xref: /linux/drivers/usb/dwc2/hcd.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * hcd.c - DesignWare HS OTG Controller host-mode routines
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 /*
38  * This file contains the core HCD code, and implements the Linux hc_driver
39  * API
40  */
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
50 
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
53 
54 #include "core.h"
55 #include "hcd.h"
56 
57 /**
58  * dwc2_dump_channel_info() - Prints the state of a host channel
59  *
60  * @hsotg: Programming view of DWC_otg controller
61  * @chan:  Pointer to the channel to dump
62  *
63  * Must be called with interrupt disabled and spinlock held
64  *
65  * NOTE: This function will be removed once the peripheral controller code
66  * is integrated and the driver is stable
67  */
68 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
69 				   struct dwc2_host_chan *chan)
70 {
71 #ifdef VERBOSE_DEBUG
72 	int num_channels = hsotg->core_params->host_channels;
73 	struct dwc2_qh *qh;
74 	u32 hcchar;
75 	u32 hcsplt;
76 	u32 hctsiz;
77 	u32 hc_dma;
78 	int i;
79 
80 	if (chan == NULL)
81 		return;
82 
83 	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
84 	hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
85 	hctsiz = readl(hsotg->regs + HCTSIZ(chan->hc_num));
86 	hc_dma = readl(hsotg->regs + HCDMA(chan->hc_num));
87 
88 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
89 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
90 		hcchar, hcsplt);
91 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
92 		hctsiz, hc_dma);
93 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
94 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
95 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
96 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
97 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
98 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
99 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
100 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
101 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
102 		(unsigned long)chan->xfer_dma);
103 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
104 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
105 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
106 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
107 			    qh_list_entry)
108 		dev_dbg(hsotg->dev, "    %p\n", qh);
109 	dev_dbg(hsotg->dev, "  NP active sched:\n");
110 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
111 			    qh_list_entry)
112 		dev_dbg(hsotg->dev, "    %p\n", qh);
113 	dev_dbg(hsotg->dev, "  Channels:\n");
114 	for (i = 0; i < num_channels; i++) {
115 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
116 
117 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
118 	}
119 #endif /* VERBOSE_DEBUG */
120 }
121 
122 /*
123  * Processes all the URBs in a single list of QHs. Completes them with
124  * -ETIMEDOUT and frees the QTD.
125  *
126  * Must be called with interrupt disabled and spinlock held
127  */
128 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
129 				      struct list_head *qh_list)
130 {
131 	struct dwc2_qh *qh, *qh_tmp;
132 	struct dwc2_qtd *qtd, *qtd_tmp;
133 
134 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
135 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
136 					 qtd_list_entry) {
137 			dwc2_host_complete(hsotg, qtd, -ETIMEDOUT);
138 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
139 		}
140 	}
141 }
142 
143 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
144 			      struct list_head *qh_list)
145 {
146 	struct dwc2_qtd *qtd, *qtd_tmp;
147 	struct dwc2_qh *qh, *qh_tmp;
148 	unsigned long flags;
149 
150 	if (!qh_list->next)
151 		/* The list hasn't been initialized yet */
152 		return;
153 
154 	spin_lock_irqsave(&hsotg->lock, flags);
155 
156 	/* Ensure there are no QTDs or URBs left */
157 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
158 
159 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
160 		dwc2_hcd_qh_unlink(hsotg, qh);
161 
162 		/* Free each QTD in the QH's QTD list */
163 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
164 					 qtd_list_entry)
165 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
166 
167 		spin_unlock_irqrestore(&hsotg->lock, flags);
168 		dwc2_hcd_qh_free(hsotg, qh);
169 		spin_lock_irqsave(&hsotg->lock, flags);
170 	}
171 
172 	spin_unlock_irqrestore(&hsotg->lock, flags);
173 }
174 
175 /*
176  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
177  * and periodic schedules. The QTD associated with each URB is removed from
178  * the schedule and freed. This function may be called when a disconnect is
179  * detected or when the HCD is being stopped.
180  *
181  * Must be called with interrupt disabled and spinlock held
182  */
183 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
184 {
185 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
186 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
187 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
188 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
189 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
190 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
191 }
192 
193 /**
194  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
195  *
196  * @hsotg: Pointer to struct dwc2_hsotg
197  */
198 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
199 {
200 	u32 hprt0;
201 
202 	if (hsotg->op_state == OTG_STATE_B_HOST) {
203 		/*
204 		 * Reset the port. During a HNP mode switch the reset
205 		 * needs to occur within 1ms and have a duration of at
206 		 * least 50ms.
207 		 */
208 		hprt0 = dwc2_read_hprt0(hsotg);
209 		hprt0 |= HPRT0_RST;
210 		writel(hprt0, hsotg->regs + HPRT0);
211 	}
212 
213 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
214 			   msecs_to_jiffies(50));
215 }
216 
217 /* Must be called with interrupt disabled and spinlock held */
218 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
219 {
220 	int num_channels = hsotg->core_params->host_channels;
221 	struct dwc2_host_chan *channel;
222 	u32 hcchar;
223 	int i;
224 
225 	if (hsotg->core_params->dma_enable <= 0) {
226 		/* Flush out any channel requests in slave mode */
227 		for (i = 0; i < num_channels; i++) {
228 			channel = hsotg->hc_ptr_array[i];
229 			if (!list_empty(&channel->hc_list_entry))
230 				continue;
231 			hcchar = readl(hsotg->regs + HCCHAR(i));
232 			if (hcchar & HCCHAR_CHENA) {
233 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
234 				hcchar |= HCCHAR_CHDIS;
235 				writel(hcchar, hsotg->regs + HCCHAR(i));
236 			}
237 		}
238 	}
239 
240 	for (i = 0; i < num_channels; i++) {
241 		channel = hsotg->hc_ptr_array[i];
242 		if (!list_empty(&channel->hc_list_entry))
243 			continue;
244 		hcchar = readl(hsotg->regs + HCCHAR(i));
245 		if (hcchar & HCCHAR_CHENA) {
246 			/* Halt the channel */
247 			hcchar |= HCCHAR_CHDIS;
248 			writel(hcchar, hsotg->regs + HCCHAR(i));
249 		}
250 
251 		dwc2_hc_cleanup(hsotg, channel);
252 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
253 		/*
254 		 * Added for Descriptor DMA to prevent channel double cleanup in
255 		 * release_channel_ddma(), which is called from ep_disable when
256 		 * device disconnects
257 		 */
258 		channel->qh = NULL;
259 	}
260 }
261 
262 /**
263  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
264  *
265  * @hsotg: Pointer to struct dwc2_hsotg
266  *
267  * Must be called with interrupt disabled and spinlock held
268  */
269 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg)
270 {
271 	u32 intr;
272 
273 	/* Set status flags for the hub driver */
274 	hsotg->flags.b.port_connect_status_change = 1;
275 	hsotg->flags.b.port_connect_status = 0;
276 
277 	/*
278 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
279 	 * interrupt mask and status bits and disabling subsequent host
280 	 * channel interrupts.
281 	 */
282 	intr = readl(hsotg->regs + GINTMSK);
283 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
284 	writel(intr, hsotg->regs + GINTMSK);
285 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
286 	writel(intr, hsotg->regs + GINTSTS);
287 
288 	/*
289 	 * Turn off the vbus power only if the core has transitioned to device
290 	 * mode. If still in host mode, need to keep power on to detect a
291 	 * reconnection.
292 	 */
293 	if (dwc2_is_device_mode(hsotg)) {
294 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
295 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
296 			writel(0, hsotg->regs + HPRT0);
297 		}
298 
299 		dwc2_disable_host_interrupts(hsotg);
300 	}
301 
302 	/* Respond with an error status to all URBs in the schedule */
303 	dwc2_kill_all_urbs(hsotg);
304 
305 	if (dwc2_is_host_mode(hsotg))
306 		/* Clean up any host channels that were in use */
307 		dwc2_hcd_cleanup_channels(hsotg);
308 
309 	dwc2_host_disconnect(hsotg);
310 }
311 
312 /**
313  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
314  *
315  * @hsotg: Pointer to struct dwc2_hsotg
316  */
317 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
318 {
319 	if (hsotg->lx_state == DWC2_L2) {
320 		hsotg->flags.b.port_suspend_change = 1;
321 		usb_hcd_resume_root_hub(hsotg->priv);
322 	} else {
323 		hsotg->flags.b.port_l1_change = 1;
324 	}
325 }
326 
327 /**
328  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
329  *
330  * @hsotg: Pointer to struct dwc2_hsotg
331  *
332  * Must be called with interrupt disabled and spinlock held
333  */
334 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
335 {
336 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
337 
338 	/*
339 	 * The root hub should be disconnected before this function is called.
340 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
341 	 * and the QH lists (via ..._hcd_endpoint_disable).
342 	 */
343 
344 	/* Turn off all host-specific interrupts */
345 	dwc2_disable_host_interrupts(hsotg);
346 
347 	/* Turn off the vbus power */
348 	dev_dbg(hsotg->dev, "PortPower off\n");
349 	writel(0, hsotg->regs + HPRT0);
350 }
351 
352 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
353 				struct dwc2_hcd_urb *urb, void **ep_handle,
354 				gfp_t mem_flags)
355 {
356 	struct dwc2_qtd *qtd;
357 	unsigned long flags;
358 	u32 intr_mask;
359 	int retval;
360 	int dev_speed;
361 
362 	if (!hsotg->flags.b.port_connect_status) {
363 		/* No longer connected */
364 		dev_err(hsotg->dev, "Not connected\n");
365 		return -ENODEV;
366 	}
367 
368 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
369 
370 	/* Some configurations cannot support LS traffic on a FS root port */
371 	if ((dev_speed == USB_SPEED_LOW) &&
372 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
373 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
374 		u32 hprt0 = readl(hsotg->regs + HPRT0);
375 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
376 
377 		if (prtspd == HPRT0_SPD_FULL_SPEED)
378 			return -ENODEV;
379 	}
380 
381 	qtd = kzalloc(sizeof(*qtd), mem_flags);
382 	if (!qtd)
383 		return -ENOMEM;
384 
385 	dwc2_hcd_qtd_init(qtd, urb);
386 	retval = dwc2_hcd_qtd_add(hsotg, qtd, (struct dwc2_qh **)ep_handle,
387 				  mem_flags);
388 	if (retval) {
389 		dev_err(hsotg->dev,
390 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
391 			retval);
392 		kfree(qtd);
393 		return retval;
394 	}
395 
396 	intr_mask = readl(hsotg->regs + GINTMSK);
397 	if (!(intr_mask & GINTSTS_SOF)) {
398 		enum dwc2_transaction_type tr_type;
399 
400 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
401 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
402 			/*
403 			 * Do not schedule SG transactions until qtd has
404 			 * URB_GIVEBACK_ASAP set
405 			 */
406 			return 0;
407 
408 		spin_lock_irqsave(&hsotg->lock, flags);
409 		tr_type = dwc2_hcd_select_transactions(hsotg);
410 		if (tr_type != DWC2_TRANSACTION_NONE)
411 			dwc2_hcd_queue_transactions(hsotg, tr_type);
412 		spin_unlock_irqrestore(&hsotg->lock, flags);
413 	}
414 
415 	return 0;
416 }
417 
418 /* Must be called with interrupt disabled and spinlock held */
419 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
420 				struct dwc2_hcd_urb *urb)
421 {
422 	struct dwc2_qh *qh;
423 	struct dwc2_qtd *urb_qtd;
424 
425 	urb_qtd = urb->qtd;
426 	if (!urb_qtd) {
427 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
428 		return -EINVAL;
429 	}
430 
431 	qh = urb_qtd->qh;
432 	if (!qh) {
433 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
434 		return -EINVAL;
435 	}
436 
437 	urb->priv = NULL;
438 
439 	if (urb_qtd->in_process && qh->channel) {
440 		dwc2_dump_channel_info(hsotg, qh->channel);
441 
442 		/* The QTD is in process (it has been assigned to a channel) */
443 		if (hsotg->flags.b.port_connect_status)
444 			/*
445 			 * If still connected (i.e. in host mode), halt the
446 			 * channel so it can be used for other transfers. If
447 			 * no longer connected, the host registers can't be
448 			 * written to halt the channel since the core is in
449 			 * device mode.
450 			 */
451 			dwc2_hc_halt(hsotg, qh->channel,
452 				     DWC2_HC_XFER_URB_DEQUEUE);
453 	}
454 
455 	/*
456 	 * Free the QTD and clean up the associated QH. Leave the QH in the
457 	 * schedule if it has any remaining QTDs.
458 	 */
459 	if (hsotg->core_params->dma_desc_enable <= 0) {
460 		u8 in_process = urb_qtd->in_process;
461 
462 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
463 		if (in_process) {
464 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
465 			qh->channel = NULL;
466 		} else if (list_empty(&qh->qtd_list)) {
467 			dwc2_hcd_qh_unlink(hsotg, qh);
468 		}
469 	} else {
470 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
471 	}
472 
473 	return 0;
474 }
475 
476 /* Must NOT be called with interrupt disabled or spinlock held */
477 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
478 				     struct usb_host_endpoint *ep, int retry)
479 {
480 	struct dwc2_qtd *qtd, *qtd_tmp;
481 	struct dwc2_qh *qh;
482 	unsigned long flags;
483 	int rc;
484 
485 	spin_lock_irqsave(&hsotg->lock, flags);
486 
487 	qh = ep->hcpriv;
488 	if (!qh) {
489 		rc = -EINVAL;
490 		goto err;
491 	}
492 
493 	while (!list_empty(&qh->qtd_list) && retry--) {
494 		if (retry == 0) {
495 			dev_err(hsotg->dev,
496 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
497 			rc = -EBUSY;
498 			goto err;
499 		}
500 
501 		spin_unlock_irqrestore(&hsotg->lock, flags);
502 		usleep_range(20000, 40000);
503 		spin_lock_irqsave(&hsotg->lock, flags);
504 		qh = ep->hcpriv;
505 		if (!qh) {
506 			rc = -EINVAL;
507 			goto err;
508 		}
509 	}
510 
511 	dwc2_hcd_qh_unlink(hsotg, qh);
512 
513 	/* Free each QTD in the QH's QTD list */
514 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
515 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
516 
517 	ep->hcpriv = NULL;
518 	spin_unlock_irqrestore(&hsotg->lock, flags);
519 	dwc2_hcd_qh_free(hsotg, qh);
520 
521 	return 0;
522 
523 err:
524 	ep->hcpriv = NULL;
525 	spin_unlock_irqrestore(&hsotg->lock, flags);
526 
527 	return rc;
528 }
529 
530 /* Must be called with interrupt disabled and spinlock held */
531 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
532 				   struct usb_host_endpoint *ep)
533 {
534 	struct dwc2_qh *qh = ep->hcpriv;
535 
536 	if (!qh)
537 		return -EINVAL;
538 
539 	qh->data_toggle = DWC2_HC_PID_DATA0;
540 
541 	return 0;
542 }
543 
544 /*
545  * Initializes dynamic portions of the DWC_otg HCD state
546  *
547  * Must be called with interrupt disabled and spinlock held
548  */
549 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
550 {
551 	struct dwc2_host_chan *chan, *chan_tmp;
552 	int num_channels;
553 	int i;
554 
555 	hsotg->flags.d32 = 0;
556 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
557 
558 	if (hsotg->core_params->uframe_sched > 0) {
559 		hsotg->available_host_channels =
560 			hsotg->core_params->host_channels;
561 	} else {
562 		hsotg->non_periodic_channels = 0;
563 		hsotg->periodic_channels = 0;
564 	}
565 
566 	/*
567 	 * Put all channels in the free channel list and clean up channel
568 	 * states
569 	 */
570 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
571 				 hc_list_entry)
572 		list_del_init(&chan->hc_list_entry);
573 
574 	num_channels = hsotg->core_params->host_channels;
575 	for (i = 0; i < num_channels; i++) {
576 		chan = hsotg->hc_ptr_array[i];
577 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
578 		dwc2_hc_cleanup(hsotg, chan);
579 	}
580 
581 	/* Initialize the DWC core for host mode operation */
582 	dwc2_core_host_init(hsotg);
583 }
584 
585 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
586 			       struct dwc2_host_chan *chan,
587 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
588 {
589 	int hub_addr, hub_port;
590 
591 	chan->do_split = 1;
592 	chan->xact_pos = qtd->isoc_split_pos;
593 	chan->complete_split = qtd->complete_split;
594 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
595 	chan->hub_addr = (u8)hub_addr;
596 	chan->hub_port = (u8)hub_port;
597 }
598 
599 static void *dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
600 			       struct dwc2_host_chan *chan,
601 			       struct dwc2_qtd *qtd, void *bufptr)
602 {
603 	struct dwc2_hcd_urb *urb = qtd->urb;
604 	struct dwc2_hcd_iso_packet_desc *frame_desc;
605 
606 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
607 	case USB_ENDPOINT_XFER_CONTROL:
608 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
609 
610 		switch (qtd->control_phase) {
611 		case DWC2_CONTROL_SETUP:
612 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
613 			chan->do_ping = 0;
614 			chan->ep_is_in = 0;
615 			chan->data_pid_start = DWC2_HC_PID_SETUP;
616 			if (hsotg->core_params->dma_enable > 0)
617 				chan->xfer_dma = urb->setup_dma;
618 			else
619 				chan->xfer_buf = urb->setup_packet;
620 			chan->xfer_len = 8;
621 			bufptr = NULL;
622 			break;
623 
624 		case DWC2_CONTROL_DATA:
625 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
626 			chan->data_pid_start = qtd->data_toggle;
627 			break;
628 
629 		case DWC2_CONTROL_STATUS:
630 			/*
631 			 * Direction is opposite of data direction or IN if no
632 			 * data
633 			 */
634 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
635 			if (urb->length == 0)
636 				chan->ep_is_in = 1;
637 			else
638 				chan->ep_is_in =
639 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
640 			if (chan->ep_is_in)
641 				chan->do_ping = 0;
642 			chan->data_pid_start = DWC2_HC_PID_DATA1;
643 			chan->xfer_len = 0;
644 			if (hsotg->core_params->dma_enable > 0)
645 				chan->xfer_dma = hsotg->status_buf_dma;
646 			else
647 				chan->xfer_buf = hsotg->status_buf;
648 			bufptr = NULL;
649 			break;
650 		}
651 		break;
652 
653 	case USB_ENDPOINT_XFER_BULK:
654 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
655 		break;
656 
657 	case USB_ENDPOINT_XFER_INT:
658 		chan->ep_type = USB_ENDPOINT_XFER_INT;
659 		break;
660 
661 	case USB_ENDPOINT_XFER_ISOC:
662 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
663 		if (hsotg->core_params->dma_desc_enable > 0)
664 			break;
665 
666 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
667 		frame_desc->status = 0;
668 
669 		if (hsotg->core_params->dma_enable > 0) {
670 			chan->xfer_dma = urb->dma;
671 			chan->xfer_dma += frame_desc->offset +
672 					qtd->isoc_split_offset;
673 		} else {
674 			chan->xfer_buf = urb->buf;
675 			chan->xfer_buf += frame_desc->offset +
676 					qtd->isoc_split_offset;
677 		}
678 
679 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
680 
681 		/* For non-dword aligned buffers */
682 		if (hsotg->core_params->dma_enable > 0 &&
683 		    (chan->xfer_dma & 0x3))
684 			bufptr = (u8 *)urb->buf + frame_desc->offset +
685 					qtd->isoc_split_offset;
686 		else
687 			bufptr = NULL;
688 
689 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
690 			if (chan->xfer_len <= 188)
691 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
692 			else
693 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
694 		}
695 		break;
696 	}
697 
698 	return bufptr;
699 }
700 
701 static int dwc2_hc_setup_align_buf(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
702 				   struct dwc2_host_chan *chan,
703 				   struct dwc2_hcd_urb *urb, void *bufptr)
704 {
705 	u32 buf_size;
706 	struct urb *usb_urb;
707 	struct usb_hcd *hcd;
708 
709 	if (!qh->dw_align_buf) {
710 		if (chan->ep_type != USB_ENDPOINT_XFER_ISOC)
711 			buf_size = hsotg->core_params->max_transfer_size;
712 		else
713 			/* 3072 = 3 max-size Isoc packets */
714 			buf_size = 3072;
715 
716 		qh->dw_align_buf = dma_alloc_coherent(hsotg->dev, buf_size,
717 						      &qh->dw_align_buf_dma,
718 						      GFP_ATOMIC);
719 		if (!qh->dw_align_buf)
720 			return -ENOMEM;
721 		qh->dw_align_buf_size = buf_size;
722 	}
723 
724 	if (chan->xfer_len) {
725 		dev_vdbg(hsotg->dev, "%s(): non-aligned buffer\n", __func__);
726 		usb_urb = urb->priv;
727 
728 		if (usb_urb) {
729 			if (usb_urb->transfer_flags &
730 			    (URB_SETUP_MAP_SINGLE | URB_DMA_MAP_SG |
731 			     URB_DMA_MAP_PAGE | URB_DMA_MAP_SINGLE)) {
732 				hcd = dwc2_hsotg_to_hcd(hsotg);
733 				usb_hcd_unmap_urb_for_dma(hcd, usb_urb);
734 			}
735 			if (!chan->ep_is_in)
736 				memcpy(qh->dw_align_buf, bufptr,
737 				       chan->xfer_len);
738 		} else {
739 			dev_warn(hsotg->dev, "no URB in dwc2_urb\n");
740 		}
741 	}
742 
743 	chan->align_buf = qh->dw_align_buf_dma;
744 	return 0;
745 }
746 
747 /**
748  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
749  * channel and initializes the host channel to perform the transactions. The
750  * host channel is removed from the free list.
751  *
752  * @hsotg: The HCD state structure
753  * @qh:    Transactions from the first QTD for this QH are selected and assigned
754  *         to a free host channel
755  */
756 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
757 {
758 	struct dwc2_host_chan *chan;
759 	struct dwc2_hcd_urb *urb;
760 	struct dwc2_qtd *qtd;
761 	void *bufptr = NULL;
762 
763 	if (dbg_qh(qh))
764 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
765 
766 	if (list_empty(&qh->qtd_list)) {
767 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
768 		return -ENOMEM;
769 	}
770 
771 	if (list_empty(&hsotg->free_hc_list)) {
772 		dev_dbg(hsotg->dev, "No free channel to assign\n");
773 		return -ENOMEM;
774 	}
775 
776 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
777 				hc_list_entry);
778 
779 	/* Remove host channel from free list */
780 	list_del_init(&chan->hc_list_entry);
781 
782 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
783 	urb = qtd->urb;
784 	qh->channel = chan;
785 	qtd->in_process = 1;
786 
787 	/*
788 	 * Use usb_pipedevice to determine device address. This address is
789 	 * 0 before the SET_ADDRESS command and the correct address afterward.
790 	 */
791 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
792 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
793 	chan->speed = qh->dev_speed;
794 	chan->max_packet = dwc2_max_packet(qh->maxp);
795 
796 	chan->xfer_started = 0;
797 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
798 	chan->error_state = (qtd->error_count > 0);
799 	chan->halt_on_queue = 0;
800 	chan->halt_pending = 0;
801 	chan->requests = 0;
802 
803 	/*
804 	 * The following values may be modified in the transfer type section
805 	 * below. The xfer_len value may be reduced when the transfer is
806 	 * started to accommodate the max widths of the XferSize and PktCnt
807 	 * fields in the HCTSIZn register.
808 	 */
809 
810 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
811 	if (chan->ep_is_in)
812 		chan->do_ping = 0;
813 	else
814 		chan->do_ping = qh->ping_state;
815 
816 	chan->data_pid_start = qh->data_toggle;
817 	chan->multi_count = 1;
818 
819 	if (urb->actual_length > urb->length &&
820 		!dwc2_hcd_is_pipe_in(&urb->pipe_info))
821 		urb->actual_length = urb->length;
822 
823 	if (hsotg->core_params->dma_enable > 0) {
824 		chan->xfer_dma = urb->dma + urb->actual_length;
825 
826 		/* For non-dword aligned case */
827 		if (hsotg->core_params->dma_desc_enable <= 0 &&
828 		    (chan->xfer_dma & 0x3))
829 			bufptr = (u8 *)urb->buf + urb->actual_length;
830 	} else {
831 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
832 	}
833 
834 	chan->xfer_len = urb->length - urb->actual_length;
835 	chan->xfer_count = 0;
836 
837 	/* Set the split attributes if required */
838 	if (qh->do_split)
839 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
840 	else
841 		chan->do_split = 0;
842 
843 	/* Set the transfer attributes */
844 	bufptr = dwc2_hc_init_xfer(hsotg, chan, qtd, bufptr);
845 
846 	/* Non DWORD-aligned buffer case */
847 	if (bufptr) {
848 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
849 		if (dwc2_hc_setup_align_buf(hsotg, qh, chan, urb, bufptr)) {
850 			dev_err(hsotg->dev,
851 				"%s: Failed to allocate memory to handle non-dword aligned buffer\n",
852 				__func__);
853 			/* Add channel back to free list */
854 			chan->align_buf = 0;
855 			chan->multi_count = 0;
856 			list_add_tail(&chan->hc_list_entry,
857 				      &hsotg->free_hc_list);
858 			qtd->in_process = 0;
859 			qh->channel = NULL;
860 			return -ENOMEM;
861 		}
862 	} else {
863 		chan->align_buf = 0;
864 	}
865 
866 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
867 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
868 		/*
869 		 * This value may be modified when the transfer is started
870 		 * to reflect the actual transfer length
871 		 */
872 		chan->multi_count = dwc2_hb_mult(qh->maxp);
873 
874 	if (hsotg->core_params->dma_desc_enable > 0)
875 		chan->desc_list_addr = qh->desc_list_dma;
876 
877 	dwc2_hc_init(hsotg, chan);
878 	chan->qh = qh;
879 
880 	return 0;
881 }
882 
883 /**
884  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
885  * schedule and assigns them to available host channels. Called from the HCD
886  * interrupt handler functions.
887  *
888  * @hsotg: The HCD state structure
889  *
890  * Return: The types of new transactions that were assigned to host channels
891  */
892 enum dwc2_transaction_type dwc2_hcd_select_transactions(
893 		struct dwc2_hsotg *hsotg)
894 {
895 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
896 	struct list_head *qh_ptr;
897 	struct dwc2_qh *qh;
898 	int num_channels;
899 
900 #ifdef DWC2_DEBUG_SOF
901 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
902 #endif
903 
904 	/* Process entries in the periodic ready list */
905 	qh_ptr = hsotg->periodic_sched_ready.next;
906 	while (qh_ptr != &hsotg->periodic_sched_ready) {
907 		if (list_empty(&hsotg->free_hc_list))
908 			break;
909 		if (hsotg->core_params->uframe_sched > 0) {
910 			if (hsotg->available_host_channels <= 1)
911 				break;
912 			hsotg->available_host_channels--;
913 		}
914 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
915 		if (dwc2_assign_and_init_hc(hsotg, qh))
916 			break;
917 
918 		/*
919 		 * Move the QH from the periodic ready schedule to the
920 		 * periodic assigned schedule
921 		 */
922 		qh_ptr = qh_ptr->next;
923 		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned);
924 		ret_val = DWC2_TRANSACTION_PERIODIC;
925 	}
926 
927 	/*
928 	 * Process entries in the inactive portion of the non-periodic
929 	 * schedule. Some free host channels may not be used if they are
930 	 * reserved for periodic transfers.
931 	 */
932 	num_channels = hsotg->core_params->host_channels;
933 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
934 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
935 		if (hsotg->core_params->uframe_sched <= 0 &&
936 		    hsotg->non_periodic_channels >= num_channels -
937 						hsotg->periodic_channels)
938 			break;
939 		if (list_empty(&hsotg->free_hc_list))
940 			break;
941 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
942 		if (hsotg->core_params->uframe_sched > 0) {
943 			if (hsotg->available_host_channels < 1)
944 				break;
945 			hsotg->available_host_channels--;
946 		}
947 
948 		if (dwc2_assign_and_init_hc(hsotg, qh))
949 			break;
950 
951 		/*
952 		 * Move the QH from the non-periodic inactive schedule to the
953 		 * non-periodic active schedule
954 		 */
955 		qh_ptr = qh_ptr->next;
956 		list_move(&qh->qh_list_entry,
957 			  &hsotg->non_periodic_sched_active);
958 
959 		if (ret_val == DWC2_TRANSACTION_NONE)
960 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
961 		else
962 			ret_val = DWC2_TRANSACTION_ALL;
963 
964 		if (hsotg->core_params->uframe_sched <= 0)
965 			hsotg->non_periodic_channels++;
966 	}
967 
968 	return ret_val;
969 }
970 
971 /**
972  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
973  * a host channel associated with either a periodic or non-periodic transfer
974  *
975  * @hsotg: The HCD state structure
976  * @chan:  Host channel descriptor associated with either a periodic or
977  *         non-periodic transfer
978  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
979  *                     for periodic transfers or the non-periodic Tx FIFO
980  *                     for non-periodic transfers
981  *
982  * Return: 1 if a request is queued and more requests may be needed to
983  * complete the transfer, 0 if no more requests are required for this
984  * transfer, -1 if there is insufficient space in the Tx FIFO
985  *
986  * This function assumes that there is space available in the appropriate
987  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
988  * it checks whether space is available in the appropriate Tx FIFO.
989  *
990  * Must be called with interrupt disabled and spinlock held
991  */
992 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
993 				  struct dwc2_host_chan *chan,
994 				  u16 fifo_dwords_avail)
995 {
996 	int retval = 0;
997 
998 	if (hsotg->core_params->dma_enable > 0) {
999 		if (hsotg->core_params->dma_desc_enable > 0) {
1000 			if (!chan->xfer_started ||
1001 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1002 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
1003 				chan->qh->ping_state = 0;
1004 			}
1005 		} else if (!chan->xfer_started) {
1006 			dwc2_hc_start_transfer(hsotg, chan);
1007 			chan->qh->ping_state = 0;
1008 		}
1009 	} else if (chan->halt_pending) {
1010 		/* Don't queue a request if the channel has been halted */
1011 	} else if (chan->halt_on_queue) {
1012 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
1013 	} else if (chan->do_ping) {
1014 		if (!chan->xfer_started)
1015 			dwc2_hc_start_transfer(hsotg, chan);
1016 	} else if (!chan->ep_is_in ||
1017 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
1018 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
1019 			if (!chan->xfer_started) {
1020 				dwc2_hc_start_transfer(hsotg, chan);
1021 				retval = 1;
1022 			} else {
1023 				retval = dwc2_hc_continue_transfer(hsotg, chan);
1024 			}
1025 		} else {
1026 			retval = -1;
1027 		}
1028 	} else {
1029 		if (!chan->xfer_started) {
1030 			dwc2_hc_start_transfer(hsotg, chan);
1031 			retval = 1;
1032 		} else {
1033 			retval = dwc2_hc_continue_transfer(hsotg, chan);
1034 		}
1035 	}
1036 
1037 	return retval;
1038 }
1039 
1040 /*
1041  * Processes periodic channels for the next frame and queues transactions for
1042  * these channels to the DWC_otg controller. After queueing transactions, the
1043  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
1044  * to queue as Periodic Tx FIFO or request queue space becomes available.
1045  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
1046  *
1047  * Must be called with interrupt disabled and spinlock held
1048  */
1049 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
1050 {
1051 	struct list_head *qh_ptr;
1052 	struct dwc2_qh *qh;
1053 	u32 tx_status;
1054 	u32 fspcavail;
1055 	u32 gintmsk;
1056 	int status;
1057 	int no_queue_space = 0;
1058 	int no_fifo_space = 0;
1059 	u32 qspcavail;
1060 
1061 	if (dbg_perio())
1062 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
1063 
1064 	tx_status = readl(hsotg->regs + HPTXSTS);
1065 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1066 		    TXSTS_QSPCAVAIL_SHIFT;
1067 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1068 		    TXSTS_FSPCAVAIL_SHIFT;
1069 
1070 	if (dbg_perio()) {
1071 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
1072 			 qspcavail);
1073 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
1074 			 fspcavail);
1075 	}
1076 
1077 	qh_ptr = hsotg->periodic_sched_assigned.next;
1078 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
1079 		tx_status = readl(hsotg->regs + HPTXSTS);
1080 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1081 			    TXSTS_QSPCAVAIL_SHIFT;
1082 		if (qspcavail == 0) {
1083 			no_queue_space = 1;
1084 			break;
1085 		}
1086 
1087 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
1088 		if (!qh->channel) {
1089 			qh_ptr = qh_ptr->next;
1090 			continue;
1091 		}
1092 
1093 		/* Make sure EP's TT buffer is clean before queueing qtds */
1094 		if (qh->tt_buffer_dirty) {
1095 			qh_ptr = qh_ptr->next;
1096 			continue;
1097 		}
1098 
1099 		/*
1100 		 * Set a flag if we're queuing high-bandwidth in slave mode.
1101 		 * The flag prevents any halts to get into the request queue in
1102 		 * the middle of multiple high-bandwidth packets getting queued.
1103 		 */
1104 		if (hsotg->core_params->dma_enable <= 0 &&
1105 				qh->channel->multi_count > 1)
1106 			hsotg->queuing_high_bandwidth = 1;
1107 
1108 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1109 			    TXSTS_FSPCAVAIL_SHIFT;
1110 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1111 		if (status < 0) {
1112 			no_fifo_space = 1;
1113 			break;
1114 		}
1115 
1116 		/*
1117 		 * In Slave mode, stay on the current transfer until there is
1118 		 * nothing more to do or the high-bandwidth request count is
1119 		 * reached. In DMA mode, only need to queue one request. The
1120 		 * controller automatically handles multiple packets for
1121 		 * high-bandwidth transfers.
1122 		 */
1123 		if (hsotg->core_params->dma_enable > 0 || status == 0 ||
1124 		    qh->channel->requests == qh->channel->multi_count) {
1125 			qh_ptr = qh_ptr->next;
1126 			/*
1127 			 * Move the QH from the periodic assigned schedule to
1128 			 * the periodic queued schedule
1129 			 */
1130 			list_move(&qh->qh_list_entry,
1131 				  &hsotg->periodic_sched_queued);
1132 
1133 			/* done queuing high bandwidth */
1134 			hsotg->queuing_high_bandwidth = 0;
1135 		}
1136 	}
1137 
1138 	if (hsotg->core_params->dma_enable <= 0) {
1139 		tx_status = readl(hsotg->regs + HPTXSTS);
1140 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1141 			    TXSTS_QSPCAVAIL_SHIFT;
1142 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1143 			    TXSTS_FSPCAVAIL_SHIFT;
1144 		if (dbg_perio()) {
1145 			dev_vdbg(hsotg->dev,
1146 				 "  P Tx Req Queue Space Avail (after queue): %d\n",
1147 				 qspcavail);
1148 			dev_vdbg(hsotg->dev,
1149 				 "  P Tx FIFO Space Avail (after queue): %d\n",
1150 				 fspcavail);
1151 		}
1152 
1153 		if (!list_empty(&hsotg->periodic_sched_assigned) ||
1154 		    no_queue_space || no_fifo_space) {
1155 			/*
1156 			 * May need to queue more transactions as the request
1157 			 * queue or Tx FIFO empties. Enable the periodic Tx
1158 			 * FIFO empty interrupt. (Always use the half-empty
1159 			 * level to ensure that new requests are loaded as
1160 			 * soon as possible.)
1161 			 */
1162 			gintmsk = readl(hsotg->regs + GINTMSK);
1163 			gintmsk |= GINTSTS_PTXFEMP;
1164 			writel(gintmsk, hsotg->regs + GINTMSK);
1165 		} else {
1166 			/*
1167 			 * Disable the Tx FIFO empty interrupt since there are
1168 			 * no more transactions that need to be queued right
1169 			 * now. This function is called from interrupt
1170 			 * handlers to queue more transactions as transfer
1171 			 * states change.
1172 			 */
1173 			gintmsk = readl(hsotg->regs + GINTMSK);
1174 			gintmsk &= ~GINTSTS_PTXFEMP;
1175 			writel(gintmsk, hsotg->regs + GINTMSK);
1176 		}
1177 	}
1178 }
1179 
1180 /*
1181  * Processes active non-periodic channels and queues transactions for these
1182  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
1183  * FIFO Empty interrupt is enabled if there are more transactions to queue as
1184  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
1185  * FIFO Empty interrupt is disabled.
1186  *
1187  * Must be called with interrupt disabled and spinlock held
1188  */
1189 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
1190 {
1191 	struct list_head *orig_qh_ptr;
1192 	struct dwc2_qh *qh;
1193 	u32 tx_status;
1194 	u32 qspcavail;
1195 	u32 fspcavail;
1196 	u32 gintmsk;
1197 	int status;
1198 	int no_queue_space = 0;
1199 	int no_fifo_space = 0;
1200 	int more_to_do = 0;
1201 
1202 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
1203 
1204 	tx_status = readl(hsotg->regs + GNPTXSTS);
1205 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1206 		    TXSTS_QSPCAVAIL_SHIFT;
1207 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1208 		    TXSTS_FSPCAVAIL_SHIFT;
1209 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
1210 		 qspcavail);
1211 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
1212 		 fspcavail);
1213 
1214 	/*
1215 	 * Keep track of the starting point. Skip over the start-of-list
1216 	 * entry.
1217 	 */
1218 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
1219 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1220 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
1221 
1222 	/*
1223 	 * Process once through the active list or until no more space is
1224 	 * available in the request queue or the Tx FIFO
1225 	 */
1226 	do {
1227 		tx_status = readl(hsotg->regs + GNPTXSTS);
1228 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1229 			    TXSTS_QSPCAVAIL_SHIFT;
1230 		if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
1231 			no_queue_space = 1;
1232 			break;
1233 		}
1234 
1235 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
1236 				qh_list_entry);
1237 		if (!qh->channel)
1238 			goto next;
1239 
1240 		/* Make sure EP's TT buffer is clean before queueing qtds */
1241 		if (qh->tt_buffer_dirty)
1242 			goto next;
1243 
1244 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1245 			    TXSTS_FSPCAVAIL_SHIFT;
1246 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
1247 
1248 		if (status > 0) {
1249 			more_to_do = 1;
1250 		} else if (status < 0) {
1251 			no_fifo_space = 1;
1252 			break;
1253 		}
1254 next:
1255 		/* Advance to next QH, skipping start-of-list entry */
1256 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
1257 		if (hsotg->non_periodic_qh_ptr ==
1258 				&hsotg->non_periodic_sched_active)
1259 			hsotg->non_periodic_qh_ptr =
1260 					hsotg->non_periodic_qh_ptr->next;
1261 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
1262 
1263 	if (hsotg->core_params->dma_enable <= 0) {
1264 		tx_status = readl(hsotg->regs + GNPTXSTS);
1265 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
1266 			    TXSTS_QSPCAVAIL_SHIFT;
1267 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
1268 			    TXSTS_FSPCAVAIL_SHIFT;
1269 		dev_vdbg(hsotg->dev,
1270 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
1271 			 qspcavail);
1272 		dev_vdbg(hsotg->dev,
1273 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
1274 			 fspcavail);
1275 
1276 		if (more_to_do || no_queue_space || no_fifo_space) {
1277 			/*
1278 			 * May need to queue more transactions as the request
1279 			 * queue or Tx FIFO empties. Enable the non-periodic
1280 			 * Tx FIFO empty interrupt. (Always use the half-empty
1281 			 * level to ensure that new requests are loaded as
1282 			 * soon as possible.)
1283 			 */
1284 			gintmsk = readl(hsotg->regs + GINTMSK);
1285 			gintmsk |= GINTSTS_NPTXFEMP;
1286 			writel(gintmsk, hsotg->regs + GINTMSK);
1287 		} else {
1288 			/*
1289 			 * Disable the Tx FIFO empty interrupt since there are
1290 			 * no more transactions that need to be queued right
1291 			 * now. This function is called from interrupt
1292 			 * handlers to queue more transactions as transfer
1293 			 * states change.
1294 			 */
1295 			gintmsk = readl(hsotg->regs + GINTMSK);
1296 			gintmsk &= ~GINTSTS_NPTXFEMP;
1297 			writel(gintmsk, hsotg->regs + GINTMSK);
1298 		}
1299 	}
1300 }
1301 
1302 /**
1303  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
1304  * and queues transactions for these channels to the DWC_otg controller. Called
1305  * from the HCD interrupt handler functions.
1306  *
1307  * @hsotg:   The HCD state structure
1308  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
1309  *           or both)
1310  *
1311  * Must be called with interrupt disabled and spinlock held
1312  */
1313 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
1314 				 enum dwc2_transaction_type tr_type)
1315 {
1316 #ifdef DWC2_DEBUG_SOF
1317 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
1318 #endif
1319 	/* Process host channels associated with periodic transfers */
1320 	if ((tr_type == DWC2_TRANSACTION_PERIODIC ||
1321 	     tr_type == DWC2_TRANSACTION_ALL) &&
1322 	    !list_empty(&hsotg->periodic_sched_assigned))
1323 		dwc2_process_periodic_channels(hsotg);
1324 
1325 	/* Process host channels associated with non-periodic transfers */
1326 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
1327 	    tr_type == DWC2_TRANSACTION_ALL) {
1328 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
1329 			dwc2_process_non_periodic_channels(hsotg);
1330 		} else {
1331 			/*
1332 			 * Ensure NP Tx FIFO empty interrupt is disabled when
1333 			 * there are no non-periodic transfers to process
1334 			 */
1335 			u32 gintmsk = readl(hsotg->regs + GINTMSK);
1336 
1337 			gintmsk &= ~GINTSTS_NPTXFEMP;
1338 			writel(gintmsk, hsotg->regs + GINTMSK);
1339 		}
1340 	}
1341 }
1342 
1343 static void dwc2_conn_id_status_change(struct work_struct *work)
1344 {
1345 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
1346 						wf_otg);
1347 	u32 count = 0;
1348 	u32 gotgctl;
1349 
1350 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1351 
1352 	gotgctl = readl(hsotg->regs + GOTGCTL);
1353 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
1354 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
1355 		!!(gotgctl & GOTGCTL_CONID_B));
1356 
1357 	/* B-Device connector (Device Mode) */
1358 	if (gotgctl & GOTGCTL_CONID_B) {
1359 		/* Wait for switch to device mode */
1360 		dev_dbg(hsotg->dev, "connId B\n");
1361 		while (!dwc2_is_device_mode(hsotg)) {
1362 			dev_info(hsotg->dev,
1363 				 "Waiting for Peripheral Mode, Mode=%s\n",
1364 				 dwc2_is_host_mode(hsotg) ? "Host" :
1365 				 "Peripheral");
1366 			usleep_range(20000, 40000);
1367 			if (++count > 250)
1368 				break;
1369 		}
1370 		if (count > 250)
1371 			dev_err(hsotg->dev,
1372 				"Connection id status change timed out\n");
1373 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
1374 		dwc2_core_init(hsotg, false, -1);
1375 		dwc2_enable_global_interrupts(hsotg);
1376 		s3c_hsotg_core_init_disconnected(hsotg, false);
1377 		s3c_hsotg_core_connect(hsotg);
1378 	} else {
1379 		/* A-Device connector (Host Mode) */
1380 		dev_dbg(hsotg->dev, "connId A\n");
1381 		while (!dwc2_is_host_mode(hsotg)) {
1382 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
1383 				 dwc2_is_host_mode(hsotg) ?
1384 				 "Host" : "Peripheral");
1385 			usleep_range(20000, 40000);
1386 			if (++count > 250)
1387 				break;
1388 		}
1389 		if (count > 250)
1390 			dev_err(hsotg->dev,
1391 				"Connection id status change timed out\n");
1392 		hsotg->op_state = OTG_STATE_A_HOST;
1393 
1394 		/* Initialize the Core for Host mode */
1395 		dwc2_core_init(hsotg, false, -1);
1396 		dwc2_enable_global_interrupts(hsotg);
1397 		dwc2_hcd_start(hsotg);
1398 	}
1399 }
1400 
1401 static void dwc2_wakeup_detected(unsigned long data)
1402 {
1403 	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
1404 	u32 hprt0;
1405 
1406 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1407 
1408 	/*
1409 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
1410 	 * so that OPT tests pass with all PHYs.)
1411 	 */
1412 	hprt0 = dwc2_read_hprt0(hsotg);
1413 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
1414 	hprt0 &= ~HPRT0_RES;
1415 	writel(hprt0, hsotg->regs + HPRT0);
1416 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
1417 		readl(hsotg->regs + HPRT0));
1418 
1419 	dwc2_hcd_rem_wakeup(hsotg);
1420 
1421 	/* Change to L0 state */
1422 	hsotg->lx_state = DWC2_L0;
1423 }
1424 
1425 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
1426 {
1427 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
1428 
1429 	return hcd->self.b_hnp_enable;
1430 }
1431 
1432 /* Must NOT be called with interrupt disabled or spinlock held */
1433 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1434 {
1435 	unsigned long flags;
1436 	u32 hprt0;
1437 	u32 pcgctl;
1438 	u32 gotgctl;
1439 
1440 	dev_dbg(hsotg->dev, "%s()\n", __func__);
1441 
1442 	spin_lock_irqsave(&hsotg->lock, flags);
1443 
1444 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
1445 		gotgctl = readl(hsotg->regs + GOTGCTL);
1446 		gotgctl |= GOTGCTL_HSTSETHNPEN;
1447 		writel(gotgctl, hsotg->regs + GOTGCTL);
1448 		hsotg->op_state = OTG_STATE_A_SUSPEND;
1449 	}
1450 
1451 	hprt0 = dwc2_read_hprt0(hsotg);
1452 	hprt0 |= HPRT0_SUSP;
1453 	writel(hprt0, hsotg->regs + HPRT0);
1454 
1455 	/* Update lx_state */
1456 	hsotg->lx_state = DWC2_L2;
1457 
1458 	/* Suspend the Phy Clock */
1459 	pcgctl = readl(hsotg->regs + PCGCTL);
1460 	pcgctl |= PCGCTL_STOPPCLK;
1461 	writel(pcgctl, hsotg->regs + PCGCTL);
1462 	udelay(10);
1463 
1464 	/* For HNP the bus must be suspended for at least 200ms */
1465 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
1466 		pcgctl = readl(hsotg->regs + PCGCTL);
1467 		pcgctl &= ~PCGCTL_STOPPCLK;
1468 		writel(pcgctl, hsotg->regs + PCGCTL);
1469 
1470 		spin_unlock_irqrestore(&hsotg->lock, flags);
1471 
1472 		usleep_range(200000, 250000);
1473 	} else {
1474 		spin_unlock_irqrestore(&hsotg->lock, flags);
1475 	}
1476 }
1477 
1478 /* Handles hub class-specific requests */
1479 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
1480 				u16 wvalue, u16 windex, char *buf, u16 wlength)
1481 {
1482 	struct usb_hub_descriptor *hub_desc;
1483 	int retval = 0;
1484 	u32 hprt0;
1485 	u32 port_status;
1486 	u32 speed;
1487 	u32 pcgctl;
1488 
1489 	switch (typereq) {
1490 	case ClearHubFeature:
1491 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
1492 
1493 		switch (wvalue) {
1494 		case C_HUB_LOCAL_POWER:
1495 		case C_HUB_OVER_CURRENT:
1496 			/* Nothing required here */
1497 			break;
1498 
1499 		default:
1500 			retval = -EINVAL;
1501 			dev_err(hsotg->dev,
1502 				"ClearHubFeature request %1xh unknown\n",
1503 				wvalue);
1504 		}
1505 		break;
1506 
1507 	case ClearPortFeature:
1508 		if (wvalue != USB_PORT_FEAT_L1)
1509 			if (!windex || windex > 1)
1510 				goto error;
1511 		switch (wvalue) {
1512 		case USB_PORT_FEAT_ENABLE:
1513 			dev_dbg(hsotg->dev,
1514 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
1515 			hprt0 = dwc2_read_hprt0(hsotg);
1516 			hprt0 |= HPRT0_ENA;
1517 			writel(hprt0, hsotg->regs + HPRT0);
1518 			break;
1519 
1520 		case USB_PORT_FEAT_SUSPEND:
1521 			dev_dbg(hsotg->dev,
1522 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
1523 			writel(0, hsotg->regs + PCGCTL);
1524 			usleep_range(20000, 40000);
1525 
1526 			hprt0 = dwc2_read_hprt0(hsotg);
1527 			hprt0 |= HPRT0_RES;
1528 			writel(hprt0, hsotg->regs + HPRT0);
1529 			hprt0 &= ~HPRT0_SUSP;
1530 			usleep_range(100000, 150000);
1531 
1532 			hprt0 &= ~HPRT0_RES;
1533 			writel(hprt0, hsotg->regs + HPRT0);
1534 			break;
1535 
1536 		case USB_PORT_FEAT_POWER:
1537 			dev_dbg(hsotg->dev,
1538 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
1539 			hprt0 = dwc2_read_hprt0(hsotg);
1540 			hprt0 &= ~HPRT0_PWR;
1541 			writel(hprt0, hsotg->regs + HPRT0);
1542 			break;
1543 
1544 		case USB_PORT_FEAT_INDICATOR:
1545 			dev_dbg(hsotg->dev,
1546 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
1547 			/* Port indicator not supported */
1548 			break;
1549 
1550 		case USB_PORT_FEAT_C_CONNECTION:
1551 			/*
1552 			 * Clears driver's internal Connect Status Change flag
1553 			 */
1554 			dev_dbg(hsotg->dev,
1555 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
1556 			hsotg->flags.b.port_connect_status_change = 0;
1557 			break;
1558 
1559 		case USB_PORT_FEAT_C_RESET:
1560 			/* Clears driver's internal Port Reset Change flag */
1561 			dev_dbg(hsotg->dev,
1562 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
1563 			hsotg->flags.b.port_reset_change = 0;
1564 			break;
1565 
1566 		case USB_PORT_FEAT_C_ENABLE:
1567 			/*
1568 			 * Clears the driver's internal Port Enable/Disable
1569 			 * Change flag
1570 			 */
1571 			dev_dbg(hsotg->dev,
1572 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
1573 			hsotg->flags.b.port_enable_change = 0;
1574 			break;
1575 
1576 		case USB_PORT_FEAT_C_SUSPEND:
1577 			/*
1578 			 * Clears the driver's internal Port Suspend Change
1579 			 * flag, which is set when resume signaling on the host
1580 			 * port is complete
1581 			 */
1582 			dev_dbg(hsotg->dev,
1583 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
1584 			hsotg->flags.b.port_suspend_change = 0;
1585 			break;
1586 
1587 		case USB_PORT_FEAT_C_PORT_L1:
1588 			dev_dbg(hsotg->dev,
1589 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
1590 			hsotg->flags.b.port_l1_change = 0;
1591 			break;
1592 
1593 		case USB_PORT_FEAT_C_OVER_CURRENT:
1594 			dev_dbg(hsotg->dev,
1595 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
1596 			hsotg->flags.b.port_over_current_change = 0;
1597 			break;
1598 
1599 		default:
1600 			retval = -EINVAL;
1601 			dev_err(hsotg->dev,
1602 				"ClearPortFeature request %1xh unknown or unsupported\n",
1603 				wvalue);
1604 		}
1605 		break;
1606 
1607 	case GetHubDescriptor:
1608 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
1609 		hub_desc = (struct usb_hub_descriptor *)buf;
1610 		hub_desc->bDescLength = 9;
1611 		hub_desc->bDescriptorType = 0x29;
1612 		hub_desc->bNbrPorts = 1;
1613 		hub_desc->wHubCharacteristics =
1614 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
1615 				    HUB_CHAR_INDV_PORT_OCPM);
1616 		hub_desc->bPwrOn2PwrGood = 1;
1617 		hub_desc->bHubContrCurrent = 0;
1618 		hub_desc->u.hs.DeviceRemovable[0] = 0;
1619 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
1620 		break;
1621 
1622 	case GetHubStatus:
1623 		dev_dbg(hsotg->dev, "GetHubStatus\n");
1624 		memset(buf, 0, 4);
1625 		break;
1626 
1627 	case GetPortStatus:
1628 		dev_vdbg(hsotg->dev,
1629 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
1630 			 hsotg->flags.d32);
1631 		if (!windex || windex > 1)
1632 			goto error;
1633 
1634 		port_status = 0;
1635 		if (hsotg->flags.b.port_connect_status_change)
1636 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
1637 		if (hsotg->flags.b.port_enable_change)
1638 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
1639 		if (hsotg->flags.b.port_suspend_change)
1640 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
1641 		if (hsotg->flags.b.port_l1_change)
1642 			port_status |= USB_PORT_STAT_C_L1 << 16;
1643 		if (hsotg->flags.b.port_reset_change)
1644 			port_status |= USB_PORT_STAT_C_RESET << 16;
1645 		if (hsotg->flags.b.port_over_current_change) {
1646 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
1647 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1648 		}
1649 
1650 		if (!hsotg->flags.b.port_connect_status) {
1651 			/*
1652 			 * The port is disconnected, which means the core is
1653 			 * either in device mode or it soon will be. Just
1654 			 * return 0's for the remainder of the port status
1655 			 * since the port register can't be read if the core
1656 			 * is in device mode.
1657 			 */
1658 			*(__le32 *)buf = cpu_to_le32(port_status);
1659 			break;
1660 		}
1661 
1662 		hprt0 = readl(hsotg->regs + HPRT0);
1663 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
1664 
1665 		if (hprt0 & HPRT0_CONNSTS)
1666 			port_status |= USB_PORT_STAT_CONNECTION;
1667 		if (hprt0 & HPRT0_ENA)
1668 			port_status |= USB_PORT_STAT_ENABLE;
1669 		if (hprt0 & HPRT0_SUSP)
1670 			port_status |= USB_PORT_STAT_SUSPEND;
1671 		if (hprt0 & HPRT0_OVRCURRACT)
1672 			port_status |= USB_PORT_STAT_OVERCURRENT;
1673 		if (hprt0 & HPRT0_RST)
1674 			port_status |= USB_PORT_STAT_RESET;
1675 		if (hprt0 & HPRT0_PWR)
1676 			port_status |= USB_PORT_STAT_POWER;
1677 
1678 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1679 		if (speed == HPRT0_SPD_HIGH_SPEED)
1680 			port_status |= USB_PORT_STAT_HIGH_SPEED;
1681 		else if (speed == HPRT0_SPD_LOW_SPEED)
1682 			port_status |= USB_PORT_STAT_LOW_SPEED;
1683 
1684 		if (hprt0 & HPRT0_TSTCTL_MASK)
1685 			port_status |= USB_PORT_STAT_TEST;
1686 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
1687 
1688 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
1689 		*(__le32 *)buf = cpu_to_le32(port_status);
1690 		break;
1691 
1692 	case SetHubFeature:
1693 		dev_dbg(hsotg->dev, "SetHubFeature\n");
1694 		/* No HUB features supported */
1695 		break;
1696 
1697 	case SetPortFeature:
1698 		dev_dbg(hsotg->dev, "SetPortFeature\n");
1699 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
1700 			goto error;
1701 
1702 		if (!hsotg->flags.b.port_connect_status) {
1703 			/*
1704 			 * The port is disconnected, which means the core is
1705 			 * either in device mode or it soon will be. Just
1706 			 * return without doing anything since the port
1707 			 * register can't be written if the core is in device
1708 			 * mode.
1709 			 */
1710 			break;
1711 		}
1712 
1713 		switch (wvalue) {
1714 		case USB_PORT_FEAT_SUSPEND:
1715 			dev_dbg(hsotg->dev,
1716 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
1717 			if (windex != hsotg->otg_port)
1718 				goto error;
1719 			dwc2_port_suspend(hsotg, windex);
1720 			break;
1721 
1722 		case USB_PORT_FEAT_POWER:
1723 			dev_dbg(hsotg->dev,
1724 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
1725 			hprt0 = dwc2_read_hprt0(hsotg);
1726 			hprt0 |= HPRT0_PWR;
1727 			writel(hprt0, hsotg->regs + HPRT0);
1728 			break;
1729 
1730 		case USB_PORT_FEAT_RESET:
1731 			hprt0 = dwc2_read_hprt0(hsotg);
1732 			dev_dbg(hsotg->dev,
1733 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
1734 			pcgctl = readl(hsotg->regs + PCGCTL);
1735 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
1736 			writel(pcgctl, hsotg->regs + PCGCTL);
1737 			/* ??? Original driver does this */
1738 			writel(0, hsotg->regs + PCGCTL);
1739 
1740 			hprt0 = dwc2_read_hprt0(hsotg);
1741 			/* Clear suspend bit if resetting from suspend state */
1742 			hprt0 &= ~HPRT0_SUSP;
1743 
1744 			/*
1745 			 * When B-Host the Port reset bit is set in the Start
1746 			 * HCD Callback function, so that the reset is started
1747 			 * within 1ms of the HNP success interrupt
1748 			 */
1749 			if (!dwc2_hcd_is_b_host(hsotg)) {
1750 				hprt0 |= HPRT0_PWR | HPRT0_RST;
1751 				dev_dbg(hsotg->dev,
1752 					"In host mode, hprt0=%08x\n", hprt0);
1753 				writel(hprt0, hsotg->regs + HPRT0);
1754 			}
1755 
1756 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
1757 			usleep_range(50000, 70000);
1758 			hprt0 &= ~HPRT0_RST;
1759 			writel(hprt0, hsotg->regs + HPRT0);
1760 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
1761 			break;
1762 
1763 		case USB_PORT_FEAT_INDICATOR:
1764 			dev_dbg(hsotg->dev,
1765 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
1766 			/* Not supported */
1767 			break;
1768 
1769 		default:
1770 			retval = -EINVAL;
1771 			dev_err(hsotg->dev,
1772 				"SetPortFeature %1xh unknown or unsupported\n",
1773 				wvalue);
1774 			break;
1775 		}
1776 		break;
1777 
1778 	default:
1779 error:
1780 		retval = -EINVAL;
1781 		dev_dbg(hsotg->dev,
1782 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
1783 			typereq, windex, wvalue);
1784 		break;
1785 	}
1786 
1787 	return retval;
1788 }
1789 
1790 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
1791 {
1792 	int retval;
1793 
1794 	if (port != 1)
1795 		return -EINVAL;
1796 
1797 	retval = (hsotg->flags.b.port_connect_status_change ||
1798 		  hsotg->flags.b.port_reset_change ||
1799 		  hsotg->flags.b.port_enable_change ||
1800 		  hsotg->flags.b.port_suspend_change ||
1801 		  hsotg->flags.b.port_over_current_change);
1802 
1803 	if (retval) {
1804 		dev_dbg(hsotg->dev,
1805 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
1806 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
1807 			hsotg->flags.b.port_connect_status_change);
1808 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
1809 			hsotg->flags.b.port_reset_change);
1810 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
1811 			hsotg->flags.b.port_enable_change);
1812 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
1813 			hsotg->flags.b.port_suspend_change);
1814 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
1815 			hsotg->flags.b.port_over_current_change);
1816 	}
1817 
1818 	return retval;
1819 }
1820 
1821 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1822 {
1823 	u32 hfnum = readl(hsotg->regs + HFNUM);
1824 
1825 #ifdef DWC2_DEBUG_SOF
1826 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
1827 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
1828 #endif
1829 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
1830 }
1831 
1832 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
1833 {
1834 	return hsotg->op_state == OTG_STATE_B_HOST;
1835 }
1836 
1837 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
1838 					       int iso_desc_count,
1839 					       gfp_t mem_flags)
1840 {
1841 	struct dwc2_hcd_urb *urb;
1842 	u32 size = sizeof(*urb) + iso_desc_count *
1843 		   sizeof(struct dwc2_hcd_iso_packet_desc);
1844 
1845 	urb = kzalloc(size, mem_flags);
1846 	if (urb)
1847 		urb->packet_count = iso_desc_count;
1848 	return urb;
1849 }
1850 
1851 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
1852 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
1853 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
1854 {
1855 	if (dbg_perio() ||
1856 	    ep_type == USB_ENDPOINT_XFER_BULK ||
1857 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
1858 		dev_vdbg(hsotg->dev,
1859 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
1860 			 dev_addr, ep_num, ep_dir, ep_type, mps);
1861 	urb->pipe_info.dev_addr = dev_addr;
1862 	urb->pipe_info.ep_num = ep_num;
1863 	urb->pipe_info.pipe_type = ep_type;
1864 	urb->pipe_info.pipe_dir = ep_dir;
1865 	urb->pipe_info.mps = mps;
1866 }
1867 
1868 /*
1869  * NOTE: This function will be removed once the peripheral controller code
1870  * is integrated and the driver is stable
1871  */
1872 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
1873 {
1874 #ifdef DEBUG
1875 	struct dwc2_host_chan *chan;
1876 	struct dwc2_hcd_urb *urb;
1877 	struct dwc2_qtd *qtd;
1878 	int num_channels;
1879 	u32 np_tx_status;
1880 	u32 p_tx_status;
1881 	int i;
1882 
1883 	num_channels = hsotg->core_params->host_channels;
1884 	dev_dbg(hsotg->dev, "\n");
1885 	dev_dbg(hsotg->dev,
1886 		"************************************************************\n");
1887 	dev_dbg(hsotg->dev, "HCD State:\n");
1888 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
1889 
1890 	for (i = 0; i < num_channels; i++) {
1891 		chan = hsotg->hc_ptr_array[i];
1892 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
1893 		dev_dbg(hsotg->dev,
1894 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
1895 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
1896 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
1897 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
1898 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
1899 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
1900 			chan->data_pid_start);
1901 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
1902 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
1903 			chan->xfer_started);
1904 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
1905 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
1906 			(unsigned long)chan->xfer_dma);
1907 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
1908 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
1909 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
1910 			chan->halt_on_queue);
1911 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
1912 			chan->halt_pending);
1913 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
1914 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
1915 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
1916 			chan->complete_split);
1917 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
1918 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
1919 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
1920 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
1921 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
1922 
1923 		if (chan->xfer_started) {
1924 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
1925 
1926 			hfnum = readl(hsotg->regs + HFNUM);
1927 			hcchar = readl(hsotg->regs + HCCHAR(i));
1928 			hctsiz = readl(hsotg->regs + HCTSIZ(i));
1929 			hcint = readl(hsotg->regs + HCINT(i));
1930 			hcintmsk = readl(hsotg->regs + HCINTMSK(i));
1931 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
1932 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
1933 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
1934 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
1935 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
1936 		}
1937 
1938 		if (!(chan->xfer_started && chan->qh))
1939 			continue;
1940 
1941 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
1942 			if (!qtd->in_process)
1943 				break;
1944 			urb = qtd->urb;
1945 			dev_dbg(hsotg->dev, "    URB Info:\n");
1946 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
1947 				qtd, urb);
1948 			if (urb) {
1949 				dev_dbg(hsotg->dev,
1950 					"      Dev: %d, EP: %d %s\n",
1951 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
1952 					dwc2_hcd_get_ep_num(&urb->pipe_info),
1953 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
1954 					"IN" : "OUT");
1955 				dev_dbg(hsotg->dev,
1956 					"      Max packet size: %d\n",
1957 					dwc2_hcd_get_mps(&urb->pipe_info));
1958 				dev_dbg(hsotg->dev,
1959 					"      transfer_buffer: %p\n",
1960 					urb->buf);
1961 				dev_dbg(hsotg->dev,
1962 					"      transfer_dma: %08lx\n",
1963 					(unsigned long)urb->dma);
1964 				dev_dbg(hsotg->dev,
1965 					"      transfer_buffer_length: %d\n",
1966 					urb->length);
1967 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
1968 					urb->actual_length);
1969 			}
1970 		}
1971 	}
1972 
1973 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
1974 		hsotg->non_periodic_channels);
1975 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
1976 		hsotg->periodic_channels);
1977 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
1978 	np_tx_status = readl(hsotg->regs + GNPTXSTS);
1979 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
1980 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
1981 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
1982 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
1983 	p_tx_status = readl(hsotg->regs + HPTXSTS);
1984 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
1985 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
1986 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
1987 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
1988 	dwc2_hcd_dump_frrem(hsotg);
1989 	dwc2_dump_global_registers(hsotg);
1990 	dwc2_dump_host_registers(hsotg);
1991 	dev_dbg(hsotg->dev,
1992 		"************************************************************\n");
1993 	dev_dbg(hsotg->dev, "\n");
1994 #endif
1995 }
1996 
1997 /*
1998  * NOTE: This function will be removed once the peripheral controller code
1999  * is integrated and the driver is stable
2000  */
2001 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
2002 {
2003 #ifdef DWC2_DUMP_FRREM
2004 	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
2005 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2006 		hsotg->frrem_samples, hsotg->frrem_accum,
2007 		hsotg->frrem_samples > 0 ?
2008 		hsotg->frrem_accum / hsotg->frrem_samples : 0);
2009 	dev_dbg(hsotg->dev, "\n");
2010 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
2011 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2012 		hsotg->hfnum_7_samples,
2013 		hsotg->hfnum_7_frrem_accum,
2014 		hsotg->hfnum_7_samples > 0 ?
2015 		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
2016 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
2017 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2018 		hsotg->hfnum_0_samples,
2019 		hsotg->hfnum_0_frrem_accum,
2020 		hsotg->hfnum_0_samples > 0 ?
2021 		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
2022 	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
2023 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2024 		hsotg->hfnum_other_samples,
2025 		hsotg->hfnum_other_frrem_accum,
2026 		hsotg->hfnum_other_samples > 0 ?
2027 		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
2028 		0);
2029 	dev_dbg(hsotg->dev, "\n");
2030 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
2031 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2032 		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
2033 		hsotg->hfnum_7_samples_a > 0 ?
2034 		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
2035 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
2036 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2037 		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
2038 		hsotg->hfnum_0_samples_a > 0 ?
2039 		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
2040 	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
2041 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2042 		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
2043 		hsotg->hfnum_other_samples_a > 0 ?
2044 		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
2045 		: 0);
2046 	dev_dbg(hsotg->dev, "\n");
2047 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
2048 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2049 		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
2050 		hsotg->hfnum_7_samples_b > 0 ?
2051 		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
2052 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
2053 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2054 		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
2055 		(hsotg->hfnum_0_samples_b > 0) ?
2056 		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
2057 	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
2058 	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
2059 		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
2060 		(hsotg->hfnum_other_samples_b > 0) ?
2061 		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
2062 		: 0);
2063 #endif
2064 }
2065 
2066 struct wrapper_priv_data {
2067 	struct dwc2_hsotg *hsotg;
2068 };
2069 
2070 /* Gets the dwc2_hsotg from a usb_hcd */
2071 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
2072 {
2073 	struct wrapper_priv_data *p;
2074 
2075 	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
2076 	return p->hsotg;
2077 }
2078 
2079 static int _dwc2_hcd_start(struct usb_hcd *hcd);
2080 
2081 void dwc2_host_start(struct dwc2_hsotg *hsotg)
2082 {
2083 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2084 
2085 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
2086 	_dwc2_hcd_start(hcd);
2087 }
2088 
2089 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
2090 {
2091 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
2092 
2093 	hcd->self.is_b_host = 0;
2094 }
2095 
2096 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
2097 			int *hub_port)
2098 {
2099 	struct urb *urb = context;
2100 
2101 	if (urb->dev->tt)
2102 		*hub_addr = urb->dev->tt->hub->devnum;
2103 	else
2104 		*hub_addr = 0;
2105 	*hub_port = urb->dev->ttport;
2106 }
2107 
2108 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
2109 {
2110 	struct urb *urb = context;
2111 
2112 	return urb->dev->speed;
2113 }
2114 
2115 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2116 					struct urb *urb)
2117 {
2118 	struct usb_bus *bus = hcd_to_bus(hcd);
2119 
2120 	if (urb->interval)
2121 		bus->bandwidth_allocated += bw / urb->interval;
2122 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2123 		bus->bandwidth_isoc_reqs++;
2124 	else
2125 		bus->bandwidth_int_reqs++;
2126 }
2127 
2128 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
2129 				    struct urb *urb)
2130 {
2131 	struct usb_bus *bus = hcd_to_bus(hcd);
2132 
2133 	if (urb->interval)
2134 		bus->bandwidth_allocated -= bw / urb->interval;
2135 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2136 		bus->bandwidth_isoc_reqs--;
2137 	else
2138 		bus->bandwidth_int_reqs--;
2139 }
2140 
2141 /*
2142  * Sets the final status of an URB and returns it to the upper layer. Any
2143  * required cleanup of the URB is performed.
2144  *
2145  * Must be called with interrupt disabled and spinlock held
2146  */
2147 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2148 			int status)
2149 {
2150 	struct urb *urb;
2151 	int i;
2152 
2153 	if (!qtd) {
2154 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
2155 		return;
2156 	}
2157 
2158 	if (!qtd->urb) {
2159 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
2160 		return;
2161 	}
2162 
2163 	urb = qtd->urb->priv;
2164 	if (!urb) {
2165 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
2166 		return;
2167 	}
2168 
2169 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
2170 
2171 	if (dbg_urb(urb))
2172 		dev_vdbg(hsotg->dev,
2173 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
2174 			 __func__, urb, usb_pipedevice(urb->pipe),
2175 			 usb_pipeendpoint(urb->pipe),
2176 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
2177 			 urb->actual_length);
2178 
2179 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
2180 		for (i = 0; i < urb->number_of_packets; i++)
2181 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
2182 				 i, urb->iso_frame_desc[i].status);
2183 	}
2184 
2185 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2186 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
2187 		for (i = 0; i < urb->number_of_packets; ++i) {
2188 			urb->iso_frame_desc[i].actual_length =
2189 				dwc2_hcd_urb_get_iso_desc_actual_length(
2190 						qtd->urb, i);
2191 			urb->iso_frame_desc[i].status =
2192 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
2193 		}
2194 	}
2195 
2196 	urb->status = status;
2197 	if (!status) {
2198 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
2199 		    urb->actual_length < urb->transfer_buffer_length)
2200 			urb->status = -EREMOTEIO;
2201 	}
2202 
2203 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2204 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2205 		struct usb_host_endpoint *ep = urb->ep;
2206 
2207 		if (ep)
2208 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
2209 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2210 					urb);
2211 	}
2212 
2213 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
2214 	urb->hcpriv = NULL;
2215 	kfree(qtd->urb);
2216 	qtd->urb = NULL;
2217 
2218 	spin_unlock(&hsotg->lock);
2219 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
2220 	spin_lock(&hsotg->lock);
2221 }
2222 
2223 /*
2224  * Work queue function for starting the HCD when A-Cable is connected
2225  */
2226 static void dwc2_hcd_start_func(struct work_struct *work)
2227 {
2228 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2229 						start_work.work);
2230 
2231 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
2232 	dwc2_host_start(hsotg);
2233 }
2234 
2235 /*
2236  * Reset work queue function
2237  */
2238 static void dwc2_hcd_reset_func(struct work_struct *work)
2239 {
2240 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
2241 						reset_work.work);
2242 	u32 hprt0;
2243 
2244 	dev_dbg(hsotg->dev, "USB RESET function called\n");
2245 	hprt0 = dwc2_read_hprt0(hsotg);
2246 	hprt0 &= ~HPRT0_RST;
2247 	writel(hprt0, hsotg->regs + HPRT0);
2248 	hsotg->flags.b.port_reset_change = 1;
2249 }
2250 
2251 /*
2252  * =========================================================================
2253  *  Linux HC Driver Functions
2254  * =========================================================================
2255  */
2256 
2257 /*
2258  * Initializes the DWC_otg controller and its root hub and prepares it for host
2259  * mode operation. Activates the root port. Returns 0 on success and a negative
2260  * error code on failure.
2261  */
2262 static int _dwc2_hcd_start(struct usb_hcd *hcd)
2263 {
2264 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2265 	struct usb_bus *bus = hcd_to_bus(hcd);
2266 	unsigned long flags;
2267 
2268 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
2269 
2270 	spin_lock_irqsave(&hsotg->lock, flags);
2271 
2272 	hcd->state = HC_STATE_RUNNING;
2273 
2274 	if (dwc2_is_device_mode(hsotg)) {
2275 		spin_unlock_irqrestore(&hsotg->lock, flags);
2276 		return 0;	/* why 0 ?? */
2277 	}
2278 
2279 	dwc2_hcd_reinit(hsotg);
2280 
2281 	/* Initialize and connect root hub if one is not already attached */
2282 	if (bus->root_hub) {
2283 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
2284 		/* Inform the HUB driver to resume */
2285 		usb_hcd_resume_root_hub(hcd);
2286 	}
2287 
2288 	spin_unlock_irqrestore(&hsotg->lock, flags);
2289 	return 0;
2290 }
2291 
2292 /*
2293  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
2294  * stopped.
2295  */
2296 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
2297 {
2298 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2299 	unsigned long flags;
2300 
2301 	spin_lock_irqsave(&hsotg->lock, flags);
2302 	dwc2_hcd_stop(hsotg);
2303 	spin_unlock_irqrestore(&hsotg->lock, flags);
2304 
2305 	usleep_range(1000, 3000);
2306 }
2307 
2308 /* Returns the current frame number */
2309 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
2310 {
2311 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2312 
2313 	return dwc2_hcd_get_frame_number(hsotg);
2314 }
2315 
2316 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
2317 			       char *fn_name)
2318 {
2319 #ifdef VERBOSE_DEBUG
2320 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2321 	char *pipetype;
2322 	char *speed;
2323 
2324 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
2325 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
2326 		 usb_pipedevice(urb->pipe));
2327 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
2328 		 usb_pipeendpoint(urb->pipe),
2329 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
2330 
2331 	switch (usb_pipetype(urb->pipe)) {
2332 	case PIPE_CONTROL:
2333 		pipetype = "CONTROL";
2334 		break;
2335 	case PIPE_BULK:
2336 		pipetype = "BULK";
2337 		break;
2338 	case PIPE_INTERRUPT:
2339 		pipetype = "INTERRUPT";
2340 		break;
2341 	case PIPE_ISOCHRONOUS:
2342 		pipetype = "ISOCHRONOUS";
2343 		break;
2344 	default:
2345 		pipetype = "UNKNOWN";
2346 		break;
2347 	}
2348 
2349 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
2350 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
2351 		 "IN" : "OUT");
2352 
2353 	switch (urb->dev->speed) {
2354 	case USB_SPEED_HIGH:
2355 		speed = "HIGH";
2356 		break;
2357 	case USB_SPEED_FULL:
2358 		speed = "FULL";
2359 		break;
2360 	case USB_SPEED_LOW:
2361 		speed = "LOW";
2362 		break;
2363 	default:
2364 		speed = "UNKNOWN";
2365 		break;
2366 	}
2367 
2368 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
2369 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
2370 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
2371 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
2372 		 urb->transfer_buffer_length);
2373 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
2374 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
2375 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
2376 		 urb->setup_packet, (unsigned long)urb->setup_dma);
2377 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
2378 
2379 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2380 		int i;
2381 
2382 		for (i = 0; i < urb->number_of_packets; i++) {
2383 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
2384 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
2385 				 urb->iso_frame_desc[i].offset,
2386 				 urb->iso_frame_desc[i].length);
2387 		}
2388 	}
2389 #endif
2390 }
2391 
2392 /*
2393  * Starts processing a USB transfer request specified by a USB Request Block
2394  * (URB). mem_flags indicates the type of memory allocation to use while
2395  * processing this URB.
2396  */
2397 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2398 				 gfp_t mem_flags)
2399 {
2400 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2401 	struct usb_host_endpoint *ep = urb->ep;
2402 	struct dwc2_hcd_urb *dwc2_urb;
2403 	int i;
2404 	int retval;
2405 	int alloc_bandwidth = 0;
2406 	u8 ep_type = 0;
2407 	u32 tflags = 0;
2408 	void *buf;
2409 	unsigned long flags;
2410 
2411 	if (dbg_urb(urb)) {
2412 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
2413 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
2414 	}
2415 
2416 	if (ep == NULL)
2417 		return -EINVAL;
2418 
2419 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
2420 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
2421 		spin_lock_irqsave(&hsotg->lock, flags);
2422 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
2423 			alloc_bandwidth = 1;
2424 		spin_unlock_irqrestore(&hsotg->lock, flags);
2425 	}
2426 
2427 	switch (usb_pipetype(urb->pipe)) {
2428 	case PIPE_CONTROL:
2429 		ep_type = USB_ENDPOINT_XFER_CONTROL;
2430 		break;
2431 	case PIPE_ISOCHRONOUS:
2432 		ep_type = USB_ENDPOINT_XFER_ISOC;
2433 		break;
2434 	case PIPE_BULK:
2435 		ep_type = USB_ENDPOINT_XFER_BULK;
2436 		break;
2437 	case PIPE_INTERRUPT:
2438 		ep_type = USB_ENDPOINT_XFER_INT;
2439 		break;
2440 	default:
2441 		dev_warn(hsotg->dev, "Wrong ep type\n");
2442 	}
2443 
2444 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
2445 				      mem_flags);
2446 	if (!dwc2_urb)
2447 		return -ENOMEM;
2448 
2449 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
2450 				  usb_pipeendpoint(urb->pipe), ep_type,
2451 				  usb_pipein(urb->pipe),
2452 				  usb_maxpacket(urb->dev, urb->pipe,
2453 						!(usb_pipein(urb->pipe))));
2454 
2455 	buf = urb->transfer_buffer;
2456 
2457 	if (hcd->self.uses_dma) {
2458 		if (!buf && (urb->transfer_dma & 3)) {
2459 			dev_err(hsotg->dev,
2460 				"%s: unaligned transfer with no transfer_buffer",
2461 				__func__);
2462 			retval = -EINVAL;
2463 			goto fail1;
2464 		}
2465 	}
2466 
2467 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
2468 		tflags |= URB_GIVEBACK_ASAP;
2469 	if (urb->transfer_flags & URB_ZERO_PACKET)
2470 		tflags |= URB_SEND_ZERO_PACKET;
2471 
2472 	dwc2_urb->priv = urb;
2473 	dwc2_urb->buf = buf;
2474 	dwc2_urb->dma = urb->transfer_dma;
2475 	dwc2_urb->length = urb->transfer_buffer_length;
2476 	dwc2_urb->setup_packet = urb->setup_packet;
2477 	dwc2_urb->setup_dma = urb->setup_dma;
2478 	dwc2_urb->flags = tflags;
2479 	dwc2_urb->interval = urb->interval;
2480 	dwc2_urb->status = -EINPROGRESS;
2481 
2482 	for (i = 0; i < urb->number_of_packets; ++i)
2483 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
2484 						 urb->iso_frame_desc[i].offset,
2485 						 urb->iso_frame_desc[i].length);
2486 
2487 	urb->hcpriv = dwc2_urb;
2488 
2489 	spin_lock_irqsave(&hsotg->lock, flags);
2490 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
2491 	spin_unlock_irqrestore(&hsotg->lock, flags);
2492 	if (retval)
2493 		goto fail1;
2494 
2495 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, &ep->hcpriv, mem_flags);
2496 	if (retval)
2497 		goto fail2;
2498 
2499 	if (alloc_bandwidth) {
2500 		spin_lock_irqsave(&hsotg->lock, flags);
2501 		dwc2_allocate_bus_bandwidth(hcd,
2502 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
2503 				urb);
2504 		spin_unlock_irqrestore(&hsotg->lock, flags);
2505 	}
2506 
2507 	return 0;
2508 
2509 fail2:
2510 	spin_lock_irqsave(&hsotg->lock, flags);
2511 	dwc2_urb->priv = NULL;
2512 	usb_hcd_unlink_urb_from_ep(hcd, urb);
2513 	spin_unlock_irqrestore(&hsotg->lock, flags);
2514 fail1:
2515 	urb->hcpriv = NULL;
2516 	kfree(dwc2_urb);
2517 
2518 	return retval;
2519 }
2520 
2521 /*
2522  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
2523  */
2524 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
2525 				 int status)
2526 {
2527 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2528 	int rc;
2529 	unsigned long flags;
2530 
2531 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
2532 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
2533 
2534 	spin_lock_irqsave(&hsotg->lock, flags);
2535 
2536 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
2537 	if (rc)
2538 		goto out;
2539 
2540 	if (!urb->hcpriv) {
2541 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
2542 		goto out;
2543 	}
2544 
2545 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
2546 
2547 	usb_hcd_unlink_urb_from_ep(hcd, urb);
2548 
2549 	kfree(urb->hcpriv);
2550 	urb->hcpriv = NULL;
2551 
2552 	/* Higher layer software sets URB status */
2553 	spin_unlock(&hsotg->lock);
2554 	usb_hcd_giveback_urb(hcd, urb, status);
2555 	spin_lock(&hsotg->lock);
2556 
2557 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
2558 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
2559 out:
2560 	spin_unlock_irqrestore(&hsotg->lock, flags);
2561 
2562 	return rc;
2563 }
2564 
2565 /*
2566  * Frees resources in the DWC_otg controller related to a given endpoint. Also
2567  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
2568  * must already be dequeued.
2569  */
2570 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
2571 				       struct usb_host_endpoint *ep)
2572 {
2573 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2574 
2575 	dev_dbg(hsotg->dev,
2576 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
2577 		ep->desc.bEndpointAddress, ep->hcpriv);
2578 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
2579 }
2580 
2581 /*
2582  * Resets endpoint specific parameter values, in current version used to reset
2583  * the data toggle (as a WA). This function can be called from usb_clear_halt
2584  * routine.
2585  */
2586 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
2587 				     struct usb_host_endpoint *ep)
2588 {
2589 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2590 	unsigned long flags;
2591 
2592 	dev_dbg(hsotg->dev,
2593 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
2594 		ep->desc.bEndpointAddress);
2595 
2596 	spin_lock_irqsave(&hsotg->lock, flags);
2597 	dwc2_hcd_endpoint_reset(hsotg, ep);
2598 	spin_unlock_irqrestore(&hsotg->lock, flags);
2599 }
2600 
2601 /*
2602  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
2603  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
2604  * interrupt.
2605  *
2606  * This function is called by the USB core when an interrupt occurs
2607  */
2608 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
2609 {
2610 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2611 
2612 	return dwc2_handle_hcd_intr(hsotg);
2613 }
2614 
2615 /*
2616  * Creates Status Change bitmap for the root hub and root port. The bitmap is
2617  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
2618  * is the status change indicator for the single root port. Returns 1 if either
2619  * change indicator is 1, otherwise returns 0.
2620  */
2621 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
2622 {
2623 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2624 
2625 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
2626 	return buf[0] != 0;
2627 }
2628 
2629 /* Handles hub class-specific requests */
2630 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
2631 				 u16 windex, char *buf, u16 wlength)
2632 {
2633 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
2634 					  wvalue, windex, buf, wlength);
2635 	return retval;
2636 }
2637 
2638 /* Handles hub TT buffer clear completions */
2639 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
2640 					       struct usb_host_endpoint *ep)
2641 {
2642 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2643 	struct dwc2_qh *qh;
2644 	unsigned long flags;
2645 
2646 	qh = ep->hcpriv;
2647 	if (!qh)
2648 		return;
2649 
2650 	spin_lock_irqsave(&hsotg->lock, flags);
2651 	qh->tt_buffer_dirty = 0;
2652 
2653 	if (hsotg->flags.b.port_connect_status)
2654 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
2655 
2656 	spin_unlock_irqrestore(&hsotg->lock, flags);
2657 }
2658 
2659 static struct hc_driver dwc2_hc_driver = {
2660 	.description = "dwc2_hsotg",
2661 	.product_desc = "DWC OTG Controller",
2662 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
2663 
2664 	.irq = _dwc2_hcd_irq,
2665 	.flags = HCD_MEMORY | HCD_USB2,
2666 
2667 	.start = _dwc2_hcd_start,
2668 	.stop = _dwc2_hcd_stop,
2669 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
2670 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
2671 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
2672 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
2673 	.get_frame_number = _dwc2_hcd_get_frame_number,
2674 
2675 	.hub_status_data = _dwc2_hcd_hub_status_data,
2676 	.hub_control = _dwc2_hcd_hub_control,
2677 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
2678 };
2679 
2680 /*
2681  * Frees secondary storage associated with the dwc2_hsotg structure contained
2682  * in the struct usb_hcd field
2683  */
2684 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
2685 {
2686 	u32 ahbcfg;
2687 	u32 dctl;
2688 	int i;
2689 
2690 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
2691 
2692 	/* Free memory for QH/QTD lists */
2693 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
2694 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
2695 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
2696 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
2697 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
2698 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
2699 
2700 	/* Free memory for the host channels */
2701 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
2702 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
2703 
2704 		if (chan != NULL) {
2705 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
2706 				i, chan);
2707 			hsotg->hc_ptr_array[i] = NULL;
2708 			kfree(chan);
2709 		}
2710 	}
2711 
2712 	if (hsotg->core_params->dma_enable > 0) {
2713 		if (hsotg->status_buf) {
2714 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
2715 					  hsotg->status_buf,
2716 					  hsotg->status_buf_dma);
2717 			hsotg->status_buf = NULL;
2718 		}
2719 	} else {
2720 		kfree(hsotg->status_buf);
2721 		hsotg->status_buf = NULL;
2722 	}
2723 
2724 	ahbcfg = readl(hsotg->regs + GAHBCFG);
2725 
2726 	/* Disable all interrupts */
2727 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
2728 	writel(ahbcfg, hsotg->regs + GAHBCFG);
2729 	writel(0, hsotg->regs + GINTMSK);
2730 
2731 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
2732 		dctl = readl(hsotg->regs + DCTL);
2733 		dctl |= DCTL_SFTDISCON;
2734 		writel(dctl, hsotg->regs + DCTL);
2735 	}
2736 
2737 	if (hsotg->wq_otg) {
2738 		if (!cancel_work_sync(&hsotg->wf_otg))
2739 			flush_workqueue(hsotg->wq_otg);
2740 		destroy_workqueue(hsotg->wq_otg);
2741 	}
2742 
2743 	kfree(hsotg->core_params);
2744 	hsotg->core_params = NULL;
2745 	del_timer(&hsotg->wkp_timer);
2746 }
2747 
2748 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
2749 {
2750 	/* Turn off all host-specific interrupts */
2751 	dwc2_disable_host_interrupts(hsotg);
2752 
2753 	dwc2_hcd_free(hsotg);
2754 }
2755 
2756 /*
2757  * Sets all parameters to the given value.
2758  *
2759  * Assumes that the dwc2_core_params struct contains only integers.
2760  */
2761 void dwc2_set_all_params(struct dwc2_core_params *params, int value)
2762 {
2763 	int *p = (int *)params;
2764 	size_t size = sizeof(*params) / sizeof(*p);
2765 	int i;
2766 
2767 	for (i = 0; i < size; i++)
2768 		p[i] = value;
2769 }
2770 EXPORT_SYMBOL_GPL(dwc2_set_all_params);
2771 
2772 /*
2773  * Initializes the HCD. This function allocates memory for and initializes the
2774  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
2775  * USB bus with the core and calls the hc_driver->start() function. It returns
2776  * a negative error on failure.
2777  */
2778 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
2779 		  const struct dwc2_core_params *params)
2780 {
2781 	struct usb_hcd *hcd;
2782 	struct dwc2_host_chan *channel;
2783 	u32 hcfg;
2784 	int i, num_channels;
2785 	int retval;
2786 
2787 	if (usb_disabled())
2788 		return -ENODEV;
2789 
2790 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
2791 
2792 	/* Detect config values from hardware */
2793 	retval = dwc2_get_hwparams(hsotg);
2794 
2795 	if (retval)
2796 		return retval;
2797 
2798 	retval = -ENOMEM;
2799 
2800 	hcfg = readl(hsotg->regs + HCFG);
2801 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
2802 
2803 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2804 	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
2805 					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
2806 	if (!hsotg->frame_num_array)
2807 		goto error1;
2808 	hsotg->last_frame_num_array = kzalloc(
2809 			sizeof(*hsotg->last_frame_num_array) *
2810 			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
2811 	if (!hsotg->last_frame_num_array)
2812 		goto error1;
2813 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
2814 #endif
2815 
2816 	hsotg->core_params = kzalloc(sizeof(*hsotg->core_params), GFP_KERNEL);
2817 	if (!hsotg->core_params)
2818 		goto error1;
2819 
2820 	dwc2_set_all_params(hsotg->core_params, -1);
2821 
2822 	/* Validate parameter values */
2823 	dwc2_set_parameters(hsotg, params);
2824 
2825 	/* Check if the bus driver or platform code has setup a dma_mask */
2826 	if (hsotg->core_params->dma_enable > 0 &&
2827 	    hsotg->dev->dma_mask == NULL) {
2828 		dev_warn(hsotg->dev,
2829 			 "dma_mask not set, disabling DMA\n");
2830 		hsotg->core_params->dma_enable = 0;
2831 		hsotg->core_params->dma_desc_enable = 0;
2832 	}
2833 
2834 	/* Set device flags indicating whether the HCD supports DMA */
2835 	if (hsotg->core_params->dma_enable > 0) {
2836 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
2837 			dev_warn(hsotg->dev, "can't set DMA mask\n");
2838 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
2839 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
2840 	}
2841 
2842 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
2843 	if (!hcd)
2844 		goto error1;
2845 
2846 	if (hsotg->core_params->dma_enable <= 0)
2847 		hcd->self.uses_dma = 0;
2848 
2849 	hcd->has_tt = 1;
2850 
2851 	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
2852 	hsotg->priv = hcd;
2853 
2854 	/*
2855 	 * Disable the global interrupt until all the interrupt handlers are
2856 	 * installed
2857 	 */
2858 	dwc2_disable_global_interrupts(hsotg);
2859 
2860 	/* Initialize the DWC_otg core, and select the Phy type */
2861 	retval = dwc2_core_init(hsotg, true, irq);
2862 	if (retval)
2863 		goto error2;
2864 
2865 	/* Create new workqueue and init work */
2866 	retval = -ENOMEM;
2867 	hsotg->wq_otg = create_singlethread_workqueue("dwc2");
2868 	if (!hsotg->wq_otg) {
2869 		dev_err(hsotg->dev, "Failed to create workqueue\n");
2870 		goto error2;
2871 	}
2872 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
2873 
2874 	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
2875 		    (unsigned long)hsotg);
2876 
2877 	/* Initialize the non-periodic schedule */
2878 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
2879 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
2880 
2881 	/* Initialize the periodic schedule */
2882 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
2883 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
2884 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
2885 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
2886 
2887 	/*
2888 	 * Create a host channel descriptor for each host channel implemented
2889 	 * in the controller. Initialize the channel descriptor array.
2890 	 */
2891 	INIT_LIST_HEAD(&hsotg->free_hc_list);
2892 	num_channels = hsotg->core_params->host_channels;
2893 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
2894 
2895 	for (i = 0; i < num_channels; i++) {
2896 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
2897 		if (channel == NULL)
2898 			goto error3;
2899 		channel->hc_num = i;
2900 		hsotg->hc_ptr_array[i] = channel;
2901 	}
2902 
2903 	if (hsotg->core_params->uframe_sched > 0)
2904 		dwc2_hcd_init_usecs(hsotg);
2905 
2906 	/* Initialize hsotg start work */
2907 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
2908 
2909 	/* Initialize port reset work */
2910 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
2911 
2912 	/*
2913 	 * Allocate space for storing data on status transactions. Normally no
2914 	 * data is sent, but this space acts as a bit bucket. This must be
2915 	 * done after usb_add_hcd since that function allocates the DMA buffer
2916 	 * pool.
2917 	 */
2918 	if (hsotg->core_params->dma_enable > 0)
2919 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
2920 					DWC2_HCD_STATUS_BUF_SIZE,
2921 					&hsotg->status_buf_dma, GFP_KERNEL);
2922 	else
2923 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
2924 					  GFP_KERNEL);
2925 
2926 	if (!hsotg->status_buf)
2927 		goto error3;
2928 
2929 	hsotg->otg_port = 1;
2930 	hsotg->frame_list = NULL;
2931 	hsotg->frame_list_dma = 0;
2932 	hsotg->periodic_qh_count = 0;
2933 
2934 	/* Initiate lx_state to L3 disconnected state */
2935 	hsotg->lx_state = DWC2_L3;
2936 
2937 	hcd->self.otg_port = hsotg->otg_port;
2938 
2939 	/* Don't support SG list at this point */
2940 	hcd->self.sg_tablesize = 0;
2941 
2942 	/*
2943 	 * Finish generic HCD initialization and start the HCD. This function
2944 	 * allocates the DMA buffer pool, registers the USB bus, requests the
2945 	 * IRQ line, and calls hcd_start method.
2946 	 */
2947 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
2948 	if (retval < 0)
2949 		goto error3;
2950 
2951 	device_wakeup_enable(hcd->self.controller);
2952 
2953 	dwc2_hcd_dump_state(hsotg);
2954 
2955 	dwc2_enable_global_interrupts(hsotg);
2956 
2957 	return 0;
2958 
2959 error3:
2960 	dwc2_hcd_release(hsotg);
2961 error2:
2962 	usb_put_hcd(hcd);
2963 error1:
2964 	kfree(hsotg->core_params);
2965 
2966 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
2967 	kfree(hsotg->last_frame_num_array);
2968 	kfree(hsotg->frame_num_array);
2969 #endif
2970 
2971 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
2972 	return retval;
2973 }
2974 EXPORT_SYMBOL_GPL(dwc2_hcd_init);
2975 
2976 /*
2977  * Removes the HCD.
2978  * Frees memory and resources associated with the HCD and deregisters the bus.
2979  */
2980 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
2981 {
2982 	struct usb_hcd *hcd;
2983 
2984 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
2985 
2986 	hcd = dwc2_hsotg_to_hcd(hsotg);
2987 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
2988 
2989 	if (!hcd) {
2990 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
2991 			__func__);
2992 		return;
2993 	}
2994 
2995 	usb_remove_hcd(hcd);
2996 	hsotg->priv = NULL;
2997 	dwc2_hcd_release(hsotg);
2998 	usb_put_hcd(hcd);
2999 
3000 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
3001 	kfree(hsotg->last_frame_num_array);
3002 	kfree(hsotg->frame_num_array);
3003 #endif
3004 }
3005 EXPORT_SYMBOL_GPL(dwc2_hcd_remove);
3006