459 			 * Clears the driver's internal Port Enable/Disable
3460 			 * Change flag
3461 			 */
3462 			dev_dbg(hsotg->dev,
3463 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3464 			hsotg->flags.b.port_enable_change = 0;
3465 			break;
3466 
3467 		case USB_PORT_FEAT_C_SUSPEND:
3468 			/*
3469 			 * Clears the driver's internal Port Suspend Change
3470 			 * flag, which is set when resume signaling on the host
3471 			 * port is complete
3472 			 */
3473 			dev_dbg(hsotg->dev,
3474 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3475 			hsotg->flags.b.port_suspend_change = 0;
3476 			break;
3477 
3478 		case USB_PORT_FEAT_C_PORT_L1:
3479 			dev_dbg(hsotg->dev,
3480 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3481 			hsotg->flags.b.port_l1_change = 0;
3482 			break;
3483 
3484 		case USB_PORT_FEAT_C_OVER_CURRENT:
3485 			dev_dbg(hsotg->dev,
3486 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3487 			hsotg->flags.b.port_over_current_change = 0;
3488 			break;
3489 
3490 		default:
3491 			retval = -EINVAL;
3492 			dev_err(hsotg->dev,
3493 				"ClearPortFeature request %1xh unknown or unsupported\n",
3494 				wvalue);
3495 		}
3496 		break;
3497 
3498 	case GetHubDescriptor:
3499 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3500 		hub_desc = (struct usb_hub_descriptor *)buf;
3501 		hub_desc->bDescLength = 9;
3502 		hub_desc->bDescriptorType = USB_DT_HUB;
3503 		hub_desc->bNbrPorts = 1;
3504 		hub_desc->wHubCharacteristics =
3505 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3506 				    HUB_CHAR_INDV_PORT_OCPM);
3507 		hub_desc->bPwrOn2PwrGood = 1;
3508 		hub_desc->bHubContrCurrent = 0;
3509 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3510 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3511 		break;
3512 
3513 	case GetHubStatus:
3514 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3515 		memset(buf, 0, 4);
3516 		break;
3517 
3518 	case GetPortStatus:
3519 		dev_vdbg(hsotg->dev,
3520 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3521 			 hsotg->flags.d32);
3522 		if (!windex || windex > 1)
3523 			goto error;
3524 
3525 		port_status = 0;
3526 		if (hsotg->flags.b.port_connect_status_change)
3527 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3528 		if (hsotg->flags.b.port_enable_change)
3529 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3530 		if (hsotg->flags.b.port_suspend_change)
3531 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3532 		if (hsotg->flags.b.port_l1_change)
3533 			port_status |= USB_PORT_STAT_C_L1 << 16;
3534 		if (hsotg->flags.b.port_reset_change)
3535 			port_status |= USB_PORT_STAT_C_RESET << 16;
3536 		if (hsotg->flags.b.port_over_current_change) {
3537 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3538 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3539 		}
3540 
3541 		if (!hsotg->flags.b.port_connect_status) {
3542 			/*
3543 			 * The port is disconnected, which means the core is
3544 			 * either in device mode or it soon will be. Just
3545 			 * return 0's for the remainder of the port status
3546 			 * since the port register can't be read if the core
3547 			 * is in device mode.
3548 			 */
3549 			*(__le32 *)buf = cpu_to_le32(port_status);
3550 			break;
3551 		}
3552 
3553 		hprt0 = dwc2_readl(hsotg, HPRT0);
3554 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3555 
3556 		if (hprt0 & HPRT0_CONNSTS)
3557 			port_status |= USB_PORT_STAT_CONNECTION;
3558 		if (hprt0 & HPRT0_ENA)
3559 			port_status |= USB_PORT_STAT_ENABLE;
3560 		if (hprt0 & HPRT0_SUSP)
3561 			port_status |= USB_PORT_STAT_SUSPEND;
3562 		if (hprt0 & HPRT0_OVRCURRACT)
3563 			port_status |= USB_PORT_STAT_OVERCURRENT;
3564 		if (hprt0 & HPRT0_RST)
3565 			port_status |= USB_PORT_STAT_RESET;
3566 		if (hprt0 & HPRT0_PWR)
3567 			port_status |= USB_PORT_STAT_POWER;
3568 
3569 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3570 		if (speed == HPRT0_SPD_HIGH_SPEED)
3571 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3572 		else if (speed == HPRT0_SPD_LOW_SPEED)
3573 			port_status |= USB_PORT_STAT_LOW_SPEED;
3574 
3575 		if (hprt0 & HPRT0_TSTCTL_MASK)
3576 			port_status |= USB_PORT_STAT_TEST;
3577 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3578 
3579 		if (hsotg->params.dma_desc_fs_enable) {
3580 			/*
3581 			 * Enable descriptor DMA only if a full speed
3582 			 * device is connected.
3583 			 */
3584 			if (hsotg->new_connection &&
3585 			    ((port_status &
3586 			      (USB_PORT_STAT_CONNECTION |
3587 			       USB_PORT_STAT_HIGH_SPEED |
3588 			       USB_PORT_STAT_LOW_SPEED)) ==
3589 			       USB_PORT_STAT_CONNECTION)) {
3590 				u32 hcfg;
3591 
3592 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3593 				hsotg->params.dma_desc_enable = true;
3594 				hcfg = dwc2_readl(hsotg, HCFG);
3595 				hcfg |= HCFG_DESCDMA;
3596 				dwc2_writel(hsotg, hcfg, HCFG);
3597 				hsotg->new_connection = false;
3598 			}
3599 		}
3600 
3601 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3602 		*(__le32 *)buf = cpu_to_le32(port_status);
3603 		break;
3604 
3605 	case SetHubFeature:
3606 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3607 		/* No HUB features supported */
3608 		break;
3609 
3610 	case SetPortFeature:
3611 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3612 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3613 			goto error;
3614 
3615 		if (!hsotg->flags.b.port_connect_status) {
3616 			/*
3617 			 * The port is disconnected, which means the core is
3618 			 * either in device mode or it soon will be. Just
3619 			 * return without doing anything since the port
3620 			 * register can't be written if the core is in device
3621 			 * mode.
3622 			 */
3623 			break;
3624 		}
3625 
3626 		switch (wvalue) {
3627 		case USB_PORT_FEAT_SUSPEND:
3628 			dev_dbg(hsotg->dev,
3629 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3630 			if (windex != hsotg->otg_port)
3631 				goto error;
3632 			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION)
3633 				dwc2_enter_hibernation(hsotg, 1);
3634 			else
3635 				dwc2_port_suspend(hsotg, windex);
3636 			break;
3637 
3638 		case USB_PORT_FEAT_POWER:
3639 			dev_dbg(hsotg->dev,
3640 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3641 			hprt0 = dwc2_read_hprt0(hsotg);
3642 			pwr = hprt0 & HPRT0_PWR;
3643 			hprt0 |= HPRT0_PWR;
3644 			dwc2_writel(hsotg, hprt0, HPRT0);
3645 			if (!pwr)
3646 				dwc2_vbus_supply_init(hsotg);
3647 			break;
3648 
3649 		case USB_PORT_FEAT_RESET:
3650 			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION &&
3651 			    hsotg->hibernated)
3652 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3653 			hprt0 = dwc2_read_hprt0(hsotg);
3654 			dev_dbg(hsotg->dev,
3655 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3656 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3657 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3658 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3659 			/* ??? Original driver does this */
3660 			dwc2_writel(hsotg, 0, PCGCTL);
3661 
3662 			hprt0 = dwc2_read_hprt0(hsotg);
3663 			pwr = hprt0 & HPRT0_PWR;
3664 			/* Clear suspend bit if resetting from suspend state */
3665 			hprt0 &= ~HPRT0_SUSP;
3666 
3667 			/*
3668 			 * When B-Host the Port reset bit is set in the Start
3669 			 * HCD Callback function, so that the reset is started
3670 			 * within 1ms of the HNP success interrupt
3671 			 */
3672 			if (!dwc2_hcd_is_b_host(hsotg)) {
3673 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3674 				dev_dbg(hsotg->dev,
3675 					"In host mode, hprt0=%08x\n", hprt0);
3676 				dwc2_writel(hsotg, hprt0, HPRT0);
3677 				if (!pwr)
3678 					dwc2_vbus_supply_init(hsotg);
3679 			}
3680 
3681 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3682 			msleep(50);
3683 			hprt0 &= ~HPRT0_RST;
3684 			dwc2_writel(hsotg, hprt0, HPRT0);
3685 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3686 			break;
3687 
3688 		case USB_PORT_FEAT_INDICATOR:
3689 			dev_dbg(hsotg->dev,
3690 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3691 			/* Not supported */
3692 			break;
3693 
3694 		case USB_PORT_FEAT_TEST:
3695 			hprt0 = dwc2_read_hprt0(hsotg);
3696 			dev_dbg(hsotg->dev,
3697 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3698 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3699 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3700 			dwc2_writel(hsotg, hprt0, HPRT0);
3701 			break;
3702 
3703 		default:
3704 			retval = -EINVAL;
3705 			dev_err(hsotg->dev,
3706 				"SetPortFeature %1xh unknown or unsupported\n",
3707 				wvalue);
3708 			break;
3709 		}
3710 		break;
3711 
3712 	default:
3713 error:
3714 		retval = -EINVAL;
3715 		dev_dbg(hsotg->dev,
3716 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3717 			typereq, windex, wvalue);
3718 		break;
3719 	}
3720 
3721 	return retval;
3722 }
3723 
3724 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3725 {
3726 	int retval;
3727 
3728 	if (port != 1)
3729 		return -EINVAL;
3730 
3731 	retval = (hsotg->flags.b.port_connect_status_change ||
3732 		  hsotg->flags.b.port_reset_change ||
3733 		  hsotg->flags.b.port_enable_change ||
3734 		  hsotg->flags.b.port_suspend_change ||
3735 		  hsotg->flags.b.port_over_current_change);
3736 
3737 	if (retval) {
3738 		dev_dbg(hsotg->dev,
3739 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3740 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3741 			hsotg->flags.b.port_connect_status_change);
3742 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3743 			hsotg->flags.b.port_reset_change);
3744 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3745 			hsotg->flags.b.port_enable_change);
3746 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3747 			hsotg->flags.b.port_suspend_change);
3748 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3749 			hsotg->flags.b.port_over_current_change);
3750 	}
3751 
3752 	return retval;
3753 }
3754 
3755 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3756 {
3757 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3758 
3759 #ifdef DWC2_DEBUG_SOF
3760 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3761 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3762 #endif
3763 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3764 }
3765 
3766 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3767 {
3768 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3769 	u32 hfir = dwc2_readl(hsotg, HFIR);
3770 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3771 	unsigned int us_per_frame;
3772 	unsigned int frame_number;
3773 	unsigned int remaining;
3774 	unsigned int interval;
3775 	unsigned int phy_clks;
3776 
3777 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3778 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3779 
3780 	/* Extract fields */
3781 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3782 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3783 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3784 
3785 	/*
3786 	 * Number of phy clocks since the last tick of the frame number after
3787 	 * "us" has passed.
3788 	 */
3789 	phy_clks = (interval - remaining) +
3790 		   DIV_ROUND_UP(interval * us, us_per_frame);
3791 
3792 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3793 }
3794 
3795 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3796 {
3797 	return hsotg->op_state == OTG_STATE_B_HOST;
3798 }
3799 
3800 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3801 					       int iso_desc_count,
3802 					       gfp_t mem_flags)
3803 {
3804 	struct dwc2_hcd_urb *urb;
3805 
3806 	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3807 	if (urb)
3808 		urb->packet_count = iso_desc_count;
3809 	return urb;
3810 }
3811 
3812 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3813 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3814 				      u8 ep_num, u8 ep_type, u8 ep_dir,
3815 				      u16 maxp, u16 maxp_mult)
3816 {
3817 	if (dbg_perio() ||
3818 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3819 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3820 		dev_vdbg(hsotg->dev,
3821 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3822 			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3823 	urb->pipe_info.dev_addr = dev_addr;
3824 	urb->pipe_info.ep_num = ep_num;
3825 	urb->pipe_info.pipe_type = ep_type;
3826 	urb->pipe_info.pipe_dir = ep_dir;
3827 	urb->pipe_info.maxp = maxp;
3828 	urb->pipe_info.maxp_mult = maxp_mult;
3829 }
3830 
3831 /*
3832  * NOTE: This function will be removed once the peripheral controller code
3833  * is integrated and the driver is stable
3834  */
3835 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3836 {
3837 #ifdef DEBUG
3838 	struct dwc2_host_chan *chan;
3839 	struct dwc2_hcd_urb *urb;
3840 	struct dwc2_qtd *qtd;
3841 	int num_channels;
3842 	u32 np_tx_status;
3843 	u32 p_tx_status;
3844 	int i;
3845 
3846 	num_channels = hsotg->params.host_channels;
3847 	dev_dbg(hsotg->dev, "\n");
3848 	dev_dbg(hsotg->dev,
3849 		"************************************************************\n");
3850 	dev_dbg(hsotg->dev, "HCD State:\n");
3851 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3852 
3853 	for (i = 0; i < num_channels; i++) {
3854 		chan = hsotg->hc_ptr_array[i];
3855 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3856 		dev_dbg(hsotg->dev,
3857 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3858 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3859 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3860 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3861 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3862 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3863 			chan->data_pid_start);
3864 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3865 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3866 			chan->xfer_started);
3867 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3868 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3869 			(unsigned long)chan->xfer_dma);
3870 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3871 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3872 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3873 			chan->halt_on_queue);
3874 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3875 			chan->halt_pending);
3876 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3877 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3878 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3879 			chan->complete_split);
3880 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3881 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3882 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3883 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3884 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3885 
3886 		if (chan->xfer_started) {
3887 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3888 
3889 			hfnum = dwc2_readl(hsotg, HFNUM);
3890 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3891 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3892 			hcint = dwc2_readl(hsotg, HCINT(i));
3893 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3894 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3895 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3896 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3897 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3898 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3899 		}
3900 
3901 		if (!(chan->xfer_started && chan->qh))
3902 			continue;
3903 
3904 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3905 			if (!qtd->in_process)
3906 				break;
3907 			urb = qtd->urb;
3908 			dev_dbg(hsotg->dev, "    URB Info:\n");
3909 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3910 				qtd, urb);
3911 			if (urb) {
3912 				dev_dbg(hsotg->dev,
3913 					"      Dev: %d, EP: %d %s\n",
3914 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3915 					dwc2_hcd_get_ep_num(&urb->pipe_info),
3916 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3917 					"IN" : "OUT");
3918 				dev_dbg(hsotg->dev,
3919 					"      Max packet size: %d (%d mult)\n",
3920 					dwc2_hcd_get_maxp(&urb->pipe_info),
3921 					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3922 				dev_dbg(hsotg->dev,
3923 					"      transfer_buffer: %p\n",
3924 					urb->buf);
3925 				dev_dbg(hsotg->dev,
3926 					"      transfer_dma: %08lx\n",
3927 					(unsigned long)urb->dma);
3928 				dev_dbg(hsotg->dev,
3929 					"      transfer_buffer_length: %d\n",
3930 					urb->length);
3931 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3932 					urb->actual_length);
3933 			}
3934 		}
3935 	}
3936 
3937 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3938 		hsotg->non_periodic_channels);
3939 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3940 		hsotg->periodic_channels);
3941 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3942 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3943 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3944 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3945 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3946 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3947 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3948 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3949 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3950 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3951 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3952 	dwc2_dump_global_registers(hsotg);
3953 	dwc2_dump_host_registers(hsotg);
3954 	dev_dbg(hsotg->dev,
3955 		"************************************************************\n");
3956 	dev_dbg(hsotg->dev, "\n");
3957 #endif
3958 }
3959 
3960 struct wrapper_priv_data {
3961 	struct dwc2_hsotg *hsotg;
3962 };
3963 
3964 /* Gets the dwc2_hsotg from a usb_hcd */
3965 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3966 {
3967 	struct wrapper_priv_data *p;
3968 
3969 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3970 	return p->hsotg;
3971 }
3972 
3973 /**
3974  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3975  *
3976  * This will get the dwc2_tt structure (and ttport) associated with the given
3977  * context (which is really just a struct urb pointer).
3978  *
3979  * The first time this is called for a given TT we allocate memory for our
3980  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3981  * then the refcount for the structure will go to 0 and we'll free it.
3982  *
3983  * @hsotg:     The HCD state structure for the DWC OTG controller.
3984  * @context:   The priv pointer from a struct dwc2_hcd_urb.
3985  * @mem_flags: Flags for allocating memory.
3986  * @ttport:    We'll return this device's port number here.  That's used to
3987  *             reference into the bitmap if we're on a multi_tt hub.
3988  *
3989  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
3990  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
3991  */
3992 
3993 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3994 				      gfp_t mem_flags, int *ttport)
3995 {
3996 	struct urb *urb = context;
3997 	struct dwc2_tt *dwc_tt = NULL;
3998 
3999 	if (urb->dev->tt) {
4000 		*ttport = urb->dev->ttport;
4001 
4002 		dwc_tt = urb->dev->tt->hcpriv;
4003 		if (!dwc_tt) {
4004 			size_t bitmap_size;
4005 
4006 			/*
4007 			 * For single_tt we need one schedule.  For multi_tt
4008 			 * we need one per port.
4009 			 */
4010 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4011 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4012 			if (urb->dev->tt->multi)
4013 				bitmap_size *= urb->dev->tt->hub->maxchild;
4014 
4015 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4016 					 mem_flags);
4017 			if (!dwc_tt)
4018 				return NULL;
4019 
4020 			dwc_tt->usb_tt = urb->dev->tt;
4021 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4022 		}
4023 
4024 		dwc_tt->refcount++;
4025 	}
4026 
4027 	return dwc_tt;
4028 }
4029 
4030 /**
4031  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4032  *
4033  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4034  * of the structure are done.
4035  *
4036  * It's OK to call this with NULL.
4037  *
4038  * @hsotg:     The HCD state structure for the DWC OTG controller.
4039  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4040  */
4041 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4042 {
4043 	/* Model kfree and make put of NULL a no-op */
4044 	if (!dwc_tt)
4045 		return;
4046 
4047 	WARN_ON(dwc_tt->refcount < 1);
4048 
4049 	dwc_tt->refcount--;
4050 	if (!dwc_tt->refcount) {
4051 		dwc_tt->usb_tt->hcpriv = NULL;
4052 		kfree(dwc_tt);
4053 	}
4054 }
4055 
4056 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4057 {
4058 	struct urb *urb = context;
4059 
4060 	return urb->dev->speed;
4061 }
4062 
4063 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4064 					struct urb *urb)
4065 {
4066 	struct usb_bus *bus = hcd_to_bus(hcd);
4067 
4068 	if (urb->interval)
4069 		bus->bandwidth_allocated += bw / urb->interval;
4070 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4071 		bus->bandwidth_isoc_reqs++;
4072 	else
4073 		bus->bandwidth_int_reqs++;
4074 }
4075 
4076 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4077 				    struct urb *urb)
4078 {
4079 	struct usb_bus *bus = hcd_to_bus(hcd);
4080 
4081 	if (urb->interval)
4082 		bus->bandwidth_allocated -= bw / urb->interval;
4083 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4084 		bus->bandwidth_isoc_reqs--;
4085 	else
4086 		bus->bandwidth_int_reqs--;
4087 }
4088 
4089 /*
4090  * Sets the final status of an URB and returns it to the upper layer. Any
4091  * required cleanup of the URB is performed.
4092  *
4093  * Must be called with interrupt disabled and spinlock held
4094  */
4095 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4096 			int status)
4097 {
4098 	struct urb *urb;
4099 	int i;
4100 
4101 	if (!qtd) {
4102 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4103 		return;
4104 	}
4105 
4106 	if (!qtd->urb) {
4107 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4108 		return;
4109 	}
4110 
4111 	urb = qtd->urb->priv;
4112 	if (!urb) {
4113 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4114 		return;
4115 	}
4116 
4117 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4118 
4119 	if (dbg_urb(urb))
4120 		dev_vdbg(hsotg->dev,
4121 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4122 			 __func__, urb, usb_pipedevice(urb->pipe),
4123 			 usb_pipeendpoint(urb->pipe),
4124 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4125 			 urb->actual_length);
4126 
4127 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4128 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4129 		for (i = 0; i < urb->number_of_packets; ++i) {
4130 			urb->iso_frame_desc[i].actual_length =
4131 				dwc2_hcd_urb_get_iso_desc_actual_length(
4132 						qtd->urb, i);
4133 			urb->iso_frame_desc[i].status =
4134 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4135 		}
4136 	}
4137 
4138 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4139 		for (i = 0; i < urb->number_of_packets; i++)
4140 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4141 				 i, urb->iso_frame_desc[i].status);
4142 	}
4143 
4144 	urb->status = status;
4145 	if (!status) {
4146 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4147 		    urb->actual_length < urb->transfer_buffer_length)
4148 			urb->status = -EREMOTEIO;
4149 	}
4150 
4151 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4152 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4153 		struct usb_host_endpoint *ep = urb->ep;
4154 
4155 		if (ep)
4156 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4157 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4158 					urb);
4159 	}
4160 
4161 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4162 	urb->hcpriv = NULL;
4163 	kfree(qtd->urb);
4164 	qtd->urb = NULL;
4165 
4166 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4167 }
4168 
4169 /*
4170  * Work queue function for starting the HCD when A-Cable is connected
4171  */
4172 static void dwc2_hcd_start_func(struct work_struct *work)
4173 {
4174 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4175 						start_work.work);
4176 
4177 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4178 	dwc2_host_start(hsotg);
4179 }
4180 
4181 /*
4182  * Reset work queue function
4183  */
4184 static void dwc2_hcd_reset_func(struct work_struct *work)
4185 {
4186 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4187 						reset_work.work);
4188 	unsigned long flags;
4189 	u32 hprt0;
4190 
4191 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4192 
4193 	spin_lock_irqsave(&hsotg->lock, flags);
4194 
4195 	hprt0 = dwc2_read_hprt0(hsotg);
4196 	hprt0 &= ~HPRT0_RST;
4197 	dwc2_writel(hsotg, hprt0, HPRT0);
4198 	hsotg->flags.b.port_reset_change = 1;
4199 
4200 	spin_unlock_irqrestore(&hsotg->lock, flags);
4201 }
4202 
4203 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4204 {
4205 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4206 						phy_reset_work);
4207 	int ret;
4208 
4209 	ret = phy_reset(hsotg->phy);
4210 	if (ret)
4211 		dev_warn(hsotg->dev, "PHY reset failed\n");
4212 }
4213 
4214 /*
4215  * =========================================================================
4216  *  Linux HC Driver Functions
4217  * =========================================================================
4218  */
4219 
4220 /*
4221  * Initializes the DWC_otg controller and its root hub and prepares it for host
4222  * mode operation. Activates the root port. Returns 0 on success and a negative
4223  * error code on failure.
4224  */
4225 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4226 {
4227 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4228 	struct usb_bus *bus = hcd_to_bus(hcd);
4229 	unsigned long flags;
4230 	u32 hprt0;
4231 	int ret;
4232 
4233 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4234 
4235 	spin_lock_irqsave(&hsotg->lock, flags);
4236 	hsotg->lx_state = DWC2_L0;
4237 	hcd->state = HC_STATE_RUNNING;
4238 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4239 
4240 	if (dwc2_is_device_mode(hsotg)) {
4241 		spin_unlock_irqrestore(&hsotg->lock, flags);
4242 		return 0;	/* why 0 ?? */
4243 	}
4244 
4245 	dwc2_hcd_reinit(hsotg);
4246 
4247 	hprt0 = dwc2_read_hprt0(hsotg);
4248 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4249 	if (hprt0 & HPRT0_PWR) {
4250 		/* Enable external vbus supply before resuming root hub */
4251 		spin_unlock_irqrestore(&hsotg->lock, flags);
4252 		ret = dwc2_vbus_supply_init(hsotg);
4253 		if (ret)
4254 			return ret;
4255 		spin_lock_irqsave(&hsotg->lock, flags);
4256 	}
4257 
4258 	/* Initialize and connect root hub if one is not already attached */
4259 	if (bus->root_hub) {
4260 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4261 		/* Inform the HUB driver to resume */
4262 		usb_hcd_resume_root_hub(hcd);
4263 	}
4264 
4265 	spin_unlock_irqrestore(&hsotg->lock, flags);
4266 
4267 	return 0;
4268 }
4269 
4270 /*
4271  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4272  * stopped.
4273  */
4274 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4275 {
4276 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4277 	unsigned long flags;
4278 	u32 hprt0;
4279 
4280 	/* Turn off all host-specific interrupts */
4281 	dwc2_disable_host_interrupts(hsotg);
4282 
4283 	/* Wait for interrupt processing to finish */
4284 	synchronize_irq(hcd->irq);
4285 
4286 	spin_lock_irqsave(&hsotg->lock, flags);
4287 	hprt0 = dwc2_read_hprt0(hsotg);
4288 	/* Ensure hcd is disconnected */
4289 	dwc2_hcd_disconnect(hsotg, true);
4290 	dwc2_hcd_stop(hsotg);
4291 	hsotg->lx_state = DWC2_L3;
4292 	hcd->state = HC_STATE_HALT;
4293 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4294 	spin_unlock_irqrestore(&hsotg->lock, flags);
4295 
4296 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4297 	if (hprt0 & HPRT0_PWR)
4298 		dwc2_vbus_supply_exit(hsotg);
4299 
4300 	usleep_range(1000, 3000);
4301 }
4302 
4303 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4304 {
4305 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4306 	unsigned long flags;
4307 	int ret = 0;
4308 	u32 hprt0;
4309 	u32 pcgctl;
4310 
4311 	spin_lock_irqsave(&hsotg->lock, flags);
4312 
4313 	if (dwc2_is_device_mode(hsotg))
4314 		goto unlock;
4315 
4316 	if (hsotg->lx_state != DWC2_L0)
4317 		goto unlock;
4318 
4319 	if (!HCD_HW_ACCESSIBLE(hcd))
4320 		goto unlock;
4321 
4322 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4323 		goto unlock;
4324 
4325 	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4326 		goto skip_power_saving;
4327 
4328 	/*
4329 	 * Drive USB suspend and disable port Power
4330 	 * if usb bus is not suspended.
4331 	 */
4332 	if (!hsotg->bus_suspended) {
4333 		hprt0 = dwc2_read_hprt0(hsotg);
4334 		if (hprt0 & HPRT0_CONNSTS) {
4335 			hprt0 |= HPRT0_SUSP;
4336 			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4337 				hprt0 &= ~HPRT0_PWR;
4338 			dwc2_writel(hsotg, hprt0, HPRT0);
4339 		}
4340 		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4341 			spin_unlock_irqrestore(&hsotg->lock, flags);
4342 			dwc2_vbus_supply_exit(hsotg);
4343 			spin_lock_irqsave(&hsotg->lock, flags);
4344 		} else {
4345 			pcgctl = readl(hsotg->regs + PCGCTL);
4346 			pcgctl |= PCGCTL_STOPPCLK;
4347 			writel(pcgctl, hsotg->regs + PCGCTL);
4348 		}
4349 	}
4350 
4351 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4352 		/* Enter partial_power_down */
4353 		ret = dwc2_enter_partial_power_down(hsotg);
4354 		if (ret) {
4355 			if (ret != -ENOTSUPP)
4356 				dev_err(hsotg->dev,
4357 					"enter partial_power_down failed\n");
4358 			goto skip_power_saving;
4359 		}
4360 
4361 		/* After entering partial_power_down, hardware is no more accessible */
4362 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4363 	}
4364 
4365 	/* Ask phy to be suspended */
4366 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4367 		spin_unlock_irqrestore(&hsotg->lock, flags);
4368 		usb_phy_set_suspend(hsotg->uphy, true);
4369 		spin_lock_irqsave(&hsotg->lock, flags);
4370 	}
4371 
4372 skip_power_saving:
4373 	hsotg->lx_state = DWC2_L2;
4374 unlock:
4375 	spin_unlock_irqrestore(&hsotg->lock, flags);
4376 
4377 	return ret;
4378 }
4379 
4380 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4381 {
4382 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4383 	unsigned long flags;
4384 	u32 pcgctl;
4385 	int ret = 0;
4386 
4387 	spin_lock_irqsave(&hsotg->lock, flags);
4388 
4389 	if (dwc2_is_device_mode(hsotg))
4390 		goto unlock;
4391 
4392 	if (hsotg->lx_state != DWC2_L2)
4393 		goto unlock;
4394 
4395 	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4396 		hsotg->lx_state = DWC2_L0;
4397 		goto unlock;
4398 	}
4399 
4400 	/*
4401 	 * Enable power if not already done.
4402 	 * This must not be spinlocked since duration
4403 	 * of this call is unknown.
4404 	 */
4405 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4406 		spin_unlock_irqrestore(&hsotg->lock, flags);
4407 		usb_phy_set_suspend(hsotg->uphy, false);
4408 		spin_lock_irqsave(&hsotg->lock, flags);
4409 	}
4410 
4411 	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4412 		/*
4413 		 * Set HW accessible bit before powering on the controller
4414 		 * since an interrupt may rise.
4415 		 */
4416 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4417 
4418 
4419 		/* Exit partial_power_down */
4420 		ret = dwc2_exit_partial_power_down(hsotg, true);
4421 		if (ret && (ret != -ENOTSUPP))
4422 			dev_err(hsotg->dev, "exit partial_power_down failed\n");
4423 	} else {
4424 		pcgctl = readl(hsotg->regs + PCGCTL);
4425 		pcgctl &= ~PCGCTL_STOPPCLK;
4426 		writel(pcgctl, hsotg->regs + PCGCTL);
4427 	}
4428 
4429 	hsotg->lx_state = DWC2_L0;
4430 
4431 	spin_unlock_irqrestore(&hsotg->lock, flags);
4432 
4433 	if (hsotg->bus_suspended) {
4434 		spin_lock_irqsave(&hsotg->lock, flags);
4435 		hsotg->flags.b.port_suspend_change = 1;
4436 		spin_unlock_irqrestore(&hsotg->lock, flags);
4437 		dwc2_port_resume(hsotg);
4438 	} else {
4439 		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4440 			dwc2_vbus_supply_init(hsotg);
4441 
4442 			/* Wait for controller to correctly update D+/D- level */
4443 			usleep_range(3000, 5000);
4444 		}
4445 
4446 		/*
4447 		 * Clear Port Enable and Port Status changes.
4448 		 * Enable Port Power.
4449 		 */
4450 		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4451 				HPRT0_ENACHG, HPRT0);
4452 		/* Wait for controller to detect Port Connect */
4453 		usleep_range(5000, 7000);
4454 	}
4455 
4456 	return ret;
4457 unlock:
4458 	spin_unlock_irqrestore(&hsotg->lock, flags);
4459 
4460 	return ret;
4461 }
4462 
4463 /* Returns the current frame number */
4464 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4465 {
4466 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4467 
4468 	return dwc2_hcd_get_frame_number(hsotg);
4469 }
4470 
4471 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4472 			       char *fn_name)
4473 {
4474 #ifdef VERBOSE_DEBUG
4475 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4476 	char *pipetype = NULL;
4477 	char *speed = NULL;
4478 
4479 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4480 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4481 		 usb_pipedevice(urb->pipe));
4482 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4483 		 usb_pipeendpoint(urb->pipe),
4484 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4485 
4486 	switch (usb_pipetype(urb->pipe)) {
4487 	case PIPE_CONTROL:
4488 		pipetype = "CONTROL";
4489 		break;
4490 	case PIPE_BULK:
4491 		pipetype = "BULK";
4492 		break;
4493 	case PIPE_INTERRUPT:
4494 		pipetype = "INTERRUPT";
4495 		break;
4496 	case PIPE_ISOCHRONOUS:
4497 		pipetype = "ISOCHRONOUS";
4498 		break;
4499 	}
4500 
4501 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4502 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4503 		 "IN" : "OUT");
4504 
4505 	switch (urb->dev->speed) {
4506 	case USB_SPEED_HIGH:
4507 		speed = "HIGH";
4508 		break;
4509 	case USB_SPEED_FULL:
4510 		speed = "FULL";
4511 		break;
4512 	case USB_SPEED_LOW:
4513 		speed = "LOW";
4514 		break;
4515 	default:
4516 		speed = "UNKNOWN";
4517 		break;
4518 	}
4519 
4520 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4521 	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4522 		 usb_endpoint_maxp(&urb->ep->desc),
4523 		 usb_endpoint_maxp_mult(&urb->ep->desc));
4524 
4525 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4526 		 urb->transfer_buffer_length);
4527 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4528 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4529 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4530 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4531 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4532 
4533 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4534 		int i;
4535 
4536 		for (i = 0; i < urb->number_of_packets; i++) {
4537 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4538 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4539 				 urb->iso_frame_desc[i].offset,
4540 				 urb->iso_frame_desc[i].length);
4541 		}
4542 	}
4543 #endif
4544 }
4545 
4546 /*
4547  * Starts processing a USB transfer request specified by a USB Request Block
4548  * (URB). mem_flags indicates the type of memory allocation to use while
4549  * processing this URB.
4550  */
4551 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4552 				 gfp_t mem_flags)
4553 {
4554 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4555 	struct usb_host_endpoint *ep = urb->ep;
4556 	struct dwc2_hcd_urb *dwc2_urb;
4557 	int i;
4558 	int retval;
4559 	int alloc_bandwidth = 0;
4560 	u8 ep_type = 0;
4561 	u32 tflags = 0;
4562 	void *buf;
4563 	unsigned long flags;
4564 	struct dwc2_qh *qh;
4565 	bool qh_allocated = false;
4566 	struct dwc2_qtd *qtd;
4567 
4568 	if (dbg_urb(urb)) {
4569 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4570 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4571 	}
4572 
4573 	if (!ep)
4574 		return -EINVAL;
4575 
4576 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4577 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4578 		spin_lock_irqsave(&hsotg->lock, flags);
4579 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4580 			alloc_bandwidth = 1;
4581 		spin_unlock_irqrestore(&hsotg->lock, flags);
4582 	}
4583 
4584 	switch (usb_pipetype(urb->pipe)) {
4585 	case PIPE_CONTROL:
4586 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4587 		break;
4588 	case PIPE_ISOCHRONOUS:
4589 		ep_type = USB_ENDPOINT_XFER_ISOC;
4590 		break;
4591 	case PIPE_BULK:
4592 		ep_type = USB_ENDPOINT_XFER_BULK;
4593 		break;
4594 	case PIPE_INTERRUPT:
4595 		ep_type = USB_ENDPOINT_XFER_INT;
4596 		break;
4597 	}
4598 
4599 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4600 				      mem_flags);
4601 	if (!dwc2_urb)
4602 		return -ENOMEM;
4603 
4604 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4605 				  usb_pipeendpoint(urb->pipe), ep_type,
4606 				  usb_pipein(urb->pipe),
4607 				  usb_endpoint_maxp(&ep->desc),
4608 				  usb_endpoint_maxp_mult(&ep->desc));
4609 
4610 	buf = urb->transfer_buffer;
4611 
4612 	if (hcd_uses_dma(hcd)) {
4613 		if (!buf && (urb->transfer_dma & 3)) {
4614 			dev_err(hsotg->dev,
4615 				"%s: unaligned transfer with no transfer_buffer",
4616 				__func__);
4617 			retval = -EINVAL;
4618 			goto fail0;
4619 		}
4620 	}
4621 
4622 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4623 		tflags |= URB_GIVEBACK_ASAP;
4624 	if (urb->transfer_flags & URB_ZERO_PACKET)
4625 		tflags |= URB_SEND_ZERO_PACKET;
4626 
4627 	dwc2_urb->priv = urb;
4628 	dwc2_urb->buf = buf;
4629 	dwc2_urb->dma = urb->transfer_dma;
4630 	dwc2_urb->length = urb->transfer_buffer_length;
4631 	dwc2_urb->setup_packet = urb->setup_packet;
4632 	dwc2_urb->setup_dma = urb->setup_dma;
4633 	dwc2_urb->flags = tflags;
4634 	dwc2_urb->interval = urb->interval;
4635 	dwc2_urb->status = -EINPROGRESS;
4636 
4637 	for (i = 0; i < urb->number_of_packets; ++i)
4638 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4639 						 urb->iso_frame_desc[i].offset,
4640 						 urb->iso_frame_desc[i].length);
4641 
4642 	urb->hcpriv = dwc2_urb;
4643 	qh = (struct dwc2_qh *)ep->hcpriv;
4644 	/* Create QH for the endpoint if it doesn't exist */
4645 	if (!qh) {
4646 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4647 		if (!qh) {
4648 			retval = -ENOMEM;
4649 			goto fail0;
4650 		}
4651 		ep->hcpriv = qh;
4652 		qh_allocated = true;
4653 	}
4654 
4655 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4656 	if (!qtd) {
4657 		retval = -ENOMEM;
4658 		goto fail1;
4659 	}
4660 
4661 	spin_lock_irqsave(&hsotg->lock, flags);
4662 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4663 	if (retval)
4664 		goto fail2;
4665 
4666 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4667 	if (retval)
4668 		goto fail3;
4669 
4670 	if (alloc_bandwidth) {
4671 		dwc2_allocate_bus_bandwidth(hcd,
4672 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4673 				urb);
4674 	}
4675 
4676 	spin_unlock_irqrestore(&hsotg->lock, flags);
4677 
4678 	return 0;
4679 
4680 fail3:
4681 	dwc2_urb->priv = NULL;
4682 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4683 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4684 		qh->channel->qh = NULL;
4685 fail2:
4686 	spin_unlock_irqrestore(&hsotg->lock, flags);
4687 	urb->hcpriv = NULL;
4688 	kfree(qtd);
4689 fail1:
4690 	if (qh_allocated) {
4691 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4692 
4693 		ep->hcpriv = NULL;
4694 		dwc2_hcd_qh_unlink(hsotg, qh);
4695 		/* Free each QTD in the QH's QTD list */
4696 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4697 					 qtd_list_entry)
4698 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4699 		dwc2_hcd_qh_free(hsotg, qh);
4700 	}
4701 fail0:
4702 	kfree(dwc2_urb);
4703 
4704 	return retval;
4705 }
4706 
4707 /*
4708  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4709  */
4710 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4711 				 int status)
4712 {
4713 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4714 	int rc;
4715 	unsigned long flags;
4716 
4717 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4718 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4719 
4720 	spin_lock_irqsave(&hsotg->lock, flags);
4721 
4722 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4723 	if (rc)
4724 		goto out;
4725 
4726 	if (!urb->hcpriv) {
4727 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4728 		goto out;
4729 	}
4730 
4731 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4732 
4733 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4734 
4735 	kfree(urb->hcpriv);
4736 	urb->hcpriv = NULL;
4737 
4738 	/* Higher layer software sets URB status */
4739 	spin_unlock(&hsotg->lock);
4740 	usb_hcd_giveback_urb(hcd, urb, status);
4741 	spin_lock(&hsotg->lock);
4742 
4743 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4744 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4745 out:
4746 	spin_unlock_irqrestore(&hsotg->lock, flags);
4747 
4748 	return rc;
4749 }
4750 
4751 /*
4752  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4753  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4754  * must already be dequeued.
4755  */
4756 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4757 				       struct usb_host_endpoint *ep)
4758 {
4759 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4760 
4761 	dev_dbg(hsotg->dev,
4762 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4763 		ep->desc.bEndpointAddress, ep->hcpriv);
4764 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4765 }
4766 
4767 /*
4768  * Resets endpoint specific parameter values, in current version used to reset
4769  * the data toggle (as a WA). This function can be called from usb_clear_halt
4770  * routine.
4771  */
4772 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4773 				     struct usb_host_endpoint *ep)
4774 {
4775 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4776 	unsigned long flags;
4777 
4778 	dev_dbg(hsotg->dev,
4779 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4780 		ep->desc.bEndpointAddress);
4781 
4782 	spin_lock_irqsave(&hsotg->lock, flags);
4783 	dwc2_hcd_endpoint_reset(hsotg, ep);
4784 	spin_unlock_irqrestore(&hsotg->lock, flags);
4785 }
4786 
4787 /*
4788  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4789  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4790  * interrupt.
4791  *
4792  * This function is called by the USB core when an interrupt occurs
4793  */
4794 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4795 {
4796 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4797 
4798 	return dwc2_handle_hcd_intr(hsotg);
4799 }
4800 
4801 /*
4802  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4803  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4804  * is the status change indicator for the single root port. Returns 1 if either
4805  * change indicator is 1, otherwise returns 0.
4806  */
4807 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4808 {
4809 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4810 
4811 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4812 	return buf[0] != 0;
4813 }
4814 
4815 /* Handles hub class-specific requests */
4816 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4817 				 u16 windex, char *buf, u16 wlength)
4818 {
4819 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4820 					  wvalue, windex, buf, wlength);
4821 	return retval;
4822 }
4823 
4824 /* Handles hub TT buffer clear completions */
4825 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4826 					       struct usb_host_endpoint *ep)
4827 {
4828 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4829 	struct dwc2_qh *qh;
4830 	unsigned long flags;
4831 
4832 	qh = ep->hcpriv;
4833 	if (!qh)
4834 		return;
4835 
4836 	spin_lock_irqsave(&hsotg->lock, flags);
4837 	qh->tt_buffer_dirty = 0;
4838 
4839 	if (hsotg->flags.b.port_connect_status)
4840 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4841 
4842 	spin_unlock_irqrestore(&hsotg->lock, flags);
4843 }
4844 
4845 /*
4846  * HPRT0_SPD_HIGH_SPEED: high speed
4847  * HPRT0_SPD_FULL_SPEED: full speed
4848  */
4849 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4850 {
4851 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4852 
4853 	if (hsotg->params.speed == speed)
4854 		return;
4855 
4856 	hsotg->params.speed = speed;
4857 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4858 }
4859 
4860 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4861 {
4862 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4863 
4864 	if (!hsotg->params.change_speed_quirk)
4865 		return;
4866 
4867 	/*
4868 	 * On removal, set speed to default high-speed.
4869 	 */
4870 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4871 	    udev->parent->speed < USB_SPEED_HIGH) {
4872 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4873 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4874 	}
4875 }
4876 
4877 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4878 {
4879 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4880 
4881 	if (!hsotg->params.change_speed_quirk)
4882 		return 0;
4883 
4884 	if (udev->speed == USB_SPEED_HIGH) {
4885 		dev_info(hsotg->dev, "Set speed to high-speed\n");
4886 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4887 	} else if ((udev->speed == USB_SPEED_FULL ||
4888 				udev->speed == USB_SPEED_LOW)) {
4889 		/*
4890 		 * Change speed setting to full-speed if there's
4891 		 * a full-speed or low-speed device plugged in.
4892 		 */
4893 		dev_info(hsotg->dev, "Set speed to full-speed\n");
4894 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4895 	}
4896 
4897 	return 0;
4898 }
4899 
4900 static struct hc_driver dwc2_hc_driver = {
4901 	.description = "dwc2_hsotg",
4902 	.product_desc = "DWC OTG Controller",
4903 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4904 
4905 	.irq = _dwc2_hcd_irq,
4906 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4907 
4908 	.start = _dwc2_hcd_start,
4909 	.stop = _dwc2_hcd_stop,
4910 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4911 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4912 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4913 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4914 	.get_frame_number = _dwc2_hcd_get_frame_number,
4915 
4916 	.hub_status_data = _dwc2_hcd_hub_status_data,
4917 	.hub_control = _dwc2_hcd_hub_control,
4918 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4919 
4920 	.bus_suspend = _dwc2_hcd_suspend,
4921 	.bus_resume = _dwc2_hcd_resume,
4922 
4923 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4924 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4925 };
4926 
4927 /*
4928  * Frees secondary storage associated with the dwc2_hsotg structure contained
4929  * in the struct usb_hcd field
4930  */
4931 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4932 {
4933 	u32 ahbcfg;
4934 	u32 dctl;
4935 	int i;
4936 
4937 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4938 
4939 	/* Free memory for QH/QTD lists */
4940 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4941 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4942 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4943 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4944 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4945 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4946 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4947 
4948 	/* Free memory for the host channels */
4949 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4950 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4951 
4952 		if (chan) {
4953 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4954 				i, chan);
4955 			hsotg->hc_ptr_array[i] = NULL;
4956 			kfree(chan);
4957 		}
4958 	}
4959 
4960 	if (hsotg->params.host_dma) {
4961 		if (hsotg->status_buf) {
4962 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4963 					  hsotg->status_buf,
4964 					  hsotg->status_buf_dma);
4965 			hsotg->status_buf = NULL;
4966 		}
4967 	} else {
4968 		kfree(hsotg->status_buf);
4969 		hsotg->status_buf = NULL;
4970 	}
4971 
4972 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4973 
4974 	/* Disable all interrupts */
4975 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4976 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4977 	dwc2_writel(hsotg, 0, GINTMSK);
4978 
4979 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4980 		dctl = dwc2_readl(hsotg, DCTL);
4981 		dctl |= DCTL_SFTDISCON;
4982 		dwc2_writel(hsotg, dctl, DCTL);
4983 	}
4984 
4985 	if (hsotg->wq_otg) {
4986 		if (!cancel_work_sync(&hsotg->wf_otg))
4987 			flush_workqueue(hsotg->wq_otg);
4988 		destroy_workqueue(hsotg->wq_otg);
4989 	}
4990 
4991 	cancel_work_sync(&hsotg->phy_reset_work);
4992 
4993 	del_timer(&hsotg->wkp_timer);
4994 }
4995 
4996 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4997 {
4998 	/* Turn off all host-specific interrupts */
4999 	dwc2_disable_host_interrupts(hsotg);
5000 
5001 	dwc2_hcd_free(hsotg);
5002 }
5003 
5004 /*
5005  * Initializes the HCD. This function allocates memory for and initializes the
5006  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5007  * USB bus with the core and calls the hc_driver->start() function. It returns
5008  * a negative error on failure.
5009  */
5010 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5011 {
5012 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5013 	struct resource *res;
5014 	struct usb_hcd *hcd;
5015 	struct dwc2_host_chan *channel;
5016 	u32 hcfg;
5017 	int i, num_channels;
5018 	int retval;
5019 
5020 	if (usb_disabled())
5021 		return -ENODEV;
5022 
5023 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5024 
5025 	retval = -ENOMEM;
5026 
5027 	hcfg = dwc2_readl(hsotg, HCFG);
5028 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5029 
5030 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5031 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5032 					 sizeof(*hsotg->frame_num_array),
5033 					 GFP_KERNEL);
5034 	if (!hsotg->frame_num_array)
5035 		goto error1;
5036 	hsotg->last_frame_num_array =
5037 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5038 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5039 	if (!hsotg->last_frame_num_array)
5040 		goto error1;
5041 #endif
5042 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5043 
5044 	/* Check if the bus driver or platform code has setup a dma_mask */
5045 	if (hsotg->params.host_dma &&
5046 	    !hsotg->dev->dma_mask) {
5047 		dev_warn(hsotg->dev,
5048 			 "dma_mask not set, disabling DMA\n");
5049 		hsotg->params.host_dma = false;
5050 		hsotg->params.dma_desc_enable = false;
5051 	}
5052 
5053 	/* Set device flags indicating whether the HCD supports DMA */
5054 	if (hsotg->params.host_dma) {
5055 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5056 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5057 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5058 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5059 	}
5060 
5061 	if (hsotg->params.change_speed_quirk) {
5062 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5063 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5064 	}
5065 
5066 	if (hsotg->params.host_dma)
5067 		dwc2_hc_driver.flags |= HCD_DMA;
5068 
5069 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5070 	if (!hcd)
5071 		goto error1;
5072 
5073 	hcd->has_tt = 1;
5074 
5075 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5076 	hcd->rsrc_start = res->start;
5077 	hcd->rsrc_len = resource_size(res);
5078 
5079 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5080 	hsotg->priv = hcd;
5081 
5082 	/*
5083 	 * Disable the global interrupt until all the interrupt handlers are
5084 	 * installed
5085 	 */
5086 	dwc2_disable_global_interrupts(hsotg);
5087 
5088 	/* Initialize the DWC_otg core, and select the Phy type */
5089 	retval = dwc2_core_init(hsotg, true);
5090 	if (retval)
5091 		goto error2;
5092 
5093 	/* Create new workqueue and init work */
5094 	retval = -ENOMEM;
5095 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5096 	if (!hsotg->wq_otg) {
5097 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5098 		goto error2;
5099 	}
5100 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5101 
5102 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5103 
5104 	/* Initialize the non-periodic schedule */
5105 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5106 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5107 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5108 
5109 	/* Initialize the periodic schedule */
5110 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5111 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5112 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5113 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5114 
5115 	INIT_LIST_HEAD(&hsotg->split_order);
5116 
5117 	/*
5118 	 * Create a host channel descriptor for each host channel implemented
5119 	 * in the controller. Initialize the channel descriptor array.
5120 	 */
5121 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5122 	num_channels = hsotg->params.host_channels;
5123 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5124 
5125 	for (i = 0; i < num_channels; i++) {
5126 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5127 		if (!channel)
5128 			goto error3;
5129 		channel->hc_num = i;
5130 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5131 		hsotg->hc_ptr_array[i] = channel;
5132 	}
5133 
5134 	/* Initialize work */
5135 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5136 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5137 	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5138 
5139 	/*
5140 	 * Allocate space for storing data on status transactions. Normally no
5141 	 * data is sent, but this space acts as a bit bucket. This must be
5142 	 * done after usb_add_hcd since that function allocates the DMA buffer
5143 	 * pool.
5144 	 */
5145 	if (hsotg->params.host_dma)
5146 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5147 					DWC2_HCD_STATUS_BUF_SIZE,
5148 					&hsotg->status_buf_dma, GFP_KERNEL);
5149 	else
5150 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5151 					  GFP_KERNEL);
5152 
5153 	if (!hsotg->status_buf)
5154 		goto error3;
5155 
5156 	/*
5157 	 * Create kmem caches to handle descriptor buffers in descriptor
5158 	 * DMA mode.
5159 	 * Alignment must be set to 512 bytes.
5160 	 */
5161 	if (hsotg->params.dma_desc_enable ||
5162 	    hsotg->params.dma_desc_fs_enable) {
5163 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5164 				sizeof(struct dwc2_dma_desc) *
5165 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5166 				NULL);
5167 		if (!hsotg->desc_gen_cache) {
5168 			dev_err(hsotg->dev,
5169 				"unable to create dwc2 generic desc cache\n");
5170 
5171 			/*
5172 			 * Disable descriptor dma mode since it will not be
5173 			 * usable.
5174 			 */
5175 			hsotg->params.dma_desc_enable = false;
5176 			hsotg->params.dma_desc_fs_enable = false;
5177 		}
5178 
5179 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5180 				sizeof(struct dwc2_dma_desc) *
5181 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5182 		if (!hsotg->desc_hsisoc_cache) {
5183 			dev_err(hsotg->dev,
5184 				"unable to create dwc2 hs isoc desc cache\n");
5185 
5186 			kmem_cache_destroy(hsotg->desc_gen_cache);
5187 
5188 			/*
5189 			 * Disable descriptor dma mode since it will not be
5190 			 * usable.
5191 			 */
5192 			hsotg->params.dma_desc_enable = false;
5193 			hsotg->params.dma_desc_fs_enable = false;
5194 		}
5195 	}
5196 
5197 	if (hsotg->params.host_dma) {
5198 		/*
5199 		 * Create kmem caches to handle non-aligned buffer
5200 		 * in Buffer DMA mode.
5201 		 */
5202 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5203 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5204 						SLAB_CACHE_DMA, NULL);
5205 		if (!hsotg->unaligned_cache)
5206 			dev_err(hsotg->dev,
5207 				"unable to create dwc2 unaligned cache\n");
5208 	}
5209 
5210 	hsotg->otg_port = 1;
5211 	hsotg->frame_list = NULL;
5212 	hsotg->frame_list_dma = 0;
5213 	hsotg->periodic_qh_count = 0;
5214 
5215 	/* Initiate lx_state to L3 disconnected state */
5216 	hsotg->lx_state = DWC2_L3;
5217 
5218 	hcd->self.otg_port = hsotg->otg_port;
5219 
5220 	/* Don't support SG list at this point */
5221 	hcd->self.sg_tablesize = 0;
5222 
5223 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5224 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5225 
5226 	/*
5227 	 * Finish generic HCD initialization and start the HCD. This function
5228 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5229 	 * IRQ line, and calls hcd_start method.
5230 	 */
5231 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5232 	if (retval < 0)
5233 		goto error4;
5234 
5235 	device_wakeup_enable(hcd->self.controller);
5236 
5237 	dwc2_hcd_dump_state(hsotg);
5238 
5239 	dwc2_enable_global_interrupts(hsotg);
5240 
5241 	return 0;
5242 
5243 error4:
5244 	kmem_cache_destroy(hsotg->unaligned_cache);
5245 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5246 	kmem_cache_destroy(hsotg->desc_gen_cache);
5247 error3:
5248 	dwc2_hcd_release(hsotg);
5249 error2:
5250 	usb_put_hcd(hcd);
5251 error1:
5252 
5253 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5254 	kfree(hsotg->last_frame_num_array);
5255 	kfree(hsotg->frame_num_array);
5256 #endif
5257 
5258 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5259 	return retval;
5260 }
5261 
5262 /*
5263  * Removes the HCD.
5264  * Frees memory and resources associated with the HCD and deregisters the bus.
5265  */
5266 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5267 {
5268 	struct usb_hcd *hcd;
5269 
5270 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5271 
5272 	hcd = dwc2_hsotg_to_hcd(hsotg);
5273 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5274 
5275 	if (!hcd) {
5276 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5277 			__func__);
5278 		return;
5279 	}
5280 
5281 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5282 		otg_set_host(hsotg->uphy->otg, NULL);
5283 
5284 	usb_remove_hcd(hcd);
5285 	hsotg->priv = NULL;
5286 
5287 	kmem_cache_destroy(hsotg->unaligned_cache);
5288 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5289 	kmem_cache_destroy(hsotg->desc_gen_cache);
5290 
5291 	dwc2_hcd_release(hsotg);
5292 	usb_put_hcd(hcd);
5293 
5294 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5295 	kfree(hsotg->last_frame_num_array);
5296 	kfree(hsotg->frame_num_array);
5297 #endif
5298 }
5299 
5300 /**
5301  * dwc2_backup_host_registers() - Backup controller host registers.
5302  * When suspending usb bus, registers needs to be backuped
5303  * if controller power is disabled once suspended.
5304  *
5305  * @hsotg: Programming view of the DWC_otg controller
5306  */
5307 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5308 {
5309 	struct dwc2_hregs_backup *hr;
5310 	int i;
5311 
5312 	dev_dbg(hsotg->dev, "%s\n", __func__);
5313 
5314 	/* Backup Host regs */
5315 	hr = &hsotg->hr_backup;
5316 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5317 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5318 	for (i = 0; i < hsotg->params.host_channels; ++i)
5319 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5320 
5321 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5322 	hr->hfir = dwc2_readl(hsotg, HFIR);
5323 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5324 	hr->valid = true;
5325 
5326 	return 0;
5327 }
5328 
5329 /**
5330  * dwc2_restore_host_registers() - Restore controller host registers.
5331  * When resuming usb bus, device registers needs to be restored
5332  * if controller power were disabled.
5333  *
5334  * @hsotg: Programming view of the DWC_otg controller
5335  */
5336 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5337 {
5338 	struct dwc2_hregs_backup *hr;
5339 	int i;
5340 
5341 	dev_dbg(hsotg->dev, "%s\n", __func__);
5342 
5343 	/* Restore host regs */
5344 	hr = &hsotg->hr_backup;
5345 	if (!hr->valid) {
5346 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5347 			__func__);
5348 		return -EINVAL;
5349 	}
5350 	hr->valid = false;
5351 
5352 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5353 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5354 
5355 	for (i = 0; i < hsotg->params.host_channels; ++i)
5356 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5357 
5358 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5359 	dwc2_writel(hsotg, hr->hfir, HFIR);
5360 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5361 	hsotg->frame_number = 0;
5362 
5363 	return 0;
5364 }
5365 
5366 /**
5367  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5368  *
5369  * @hsotg: Programming view of the DWC_otg controller
5370  */
5371 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5372 {
5373 	unsigned long flags;
5374 	int ret = 0;
5375 	u32 hprt0;
5376 	u32 pcgcctl;
5377 	u32 gusbcfg;
5378 	u32 gpwrdn;
5379 
5380 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5381 	ret = dwc2_backup_global_registers(hsotg);
5382 	if (ret) {
5383 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5384 			__func__);
5385 		return ret;
5386 	}
5387 	ret = dwc2_backup_host_registers(hsotg);
5388 	if (ret) {
5389 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5390 			__func__);
5391 		return ret;
5392 	}
5393 
5394 	/* Enter USB Suspend Mode */
5395 	hprt0 = dwc2_readl(hsotg, HPRT0);
5396 	hprt0 |= HPRT0_SUSP;
5397 	hprt0 &= ~HPRT0_ENA;
5398 	dwc2_writel(hsotg, hprt0, HPRT0);
5399 
5400 	/* Wait for the HPRT0.PrtSusp register field to be set */
5401 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5402 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5403 
5404 	/*
5405 	 * We need to disable interrupts to prevent servicing of any IRQ
5406 	 * during going to hibernation
5407 	 */
5408 	spin_lock_irqsave(&hsotg->lock, flags);
5409 	hsotg->lx_state = DWC2_L2;
5410 
5411 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5412 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5413 		/* ULPI interface */
5414 		/* Suspend the Phy Clock */
5415 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5416 		pcgcctl |= PCGCTL_STOPPCLK;
5417 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5418 		udelay(10);
5419 
5420 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5421 		gpwrdn |= GPWRDN_PMUACTV;
5422 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5423 		udelay(10);
5424 	} else {
5425 		/* UTMI+ Interface */
5426 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5427 		gpwrdn |= GPWRDN_PMUACTV;
5428 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5429 		udelay(10);
5430 
5431 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5432 		pcgcctl |= PCGCTL_STOPPCLK;
5433 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5434 		udelay(10);
5435 	}
5436 
5437 	/* Enable interrupts from wake up logic */
5438 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5439 	gpwrdn |= GPWRDN_PMUINTSEL;
5440 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5441 	udelay(10);
5442 
5443 	/* Unmask host mode interrupts in GPWRDN */
5444 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5445 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5446 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5447 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5448 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5449 	udelay(10);
5450 
5451 	/* Enable Power Down Clamp */
5452 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5453 	gpwrdn |= GPWRDN_PWRDNCLMP;
5454 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5455 	udelay(10);
5456 
5457 	/* Switch off VDD */
5458 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5459 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5460 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5461 
5462 	hsotg->hibernated = 1;
5463 	hsotg->bus_suspended = 1;
5464 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5465 	spin_unlock_irqrestore(&hsotg->lock, flags);
5466 	return ret;
5467 }
5468 
5469 /*
5470  * dwc2_host_exit_hibernation()
5471  *
5472  * @hsotg: Programming view of the DWC_otg controller
5473  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5474  * @param reset: indicates whether resume is initiated by Reset.
5475  *
5476  * Return: non-zero if failed to enter to hibernation.
5477  *
5478  * This function is for exiting from Host mode hibernation by
5479  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5480  */
5481 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5482 			       int reset)
5483 {
5484 	u32 gpwrdn;
5485 	u32 hprt0;
5486 	int ret = 0;
5487 	struct dwc2_gregs_backup *gr;
5488 	struct dwc2_hregs_backup *hr;
5489 
5490 	gr = &hsotg->gr_backup;
5491 	hr = &hsotg->hr_backup;
5492 
5493 	dev_dbg(hsotg->dev,
5494 		"%s: called with rem_wakeup = %d reset = %d\n",
5495 		__func__, rem_wakeup, reset);
5496 
5497 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5498 	hsotg->hibernated = 0;
5499 
5500 	/*
5501 	 * This step is not described in functional spec but if not wait for
5502 	 * this delay, mismatch interrupts occurred because just after restore
5503 	 * core is in Device mode(gintsts.curmode == 0)
5504 	 */
5505 	mdelay(100);
5506 
5507 	/* Clear all pending interupts */
5508 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5509 
5510 	/* De-assert Restore */
5511 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5512 	gpwrdn &= ~GPWRDN_RESTORE;
5513 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5514 	udelay(10);
5515 
5516 	/* Restore GUSBCFG, HCFG */
5517 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5518 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5519 
5520 	/* De-assert Wakeup Logic */
5521 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5522 	gpwrdn &= ~GPWRDN_PMUACTV;
5523 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5524 	udelay(10);
5525 
5526 	hprt0 = hr->hprt0;
5527 	hprt0 |= HPRT0_PWR;
5528 	hprt0 &= ~HPRT0_ENA;
5529 	hprt0 &= ~HPRT0_SUSP;
5530 	dwc2_writel(hsotg, hprt0, HPRT0);
5531 
5532 	hprt0 = hr->hprt0;
5533 	hprt0 |= HPRT0_PWR;
5534 	hprt0 &= ~HPRT0_ENA;
5535 	hprt0 &= ~HPRT0_SUSP;
5536 
5537 	if (reset) {
5538 		hprt0 |= HPRT0_RST;
5539 		dwc2_writel(hsotg, hprt0, HPRT0);
5540 
5541 		/* Wait for Resume time and then program HPRT again */
5542 		mdelay(60);
5543 		hprt0 &= ~HPRT0_RST;
5544 		dwc2_writel(hsotg, hprt0, HPRT0);
5545 	} else {
5546 		hprt0 |= HPRT0_RES;
5547 		dwc2_writel(hsotg, hprt0, HPRT0);
5548 
5549 		/* Wait for Resume time and then program HPRT again */
5550 		mdelay(100);
5551 		hprt0 &= ~HPRT0_RES;
5552 		dwc2_writel(hsotg, hprt0, HPRT0);
5553 	}
5554 	/* Clear all interrupt status */
5555 	hprt0 = dwc2_readl(hsotg, HPRT0);
5556 	hprt0 |= HPRT0_CONNDET;
5557 	hprt0 |= HPRT0_ENACHG;
5558 	hprt0 &= ~HPRT0_ENA;
5559 	dwc2_writel(hsotg, hprt0, HPRT0);
5560 
5561 	hprt0 = dwc2_readl(hsotg, HPRT0);
5562 
5563 	/* Clear all pending interupts */
5564 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5565 
5566 	/* Restore global registers */
5567 	ret = dwc2_restore_global_registers(hsotg);
5568 	if (ret) {
5569 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5570 			__func__);
5571 		return ret;
5572 	}
5573 
5574 	/* Restore host registers */
5575 	ret = dwc2_restore_host_registers(hsotg);
5576 	if (ret) {
5577 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5578 			__func__);
5579 		return ret;
5580 	}
5581 
5582 	dwc2_hcd_rem_wakeup(hsotg);
5583 
5584 	hsotg->hibernated = 0;
5585 	hsotg->bus_suspended = 0;
5586 	hsotg->lx_state = DWC2_L0;
5587 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5588 	return ret;
5589 }
5590 
5591 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5592 {
5593 	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5594 
5595 	/* If the controller isn't allowed to wakeup then we can power off. */
5596 	if (!device_may_wakeup(dwc2->dev))
5597 		return true;
5598 
5599 	/*
5600 	 * We don't want to power off the PHY if something under the
5601 	 * root hub has wakeup enabled.
5602 	 */
5603 	if (usb_wakeup_enabled_descendants(root_hub))
5604 		return false;
5605 
5606 	/* No reason to keep the PHY powered, so allow poweroff */
5607 	return true;
5608 }
5609